]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/jit.c
* coffread.c (process_coff_symbol, coff_read_enum_type): Call
[thirdparty/binutils-gdb.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3 Copyright (C) 2009-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "filenames.h"
29 #include "frame-unwind.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "inferior.h"
33 #include "observer.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "symfile.h"
37 #include "symtab.h"
38 #include "target.h"
39 #include "gdb-dlfcn.h"
40 #include "gdb_stat.h"
41 #include "exceptions.h"
42 #include "gdb_bfd.h"
43
44 static const char *jit_reader_dir = NULL;
45
46 static const struct objfile_data *jit_objfile_data;
47
48 static const char *const jit_break_name = "__jit_debug_register_code";
49
50 static const char *const jit_descriptor_name = "__jit_debug_descriptor";
51
52 static const struct program_space_data *jit_program_space_data = NULL;
53
54 static void jit_inferior_init (struct gdbarch *gdbarch);
55
56 /* An unwinder is registered for every gdbarch. This key is used to
57 remember if the unwinder has been registered for a particular
58 gdbarch. */
59
60 static struct gdbarch_data *jit_gdbarch_data;
61
62 /* Non-zero if we want to see trace of jit level stuff. */
63
64 static unsigned int jit_debug = 0;
65
66 static void
67 show_jit_debug (struct ui_file *file, int from_tty,
68 struct cmd_list_element *c, const char *value)
69 {
70 fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
71 }
72
73 struct target_buffer
74 {
75 CORE_ADDR base;
76 ULONGEST size;
77 };
78
79 /* Openning the file is a no-op. */
80
81 static void *
82 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure)
83 {
84 return open_closure;
85 }
86
87 /* Closing the file is just freeing the base/size pair on our side. */
88
89 static int
90 mem_bfd_iovec_close (struct bfd *abfd, void *stream)
91 {
92 xfree (stream);
93 return 1;
94 }
95
96 /* For reading the file, we just need to pass through to target_read_memory and
97 fix up the arguments and return values. */
98
99 static file_ptr
100 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
101 file_ptr nbytes, file_ptr offset)
102 {
103 int err;
104 struct target_buffer *buffer = (struct target_buffer *) stream;
105
106 /* If this read will read all of the file, limit it to just the rest. */
107 if (offset + nbytes > buffer->size)
108 nbytes = buffer->size - offset;
109
110 /* If there are no more bytes left, we've reached EOF. */
111 if (nbytes == 0)
112 return 0;
113
114 err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes);
115 if (err)
116 return -1;
117
118 return nbytes;
119 }
120
121 /* For statting the file, we only support the st_size attribute. */
122
123 static int
124 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
125 {
126 struct target_buffer *buffer = (struct target_buffer*) stream;
127
128 sb->st_size = buffer->size;
129 return 0;
130 }
131
132 /* Open a BFD from the target's memory. */
133
134 static struct bfd *
135 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size, char *target)
136 {
137 struct target_buffer *buffer = xmalloc (sizeof (struct target_buffer));
138
139 buffer->base = addr;
140 buffer->size = size;
141 return gdb_bfd_openr_iovec ("<in-memory>", target,
142 mem_bfd_iovec_open,
143 buffer,
144 mem_bfd_iovec_pread,
145 mem_bfd_iovec_close,
146 mem_bfd_iovec_stat);
147 }
148
149 /* One reader that has been loaded successfully, and can potentially be used to
150 parse debug info. */
151
152 static struct jit_reader
153 {
154 struct gdb_reader_funcs *functions;
155 void *handle;
156 } *loaded_jit_reader = NULL;
157
158 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
159 static const char *reader_init_fn_sym = "gdb_init_reader";
160
161 /* Try to load FILE_NAME as a JIT debug info reader. */
162
163 static struct jit_reader *
164 jit_reader_load (const char *file_name)
165 {
166 void *so;
167 reader_init_fn_type *init_fn;
168 struct jit_reader *new_reader = NULL;
169 struct gdb_reader_funcs *funcs = NULL;
170 struct cleanup *old_cleanups;
171
172 if (jit_debug)
173 fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
174 file_name);
175 so = gdb_dlopen (file_name);
176 old_cleanups = make_cleanup_dlclose (so);
177
178 init_fn = gdb_dlsym (so, reader_init_fn_sym);
179 if (!init_fn)
180 error (_("Could not locate initialization function: %s."),
181 reader_init_fn_sym);
182
183 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
184 error (_("Reader not GPL compatible."));
185
186 funcs = init_fn ();
187 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
188 error (_("Reader version does not match GDB version."));
189
190 new_reader = XZALLOC (struct jit_reader);
191 new_reader->functions = funcs;
192 new_reader->handle = so;
193
194 discard_cleanups (old_cleanups);
195 return new_reader;
196 }
197
198 /* Provides the jit-reader-load command. */
199
200 static void
201 jit_reader_load_command (char *args, int from_tty)
202 {
203 char *so_name;
204 struct cleanup *prev_cleanup;
205
206 if (args == NULL)
207 error (_("No reader name provided."));
208
209 if (loaded_jit_reader != NULL)
210 error (_("JIT reader already loaded. Run jit-reader-unload first."));
211
212 if (IS_ABSOLUTE_PATH (args))
213 so_name = xstrdup (args);
214 else
215 so_name = xstrprintf ("%s%s%s", SLASH_STRING, jit_reader_dir, args);
216 prev_cleanup = make_cleanup (xfree, so_name);
217
218 loaded_jit_reader = jit_reader_load (so_name);
219 do_cleanups (prev_cleanup);
220 }
221
222 /* Provides the jit-reader-unload command. */
223
224 static void
225 jit_reader_unload_command (char *args, int from_tty)
226 {
227 if (!loaded_jit_reader)
228 error (_("No JIT reader loaded."));
229
230 loaded_jit_reader->functions->destroy (loaded_jit_reader->functions);
231
232 gdb_dlclose (loaded_jit_reader->handle);
233 xfree (loaded_jit_reader);
234 loaded_jit_reader = NULL;
235 }
236
237 /* Per-program space structure recording which objfile has the JIT
238 symbols. */
239
240 struct jit_program_space_data
241 {
242 /* The objfile. This is NULL if no objfile holds the JIT
243 symbols. */
244
245 struct objfile *objfile;
246
247 /* If this program space has __jit_debug_register_code, this is the
248 cached address from the minimal symbol. This is used to detect
249 relocations requiring the breakpoint to be re-created. */
250
251 CORE_ADDR cached_code_address;
252
253 /* This is the JIT event breakpoint, or NULL if it has not been
254 set. */
255
256 struct breakpoint *jit_breakpoint;
257 };
258
259 /* Per-objfile structure recording the addresses in the program space.
260 This object serves two purposes: for ordinary objfiles, it may
261 cache some symbols related to the JIT interface; and for
262 JIT-created objfiles, it holds some information about the
263 jit_code_entry. */
264
265 struct jit_objfile_data
266 {
267 /* Symbol for __jit_debug_register_code. */
268 struct minimal_symbol *register_code;
269
270 /* Symbol for __jit_debug_descriptor. */
271 struct minimal_symbol *descriptor;
272
273 /* Address of struct jit_code_entry in this objfile. This is only
274 non-zero for objfiles that represent code created by the JIT. */
275 CORE_ADDR addr;
276 };
277
278 /* Fetch the jit_objfile_data associated with OBJF. If no data exists
279 yet, make a new structure and attach it. */
280
281 static struct jit_objfile_data *
282 get_jit_objfile_data (struct objfile *objf)
283 {
284 struct jit_objfile_data *objf_data;
285
286 objf_data = objfile_data (objf, jit_objfile_data);
287 if (objf_data == NULL)
288 {
289 objf_data = XZALLOC (struct jit_objfile_data);
290 set_objfile_data (objf, jit_objfile_data, objf_data);
291 }
292
293 return objf_data;
294 }
295
296 /* Remember OBJFILE has been created for struct jit_code_entry located
297 at inferior address ENTRY. */
298
299 static void
300 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
301 {
302 struct jit_objfile_data *objf_data;
303
304 objf_data = get_jit_objfile_data (objfile);
305 objf_data->addr = entry;
306 }
307
308 /* Return jit_program_space_data for current program space. Allocate
309 if not already present. */
310
311 static struct jit_program_space_data *
312 get_jit_program_space_data (void)
313 {
314 struct jit_program_space_data *ps_data;
315
316 ps_data = program_space_data (current_program_space, jit_program_space_data);
317 if (ps_data == NULL)
318 {
319 ps_data = XZALLOC (struct jit_program_space_data);
320 set_program_space_data (current_program_space, jit_program_space_data,
321 ps_data);
322 }
323
324 return ps_data;
325 }
326
327 static void
328 jit_program_space_data_cleanup (struct program_space *ps, void *arg)
329 {
330 xfree (arg);
331 }
332
333 /* Helper function for reading the global JIT descriptor from remote
334 memory. Returns 1 if all went well, 0 otherwise. */
335
336 static int
337 jit_read_descriptor (struct gdbarch *gdbarch,
338 struct jit_descriptor *descriptor,
339 struct jit_program_space_data *ps_data)
340 {
341 int err;
342 struct type *ptr_type;
343 int ptr_size;
344 int desc_size;
345 gdb_byte *desc_buf;
346 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
347 struct jit_objfile_data *objf_data;
348
349 if (ps_data->objfile == NULL)
350 return 0;
351 objf_data = get_jit_objfile_data (ps_data->objfile);
352 if (objf_data->descriptor == NULL)
353 return 0;
354
355 if (jit_debug)
356 fprintf_unfiltered (gdb_stdlog,
357 "jit_read_descriptor, descriptor_addr = %s\n",
358 paddress (gdbarch, SYMBOL_VALUE_ADDRESS (objf_data->descriptor)));
359
360 /* Figure out how big the descriptor is on the remote and how to read it. */
361 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
362 ptr_size = TYPE_LENGTH (ptr_type);
363 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
364 desc_buf = alloca (desc_size);
365
366 /* Read the descriptor. */
367 err = target_read_memory (SYMBOL_VALUE_ADDRESS (objf_data->descriptor),
368 desc_buf, desc_size);
369 if (err)
370 {
371 printf_unfiltered (_("Unable to read JIT descriptor from "
372 "remote memory\n"));
373 return 0;
374 }
375
376 /* Fix the endianness to match the host. */
377 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
378 descriptor->action_flag =
379 extract_unsigned_integer (&desc_buf[4], 4, byte_order);
380 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
381 descriptor->first_entry =
382 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
383
384 return 1;
385 }
386
387 /* Helper function for reading a JITed code entry from remote memory. */
388
389 static void
390 jit_read_code_entry (struct gdbarch *gdbarch,
391 CORE_ADDR code_addr, struct jit_code_entry *code_entry)
392 {
393 int err, off;
394 struct type *ptr_type;
395 int ptr_size;
396 int entry_size;
397 int align_bytes;
398 gdb_byte *entry_buf;
399 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
400
401 /* Figure out how big the entry is on the remote and how to read it. */
402 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
403 ptr_size = TYPE_LENGTH (ptr_type);
404
405 /* Figure out where the longlong value will be. */
406 align_bytes = gdbarch_long_long_align_bit (gdbarch) / 8;
407 off = 3 * ptr_size;
408 off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
409
410 entry_size = off + 8; /* Three pointers and one 64-bit int. */
411 entry_buf = alloca (entry_size);
412
413 /* Read the entry. */
414 err = target_read_memory (code_addr, entry_buf, entry_size);
415 if (err)
416 error (_("Unable to read JIT code entry from remote memory!"));
417
418 /* Fix the endianness to match the host. */
419 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
420 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
421 code_entry->prev_entry =
422 extract_typed_address (&entry_buf[ptr_size], ptr_type);
423 code_entry->symfile_addr =
424 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
425 code_entry->symfile_size =
426 extract_unsigned_integer (&entry_buf[off], 8, byte_order);
427 }
428
429 /* Proxy object for building a block. */
430
431 struct gdb_block
432 {
433 /* gdb_blocks are linked into a tree structure. Next points to the
434 next node at the same depth as this block and parent to the
435 parent gdb_block. */
436 struct gdb_block *next, *parent;
437
438 /* Points to the "real" block that is being built out of this
439 instance. This block will be added to a blockvector, which will
440 then be added to a symtab. */
441 struct block *real_block;
442
443 /* The first and last code address corresponding to this block. */
444 CORE_ADDR begin, end;
445
446 /* The name of this block (if any). If this is non-NULL, the
447 FUNCTION symbol symbol is set to this value. */
448 const char *name;
449 };
450
451 /* Proxy object for building a symtab. */
452
453 struct gdb_symtab
454 {
455 /* The list of blocks in this symtab. These will eventually be
456 converted to real blocks. */
457 struct gdb_block *blocks;
458
459 /* The number of blocks inserted. */
460 int nblocks;
461
462 /* A mapping between line numbers to PC. */
463 struct linetable *linetable;
464
465 /* The source file for this symtab. */
466 const char *file_name;
467 struct gdb_symtab *next;
468 };
469
470 /* Proxy object for building an object. */
471
472 struct gdb_object
473 {
474 struct gdb_symtab *symtabs;
475 };
476
477 /* The type of the `private' data passed around by the callback
478 functions. */
479
480 typedef CORE_ADDR jit_dbg_reader_data;
481
482 /* The reader calls into this function to read data off the targets
483 address space. */
484
485 static enum gdb_status
486 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
487 {
488 int result = target_read_memory ((CORE_ADDR) target_mem, gdb_buf, len);
489 if (result == 0)
490 return GDB_SUCCESS;
491 else
492 return GDB_FAIL;
493 }
494
495 /* The reader calls into this function to create a new gdb_object
496 which it can then pass around to the other callbacks. Right now,
497 all that is required is allocating the memory. */
498
499 static struct gdb_object *
500 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
501 {
502 /* CB is not required right now, but sometime in the future we might
503 need a handle to it, and we'd like to do that without breaking
504 the ABI. */
505 return XZALLOC (struct gdb_object);
506 }
507
508 /* Readers call into this function to open a new gdb_symtab, which,
509 again, is passed around to other callbacks. */
510
511 static struct gdb_symtab *
512 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
513 struct gdb_object *object,
514 const char *file_name)
515 {
516 struct gdb_symtab *ret;
517
518 /* CB stays unused. See comment in jit_object_open_impl. */
519
520 ret = XZALLOC (struct gdb_symtab);
521 ret->file_name = file_name ? xstrdup (file_name) : xstrdup ("");
522 ret->next = object->symtabs;
523 object->symtabs = ret;
524 return ret;
525 }
526
527 /* Returns true if the block corresponding to old should be placed
528 before the block corresponding to new in the final blockvector. */
529
530 static int
531 compare_block (const struct gdb_block *const old,
532 const struct gdb_block *const new)
533 {
534 if (old == NULL)
535 return 1;
536 if (old->begin < new->begin)
537 return 1;
538 else if (old->begin == new->begin)
539 {
540 if (old->end > new->end)
541 return 1;
542 else
543 return 0;
544 }
545 else
546 return 0;
547 }
548
549 /* Called by readers to open a new gdb_block. This function also
550 inserts the new gdb_block in the correct place in the corresponding
551 gdb_symtab. */
552
553 static struct gdb_block *
554 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
555 struct gdb_symtab *symtab, struct gdb_block *parent,
556 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
557 {
558 struct gdb_block *block = XZALLOC (struct gdb_block);
559
560 block->next = symtab->blocks;
561 block->begin = (CORE_ADDR) begin;
562 block->end = (CORE_ADDR) end;
563 block->name = name ? xstrdup (name) : NULL;
564 block->parent = parent;
565
566 /* Ensure that the blocks are inserted in the correct (reverse of
567 the order expected by blockvector). */
568 if (compare_block (symtab->blocks, block))
569 {
570 symtab->blocks = block;
571 }
572 else
573 {
574 struct gdb_block *i = symtab->blocks;
575
576 for (;; i = i->next)
577 {
578 /* Guaranteed to terminate, since compare_block (NULL, _)
579 returns 1. */
580 if (compare_block (i->next, block))
581 {
582 block->next = i->next;
583 i->next = block;
584 break;
585 }
586 }
587 }
588 symtab->nblocks++;
589
590 return block;
591 }
592
593 /* Readers call this to add a line mapping (from PC to line number) to
594 a gdb_symtab. */
595
596 static void
597 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
598 struct gdb_symtab *stab, int nlines,
599 struct gdb_line_mapping *map)
600 {
601 int i;
602
603 if (nlines < 1)
604 return;
605
606 stab->linetable = xmalloc (sizeof (struct linetable)
607 + (nlines - 1) * sizeof (struct linetable_entry));
608 stab->linetable->nitems = nlines;
609 for (i = 0; i < nlines; i++)
610 {
611 stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
612 stab->linetable->item[i].line = map[i].line;
613 }
614 }
615
616 /* Called by readers to close a gdb_symtab. Does not need to do
617 anything as of now. */
618
619 static void
620 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
621 struct gdb_symtab *stab)
622 {
623 /* Right now nothing needs to be done here. We may need to do some
624 cleanup here in the future (again, without breaking the plugin
625 ABI). */
626 }
627
628 /* Transform STAB to a proper symtab, and add it it OBJFILE. */
629
630 static void
631 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
632 {
633 struct symtab *symtab;
634 struct gdb_block *gdb_block_iter, *gdb_block_iter_tmp;
635 struct block *block_iter;
636 int actual_nblocks, i, blockvector_size;
637 CORE_ADDR begin, end;
638
639 actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
640
641 symtab = allocate_symtab (stab->file_name, objfile);
642 /* JIT compilers compile in memory. */
643 symtab->dirname = NULL;
644
645 /* Copy over the linetable entry if one was provided. */
646 if (stab->linetable)
647 {
648 int size = ((stab->linetable->nitems - 1)
649 * sizeof (struct linetable_entry)
650 + sizeof (struct linetable));
651 LINETABLE (symtab) = obstack_alloc (&objfile->objfile_obstack, size);
652 memcpy (LINETABLE (symtab), stab->linetable, size);
653 }
654 else
655 {
656 LINETABLE (symtab) = NULL;
657 }
658
659 blockvector_size = (sizeof (struct blockvector)
660 + (actual_nblocks - 1) * sizeof (struct block *));
661 symtab->blockvector = obstack_alloc (&objfile->objfile_obstack,
662 blockvector_size);
663
664 /* (begin, end) will contain the PC range this entire blockvector
665 spans. */
666 symtab->primary = 1;
667 BLOCKVECTOR_MAP (symtab->blockvector) = NULL;
668 begin = stab->blocks->begin;
669 end = stab->blocks->end;
670 BLOCKVECTOR_NBLOCKS (symtab->blockvector) = actual_nblocks;
671
672 /* First run over all the gdb_block objects, creating a real block
673 object for each. Simultaneously, keep setting the real_block
674 fields. */
675 for (i = (actual_nblocks - 1), gdb_block_iter = stab->blocks;
676 i >= FIRST_LOCAL_BLOCK;
677 i--, gdb_block_iter = gdb_block_iter->next)
678 {
679 struct block *new_block = allocate_block (&objfile->objfile_obstack);
680 struct symbol *block_name = allocate_symbol (objfile);
681 struct type *block_type = arch_type (get_objfile_arch (objfile),
682 TYPE_CODE_VOID,
683 1,
684 "void");
685
686 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
687 NULL);
688 /* The address range. */
689 BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter->begin;
690 BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter->end;
691
692 /* The name. */
693 SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
694 SYMBOL_ACLASS_INDEX (block_name) = LOC_BLOCK;
695 SYMBOL_SYMTAB (block_name) = symtab;
696 SYMBOL_TYPE (block_name) = lookup_function_type (block_type);
697 SYMBOL_BLOCK_VALUE (block_name) = new_block;
698
699 block_name->ginfo.name = obstack_copy0 (&objfile->objfile_obstack,
700 gdb_block_iter->name,
701 strlen (gdb_block_iter->name));
702
703 BLOCK_FUNCTION (new_block) = block_name;
704
705 BLOCKVECTOR_BLOCK (symtab->blockvector, i) = new_block;
706 if (begin > BLOCK_START (new_block))
707 begin = BLOCK_START (new_block);
708 if (end < BLOCK_END (new_block))
709 end = BLOCK_END (new_block);
710
711 gdb_block_iter->real_block = new_block;
712 }
713
714 /* Now add the special blocks. */
715 block_iter = NULL;
716 for (i = 0; i < FIRST_LOCAL_BLOCK; i++)
717 {
718 struct block *new_block;
719
720 new_block = (i == GLOBAL_BLOCK
721 ? allocate_global_block (&objfile->objfile_obstack)
722 : allocate_block (&objfile->objfile_obstack));
723 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
724 NULL);
725 BLOCK_SUPERBLOCK (new_block) = block_iter;
726 block_iter = new_block;
727
728 BLOCK_START (new_block) = (CORE_ADDR) begin;
729 BLOCK_END (new_block) = (CORE_ADDR) end;
730
731 BLOCKVECTOR_BLOCK (symtab->blockvector, i) = new_block;
732
733 if (i == GLOBAL_BLOCK)
734 set_block_symtab (new_block, symtab);
735 }
736
737 /* Fill up the superblock fields for the real blocks, using the
738 real_block fields populated earlier. */
739 for (gdb_block_iter = stab->blocks;
740 gdb_block_iter;
741 gdb_block_iter = gdb_block_iter->next)
742 {
743 if (gdb_block_iter->parent != NULL)
744 {
745 /* If the plugin specifically mentioned a parent block, we
746 use that. */
747 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
748 gdb_block_iter->parent->real_block;
749 }
750 else
751 {
752 /* And if not, we set a default parent block. */
753 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
754 BLOCKVECTOR_BLOCK (symtab->blockvector, STATIC_BLOCK);
755 }
756 }
757
758 /* Free memory. */
759 gdb_block_iter = stab->blocks;
760
761 for (gdb_block_iter = stab->blocks, gdb_block_iter_tmp = gdb_block_iter->next;
762 gdb_block_iter;
763 gdb_block_iter = gdb_block_iter_tmp)
764 {
765 xfree ((void *) gdb_block_iter->name);
766 xfree (gdb_block_iter);
767 }
768 xfree (stab->linetable);
769 xfree ((char *) stab->file_name);
770 xfree (stab);
771 }
772
773 /* Called when closing a gdb_objfile. Converts OBJ to a proper
774 objfile. */
775
776 static void
777 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
778 struct gdb_object *obj)
779 {
780 struct gdb_symtab *i, *j;
781 struct objfile *objfile;
782 jit_dbg_reader_data *priv_data;
783
784 priv_data = cb->priv_data;
785
786 objfile = allocate_objfile (NULL, 0);
787 objfile->gdbarch = target_gdbarch ();
788
789 terminate_minimal_symbol_table (objfile);
790
791 objfile->name = "<< JIT compiled code >>";
792
793 j = NULL;
794 for (i = obj->symtabs; i; i = j)
795 {
796 j = i->next;
797 finalize_symtab (i, objfile);
798 }
799 add_objfile_entry (objfile, *priv_data);
800 xfree (obj);
801 }
802
803 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
804 ENTRY_ADDR is the address of the struct jit_code_entry in the
805 inferior address space. */
806
807 static int
808 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
809 CORE_ADDR entry_addr)
810 {
811 void *gdb_mem;
812 int status;
813 jit_dbg_reader_data priv_data;
814 struct gdb_reader_funcs *funcs;
815 volatile struct gdb_exception e;
816 struct gdb_symbol_callbacks callbacks =
817 {
818 jit_object_open_impl,
819 jit_symtab_open_impl,
820 jit_block_open_impl,
821 jit_symtab_close_impl,
822 jit_object_close_impl,
823
824 jit_symtab_line_mapping_add_impl,
825 jit_target_read_impl,
826
827 &priv_data
828 };
829
830 priv_data = entry_addr;
831
832 if (!loaded_jit_reader)
833 return 0;
834
835 gdb_mem = xmalloc (code_entry->symfile_size);
836
837 status = 1;
838 TRY_CATCH (e, RETURN_MASK_ALL)
839 if (target_read_memory (code_entry->symfile_addr, gdb_mem,
840 code_entry->symfile_size))
841 status = 0;
842 if (e.reason < 0)
843 status = 0;
844
845 if (status)
846 {
847 funcs = loaded_jit_reader->functions;
848 if (funcs->read (funcs, &callbacks, gdb_mem, code_entry->symfile_size)
849 != GDB_SUCCESS)
850 status = 0;
851 }
852
853 xfree (gdb_mem);
854 if (jit_debug && status == 0)
855 fprintf_unfiltered (gdb_stdlog,
856 "Could not read symtab using the loaded JIT reader.\n");
857 return status;
858 }
859
860 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
861 struct jit_code_entry in the inferior address space. */
862
863 static void
864 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
865 CORE_ADDR entry_addr,
866 struct gdbarch *gdbarch)
867 {
868 bfd *nbfd;
869 struct section_addr_info *sai;
870 struct bfd_section *sec;
871 struct objfile *objfile;
872 struct cleanup *old_cleanups;
873 int i;
874 const struct bfd_arch_info *b;
875
876 if (jit_debug)
877 fprintf_unfiltered (gdb_stdlog,
878 "jit_register_code, symfile_addr = %s, "
879 "symfile_size = %s\n",
880 paddress (gdbarch, code_entry->symfile_addr),
881 pulongest (code_entry->symfile_size));
882
883 nbfd = bfd_open_from_target_memory (code_entry->symfile_addr,
884 code_entry->symfile_size, gnutarget);
885 if (nbfd == NULL)
886 {
887 puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
888 return;
889 }
890
891 /* Check the format. NOTE: This initializes important data that GDB uses!
892 We would segfault later without this line. */
893 if (!bfd_check_format (nbfd, bfd_object))
894 {
895 printf_unfiltered (_("\
896 JITed symbol file is not an object file, ignoring it.\n"));
897 gdb_bfd_unref (nbfd);
898 return;
899 }
900
901 /* Check bfd arch. */
902 b = gdbarch_bfd_arch_info (gdbarch);
903 if (b->compatible (b, bfd_get_arch_info (nbfd)) != b)
904 warning (_("JITed object file architecture %s is not compatible "
905 "with target architecture %s."), bfd_get_arch_info
906 (nbfd)->printable_name, b->printable_name);
907
908 /* Read the section address information out of the symbol file. Since the
909 file is generated by the JIT at runtime, it should all of the absolute
910 addresses that we care about. */
911 sai = alloc_section_addr_info (bfd_count_sections (nbfd));
912 old_cleanups = make_cleanup_free_section_addr_info (sai);
913 i = 0;
914 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
915 if ((bfd_get_section_flags (nbfd, sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
916 {
917 /* We assume that these virtual addresses are absolute, and do not
918 treat them as offsets. */
919 sai->other[i].addr = bfd_get_section_vma (nbfd, sec);
920 sai->other[i].name = xstrdup (bfd_get_section_name (nbfd, sec));
921 sai->other[i].sectindex = sec->index;
922 ++i;
923 }
924 sai->num_sections = i;
925
926 /* This call does not take ownership of SAI. */
927 make_cleanup_bfd_unref (nbfd);
928 objfile = symbol_file_add_from_bfd (nbfd, 0, sai, OBJF_SHARED, NULL);
929
930 do_cleanups (old_cleanups);
931 add_objfile_entry (objfile, entry_addr);
932 }
933
934 /* This function registers code associated with a JIT code entry. It uses the
935 pointer and size pair in the entry to read the symbol file from the remote
936 and then calls symbol_file_add_from_local_memory to add it as though it were
937 a symbol file added by the user. */
938
939 static void
940 jit_register_code (struct gdbarch *gdbarch,
941 CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
942 {
943 int success;
944
945 if (jit_debug)
946 fprintf_unfiltered (gdb_stdlog,
947 "jit_register_code, symfile_addr = %s, "
948 "symfile_size = %s\n",
949 paddress (gdbarch, code_entry->symfile_addr),
950 pulongest (code_entry->symfile_size));
951
952 success = jit_reader_try_read_symtab (code_entry, entry_addr);
953
954 if (!success)
955 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
956 }
957
958 /* This function unregisters JITed code and frees the corresponding
959 objfile. */
960
961 static void
962 jit_unregister_code (struct objfile *objfile)
963 {
964 free_objfile (objfile);
965 }
966
967 /* Look up the objfile with this code entry address. */
968
969 static struct objfile *
970 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
971 {
972 struct objfile *objf;
973
974 ALL_OBJFILES (objf)
975 {
976 struct jit_objfile_data *objf_data;
977
978 objf_data = objfile_data (objf, jit_objfile_data);
979 if (objf_data != NULL && objf_data->addr == entry_addr)
980 return objf;
981 }
982 return NULL;
983 }
984
985 /* This is called when a breakpoint is deleted. It updates the
986 inferior's cache, if needed. */
987
988 static void
989 jit_breakpoint_deleted (struct breakpoint *b)
990 {
991 struct bp_location *iter;
992
993 if (b->type != bp_jit_event)
994 return;
995
996 for (iter = b->loc; iter != NULL; iter = iter->next)
997 {
998 struct jit_program_space_data *ps_data;
999
1000 ps_data = program_space_data (iter->pspace, jit_program_space_data);
1001 if (ps_data != NULL && ps_data->jit_breakpoint == iter->owner)
1002 {
1003 ps_data->cached_code_address = 0;
1004 ps_data->jit_breakpoint = NULL;
1005 }
1006 }
1007 }
1008
1009 /* (Re-)Initialize the jit breakpoint if necessary.
1010 Return 0 on success. */
1011
1012 static int
1013 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch,
1014 struct jit_program_space_data *ps_data)
1015 {
1016 struct minimal_symbol *reg_symbol, *desc_symbol;
1017 struct objfile *objf;
1018 struct jit_objfile_data *objf_data;
1019 CORE_ADDR addr;
1020
1021 if (ps_data->objfile == NULL)
1022 {
1023 /* Lookup the registration symbol. If it is missing, then we
1024 assume we are not attached to a JIT. */
1025 reg_symbol = lookup_minimal_symbol_and_objfile (jit_break_name, &objf);
1026 if (reg_symbol == NULL || SYMBOL_VALUE_ADDRESS (reg_symbol) == 0)
1027 return 1;
1028
1029 desc_symbol = lookup_minimal_symbol (jit_descriptor_name, NULL, objf);
1030 if (desc_symbol == NULL || SYMBOL_VALUE_ADDRESS (desc_symbol) == 0)
1031 return 1;
1032
1033 objf_data = get_jit_objfile_data (objf);
1034 objf_data->register_code = reg_symbol;
1035 objf_data->descriptor = desc_symbol;
1036
1037 ps_data->objfile = objf;
1038 }
1039 else
1040 objf_data = get_jit_objfile_data (ps_data->objfile);
1041
1042 addr = SYMBOL_VALUE_ADDRESS (objf_data->register_code);
1043
1044 if (jit_debug)
1045 fprintf_unfiltered (gdb_stdlog,
1046 "jit_breakpoint_re_set_internal, "
1047 "breakpoint_addr = %s\n",
1048 paddress (gdbarch, addr));
1049
1050 if (ps_data->cached_code_address == addr)
1051 return 1;
1052
1053 /* Delete the old breakpoint. */
1054 if (ps_data->jit_breakpoint != NULL)
1055 delete_breakpoint (ps_data->jit_breakpoint);
1056
1057 /* Put a breakpoint in the registration symbol. */
1058 ps_data->cached_code_address = addr;
1059 ps_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);
1060
1061 return 0;
1062 }
1063
1064 /* The private data passed around in the frame unwind callback
1065 functions. */
1066
1067 struct jit_unwind_private
1068 {
1069 /* Cached register values. See jit_frame_sniffer to see how this
1070 works. */
1071 struct gdb_reg_value **registers;
1072
1073 /* The frame being unwound. */
1074 struct frame_info *this_frame;
1075 };
1076
1077 /* Sets the value of a particular register in this frame. */
1078
1079 static void
1080 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
1081 struct gdb_reg_value *value)
1082 {
1083 struct jit_unwind_private *priv;
1084 int gdb_reg;
1085
1086 priv = cb->priv_data;
1087
1088 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
1089 dwarf_regnum);
1090 if (gdb_reg == -1)
1091 {
1092 if (jit_debug)
1093 fprintf_unfiltered (gdb_stdlog,
1094 _("Could not recognize DWARF regnum %d"),
1095 dwarf_regnum);
1096 return;
1097 }
1098
1099 gdb_assert (priv->registers);
1100 priv->registers[gdb_reg] = value;
1101 }
1102
1103 static void
1104 reg_value_free_impl (struct gdb_reg_value *value)
1105 {
1106 xfree (value);
1107 }
1108
1109 /* Get the value of register REGNUM in the previous frame. */
1110
1111 static struct gdb_reg_value *
1112 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
1113 {
1114 struct jit_unwind_private *priv;
1115 struct gdb_reg_value *value;
1116 int gdb_reg, size;
1117 struct gdbarch *frame_arch;
1118
1119 priv = cb->priv_data;
1120 frame_arch = get_frame_arch (priv->this_frame);
1121
1122 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
1123 size = register_size (frame_arch, gdb_reg);
1124 value = xmalloc (sizeof (struct gdb_reg_value) + size - 1);
1125 value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg,
1126 value->value);
1127 value->size = size;
1128 value->free = reg_value_free_impl;
1129 return value;
1130 }
1131
1132 /* gdb_reg_value has a free function, which must be called on each
1133 saved register value. */
1134
1135 static void
1136 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
1137 {
1138 struct jit_unwind_private *priv_data = cache;
1139 struct gdbarch *frame_arch;
1140 int i;
1141
1142 gdb_assert (priv_data->registers);
1143 frame_arch = get_frame_arch (priv_data->this_frame);
1144
1145 for (i = 0; i < gdbarch_num_regs (frame_arch); i++)
1146 if (priv_data->registers[i] && priv_data->registers[i]->free)
1147 priv_data->registers[i]->free (priv_data->registers[i]);
1148
1149 xfree (priv_data->registers);
1150 xfree (priv_data);
1151 }
1152
1153 /* The frame sniffer for the pseudo unwinder.
1154
1155 While this is nominally a frame sniffer, in the case where the JIT
1156 reader actually recognizes the frame, it does a lot more work -- it
1157 unwinds the frame and saves the corresponding register values in
1158 the cache. jit_frame_prev_register simply returns the saved
1159 register values. */
1160
1161 static int
1162 jit_frame_sniffer (const struct frame_unwind *self,
1163 struct frame_info *this_frame, void **cache)
1164 {
1165 struct jit_unwind_private *priv_data;
1166 struct gdb_unwind_callbacks callbacks;
1167 struct gdb_reader_funcs *funcs;
1168
1169 callbacks.reg_get = jit_unwind_reg_get_impl;
1170 callbacks.reg_set = jit_unwind_reg_set_impl;
1171 callbacks.target_read = jit_target_read_impl;
1172
1173 if (loaded_jit_reader == NULL)
1174 return 0;
1175
1176 funcs = loaded_jit_reader->functions;
1177
1178 gdb_assert (!*cache);
1179
1180 *cache = XZALLOC (struct jit_unwind_private);
1181 priv_data = *cache;
1182 priv_data->registers =
1183 XCALLOC (gdbarch_num_regs (get_frame_arch (this_frame)),
1184 struct gdb_reg_value *);
1185 priv_data->this_frame = this_frame;
1186
1187 callbacks.priv_data = priv_data;
1188
1189 /* Try to coax the provided unwinder to unwind the stack */
1190 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1191 {
1192 if (jit_debug)
1193 fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
1194 "JIT reader.\n"));
1195 return 1;
1196 }
1197 if (jit_debug)
1198 fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
1199 "JIT reader.\n"));
1200
1201 jit_dealloc_cache (this_frame, *cache);
1202 *cache = NULL;
1203
1204 return 0;
1205 }
1206
1207
1208 /* The frame_id function for the pseudo unwinder. Relays the call to
1209 the loaded plugin. */
1210
1211 static void
1212 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1213 struct frame_id *this_id)
1214 {
1215 struct jit_unwind_private private;
1216 struct gdb_frame_id frame_id;
1217 struct gdb_reader_funcs *funcs;
1218 struct gdb_unwind_callbacks callbacks;
1219
1220 private.registers = NULL;
1221 private.this_frame = this_frame;
1222
1223 /* We don't expect the frame_id function to set any registers, so we
1224 set reg_set to NULL. */
1225 callbacks.reg_get = jit_unwind_reg_get_impl;
1226 callbacks.reg_set = NULL;
1227 callbacks.target_read = jit_target_read_impl;
1228 callbacks.priv_data = &private;
1229
1230 gdb_assert (loaded_jit_reader);
1231 funcs = loaded_jit_reader->functions;
1232
1233 frame_id = funcs->get_frame_id (funcs, &callbacks);
1234 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1235 }
1236
1237 /* Pseudo unwinder function. Reads the previously fetched value for
1238 the register from the cache. */
1239
1240 static struct value *
1241 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1242 {
1243 struct jit_unwind_private *priv = *cache;
1244 struct gdb_reg_value *value;
1245
1246 if (priv == NULL)
1247 return frame_unwind_got_optimized (this_frame, reg);
1248
1249 gdb_assert (priv->registers);
1250 value = priv->registers[reg];
1251 if (value && value->defined)
1252 return frame_unwind_got_bytes (this_frame, reg, value->value);
1253 else
1254 return frame_unwind_got_optimized (this_frame, reg);
1255 }
1256
1257 /* Relay everything back to the unwinder registered by the JIT debug
1258 info reader.*/
1259
1260 static const struct frame_unwind jit_frame_unwind =
1261 {
1262 NORMAL_FRAME,
1263 default_frame_unwind_stop_reason,
1264 jit_frame_this_id,
1265 jit_frame_prev_register,
1266 NULL,
1267 jit_frame_sniffer,
1268 jit_dealloc_cache
1269 };
1270
1271
1272 /* This is the information that is stored at jit_gdbarch_data for each
1273 architecture. */
1274
1275 struct jit_gdbarch_data_type
1276 {
1277 /* Has the (pseudo) unwinder been prepended? */
1278 int unwinder_registered;
1279 };
1280
1281 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
1282
1283 static void
1284 jit_prepend_unwinder (struct gdbarch *gdbarch)
1285 {
1286 struct jit_gdbarch_data_type *data;
1287
1288 data = gdbarch_data (gdbarch, jit_gdbarch_data);
1289 if (!data->unwinder_registered)
1290 {
1291 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1292 data->unwinder_registered = 1;
1293 }
1294 }
1295
1296 /* Register any already created translations. */
1297
1298 static void
1299 jit_inferior_init (struct gdbarch *gdbarch)
1300 {
1301 struct jit_descriptor descriptor;
1302 struct jit_code_entry cur_entry;
1303 struct jit_program_space_data *ps_data;
1304 CORE_ADDR cur_entry_addr;
1305
1306 if (jit_debug)
1307 fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1308
1309 jit_prepend_unwinder (gdbarch);
1310
1311 ps_data = get_jit_program_space_data ();
1312 if (jit_breakpoint_re_set_internal (gdbarch, ps_data) != 0)
1313 return;
1314
1315 /* Read the descriptor so we can check the version number and load
1316 any already JITed functions. */
1317 if (!jit_read_descriptor (gdbarch, &descriptor, ps_data))
1318 return;
1319
1320 /* Check that the version number agrees with that we support. */
1321 if (descriptor.version != 1)
1322 {
1323 printf_unfiltered (_("Unsupported JIT protocol version %ld "
1324 "in descriptor (expected 1)\n"),
1325 (long) descriptor.version);
1326 return;
1327 }
1328
1329 /* If we've attached to a running program, we need to check the descriptor
1330 to register any functions that were already generated. */
1331 for (cur_entry_addr = descriptor.first_entry;
1332 cur_entry_addr != 0;
1333 cur_entry_addr = cur_entry.next_entry)
1334 {
1335 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1336
1337 /* This hook may be called many times during setup, so make sure we don't
1338 add the same symbol file twice. */
1339 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1340 continue;
1341
1342 jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1343 }
1344 }
1345
1346 /* Exported routine to call when an inferior has been created. */
1347
1348 void
1349 jit_inferior_created_hook (void)
1350 {
1351 jit_inferior_init (target_gdbarch ());
1352 }
1353
1354 /* Exported routine to call to re-set the jit breakpoints,
1355 e.g. when a program is rerun. */
1356
1357 void
1358 jit_breakpoint_re_set (void)
1359 {
1360 jit_breakpoint_re_set_internal (target_gdbarch (),
1361 get_jit_program_space_data ());
1362 }
1363
1364 /* This function cleans up any code entries left over when the
1365 inferior exits. We get left over code when the inferior exits
1366 without unregistering its code, for example when it crashes. */
1367
1368 static void
1369 jit_inferior_exit_hook (struct inferior *inf)
1370 {
1371 struct objfile *objf;
1372 struct objfile *temp;
1373
1374 ALL_OBJFILES_SAFE (objf, temp)
1375 {
1376 struct jit_objfile_data *objf_data = objfile_data (objf,
1377 jit_objfile_data);
1378
1379 if (objf_data != NULL && objf_data->addr != 0)
1380 jit_unregister_code (objf);
1381 }
1382 }
1383
1384 void
1385 jit_event_handler (struct gdbarch *gdbarch)
1386 {
1387 struct jit_descriptor descriptor;
1388 struct jit_code_entry code_entry;
1389 CORE_ADDR entry_addr;
1390 struct objfile *objf;
1391
1392 /* Read the descriptor from remote memory. */
1393 if (!jit_read_descriptor (gdbarch, &descriptor,
1394 get_jit_program_space_data ()))
1395 return;
1396 entry_addr = descriptor.relevant_entry;
1397
1398 /* Do the corresponding action. */
1399 switch (descriptor.action_flag)
1400 {
1401 case JIT_NOACTION:
1402 break;
1403 case JIT_REGISTER:
1404 jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1405 jit_register_code (gdbarch, entry_addr, &code_entry);
1406 break;
1407 case JIT_UNREGISTER:
1408 objf = jit_find_objf_with_entry_addr (entry_addr);
1409 if (objf == NULL)
1410 printf_unfiltered (_("Unable to find JITed code "
1411 "entry at address: %s\n"),
1412 paddress (gdbarch, entry_addr));
1413 else
1414 jit_unregister_code (objf);
1415
1416 break;
1417 default:
1418 error (_("Unknown action_flag value in JIT descriptor!"));
1419 break;
1420 }
1421 }
1422
1423 /* Called to free the data allocated to the jit_program_space_data slot. */
1424
1425 static void
1426 free_objfile_data (struct objfile *objfile, void *data)
1427 {
1428 struct jit_objfile_data *objf_data = data;
1429
1430 if (objf_data->register_code != NULL)
1431 {
1432 struct jit_program_space_data *ps_data;
1433
1434 ps_data = program_space_data (objfile->pspace, jit_program_space_data);
1435 if (ps_data != NULL && ps_data->objfile == objfile)
1436 ps_data->objfile = NULL;
1437 }
1438
1439 xfree (data);
1440 }
1441
1442 /* Initialize the jit_gdbarch_data slot with an instance of struct
1443 jit_gdbarch_data_type */
1444
1445 static void *
1446 jit_gdbarch_data_init (struct obstack *obstack)
1447 {
1448 struct jit_gdbarch_data_type *data;
1449
1450 data = obstack_alloc (obstack, sizeof (struct jit_gdbarch_data_type));
1451 data->unwinder_registered = 0;
1452 return data;
1453 }
1454
1455 /* Provide a prototype to silence -Wmissing-prototypes. */
1456
1457 extern void _initialize_jit (void);
1458
1459 void
1460 _initialize_jit (void)
1461 {
1462 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1463 JIT_READER_DIR_RELOCATABLE);
1464 add_setshow_zuinteger_cmd ("jit", class_maintenance, &jit_debug,
1465 _("Set JIT debugging."),
1466 _("Show JIT debugging."),
1467 _("When non-zero, JIT debugging is enabled."),
1468 NULL,
1469 show_jit_debug,
1470 &setdebuglist, &showdebuglist);
1471
1472 observer_attach_inferior_exit (jit_inferior_exit_hook);
1473 observer_attach_breakpoint_deleted (jit_breakpoint_deleted);
1474
1475 jit_objfile_data =
1476 register_objfile_data_with_cleanup (NULL, free_objfile_data);
1477 jit_program_space_data =
1478 register_program_space_data_with_cleanup (NULL,
1479 jit_program_space_data_cleanup);
1480 jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1481 if (is_dl_available ())
1482 {
1483 add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1484 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1485 Usage: jit-reader-load FILE\n\
1486 Try to load file FILE as a debug info reader (and unwinder) for\n\
1487 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
1488 relocated relative to the GDB executable if required."));
1489 add_com ("jit-reader-unload", no_class, jit_reader_unload_command, _("\
1490 Unload the currently loaded JIT debug info reader.\n\
1491 Usage: jit-reader-unload FILE\n\n\
1492 Do \"help jit-reader-load\" for info on loading debug info readers."));
1493 }
1494 }