]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/jit.c
* hppa-hpux-tdep.c (hppa64_hpux_search_dummy_call_sequence): Use
[thirdparty/binutils-gdb.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3 Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "frame-unwind.h"
29 #include "gdbcmd.h"
30 #include "gdbcore.h"
31 #include "inferior.h"
32 #include "observer.h"
33 #include "objfiles.h"
34 #include "regcache.h"
35 #include "symfile.h"
36 #include "symtab.h"
37 #include "target.h"
38 #include "gdb-dlfcn.h"
39 #include "gdb_stat.h"
40 #include "exceptions.h"
41
42 static const char *jit_reader_dir = NULL;
43
44 static const struct objfile_data *jit_objfile_data;
45
46 static const char *const jit_break_name = "__jit_debug_register_code";
47
48 static const char *const jit_descriptor_name = "__jit_debug_descriptor";
49
50 static const struct inferior_data *jit_inferior_data = NULL;
51
52 static void jit_inferior_init (struct gdbarch *gdbarch);
53
54 /* An unwinder is registered for every gdbarch. This key is used to
55 remember if the unwinder has been registered for a particular
56 gdbarch. */
57
58 static struct gdbarch_data *jit_gdbarch_data;
59
60 /* Non-zero if we want to see trace of jit level stuff. */
61
62 static int jit_debug = 0;
63
64 static void
65 show_jit_debug (struct ui_file *file, int from_tty,
66 struct cmd_list_element *c, const char *value)
67 {
68 fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
69 }
70
71 struct target_buffer
72 {
73 CORE_ADDR base;
74 ULONGEST size;
75 };
76
77 /* Openning the file is a no-op. */
78
79 static void *
80 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure)
81 {
82 return open_closure;
83 }
84
85 /* Closing the file is just freeing the base/size pair on our side. */
86
87 static int
88 mem_bfd_iovec_close (struct bfd *abfd, void *stream)
89 {
90 xfree (stream);
91 return 1;
92 }
93
94 /* For reading the file, we just need to pass through to target_read_memory and
95 fix up the arguments and return values. */
96
97 static file_ptr
98 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
99 file_ptr nbytes, file_ptr offset)
100 {
101 int err;
102 struct target_buffer *buffer = (struct target_buffer *) stream;
103
104 /* If this read will read all of the file, limit it to just the rest. */
105 if (offset + nbytes > buffer->size)
106 nbytes = buffer->size - offset;
107
108 /* If there are no more bytes left, we've reached EOF. */
109 if (nbytes == 0)
110 return 0;
111
112 err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes);
113 if (err)
114 return -1;
115
116 return nbytes;
117 }
118
119 /* For statting the file, we only support the st_size attribute. */
120
121 static int
122 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
123 {
124 struct target_buffer *buffer = (struct target_buffer*) stream;
125
126 sb->st_size = buffer->size;
127 return 0;
128 }
129
130 /* One reader that has been loaded successfully, and can potentially be used to
131 parse debug info. */
132
133 static struct jit_reader
134 {
135 struct gdb_reader_funcs *functions;
136 void *handle;
137 } *loaded_jit_reader = NULL;
138
139 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
140 static const char *reader_init_fn_sym = "gdb_init_reader";
141
142 /* Try to load FILE_NAME as a JIT debug info reader. */
143
144 static struct jit_reader *
145 jit_reader_load (const char *file_name)
146 {
147 void *so;
148 reader_init_fn_type *init_fn;
149 struct jit_reader *new_reader = NULL;
150 struct gdb_reader_funcs *funcs = NULL;
151 struct cleanup *old_cleanups;
152
153 if (jit_debug)
154 fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
155 file_name);
156 so = gdb_dlopen (file_name);
157 old_cleanups = make_cleanup_dlclose (so);
158
159 init_fn = gdb_dlsym (so, reader_init_fn_sym);
160 if (!init_fn)
161 error (_("Could not locate initialization function: %s."),
162 reader_init_fn_sym);
163
164 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
165 error (_("Reader not GPL compatible."));
166
167 funcs = init_fn ();
168 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
169 error (_("Reader version does not match GDB version."));
170
171 new_reader = XZALLOC (struct jit_reader);
172 new_reader->functions = funcs;
173 new_reader->handle = so;
174
175 discard_cleanups (old_cleanups);
176 return new_reader;
177 }
178
179 /* Provides the jit-reader-load command. */
180
181 static void
182 jit_reader_load_command (char *args, int from_tty)
183 {
184 char *so_name;
185 int len;
186 struct cleanup *prev_cleanup;
187
188 if (args == NULL)
189 error (_("No reader name provided."));
190
191 if (loaded_jit_reader != NULL)
192 error (_("JIT reader already loaded. Run jit-reader-unload first."));
193
194 so_name = xstrprintf ("%s/%s", jit_reader_dir, args);
195 prev_cleanup = make_cleanup (xfree, so_name);
196
197 loaded_jit_reader = jit_reader_load (so_name);
198 do_cleanups (prev_cleanup);
199 }
200
201 /* Provides the jit-reader-unload command. */
202
203 static void
204 jit_reader_unload_command (char *args, int from_tty)
205 {
206 if (!loaded_jit_reader)
207 error (_("No JIT reader loaded."));
208
209 loaded_jit_reader->functions->destroy (loaded_jit_reader->functions);
210
211 gdb_dlclose (loaded_jit_reader->handle);
212 xfree (loaded_jit_reader);
213 loaded_jit_reader = NULL;
214 }
215
216 /* Open a BFD from the target's memory. */
217
218 static struct bfd *
219 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size, char *target)
220 {
221 const char *filename = xstrdup ("<in-memory>");
222 struct target_buffer *buffer = xmalloc (sizeof (struct target_buffer));
223
224 buffer->base = addr;
225 buffer->size = size;
226 return bfd_openr_iovec (filename, target,
227 mem_bfd_iovec_open,
228 buffer,
229 mem_bfd_iovec_pread,
230 mem_bfd_iovec_close,
231 mem_bfd_iovec_stat);
232 }
233
234 /* Per-inferior structure recording the addresses in the inferior. */
235
236 struct jit_inferior_data
237 {
238 CORE_ADDR breakpoint_addr; /* &__jit_debug_register_code() */
239 CORE_ADDR descriptor_addr; /* &__jit_debug_descriptor */
240 };
241
242 /* Remember OBJFILE has been created for struct jit_code_entry located
243 at inferior address ENTRY. */
244
245 static void
246 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
247 {
248 CORE_ADDR *entry_addr_ptr;
249
250 entry_addr_ptr = xmalloc (sizeof (CORE_ADDR));
251 *entry_addr_ptr = entry;
252 set_objfile_data (objfile, jit_objfile_data, entry_addr_ptr);
253 }
254
255 /* Return jit_inferior_data for current inferior. Allocate if not already
256 present. */
257
258 static struct jit_inferior_data *
259 get_jit_inferior_data (void)
260 {
261 struct inferior *inf;
262 struct jit_inferior_data *inf_data;
263
264 inf = current_inferior ();
265 inf_data = inferior_data (inf, jit_inferior_data);
266 if (inf_data == NULL)
267 {
268 inf_data = XZALLOC (struct jit_inferior_data);
269 set_inferior_data (inf, jit_inferior_data, inf_data);
270 }
271
272 return inf_data;
273 }
274
275 static void
276 jit_inferior_data_cleanup (struct inferior *inf, void *arg)
277 {
278 xfree (arg);
279 }
280
281 /* Helper function for reading the global JIT descriptor from remote
282 memory. */
283
284 static void
285 jit_read_descriptor (struct gdbarch *gdbarch,
286 struct jit_descriptor *descriptor,
287 CORE_ADDR descriptor_addr)
288 {
289 int err;
290 struct type *ptr_type;
291 int ptr_size;
292 int desc_size;
293 gdb_byte *desc_buf;
294 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
295
296 /* Figure out how big the descriptor is on the remote and how to read it. */
297 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
298 ptr_size = TYPE_LENGTH (ptr_type);
299 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
300 desc_buf = alloca (desc_size);
301
302 /* Read the descriptor. */
303 err = target_read_memory (descriptor_addr, desc_buf, desc_size);
304 if (err)
305 error (_("Unable to read JIT descriptor from remote memory!"));
306
307 /* Fix the endianness to match the host. */
308 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
309 descriptor->action_flag =
310 extract_unsigned_integer (&desc_buf[4], 4, byte_order);
311 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
312 descriptor->first_entry =
313 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
314 }
315
316 /* Helper function for reading a JITed code entry from remote memory. */
317
318 static void
319 jit_read_code_entry (struct gdbarch *gdbarch,
320 CORE_ADDR code_addr, struct jit_code_entry *code_entry)
321 {
322 int err, off;
323 struct type *ptr_type;
324 int ptr_size;
325 int entry_size;
326 int align_bytes;
327 gdb_byte *entry_buf;
328 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
329
330 /* Figure out how big the entry is on the remote and how to read it. */
331 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
332 ptr_size = TYPE_LENGTH (ptr_type);
333 entry_size = 3 * ptr_size + 8; /* Three pointers and one 64-bit int. */
334 entry_buf = alloca (entry_size);
335
336 /* Read the entry. */
337 err = target_read_memory (code_addr, entry_buf, entry_size);
338 if (err)
339 error (_("Unable to read JIT code entry from remote memory!"));
340
341 /* Fix the endianness to match the host. */
342 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
343 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
344 code_entry->prev_entry =
345 extract_typed_address (&entry_buf[ptr_size], ptr_type);
346 code_entry->symfile_addr =
347 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
348
349 align_bytes = gdbarch_long_long_align_bit (gdbarch) / 8;
350 off = 3 * ptr_size;
351 off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
352
353 code_entry->symfile_size =
354 extract_unsigned_integer (&entry_buf[off], 8, byte_order);
355 }
356
357 /* Proxy object for building a block. */
358
359 struct gdb_block
360 {
361 /* gdb_blocks are linked into a tree structure. Next points to the
362 next node at the same depth as this block and parent to the
363 parent gdb_block. */
364 struct gdb_block *next, *parent;
365
366 /* Points to the "real" block that is being built out of this
367 instance. This block will be added to a blockvector, which will
368 then be added to a symtab. */
369 struct block *real_block;
370
371 /* The first and last code address corresponding to this block. */
372 CORE_ADDR begin, end;
373
374 /* The name of this block (if any). If this is non-NULL, the
375 FUNCTION symbol symbol is set to this value. */
376 const char *name;
377 };
378
379 /* Proxy object for building a symtab. */
380
381 struct gdb_symtab
382 {
383 /* The list of blocks in this symtab. These will eventually be
384 converted to real blocks. */
385 struct gdb_block *blocks;
386
387 /* The number of blocks inserted. */
388 int nblocks;
389
390 /* A mapping between line numbers to PC. */
391 struct linetable *linetable;
392
393 /* The source file for this symtab. */
394 const char *file_name;
395 struct gdb_symtab *next;
396 };
397
398 /* Proxy object for building an object. */
399
400 struct gdb_object
401 {
402 struct gdb_symtab *symtabs;
403 };
404
405 /* The type of the `private' data passed around by the callback
406 functions. */
407
408 typedef CORE_ADDR jit_dbg_reader_data;
409
410 /* The reader calls into this function to read data off the targets
411 address space. */
412
413 static enum gdb_status
414 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
415 {
416 int result = target_read_memory ((CORE_ADDR) target_mem, gdb_buf, len);
417 if (result == 0)
418 return GDB_SUCCESS;
419 else
420 return GDB_FAIL;
421 }
422
423 /* The reader calls into this function to create a new gdb_object
424 which it can then pass around to the other callbacks. Right now,
425 all that is required is allocating the memory. */
426
427 static struct gdb_object *
428 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
429 {
430 /* CB is not required right now, but sometime in the future we might
431 need a handle to it, and we'd like to do that without breaking
432 the ABI. */
433 return XZALLOC (struct gdb_object);
434 }
435
436 /* Readers call into this function to open a new gdb_symtab, which,
437 again, is passed around to other callbacks. */
438
439 static struct gdb_symtab *
440 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
441 struct gdb_object *object,
442 const char *file_name)
443 {
444 struct gdb_symtab *ret;
445
446 /* CB stays unused. See comment in jit_object_open_impl. */
447
448 ret = XZALLOC (struct gdb_symtab);
449 ret->file_name = file_name ? xstrdup (file_name) : xstrdup ("");
450 ret->next = object->symtabs;
451 object->symtabs = ret;
452 return ret;
453 }
454
455 /* Returns true if the block corresponding to old should be placed
456 before the block corresponding to new in the final blockvector. */
457
458 static int
459 compare_block (const struct gdb_block *const old,
460 const struct gdb_block *const new)
461 {
462 if (old == NULL)
463 return 1;
464 if (old->begin < new->begin)
465 return 1;
466 else if (old->begin == new->begin)
467 {
468 if (old->end > new->end)
469 return 1;
470 else
471 return 0;
472 }
473 else
474 return 0;
475 }
476
477 /* Called by readers to open a new gdb_block. This function also
478 inserts the new gdb_block in the correct place in the corresponding
479 gdb_symtab. */
480
481 static struct gdb_block *
482 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
483 struct gdb_symtab *symtab, struct gdb_block *parent,
484 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
485 {
486 struct gdb_block *block = XZALLOC (struct gdb_block);
487
488 block->next = symtab->blocks;
489 block->begin = (CORE_ADDR) begin;
490 block->end = (CORE_ADDR) end;
491 block->name = name ? xstrdup (name) : NULL;
492 block->parent = parent;
493
494 /* Ensure that the blocks are inserted in the correct (reverse of
495 the order expected by blockvector). */
496 if (compare_block (symtab->blocks, block))
497 {
498 symtab->blocks = block;
499 }
500 else
501 {
502 struct gdb_block *i = symtab->blocks;
503
504 for (;; i = i->next)
505 {
506 /* Guaranteed to terminate, since compare_block (NULL, _)
507 returns 1. */
508 if (compare_block (i->next, block))
509 {
510 block->next = i->next;
511 i->next = block;
512 break;
513 }
514 }
515 }
516 symtab->nblocks++;
517
518 return block;
519 }
520
521 /* Readers call this to add a line mapping (from PC to line number) to
522 a gdb_symtab. */
523
524 static void
525 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
526 struct gdb_symtab *stab, int nlines,
527 struct gdb_line_mapping *map)
528 {
529 int i;
530
531 if (nlines < 1)
532 return;
533
534 stab->linetable = xmalloc (sizeof (struct linetable)
535 + (nlines - 1) * sizeof (struct linetable_entry));
536 stab->linetable->nitems = nlines;
537 for (i = 0; i < nlines; i++)
538 {
539 stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
540 stab->linetable->item[i].line = map[i].line;
541 }
542 }
543
544 /* Called by readers to close a gdb_symtab. Does not need to do
545 anything as of now. */
546
547 static void
548 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
549 struct gdb_symtab *stab)
550 {
551 /* Right now nothing needs to be done here. We may need to do some
552 cleanup here in the future (again, without breaking the plugin
553 ABI). */
554 }
555
556 /* Transform STAB to a proper symtab, and add it it OBJFILE. */
557
558 static void
559 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
560 {
561 struct symtab *symtab;
562 struct gdb_block *gdb_block_iter, *gdb_block_iter_tmp;
563 struct block *block_iter;
564 int actual_nblocks, i, blockvector_size;
565 CORE_ADDR begin, end;
566
567 actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
568
569 symtab = allocate_symtab (stab->file_name, objfile);
570 /* JIT compilers compile in memory. */
571 symtab->dirname = NULL;
572
573 /* Copy over the linetable entry if one was provided. */
574 if (stab->linetable)
575 {
576 int size = ((stab->linetable->nitems - 1)
577 * sizeof (struct linetable_entry)
578 + sizeof (struct linetable));
579 LINETABLE (symtab) = obstack_alloc (&objfile->objfile_obstack, size);
580 memcpy (LINETABLE (symtab), stab->linetable, size);
581 }
582 else
583 {
584 LINETABLE (symtab) = NULL;
585 }
586
587 blockvector_size = (sizeof (struct blockvector)
588 + (actual_nblocks - 1) * sizeof (struct block *));
589 symtab->blockvector = obstack_alloc (&objfile->objfile_obstack,
590 blockvector_size);
591
592 /* (begin, end) will contain the PC range this entire blockvector
593 spans. */
594 symtab->primary = 1;
595 BLOCKVECTOR_MAP (symtab->blockvector) = NULL;
596 begin = stab->blocks->begin;
597 end = stab->blocks->end;
598 BLOCKVECTOR_NBLOCKS (symtab->blockvector) = actual_nblocks;
599
600 /* First run over all the gdb_block objects, creating a real block
601 object for each. Simultaneously, keep setting the real_block
602 fields. */
603 for (i = (actual_nblocks - 1), gdb_block_iter = stab->blocks;
604 i >= FIRST_LOCAL_BLOCK;
605 i--, gdb_block_iter = gdb_block_iter->next)
606 {
607 struct block *new_block = allocate_block (&objfile->objfile_obstack);
608 struct symbol *block_name = obstack_alloc (&objfile->objfile_obstack,
609 sizeof (struct symbol));
610
611 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
612 NULL);
613 /* The address range. */
614 BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter->begin;
615 BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter->end;
616
617 /* The name. */
618 memset (block_name, 0, sizeof (struct symbol));
619 SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
620 SYMBOL_CLASS (block_name) = LOC_BLOCK;
621 SYMBOL_SYMTAB (block_name) = symtab;
622 SYMBOL_BLOCK_VALUE (block_name) = new_block;
623
624 block_name->ginfo.name = obsavestring (gdb_block_iter->name,
625 strlen (gdb_block_iter->name),
626 &objfile->objfile_obstack);
627
628 BLOCK_FUNCTION (new_block) = block_name;
629
630 BLOCKVECTOR_BLOCK (symtab->blockvector, i) = new_block;
631 if (begin > BLOCK_START (new_block))
632 begin = BLOCK_START (new_block);
633 if (end < BLOCK_END (new_block))
634 end = BLOCK_END (new_block);
635
636 gdb_block_iter->real_block = new_block;
637 }
638
639 /* Now add the special blocks. */
640 block_iter = NULL;
641 for (i = 0; i < FIRST_LOCAL_BLOCK; i++)
642 {
643 struct block *new_block = allocate_block (&objfile->objfile_obstack);
644 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
645 NULL);
646 BLOCK_SUPERBLOCK (new_block) = block_iter;
647 block_iter = new_block;
648
649 BLOCK_START (new_block) = (CORE_ADDR) begin;
650 BLOCK_END (new_block) = (CORE_ADDR) end;
651
652 BLOCKVECTOR_BLOCK (symtab->blockvector, i) = new_block;
653 }
654
655 /* Fill up the superblock fields for the real blocks, using the
656 real_block fields populated earlier. */
657 for (gdb_block_iter = stab->blocks;
658 gdb_block_iter;
659 gdb_block_iter = gdb_block_iter->next)
660 {
661 if (gdb_block_iter->parent != NULL)
662 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
663 gdb_block_iter->parent->real_block;
664 }
665
666 /* Free memory. */
667 gdb_block_iter = stab->blocks;
668
669 for (gdb_block_iter = stab->blocks, gdb_block_iter_tmp = gdb_block_iter->next;
670 gdb_block_iter;
671 gdb_block_iter = gdb_block_iter_tmp)
672 {
673 xfree ((void *) gdb_block_iter->name);
674 xfree (gdb_block_iter);
675 }
676 xfree (stab->linetable);
677 xfree ((char *) stab->file_name);
678 xfree (stab);
679 }
680
681 /* Called when closing a gdb_objfile. Converts OBJ to a proper
682 objfile. */
683
684 static void
685 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
686 struct gdb_object *obj)
687 {
688 struct gdb_symtab *i, *j;
689 struct objfile *objfile;
690 jit_dbg_reader_data *priv_data;
691
692 priv_data = cb->priv_data;
693
694 objfile = allocate_objfile (NULL, 0);
695 objfile->gdbarch = target_gdbarch;
696
697 terminate_minimal_symbol_table (objfile);
698
699 xfree (objfile->name);
700 objfile->name = xstrdup ("<< JIT compiled code >>");
701
702 j = NULL;
703 for (i = obj->symtabs; i; i = j)
704 {
705 j = i->next;
706 finalize_symtab (i, objfile);
707 }
708 add_objfile_entry (objfile, *priv_data);
709 xfree (obj);
710 }
711
712 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
713 ENTRY_ADDR is the address of the struct jit_code_entry in the
714 inferior address space. */
715
716 static int
717 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
718 CORE_ADDR entry_addr)
719 {
720 void *gdb_mem;
721 int status;
722 struct jit_dbg_reader *i;
723 jit_dbg_reader_data priv_data;
724 struct gdb_reader_funcs *funcs;
725 volatile struct gdb_exception e;
726 struct gdb_symbol_callbacks callbacks =
727 {
728 jit_object_open_impl,
729 jit_symtab_open_impl,
730 jit_block_open_impl,
731 jit_symtab_close_impl,
732 jit_object_close_impl,
733
734 jit_symtab_line_mapping_add_impl,
735 jit_target_read_impl,
736
737 &priv_data
738 };
739
740 priv_data = entry_addr;
741
742 if (!loaded_jit_reader)
743 return 0;
744
745 gdb_mem = xmalloc (code_entry->symfile_size);
746
747 status = 1;
748 TRY_CATCH (e, RETURN_MASK_ALL)
749 if (target_read_memory (code_entry->symfile_addr, gdb_mem,
750 code_entry->symfile_size))
751 status = 0;
752 if (e.reason < 0)
753 status = 0;
754
755 if (status)
756 {
757 funcs = loaded_jit_reader->functions;
758 if (funcs->read (funcs, &callbacks, gdb_mem, code_entry->symfile_size)
759 != GDB_SUCCESS)
760 status = 0;
761 }
762
763 xfree (gdb_mem);
764 if (jit_debug && status == 0)
765 fprintf_unfiltered (gdb_stdlog,
766 "Could not read symtab using the loaded JIT reader.\n");
767 return status;
768 }
769
770 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
771 struct jit_code_entry in the inferior address space. */
772
773 static void
774 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
775 CORE_ADDR entry_addr,
776 struct gdbarch *gdbarch)
777 {
778 bfd *nbfd;
779 struct section_addr_info *sai;
780 struct bfd_section *sec;
781 struct objfile *objfile;
782 struct cleanup *old_cleanups;
783 int i;
784 const struct bfd_arch_info *b;
785
786 if (jit_debug)
787 fprintf_unfiltered (gdb_stdlog,
788 "jit_register_code, symfile_addr = %s, "
789 "symfile_size = %s\n",
790 paddress (gdbarch, code_entry->symfile_addr),
791 pulongest (code_entry->symfile_size));
792
793 nbfd = bfd_open_from_target_memory (code_entry->symfile_addr,
794 code_entry->symfile_size, gnutarget);
795 if (nbfd == NULL)
796 {
797 puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
798 return;
799 }
800
801 /* Check the format. NOTE: This initializes important data that GDB uses!
802 We would segfault later without this line. */
803 if (!bfd_check_format (nbfd, bfd_object))
804 {
805 printf_unfiltered (_("\
806 JITed symbol file is not an object file, ignoring it.\n"));
807 bfd_close (nbfd);
808 return;
809 }
810
811 /* Check bfd arch. */
812 b = gdbarch_bfd_arch_info (gdbarch);
813 if (b->compatible (b, bfd_get_arch_info (nbfd)) != b)
814 warning (_("JITed object file architecture %s is not compatible "
815 "with target architecture %s."), bfd_get_arch_info
816 (nbfd)->printable_name, b->printable_name);
817
818 /* Read the section address information out of the symbol file. Since the
819 file is generated by the JIT at runtime, it should all of the absolute
820 addresses that we care about. */
821 sai = alloc_section_addr_info (bfd_count_sections (nbfd));
822 old_cleanups = make_cleanup_free_section_addr_info (sai);
823 i = 0;
824 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
825 if ((bfd_get_section_flags (nbfd, sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
826 {
827 /* We assume that these virtual addresses are absolute, and do not
828 treat them as offsets. */
829 sai->other[i].addr = bfd_get_section_vma (nbfd, sec);
830 sai->other[i].name = xstrdup (bfd_get_section_name (nbfd, sec));
831 sai->other[i].sectindex = sec->index;
832 ++i;
833 }
834
835 /* This call takes ownership of NBFD. It does not take ownership of SAI. */
836 objfile = symbol_file_add_from_bfd (nbfd, 0, sai, OBJF_SHARED, NULL);
837
838 do_cleanups (old_cleanups);
839 add_objfile_entry (objfile, entry_addr);
840 }
841
842 /* This function registers code associated with a JIT code entry. It uses the
843 pointer and size pair in the entry to read the symbol file from the remote
844 and then calls symbol_file_add_from_local_memory to add it as though it were
845 a symbol file added by the user. */
846
847 static void
848 jit_register_code (struct gdbarch *gdbarch,
849 CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
850 {
851 int i, success;
852 const struct bfd_arch_info *b;
853 struct jit_inferior_data *inf_data = get_jit_inferior_data ();
854
855 if (jit_debug)
856 fprintf_unfiltered (gdb_stdlog,
857 "jit_register_code, symfile_addr = %s, "
858 "symfile_size = %s\n",
859 paddress (gdbarch, code_entry->symfile_addr),
860 pulongest (code_entry->symfile_size));
861
862 success = jit_reader_try_read_symtab (code_entry, entry_addr);
863
864 if (!success)
865 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
866 }
867
868 /* This function unregisters JITed code and frees the corresponding
869 objfile. */
870
871 static void
872 jit_unregister_code (struct objfile *objfile)
873 {
874 free_objfile (objfile);
875 }
876
877 /* Look up the objfile with this code entry address. */
878
879 static struct objfile *
880 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
881 {
882 struct objfile *objf;
883 CORE_ADDR *objf_entry_addr;
884
885 ALL_OBJFILES (objf)
886 {
887 objf_entry_addr = (CORE_ADDR *) objfile_data (objf, jit_objfile_data);
888 if (objf_entry_addr != NULL && *objf_entry_addr == entry_addr)
889 return objf;
890 }
891 return NULL;
892 }
893
894 /* (Re-)Initialize the jit breakpoint if necessary.
895 Return 0 on success. */
896
897 static int
898 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch,
899 struct jit_inferior_data *inf_data)
900 {
901 if (inf_data->breakpoint_addr == 0)
902 {
903 struct minimal_symbol *reg_symbol;
904
905 /* Lookup the registration symbol. If it is missing, then we assume
906 we are not attached to a JIT. */
907 reg_symbol = lookup_minimal_symbol (jit_break_name, NULL, NULL);
908 if (reg_symbol == NULL)
909 return 1;
910 inf_data->breakpoint_addr = SYMBOL_VALUE_ADDRESS (reg_symbol);
911 if (inf_data->breakpoint_addr == 0)
912 return 2;
913
914 /* If we have not read the jit descriptor yet (e.g. because the JITer
915 itself is in a shared library which just got loaded), do so now. */
916 if (inf_data->descriptor_addr == 0)
917 jit_inferior_init (gdbarch);
918 }
919 else
920 return 0;
921
922 if (jit_debug)
923 fprintf_unfiltered (gdb_stdlog,
924 "jit_breakpoint_re_set_internal, "
925 "breakpoint_addr = %s\n",
926 paddress (gdbarch, inf_data->breakpoint_addr));
927
928 /* Put a breakpoint in the registration symbol. */
929 create_jit_event_breakpoint (gdbarch, inf_data->breakpoint_addr);
930
931 return 0;
932 }
933
934 /* The private data passed around in the frame unwind callback
935 functions. */
936
937 struct jit_unwind_private
938 {
939 /* Cached register values. See jit_frame_sniffer to see how this
940 works. */
941 struct gdb_reg_value **registers;
942
943 /* The frame being unwound. */
944 struct frame_info *this_frame;
945 };
946
947 /* Sets the value of a particular register in this frame. */
948
949 static void
950 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
951 struct gdb_reg_value *value)
952 {
953 struct jit_unwind_private *priv;
954 int gdb_reg;
955
956 priv = cb->priv_data;
957
958 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
959 dwarf_regnum);
960 if (gdb_reg == -1)
961 {
962 if (jit_debug)
963 fprintf_unfiltered (gdb_stdlog,
964 _("Could not recognize DWARF regnum %d"),
965 dwarf_regnum);
966 return;
967 }
968
969 gdb_assert (priv->registers);
970 priv->registers[gdb_reg] = value;
971 }
972
973 static void
974 reg_value_free_impl (struct gdb_reg_value *value)
975 {
976 xfree (value);
977 }
978
979 /* Get the value of register REGNUM in the previous frame. */
980
981 static struct gdb_reg_value *
982 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
983 {
984 struct jit_unwind_private *priv;
985 struct gdb_reg_value *value;
986 int gdb_reg, size;
987 struct gdbarch *frame_arch;
988
989 priv = cb->priv_data;
990 frame_arch = get_frame_arch (priv->this_frame);
991
992 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
993 size = register_size (frame_arch, gdb_reg);
994 value = xmalloc (sizeof (struct gdb_reg_value) + size - 1);
995 value->defined = frame_register_read (priv->this_frame, gdb_reg,
996 value->value);
997 value->size = size;
998 value->free = reg_value_free_impl;
999 return value;
1000 }
1001
1002 /* gdb_reg_value has a free function, which must be called on each
1003 saved register value. */
1004
1005 static void
1006 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
1007 {
1008 struct jit_unwind_private *priv_data = cache;
1009 struct gdbarch *frame_arch;
1010 int i;
1011
1012 gdb_assert (priv_data->registers);
1013 frame_arch = get_frame_arch (priv_data->this_frame);
1014
1015 for (i = 0; i < gdbarch_num_regs (frame_arch); i++)
1016 if (priv_data->registers[i] && priv_data->registers[i]->free)
1017 priv_data->registers[i]->free (priv_data->registers[i]);
1018
1019 xfree (priv_data->registers);
1020 xfree (priv_data);
1021 }
1022
1023 /* The frame sniffer for the pseudo unwinder.
1024
1025 While this is nominally a frame sniffer, in the case where the JIT
1026 reader actually recognizes the frame, it does a lot more work -- it
1027 unwinds the frame and saves the corresponding register values in
1028 the cache. jit_frame_prev_register simply returns the saved
1029 register values. */
1030
1031 static int
1032 jit_frame_sniffer (const struct frame_unwind *self,
1033 struct frame_info *this_frame, void **cache)
1034 {
1035 struct jit_inferior_data *inf_data;
1036 struct jit_unwind_private *priv_data;
1037 struct jit_dbg_reader *iter;
1038 struct gdb_unwind_callbacks callbacks;
1039 struct gdb_reader_funcs *funcs;
1040
1041 inf_data = get_jit_inferior_data ();
1042
1043 callbacks.reg_get = jit_unwind_reg_get_impl;
1044 callbacks.reg_set = jit_unwind_reg_set_impl;
1045 callbacks.target_read = jit_target_read_impl;
1046
1047 if (loaded_jit_reader == NULL)
1048 return 0;
1049
1050 funcs = loaded_jit_reader->functions;
1051
1052 gdb_assert (!*cache);
1053
1054 *cache = XZALLOC (struct jit_unwind_private);
1055 priv_data = *cache;
1056 priv_data->registers =
1057 XCALLOC (gdbarch_num_regs (get_frame_arch (this_frame)),
1058 struct gdb_reg_value *);
1059 priv_data->this_frame = this_frame;
1060
1061 callbacks.priv_data = priv_data;
1062
1063 /* Try to coax the provided unwinder to unwind the stack */
1064 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1065 {
1066 if (jit_debug)
1067 fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
1068 "JIT reader.\n"));
1069 return 1;
1070 }
1071 if (jit_debug)
1072 fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
1073 "JIT reader.\n"));
1074
1075 jit_dealloc_cache (this_frame, *cache);
1076 *cache = NULL;
1077
1078 return 0;
1079 }
1080
1081
1082 /* The frame_id function for the pseudo unwinder. Relays the call to
1083 the loaded plugin. */
1084
1085 static void
1086 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1087 struct frame_id *this_id)
1088 {
1089 struct jit_unwind_private private;
1090 struct gdb_frame_id frame_id;
1091 struct gdb_reader_funcs *funcs;
1092 struct gdb_unwind_callbacks callbacks;
1093
1094 private.registers = NULL;
1095 private.this_frame = this_frame;
1096
1097 /* We don't expect the frame_id function to set any registers, so we
1098 set reg_set to NULL. */
1099 callbacks.reg_get = jit_unwind_reg_get_impl;
1100 callbacks.reg_set = NULL;
1101 callbacks.target_read = jit_target_read_impl;
1102 callbacks.priv_data = &private;
1103
1104 gdb_assert (loaded_jit_reader);
1105 funcs = loaded_jit_reader->functions;
1106
1107 frame_id = funcs->get_frame_id (funcs, &callbacks);
1108 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1109 }
1110
1111 /* Pseudo unwinder function. Reads the previously fetched value for
1112 the register from the cache. */
1113
1114 static struct value *
1115 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1116 {
1117 struct jit_unwind_private *priv = *cache;
1118 struct gdb_reg_value *value;
1119
1120 if (priv == NULL)
1121 return frame_unwind_got_optimized (this_frame, reg);
1122
1123 gdb_assert (priv->registers);
1124 value = priv->registers[reg];
1125 if (value && value->defined)
1126 return frame_unwind_got_bytes (this_frame, reg, value->value);
1127 else
1128 return frame_unwind_got_optimized (this_frame, reg);
1129 }
1130
1131 /* Relay everything back to the unwinder registered by the JIT debug
1132 info reader.*/
1133
1134 static const struct frame_unwind jit_frame_unwind =
1135 {
1136 NORMAL_FRAME,
1137 default_frame_unwind_stop_reason,
1138 jit_frame_this_id,
1139 jit_frame_prev_register,
1140 NULL,
1141 jit_frame_sniffer,
1142 jit_dealloc_cache
1143 };
1144
1145
1146 /* This is the information that is stored at jit_gdbarch_data for each
1147 architecture. */
1148
1149 struct jit_gdbarch_data_type
1150 {
1151 /* Has the (pseudo) unwinder been prepended? */
1152 int unwinder_registered;
1153 };
1154
1155 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
1156
1157 static void
1158 jit_prepend_unwinder (struct gdbarch *gdbarch)
1159 {
1160 struct jit_gdbarch_data_type *data;
1161
1162 data = gdbarch_data (gdbarch, jit_gdbarch_data);
1163 if (!data->unwinder_registered)
1164 {
1165 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1166 data->unwinder_registered = 1;
1167 }
1168 }
1169
1170 /* Register any already created translations. */
1171
1172 static void
1173 jit_inferior_init (struct gdbarch *gdbarch)
1174 {
1175 struct jit_descriptor descriptor;
1176 struct jit_code_entry cur_entry;
1177 struct jit_inferior_data *inf_data;
1178 CORE_ADDR cur_entry_addr;
1179
1180 if (jit_debug)
1181 fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1182
1183 jit_prepend_unwinder (gdbarch);
1184
1185 inf_data = get_jit_inferior_data ();
1186 if (jit_breakpoint_re_set_internal (gdbarch, inf_data) != 0)
1187 return;
1188
1189 if (inf_data->descriptor_addr == 0)
1190 {
1191 struct minimal_symbol *desc_symbol;
1192
1193 /* Lookup the descriptor symbol and cache the addr. If it is
1194 missing, we assume we are not attached to a JIT and return early. */
1195 desc_symbol = lookup_minimal_symbol (jit_descriptor_name, NULL, NULL);
1196 if (desc_symbol == NULL)
1197 return;
1198
1199 inf_data->descriptor_addr = SYMBOL_VALUE_ADDRESS (desc_symbol);
1200 if (inf_data->descriptor_addr == 0)
1201 return;
1202 }
1203
1204 if (jit_debug)
1205 fprintf_unfiltered (gdb_stdlog,
1206 "jit_inferior_init, descriptor_addr = %s\n",
1207 paddress (gdbarch, inf_data->descriptor_addr));
1208
1209 /* Read the descriptor so we can check the version number and load
1210 any already JITed functions. */
1211 jit_read_descriptor (gdbarch, &descriptor, inf_data->descriptor_addr);
1212
1213 /* Check that the version number agrees with that we support. */
1214 if (descriptor.version != 1)
1215 error (_("Unsupported JIT protocol version in descriptor!"));
1216
1217 /* If we've attached to a running program, we need to check the descriptor
1218 to register any functions that were already generated. */
1219 for (cur_entry_addr = descriptor.first_entry;
1220 cur_entry_addr != 0;
1221 cur_entry_addr = cur_entry.next_entry)
1222 {
1223 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1224
1225 /* This hook may be called many times during setup, so make sure we don't
1226 add the same symbol file twice. */
1227 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1228 continue;
1229
1230 jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1231 }
1232 }
1233
1234 /* Exported routine to call when an inferior has been created. */
1235
1236 void
1237 jit_inferior_created_hook (void)
1238 {
1239 jit_inferior_init (target_gdbarch);
1240 }
1241
1242 /* Exported routine to call to re-set the jit breakpoints,
1243 e.g. when a program is rerun. */
1244
1245 void
1246 jit_breakpoint_re_set (void)
1247 {
1248 jit_breakpoint_re_set_internal (target_gdbarch,
1249 get_jit_inferior_data ());
1250 }
1251
1252 /* Reset inferior_data, so sybols will be looked up again, and jit_breakpoint
1253 will be reset. */
1254
1255 static void
1256 jit_reset_inferior_data_and_breakpoints (void)
1257 {
1258 struct jit_inferior_data *inf_data;
1259
1260 /* Force jit_inferior_init to re-lookup of jit symbol addresses. */
1261 inf_data = get_jit_inferior_data ();
1262 inf_data->breakpoint_addr = 0;
1263 inf_data->descriptor_addr = 0;
1264
1265 /* Remove any existing JIT breakpoint(s). */
1266 remove_jit_event_breakpoints ();
1267
1268 jit_inferior_init (target_gdbarch);
1269 }
1270
1271 /* Wrapper to match the observer function pointer prototype. */
1272
1273 static void
1274 jit_inferior_created_observer (struct target_ops *objfile, int from_tty)
1275 {
1276 jit_reset_inferior_data_and_breakpoints ();
1277 }
1278
1279 /* This function cleans up any code entries left over when the
1280 inferior exits. We get left over code when the inferior exits
1281 without unregistering its code, for example when it crashes. */
1282
1283 static void
1284 jit_inferior_exit_hook (struct inferior *inf)
1285 {
1286 struct objfile *objf;
1287 struct objfile *temp;
1288
1289 ALL_OBJFILES_SAFE (objf, temp)
1290 if (objfile_data (objf, jit_objfile_data) != NULL)
1291 jit_unregister_code (objf);
1292 }
1293
1294 static void
1295 jit_executable_changed_observer (void)
1296 {
1297 jit_reset_inferior_data_and_breakpoints ();
1298 }
1299
1300 void
1301 jit_event_handler (struct gdbarch *gdbarch)
1302 {
1303 struct jit_descriptor descriptor;
1304 struct jit_code_entry code_entry;
1305 CORE_ADDR entry_addr;
1306 struct objfile *objf;
1307
1308 /* Read the descriptor from remote memory. */
1309 jit_read_descriptor (gdbarch, &descriptor,
1310 get_jit_inferior_data ()->descriptor_addr);
1311 entry_addr = descriptor.relevant_entry;
1312
1313 /* Do the corresponding action. */
1314 switch (descriptor.action_flag)
1315 {
1316 case JIT_NOACTION:
1317 break;
1318 case JIT_REGISTER:
1319 jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1320 jit_register_code (gdbarch, entry_addr, &code_entry);
1321 break;
1322 case JIT_UNREGISTER:
1323 objf = jit_find_objf_with_entry_addr (entry_addr);
1324 if (objf == NULL)
1325 printf_unfiltered (_("Unable to find JITed code "
1326 "entry at address: %s\n"),
1327 paddress (gdbarch, entry_addr));
1328 else
1329 jit_unregister_code (objf);
1330
1331 break;
1332 default:
1333 error (_("Unknown action_flag value in JIT descriptor!"));
1334 break;
1335 }
1336 }
1337
1338 /* Called to free the data allocated to the jit_inferior_data slot. */
1339
1340 static void
1341 free_objfile_data (struct objfile *objfile, void *data)
1342 {
1343 xfree (data);
1344 }
1345
1346 /* Initialize the jit_gdbarch_data slot with an instance of struct
1347 jit_gdbarch_data_type */
1348
1349 static void *
1350 jit_gdbarch_data_init (struct obstack *obstack)
1351 {
1352 struct jit_gdbarch_data_type *data;
1353
1354 data = obstack_alloc (obstack, sizeof (struct jit_gdbarch_data_type));
1355 data->unwinder_registered = 0;
1356 return data;
1357 }
1358
1359 /* Provide a prototype to silence -Wmissing-prototypes. */
1360
1361 extern void _initialize_jit (void);
1362
1363 void
1364 _initialize_jit (void)
1365 {
1366 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1367 JIT_READER_DIR_RELOCATABLE);
1368 add_setshow_zinteger_cmd ("jit", class_maintenance, &jit_debug,
1369 _("Set JIT debugging."),
1370 _("Show JIT debugging."),
1371 _("When non-zero, JIT debugging is enabled."),
1372 NULL,
1373 show_jit_debug,
1374 &setdebuglist, &showdebuglist);
1375
1376 observer_attach_inferior_created (jit_inferior_created_observer);
1377 observer_attach_inferior_exit (jit_inferior_exit_hook);
1378 observer_attach_executable_changed (jit_executable_changed_observer);
1379 jit_objfile_data =
1380 register_objfile_data_with_cleanup (NULL, free_objfile_data);
1381 jit_inferior_data =
1382 register_inferior_data_with_cleanup (jit_inferior_data_cleanup);
1383 jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1384 if (is_dl_available ())
1385 {
1386 add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1387 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1388 Usage: jit-reader-load FILE\n\
1389 Try to load file FILE as a debug info reader (and unwinder) for\n\
1390 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
1391 relocated relative to the GDB executable if required."));
1392 add_com ("jit-reader-unload", no_class, jit_reader_unload_command, _("\
1393 Unload the currently loaded JIT debug info reader.\n\
1394 Usage: jit-reader-unload FILE\n\n\
1395 Do \"help jit-reader-load\" for info on loading debug info readers."));
1396 }
1397 }