]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/jit.c
PR gdb/13431:
[thirdparty/binutils-gdb.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3 Copyright (C) 2009-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "frame-unwind.h"
29 #include "gdbcmd.h"
30 #include "gdbcore.h"
31 #include "inferior.h"
32 #include "observer.h"
33 #include "objfiles.h"
34 #include "regcache.h"
35 #include "symfile.h"
36 #include "symtab.h"
37 #include "target.h"
38 #include "gdb-dlfcn.h"
39 #include "gdb_stat.h"
40 #include "exceptions.h"
41
42 static const char *jit_reader_dir = NULL;
43
44 static const struct objfile_data *jit_objfile_data;
45
46 static const char *const jit_break_name = "__jit_debug_register_code";
47
48 static const char *const jit_descriptor_name = "__jit_debug_descriptor";
49
50 static const struct inferior_data *jit_inferior_data = NULL;
51
52 static void jit_inferior_init (struct gdbarch *gdbarch);
53
54 /* An unwinder is registered for every gdbarch. This key is used to
55 remember if the unwinder has been registered for a particular
56 gdbarch. */
57
58 static struct gdbarch_data *jit_gdbarch_data;
59
60 /* Non-zero if we want to see trace of jit level stuff. */
61
62 static int jit_debug = 0;
63
64 static void
65 show_jit_debug (struct ui_file *file, int from_tty,
66 struct cmd_list_element *c, const char *value)
67 {
68 fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
69 }
70
71 struct target_buffer
72 {
73 CORE_ADDR base;
74 ULONGEST size;
75 };
76
77 /* Openning the file is a no-op. */
78
79 static void *
80 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure)
81 {
82 return open_closure;
83 }
84
85 /* Closing the file is just freeing the base/size pair on our side. */
86
87 static int
88 mem_bfd_iovec_close (struct bfd *abfd, void *stream)
89 {
90 xfree (stream);
91 return 1;
92 }
93
94 /* For reading the file, we just need to pass through to target_read_memory and
95 fix up the arguments and return values. */
96
97 static file_ptr
98 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
99 file_ptr nbytes, file_ptr offset)
100 {
101 int err;
102 struct target_buffer *buffer = (struct target_buffer *) stream;
103
104 /* If this read will read all of the file, limit it to just the rest. */
105 if (offset + nbytes > buffer->size)
106 nbytes = buffer->size - offset;
107
108 /* If there are no more bytes left, we've reached EOF. */
109 if (nbytes == 0)
110 return 0;
111
112 err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes);
113 if (err)
114 return -1;
115
116 return nbytes;
117 }
118
119 /* For statting the file, we only support the st_size attribute. */
120
121 static int
122 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
123 {
124 struct target_buffer *buffer = (struct target_buffer*) stream;
125
126 sb->st_size = buffer->size;
127 return 0;
128 }
129
130 /* Open a BFD from the target's memory. */
131
132 static struct bfd *
133 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size, char *target)
134 {
135 const char *filename = xstrdup ("<in-memory>");
136 struct target_buffer *buffer = xmalloc (sizeof (struct target_buffer));
137
138 buffer->base = addr;
139 buffer->size = size;
140 return bfd_openr_iovec (filename, target,
141 mem_bfd_iovec_open,
142 buffer,
143 mem_bfd_iovec_pread,
144 mem_bfd_iovec_close,
145 mem_bfd_iovec_stat);
146 }
147
148 /* One reader that has been loaded successfully, and can potentially be used to
149 parse debug info. */
150
151 static struct jit_reader
152 {
153 struct gdb_reader_funcs *functions;
154 void *handle;
155 } *loaded_jit_reader = NULL;
156
157 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
158 static const char *reader_init_fn_sym = "gdb_init_reader";
159
160 /* Try to load FILE_NAME as a JIT debug info reader. */
161
162 static struct jit_reader *
163 jit_reader_load (const char *file_name)
164 {
165 void *so;
166 reader_init_fn_type *init_fn;
167 struct jit_reader *new_reader = NULL;
168 struct gdb_reader_funcs *funcs = NULL;
169 struct cleanup *old_cleanups;
170
171 if (jit_debug)
172 fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
173 file_name);
174 so = gdb_dlopen (file_name);
175 old_cleanups = make_cleanup_dlclose (so);
176
177 init_fn = gdb_dlsym (so, reader_init_fn_sym);
178 if (!init_fn)
179 error (_("Could not locate initialization function: %s."),
180 reader_init_fn_sym);
181
182 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
183 error (_("Reader not GPL compatible."));
184
185 funcs = init_fn ();
186 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
187 error (_("Reader version does not match GDB version."));
188
189 new_reader = XZALLOC (struct jit_reader);
190 new_reader->functions = funcs;
191 new_reader->handle = so;
192
193 discard_cleanups (old_cleanups);
194 return new_reader;
195 }
196
197 /* Provides the jit-reader-load command. */
198
199 static void
200 jit_reader_load_command (char *args, int from_tty)
201 {
202 char *so_name;
203 int len;
204 struct cleanup *prev_cleanup;
205
206 if (args == NULL)
207 error (_("No reader name provided."));
208
209 if (loaded_jit_reader != NULL)
210 error (_("JIT reader already loaded. Run jit-reader-unload first."));
211
212 so_name = xstrprintf ("%s/%s", jit_reader_dir, args);
213 prev_cleanup = make_cleanup (xfree, so_name);
214
215 loaded_jit_reader = jit_reader_load (so_name);
216 do_cleanups (prev_cleanup);
217 }
218
219 /* Provides the jit-reader-unload command. */
220
221 static void
222 jit_reader_unload_command (char *args, int from_tty)
223 {
224 if (!loaded_jit_reader)
225 error (_("No JIT reader loaded."));
226
227 loaded_jit_reader->functions->destroy (loaded_jit_reader->functions);
228
229 gdb_dlclose (loaded_jit_reader->handle);
230 xfree (loaded_jit_reader);
231 loaded_jit_reader = NULL;
232 }
233
234 /* Per-inferior structure recording which objfile has the JIT
235 symbols. */
236
237 struct jit_inferior_data
238 {
239 /* The objfile. This is NULL if no objfile holds the JIT
240 symbols. */
241
242 struct objfile *objfile;
243 };
244
245 /* Per-objfile structure recording the addresses in the inferior. */
246
247 struct jit_objfile_data
248 {
249 /* Symbol for __jit_debug_register_code. */
250 struct minimal_symbol *register_code;
251
252 /* Symbol for __jit_debug_descriptor. */
253 struct minimal_symbol *descriptor;
254
255 /* Address of struct jit_code_entry in this objfile. */
256 CORE_ADDR addr;
257 };
258
259 /* Fetch the jit_objfile_data associated with OBJF. If no data exists
260 yet, make a new structure and attach it. */
261
262 static struct jit_objfile_data *
263 get_jit_objfile_data (struct objfile *objf)
264 {
265 struct jit_objfile_data *objf_data;
266
267 objf_data = objfile_data (objf, jit_objfile_data);
268 if (objf_data == NULL)
269 {
270 objf_data = XZALLOC (struct jit_objfile_data);
271 set_objfile_data (objf, jit_objfile_data, objf_data);
272 }
273
274 return objf_data;
275 }
276
277 /* Remember OBJFILE has been created for struct jit_code_entry located
278 at inferior address ENTRY. */
279
280 static void
281 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
282 {
283 CORE_ADDR *entry_addr_ptr;
284 struct jit_objfile_data *objf_data;
285
286 objf_data = get_jit_objfile_data (objfile);
287 objf_data->addr = entry;
288 }
289
290 /* Return jit_inferior_data for current inferior. Allocate if not already
291 present. */
292
293 static struct jit_inferior_data *
294 get_jit_inferior_data (void)
295 {
296 struct inferior *inf;
297 struct jit_inferior_data *inf_data;
298
299 inf = current_inferior ();
300 inf_data = inferior_data (inf, jit_inferior_data);
301 if (inf_data == NULL)
302 {
303 inf_data = XZALLOC (struct jit_inferior_data);
304 set_inferior_data (inf, jit_inferior_data, inf_data);
305 }
306
307 return inf_data;
308 }
309
310 static void
311 jit_inferior_data_cleanup (struct inferior *inf, void *arg)
312 {
313 xfree (arg);
314 }
315
316 /* Helper function for reading the global JIT descriptor from remote
317 memory. Returns 1 if all went well, 0 otherwise. */
318
319 static int
320 jit_read_descriptor (struct gdbarch *gdbarch,
321 struct jit_descriptor *descriptor,
322 struct jit_inferior_data *inf_data)
323 {
324 int err;
325 struct type *ptr_type;
326 int ptr_size;
327 int desc_size;
328 gdb_byte *desc_buf;
329 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
330 struct jit_objfile_data *objf_data;
331
332 if (inf_data->objfile == NULL)
333 return 0;
334 objf_data = get_jit_objfile_data (inf_data->objfile);
335 if (objf_data->descriptor == NULL)
336 return 0;
337
338 if (jit_debug)
339 fprintf_unfiltered (gdb_stdlog,
340 "jit_read_descriptor, descriptor_addr = %s\n",
341 paddress (gdbarch, SYMBOL_VALUE_ADDRESS (objf_data->descriptor)));
342
343 /* Figure out how big the descriptor is on the remote and how to read it. */
344 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
345 ptr_size = TYPE_LENGTH (ptr_type);
346 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
347 desc_buf = alloca (desc_size);
348
349 /* Read the descriptor. */
350 err = target_read_memory (SYMBOL_VALUE_ADDRESS (objf_data->descriptor),
351 desc_buf, desc_size);
352 if (err)
353 {
354 printf_unfiltered (_("Unable to read JIT descriptor from "
355 "remote memory\n"));
356 return 0;
357 }
358
359 /* Fix the endianness to match the host. */
360 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
361 descriptor->action_flag =
362 extract_unsigned_integer (&desc_buf[4], 4, byte_order);
363 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
364 descriptor->first_entry =
365 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
366
367 return 1;
368 }
369
370 /* Helper function for reading a JITed code entry from remote memory. */
371
372 static void
373 jit_read_code_entry (struct gdbarch *gdbarch,
374 CORE_ADDR code_addr, struct jit_code_entry *code_entry)
375 {
376 int err, off;
377 struct type *ptr_type;
378 int ptr_size;
379 int entry_size;
380 int align_bytes;
381 gdb_byte *entry_buf;
382 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
383
384 /* Figure out how big the entry is on the remote and how to read it. */
385 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
386 ptr_size = TYPE_LENGTH (ptr_type);
387 entry_size = 3 * ptr_size + 8; /* Three pointers and one 64-bit int. */
388 entry_buf = alloca (entry_size);
389
390 /* Read the entry. */
391 err = target_read_memory (code_addr, entry_buf, entry_size);
392 if (err)
393 error (_("Unable to read JIT code entry from remote memory!"));
394
395 /* Fix the endianness to match the host. */
396 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
397 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
398 code_entry->prev_entry =
399 extract_typed_address (&entry_buf[ptr_size], ptr_type);
400 code_entry->symfile_addr =
401 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
402
403 align_bytes = gdbarch_long_long_align_bit (gdbarch) / 8;
404 off = 3 * ptr_size;
405 off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
406
407 code_entry->symfile_size =
408 extract_unsigned_integer (&entry_buf[off], 8, byte_order);
409 }
410
411 /* Proxy object for building a block. */
412
413 struct gdb_block
414 {
415 /* gdb_blocks are linked into a tree structure. Next points to the
416 next node at the same depth as this block and parent to the
417 parent gdb_block. */
418 struct gdb_block *next, *parent;
419
420 /* Points to the "real" block that is being built out of this
421 instance. This block will be added to a blockvector, which will
422 then be added to a symtab. */
423 struct block *real_block;
424
425 /* The first and last code address corresponding to this block. */
426 CORE_ADDR begin, end;
427
428 /* The name of this block (if any). If this is non-NULL, the
429 FUNCTION symbol symbol is set to this value. */
430 const char *name;
431 };
432
433 /* Proxy object for building a symtab. */
434
435 struct gdb_symtab
436 {
437 /* The list of blocks in this symtab. These will eventually be
438 converted to real blocks. */
439 struct gdb_block *blocks;
440
441 /* The number of blocks inserted. */
442 int nblocks;
443
444 /* A mapping between line numbers to PC. */
445 struct linetable *linetable;
446
447 /* The source file for this symtab. */
448 const char *file_name;
449 struct gdb_symtab *next;
450 };
451
452 /* Proxy object for building an object. */
453
454 struct gdb_object
455 {
456 struct gdb_symtab *symtabs;
457 };
458
459 /* The type of the `private' data passed around by the callback
460 functions. */
461
462 typedef CORE_ADDR jit_dbg_reader_data;
463
464 /* The reader calls into this function to read data off the targets
465 address space. */
466
467 static enum gdb_status
468 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
469 {
470 int result = target_read_memory ((CORE_ADDR) target_mem, gdb_buf, len);
471 if (result == 0)
472 return GDB_SUCCESS;
473 else
474 return GDB_FAIL;
475 }
476
477 /* The reader calls into this function to create a new gdb_object
478 which it can then pass around to the other callbacks. Right now,
479 all that is required is allocating the memory. */
480
481 static struct gdb_object *
482 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
483 {
484 /* CB is not required right now, but sometime in the future we might
485 need a handle to it, and we'd like to do that without breaking
486 the ABI. */
487 return XZALLOC (struct gdb_object);
488 }
489
490 /* Readers call into this function to open a new gdb_symtab, which,
491 again, is passed around to other callbacks. */
492
493 static struct gdb_symtab *
494 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
495 struct gdb_object *object,
496 const char *file_name)
497 {
498 struct gdb_symtab *ret;
499
500 /* CB stays unused. See comment in jit_object_open_impl. */
501
502 ret = XZALLOC (struct gdb_symtab);
503 ret->file_name = file_name ? xstrdup (file_name) : xstrdup ("");
504 ret->next = object->symtabs;
505 object->symtabs = ret;
506 return ret;
507 }
508
509 /* Returns true if the block corresponding to old should be placed
510 before the block corresponding to new in the final blockvector. */
511
512 static int
513 compare_block (const struct gdb_block *const old,
514 const struct gdb_block *const new)
515 {
516 if (old == NULL)
517 return 1;
518 if (old->begin < new->begin)
519 return 1;
520 else if (old->begin == new->begin)
521 {
522 if (old->end > new->end)
523 return 1;
524 else
525 return 0;
526 }
527 else
528 return 0;
529 }
530
531 /* Called by readers to open a new gdb_block. This function also
532 inserts the new gdb_block in the correct place in the corresponding
533 gdb_symtab. */
534
535 static struct gdb_block *
536 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
537 struct gdb_symtab *symtab, struct gdb_block *parent,
538 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
539 {
540 struct gdb_block *block = XZALLOC (struct gdb_block);
541
542 block->next = symtab->blocks;
543 block->begin = (CORE_ADDR) begin;
544 block->end = (CORE_ADDR) end;
545 block->name = name ? xstrdup (name) : NULL;
546 block->parent = parent;
547
548 /* Ensure that the blocks are inserted in the correct (reverse of
549 the order expected by blockvector). */
550 if (compare_block (symtab->blocks, block))
551 {
552 symtab->blocks = block;
553 }
554 else
555 {
556 struct gdb_block *i = symtab->blocks;
557
558 for (;; i = i->next)
559 {
560 /* Guaranteed to terminate, since compare_block (NULL, _)
561 returns 1. */
562 if (compare_block (i->next, block))
563 {
564 block->next = i->next;
565 i->next = block;
566 break;
567 }
568 }
569 }
570 symtab->nblocks++;
571
572 return block;
573 }
574
575 /* Readers call this to add a line mapping (from PC to line number) to
576 a gdb_symtab. */
577
578 static void
579 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
580 struct gdb_symtab *stab, int nlines,
581 struct gdb_line_mapping *map)
582 {
583 int i;
584
585 if (nlines < 1)
586 return;
587
588 stab->linetable = xmalloc (sizeof (struct linetable)
589 + (nlines - 1) * sizeof (struct linetable_entry));
590 stab->linetable->nitems = nlines;
591 for (i = 0; i < nlines; i++)
592 {
593 stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
594 stab->linetable->item[i].line = map[i].line;
595 }
596 }
597
598 /* Called by readers to close a gdb_symtab. Does not need to do
599 anything as of now. */
600
601 static void
602 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
603 struct gdb_symtab *stab)
604 {
605 /* Right now nothing needs to be done here. We may need to do some
606 cleanup here in the future (again, without breaking the plugin
607 ABI). */
608 }
609
610 /* Transform STAB to a proper symtab, and add it it OBJFILE. */
611
612 static void
613 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
614 {
615 struct symtab *symtab;
616 struct gdb_block *gdb_block_iter, *gdb_block_iter_tmp;
617 struct block *block_iter;
618 int actual_nblocks, i, blockvector_size;
619 CORE_ADDR begin, end;
620
621 actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
622
623 symtab = allocate_symtab (stab->file_name, objfile);
624 /* JIT compilers compile in memory. */
625 symtab->dirname = NULL;
626
627 /* Copy over the linetable entry if one was provided. */
628 if (stab->linetable)
629 {
630 int size = ((stab->linetable->nitems - 1)
631 * sizeof (struct linetable_entry)
632 + sizeof (struct linetable));
633 LINETABLE (symtab) = obstack_alloc (&objfile->objfile_obstack, size);
634 memcpy (LINETABLE (symtab), stab->linetable, size);
635 }
636 else
637 {
638 LINETABLE (symtab) = NULL;
639 }
640
641 blockvector_size = (sizeof (struct blockvector)
642 + (actual_nblocks - 1) * sizeof (struct block *));
643 symtab->blockvector = obstack_alloc (&objfile->objfile_obstack,
644 blockvector_size);
645
646 /* (begin, end) will contain the PC range this entire blockvector
647 spans. */
648 symtab->primary = 1;
649 BLOCKVECTOR_MAP (symtab->blockvector) = NULL;
650 begin = stab->blocks->begin;
651 end = stab->blocks->end;
652 BLOCKVECTOR_NBLOCKS (symtab->blockvector) = actual_nblocks;
653
654 /* First run over all the gdb_block objects, creating a real block
655 object for each. Simultaneously, keep setting the real_block
656 fields. */
657 for (i = (actual_nblocks - 1), gdb_block_iter = stab->blocks;
658 i >= FIRST_LOCAL_BLOCK;
659 i--, gdb_block_iter = gdb_block_iter->next)
660 {
661 struct block *new_block = allocate_block (&objfile->objfile_obstack);
662 struct symbol *block_name = obstack_alloc (&objfile->objfile_obstack,
663 sizeof (struct symbol));
664
665 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
666 NULL);
667 /* The address range. */
668 BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter->begin;
669 BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter->end;
670
671 /* The name. */
672 memset (block_name, 0, sizeof (struct symbol));
673 SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
674 SYMBOL_CLASS (block_name) = LOC_BLOCK;
675 SYMBOL_SYMTAB (block_name) = symtab;
676 SYMBOL_BLOCK_VALUE (block_name) = new_block;
677
678 block_name->ginfo.name = obsavestring (gdb_block_iter->name,
679 strlen (gdb_block_iter->name),
680 &objfile->objfile_obstack);
681
682 BLOCK_FUNCTION (new_block) = block_name;
683
684 BLOCKVECTOR_BLOCK (symtab->blockvector, i) = new_block;
685 if (begin > BLOCK_START (new_block))
686 begin = BLOCK_START (new_block);
687 if (end < BLOCK_END (new_block))
688 end = BLOCK_END (new_block);
689
690 gdb_block_iter->real_block = new_block;
691 }
692
693 /* Now add the special blocks. */
694 block_iter = NULL;
695 for (i = 0; i < FIRST_LOCAL_BLOCK; i++)
696 {
697 struct block *new_block = allocate_block (&objfile->objfile_obstack);
698 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
699 NULL);
700 BLOCK_SUPERBLOCK (new_block) = block_iter;
701 block_iter = new_block;
702
703 BLOCK_START (new_block) = (CORE_ADDR) begin;
704 BLOCK_END (new_block) = (CORE_ADDR) end;
705
706 BLOCKVECTOR_BLOCK (symtab->blockvector, i) = new_block;
707 }
708
709 /* Fill up the superblock fields for the real blocks, using the
710 real_block fields populated earlier. */
711 for (gdb_block_iter = stab->blocks;
712 gdb_block_iter;
713 gdb_block_iter = gdb_block_iter->next)
714 {
715 if (gdb_block_iter->parent != NULL)
716 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
717 gdb_block_iter->parent->real_block;
718 }
719
720 /* Free memory. */
721 gdb_block_iter = stab->blocks;
722
723 for (gdb_block_iter = stab->blocks, gdb_block_iter_tmp = gdb_block_iter->next;
724 gdb_block_iter;
725 gdb_block_iter = gdb_block_iter_tmp)
726 {
727 xfree ((void *) gdb_block_iter->name);
728 xfree (gdb_block_iter);
729 }
730 xfree (stab->linetable);
731 xfree ((char *) stab->file_name);
732 xfree (stab);
733 }
734
735 /* Called when closing a gdb_objfile. Converts OBJ to a proper
736 objfile. */
737
738 static void
739 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
740 struct gdb_object *obj)
741 {
742 struct gdb_symtab *i, *j;
743 struct objfile *objfile;
744 jit_dbg_reader_data *priv_data;
745
746 priv_data = cb->priv_data;
747
748 objfile = allocate_objfile (NULL, 0);
749 objfile->gdbarch = target_gdbarch;
750
751 terminate_minimal_symbol_table (objfile);
752
753 xfree (objfile->name);
754 objfile->name = xstrdup ("<< JIT compiled code >>");
755
756 j = NULL;
757 for (i = obj->symtabs; i; i = j)
758 {
759 j = i->next;
760 finalize_symtab (i, objfile);
761 }
762 add_objfile_entry (objfile, *priv_data);
763 xfree (obj);
764 }
765
766 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
767 ENTRY_ADDR is the address of the struct jit_code_entry in the
768 inferior address space. */
769
770 static int
771 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
772 CORE_ADDR entry_addr)
773 {
774 void *gdb_mem;
775 int status;
776 struct jit_dbg_reader *i;
777 jit_dbg_reader_data priv_data;
778 struct gdb_reader_funcs *funcs;
779 volatile struct gdb_exception e;
780 struct gdb_symbol_callbacks callbacks =
781 {
782 jit_object_open_impl,
783 jit_symtab_open_impl,
784 jit_block_open_impl,
785 jit_symtab_close_impl,
786 jit_object_close_impl,
787
788 jit_symtab_line_mapping_add_impl,
789 jit_target_read_impl,
790
791 &priv_data
792 };
793
794 priv_data = entry_addr;
795
796 if (!loaded_jit_reader)
797 return 0;
798
799 gdb_mem = xmalloc (code_entry->symfile_size);
800
801 status = 1;
802 TRY_CATCH (e, RETURN_MASK_ALL)
803 if (target_read_memory (code_entry->symfile_addr, gdb_mem,
804 code_entry->symfile_size))
805 status = 0;
806 if (e.reason < 0)
807 status = 0;
808
809 if (status)
810 {
811 funcs = loaded_jit_reader->functions;
812 if (funcs->read (funcs, &callbacks, gdb_mem, code_entry->symfile_size)
813 != GDB_SUCCESS)
814 status = 0;
815 }
816
817 xfree (gdb_mem);
818 if (jit_debug && status == 0)
819 fprintf_unfiltered (gdb_stdlog,
820 "Could not read symtab using the loaded JIT reader.\n");
821 return status;
822 }
823
824 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
825 struct jit_code_entry in the inferior address space. */
826
827 static void
828 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
829 CORE_ADDR entry_addr,
830 struct gdbarch *gdbarch)
831 {
832 bfd *nbfd;
833 struct section_addr_info *sai;
834 struct bfd_section *sec;
835 struct objfile *objfile;
836 struct cleanup *old_cleanups;
837 int i;
838 const struct bfd_arch_info *b;
839
840 if (jit_debug)
841 fprintf_unfiltered (gdb_stdlog,
842 "jit_register_code, symfile_addr = %s, "
843 "symfile_size = %s\n",
844 paddress (gdbarch, code_entry->symfile_addr),
845 pulongest (code_entry->symfile_size));
846
847 nbfd = bfd_open_from_target_memory (code_entry->symfile_addr,
848 code_entry->symfile_size, gnutarget);
849 if (nbfd == NULL)
850 {
851 puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
852 return;
853 }
854
855 /* Check the format. NOTE: This initializes important data that GDB uses!
856 We would segfault later without this line. */
857 if (!bfd_check_format (nbfd, bfd_object))
858 {
859 printf_unfiltered (_("\
860 JITed symbol file is not an object file, ignoring it.\n"));
861 bfd_close (nbfd);
862 return;
863 }
864
865 /* Check bfd arch. */
866 b = gdbarch_bfd_arch_info (gdbarch);
867 if (b->compatible (b, bfd_get_arch_info (nbfd)) != b)
868 warning (_("JITed object file architecture %s is not compatible "
869 "with target architecture %s."), bfd_get_arch_info
870 (nbfd)->printable_name, b->printable_name);
871
872 /* Read the section address information out of the symbol file. Since the
873 file is generated by the JIT at runtime, it should all of the absolute
874 addresses that we care about. */
875 sai = alloc_section_addr_info (bfd_count_sections (nbfd));
876 old_cleanups = make_cleanup_free_section_addr_info (sai);
877 i = 0;
878 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
879 if ((bfd_get_section_flags (nbfd, sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
880 {
881 /* We assume that these virtual addresses are absolute, and do not
882 treat them as offsets. */
883 sai->other[i].addr = bfd_get_section_vma (nbfd, sec);
884 sai->other[i].name = xstrdup (bfd_get_section_name (nbfd, sec));
885 sai->other[i].sectindex = sec->index;
886 ++i;
887 }
888
889 /* This call takes ownership of NBFD. It does not take ownership of SAI. */
890 objfile = symbol_file_add_from_bfd (nbfd, 0, sai, OBJF_SHARED, NULL);
891
892 do_cleanups (old_cleanups);
893 add_objfile_entry (objfile, entry_addr);
894 }
895
896 /* This function registers code associated with a JIT code entry. It uses the
897 pointer and size pair in the entry to read the symbol file from the remote
898 and then calls symbol_file_add_from_local_memory to add it as though it were
899 a symbol file added by the user. */
900
901 static void
902 jit_register_code (struct gdbarch *gdbarch,
903 CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
904 {
905 int i, success;
906 const struct bfd_arch_info *b;
907 struct jit_inferior_data *inf_data = get_jit_inferior_data ();
908
909 if (jit_debug)
910 fprintf_unfiltered (gdb_stdlog,
911 "jit_register_code, symfile_addr = %s, "
912 "symfile_size = %s\n",
913 paddress (gdbarch, code_entry->symfile_addr),
914 pulongest (code_entry->symfile_size));
915
916 success = jit_reader_try_read_symtab (code_entry, entry_addr);
917
918 if (!success)
919 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
920 }
921
922 /* This function unregisters JITed code and frees the corresponding
923 objfile. */
924
925 static void
926 jit_unregister_code (struct objfile *objfile)
927 {
928 free_objfile (objfile);
929 }
930
931 /* Look up the objfile with this code entry address. */
932
933 static struct objfile *
934 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
935 {
936 struct objfile *objf;
937 CORE_ADDR *objf_entry_addr;
938
939 ALL_OBJFILES (objf)
940 {
941 struct jit_objfile_data *objf_data;
942
943 objf_data = objfile_data (objf, jit_objfile_data);
944 if (objf_data != NULL && objf_data->addr == entry_addr)
945 return objf;
946 }
947 return NULL;
948 }
949
950 /* (Re-)Initialize the jit breakpoint if necessary.
951 Return 0 on success. */
952
953 static int
954 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch,
955 struct jit_inferior_data *inf_data)
956 {
957 struct minimal_symbol *reg_symbol, *desc_symbol;
958 struct objfile *objf;
959 struct jit_objfile_data *objf_data;
960
961 if (inf_data->objfile != NULL)
962 return 0;
963
964 /* Lookup the registration symbol. If it is missing, then we assume
965 we are not attached to a JIT. */
966 reg_symbol = lookup_minimal_symbol_and_objfile (jit_break_name, &objf);
967 if (reg_symbol == NULL || SYMBOL_VALUE_ADDRESS (reg_symbol) == 0)
968 return 1;
969
970 desc_symbol = lookup_minimal_symbol (jit_descriptor_name, NULL, objf);
971 if (desc_symbol == NULL || SYMBOL_VALUE_ADDRESS (desc_symbol) == 0)
972 return 1;
973
974 objf_data = get_jit_objfile_data (objf);
975 objf_data->register_code = reg_symbol;
976 objf_data->descriptor = desc_symbol;
977
978 inf_data->objfile = objf;
979
980 jit_inferior_init (gdbarch);
981
982 if (jit_debug)
983 fprintf_unfiltered (gdb_stdlog,
984 "jit_breakpoint_re_set_internal, "
985 "breakpoint_addr = %s\n",
986 paddress (gdbarch, SYMBOL_VALUE_ADDRESS (reg_symbol)));
987
988 /* Put a breakpoint in the registration symbol. */
989 create_jit_event_breakpoint (gdbarch, SYMBOL_VALUE_ADDRESS (reg_symbol));
990
991 return 0;
992 }
993
994 /* The private data passed around in the frame unwind callback
995 functions. */
996
997 struct jit_unwind_private
998 {
999 /* Cached register values. See jit_frame_sniffer to see how this
1000 works. */
1001 struct gdb_reg_value **registers;
1002
1003 /* The frame being unwound. */
1004 struct frame_info *this_frame;
1005 };
1006
1007 /* Sets the value of a particular register in this frame. */
1008
1009 static void
1010 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
1011 struct gdb_reg_value *value)
1012 {
1013 struct jit_unwind_private *priv;
1014 int gdb_reg;
1015
1016 priv = cb->priv_data;
1017
1018 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
1019 dwarf_regnum);
1020 if (gdb_reg == -1)
1021 {
1022 if (jit_debug)
1023 fprintf_unfiltered (gdb_stdlog,
1024 _("Could not recognize DWARF regnum %d"),
1025 dwarf_regnum);
1026 return;
1027 }
1028
1029 gdb_assert (priv->registers);
1030 priv->registers[gdb_reg] = value;
1031 }
1032
1033 static void
1034 reg_value_free_impl (struct gdb_reg_value *value)
1035 {
1036 xfree (value);
1037 }
1038
1039 /* Get the value of register REGNUM in the previous frame. */
1040
1041 static struct gdb_reg_value *
1042 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
1043 {
1044 struct jit_unwind_private *priv;
1045 struct gdb_reg_value *value;
1046 int gdb_reg, size;
1047 struct gdbarch *frame_arch;
1048
1049 priv = cb->priv_data;
1050 frame_arch = get_frame_arch (priv->this_frame);
1051
1052 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
1053 size = register_size (frame_arch, gdb_reg);
1054 value = xmalloc (sizeof (struct gdb_reg_value) + size - 1);
1055 value->defined = frame_register_read (priv->this_frame, gdb_reg,
1056 value->value);
1057 value->size = size;
1058 value->free = reg_value_free_impl;
1059 return value;
1060 }
1061
1062 /* gdb_reg_value has a free function, which must be called on each
1063 saved register value. */
1064
1065 static void
1066 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
1067 {
1068 struct jit_unwind_private *priv_data = cache;
1069 struct gdbarch *frame_arch;
1070 int i;
1071
1072 gdb_assert (priv_data->registers);
1073 frame_arch = get_frame_arch (priv_data->this_frame);
1074
1075 for (i = 0; i < gdbarch_num_regs (frame_arch); i++)
1076 if (priv_data->registers[i] && priv_data->registers[i]->free)
1077 priv_data->registers[i]->free (priv_data->registers[i]);
1078
1079 xfree (priv_data->registers);
1080 xfree (priv_data);
1081 }
1082
1083 /* The frame sniffer for the pseudo unwinder.
1084
1085 While this is nominally a frame sniffer, in the case where the JIT
1086 reader actually recognizes the frame, it does a lot more work -- it
1087 unwinds the frame and saves the corresponding register values in
1088 the cache. jit_frame_prev_register simply returns the saved
1089 register values. */
1090
1091 static int
1092 jit_frame_sniffer (const struct frame_unwind *self,
1093 struct frame_info *this_frame, void **cache)
1094 {
1095 struct jit_inferior_data *inf_data;
1096 struct jit_unwind_private *priv_data;
1097 struct jit_dbg_reader *iter;
1098 struct gdb_unwind_callbacks callbacks;
1099 struct gdb_reader_funcs *funcs;
1100
1101 inf_data = get_jit_inferior_data ();
1102
1103 callbacks.reg_get = jit_unwind_reg_get_impl;
1104 callbacks.reg_set = jit_unwind_reg_set_impl;
1105 callbacks.target_read = jit_target_read_impl;
1106
1107 if (loaded_jit_reader == NULL)
1108 return 0;
1109
1110 funcs = loaded_jit_reader->functions;
1111
1112 gdb_assert (!*cache);
1113
1114 *cache = XZALLOC (struct jit_unwind_private);
1115 priv_data = *cache;
1116 priv_data->registers =
1117 XCALLOC (gdbarch_num_regs (get_frame_arch (this_frame)),
1118 struct gdb_reg_value *);
1119 priv_data->this_frame = this_frame;
1120
1121 callbacks.priv_data = priv_data;
1122
1123 /* Try to coax the provided unwinder to unwind the stack */
1124 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1125 {
1126 if (jit_debug)
1127 fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
1128 "JIT reader.\n"));
1129 return 1;
1130 }
1131 if (jit_debug)
1132 fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
1133 "JIT reader.\n"));
1134
1135 jit_dealloc_cache (this_frame, *cache);
1136 *cache = NULL;
1137
1138 return 0;
1139 }
1140
1141
1142 /* The frame_id function for the pseudo unwinder. Relays the call to
1143 the loaded plugin. */
1144
1145 static void
1146 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1147 struct frame_id *this_id)
1148 {
1149 struct jit_unwind_private private;
1150 struct gdb_frame_id frame_id;
1151 struct gdb_reader_funcs *funcs;
1152 struct gdb_unwind_callbacks callbacks;
1153
1154 private.registers = NULL;
1155 private.this_frame = this_frame;
1156
1157 /* We don't expect the frame_id function to set any registers, so we
1158 set reg_set to NULL. */
1159 callbacks.reg_get = jit_unwind_reg_get_impl;
1160 callbacks.reg_set = NULL;
1161 callbacks.target_read = jit_target_read_impl;
1162 callbacks.priv_data = &private;
1163
1164 gdb_assert (loaded_jit_reader);
1165 funcs = loaded_jit_reader->functions;
1166
1167 frame_id = funcs->get_frame_id (funcs, &callbacks);
1168 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1169 }
1170
1171 /* Pseudo unwinder function. Reads the previously fetched value for
1172 the register from the cache. */
1173
1174 static struct value *
1175 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1176 {
1177 struct jit_unwind_private *priv = *cache;
1178 struct gdb_reg_value *value;
1179
1180 if (priv == NULL)
1181 return frame_unwind_got_optimized (this_frame, reg);
1182
1183 gdb_assert (priv->registers);
1184 value = priv->registers[reg];
1185 if (value && value->defined)
1186 return frame_unwind_got_bytes (this_frame, reg, value->value);
1187 else
1188 return frame_unwind_got_optimized (this_frame, reg);
1189 }
1190
1191 /* Relay everything back to the unwinder registered by the JIT debug
1192 info reader.*/
1193
1194 static const struct frame_unwind jit_frame_unwind =
1195 {
1196 NORMAL_FRAME,
1197 default_frame_unwind_stop_reason,
1198 jit_frame_this_id,
1199 jit_frame_prev_register,
1200 NULL,
1201 jit_frame_sniffer,
1202 jit_dealloc_cache
1203 };
1204
1205
1206 /* This is the information that is stored at jit_gdbarch_data for each
1207 architecture. */
1208
1209 struct jit_gdbarch_data_type
1210 {
1211 /* Has the (pseudo) unwinder been prepended? */
1212 int unwinder_registered;
1213 };
1214
1215 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
1216
1217 static void
1218 jit_prepend_unwinder (struct gdbarch *gdbarch)
1219 {
1220 struct jit_gdbarch_data_type *data;
1221
1222 data = gdbarch_data (gdbarch, jit_gdbarch_data);
1223 if (!data->unwinder_registered)
1224 {
1225 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1226 data->unwinder_registered = 1;
1227 }
1228 }
1229
1230 /* Register any already created translations. */
1231
1232 static void
1233 jit_inferior_init (struct gdbarch *gdbarch)
1234 {
1235 struct jit_descriptor descriptor;
1236 struct jit_code_entry cur_entry;
1237 struct jit_inferior_data *inf_data;
1238 CORE_ADDR cur_entry_addr;
1239 struct jit_objfile_data *objf_data;
1240
1241 if (jit_debug)
1242 fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1243
1244 jit_prepend_unwinder (gdbarch);
1245
1246 inf_data = get_jit_inferior_data ();
1247 if (jit_breakpoint_re_set_internal (gdbarch, inf_data) != 0)
1248 return;
1249
1250 /* Read the descriptor so we can check the version number and load
1251 any already JITed functions. */
1252 if (!jit_read_descriptor (gdbarch, &descriptor, inf_data))
1253 return;
1254
1255 /* Check that the version number agrees with that we support. */
1256 if (descriptor.version != 1)
1257 {
1258 printf_unfiltered (_("Unsupported JIT protocol version %ld "
1259 "in descriptor (expected 1)\n"),
1260 (long) descriptor.version);
1261 return;
1262 }
1263
1264 /* If we've attached to a running program, we need to check the descriptor
1265 to register any functions that were already generated. */
1266 for (cur_entry_addr = descriptor.first_entry;
1267 cur_entry_addr != 0;
1268 cur_entry_addr = cur_entry.next_entry)
1269 {
1270 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1271
1272 /* This hook may be called many times during setup, so make sure we don't
1273 add the same symbol file twice. */
1274 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1275 continue;
1276
1277 jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1278 }
1279 }
1280
1281 /* Exported routine to call when an inferior has been created. */
1282
1283 void
1284 jit_inferior_created_hook (void)
1285 {
1286 jit_inferior_init (target_gdbarch);
1287 }
1288
1289 /* Exported routine to call to re-set the jit breakpoints,
1290 e.g. when a program is rerun. */
1291
1292 void
1293 jit_breakpoint_re_set (void)
1294 {
1295 jit_breakpoint_re_set_internal (target_gdbarch,
1296 get_jit_inferior_data ());
1297 }
1298
1299 /* This function cleans up any code entries left over when the
1300 inferior exits. We get left over code when the inferior exits
1301 without unregistering its code, for example when it crashes. */
1302
1303 static void
1304 jit_inferior_exit_hook (struct inferior *inf)
1305 {
1306 struct objfile *objf;
1307 struct objfile *temp;
1308
1309 ALL_OBJFILES_SAFE (objf, temp)
1310 {
1311 struct jit_objfile_data *objf_data = objfile_data (objf,
1312 jit_objfile_data);
1313
1314 if (objf_data != NULL && objf_data->addr != 0)
1315 jit_unregister_code (objf);
1316 }
1317 }
1318
1319 void
1320 jit_event_handler (struct gdbarch *gdbarch)
1321 {
1322 struct jit_descriptor descriptor;
1323 struct jit_code_entry code_entry;
1324 CORE_ADDR entry_addr;
1325 struct objfile *objf;
1326
1327 /* Read the descriptor from remote memory. */
1328 if (!jit_read_descriptor (gdbarch, &descriptor, get_jit_inferior_data ()))
1329 return;
1330 entry_addr = descriptor.relevant_entry;
1331
1332 /* Do the corresponding action. */
1333 switch (descriptor.action_flag)
1334 {
1335 case JIT_NOACTION:
1336 break;
1337 case JIT_REGISTER:
1338 jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1339 jit_register_code (gdbarch, entry_addr, &code_entry);
1340 break;
1341 case JIT_UNREGISTER:
1342 objf = jit_find_objf_with_entry_addr (entry_addr);
1343 if (objf == NULL)
1344 printf_unfiltered (_("Unable to find JITed code "
1345 "entry at address: %s\n"),
1346 paddress (gdbarch, entry_addr));
1347 else
1348 jit_unregister_code (objf);
1349
1350 break;
1351 default:
1352 error (_("Unknown action_flag value in JIT descriptor!"));
1353 break;
1354 }
1355 }
1356
1357 /* Called to free the data allocated to the jit_inferior_data slot. */
1358
1359 static void
1360 free_objfile_data (struct objfile *objfile, void *data)
1361 {
1362 struct jit_objfile_data *objf_data = data;
1363
1364 if (objf_data->register_code != NULL)
1365 {
1366 struct jit_inferior_data *inf_data = get_jit_inferior_data ();
1367
1368 if (inf_data->objfile == objfile)
1369 inf_data->objfile = NULL;
1370 }
1371
1372 xfree (data);
1373 }
1374
1375 /* Initialize the jit_gdbarch_data slot with an instance of struct
1376 jit_gdbarch_data_type */
1377
1378 static void *
1379 jit_gdbarch_data_init (struct obstack *obstack)
1380 {
1381 struct jit_gdbarch_data_type *data;
1382
1383 data = obstack_alloc (obstack, sizeof (struct jit_gdbarch_data_type));
1384 data->unwinder_registered = 0;
1385 return data;
1386 }
1387
1388 /* Provide a prototype to silence -Wmissing-prototypes. */
1389
1390 extern void _initialize_jit (void);
1391
1392 void
1393 _initialize_jit (void)
1394 {
1395 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1396 JIT_READER_DIR_RELOCATABLE);
1397 add_setshow_zinteger_cmd ("jit", class_maintenance, &jit_debug,
1398 _("Set JIT debugging."),
1399 _("Show JIT debugging."),
1400 _("When non-zero, JIT debugging is enabled."),
1401 NULL,
1402 show_jit_debug,
1403 &setdebuglist, &showdebuglist);
1404
1405 observer_attach_inferior_exit (jit_inferior_exit_hook);
1406 jit_objfile_data =
1407 register_objfile_data_with_cleanup (NULL, free_objfile_data);
1408 jit_inferior_data =
1409 register_inferior_data_with_cleanup (jit_inferior_data_cleanup);
1410 jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1411 if (is_dl_available ())
1412 {
1413 add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1414 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1415 Usage: jit-reader-load FILE\n\
1416 Try to load file FILE as a debug info reader (and unwinder) for\n\
1417 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
1418 relocated relative to the GDB executable if required."));
1419 add_com ("jit-reader-unload", no_class, jit_reader_unload_command, _("\
1420 Unload the currently loaded JIT debug info reader.\n\
1421 Usage: jit-reader-unload FILE\n\n\
1422 Do \"help jit-reader-load\" for info on loading debug info readers."));
1423 }
1424 }