]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/jit.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3 Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "frame-unwind.h"
29 #include "gdbcmd.h"
30 #include "gdbcore.h"
31 #include "inferior.h"
32 #include "observer.h"
33 #include "objfiles.h"
34 #include "regcache.h"
35 #include "symfile.h"
36 #include "symtab.h"
37 #include "target.h"
38 #include "gdb-dlfcn.h"
39 #include "gdb_stat.h"
40 #include "exceptions.h"
41
42 static const char *jit_reader_dir = NULL;
43
44 static const struct objfile_data *jit_objfile_data;
45
46 static const char *const jit_break_name = "__jit_debug_register_code";
47
48 static const char *const jit_descriptor_name = "__jit_debug_descriptor";
49
50 static const struct inferior_data *jit_inferior_data = NULL;
51
52 static void jit_inferior_init (struct gdbarch *gdbarch);
53
54 /* An unwinder is registered for every gdbarch. This key is used to
55 remember if the unwinder has been registered for a particular
56 gdbarch. */
57
58 static struct gdbarch_data *jit_gdbarch_data;
59
60 /* Non-zero if we want to see trace of jit level stuff. */
61
62 static int jit_debug = 0;
63
64 static void
65 show_jit_debug (struct ui_file *file, int from_tty,
66 struct cmd_list_element *c, const char *value)
67 {
68 fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
69 }
70
71 struct target_buffer
72 {
73 CORE_ADDR base;
74 ULONGEST size;
75 };
76
77 /* Openning the file is a no-op. */
78
79 static void *
80 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure)
81 {
82 return open_closure;
83 }
84
85 /* Closing the file is just freeing the base/size pair on our side. */
86
87 static int
88 mem_bfd_iovec_close (struct bfd *abfd, void *stream)
89 {
90 xfree (stream);
91 return 1;
92 }
93
94 /* For reading the file, we just need to pass through to target_read_memory and
95 fix up the arguments and return values. */
96
97 static file_ptr
98 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
99 file_ptr nbytes, file_ptr offset)
100 {
101 int err;
102 struct target_buffer *buffer = (struct target_buffer *) stream;
103
104 /* If this read will read all of the file, limit it to just the rest. */
105 if (offset + nbytes > buffer->size)
106 nbytes = buffer->size - offset;
107
108 /* If there are no more bytes left, we've reached EOF. */
109 if (nbytes == 0)
110 return 0;
111
112 err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes);
113 if (err)
114 return -1;
115
116 return nbytes;
117 }
118
119 /* For statting the file, we only support the st_size attribute. */
120
121 static int
122 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
123 {
124 struct target_buffer *buffer = (struct target_buffer*) stream;
125
126 sb->st_size = buffer->size;
127 return 0;
128 }
129
130 /* One reader that has been loaded successfully, and can potentially be used to
131 parse debug info. */
132
133 static struct jit_reader
134 {
135 struct gdb_reader_funcs *functions;
136 void *handle;
137 } *loaded_jit_reader = NULL;
138
139 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
140 static const char *reader_init_fn_sym = "gdb_init_reader";
141
142 /* Try to load FILE_NAME as a JIT debug info reader. */
143
144 static struct jit_reader *
145 jit_reader_load (const char *file_name)
146 {
147 void *so;
148 reader_init_fn_type *init_fn;
149 struct jit_reader *new_reader = NULL;
150 struct gdb_reader_funcs *funcs = NULL;
151 struct cleanup *old_cleanups;
152
153 if (jit_debug)
154 fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
155 file_name);
156 so = gdb_dlopen (file_name);
157 old_cleanups = make_cleanup_dlclose (so);
158
159 init_fn = gdb_dlsym (so, reader_init_fn_sym);
160 if (!init_fn)
161 error (_("Could not locate initialization function: %s."),
162 reader_init_fn_sym);
163
164 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
165 error (_("Reader not GPL compatible."));
166
167 funcs = init_fn ();
168 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
169 error (_("Reader version does not match GDB version."));
170
171 new_reader = XZALLOC (struct jit_reader);
172 new_reader->functions = funcs;
173 new_reader->handle = so;
174
175 discard_cleanups (old_cleanups);
176 return new_reader;
177 }
178
179 /* Provides the jit-reader-load command. */
180
181 static void
182 jit_reader_load_command (char *args, int from_tty)
183 {
184 char *so_name;
185 int len;
186 struct cleanup *prev_cleanup;
187
188 if (args == NULL)
189 error (_("No reader name provided."));
190
191 if (loaded_jit_reader != NULL)
192 error (_("JIT reader already loaded. Run jit-reader-unload first."));
193
194 so_name = xstrprintf ("%s/%s", jit_reader_dir, args);
195 prev_cleanup = make_cleanup (xfree, so_name);
196
197 loaded_jit_reader = jit_reader_load (so_name);
198 do_cleanups (prev_cleanup);
199 }
200
201 /* Provides the jit-reader-unload command. */
202
203 static void
204 jit_reader_unload_command (char *args, int from_tty)
205 {
206 if (!loaded_jit_reader)
207 error (_("No JIT reader loaded."));
208
209 loaded_jit_reader->functions->destroy (loaded_jit_reader->functions);
210
211 gdb_dlclose (loaded_jit_reader->handle);
212 xfree (loaded_jit_reader);
213 loaded_jit_reader = NULL;
214 }
215
216 /* Open a BFD from the target's memory. */
217
218 static struct bfd *
219 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size, char *target)
220 {
221 const char *filename = xstrdup ("<in-memory>");
222 struct target_buffer *buffer = xmalloc (sizeof (struct target_buffer));
223
224 buffer->base = addr;
225 buffer->size = size;
226 return bfd_openr_iovec (filename, target,
227 mem_bfd_iovec_open,
228 buffer,
229 mem_bfd_iovec_pread,
230 mem_bfd_iovec_close,
231 mem_bfd_iovec_stat);
232 }
233
234 /* Per-inferior structure recording the addresses in the inferior. */
235
236 struct jit_inferior_data
237 {
238 CORE_ADDR breakpoint_addr; /* &__jit_debug_register_code() */
239 CORE_ADDR descriptor_addr; /* &__jit_debug_descriptor */
240 };
241
242 /* Remember OBJFILE has been created for struct jit_code_entry located
243 at inferior address ENTRY. */
244
245 static void
246 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
247 {
248 CORE_ADDR *entry_addr_ptr;
249
250 entry_addr_ptr = xmalloc (sizeof (CORE_ADDR));
251 *entry_addr_ptr = entry;
252 set_objfile_data (objfile, jit_objfile_data, entry_addr_ptr);
253 }
254
255 /* Return jit_inferior_data for current inferior. Allocate if not already
256 present. */
257
258 static struct jit_inferior_data *
259 get_jit_inferior_data (void)
260 {
261 struct inferior *inf;
262 struct jit_inferior_data *inf_data;
263
264 inf = current_inferior ();
265 inf_data = inferior_data (inf, jit_inferior_data);
266 if (inf_data == NULL)
267 {
268 inf_data = XZALLOC (struct jit_inferior_data);
269 set_inferior_data (inf, jit_inferior_data, inf_data);
270 }
271
272 return inf_data;
273 }
274
275 static void
276 jit_inferior_data_cleanup (struct inferior *inf, void *arg)
277 {
278 xfree (arg);
279 }
280
281 /* Helper function for reading the global JIT descriptor from remote
282 memory. */
283
284 static void
285 jit_read_descriptor (struct gdbarch *gdbarch,
286 struct jit_descriptor *descriptor,
287 CORE_ADDR descriptor_addr)
288 {
289 int err;
290 struct type *ptr_type;
291 int ptr_size;
292 int desc_size;
293 gdb_byte *desc_buf;
294 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
295
296 /* Figure out how big the descriptor is on the remote and how to read it. */
297 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
298 ptr_size = TYPE_LENGTH (ptr_type);
299 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
300 desc_buf = alloca (desc_size);
301
302 /* Read the descriptor. */
303 err = target_read_memory (descriptor_addr, desc_buf, desc_size);
304 if (err)
305 error (_("Unable to read JIT descriptor from remote memory!"));
306
307 /* Fix the endianness to match the host. */
308 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
309 descriptor->action_flag =
310 extract_unsigned_integer (&desc_buf[4], 4, byte_order);
311 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
312 descriptor->first_entry =
313 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
314 }
315
316 /* Helper function for reading a JITed code entry from remote memory. */
317
318 static void
319 jit_read_code_entry (struct gdbarch *gdbarch,
320 CORE_ADDR code_addr, struct jit_code_entry *code_entry)
321 {
322 int err, off;
323 struct type *ptr_type;
324 int ptr_size;
325 int entry_size;
326 int align_bytes;
327 gdb_byte *entry_buf;
328 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
329
330 /* Figure out how big the entry is on the remote and how to read it. */
331 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
332 ptr_size = TYPE_LENGTH (ptr_type);
333 entry_size = 3 * ptr_size + 8; /* Three pointers and one 64-bit int. */
334 entry_buf = alloca (entry_size);
335
336 /* Read the entry. */
337 err = target_read_memory (code_addr, entry_buf, entry_size);
338 if (err)
339 error (_("Unable to read JIT code entry from remote memory!"));
340
341 /* Fix the endianness to match the host. */
342 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
343 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
344 code_entry->prev_entry =
345 extract_typed_address (&entry_buf[ptr_size], ptr_type);
346 code_entry->symfile_addr =
347 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
348
349 align_bytes = gdbarch_long_long_align_bit (gdbarch) / 8;
350 off = 3 * ptr_size;
351 off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
352
353 code_entry->symfile_size =
354 extract_unsigned_integer (&entry_buf[off], 8, byte_order);
355 }
356
357 /* Proxy object for building a block. */
358
359 struct gdb_block
360 {
361 /* gdb_blocks are linked into a tree structure. Next points to the
362 next node at the same depth as this block and parent to the
363 parent gdb_block. */
364 struct gdb_block *next, *parent;
365
366 /* Points to the "real" block that is being built out of this
367 instance. This block will be added to a blockvector, which will
368 then be added to a symtab. */
369 struct block *real_block;
370
371 /* The first and last code address corresponding to this block. */
372 CORE_ADDR begin, end;
373
374 /* The name of this block (if any). If this is non-NULL, the
375 FUNCTION symbol symbol is set to this value. */
376 const char *name;
377 };
378
379 /* Proxy object for building a symtab. */
380
381 struct gdb_symtab
382 {
383 /* The list of blocks in this symtab. These will eventually be
384 converted to real blocks. */
385 struct gdb_block *blocks;
386
387 /* The number of blocks inserted. */
388 int nblocks;
389
390 /* A mapping between line numbers to PC. */
391 struct linetable *linetable;
392
393 /* The source file for this symtab. */
394 const char *file_name;
395 struct gdb_symtab *next;
396 };
397
398 /* Proxy object for building an object. */
399
400 struct gdb_object
401 {
402 struct gdb_symtab *symtabs;
403 };
404
405 /* The type of the `private' data passed around by the callback
406 functions. */
407
408 typedef CORE_ADDR jit_dbg_reader_data;
409
410 /* The reader calls into this function to read data off the targets
411 address space. */
412
413 static enum gdb_status
414 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
415 {
416 int result = target_read_memory ((CORE_ADDR) target_mem, gdb_buf, len);
417 if (result == 0)
418 return GDB_SUCCESS;
419 else
420 return GDB_FAIL;
421 }
422
423 /* The reader calls into this function to create a new gdb_object
424 which it can then pass around to the other callbacks. Right now,
425 all that is required is allocating the memory. */
426
427 static struct gdb_object *
428 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
429 {
430 /* CB is not required right now, but sometime in the future we might
431 need a handle to it, and we'd like to do that without breaking
432 the ABI. */
433 return XZALLOC (struct gdb_object);
434 }
435
436 /* Readers call into this function to open a new gdb_symtab, which,
437 again, is passed around to other callbacks. */
438
439 static struct gdb_symtab *
440 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
441 struct gdb_object *object,
442 const char *file_name)
443 {
444 struct gdb_symtab *ret;
445
446 /* CB stays unused. See comment in jit_object_open_impl. */
447
448 ret = XZALLOC (struct gdb_symtab);
449 ret->file_name = file_name ? xstrdup (file_name) : xstrdup ("");
450 ret->next = object->symtabs;
451 object->symtabs = ret;
452 return ret;
453 }
454
455 /* Returns true if the block corresponding to old should be placed
456 before the block corresponding to new in the final blockvector. */
457
458 static int
459 compare_block (const struct gdb_block *const old,
460 const struct gdb_block *const new)
461 {
462 if (old == NULL)
463 return 1;
464 if (old->begin < new->begin)
465 return 1;
466 else if (old->begin == new->begin)
467 {
468 if (old->end > new->end)
469 return 1;
470 else
471 return 0;
472 }
473 else
474 return 0;
475 }
476
477 /* Called by readers to open a new gdb_block. This function also
478 inserts the new gdb_block in the correct place in the corresponding
479 gdb_symtab. */
480
481 static struct gdb_block *
482 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
483 struct gdb_symtab *symtab, struct gdb_block *parent,
484 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
485 {
486 struct gdb_block *block = XZALLOC (struct gdb_block);
487
488 block->next = symtab->blocks;
489 block->begin = (CORE_ADDR) begin;
490 block->end = (CORE_ADDR) end;
491 block->name = name ? xstrdup (name) : NULL;
492 block->parent = parent;
493
494 /* Ensure that the blocks are inserted in the correct (reverse of
495 the order expected by blockvector). */
496 if (compare_block (symtab->blocks, block))
497 {
498 symtab->blocks = block;
499 }
500 else
501 {
502 struct gdb_block *i = symtab->blocks;
503
504 for (;; i = i->next)
505 {
506 /* Guaranteed to terminate, since compare_block (NULL, _)
507 returns 1. */
508 if (compare_block (i->next, block))
509 {
510 block->next = i->next;
511 i->next = block;
512 break;
513 }
514 }
515 }
516 symtab->nblocks++;
517
518 return block;
519 }
520
521 /* Readers call this to add a line mapping (from PC to line number) to
522 a gdb_symtab. */
523
524 static void
525 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
526 struct gdb_symtab *stab, int nlines,
527 struct gdb_line_mapping *map)
528 {
529 int i;
530
531 if (nlines < 1)
532 return;
533
534 stab->linetable = xmalloc (sizeof (struct linetable)
535 + (nlines - 1) * sizeof (struct linetable_entry));
536 stab->linetable->nitems = nlines;
537 for (i = 0; i < nlines; i++)
538 {
539 stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
540 stab->linetable->item[i].line = map[i].line;
541 }
542 }
543
544 /* Called by readers to close a gdb_symtab. Does not need to do
545 anything as of now. */
546
547 static void
548 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
549 struct gdb_symtab *stab)
550 {
551 /* Right now nothing needs to be done here. We may need to do some
552 cleanup here in the future (again, without breaking the plugin
553 ABI). */
554 }
555
556 /* Transform STAB to a proper symtab, and add it it OBJFILE. */
557
558 static void
559 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
560 {
561 struct symtab *symtab;
562 struct gdb_block *gdb_block_iter, *gdb_block_iter_tmp;
563 struct block *block_iter;
564 int actual_nblocks, i, blockvector_size;
565 CORE_ADDR begin, end;
566
567 actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
568
569 symtab = allocate_symtab (stab->file_name, objfile);
570 /* JIT compilers compile in memory. */
571 symtab->dirname = NULL;
572
573 /* Copy over the linetable entry if one was provided. */
574 if (stab->linetable)
575 {
576 int size = ((stab->linetable->nitems - 1)
577 * sizeof (struct linetable_entry)
578 + sizeof (struct linetable));
579 LINETABLE (symtab) = obstack_alloc (&objfile->objfile_obstack, size);
580 memcpy (LINETABLE (symtab), stab->linetable, size);
581 }
582 else
583 {
584 LINETABLE (symtab) = NULL;
585 }
586
587 blockvector_size = (sizeof (struct blockvector)
588 + (actual_nblocks - 1) * sizeof (struct block *));
589 symtab->blockvector = obstack_alloc (&objfile->objfile_obstack,
590 blockvector_size);
591
592 /* (begin, end) will contain the PC range this entire blockvector
593 spans. */
594 symtab->primary = 1;
595 BLOCKVECTOR_MAP (symtab->blockvector) = NULL;
596 begin = stab->blocks->begin;
597 end = stab->blocks->end;
598 BLOCKVECTOR_NBLOCKS (symtab->blockvector) = actual_nblocks;
599
600 /* First run over all the gdb_block objects, creating a real block
601 object for each. Simultaneously, keep setting the real_block
602 fields. */
603 for (i = (actual_nblocks - 1), gdb_block_iter = stab->blocks;
604 i >= FIRST_LOCAL_BLOCK;
605 i--, gdb_block_iter = gdb_block_iter->next)
606 {
607 struct block *new_block = allocate_block (&objfile->objfile_obstack);
608 struct symbol *block_name = obstack_alloc (&objfile->objfile_obstack,
609 sizeof (struct symbol));
610
611 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
612 NULL);
613 /* The address range. */
614 BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter->begin;
615 BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter->end;
616
617 /* The name. */
618 memset (block_name, 0, sizeof (struct symbol));
619 SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
620 SYMBOL_CLASS (block_name) = LOC_BLOCK;
621 SYMBOL_SYMTAB (block_name) = symtab;
622 SYMBOL_BLOCK_VALUE (block_name) = new_block;
623
624 block_name->ginfo.name = obsavestring (gdb_block_iter->name,
625 strlen (gdb_block_iter->name),
626 &objfile->objfile_obstack);
627
628 BLOCK_FUNCTION (new_block) = block_name;
629
630 BLOCKVECTOR_BLOCK (symtab->blockvector, i) = new_block;
631 if (begin > BLOCK_START (new_block))
632 begin = BLOCK_START (new_block);
633 if (end < BLOCK_END (new_block))
634 end = BLOCK_END (new_block);
635
636 gdb_block_iter->real_block = new_block;
637 }
638
639 /* Now add the special blocks. */
640 block_iter = NULL;
641 for (i = 0; i < FIRST_LOCAL_BLOCK; i++)
642 {
643 struct block *new_block = allocate_block (&objfile->objfile_obstack);
644 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
645 NULL);
646 BLOCK_SUPERBLOCK (new_block) = block_iter;
647 block_iter = new_block;
648
649 BLOCK_START (new_block) = (CORE_ADDR) begin;
650 BLOCK_END (new_block) = (CORE_ADDR) end;
651
652 BLOCKVECTOR_BLOCK (symtab->blockvector, i) = new_block;
653 }
654
655 /* Fill up the superblock fields for the real blocks, using the
656 real_block fields populated earlier. */
657 for (gdb_block_iter = stab->blocks;
658 gdb_block_iter;
659 gdb_block_iter = gdb_block_iter->next)
660 {
661 if (gdb_block_iter->parent != NULL)
662 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
663 gdb_block_iter->parent->real_block;
664 }
665
666 /* Free memory. */
667 gdb_block_iter = stab->blocks;
668
669 for (gdb_block_iter = stab->blocks, gdb_block_iter_tmp = gdb_block_iter->next;
670 gdb_block_iter;
671 gdb_block_iter = gdb_block_iter_tmp)
672 {
673 xfree ((void *) gdb_block_iter->name);
674 xfree (gdb_block_iter);
675 }
676 xfree (stab->linetable);
677 xfree ((char *) stab->file_name);
678 xfree (stab);
679 }
680
681 /* Called when closing a gdb_objfile. Converts OBJ to a proper
682 objfile. */
683
684 static void
685 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
686 struct gdb_object *obj)
687 {
688 struct gdb_symtab *i, *j;
689 struct objfile *objfile;
690 jit_dbg_reader_data *priv_data;
691
692 priv_data = cb->priv_data;
693
694 objfile = allocate_objfile (NULL, 0);
695 objfile->gdbarch = target_gdbarch;
696
697 objfile->msymbols = obstack_alloc (&objfile->objfile_obstack,
698 sizeof (struct minimal_symbol));
699 memset (objfile->msymbols, 0, sizeof (struct minimal_symbol));
700
701 xfree (objfile->name);
702 objfile->name = xstrdup ("<< JIT compiled code >>");
703
704 j = NULL;
705 for (i = obj->symtabs; i; i = j)
706 {
707 j = i->next;
708 finalize_symtab (i, objfile);
709 }
710 add_objfile_entry (objfile, *priv_data);
711 xfree (obj);
712 }
713
714 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
715 ENTRY_ADDR is the address of the struct jit_code_entry in the
716 inferior address space. */
717
718 static int
719 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
720 CORE_ADDR entry_addr)
721 {
722 void *gdb_mem;
723 int status;
724 struct jit_dbg_reader *i;
725 jit_dbg_reader_data priv_data;
726 struct gdb_reader_funcs *funcs;
727 volatile struct gdb_exception e;
728 struct gdb_symbol_callbacks callbacks =
729 {
730 jit_object_open_impl,
731 jit_symtab_open_impl,
732 jit_block_open_impl,
733 jit_symtab_close_impl,
734 jit_object_close_impl,
735
736 jit_symtab_line_mapping_add_impl,
737 jit_target_read_impl,
738
739 &priv_data
740 };
741
742 priv_data = entry_addr;
743
744 if (!loaded_jit_reader)
745 return 0;
746
747 gdb_mem = xmalloc (code_entry->symfile_size);
748
749 status = 1;
750 TRY_CATCH (e, RETURN_MASK_ALL)
751 if (target_read_memory (code_entry->symfile_addr, gdb_mem,
752 code_entry->symfile_size))
753 status = 0;
754 if (e.reason < 0)
755 status = 0;
756
757 if (status)
758 {
759 funcs = loaded_jit_reader->functions;
760 if (funcs->read (funcs, &callbacks, gdb_mem, code_entry->symfile_size)
761 != GDB_SUCCESS)
762 status = 0;
763 }
764
765 xfree (gdb_mem);
766 if (jit_debug && status == 0)
767 fprintf_unfiltered (gdb_stdlog,
768 "Could not read symtab using the loaded JIT reader.\n");
769 return status;
770 }
771
772 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
773 struct jit_code_entry in the inferior address space. */
774
775 static void
776 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
777 CORE_ADDR entry_addr,
778 struct gdbarch *gdbarch)
779 {
780 bfd *nbfd;
781 struct section_addr_info *sai;
782 struct bfd_section *sec;
783 struct objfile *objfile;
784 struct cleanup *old_cleanups;
785 int i;
786 const struct bfd_arch_info *b;
787
788 if (jit_debug)
789 fprintf_unfiltered (gdb_stdlog,
790 "jit_register_code, symfile_addr = %s, "
791 "symfile_size = %s\n",
792 paddress (gdbarch, code_entry->symfile_addr),
793 pulongest (code_entry->symfile_size));
794
795 nbfd = bfd_open_from_target_memory (code_entry->symfile_addr,
796 code_entry->symfile_size, gnutarget);
797 if (nbfd == NULL)
798 {
799 puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
800 return;
801 }
802
803 /* Check the format. NOTE: This initializes important data that GDB uses!
804 We would segfault later without this line. */
805 if (!bfd_check_format (nbfd, bfd_object))
806 {
807 printf_unfiltered (_("\
808 JITed symbol file is not an object file, ignoring it.\n"));
809 bfd_close (nbfd);
810 return;
811 }
812
813 /* Check bfd arch. */
814 b = gdbarch_bfd_arch_info (gdbarch);
815 if (b->compatible (b, bfd_get_arch_info (nbfd)) != b)
816 warning (_("JITed object file architecture %s is not compatible "
817 "with target architecture %s."), bfd_get_arch_info
818 (nbfd)->printable_name, b->printable_name);
819
820 /* Read the section address information out of the symbol file. Since the
821 file is generated by the JIT at runtime, it should all of the absolute
822 addresses that we care about. */
823 sai = alloc_section_addr_info (bfd_count_sections (nbfd));
824 old_cleanups = make_cleanup_free_section_addr_info (sai);
825 i = 0;
826 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
827 if ((bfd_get_section_flags (nbfd, sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
828 {
829 /* We assume that these virtual addresses are absolute, and do not
830 treat them as offsets. */
831 sai->other[i].addr = bfd_get_section_vma (nbfd, sec);
832 sai->other[i].name = xstrdup (bfd_get_section_name (nbfd, sec));
833 sai->other[i].sectindex = sec->index;
834 ++i;
835 }
836
837 /* This call takes ownership of NBFD. It does not take ownership of SAI. */
838 objfile = symbol_file_add_from_bfd (nbfd, 0, sai, OBJF_SHARED, NULL);
839
840 do_cleanups (old_cleanups);
841 add_objfile_entry (objfile, entry_addr);
842 }
843
844 /* This function registers code associated with a JIT code entry. It uses the
845 pointer and size pair in the entry to read the symbol file from the remote
846 and then calls symbol_file_add_from_local_memory to add it as though it were
847 a symbol file added by the user. */
848
849 static void
850 jit_register_code (struct gdbarch *gdbarch,
851 CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
852 {
853 int i, success;
854 const struct bfd_arch_info *b;
855 struct jit_inferior_data *inf_data = get_jit_inferior_data ();
856
857 if (jit_debug)
858 fprintf_unfiltered (gdb_stdlog,
859 "jit_register_code, symfile_addr = %s, "
860 "symfile_size = %s\n",
861 paddress (gdbarch, code_entry->symfile_addr),
862 pulongest (code_entry->symfile_size));
863
864 success = jit_reader_try_read_symtab (code_entry, entry_addr);
865
866 if (!success)
867 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
868 }
869
870 /* This function unregisters JITed code and frees the corresponding
871 objfile. */
872
873 static void
874 jit_unregister_code (struct objfile *objfile)
875 {
876 free_objfile (objfile);
877 }
878
879 /* Look up the objfile with this code entry address. */
880
881 static struct objfile *
882 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
883 {
884 struct objfile *objf;
885 CORE_ADDR *objf_entry_addr;
886
887 ALL_OBJFILES (objf)
888 {
889 objf_entry_addr = (CORE_ADDR *) objfile_data (objf, jit_objfile_data);
890 if (objf_entry_addr != NULL && *objf_entry_addr == entry_addr)
891 return objf;
892 }
893 return NULL;
894 }
895
896 /* (Re-)Initialize the jit breakpoint if necessary.
897 Return 0 on success. */
898
899 static int
900 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch,
901 struct jit_inferior_data *inf_data)
902 {
903 if (inf_data->breakpoint_addr == 0)
904 {
905 struct minimal_symbol *reg_symbol;
906
907 /* Lookup the registration symbol. If it is missing, then we assume
908 we are not attached to a JIT. */
909 reg_symbol = lookup_minimal_symbol (jit_break_name, NULL, NULL);
910 if (reg_symbol == NULL)
911 return 1;
912 inf_data->breakpoint_addr = SYMBOL_VALUE_ADDRESS (reg_symbol);
913 if (inf_data->breakpoint_addr == 0)
914 return 2;
915
916 /* If we have not read the jit descriptor yet (e.g. because the JITer
917 itself is in a shared library which just got loaded), do so now. */
918 if (inf_data->descriptor_addr == 0)
919 jit_inferior_init (gdbarch);
920 }
921 else
922 return 0;
923
924 if (jit_debug)
925 fprintf_unfiltered (gdb_stdlog,
926 "jit_breakpoint_re_set_internal, "
927 "breakpoint_addr = %s\n",
928 paddress (gdbarch, inf_data->breakpoint_addr));
929
930 /* Put a breakpoint in the registration symbol. */
931 create_jit_event_breakpoint (gdbarch, inf_data->breakpoint_addr);
932
933 return 0;
934 }
935
936 /* The private data passed around in the frame unwind callback
937 functions. */
938
939 struct jit_unwind_private
940 {
941 /* Cached register values. See jit_frame_sniffer to see how this
942 works. */
943 struct gdb_reg_value **registers;
944
945 /* The frame being unwound. */
946 struct frame_info *this_frame;
947 };
948
949 /* Sets the value of a particular register in this frame. */
950
951 static void
952 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
953 struct gdb_reg_value *value)
954 {
955 struct jit_unwind_private *priv;
956 int gdb_reg;
957
958 priv = cb->priv_data;
959
960 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
961 dwarf_regnum);
962 if (gdb_reg == -1)
963 {
964 if (jit_debug)
965 fprintf_unfiltered (gdb_stdlog,
966 _("Could not recognize DWARF regnum %d"),
967 dwarf_regnum);
968 return;
969 }
970
971 gdb_assert (priv->registers);
972 priv->registers[gdb_reg] = value;
973 }
974
975 static void
976 reg_value_free_impl (struct gdb_reg_value *value)
977 {
978 xfree (value);
979 }
980
981 /* Get the value of register REGNUM in the previous frame. */
982
983 static struct gdb_reg_value *
984 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
985 {
986 struct jit_unwind_private *priv;
987 struct gdb_reg_value *value;
988 int gdb_reg, size;
989 struct gdbarch *frame_arch;
990
991 priv = cb->priv_data;
992 frame_arch = get_frame_arch (priv->this_frame);
993
994 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
995 size = register_size (frame_arch, gdb_reg);
996 value = xmalloc (sizeof (struct gdb_reg_value) + size - 1);
997 value->defined = frame_register_read (priv->this_frame, gdb_reg,
998 value->value);
999 value->size = size;
1000 value->free = reg_value_free_impl;
1001 return value;
1002 }
1003
1004 /* gdb_reg_value has a free function, which must be called on each
1005 saved register value. */
1006
1007 static void
1008 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
1009 {
1010 struct jit_unwind_private *priv_data = cache;
1011 struct gdbarch *frame_arch;
1012 int i;
1013
1014 gdb_assert (priv_data->registers);
1015 frame_arch = get_frame_arch (priv_data->this_frame);
1016
1017 for (i = 0; i < gdbarch_num_regs (frame_arch); i++)
1018 if (priv_data->registers[i] && priv_data->registers[i]->free)
1019 priv_data->registers[i]->free (priv_data->registers[i]);
1020
1021 xfree (priv_data->registers);
1022 xfree (priv_data);
1023 }
1024
1025 /* The frame sniffer for the pseudo unwinder.
1026
1027 While this is nominally a frame sniffer, in the case where the JIT
1028 reader actually recognizes the frame, it does a lot more work -- it
1029 unwinds the frame and saves the corresponding register values in
1030 the cache. jit_frame_prev_register simply returns the saved
1031 register values. */
1032
1033 static int
1034 jit_frame_sniffer (const struct frame_unwind *self,
1035 struct frame_info *this_frame, void **cache)
1036 {
1037 struct jit_inferior_data *inf_data;
1038 struct jit_unwind_private *priv_data;
1039 struct jit_dbg_reader *iter;
1040 struct gdb_unwind_callbacks callbacks;
1041 struct gdb_reader_funcs *funcs;
1042
1043 inf_data = get_jit_inferior_data ();
1044
1045 callbacks.reg_get = jit_unwind_reg_get_impl;
1046 callbacks.reg_set = jit_unwind_reg_set_impl;
1047 callbacks.target_read = jit_target_read_impl;
1048
1049 if (loaded_jit_reader == NULL)
1050 return 0;
1051
1052 funcs = loaded_jit_reader->functions;
1053
1054 gdb_assert (!*cache);
1055
1056 *cache = XZALLOC (struct jit_unwind_private);
1057 priv_data = *cache;
1058 priv_data->registers =
1059 XCALLOC (gdbarch_num_regs (get_frame_arch (this_frame)),
1060 struct gdb_reg_value *);
1061 priv_data->this_frame = this_frame;
1062
1063 callbacks.priv_data = priv_data;
1064
1065 /* Try to coax the provided unwinder to unwind the stack */
1066 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1067 {
1068 if (jit_debug)
1069 fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
1070 "JIT reader.\n"));
1071 return 1;
1072 }
1073 if (jit_debug)
1074 fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
1075 "JIT reader.\n"));
1076
1077 jit_dealloc_cache (this_frame, *cache);
1078 *cache = NULL;
1079
1080 return 0;
1081 }
1082
1083
1084 /* The frame_id function for the pseudo unwinder. Relays the call to
1085 the loaded plugin. */
1086
1087 static void
1088 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1089 struct frame_id *this_id)
1090 {
1091 struct jit_unwind_private private;
1092 struct gdb_frame_id frame_id;
1093 struct gdb_reader_funcs *funcs;
1094 struct gdb_unwind_callbacks callbacks;
1095
1096 private.registers = NULL;
1097 private.this_frame = this_frame;
1098
1099 /* We don't expect the frame_id function to set any registers, so we
1100 set reg_set to NULL. */
1101 callbacks.reg_get = jit_unwind_reg_get_impl;
1102 callbacks.reg_set = NULL;
1103 callbacks.target_read = jit_target_read_impl;
1104 callbacks.priv_data = &private;
1105
1106 gdb_assert (loaded_jit_reader);
1107 funcs = loaded_jit_reader->functions;
1108
1109 frame_id = funcs->get_frame_id (funcs, &callbacks);
1110 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1111 }
1112
1113 /* Pseudo unwinder function. Reads the previously fetched value for
1114 the register from the cache. */
1115
1116 static struct value *
1117 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1118 {
1119 struct jit_unwind_private *priv = *cache;
1120 struct gdb_reg_value *value;
1121
1122 if (priv == NULL)
1123 return frame_unwind_got_optimized (this_frame, reg);
1124
1125 gdb_assert (priv->registers);
1126 value = priv->registers[reg];
1127 if (value && value->defined)
1128 return frame_unwind_got_bytes (this_frame, reg, value->value);
1129 else
1130 return frame_unwind_got_optimized (this_frame, reg);
1131 }
1132
1133 /* Relay everything back to the unwinder registered by the JIT debug
1134 info reader.*/
1135
1136 static const struct frame_unwind jit_frame_unwind =
1137 {
1138 NORMAL_FRAME,
1139 default_frame_unwind_stop_reason,
1140 jit_frame_this_id,
1141 jit_frame_prev_register,
1142 NULL,
1143 jit_frame_sniffer,
1144 jit_dealloc_cache
1145 };
1146
1147
1148 /* This is the information that is stored at jit_gdbarch_data for each
1149 architecture. */
1150
1151 struct jit_gdbarch_data_type
1152 {
1153 /* Has the (pseudo) unwinder been prepended? */
1154 int unwinder_registered;
1155 };
1156
1157 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
1158
1159 static void
1160 jit_prepend_unwinder (struct gdbarch *gdbarch)
1161 {
1162 struct jit_gdbarch_data_type *data;
1163
1164 data = gdbarch_data (gdbarch, jit_gdbarch_data);
1165 if (!data->unwinder_registered)
1166 {
1167 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1168 data->unwinder_registered = 1;
1169 }
1170 }
1171
1172 /* Register any already created translations. */
1173
1174 static void
1175 jit_inferior_init (struct gdbarch *gdbarch)
1176 {
1177 struct jit_descriptor descriptor;
1178 struct jit_code_entry cur_entry;
1179 struct jit_inferior_data *inf_data;
1180 CORE_ADDR cur_entry_addr;
1181
1182 if (jit_debug)
1183 fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1184
1185 jit_prepend_unwinder (gdbarch);
1186
1187 inf_data = get_jit_inferior_data ();
1188 if (jit_breakpoint_re_set_internal (gdbarch, inf_data) != 0)
1189 return;
1190
1191 if (inf_data->descriptor_addr == 0)
1192 {
1193 struct minimal_symbol *desc_symbol;
1194
1195 /* Lookup the descriptor symbol and cache the addr. If it is
1196 missing, we assume we are not attached to a JIT and return early. */
1197 desc_symbol = lookup_minimal_symbol (jit_descriptor_name, NULL, NULL);
1198 if (desc_symbol == NULL)
1199 return;
1200
1201 inf_data->descriptor_addr = SYMBOL_VALUE_ADDRESS (desc_symbol);
1202 if (inf_data->descriptor_addr == 0)
1203 return;
1204 }
1205
1206 if (jit_debug)
1207 fprintf_unfiltered (gdb_stdlog,
1208 "jit_inferior_init, descriptor_addr = %s\n",
1209 paddress (gdbarch, inf_data->descriptor_addr));
1210
1211 /* Read the descriptor so we can check the version number and load
1212 any already JITed functions. */
1213 jit_read_descriptor (gdbarch, &descriptor, inf_data->descriptor_addr);
1214
1215 /* Check that the version number agrees with that we support. */
1216 if (descriptor.version != 1)
1217 error (_("Unsupported JIT protocol version in descriptor!"));
1218
1219 /* If we've attached to a running program, we need to check the descriptor
1220 to register any functions that were already generated. */
1221 for (cur_entry_addr = descriptor.first_entry;
1222 cur_entry_addr != 0;
1223 cur_entry_addr = cur_entry.next_entry)
1224 {
1225 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1226
1227 /* This hook may be called many times during setup, so make sure we don't
1228 add the same symbol file twice. */
1229 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1230 continue;
1231
1232 jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1233 }
1234 }
1235
1236 /* Exported routine to call when an inferior has been created. */
1237
1238 void
1239 jit_inferior_created_hook (void)
1240 {
1241 jit_inferior_init (target_gdbarch);
1242 }
1243
1244 /* Exported routine to call to re-set the jit breakpoints,
1245 e.g. when a program is rerun. */
1246
1247 void
1248 jit_breakpoint_re_set (void)
1249 {
1250 jit_breakpoint_re_set_internal (target_gdbarch,
1251 get_jit_inferior_data ());
1252 }
1253
1254 /* Reset inferior_data, so sybols will be looked up again, and jit_breakpoint
1255 will be reset. */
1256
1257 static void
1258 jit_reset_inferior_data_and_breakpoints (void)
1259 {
1260 struct jit_inferior_data *inf_data;
1261
1262 /* Force jit_inferior_init to re-lookup of jit symbol addresses. */
1263 inf_data = get_jit_inferior_data ();
1264 inf_data->breakpoint_addr = 0;
1265 inf_data->descriptor_addr = 0;
1266
1267 /* Remove any existing JIT breakpoint(s). */
1268 remove_jit_event_breakpoints ();
1269
1270 jit_inferior_init (target_gdbarch);
1271 }
1272
1273 /* Wrapper to match the observer function pointer prototype. */
1274
1275 static void
1276 jit_inferior_created_observer (struct target_ops *objfile, int from_tty)
1277 {
1278 jit_reset_inferior_data_and_breakpoints ();
1279 }
1280
1281 /* This function cleans up any code entries left over when the
1282 inferior exits. We get left over code when the inferior exits
1283 without unregistering its code, for example when it crashes. */
1284
1285 static void
1286 jit_inferior_exit_hook (struct inferior *inf)
1287 {
1288 struct objfile *objf;
1289 struct objfile *temp;
1290
1291 ALL_OBJFILES_SAFE (objf, temp)
1292 if (objfile_data (objf, jit_objfile_data) != NULL)
1293 jit_unregister_code (objf);
1294 }
1295
1296 static void
1297 jit_executable_changed_observer (void)
1298 {
1299 jit_reset_inferior_data_and_breakpoints ();
1300 }
1301
1302 void
1303 jit_event_handler (struct gdbarch *gdbarch)
1304 {
1305 struct jit_descriptor descriptor;
1306 struct jit_code_entry code_entry;
1307 CORE_ADDR entry_addr;
1308 struct objfile *objf;
1309
1310 /* Read the descriptor from remote memory. */
1311 jit_read_descriptor (gdbarch, &descriptor,
1312 get_jit_inferior_data ()->descriptor_addr);
1313 entry_addr = descriptor.relevant_entry;
1314
1315 /* Do the corresponding action. */
1316 switch (descriptor.action_flag)
1317 {
1318 case JIT_NOACTION:
1319 break;
1320 case JIT_REGISTER:
1321 jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1322 jit_register_code (gdbarch, entry_addr, &code_entry);
1323 break;
1324 case JIT_UNREGISTER:
1325 objf = jit_find_objf_with_entry_addr (entry_addr);
1326 if (objf == NULL)
1327 printf_unfiltered (_("Unable to find JITed code "
1328 "entry at address: %s\n"),
1329 paddress (gdbarch, entry_addr));
1330 else
1331 jit_unregister_code (objf);
1332
1333 break;
1334 default:
1335 error (_("Unknown action_flag value in JIT descriptor!"));
1336 break;
1337 }
1338 }
1339
1340 /* Called to free the data allocated to the jit_inferior_data slot. */
1341
1342 static void
1343 free_objfile_data (struct objfile *objfile, void *data)
1344 {
1345 xfree (data);
1346 }
1347
1348 /* Initialize the jit_gdbarch_data slot with an instance of struct
1349 jit_gdbarch_data_type */
1350
1351 static void *
1352 jit_gdbarch_data_init (struct obstack *obstack)
1353 {
1354 struct jit_gdbarch_data_type *data;
1355
1356 data = obstack_alloc (obstack, sizeof (struct jit_gdbarch_data_type));
1357 data->unwinder_registered = 0;
1358 return data;
1359 }
1360
1361 /* Provide a prototype to silence -Wmissing-prototypes. */
1362
1363 extern void _initialize_jit (void);
1364
1365 void
1366 _initialize_jit (void)
1367 {
1368 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1369 JIT_READER_DIR_RELOCATABLE);
1370 add_setshow_zinteger_cmd ("jit", class_maintenance, &jit_debug,
1371 _("Set JIT debugging."),
1372 _("Show JIT debugging."),
1373 _("When non-zero, JIT debugging is enabled."),
1374 NULL,
1375 show_jit_debug,
1376 &setdebuglist, &showdebuglist);
1377
1378 observer_attach_inferior_created (jit_inferior_created_observer);
1379 observer_attach_inferior_exit (jit_inferior_exit_hook);
1380 observer_attach_executable_changed (jit_executable_changed_observer);
1381 jit_objfile_data =
1382 register_objfile_data_with_cleanup (NULL, free_objfile_data);
1383 jit_inferior_data =
1384 register_inferior_data_with_cleanup (jit_inferior_data_cleanup);
1385 jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1386 if (is_dl_available ())
1387 {
1388 add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1389 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1390 Usage: jit-reader-load FILE\n\
1391 Try to load file FILE as a debug info reader (and unwinder) for\n\
1392 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
1393 relocated relative to the GDB executable if required."));
1394 add_com ("jit-reader-unload", no_class, jit_reader_unload_command, _("\
1395 Unload the currently loaded JIT debug info reader.\n\
1396 Usage: jit-reader-unload FILE\n\n\
1397 Do \"help jit-reader-load\" for info on loading debug info readers."));
1398 }
1399 }