]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/linux-nat.c
enum lwp_stop_reason -> enum target_stop_reason
[thirdparty/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "nat/linux-ptrace.h"
34 #include "nat/linux-procfs.h"
35 #include "nat/linux-personality.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
38 #include "gdbcmd.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
43 #include "auxv.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include <sys/stat.h> /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include <dirent.h>
57 #include "xml-support.h"
58 #include <sys/vfs.h>
59 #include "solib.h"
60 #include "nat/linux-osdata.h"
61 #include "linux-tdep.h"
62 #include "symfile.h"
63 #include "agent.h"
64 #include "tracepoint.h"
65 #include "buffer.h"
66 #include "target-descriptions.h"
67 #include "filestuff.h"
68 #include "objfiles.h"
69
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid, passing
80 the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good. Prior to
83 version 2.4, Linux can either wait for event in main thread, or in secondary
84 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
85 miss an event. The solution is to use non-blocking waitpid, together with
86 sigsuspend. First, we use non-blocking waitpid to get an event in the main
87 process, if any. Second, we use non-blocking waitpid with the __WCLONED
88 flag to check for events in cloned processes. If nothing is found, we use
89 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
90 happened to a child process -- and SIGCHLD will be delivered both for events
91 in main debugged process and in cloned processes. As soon as we know there's
92 an event, we get back to calling nonblocking waitpid with and without
93 __WCLONED.
94
95 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
96 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
97 blocked, the signal becomes pending and sigsuspend immediately
98 notices it and returns.
99
100 Waiting for events in async mode
101 ================================
102
103 In async mode, GDB should always be ready to handle both user input
104 and target events, so neither blocking waitpid nor sigsuspend are
105 viable options. Instead, we should asynchronously notify the GDB main
106 event loop whenever there's an unprocessed event from the target. We
107 detect asynchronous target events by handling SIGCHLD signals. To
108 notify the event loop about target events, the self-pipe trick is used
109 --- a pipe is registered as waitable event source in the event loop,
110 the event loop select/poll's on the read end of this pipe (as well on
111 other event sources, e.g., stdin), and the SIGCHLD handler writes a
112 byte to this pipe. This is more portable than relying on
113 pselect/ppoll, since on kernels that lack those syscalls, libc
114 emulates them with select/poll+sigprocmask, and that is racy
115 (a.k.a. plain broken).
116
117 Obviously, if we fail to notify the event loop if there's a target
118 event, it's bad. OTOH, if we notify the event loop when there's no
119 event from the target, linux_nat_wait will detect that there's no real
120 event to report, and return event of type TARGET_WAITKIND_IGNORE.
121 This is mostly harmless, but it will waste time and is better avoided.
122
123 The main design point is that every time GDB is outside linux-nat.c,
124 we have a SIGCHLD handler installed that is called when something
125 happens to the target and notifies the GDB event loop. Whenever GDB
126 core decides to handle the event, and calls into linux-nat.c, we
127 process things as in sync mode, except that the we never block in
128 sigsuspend.
129
130 While processing an event, we may end up momentarily blocked in
131 waitpid calls. Those waitpid calls, while blocking, are guarantied to
132 return quickly. E.g., in all-stop mode, before reporting to the core
133 that an LWP hit a breakpoint, all LWPs are stopped by sending them
134 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
135 Note that this is different from blocking indefinitely waiting for the
136 next event --- here, we're already handling an event.
137
138 Use of signals
139 ==============
140
141 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
142 signal is not entirely significant; we just need for a signal to be delivered,
143 so that we can intercept it. SIGSTOP's advantage is that it can not be
144 blocked. A disadvantage is that it is not a real-time signal, so it can only
145 be queued once; we do not keep track of other sources of SIGSTOP.
146
147 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
148 use them, because they have special behavior when the signal is generated -
149 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
150 kills the entire thread group.
151
152 A delivered SIGSTOP would stop the entire thread group, not just the thread we
153 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
154 cancel it (by PTRACE_CONT without passing SIGSTOP).
155
156 We could use a real-time signal instead. This would solve those problems; we
157 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
158 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
159 generates it, and there are races with trying to find a signal that is not
160 blocked. */
161
162 #ifndef O_LARGEFILE
163 #define O_LARGEFILE 0
164 #endif
165
166 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
167 the use of the multi-threaded target. */
168 static struct target_ops *linux_ops;
169 static struct target_ops linux_ops_saved;
170
171 /* The method to call, if any, when a new thread is attached. */
172 static void (*linux_nat_new_thread) (struct lwp_info *);
173
174 /* The method to call, if any, when a new fork is attached. */
175 static linux_nat_new_fork_ftype *linux_nat_new_fork;
176
177 /* The method to call, if any, when a process is no longer
178 attached. */
179 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
180
181 /* Hook to call prior to resuming a thread. */
182 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
183
184 /* The method to call, if any, when the siginfo object needs to be
185 converted between the layout returned by ptrace, and the layout in
186 the architecture of the inferior. */
187 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
188 gdb_byte *,
189 int);
190
191 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
192 Called by our to_xfer_partial. */
193 static target_xfer_partial_ftype *super_xfer_partial;
194
195 /* The saved to_close method, inherited from inf-ptrace.c.
196 Called by our to_close. */
197 static void (*super_close) (struct target_ops *);
198
199 static unsigned int debug_linux_nat;
200 static void
201 show_debug_linux_nat (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
205 value);
206 }
207
208 struct simple_pid_list
209 {
210 int pid;
211 int status;
212 struct simple_pid_list *next;
213 };
214 struct simple_pid_list *stopped_pids;
215
216 /* Async mode support. */
217
218 /* The read/write ends of the pipe registered as waitable file in the
219 event loop. */
220 static int linux_nat_event_pipe[2] = { -1, -1 };
221
222 /* True if we're currently in async mode. */
223 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
224
225 /* Flush the event pipe. */
226
227 static void
228 async_file_flush (void)
229 {
230 int ret;
231 char buf;
232
233 do
234 {
235 ret = read (linux_nat_event_pipe[0], &buf, 1);
236 }
237 while (ret >= 0 || (ret == -1 && errno == EINTR));
238 }
239
240 /* Put something (anything, doesn't matter what, or how much) in event
241 pipe, so that the select/poll in the event-loop realizes we have
242 something to process. */
243
244 static void
245 async_file_mark (void)
246 {
247 int ret;
248
249 /* It doesn't really matter what the pipe contains, as long we end
250 up with something in it. Might as well flush the previous
251 left-overs. */
252 async_file_flush ();
253
254 do
255 {
256 ret = write (linux_nat_event_pipe[1], "+", 1);
257 }
258 while (ret == -1 && errno == EINTR);
259
260 /* Ignore EAGAIN. If the pipe is full, the event loop will already
261 be awakened anyway. */
262 }
263
264 static int kill_lwp (int lwpid, int signo);
265
266 static int stop_callback (struct lwp_info *lp, void *data);
267 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
268
269 static void block_child_signals (sigset_t *prev_mask);
270 static void restore_child_signals_mask (sigset_t *prev_mask);
271
272 struct lwp_info;
273 static struct lwp_info *add_lwp (ptid_t ptid);
274 static void purge_lwp_list (int pid);
275 static void delete_lwp (ptid_t ptid);
276 static struct lwp_info *find_lwp_pid (ptid_t ptid);
277
278 static int lwp_status_pending_p (struct lwp_info *lp);
279
280 static int check_stopped_by_breakpoint (struct lwp_info *lp);
281 static int sigtrap_is_event (int status);
282 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
283
284 \f
285 /* Trivial list manipulation functions to keep track of a list of
286 new stopped processes. */
287 static void
288 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
289 {
290 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
291
292 new_pid->pid = pid;
293 new_pid->status = status;
294 new_pid->next = *listp;
295 *listp = new_pid;
296 }
297
298 static int
299 in_pid_list_p (struct simple_pid_list *list, int pid)
300 {
301 struct simple_pid_list *p;
302
303 for (p = list; p != NULL; p = p->next)
304 if (p->pid == pid)
305 return 1;
306 return 0;
307 }
308
309 static int
310 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
311 {
312 struct simple_pid_list **p;
313
314 for (p = listp; *p != NULL; p = &(*p)->next)
315 if ((*p)->pid == pid)
316 {
317 struct simple_pid_list *next = (*p)->next;
318
319 *statusp = (*p)->status;
320 xfree (*p);
321 *p = next;
322 return 1;
323 }
324 return 0;
325 }
326
327 /* Initialize ptrace warnings and check for supported ptrace
328 features given PID.
329
330 ATTACHED should be nonzero iff we attached to the inferior. */
331
332 static void
333 linux_init_ptrace (pid_t pid, int attached)
334 {
335 linux_enable_event_reporting (pid, attached);
336 linux_ptrace_init_warnings ();
337 }
338
339 static void
340 linux_child_post_attach (struct target_ops *self, int pid)
341 {
342 linux_init_ptrace (pid, 1);
343 }
344
345 static void
346 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
347 {
348 linux_init_ptrace (ptid_get_pid (ptid), 0);
349 }
350
351 /* Return the number of known LWPs in the tgid given by PID. */
352
353 static int
354 num_lwps (int pid)
355 {
356 int count = 0;
357 struct lwp_info *lp;
358
359 for (lp = lwp_list; lp; lp = lp->next)
360 if (ptid_get_pid (lp->ptid) == pid)
361 count++;
362
363 return count;
364 }
365
366 /* Call delete_lwp with prototype compatible for make_cleanup. */
367
368 static void
369 delete_lwp_cleanup (void *lp_voidp)
370 {
371 struct lwp_info *lp = lp_voidp;
372
373 delete_lwp (lp->ptid);
374 }
375
376 /* Target hook for follow_fork. On entry inferior_ptid must be the
377 ptid of the followed inferior. At return, inferior_ptid will be
378 unchanged. */
379
380 static int
381 linux_child_follow_fork (struct target_ops *ops, int follow_child,
382 int detach_fork)
383 {
384 if (!follow_child)
385 {
386 struct lwp_info *child_lp = NULL;
387 int status = W_STOPCODE (0);
388 struct cleanup *old_chain;
389 int has_vforked;
390 ptid_t parent_ptid, child_ptid;
391 int parent_pid, child_pid;
392
393 has_vforked = (inferior_thread ()->pending_follow.kind
394 == TARGET_WAITKIND_VFORKED);
395 parent_ptid = inferior_ptid;
396 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
397 parent_pid = ptid_get_lwp (parent_ptid);
398 child_pid = ptid_get_lwp (child_ptid);
399
400 /* We're already attached to the parent, by default. */
401 old_chain = save_inferior_ptid ();
402 inferior_ptid = child_ptid;
403 child_lp = add_lwp (inferior_ptid);
404 child_lp->stopped = 1;
405 child_lp->last_resume_kind = resume_stop;
406
407 /* Detach new forked process? */
408 if (detach_fork)
409 {
410 make_cleanup (delete_lwp_cleanup, child_lp);
411
412 if (linux_nat_prepare_to_resume != NULL)
413 linux_nat_prepare_to_resume (child_lp);
414
415 /* When debugging an inferior in an architecture that supports
416 hardware single stepping on a kernel without commit
417 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
418 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
419 set if the parent process had them set.
420 To work around this, single step the child process
421 once before detaching to clear the flags. */
422
423 if (!gdbarch_software_single_step_p (target_thread_architecture
424 (child_lp->ptid)))
425 {
426 linux_disable_event_reporting (child_pid);
427 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
428 perror_with_name (_("Couldn't do single step"));
429 if (my_waitpid (child_pid, &status, 0) < 0)
430 perror_with_name (_("Couldn't wait vfork process"));
431 }
432
433 if (WIFSTOPPED (status))
434 {
435 int signo;
436
437 signo = WSTOPSIG (status);
438 if (signo != 0
439 && !signal_pass_state (gdb_signal_from_host (signo)))
440 signo = 0;
441 ptrace (PTRACE_DETACH, child_pid, 0, signo);
442 }
443
444 /* Resets value of inferior_ptid to parent ptid. */
445 do_cleanups (old_chain);
446 }
447 else
448 {
449 /* Let the thread_db layer learn about this new process. */
450 check_for_thread_db ();
451 }
452
453 do_cleanups (old_chain);
454
455 if (has_vforked)
456 {
457 struct lwp_info *parent_lp;
458
459 parent_lp = find_lwp_pid (parent_ptid);
460 gdb_assert (linux_supports_tracefork () >= 0);
461
462 if (linux_supports_tracevforkdone ())
463 {
464 if (debug_linux_nat)
465 fprintf_unfiltered (gdb_stdlog,
466 "LCFF: waiting for VFORK_DONE on %d\n",
467 parent_pid);
468 parent_lp->stopped = 1;
469
470 /* We'll handle the VFORK_DONE event like any other
471 event, in target_wait. */
472 }
473 else
474 {
475 /* We can't insert breakpoints until the child has
476 finished with the shared memory region. We need to
477 wait until that happens. Ideal would be to just
478 call:
479 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
480 - waitpid (parent_pid, &status, __WALL);
481 However, most architectures can't handle a syscall
482 being traced on the way out if it wasn't traced on
483 the way in.
484
485 We might also think to loop, continuing the child
486 until it exits or gets a SIGTRAP. One problem is
487 that the child might call ptrace with PTRACE_TRACEME.
488
489 There's no simple and reliable way to figure out when
490 the vforked child will be done with its copy of the
491 shared memory. We could step it out of the syscall,
492 two instructions, let it go, and then single-step the
493 parent once. When we have hardware single-step, this
494 would work; with software single-step it could still
495 be made to work but we'd have to be able to insert
496 single-step breakpoints in the child, and we'd have
497 to insert -just- the single-step breakpoint in the
498 parent. Very awkward.
499
500 In the end, the best we can do is to make sure it
501 runs for a little while. Hopefully it will be out of
502 range of any breakpoints we reinsert. Usually this
503 is only the single-step breakpoint at vfork's return
504 point. */
505
506 if (debug_linux_nat)
507 fprintf_unfiltered (gdb_stdlog,
508 "LCFF: no VFORK_DONE "
509 "support, sleeping a bit\n");
510
511 usleep (10000);
512
513 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
514 and leave it pending. The next linux_nat_resume call
515 will notice a pending event, and bypasses actually
516 resuming the inferior. */
517 parent_lp->status = 0;
518 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
519 parent_lp->stopped = 1;
520
521 /* If we're in async mode, need to tell the event loop
522 there's something here to process. */
523 if (target_is_async_p ())
524 async_file_mark ();
525 }
526 }
527 }
528 else
529 {
530 struct lwp_info *child_lp;
531
532 child_lp = add_lwp (inferior_ptid);
533 child_lp->stopped = 1;
534 child_lp->last_resume_kind = resume_stop;
535
536 /* Let the thread_db layer learn about this new process. */
537 check_for_thread_db ();
538 }
539
540 return 0;
541 }
542
543 \f
544 static int
545 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
546 {
547 return !linux_supports_tracefork ();
548 }
549
550 static int
551 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
552 {
553 return 0;
554 }
555
556 static int
557 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
558 {
559 return !linux_supports_tracefork ();
560 }
561
562 static int
563 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
564 {
565 return 0;
566 }
567
568 static int
569 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
570 {
571 return !linux_supports_tracefork ();
572 }
573
574 static int
575 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
576 {
577 return 0;
578 }
579
580 static int
581 linux_child_set_syscall_catchpoint (struct target_ops *self,
582 int pid, int needed, int any_count,
583 int table_size, int *table)
584 {
585 if (!linux_supports_tracesysgood ())
586 return 1;
587
588 /* On GNU/Linux, we ignore the arguments. It means that we only
589 enable the syscall catchpoints, but do not disable them.
590
591 Also, we do not use the `table' information because we do not
592 filter system calls here. We let GDB do the logic for us. */
593 return 0;
594 }
595
596 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
597 are processes sharing the same VM space. A multi-threaded process
598 is basically a group of such processes. However, such a grouping
599 is almost entirely a user-space issue; the kernel doesn't enforce
600 such a grouping at all (this might change in the future). In
601 general, we'll rely on the threads library (i.e. the GNU/Linux
602 Threads library) to provide such a grouping.
603
604 It is perfectly well possible to write a multi-threaded application
605 without the assistance of a threads library, by using the clone
606 system call directly. This module should be able to give some
607 rudimentary support for debugging such applications if developers
608 specify the CLONE_PTRACE flag in the clone system call, and are
609 using the Linux kernel 2.4 or above.
610
611 Note that there are some peculiarities in GNU/Linux that affect
612 this code:
613
614 - In general one should specify the __WCLONE flag to waitpid in
615 order to make it report events for any of the cloned processes
616 (and leave it out for the initial process). However, if a cloned
617 process has exited the exit status is only reported if the
618 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
619 we cannot use it since GDB must work on older systems too.
620
621 - When a traced, cloned process exits and is waited for by the
622 debugger, the kernel reassigns it to the original parent and
623 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
624 library doesn't notice this, which leads to the "zombie problem":
625 When debugged a multi-threaded process that spawns a lot of
626 threads will run out of processes, even if the threads exit,
627 because the "zombies" stay around. */
628
629 /* List of known LWPs. */
630 struct lwp_info *lwp_list;
631 \f
632
633 /* Original signal mask. */
634 static sigset_t normal_mask;
635
636 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
637 _initialize_linux_nat. */
638 static sigset_t suspend_mask;
639
640 /* Signals to block to make that sigsuspend work. */
641 static sigset_t blocked_mask;
642
643 /* SIGCHLD action. */
644 struct sigaction sigchld_action;
645
646 /* Block child signals (SIGCHLD and linux threads signals), and store
647 the previous mask in PREV_MASK. */
648
649 static void
650 block_child_signals (sigset_t *prev_mask)
651 {
652 /* Make sure SIGCHLD is blocked. */
653 if (!sigismember (&blocked_mask, SIGCHLD))
654 sigaddset (&blocked_mask, SIGCHLD);
655
656 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
657 }
658
659 /* Restore child signals mask, previously returned by
660 block_child_signals. */
661
662 static void
663 restore_child_signals_mask (sigset_t *prev_mask)
664 {
665 sigprocmask (SIG_SETMASK, prev_mask, NULL);
666 }
667
668 /* Mask of signals to pass directly to the inferior. */
669 static sigset_t pass_mask;
670
671 /* Update signals to pass to the inferior. */
672 static void
673 linux_nat_pass_signals (struct target_ops *self,
674 int numsigs, unsigned char *pass_signals)
675 {
676 int signo;
677
678 sigemptyset (&pass_mask);
679
680 for (signo = 1; signo < NSIG; signo++)
681 {
682 int target_signo = gdb_signal_from_host (signo);
683 if (target_signo < numsigs && pass_signals[target_signo])
684 sigaddset (&pass_mask, signo);
685 }
686 }
687
688 \f
689
690 /* Prototypes for local functions. */
691 static int stop_wait_callback (struct lwp_info *lp, void *data);
692 static int linux_thread_alive (ptid_t ptid);
693 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
694 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
695
696 \f
697
698 /* Destroy and free LP. */
699
700 static void
701 lwp_free (struct lwp_info *lp)
702 {
703 xfree (lp->arch_private);
704 xfree (lp);
705 }
706
707 /* Remove all LWPs belong to PID from the lwp list. */
708
709 static void
710 purge_lwp_list (int pid)
711 {
712 struct lwp_info *lp, *lpprev, *lpnext;
713
714 lpprev = NULL;
715
716 for (lp = lwp_list; lp; lp = lpnext)
717 {
718 lpnext = lp->next;
719
720 if (ptid_get_pid (lp->ptid) == pid)
721 {
722 if (lp == lwp_list)
723 lwp_list = lp->next;
724 else
725 lpprev->next = lp->next;
726
727 lwp_free (lp);
728 }
729 else
730 lpprev = lp;
731 }
732 }
733
734 /* Add the LWP specified by PTID to the list. PTID is the first LWP
735 in the process. Return a pointer to the structure describing the
736 new LWP.
737
738 This differs from add_lwp in that we don't let the arch specific
739 bits know about this new thread. Current clients of this callback
740 take the opportunity to install watchpoints in the new thread, and
741 we shouldn't do that for the first thread. If we're spawning a
742 child ("run"), the thread executes the shell wrapper first, and we
743 shouldn't touch it until it execs the program we want to debug.
744 For "attach", it'd be okay to call the callback, but it's not
745 necessary, because watchpoints can't yet have been inserted into
746 the inferior. */
747
748 static struct lwp_info *
749 add_initial_lwp (ptid_t ptid)
750 {
751 struct lwp_info *lp;
752
753 gdb_assert (ptid_lwp_p (ptid));
754
755 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
756
757 memset (lp, 0, sizeof (struct lwp_info));
758
759 lp->last_resume_kind = resume_continue;
760 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
761
762 lp->ptid = ptid;
763 lp->core = -1;
764
765 lp->next = lwp_list;
766 lwp_list = lp;
767
768 return lp;
769 }
770
771 /* Add the LWP specified by PID to the list. Return a pointer to the
772 structure describing the new LWP. The LWP should already be
773 stopped. */
774
775 static struct lwp_info *
776 add_lwp (ptid_t ptid)
777 {
778 struct lwp_info *lp;
779
780 lp = add_initial_lwp (ptid);
781
782 /* Let the arch specific bits know about this new thread. Current
783 clients of this callback take the opportunity to install
784 watchpoints in the new thread. We don't do this for the first
785 thread though. See add_initial_lwp. */
786 if (linux_nat_new_thread != NULL)
787 linux_nat_new_thread (lp);
788
789 return lp;
790 }
791
792 /* Remove the LWP specified by PID from the list. */
793
794 static void
795 delete_lwp (ptid_t ptid)
796 {
797 struct lwp_info *lp, *lpprev;
798
799 lpprev = NULL;
800
801 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
802 if (ptid_equal (lp->ptid, ptid))
803 break;
804
805 if (!lp)
806 return;
807
808 if (lpprev)
809 lpprev->next = lp->next;
810 else
811 lwp_list = lp->next;
812
813 lwp_free (lp);
814 }
815
816 /* Return a pointer to the structure describing the LWP corresponding
817 to PID. If no corresponding LWP could be found, return NULL. */
818
819 static struct lwp_info *
820 find_lwp_pid (ptid_t ptid)
821 {
822 struct lwp_info *lp;
823 int lwp;
824
825 if (ptid_lwp_p (ptid))
826 lwp = ptid_get_lwp (ptid);
827 else
828 lwp = ptid_get_pid (ptid);
829
830 for (lp = lwp_list; lp; lp = lp->next)
831 if (lwp == ptid_get_lwp (lp->ptid))
832 return lp;
833
834 return NULL;
835 }
836
837 /* Call CALLBACK with its second argument set to DATA for every LWP in
838 the list. If CALLBACK returns 1 for a particular LWP, return a
839 pointer to the structure describing that LWP immediately.
840 Otherwise return NULL. */
841
842 struct lwp_info *
843 iterate_over_lwps (ptid_t filter,
844 int (*callback) (struct lwp_info *, void *),
845 void *data)
846 {
847 struct lwp_info *lp, *lpnext;
848
849 for (lp = lwp_list; lp; lp = lpnext)
850 {
851 lpnext = lp->next;
852
853 if (ptid_match (lp->ptid, filter))
854 {
855 if ((*callback) (lp, data))
856 return lp;
857 }
858 }
859
860 return NULL;
861 }
862
863 /* Update our internal state when changing from one checkpoint to
864 another indicated by NEW_PTID. We can only switch single-threaded
865 applications, so we only create one new LWP, and the previous list
866 is discarded. */
867
868 void
869 linux_nat_switch_fork (ptid_t new_ptid)
870 {
871 struct lwp_info *lp;
872
873 purge_lwp_list (ptid_get_pid (inferior_ptid));
874
875 lp = add_lwp (new_ptid);
876 lp->stopped = 1;
877
878 /* This changes the thread's ptid while preserving the gdb thread
879 num. Also changes the inferior pid, while preserving the
880 inferior num. */
881 thread_change_ptid (inferior_ptid, new_ptid);
882
883 /* We've just told GDB core that the thread changed target id, but,
884 in fact, it really is a different thread, with different register
885 contents. */
886 registers_changed ();
887 }
888
889 /* Handle the exit of a single thread LP. */
890
891 static void
892 exit_lwp (struct lwp_info *lp)
893 {
894 struct thread_info *th = find_thread_ptid (lp->ptid);
895
896 if (th)
897 {
898 if (print_thread_events)
899 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
900
901 delete_thread (lp->ptid);
902 }
903
904 delete_lwp (lp->ptid);
905 }
906
907 /* Wait for the LWP specified by LP, which we have just attached to.
908 Returns a wait status for that LWP, to cache. */
909
910 static int
911 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
912 int *signalled)
913 {
914 pid_t new_pid, pid = ptid_get_lwp (ptid);
915 int status;
916
917 if (linux_proc_pid_is_stopped (pid))
918 {
919 if (debug_linux_nat)
920 fprintf_unfiltered (gdb_stdlog,
921 "LNPAW: Attaching to a stopped process\n");
922
923 /* The process is definitely stopped. It is in a job control
924 stop, unless the kernel predates the TASK_STOPPED /
925 TASK_TRACED distinction, in which case it might be in a
926 ptrace stop. Make sure it is in a ptrace stop; from there we
927 can kill it, signal it, et cetera.
928
929 First make sure there is a pending SIGSTOP. Since we are
930 already attached, the process can not transition from stopped
931 to running without a PTRACE_CONT; so we know this signal will
932 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
933 probably already in the queue (unless this kernel is old
934 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
935 is not an RT signal, it can only be queued once. */
936 kill_lwp (pid, SIGSTOP);
937
938 /* Finally, resume the stopped process. This will deliver the SIGSTOP
939 (or a higher priority signal, just like normal PTRACE_ATTACH). */
940 ptrace (PTRACE_CONT, pid, 0, 0);
941 }
942
943 /* Make sure the initial process is stopped. The user-level threads
944 layer might want to poke around in the inferior, and that won't
945 work if things haven't stabilized yet. */
946 new_pid = my_waitpid (pid, &status, 0);
947 if (new_pid == -1 && errno == ECHILD)
948 {
949 if (first)
950 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
951
952 /* Try again with __WCLONE to check cloned processes. */
953 new_pid = my_waitpid (pid, &status, __WCLONE);
954 *cloned = 1;
955 }
956
957 gdb_assert (pid == new_pid);
958
959 if (!WIFSTOPPED (status))
960 {
961 /* The pid we tried to attach has apparently just exited. */
962 if (debug_linux_nat)
963 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
964 pid, status_to_str (status));
965 return status;
966 }
967
968 if (WSTOPSIG (status) != SIGSTOP)
969 {
970 *signalled = 1;
971 if (debug_linux_nat)
972 fprintf_unfiltered (gdb_stdlog,
973 "LNPAW: Received %s after attaching\n",
974 status_to_str (status));
975 }
976
977 return status;
978 }
979
980 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
981 the new LWP could not be attached, or 1 if we're already auto
982 attached to this thread, but haven't processed the
983 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
984 its existance, without considering it an error. */
985
986 int
987 lin_lwp_attach_lwp (ptid_t ptid)
988 {
989 struct lwp_info *lp;
990 int lwpid;
991
992 gdb_assert (ptid_lwp_p (ptid));
993
994 lp = find_lwp_pid (ptid);
995 lwpid = ptid_get_lwp (ptid);
996
997 /* We assume that we're already attached to any LWP that is already
998 in our list of LWPs. If we're not seeing exit events from threads
999 and we've had PID wraparound since we last tried to stop all threads,
1000 this assumption might be wrong; fortunately, this is very unlikely
1001 to happen. */
1002 if (lp == NULL)
1003 {
1004 int status, cloned = 0, signalled = 0;
1005
1006 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1007 {
1008 if (linux_supports_tracefork ())
1009 {
1010 /* If we haven't stopped all threads when we get here,
1011 we may have seen a thread listed in thread_db's list,
1012 but not processed the PTRACE_EVENT_CLONE yet. If
1013 that's the case, ignore this new thread, and let
1014 normal event handling discover it later. */
1015 if (in_pid_list_p (stopped_pids, lwpid))
1016 {
1017 /* We've already seen this thread stop, but we
1018 haven't seen the PTRACE_EVENT_CLONE extended
1019 event yet. */
1020 if (debug_linux_nat)
1021 fprintf_unfiltered (gdb_stdlog,
1022 "LLAL: attach failed, but already seen "
1023 "this thread %s stop\n",
1024 target_pid_to_str (ptid));
1025 return 1;
1026 }
1027 else
1028 {
1029 int new_pid;
1030 int status;
1031
1032 if (debug_linux_nat)
1033 fprintf_unfiltered (gdb_stdlog,
1034 "LLAL: attach failed, and haven't seen "
1035 "this thread %s stop yet\n",
1036 target_pid_to_str (ptid));
1037
1038 /* We may or may not be attached to the LWP already.
1039 Try waitpid on it. If that errors, we're not
1040 attached to the LWP yet. Otherwise, we're
1041 already attached. */
1042 gdb_assert (lwpid > 0);
1043 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1044 if (new_pid == -1 && errno == ECHILD)
1045 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1046 if (new_pid != -1)
1047 {
1048 if (new_pid == 0)
1049 {
1050 /* The child hasn't stopped for its initial
1051 SIGSTOP stop yet. */
1052 if (debug_linux_nat)
1053 fprintf_unfiltered (gdb_stdlog,
1054 "LLAL: child hasn't "
1055 "stopped yet\n");
1056 }
1057 else if (WIFSTOPPED (status))
1058 {
1059 if (debug_linux_nat)
1060 fprintf_unfiltered (gdb_stdlog,
1061 "LLAL: adding to stopped_pids\n");
1062 add_to_pid_list (&stopped_pids, lwpid, status);
1063 }
1064 return 1;
1065 }
1066 }
1067 }
1068
1069 /* If we fail to attach to the thread, issue a warning,
1070 but continue. One way this can happen is if thread
1071 creation is interrupted; as of Linux kernel 2.6.19, a
1072 bug may place threads in the thread list and then fail
1073 to create them. */
1074 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1075 safe_strerror (errno));
1076 return -1;
1077 }
1078
1079 if (debug_linux_nat)
1080 fprintf_unfiltered (gdb_stdlog,
1081 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1082 target_pid_to_str (ptid));
1083
1084 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1085 if (!WIFSTOPPED (status))
1086 return 1;
1087
1088 lp = add_lwp (ptid);
1089 lp->stopped = 1;
1090 lp->last_resume_kind = resume_stop;
1091 lp->cloned = cloned;
1092 lp->signalled = signalled;
1093 if (WSTOPSIG (status) != SIGSTOP)
1094 {
1095 lp->resumed = 1;
1096 lp->status = status;
1097 }
1098
1099 target_post_attach (ptid_get_lwp (lp->ptid));
1100
1101 if (debug_linux_nat)
1102 {
1103 fprintf_unfiltered (gdb_stdlog,
1104 "LLAL: waitpid %s received %s\n",
1105 target_pid_to_str (ptid),
1106 status_to_str (status));
1107 }
1108 }
1109
1110 return 0;
1111 }
1112
1113 static void
1114 linux_nat_create_inferior (struct target_ops *ops,
1115 char *exec_file, char *allargs, char **env,
1116 int from_tty)
1117 {
1118 struct cleanup *restore_personality
1119 = maybe_disable_address_space_randomization (disable_randomization);
1120
1121 /* The fork_child mechanism is synchronous and calls target_wait, so
1122 we have to mask the async mode. */
1123
1124 /* Make sure we report all signals during startup. */
1125 linux_nat_pass_signals (ops, 0, NULL);
1126
1127 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1128
1129 do_cleanups (restore_personality);
1130 }
1131
1132 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1133 already attached. Returns true if a new LWP is found, false
1134 otherwise. */
1135
1136 static int
1137 attach_proc_task_lwp_callback (ptid_t ptid)
1138 {
1139 struct lwp_info *lp;
1140
1141 /* Ignore LWPs we're already attached to. */
1142 lp = find_lwp_pid (ptid);
1143 if (lp == NULL)
1144 {
1145 int lwpid = ptid_get_lwp (ptid);
1146
1147 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1148 {
1149 int err = errno;
1150
1151 /* Be quiet if we simply raced with the thread exiting.
1152 EPERM is returned if the thread's task still exists, and
1153 is marked as exited or zombie, as well as other
1154 conditions, so in that case, confirm the status in
1155 /proc/PID/status. */
1156 if (err == ESRCH
1157 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1158 {
1159 if (debug_linux_nat)
1160 {
1161 fprintf_unfiltered (gdb_stdlog,
1162 "Cannot attach to lwp %d: "
1163 "thread is gone (%d: %s)\n",
1164 lwpid, err, safe_strerror (err));
1165 }
1166 }
1167 else
1168 {
1169 warning (_("Cannot attach to lwp %d: %s"),
1170 lwpid,
1171 linux_ptrace_attach_fail_reason_string (ptid,
1172 err));
1173 }
1174 }
1175 else
1176 {
1177 if (debug_linux_nat)
1178 fprintf_unfiltered (gdb_stdlog,
1179 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1180 target_pid_to_str (ptid));
1181
1182 lp = add_lwp (ptid);
1183 lp->cloned = 1;
1184
1185 /* The next time we wait for this LWP we'll see a SIGSTOP as
1186 PTRACE_ATTACH brings it to a halt. */
1187 lp->signalled = 1;
1188
1189 /* We need to wait for a stop before being able to make the
1190 next ptrace call on this LWP. */
1191 lp->must_set_ptrace_flags = 1;
1192 }
1193
1194 return 1;
1195 }
1196 return 0;
1197 }
1198
1199 static void
1200 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1201 {
1202 struct lwp_info *lp;
1203 int status;
1204 ptid_t ptid;
1205 volatile struct gdb_exception ex;
1206
1207 /* Make sure we report all signals during attach. */
1208 linux_nat_pass_signals (ops, 0, NULL);
1209
1210 TRY_CATCH (ex, RETURN_MASK_ERROR)
1211 {
1212 linux_ops->to_attach (ops, args, from_tty);
1213 }
1214 if (ex.reason < 0)
1215 {
1216 pid_t pid = parse_pid_to_attach (args);
1217 struct buffer buffer;
1218 char *message, *buffer_s;
1219
1220 message = xstrdup (ex.message);
1221 make_cleanup (xfree, message);
1222
1223 buffer_init (&buffer);
1224 linux_ptrace_attach_fail_reason (pid, &buffer);
1225
1226 buffer_grow_str0 (&buffer, "");
1227 buffer_s = buffer_finish (&buffer);
1228 make_cleanup (xfree, buffer_s);
1229
1230 if (*buffer_s != '\0')
1231 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1232 else
1233 throw_error (ex.error, "%s", message);
1234 }
1235
1236 /* The ptrace base target adds the main thread with (pid,0,0)
1237 format. Decorate it with lwp info. */
1238 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1239 ptid_get_pid (inferior_ptid),
1240 0);
1241 thread_change_ptid (inferior_ptid, ptid);
1242
1243 /* Add the initial process as the first LWP to the list. */
1244 lp = add_initial_lwp (ptid);
1245
1246 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1247 &lp->signalled);
1248 if (!WIFSTOPPED (status))
1249 {
1250 if (WIFEXITED (status))
1251 {
1252 int exit_code = WEXITSTATUS (status);
1253
1254 target_terminal_ours ();
1255 target_mourn_inferior ();
1256 if (exit_code == 0)
1257 error (_("Unable to attach: program exited normally."));
1258 else
1259 error (_("Unable to attach: program exited with code %d."),
1260 exit_code);
1261 }
1262 else if (WIFSIGNALED (status))
1263 {
1264 enum gdb_signal signo;
1265
1266 target_terminal_ours ();
1267 target_mourn_inferior ();
1268
1269 signo = gdb_signal_from_host (WTERMSIG (status));
1270 error (_("Unable to attach: program terminated with signal "
1271 "%s, %s."),
1272 gdb_signal_to_name (signo),
1273 gdb_signal_to_string (signo));
1274 }
1275
1276 internal_error (__FILE__, __LINE__,
1277 _("unexpected status %d for PID %ld"),
1278 status, (long) ptid_get_lwp (ptid));
1279 }
1280
1281 lp->stopped = 1;
1282
1283 /* Save the wait status to report later. */
1284 lp->resumed = 1;
1285 if (debug_linux_nat)
1286 fprintf_unfiltered (gdb_stdlog,
1287 "LNA: waitpid %ld, saving status %s\n",
1288 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1289
1290 lp->status = status;
1291
1292 /* We must attach to every LWP. If /proc is mounted, use that to
1293 find them now. The inferior may be using raw clone instead of
1294 using pthreads. But even if it is using pthreads, thread_db
1295 walks structures in the inferior's address space to find the list
1296 of threads/LWPs, and those structures may well be corrupted.
1297 Note that once thread_db is loaded, we'll still use it to list
1298 threads and associate pthread info with each LWP. */
1299 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1300 attach_proc_task_lwp_callback);
1301
1302 if (target_can_async_p ())
1303 target_async (inferior_event_handler, 0);
1304 }
1305
1306 /* Get pending status of LP. */
1307 static int
1308 get_pending_status (struct lwp_info *lp, int *status)
1309 {
1310 enum gdb_signal signo = GDB_SIGNAL_0;
1311
1312 /* If we paused threads momentarily, we may have stored pending
1313 events in lp->status or lp->waitstatus (see stop_wait_callback),
1314 and GDB core hasn't seen any signal for those threads.
1315 Otherwise, the last signal reported to the core is found in the
1316 thread object's stop_signal.
1317
1318 There's a corner case that isn't handled here at present. Only
1319 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1320 stop_signal make sense as a real signal to pass to the inferior.
1321 Some catchpoint related events, like
1322 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1323 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1324 those traps are debug API (ptrace in our case) related and
1325 induced; the inferior wouldn't see them if it wasn't being
1326 traced. Hence, we should never pass them to the inferior, even
1327 when set to pass state. Since this corner case isn't handled by
1328 infrun.c when proceeding with a signal, for consistency, neither
1329 do we handle it here (or elsewhere in the file we check for
1330 signal pass state). Normally SIGTRAP isn't set to pass state, so
1331 this is really a corner case. */
1332
1333 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1334 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1335 else if (lp->status)
1336 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1337 else if (non_stop && !is_executing (lp->ptid))
1338 {
1339 struct thread_info *tp = find_thread_ptid (lp->ptid);
1340
1341 signo = tp->suspend.stop_signal;
1342 }
1343 else if (!non_stop)
1344 {
1345 struct target_waitstatus last;
1346 ptid_t last_ptid;
1347
1348 get_last_target_status (&last_ptid, &last);
1349
1350 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1351 {
1352 struct thread_info *tp = find_thread_ptid (lp->ptid);
1353
1354 signo = tp->suspend.stop_signal;
1355 }
1356 }
1357
1358 *status = 0;
1359
1360 if (signo == GDB_SIGNAL_0)
1361 {
1362 if (debug_linux_nat)
1363 fprintf_unfiltered (gdb_stdlog,
1364 "GPT: lwp %s has no pending signal\n",
1365 target_pid_to_str (lp->ptid));
1366 }
1367 else if (!signal_pass_state (signo))
1368 {
1369 if (debug_linux_nat)
1370 fprintf_unfiltered (gdb_stdlog,
1371 "GPT: lwp %s had signal %s, "
1372 "but it is in no pass state\n",
1373 target_pid_to_str (lp->ptid),
1374 gdb_signal_to_string (signo));
1375 }
1376 else
1377 {
1378 *status = W_STOPCODE (gdb_signal_to_host (signo));
1379
1380 if (debug_linux_nat)
1381 fprintf_unfiltered (gdb_stdlog,
1382 "GPT: lwp %s has pending signal %s\n",
1383 target_pid_to_str (lp->ptid),
1384 gdb_signal_to_string (signo));
1385 }
1386
1387 return 0;
1388 }
1389
1390 static int
1391 detach_callback (struct lwp_info *lp, void *data)
1392 {
1393 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1394
1395 if (debug_linux_nat && lp->status)
1396 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1397 strsignal (WSTOPSIG (lp->status)),
1398 target_pid_to_str (lp->ptid));
1399
1400 /* If there is a pending SIGSTOP, get rid of it. */
1401 if (lp->signalled)
1402 {
1403 if (debug_linux_nat)
1404 fprintf_unfiltered (gdb_stdlog,
1405 "DC: Sending SIGCONT to %s\n",
1406 target_pid_to_str (lp->ptid));
1407
1408 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1409 lp->signalled = 0;
1410 }
1411
1412 /* We don't actually detach from the LWP that has an id equal to the
1413 overall process id just yet. */
1414 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1415 {
1416 int status = 0;
1417
1418 /* Pass on any pending signal for this LWP. */
1419 get_pending_status (lp, &status);
1420
1421 if (linux_nat_prepare_to_resume != NULL)
1422 linux_nat_prepare_to_resume (lp);
1423 errno = 0;
1424 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1425 WSTOPSIG (status)) < 0)
1426 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1427 safe_strerror (errno));
1428
1429 if (debug_linux_nat)
1430 fprintf_unfiltered (gdb_stdlog,
1431 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1432 target_pid_to_str (lp->ptid),
1433 strsignal (WSTOPSIG (status)));
1434
1435 delete_lwp (lp->ptid);
1436 }
1437
1438 return 0;
1439 }
1440
1441 static void
1442 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1443 {
1444 int pid;
1445 int status;
1446 struct lwp_info *main_lwp;
1447
1448 pid = ptid_get_pid (inferior_ptid);
1449
1450 /* Don't unregister from the event loop, as there may be other
1451 inferiors running. */
1452
1453 /* Stop all threads before detaching. ptrace requires that the
1454 thread is stopped to sucessfully detach. */
1455 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1456 /* ... and wait until all of them have reported back that
1457 they're no longer running. */
1458 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1459
1460 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1461
1462 /* Only the initial process should be left right now. */
1463 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1464
1465 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1466
1467 /* Pass on any pending signal for the last LWP. */
1468 if ((args == NULL || *args == '\0')
1469 && get_pending_status (main_lwp, &status) != -1
1470 && WIFSTOPPED (status))
1471 {
1472 char *tem;
1473
1474 /* Put the signal number in ARGS so that inf_ptrace_detach will
1475 pass it along with PTRACE_DETACH. */
1476 tem = alloca (8);
1477 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1478 args = tem;
1479 if (debug_linux_nat)
1480 fprintf_unfiltered (gdb_stdlog,
1481 "LND: Sending signal %s to %s\n",
1482 args,
1483 target_pid_to_str (main_lwp->ptid));
1484 }
1485
1486 if (linux_nat_prepare_to_resume != NULL)
1487 linux_nat_prepare_to_resume (main_lwp);
1488 delete_lwp (main_lwp->ptid);
1489
1490 if (forks_exist_p ())
1491 {
1492 /* Multi-fork case. The current inferior_ptid is being detached
1493 from, but there are other viable forks to debug. Detach from
1494 the current fork, and context-switch to the first
1495 available. */
1496 linux_fork_detach (args, from_tty);
1497 }
1498 else
1499 linux_ops->to_detach (ops, args, from_tty);
1500 }
1501
1502 /* Resume execution of the inferior process. If STEP is nonzero,
1503 single-step it. If SIGNAL is nonzero, give it that signal. */
1504
1505 static void
1506 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1507 {
1508 lp->step = step;
1509
1510 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1511 We only presently need that if the LWP is stepped though (to
1512 handle the case of stepping a breakpoint instruction). */
1513 if (step)
1514 {
1515 struct regcache *regcache = get_thread_regcache (lp->ptid);
1516
1517 lp->stop_pc = regcache_read_pc (regcache);
1518 }
1519 else
1520 lp->stop_pc = 0;
1521
1522 if (linux_nat_prepare_to_resume != NULL)
1523 linux_nat_prepare_to_resume (lp);
1524 linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1525 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1526 lp->stopped = 0;
1527 registers_changed_ptid (lp->ptid);
1528 }
1529
1530 /* Resume LP. */
1531
1532 static void
1533 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1534 {
1535 if (lp->stopped)
1536 {
1537 struct inferior *inf = find_inferior_ptid (lp->ptid);
1538
1539 if (inf->vfork_child != NULL)
1540 {
1541 if (debug_linux_nat)
1542 fprintf_unfiltered (gdb_stdlog,
1543 "RC: Not resuming %s (vfork parent)\n",
1544 target_pid_to_str (lp->ptid));
1545 }
1546 else if (!lwp_status_pending_p (lp))
1547 {
1548 if (debug_linux_nat)
1549 fprintf_unfiltered (gdb_stdlog,
1550 "RC: Resuming sibling %s, %s, %s\n",
1551 target_pid_to_str (lp->ptid),
1552 (signo != GDB_SIGNAL_0
1553 ? strsignal (gdb_signal_to_host (signo))
1554 : "0"),
1555 step ? "step" : "resume");
1556
1557 linux_resume_one_lwp (lp, step, signo);
1558 }
1559 else
1560 {
1561 if (debug_linux_nat)
1562 fprintf_unfiltered (gdb_stdlog,
1563 "RC: Not resuming sibling %s (has pending)\n",
1564 target_pid_to_str (lp->ptid));
1565 }
1566 }
1567 else
1568 {
1569 if (debug_linux_nat)
1570 fprintf_unfiltered (gdb_stdlog,
1571 "RC: Not resuming sibling %s (not stopped)\n",
1572 target_pid_to_str (lp->ptid));
1573 }
1574 }
1575
1576 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1577 Resume LWP with the last stop signal, if it is in pass state. */
1578
1579 static int
1580 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1581 {
1582 enum gdb_signal signo = GDB_SIGNAL_0;
1583
1584 if (lp == except)
1585 return 0;
1586
1587 if (lp->stopped)
1588 {
1589 struct thread_info *thread;
1590
1591 thread = find_thread_ptid (lp->ptid);
1592 if (thread != NULL)
1593 {
1594 signo = thread->suspend.stop_signal;
1595 thread->suspend.stop_signal = GDB_SIGNAL_0;
1596 }
1597 }
1598
1599 resume_lwp (lp, 0, signo);
1600 return 0;
1601 }
1602
1603 static int
1604 resume_clear_callback (struct lwp_info *lp, void *data)
1605 {
1606 lp->resumed = 0;
1607 lp->last_resume_kind = resume_stop;
1608 return 0;
1609 }
1610
1611 static int
1612 resume_set_callback (struct lwp_info *lp, void *data)
1613 {
1614 lp->resumed = 1;
1615 lp->last_resume_kind = resume_continue;
1616 return 0;
1617 }
1618
1619 static void
1620 linux_nat_resume (struct target_ops *ops,
1621 ptid_t ptid, int step, enum gdb_signal signo)
1622 {
1623 struct lwp_info *lp;
1624 int resume_many;
1625
1626 if (debug_linux_nat)
1627 fprintf_unfiltered (gdb_stdlog,
1628 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1629 step ? "step" : "resume",
1630 target_pid_to_str (ptid),
1631 (signo != GDB_SIGNAL_0
1632 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1633 target_pid_to_str (inferior_ptid));
1634
1635 /* A specific PTID means `step only this process id'. */
1636 resume_many = (ptid_equal (minus_one_ptid, ptid)
1637 || ptid_is_pid (ptid));
1638
1639 /* Mark the lwps we're resuming as resumed. */
1640 iterate_over_lwps (ptid, resume_set_callback, NULL);
1641
1642 /* See if it's the current inferior that should be handled
1643 specially. */
1644 if (resume_many)
1645 lp = find_lwp_pid (inferior_ptid);
1646 else
1647 lp = find_lwp_pid (ptid);
1648 gdb_assert (lp != NULL);
1649
1650 /* Remember if we're stepping. */
1651 lp->last_resume_kind = step ? resume_step : resume_continue;
1652
1653 /* If we have a pending wait status for this thread, there is no
1654 point in resuming the process. But first make sure that
1655 linux_nat_wait won't preemptively handle the event - we
1656 should never take this short-circuit if we are going to
1657 leave LP running, since we have skipped resuming all the
1658 other threads. This bit of code needs to be synchronized
1659 with linux_nat_wait. */
1660
1661 if (lp->status && WIFSTOPPED (lp->status))
1662 {
1663 if (!lp->step
1664 && WSTOPSIG (lp->status)
1665 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1666 {
1667 if (debug_linux_nat)
1668 fprintf_unfiltered (gdb_stdlog,
1669 "LLR: Not short circuiting for ignored "
1670 "status 0x%x\n", lp->status);
1671
1672 /* FIXME: What should we do if we are supposed to continue
1673 this thread with a signal? */
1674 gdb_assert (signo == GDB_SIGNAL_0);
1675 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1676 lp->status = 0;
1677 }
1678 }
1679
1680 if (lwp_status_pending_p (lp))
1681 {
1682 /* FIXME: What should we do if we are supposed to continue
1683 this thread with a signal? */
1684 gdb_assert (signo == GDB_SIGNAL_0);
1685
1686 if (debug_linux_nat)
1687 fprintf_unfiltered (gdb_stdlog,
1688 "LLR: Short circuiting for status 0x%x\n",
1689 lp->status);
1690
1691 if (target_can_async_p ())
1692 {
1693 target_async (inferior_event_handler, 0);
1694 /* Tell the event loop we have something to process. */
1695 async_file_mark ();
1696 }
1697 return;
1698 }
1699
1700 if (resume_many)
1701 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1702
1703 linux_resume_one_lwp (lp, step, signo);
1704
1705 if (debug_linux_nat)
1706 fprintf_unfiltered (gdb_stdlog,
1707 "LLR: %s %s, %s (resume event thread)\n",
1708 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1709 target_pid_to_str (ptid),
1710 (signo != GDB_SIGNAL_0
1711 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1712
1713 if (target_can_async_p ())
1714 target_async (inferior_event_handler, 0);
1715 }
1716
1717 /* Send a signal to an LWP. */
1718
1719 static int
1720 kill_lwp (int lwpid, int signo)
1721 {
1722 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1723 fails, then we are not using nptl threads and we should be using kill. */
1724
1725 #ifdef HAVE_TKILL_SYSCALL
1726 {
1727 static int tkill_failed;
1728
1729 if (!tkill_failed)
1730 {
1731 int ret;
1732
1733 errno = 0;
1734 ret = syscall (__NR_tkill, lwpid, signo);
1735 if (errno != ENOSYS)
1736 return ret;
1737 tkill_failed = 1;
1738 }
1739 }
1740 #endif
1741
1742 return kill (lwpid, signo);
1743 }
1744
1745 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1746 event, check if the core is interested in it: if not, ignore the
1747 event, and keep waiting; otherwise, we need to toggle the LWP's
1748 syscall entry/exit status, since the ptrace event itself doesn't
1749 indicate it, and report the trap to higher layers. */
1750
1751 static int
1752 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1753 {
1754 struct target_waitstatus *ourstatus = &lp->waitstatus;
1755 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1756 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1757
1758 if (stopping)
1759 {
1760 /* If we're stopping threads, there's a SIGSTOP pending, which
1761 makes it so that the LWP reports an immediate syscall return,
1762 followed by the SIGSTOP. Skip seeing that "return" using
1763 PTRACE_CONT directly, and let stop_wait_callback collect the
1764 SIGSTOP. Later when the thread is resumed, a new syscall
1765 entry event. If we didn't do this (and returned 0), we'd
1766 leave a syscall entry pending, and our caller, by using
1767 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1768 itself. Later, when the user re-resumes this LWP, we'd see
1769 another syscall entry event and we'd mistake it for a return.
1770
1771 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1772 (leaving immediately with LWP->signalled set, without issuing
1773 a PTRACE_CONT), it would still be problematic to leave this
1774 syscall enter pending, as later when the thread is resumed,
1775 it would then see the same syscall exit mentioned above,
1776 followed by the delayed SIGSTOP, while the syscall didn't
1777 actually get to execute. It seems it would be even more
1778 confusing to the user. */
1779
1780 if (debug_linux_nat)
1781 fprintf_unfiltered (gdb_stdlog,
1782 "LHST: ignoring syscall %d "
1783 "for LWP %ld (stopping threads), "
1784 "resuming with PTRACE_CONT for SIGSTOP\n",
1785 syscall_number,
1786 ptid_get_lwp (lp->ptid));
1787
1788 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1789 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1790 lp->stopped = 0;
1791 return 1;
1792 }
1793
1794 if (catch_syscall_enabled ())
1795 {
1796 /* Always update the entry/return state, even if this particular
1797 syscall isn't interesting to the core now. In async mode,
1798 the user could install a new catchpoint for this syscall
1799 between syscall enter/return, and we'll need to know to
1800 report a syscall return if that happens. */
1801 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1802 ? TARGET_WAITKIND_SYSCALL_RETURN
1803 : TARGET_WAITKIND_SYSCALL_ENTRY);
1804
1805 if (catching_syscall_number (syscall_number))
1806 {
1807 /* Alright, an event to report. */
1808 ourstatus->kind = lp->syscall_state;
1809 ourstatus->value.syscall_number = syscall_number;
1810
1811 if (debug_linux_nat)
1812 fprintf_unfiltered (gdb_stdlog,
1813 "LHST: stopping for %s of syscall %d"
1814 " for LWP %ld\n",
1815 lp->syscall_state
1816 == TARGET_WAITKIND_SYSCALL_ENTRY
1817 ? "entry" : "return",
1818 syscall_number,
1819 ptid_get_lwp (lp->ptid));
1820 return 0;
1821 }
1822
1823 if (debug_linux_nat)
1824 fprintf_unfiltered (gdb_stdlog,
1825 "LHST: ignoring %s of syscall %d "
1826 "for LWP %ld\n",
1827 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1828 ? "entry" : "return",
1829 syscall_number,
1830 ptid_get_lwp (lp->ptid));
1831 }
1832 else
1833 {
1834 /* If we had been syscall tracing, and hence used PT_SYSCALL
1835 before on this LWP, it could happen that the user removes all
1836 syscall catchpoints before we get to process this event.
1837 There are two noteworthy issues here:
1838
1839 - When stopped at a syscall entry event, resuming with
1840 PT_STEP still resumes executing the syscall and reports a
1841 syscall return.
1842
1843 - Only PT_SYSCALL catches syscall enters. If we last
1844 single-stepped this thread, then this event can't be a
1845 syscall enter. If we last single-stepped this thread, this
1846 has to be a syscall exit.
1847
1848 The points above mean that the next resume, be it PT_STEP or
1849 PT_CONTINUE, can not trigger a syscall trace event. */
1850 if (debug_linux_nat)
1851 fprintf_unfiltered (gdb_stdlog,
1852 "LHST: caught syscall event "
1853 "with no syscall catchpoints."
1854 " %d for LWP %ld, ignoring\n",
1855 syscall_number,
1856 ptid_get_lwp (lp->ptid));
1857 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1858 }
1859
1860 /* The core isn't interested in this event. For efficiency, avoid
1861 stopping all threads only to have the core resume them all again.
1862 Since we're not stopping threads, if we're still syscall tracing
1863 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1864 subsequent syscall. Simply resume using the inf-ptrace layer,
1865 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1866
1867 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1868 return 1;
1869 }
1870
1871 /* Handle a GNU/Linux extended wait response. If we see a clone
1872 event, we need to add the new LWP to our list (and not report the
1873 trap to higher layers). This function returns non-zero if the
1874 event should be ignored and we should wait again. If STOPPING is
1875 true, the new LWP remains stopped, otherwise it is continued. */
1876
1877 static int
1878 linux_handle_extended_wait (struct lwp_info *lp, int status,
1879 int stopping)
1880 {
1881 int pid = ptid_get_lwp (lp->ptid);
1882 struct target_waitstatus *ourstatus = &lp->waitstatus;
1883 int event = linux_ptrace_get_extended_event (status);
1884
1885 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1886 || event == PTRACE_EVENT_CLONE)
1887 {
1888 unsigned long new_pid;
1889 int ret;
1890
1891 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1892
1893 /* If we haven't already seen the new PID stop, wait for it now. */
1894 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1895 {
1896 /* The new child has a pending SIGSTOP. We can't affect it until it
1897 hits the SIGSTOP, but we're already attached. */
1898 ret = my_waitpid (new_pid, &status,
1899 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1900 if (ret == -1)
1901 perror_with_name (_("waiting for new child"));
1902 else if (ret != new_pid)
1903 internal_error (__FILE__, __LINE__,
1904 _("wait returned unexpected PID %d"), ret);
1905 else if (!WIFSTOPPED (status))
1906 internal_error (__FILE__, __LINE__,
1907 _("wait returned unexpected status 0x%x"), status);
1908 }
1909
1910 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
1911
1912 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1913 {
1914 /* The arch-specific native code may need to know about new
1915 forks even if those end up never mapped to an
1916 inferior. */
1917 if (linux_nat_new_fork != NULL)
1918 linux_nat_new_fork (lp, new_pid);
1919 }
1920
1921 if (event == PTRACE_EVENT_FORK
1922 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
1923 {
1924 /* Handle checkpointing by linux-fork.c here as a special
1925 case. We don't want the follow-fork-mode or 'catch fork'
1926 to interfere with this. */
1927
1928 /* This won't actually modify the breakpoint list, but will
1929 physically remove the breakpoints from the child. */
1930 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
1931
1932 /* Retain child fork in ptrace (stopped) state. */
1933 if (!find_fork_pid (new_pid))
1934 add_fork (new_pid);
1935
1936 /* Report as spurious, so that infrun doesn't want to follow
1937 this fork. We're actually doing an infcall in
1938 linux-fork.c. */
1939 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1940
1941 /* Report the stop to the core. */
1942 return 0;
1943 }
1944
1945 if (event == PTRACE_EVENT_FORK)
1946 ourstatus->kind = TARGET_WAITKIND_FORKED;
1947 else if (event == PTRACE_EVENT_VFORK)
1948 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1949 else
1950 {
1951 struct lwp_info *new_lp;
1952
1953 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1954
1955 if (debug_linux_nat)
1956 fprintf_unfiltered (gdb_stdlog,
1957 "LHEW: Got clone event "
1958 "from LWP %d, new child is LWP %ld\n",
1959 pid, new_pid);
1960
1961 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
1962 new_lp->cloned = 1;
1963 new_lp->stopped = 1;
1964
1965 if (WSTOPSIG (status) != SIGSTOP)
1966 {
1967 /* This can happen if someone starts sending signals to
1968 the new thread before it gets a chance to run, which
1969 have a lower number than SIGSTOP (e.g. SIGUSR1).
1970 This is an unlikely case, and harder to handle for
1971 fork / vfork than for clone, so we do not try - but
1972 we handle it for clone events here. We'll send
1973 the other signal on to the thread below. */
1974
1975 new_lp->signalled = 1;
1976 }
1977 else
1978 {
1979 struct thread_info *tp;
1980
1981 /* When we stop for an event in some other thread, and
1982 pull the thread list just as this thread has cloned,
1983 we'll have seen the new thread in the thread_db list
1984 before handling the CLONE event (glibc's
1985 pthread_create adds the new thread to the thread list
1986 before clone'ing, and has the kernel fill in the
1987 thread's tid on the clone call with
1988 CLONE_PARENT_SETTID). If that happened, and the core
1989 had requested the new thread to stop, we'll have
1990 killed it with SIGSTOP. But since SIGSTOP is not an
1991 RT signal, it can only be queued once. We need to be
1992 careful to not resume the LWP if we wanted it to
1993 stop. In that case, we'll leave the SIGSTOP pending.
1994 It will later be reported as GDB_SIGNAL_0. */
1995 tp = find_thread_ptid (new_lp->ptid);
1996 if (tp != NULL && tp->stop_requested)
1997 new_lp->last_resume_kind = resume_stop;
1998 else
1999 status = 0;
2000 }
2001
2002 /* If the thread_db layer is active, let it record the user
2003 level thread id and status, and add the thread to GDB's
2004 list. */
2005 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2006 {
2007 /* The process is not using thread_db. Add the LWP to
2008 GDB's list. */
2009 target_post_attach (ptid_get_lwp (new_lp->ptid));
2010 add_thread (new_lp->ptid);
2011 }
2012
2013 if (!stopping)
2014 {
2015 set_running (new_lp->ptid, 1);
2016 set_executing (new_lp->ptid, 1);
2017 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2018 resume_stop. */
2019 new_lp->last_resume_kind = resume_continue;
2020 }
2021
2022 if (status != 0)
2023 {
2024 /* We created NEW_LP so it cannot yet contain STATUS. */
2025 gdb_assert (new_lp->status == 0);
2026
2027 /* Save the wait status to report later. */
2028 if (debug_linux_nat)
2029 fprintf_unfiltered (gdb_stdlog,
2030 "LHEW: waitpid of new LWP %ld, "
2031 "saving status %s\n",
2032 (long) ptid_get_lwp (new_lp->ptid),
2033 status_to_str (status));
2034 new_lp->status = status;
2035 }
2036
2037 new_lp->resumed = !stopping;
2038 return 1;
2039 }
2040
2041 return 0;
2042 }
2043
2044 if (event == PTRACE_EVENT_EXEC)
2045 {
2046 if (debug_linux_nat)
2047 fprintf_unfiltered (gdb_stdlog,
2048 "LHEW: Got exec event from LWP %ld\n",
2049 ptid_get_lwp (lp->ptid));
2050
2051 ourstatus->kind = TARGET_WAITKIND_EXECD;
2052 ourstatus->value.execd_pathname
2053 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2054
2055 /* The thread that execed must have been resumed, but, when a
2056 thread execs, it changes its tid to the tgid, and the old
2057 tgid thread might have not been resumed. */
2058 lp->resumed = 1;
2059 return 0;
2060 }
2061
2062 if (event == PTRACE_EVENT_VFORK_DONE)
2063 {
2064 if (current_inferior ()->waiting_for_vfork_done)
2065 {
2066 if (debug_linux_nat)
2067 fprintf_unfiltered (gdb_stdlog,
2068 "LHEW: Got expected PTRACE_EVENT_"
2069 "VFORK_DONE from LWP %ld: stopping\n",
2070 ptid_get_lwp (lp->ptid));
2071
2072 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2073 return 0;
2074 }
2075
2076 if (debug_linux_nat)
2077 fprintf_unfiltered (gdb_stdlog,
2078 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2079 "from LWP %ld: ignoring\n",
2080 ptid_get_lwp (lp->ptid));
2081 return 1;
2082 }
2083
2084 internal_error (__FILE__, __LINE__,
2085 _("unknown ptrace event %d"), event);
2086 }
2087
2088 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2089 exited. */
2090
2091 static int
2092 wait_lwp (struct lwp_info *lp)
2093 {
2094 pid_t pid;
2095 int status = 0;
2096 int thread_dead = 0;
2097 sigset_t prev_mask;
2098
2099 gdb_assert (!lp->stopped);
2100 gdb_assert (lp->status == 0);
2101
2102 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2103 block_child_signals (&prev_mask);
2104
2105 for (;;)
2106 {
2107 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2108 was right and we should just call sigsuspend. */
2109
2110 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2111 if (pid == -1 && errno == ECHILD)
2112 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2113 if (pid == -1 && errno == ECHILD)
2114 {
2115 /* The thread has previously exited. We need to delete it
2116 now because, for some vendor 2.4 kernels with NPTL
2117 support backported, there won't be an exit event unless
2118 it is the main thread. 2.6 kernels will report an exit
2119 event for each thread that exits, as expected. */
2120 thread_dead = 1;
2121 if (debug_linux_nat)
2122 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2123 target_pid_to_str (lp->ptid));
2124 }
2125 if (pid != 0)
2126 break;
2127
2128 /* Bugs 10970, 12702.
2129 Thread group leader may have exited in which case we'll lock up in
2130 waitpid if there are other threads, even if they are all zombies too.
2131 Basically, we're not supposed to use waitpid this way.
2132 __WCLONE is not applicable for the leader so we can't use that.
2133 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2134 process; it gets ESRCH both for the zombie and for running processes.
2135
2136 As a workaround, check if we're waiting for the thread group leader and
2137 if it's a zombie, and avoid calling waitpid if it is.
2138
2139 This is racy, what if the tgl becomes a zombie right after we check?
2140 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2141 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2142
2143 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2144 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2145 {
2146 thread_dead = 1;
2147 if (debug_linux_nat)
2148 fprintf_unfiltered (gdb_stdlog,
2149 "WL: Thread group leader %s vanished.\n",
2150 target_pid_to_str (lp->ptid));
2151 break;
2152 }
2153
2154 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2155 get invoked despite our caller had them intentionally blocked by
2156 block_child_signals. This is sensitive only to the loop of
2157 linux_nat_wait_1 and there if we get called my_waitpid gets called
2158 again before it gets to sigsuspend so we can safely let the handlers
2159 get executed here. */
2160
2161 if (debug_linux_nat)
2162 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2163 sigsuspend (&suspend_mask);
2164 }
2165
2166 restore_child_signals_mask (&prev_mask);
2167
2168 if (!thread_dead)
2169 {
2170 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2171
2172 if (debug_linux_nat)
2173 {
2174 fprintf_unfiltered (gdb_stdlog,
2175 "WL: waitpid %s received %s\n",
2176 target_pid_to_str (lp->ptid),
2177 status_to_str (status));
2178 }
2179
2180 /* Check if the thread has exited. */
2181 if (WIFEXITED (status) || WIFSIGNALED (status))
2182 {
2183 thread_dead = 1;
2184 if (debug_linux_nat)
2185 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2186 target_pid_to_str (lp->ptid));
2187 }
2188 }
2189
2190 if (thread_dead)
2191 {
2192 exit_lwp (lp);
2193 return 0;
2194 }
2195
2196 gdb_assert (WIFSTOPPED (status));
2197 lp->stopped = 1;
2198
2199 if (lp->must_set_ptrace_flags)
2200 {
2201 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2202
2203 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), inf->attach_flag);
2204 lp->must_set_ptrace_flags = 0;
2205 }
2206
2207 /* Handle GNU/Linux's syscall SIGTRAPs. */
2208 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2209 {
2210 /* No longer need the sysgood bit. The ptrace event ends up
2211 recorded in lp->waitstatus if we care for it. We can carry
2212 on handling the event like a regular SIGTRAP from here
2213 on. */
2214 status = W_STOPCODE (SIGTRAP);
2215 if (linux_handle_syscall_trap (lp, 1))
2216 return wait_lwp (lp);
2217 }
2218
2219 /* Handle GNU/Linux's extended waitstatus for trace events. */
2220 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2221 && linux_is_extended_waitstatus (status))
2222 {
2223 if (debug_linux_nat)
2224 fprintf_unfiltered (gdb_stdlog,
2225 "WL: Handling extended status 0x%06x\n",
2226 status);
2227 linux_handle_extended_wait (lp, status, 1);
2228 return 0;
2229 }
2230
2231 return status;
2232 }
2233
2234 /* Send a SIGSTOP to LP. */
2235
2236 static int
2237 stop_callback (struct lwp_info *lp, void *data)
2238 {
2239 if (!lp->stopped && !lp->signalled)
2240 {
2241 int ret;
2242
2243 if (debug_linux_nat)
2244 {
2245 fprintf_unfiltered (gdb_stdlog,
2246 "SC: kill %s **<SIGSTOP>**\n",
2247 target_pid_to_str (lp->ptid));
2248 }
2249 errno = 0;
2250 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2251 if (debug_linux_nat)
2252 {
2253 fprintf_unfiltered (gdb_stdlog,
2254 "SC: lwp kill %d %s\n",
2255 ret,
2256 errno ? safe_strerror (errno) : "ERRNO-OK");
2257 }
2258
2259 lp->signalled = 1;
2260 gdb_assert (lp->status == 0);
2261 }
2262
2263 return 0;
2264 }
2265
2266 /* Request a stop on LWP. */
2267
2268 void
2269 linux_stop_lwp (struct lwp_info *lwp)
2270 {
2271 stop_callback (lwp, NULL);
2272 }
2273
2274 /* See linux-nat.h */
2275
2276 void
2277 linux_stop_and_wait_all_lwps (void)
2278 {
2279 /* Stop all LWP's ... */
2280 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2281
2282 /* ... and wait until all of them have reported back that
2283 they're no longer running. */
2284 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2285 }
2286
2287 /* See linux-nat.h */
2288
2289 void
2290 linux_unstop_all_lwps (void)
2291 {
2292 iterate_over_lwps (minus_one_ptid,
2293 resume_stopped_resumed_lwps, &minus_one_ptid);
2294 }
2295
2296 /* Return non-zero if LWP PID has a pending SIGINT. */
2297
2298 static int
2299 linux_nat_has_pending_sigint (int pid)
2300 {
2301 sigset_t pending, blocked, ignored;
2302
2303 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2304
2305 if (sigismember (&pending, SIGINT)
2306 && !sigismember (&ignored, SIGINT))
2307 return 1;
2308
2309 return 0;
2310 }
2311
2312 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2313
2314 static int
2315 set_ignore_sigint (struct lwp_info *lp, void *data)
2316 {
2317 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2318 flag to consume the next one. */
2319 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2320 && WSTOPSIG (lp->status) == SIGINT)
2321 lp->status = 0;
2322 else
2323 lp->ignore_sigint = 1;
2324
2325 return 0;
2326 }
2327
2328 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2329 This function is called after we know the LWP has stopped; if the LWP
2330 stopped before the expected SIGINT was delivered, then it will never have
2331 arrived. Also, if the signal was delivered to a shared queue and consumed
2332 by a different thread, it will never be delivered to this LWP. */
2333
2334 static void
2335 maybe_clear_ignore_sigint (struct lwp_info *lp)
2336 {
2337 if (!lp->ignore_sigint)
2338 return;
2339
2340 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2341 {
2342 if (debug_linux_nat)
2343 fprintf_unfiltered (gdb_stdlog,
2344 "MCIS: Clearing bogus flag for %s\n",
2345 target_pid_to_str (lp->ptid));
2346 lp->ignore_sigint = 0;
2347 }
2348 }
2349
2350 /* Fetch the possible triggered data watchpoint info and store it in
2351 LP.
2352
2353 On some archs, like x86, that use debug registers to set
2354 watchpoints, it's possible that the way to know which watched
2355 address trapped, is to check the register that is used to select
2356 which address to watch. Problem is, between setting the watchpoint
2357 and reading back which data address trapped, the user may change
2358 the set of watchpoints, and, as a consequence, GDB changes the
2359 debug registers in the inferior. To avoid reading back a stale
2360 stopped-data-address when that happens, we cache in LP the fact
2361 that a watchpoint trapped, and the corresponding data address, as
2362 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2363 registers meanwhile, we have the cached data we can rely on. */
2364
2365 static int
2366 check_stopped_by_watchpoint (struct lwp_info *lp)
2367 {
2368 struct cleanup *old_chain;
2369
2370 if (linux_ops->to_stopped_by_watchpoint == NULL)
2371 return 0;
2372
2373 old_chain = save_inferior_ptid ();
2374 inferior_ptid = lp->ptid;
2375
2376 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2377 {
2378 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2379
2380 if (linux_ops->to_stopped_data_address != NULL)
2381 lp->stopped_data_address_p =
2382 linux_ops->to_stopped_data_address (&current_target,
2383 &lp->stopped_data_address);
2384 else
2385 lp->stopped_data_address_p = 0;
2386 }
2387
2388 do_cleanups (old_chain);
2389
2390 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2391 }
2392
2393 /* Called when the LWP stopped for a trap that could be explained by a
2394 watchpoint or a breakpoint. */
2395
2396 static void
2397 save_sigtrap (struct lwp_info *lp)
2398 {
2399 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2400 gdb_assert (lp->status != 0);
2401
2402 if (check_stopped_by_watchpoint (lp))
2403 return;
2404
2405 if (linux_nat_status_is_event (lp->status))
2406 check_stopped_by_breakpoint (lp);
2407 }
2408
2409 /* Returns true if the LWP had stopped for a watchpoint. */
2410
2411 static int
2412 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2413 {
2414 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2415
2416 gdb_assert (lp != NULL);
2417
2418 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2419 }
2420
2421 static int
2422 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2423 {
2424 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2425
2426 gdb_assert (lp != NULL);
2427
2428 *addr_p = lp->stopped_data_address;
2429
2430 return lp->stopped_data_address_p;
2431 }
2432
2433 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2434
2435 static int
2436 sigtrap_is_event (int status)
2437 {
2438 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2439 }
2440
2441 /* Set alternative SIGTRAP-like events recognizer. If
2442 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2443 applied. */
2444
2445 void
2446 linux_nat_set_status_is_event (struct target_ops *t,
2447 int (*status_is_event) (int status))
2448 {
2449 linux_nat_status_is_event = status_is_event;
2450 }
2451
2452 /* Wait until LP is stopped. */
2453
2454 static int
2455 stop_wait_callback (struct lwp_info *lp, void *data)
2456 {
2457 struct inferior *inf = find_inferior_ptid (lp->ptid);
2458
2459 /* If this is a vfork parent, bail out, it is not going to report
2460 any SIGSTOP until the vfork is done with. */
2461 if (inf->vfork_child != NULL)
2462 return 0;
2463
2464 if (!lp->stopped)
2465 {
2466 int status;
2467
2468 status = wait_lwp (lp);
2469 if (status == 0)
2470 return 0;
2471
2472 if (lp->ignore_sigint && WIFSTOPPED (status)
2473 && WSTOPSIG (status) == SIGINT)
2474 {
2475 lp->ignore_sigint = 0;
2476
2477 errno = 0;
2478 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2479 lp->stopped = 0;
2480 if (debug_linux_nat)
2481 fprintf_unfiltered (gdb_stdlog,
2482 "PTRACE_CONT %s, 0, 0 (%s) "
2483 "(discarding SIGINT)\n",
2484 target_pid_to_str (lp->ptid),
2485 errno ? safe_strerror (errno) : "OK");
2486
2487 return stop_wait_callback (lp, NULL);
2488 }
2489
2490 maybe_clear_ignore_sigint (lp);
2491
2492 if (WSTOPSIG (status) != SIGSTOP)
2493 {
2494 /* The thread was stopped with a signal other than SIGSTOP. */
2495
2496 if (debug_linux_nat)
2497 fprintf_unfiltered (gdb_stdlog,
2498 "SWC: Pending event %s in %s\n",
2499 status_to_str ((int) status),
2500 target_pid_to_str (lp->ptid));
2501
2502 /* Save the sigtrap event. */
2503 lp->status = status;
2504 gdb_assert (lp->signalled);
2505 save_sigtrap (lp);
2506 }
2507 else
2508 {
2509 /* We caught the SIGSTOP that we intended to catch, so
2510 there's no SIGSTOP pending. */
2511
2512 if (debug_linux_nat)
2513 fprintf_unfiltered (gdb_stdlog,
2514 "SWC: Delayed SIGSTOP caught for %s.\n",
2515 target_pid_to_str (lp->ptid));
2516
2517 /* Reset SIGNALLED only after the stop_wait_callback call
2518 above as it does gdb_assert on SIGNALLED. */
2519 lp->signalled = 0;
2520 }
2521 }
2522
2523 return 0;
2524 }
2525
2526 /* Return non-zero if LP has a wait status pending. Discard the
2527 pending event and resume the LWP if the event that originally
2528 caused the stop became uninteresting. */
2529
2530 static int
2531 status_callback (struct lwp_info *lp, void *data)
2532 {
2533 /* Only report a pending wait status if we pretend that this has
2534 indeed been resumed. */
2535 if (!lp->resumed)
2536 return 0;
2537
2538 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2539 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2540 {
2541 struct regcache *regcache = get_thread_regcache (lp->ptid);
2542 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2543 CORE_ADDR pc;
2544 int discard = 0;
2545
2546 gdb_assert (lp->status != 0);
2547
2548 pc = regcache_read_pc (regcache);
2549
2550 if (pc != lp->stop_pc)
2551 {
2552 if (debug_linux_nat)
2553 fprintf_unfiltered (gdb_stdlog,
2554 "SC: PC of %s changed. was=%s, now=%s\n",
2555 target_pid_to_str (lp->ptid),
2556 paddress (target_gdbarch (), lp->stop_pc),
2557 paddress (target_gdbarch (), pc));
2558 discard = 1;
2559 }
2560 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2561 {
2562 if (debug_linux_nat)
2563 fprintf_unfiltered (gdb_stdlog,
2564 "SC: previous breakpoint of %s, at %s gone\n",
2565 target_pid_to_str (lp->ptid),
2566 paddress (target_gdbarch (), lp->stop_pc));
2567
2568 discard = 1;
2569 }
2570
2571 if (discard)
2572 {
2573 if (debug_linux_nat)
2574 fprintf_unfiltered (gdb_stdlog,
2575 "SC: pending event of %s cancelled.\n",
2576 target_pid_to_str (lp->ptid));
2577
2578 lp->status = 0;
2579 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2580 return 0;
2581 }
2582 return 1;
2583 }
2584
2585 return lwp_status_pending_p (lp);
2586 }
2587
2588 /* Return non-zero if LP isn't stopped. */
2589
2590 static int
2591 running_callback (struct lwp_info *lp, void *data)
2592 {
2593 return (!lp->stopped
2594 || (lwp_status_pending_p (lp) && lp->resumed));
2595 }
2596
2597 /* Count the LWP's that have had events. */
2598
2599 static int
2600 count_events_callback (struct lwp_info *lp, void *data)
2601 {
2602 int *count = data;
2603
2604 gdb_assert (count != NULL);
2605
2606 /* Select only resumed LWPs that have an event pending. */
2607 if (lp->resumed && lwp_status_pending_p (lp))
2608 (*count)++;
2609
2610 return 0;
2611 }
2612
2613 /* Select the LWP (if any) that is currently being single-stepped. */
2614
2615 static int
2616 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2617 {
2618 if (lp->last_resume_kind == resume_step
2619 && lp->status != 0)
2620 return 1;
2621 else
2622 return 0;
2623 }
2624
2625 /* Returns true if LP has a status pending. */
2626
2627 static int
2628 lwp_status_pending_p (struct lwp_info *lp)
2629 {
2630 /* We check for lp->waitstatus in addition to lp->status, because we
2631 can have pending process exits recorded in lp->status and
2632 W_EXITCODE(0,0) happens to be 0. */
2633 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2634 }
2635
2636 /* Select the Nth LWP that has had a SIGTRAP event. */
2637
2638 static int
2639 select_event_lwp_callback (struct lwp_info *lp, void *data)
2640 {
2641 int *selector = data;
2642
2643 gdb_assert (selector != NULL);
2644
2645 /* Select only resumed LWPs that have an event pending. */
2646 if (lp->resumed && lwp_status_pending_p (lp))
2647 if ((*selector)-- == 0)
2648 return 1;
2649
2650 return 0;
2651 }
2652
2653 /* Called when the LWP got a signal/trap that could be explained by a
2654 software or hardware breakpoint. */
2655
2656 static int
2657 check_stopped_by_breakpoint (struct lwp_info *lp)
2658 {
2659 /* Arrange for a breakpoint to be hit again later. We don't keep
2660 the SIGTRAP status and don't forward the SIGTRAP signal to the
2661 LWP. We will handle the current event, eventually we will resume
2662 this LWP, and this breakpoint will trap again.
2663
2664 If we do not do this, then we run the risk that the user will
2665 delete or disable the breakpoint, but the LWP will have already
2666 tripped on it. */
2667
2668 struct regcache *regcache = get_thread_regcache (lp->ptid);
2669 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2670 CORE_ADDR pc;
2671 CORE_ADDR sw_bp_pc;
2672
2673 pc = regcache_read_pc (regcache);
2674 sw_bp_pc = pc - target_decr_pc_after_break (gdbarch);
2675
2676 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2677 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2678 sw_bp_pc))
2679 {
2680 /* The LWP was either continued, or stepped a software
2681 breakpoint instruction. */
2682 if (debug_linux_nat)
2683 fprintf_unfiltered (gdb_stdlog,
2684 "CB: Push back software breakpoint for %s\n",
2685 target_pid_to_str (lp->ptid));
2686
2687 /* Back up the PC if necessary. */
2688 if (pc != sw_bp_pc)
2689 regcache_write_pc (regcache, sw_bp_pc);
2690
2691 lp->stop_pc = sw_bp_pc;
2692 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2693 return 1;
2694 }
2695
2696 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2697 {
2698 if (debug_linux_nat)
2699 fprintf_unfiltered (gdb_stdlog,
2700 "CB: Push back hardware breakpoint for %s\n",
2701 target_pid_to_str (lp->ptid));
2702
2703 lp->stop_pc = pc;
2704 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2705 return 1;
2706 }
2707
2708 return 0;
2709 }
2710
2711 /* Select one LWP out of those that have events pending. */
2712
2713 static void
2714 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2715 {
2716 int num_events = 0;
2717 int random_selector;
2718 struct lwp_info *event_lp = NULL;
2719
2720 /* Record the wait status for the original LWP. */
2721 (*orig_lp)->status = *status;
2722
2723 /* In all-stop, give preference to the LWP that is being
2724 single-stepped. There will be at most one, and it will be the
2725 LWP that the core is most interested in. If we didn't do this,
2726 then we'd have to handle pending step SIGTRAPs somehow in case
2727 the core later continues the previously-stepped thread, as
2728 otherwise we'd report the pending SIGTRAP then, and the core, not
2729 having stepped the thread, wouldn't understand what the trap was
2730 for, and therefore would report it to the user as a random
2731 signal. */
2732 if (!non_stop)
2733 {
2734 event_lp = iterate_over_lwps (filter,
2735 select_singlestep_lwp_callback, NULL);
2736 if (event_lp != NULL)
2737 {
2738 if (debug_linux_nat)
2739 fprintf_unfiltered (gdb_stdlog,
2740 "SEL: Select single-step %s\n",
2741 target_pid_to_str (event_lp->ptid));
2742 }
2743 }
2744
2745 if (event_lp == NULL)
2746 {
2747 /* Pick one at random, out of those which have had events. */
2748
2749 /* First see how many events we have. */
2750 iterate_over_lwps (filter, count_events_callback, &num_events);
2751
2752 /* Now randomly pick a LWP out of those that have had
2753 events. */
2754 random_selector = (int)
2755 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2756
2757 if (debug_linux_nat && num_events > 1)
2758 fprintf_unfiltered (gdb_stdlog,
2759 "SEL: Found %d events, selecting #%d\n",
2760 num_events, random_selector);
2761
2762 event_lp = iterate_over_lwps (filter,
2763 select_event_lwp_callback,
2764 &random_selector);
2765 }
2766
2767 if (event_lp != NULL)
2768 {
2769 /* Switch the event LWP. */
2770 *orig_lp = event_lp;
2771 *status = event_lp->status;
2772 }
2773
2774 /* Flush the wait status for the event LWP. */
2775 (*orig_lp)->status = 0;
2776 }
2777
2778 /* Return non-zero if LP has been resumed. */
2779
2780 static int
2781 resumed_callback (struct lwp_info *lp, void *data)
2782 {
2783 return lp->resumed;
2784 }
2785
2786 /* Stop an active thread, verify it still exists, then resume it. If
2787 the thread ends up with a pending status, then it is not resumed,
2788 and *DATA (really a pointer to int), is set. */
2789
2790 static int
2791 stop_and_resume_callback (struct lwp_info *lp, void *data)
2792 {
2793 if (!lp->stopped)
2794 {
2795 ptid_t ptid = lp->ptid;
2796
2797 stop_callback (lp, NULL);
2798 stop_wait_callback (lp, NULL);
2799
2800 /* Resume if the lwp still exists, and the core wanted it
2801 running. */
2802 lp = find_lwp_pid (ptid);
2803 if (lp != NULL)
2804 {
2805 if (lp->last_resume_kind == resume_stop
2806 && !lwp_status_pending_p (lp))
2807 {
2808 /* The core wanted the LWP to stop. Even if it stopped
2809 cleanly (with SIGSTOP), leave the event pending. */
2810 if (debug_linux_nat)
2811 fprintf_unfiltered (gdb_stdlog,
2812 "SARC: core wanted LWP %ld stopped "
2813 "(leaving SIGSTOP pending)\n",
2814 ptid_get_lwp (lp->ptid));
2815 lp->status = W_STOPCODE (SIGSTOP);
2816 }
2817
2818 if (!lwp_status_pending_p (lp))
2819 {
2820 if (debug_linux_nat)
2821 fprintf_unfiltered (gdb_stdlog,
2822 "SARC: re-resuming LWP %ld\n",
2823 ptid_get_lwp (lp->ptid));
2824 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
2825 }
2826 else
2827 {
2828 if (debug_linux_nat)
2829 fprintf_unfiltered (gdb_stdlog,
2830 "SARC: not re-resuming LWP %ld "
2831 "(has pending)\n",
2832 ptid_get_lwp (lp->ptid));
2833 }
2834 }
2835 }
2836 return 0;
2837 }
2838
2839 /* Check if we should go on and pass this event to common code.
2840 Return the affected lwp if we are, or NULL otherwise. */
2841
2842 static struct lwp_info *
2843 linux_nat_filter_event (int lwpid, int status)
2844 {
2845 struct lwp_info *lp;
2846 int event = linux_ptrace_get_extended_event (status);
2847
2848 lp = find_lwp_pid (pid_to_ptid (lwpid));
2849
2850 /* Check for stop events reported by a process we didn't already
2851 know about - anything not already in our LWP list.
2852
2853 If we're expecting to receive stopped processes after
2854 fork, vfork, and clone events, then we'll just add the
2855 new one to our list and go back to waiting for the event
2856 to be reported - the stopped process might be returned
2857 from waitpid before or after the event is.
2858
2859 But note the case of a non-leader thread exec'ing after the
2860 leader having exited, and gone from our lists. The non-leader
2861 thread changes its tid to the tgid. */
2862
2863 if (WIFSTOPPED (status) && lp == NULL
2864 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2865 {
2866 /* A multi-thread exec after we had seen the leader exiting. */
2867 if (debug_linux_nat)
2868 fprintf_unfiltered (gdb_stdlog,
2869 "LLW: Re-adding thread group leader LWP %d.\n",
2870 lwpid);
2871
2872 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2873 lp->stopped = 1;
2874 lp->resumed = 1;
2875 add_thread (lp->ptid);
2876 }
2877
2878 if (WIFSTOPPED (status) && !lp)
2879 {
2880 if (debug_linux_nat)
2881 fprintf_unfiltered (gdb_stdlog,
2882 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
2883 (long) lwpid, status_to_str (status));
2884 add_to_pid_list (&stopped_pids, lwpid, status);
2885 return NULL;
2886 }
2887
2888 /* Make sure we don't report an event for the exit of an LWP not in
2889 our list, i.e. not part of the current process. This can happen
2890 if we detach from a program we originally forked and then it
2891 exits. */
2892 if (!WIFSTOPPED (status) && !lp)
2893 return NULL;
2894
2895 /* This LWP is stopped now. (And if dead, this prevents it from
2896 ever being continued.) */
2897 lp->stopped = 1;
2898
2899 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2900 {
2901 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2902
2903 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), inf->attach_flag);
2904 lp->must_set_ptrace_flags = 0;
2905 }
2906
2907 /* Handle GNU/Linux's syscall SIGTRAPs. */
2908 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2909 {
2910 /* No longer need the sysgood bit. The ptrace event ends up
2911 recorded in lp->waitstatus if we care for it. We can carry
2912 on handling the event like a regular SIGTRAP from here
2913 on. */
2914 status = W_STOPCODE (SIGTRAP);
2915 if (linux_handle_syscall_trap (lp, 0))
2916 return NULL;
2917 }
2918
2919 /* Handle GNU/Linux's extended waitstatus for trace events. */
2920 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2921 && linux_is_extended_waitstatus (status))
2922 {
2923 if (debug_linux_nat)
2924 fprintf_unfiltered (gdb_stdlog,
2925 "LLW: Handling extended status 0x%06x\n",
2926 status);
2927 if (linux_handle_extended_wait (lp, status, 0))
2928 return NULL;
2929 }
2930
2931 /* Check if the thread has exited. */
2932 if (WIFEXITED (status) || WIFSIGNALED (status))
2933 {
2934 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
2935 {
2936 /* If this is the main thread, we must stop all threads and
2937 verify if they are still alive. This is because in the
2938 nptl thread model on Linux 2.4, there is no signal issued
2939 for exiting LWPs other than the main thread. We only get
2940 the main thread exit signal once all child threads have
2941 already exited. If we stop all the threads and use the
2942 stop_wait_callback to check if they have exited we can
2943 determine whether this signal should be ignored or
2944 whether it means the end of the debugged application,
2945 regardless of which threading model is being used. */
2946 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2947 {
2948 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
2949 stop_and_resume_callback, NULL);
2950 }
2951
2952 if (debug_linux_nat)
2953 fprintf_unfiltered (gdb_stdlog,
2954 "LLW: %s exited.\n",
2955 target_pid_to_str (lp->ptid));
2956
2957 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
2958 {
2959 /* If there is at least one more LWP, then the exit signal
2960 was not the end of the debugged application and should be
2961 ignored. */
2962 exit_lwp (lp);
2963 return NULL;
2964 }
2965 }
2966
2967 gdb_assert (lp->resumed);
2968
2969 if (debug_linux_nat)
2970 fprintf_unfiltered (gdb_stdlog,
2971 "Process %ld exited\n",
2972 ptid_get_lwp (lp->ptid));
2973
2974 /* This was the last lwp in the process. Since events are
2975 serialized to GDB core, we may not be able report this one
2976 right now, but GDB core and the other target layers will want
2977 to be notified about the exit code/signal, leave the status
2978 pending for the next time we're able to report it. */
2979
2980 /* Dead LWP's aren't expected to reported a pending sigstop. */
2981 lp->signalled = 0;
2982
2983 /* Store the pending event in the waitstatus, because
2984 W_EXITCODE(0,0) == 0. */
2985 store_waitstatus (&lp->waitstatus, status);
2986 return lp;
2987 }
2988
2989 /* Check if the current LWP has previously exited. In the nptl
2990 thread model, LWPs other than the main thread do not issue
2991 signals when they exit so we must check whenever the thread has
2992 stopped. A similar check is made in stop_wait_callback(). */
2993 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
2994 {
2995 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
2996
2997 if (debug_linux_nat)
2998 fprintf_unfiltered (gdb_stdlog,
2999 "LLW: %s exited.\n",
3000 target_pid_to_str (lp->ptid));
3001
3002 exit_lwp (lp);
3003
3004 /* Make sure there is at least one thread running. */
3005 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3006
3007 /* Discard the event. */
3008 return NULL;
3009 }
3010
3011 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3012 an attempt to stop an LWP. */
3013 if (lp->signalled
3014 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3015 {
3016 if (debug_linux_nat)
3017 fprintf_unfiltered (gdb_stdlog,
3018 "LLW: Delayed SIGSTOP caught for %s.\n",
3019 target_pid_to_str (lp->ptid));
3020
3021 lp->signalled = 0;
3022
3023 if (lp->last_resume_kind != resume_stop)
3024 {
3025 /* This is a delayed SIGSTOP. */
3026
3027 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3028 if (debug_linux_nat)
3029 fprintf_unfiltered (gdb_stdlog,
3030 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3031 lp->step ?
3032 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3033 target_pid_to_str (lp->ptid));
3034
3035 gdb_assert (lp->resumed);
3036
3037 /* Discard the event. */
3038 return NULL;
3039 }
3040 }
3041
3042 /* Make sure we don't report a SIGINT that we have already displayed
3043 for another thread. */
3044 if (lp->ignore_sigint
3045 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3046 {
3047 if (debug_linux_nat)
3048 fprintf_unfiltered (gdb_stdlog,
3049 "LLW: Delayed SIGINT caught for %s.\n",
3050 target_pid_to_str (lp->ptid));
3051
3052 /* This is a delayed SIGINT. */
3053 lp->ignore_sigint = 0;
3054
3055 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3056 if (debug_linux_nat)
3057 fprintf_unfiltered (gdb_stdlog,
3058 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3059 lp->step ?
3060 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3061 target_pid_to_str (lp->ptid));
3062 gdb_assert (lp->resumed);
3063
3064 /* Discard the event. */
3065 return NULL;
3066 }
3067
3068 /* Don't report signals that GDB isn't interested in, such as
3069 signals that are neither printed nor stopped upon. Stopping all
3070 threads can be a bit time-consuming so if we want decent
3071 performance with heavily multi-threaded programs, especially when
3072 they're using a high frequency timer, we'd better avoid it if we
3073 can. */
3074 if (WIFSTOPPED (status))
3075 {
3076 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3077
3078 if (!non_stop)
3079 {
3080 /* Only do the below in all-stop, as we currently use SIGSTOP
3081 to implement target_stop (see linux_nat_stop) in
3082 non-stop. */
3083 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3084 {
3085 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3086 forwarded to the entire process group, that is, all LWPs
3087 will receive it - unless they're using CLONE_THREAD to
3088 share signals. Since we only want to report it once, we
3089 mark it as ignored for all LWPs except this one. */
3090 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3091 set_ignore_sigint, NULL);
3092 lp->ignore_sigint = 0;
3093 }
3094 else
3095 maybe_clear_ignore_sigint (lp);
3096 }
3097
3098 /* When using hardware single-step, we need to report every signal.
3099 Otherwise, signals in pass_mask may be short-circuited
3100 except signals that might be caused by a breakpoint. */
3101 if (!lp->step
3102 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3103 && !linux_wstatus_maybe_breakpoint (status))
3104 {
3105 linux_resume_one_lwp (lp, lp->step, signo);
3106 if (debug_linux_nat)
3107 fprintf_unfiltered (gdb_stdlog,
3108 "LLW: %s %s, %s (preempt 'handle')\n",
3109 lp->step ?
3110 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3111 target_pid_to_str (lp->ptid),
3112 (signo != GDB_SIGNAL_0
3113 ? strsignal (gdb_signal_to_host (signo))
3114 : "0"));
3115 return NULL;
3116 }
3117 }
3118
3119 /* An interesting event. */
3120 gdb_assert (lp);
3121 lp->status = status;
3122 save_sigtrap (lp);
3123 return lp;
3124 }
3125
3126 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3127 their exits until all other threads in the group have exited. */
3128
3129 static void
3130 check_zombie_leaders (void)
3131 {
3132 struct inferior *inf;
3133
3134 ALL_INFERIORS (inf)
3135 {
3136 struct lwp_info *leader_lp;
3137
3138 if (inf->pid == 0)
3139 continue;
3140
3141 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3142 if (leader_lp != NULL
3143 /* Check if there are other threads in the group, as we may
3144 have raced with the inferior simply exiting. */
3145 && num_lwps (inf->pid) > 1
3146 && linux_proc_pid_is_zombie (inf->pid))
3147 {
3148 if (debug_linux_nat)
3149 fprintf_unfiltered (gdb_stdlog,
3150 "CZL: Thread group leader %d zombie "
3151 "(it exited, or another thread execd).\n",
3152 inf->pid);
3153
3154 /* A leader zombie can mean one of two things:
3155
3156 - It exited, and there's an exit status pending
3157 available, or only the leader exited (not the whole
3158 program). In the latter case, we can't waitpid the
3159 leader's exit status until all other threads are gone.
3160
3161 - There are 3 or more threads in the group, and a thread
3162 other than the leader exec'd. On an exec, the Linux
3163 kernel destroys all other threads (except the execing
3164 one) in the thread group, and resets the execing thread's
3165 tid to the tgid. No exit notification is sent for the
3166 execing thread -- from the ptracer's perspective, it
3167 appears as though the execing thread just vanishes.
3168 Until we reap all other threads except the leader and the
3169 execing thread, the leader will be zombie, and the
3170 execing thread will be in `D (disc sleep)'. As soon as
3171 all other threads are reaped, the execing thread changes
3172 it's tid to the tgid, and the previous (zombie) leader
3173 vanishes, giving place to the "new" leader. We could try
3174 distinguishing the exit and exec cases, by waiting once
3175 more, and seeing if something comes out, but it doesn't
3176 sound useful. The previous leader _does_ go away, and
3177 we'll re-add the new one once we see the exec event
3178 (which is just the same as what would happen if the
3179 previous leader did exit voluntarily before some other
3180 thread execs). */
3181
3182 if (debug_linux_nat)
3183 fprintf_unfiltered (gdb_stdlog,
3184 "CZL: Thread group leader %d vanished.\n",
3185 inf->pid);
3186 exit_lwp (leader_lp);
3187 }
3188 }
3189 }
3190
3191 static ptid_t
3192 linux_nat_wait_1 (struct target_ops *ops,
3193 ptid_t ptid, struct target_waitstatus *ourstatus,
3194 int target_options)
3195 {
3196 sigset_t prev_mask;
3197 enum resume_kind last_resume_kind;
3198 struct lwp_info *lp;
3199 int status;
3200
3201 if (debug_linux_nat)
3202 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3203
3204 /* The first time we get here after starting a new inferior, we may
3205 not have added it to the LWP list yet - this is the earliest
3206 moment at which we know its PID. */
3207 if (ptid_is_pid (inferior_ptid))
3208 {
3209 /* Upgrade the main thread's ptid. */
3210 thread_change_ptid (inferior_ptid,
3211 ptid_build (ptid_get_pid (inferior_ptid),
3212 ptid_get_pid (inferior_ptid), 0));
3213
3214 lp = add_initial_lwp (inferior_ptid);
3215 lp->resumed = 1;
3216 }
3217
3218 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3219 block_child_signals (&prev_mask);
3220
3221 /* First check if there is a LWP with a wait status pending. */
3222 lp = iterate_over_lwps (ptid, status_callback, NULL);
3223 if (lp != NULL)
3224 {
3225 if (debug_linux_nat)
3226 fprintf_unfiltered (gdb_stdlog,
3227 "LLW: Using pending wait status %s for %s.\n",
3228 status_to_str (lp->status),
3229 target_pid_to_str (lp->ptid));
3230 }
3231
3232 if (!target_is_async_p ())
3233 {
3234 /* Causes SIGINT to be passed on to the attached process. */
3235 set_sigint_trap ();
3236 }
3237
3238 /* But if we don't find a pending event, we'll have to wait. Always
3239 pull all events out of the kernel. We'll randomly select an
3240 event LWP out of all that have events, to prevent starvation. */
3241
3242 while (lp == NULL)
3243 {
3244 pid_t lwpid;
3245
3246 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3247 quirks:
3248
3249 - If the thread group leader exits while other threads in the
3250 thread group still exist, waitpid(TGID, ...) hangs. That
3251 waitpid won't return an exit status until the other threads
3252 in the group are reapped.
3253
3254 - When a non-leader thread execs, that thread just vanishes
3255 without reporting an exit (so we'd hang if we waited for it
3256 explicitly in that case). The exec event is reported to
3257 the TGID pid. */
3258
3259 errno = 0;
3260 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3261 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3262 lwpid = my_waitpid (-1, &status, WNOHANG);
3263
3264 if (debug_linux_nat)
3265 fprintf_unfiltered (gdb_stdlog,
3266 "LNW: waitpid(-1, ...) returned %d, %s\n",
3267 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3268
3269 if (lwpid > 0)
3270 {
3271 if (debug_linux_nat)
3272 {
3273 fprintf_unfiltered (gdb_stdlog,
3274 "LLW: waitpid %ld received %s\n",
3275 (long) lwpid, status_to_str (status));
3276 }
3277
3278 linux_nat_filter_event (lwpid, status);
3279 /* Retry until nothing comes out of waitpid. A single
3280 SIGCHLD can indicate more than one child stopped. */
3281 continue;
3282 }
3283
3284 /* Now that we've pulled all events out of the kernel, resume
3285 LWPs that don't have an interesting event to report. */
3286 iterate_over_lwps (minus_one_ptid,
3287 resume_stopped_resumed_lwps, &minus_one_ptid);
3288
3289 /* ... and find an LWP with a status to report to the core, if
3290 any. */
3291 lp = iterate_over_lwps (ptid, status_callback, NULL);
3292 if (lp != NULL)
3293 break;
3294
3295 /* Check for zombie thread group leaders. Those can't be reaped
3296 until all other threads in the thread group are. */
3297 check_zombie_leaders ();
3298
3299 /* If there are no resumed children left, bail. We'd be stuck
3300 forever in the sigsuspend call below otherwise. */
3301 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3302 {
3303 if (debug_linux_nat)
3304 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3305
3306 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3307
3308 if (!target_is_async_p ())
3309 clear_sigint_trap ();
3310
3311 restore_child_signals_mask (&prev_mask);
3312 return minus_one_ptid;
3313 }
3314
3315 /* No interesting event to report to the core. */
3316
3317 if (target_options & TARGET_WNOHANG)
3318 {
3319 if (debug_linux_nat)
3320 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3321
3322 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3323 restore_child_signals_mask (&prev_mask);
3324 return minus_one_ptid;
3325 }
3326
3327 /* We shouldn't end up here unless we want to try again. */
3328 gdb_assert (lp == NULL);
3329
3330 /* Block until we get an event reported with SIGCHLD. */
3331 if (debug_linux_nat)
3332 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3333 sigsuspend (&suspend_mask);
3334 }
3335
3336 if (!target_is_async_p ())
3337 clear_sigint_trap ();
3338
3339 gdb_assert (lp);
3340
3341 status = lp->status;
3342 lp->status = 0;
3343
3344 if (!non_stop)
3345 {
3346 /* Now stop all other LWP's ... */
3347 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3348
3349 /* ... and wait until all of them have reported back that
3350 they're no longer running. */
3351 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3352 }
3353
3354 /* If we're not waiting for a specific LWP, choose an event LWP from
3355 among those that have had events. Giving equal priority to all
3356 LWPs that have had events helps prevent starvation. */
3357 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3358 select_event_lwp (ptid, &lp, &status);
3359
3360 gdb_assert (lp != NULL);
3361
3362 /* Now that we've selected our final event LWP, un-adjust its PC if
3363 it was a software breakpoint. */
3364 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
3365 {
3366 struct regcache *regcache = get_thread_regcache (lp->ptid);
3367 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3368 int decr_pc = target_decr_pc_after_break (gdbarch);
3369
3370 if (decr_pc != 0)
3371 {
3372 CORE_ADDR pc;
3373
3374 pc = regcache_read_pc (regcache);
3375 regcache_write_pc (regcache, pc + decr_pc);
3376 }
3377 }
3378
3379 /* We'll need this to determine whether to report a SIGSTOP as
3380 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3381 clears it. */
3382 last_resume_kind = lp->last_resume_kind;
3383
3384 if (!non_stop)
3385 {
3386 /* In all-stop, from the core's perspective, all LWPs are now
3387 stopped until a new resume action is sent over. */
3388 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3389 }
3390 else
3391 {
3392 resume_clear_callback (lp, NULL);
3393 }
3394
3395 if (linux_nat_status_is_event (status))
3396 {
3397 if (debug_linux_nat)
3398 fprintf_unfiltered (gdb_stdlog,
3399 "LLW: trap ptid is %s.\n",
3400 target_pid_to_str (lp->ptid));
3401 }
3402
3403 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3404 {
3405 *ourstatus = lp->waitstatus;
3406 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3407 }
3408 else
3409 store_waitstatus (ourstatus, status);
3410
3411 if (debug_linux_nat)
3412 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3413
3414 restore_child_signals_mask (&prev_mask);
3415
3416 if (last_resume_kind == resume_stop
3417 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3418 && WSTOPSIG (status) == SIGSTOP)
3419 {
3420 /* A thread that has been requested to stop by GDB with
3421 target_stop, and it stopped cleanly, so report as SIG0. The
3422 use of SIGSTOP is an implementation detail. */
3423 ourstatus->value.sig = GDB_SIGNAL_0;
3424 }
3425
3426 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3427 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3428 lp->core = -1;
3429 else
3430 lp->core = linux_common_core_of_thread (lp->ptid);
3431
3432 return lp->ptid;
3433 }
3434
3435 /* Resume LWPs that are currently stopped without any pending status
3436 to report, but are resumed from the core's perspective. */
3437
3438 static int
3439 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3440 {
3441 ptid_t *wait_ptid_p = data;
3442
3443 if (lp->stopped
3444 && lp->resumed
3445 && !lwp_status_pending_p (lp))
3446 {
3447 struct regcache *regcache = get_thread_regcache (lp->ptid);
3448 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3449 CORE_ADDR pc = regcache_read_pc (regcache);
3450
3451 /* Don't bother if there's a breakpoint at PC that we'd hit
3452 immediately, and we're not waiting for this LWP. */
3453 if (!ptid_match (lp->ptid, *wait_ptid_p))
3454 {
3455 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3456 return 0;
3457 }
3458
3459 if (debug_linux_nat)
3460 fprintf_unfiltered (gdb_stdlog,
3461 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3462 target_pid_to_str (lp->ptid),
3463 paddress (gdbarch, pc),
3464 lp->step);
3465
3466 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3467 }
3468
3469 return 0;
3470 }
3471
3472 static ptid_t
3473 linux_nat_wait (struct target_ops *ops,
3474 ptid_t ptid, struct target_waitstatus *ourstatus,
3475 int target_options)
3476 {
3477 ptid_t event_ptid;
3478
3479 if (debug_linux_nat)
3480 {
3481 char *options_string;
3482
3483 options_string = target_options_to_string (target_options);
3484 fprintf_unfiltered (gdb_stdlog,
3485 "linux_nat_wait: [%s], [%s]\n",
3486 target_pid_to_str (ptid),
3487 options_string);
3488 xfree (options_string);
3489 }
3490
3491 /* Flush the async file first. */
3492 if (target_is_async_p ())
3493 async_file_flush ();
3494
3495 /* Resume LWPs that are currently stopped without any pending status
3496 to report, but are resumed from the core's perspective. LWPs get
3497 in this state if we find them stopping at a time we're not
3498 interested in reporting the event (target_wait on a
3499 specific_process, for example, see linux_nat_wait_1), and
3500 meanwhile the event became uninteresting. Don't bother resuming
3501 LWPs we're not going to wait for if they'd stop immediately. */
3502 if (non_stop)
3503 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3504
3505 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3506
3507 /* If we requested any event, and something came out, assume there
3508 may be more. If we requested a specific lwp or process, also
3509 assume there may be more. */
3510 if (target_is_async_p ()
3511 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3512 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3513 || !ptid_equal (ptid, minus_one_ptid)))
3514 async_file_mark ();
3515
3516 return event_ptid;
3517 }
3518
3519 static int
3520 kill_callback (struct lwp_info *lp, void *data)
3521 {
3522 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3523
3524 errno = 0;
3525 kill_lwp (ptid_get_lwp (lp->ptid), SIGKILL);
3526 if (debug_linux_nat)
3527 {
3528 int save_errno = errno;
3529
3530 fprintf_unfiltered (gdb_stdlog,
3531 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3532 target_pid_to_str (lp->ptid),
3533 save_errno ? safe_strerror (save_errno) : "OK");
3534 }
3535
3536 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3537
3538 errno = 0;
3539 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3540 if (debug_linux_nat)
3541 {
3542 int save_errno = errno;
3543
3544 fprintf_unfiltered (gdb_stdlog,
3545 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3546 target_pid_to_str (lp->ptid),
3547 save_errno ? safe_strerror (save_errno) : "OK");
3548 }
3549
3550 return 0;
3551 }
3552
3553 static int
3554 kill_wait_callback (struct lwp_info *lp, void *data)
3555 {
3556 pid_t pid;
3557
3558 /* We must make sure that there are no pending events (delayed
3559 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3560 program doesn't interfere with any following debugging session. */
3561
3562 /* For cloned processes we must check both with __WCLONE and
3563 without, since the exit status of a cloned process isn't reported
3564 with __WCLONE. */
3565 if (lp->cloned)
3566 {
3567 do
3568 {
3569 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3570 if (pid != (pid_t) -1)
3571 {
3572 if (debug_linux_nat)
3573 fprintf_unfiltered (gdb_stdlog,
3574 "KWC: wait %s received unknown.\n",
3575 target_pid_to_str (lp->ptid));
3576 /* The Linux kernel sometimes fails to kill a thread
3577 completely after PTRACE_KILL; that goes from the stop
3578 point in do_fork out to the one in
3579 get_signal_to_deliever and waits again. So kill it
3580 again. */
3581 kill_callback (lp, NULL);
3582 }
3583 }
3584 while (pid == ptid_get_lwp (lp->ptid));
3585
3586 gdb_assert (pid == -1 && errno == ECHILD);
3587 }
3588
3589 do
3590 {
3591 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3592 if (pid != (pid_t) -1)
3593 {
3594 if (debug_linux_nat)
3595 fprintf_unfiltered (gdb_stdlog,
3596 "KWC: wait %s received unk.\n",
3597 target_pid_to_str (lp->ptid));
3598 /* See the call to kill_callback above. */
3599 kill_callback (lp, NULL);
3600 }
3601 }
3602 while (pid == ptid_get_lwp (lp->ptid));
3603
3604 gdb_assert (pid == -1 && errno == ECHILD);
3605 return 0;
3606 }
3607
3608 static void
3609 linux_nat_kill (struct target_ops *ops)
3610 {
3611 struct target_waitstatus last;
3612 ptid_t last_ptid;
3613 int status;
3614
3615 /* If we're stopped while forking and we haven't followed yet,
3616 kill the other task. We need to do this first because the
3617 parent will be sleeping if this is a vfork. */
3618
3619 get_last_target_status (&last_ptid, &last);
3620
3621 if (last.kind == TARGET_WAITKIND_FORKED
3622 || last.kind == TARGET_WAITKIND_VFORKED)
3623 {
3624 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3625 wait (&status);
3626
3627 /* Let the arch-specific native code know this process is
3628 gone. */
3629 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3630 }
3631
3632 if (forks_exist_p ())
3633 linux_fork_killall ();
3634 else
3635 {
3636 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3637
3638 /* Stop all threads before killing them, since ptrace requires
3639 that the thread is stopped to sucessfully PTRACE_KILL. */
3640 iterate_over_lwps (ptid, stop_callback, NULL);
3641 /* ... and wait until all of them have reported back that
3642 they're no longer running. */
3643 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3644
3645 /* Kill all LWP's ... */
3646 iterate_over_lwps (ptid, kill_callback, NULL);
3647
3648 /* ... and wait until we've flushed all events. */
3649 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3650 }
3651
3652 target_mourn_inferior ();
3653 }
3654
3655 static void
3656 linux_nat_mourn_inferior (struct target_ops *ops)
3657 {
3658 int pid = ptid_get_pid (inferior_ptid);
3659
3660 purge_lwp_list (pid);
3661
3662 if (! forks_exist_p ())
3663 /* Normal case, no other forks available. */
3664 linux_ops->to_mourn_inferior (ops);
3665 else
3666 /* Multi-fork case. The current inferior_ptid has exited, but
3667 there are other viable forks to debug. Delete the exiting
3668 one and context-switch to the first available. */
3669 linux_fork_mourn_inferior ();
3670
3671 /* Let the arch-specific native code know this process is gone. */
3672 linux_nat_forget_process (pid);
3673 }
3674
3675 /* Convert a native/host siginfo object, into/from the siginfo in the
3676 layout of the inferiors' architecture. */
3677
3678 static void
3679 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3680 {
3681 int done = 0;
3682
3683 if (linux_nat_siginfo_fixup != NULL)
3684 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3685
3686 /* If there was no callback, or the callback didn't do anything,
3687 then just do a straight memcpy. */
3688 if (!done)
3689 {
3690 if (direction == 1)
3691 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3692 else
3693 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3694 }
3695 }
3696
3697 static enum target_xfer_status
3698 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3699 const char *annex, gdb_byte *readbuf,
3700 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3701 ULONGEST *xfered_len)
3702 {
3703 int pid;
3704 siginfo_t siginfo;
3705 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3706
3707 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3708 gdb_assert (readbuf || writebuf);
3709
3710 pid = ptid_get_lwp (inferior_ptid);
3711 if (pid == 0)
3712 pid = ptid_get_pid (inferior_ptid);
3713
3714 if (offset > sizeof (siginfo))
3715 return TARGET_XFER_E_IO;
3716
3717 errno = 0;
3718 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3719 if (errno != 0)
3720 return TARGET_XFER_E_IO;
3721
3722 /* When GDB is built as a 64-bit application, ptrace writes into
3723 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3724 inferior with a 64-bit GDB should look the same as debugging it
3725 with a 32-bit GDB, we need to convert it. GDB core always sees
3726 the converted layout, so any read/write will have to be done
3727 post-conversion. */
3728 siginfo_fixup (&siginfo, inf_siginfo, 0);
3729
3730 if (offset + len > sizeof (siginfo))
3731 len = sizeof (siginfo) - offset;
3732
3733 if (readbuf != NULL)
3734 memcpy (readbuf, inf_siginfo + offset, len);
3735 else
3736 {
3737 memcpy (inf_siginfo + offset, writebuf, len);
3738
3739 /* Convert back to ptrace layout before flushing it out. */
3740 siginfo_fixup (&siginfo, inf_siginfo, 1);
3741
3742 errno = 0;
3743 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3744 if (errno != 0)
3745 return TARGET_XFER_E_IO;
3746 }
3747
3748 *xfered_len = len;
3749 return TARGET_XFER_OK;
3750 }
3751
3752 static enum target_xfer_status
3753 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3754 const char *annex, gdb_byte *readbuf,
3755 const gdb_byte *writebuf,
3756 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3757 {
3758 struct cleanup *old_chain;
3759 enum target_xfer_status xfer;
3760
3761 if (object == TARGET_OBJECT_SIGNAL_INFO)
3762 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3763 offset, len, xfered_len);
3764
3765 /* The target is connected but no live inferior is selected. Pass
3766 this request down to a lower stratum (e.g., the executable
3767 file). */
3768 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3769 return TARGET_XFER_EOF;
3770
3771 old_chain = save_inferior_ptid ();
3772
3773 if (ptid_lwp_p (inferior_ptid))
3774 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3775
3776 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3777 offset, len, xfered_len);
3778
3779 do_cleanups (old_chain);
3780 return xfer;
3781 }
3782
3783 static int
3784 linux_thread_alive (ptid_t ptid)
3785 {
3786 int err, tmp_errno;
3787
3788 gdb_assert (ptid_lwp_p (ptid));
3789
3790 /* Send signal 0 instead of anything ptrace, because ptracing a
3791 running thread errors out claiming that the thread doesn't
3792 exist. */
3793 err = kill_lwp (ptid_get_lwp (ptid), 0);
3794 tmp_errno = errno;
3795 if (debug_linux_nat)
3796 fprintf_unfiltered (gdb_stdlog,
3797 "LLTA: KILL(SIG0) %s (%s)\n",
3798 target_pid_to_str (ptid),
3799 err ? safe_strerror (tmp_errno) : "OK");
3800
3801 if (err != 0)
3802 return 0;
3803
3804 return 1;
3805 }
3806
3807 static int
3808 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3809 {
3810 return linux_thread_alive (ptid);
3811 }
3812
3813 static char *
3814 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3815 {
3816 static char buf[64];
3817
3818 if (ptid_lwp_p (ptid)
3819 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3820 || num_lwps (ptid_get_pid (ptid)) > 1))
3821 {
3822 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3823 return buf;
3824 }
3825
3826 return normal_pid_to_str (ptid);
3827 }
3828
3829 static char *
3830 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
3831 {
3832 int pid = ptid_get_pid (thr->ptid);
3833 long lwp = ptid_get_lwp (thr->ptid);
3834 #define FORMAT "/proc/%d/task/%ld/comm"
3835 char buf[sizeof (FORMAT) + 30];
3836 FILE *comm_file;
3837 char *result = NULL;
3838
3839 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
3840 comm_file = gdb_fopen_cloexec (buf, "r");
3841 if (comm_file)
3842 {
3843 /* Not exported by the kernel, so we define it here. */
3844 #define COMM_LEN 16
3845 static char line[COMM_LEN + 1];
3846
3847 if (fgets (line, sizeof (line), comm_file))
3848 {
3849 char *nl = strchr (line, '\n');
3850
3851 if (nl)
3852 *nl = '\0';
3853 if (*line != '\0')
3854 result = line;
3855 }
3856
3857 fclose (comm_file);
3858 }
3859
3860 #undef COMM_LEN
3861 #undef FORMAT
3862
3863 return result;
3864 }
3865
3866 /* Accepts an integer PID; Returns a string representing a file that
3867 can be opened to get the symbols for the child process. */
3868
3869 static char *
3870 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
3871 {
3872 static char buf[PATH_MAX];
3873 char name[PATH_MAX];
3874
3875 xsnprintf (name, PATH_MAX, "/proc/%d/exe", pid);
3876 memset (buf, 0, PATH_MAX);
3877 if (readlink (name, buf, PATH_MAX - 1) <= 0)
3878 strcpy (buf, name);
3879
3880 return buf;
3881 }
3882
3883 /* Implement the to_xfer_partial interface for memory reads using the /proc
3884 filesystem. Because we can use a single read() call for /proc, this
3885 can be much more efficient than banging away at PTRACE_PEEKTEXT,
3886 but it doesn't support writes. */
3887
3888 static enum target_xfer_status
3889 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3890 const char *annex, gdb_byte *readbuf,
3891 const gdb_byte *writebuf,
3892 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3893 {
3894 LONGEST ret;
3895 int fd;
3896 char filename[64];
3897
3898 if (object != TARGET_OBJECT_MEMORY || !readbuf)
3899 return 0;
3900
3901 /* Don't bother for one word. */
3902 if (len < 3 * sizeof (long))
3903 return TARGET_XFER_EOF;
3904
3905 /* We could keep this file open and cache it - possibly one per
3906 thread. That requires some juggling, but is even faster. */
3907 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
3908 ptid_get_pid (inferior_ptid));
3909 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
3910 if (fd == -1)
3911 return TARGET_XFER_EOF;
3912
3913 /* If pread64 is available, use it. It's faster if the kernel
3914 supports it (only one syscall), and it's 64-bit safe even on
3915 32-bit platforms (for instance, SPARC debugging a SPARC64
3916 application). */
3917 #ifdef HAVE_PREAD64
3918 if (pread64 (fd, readbuf, len, offset) != len)
3919 #else
3920 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
3921 #endif
3922 ret = 0;
3923 else
3924 ret = len;
3925
3926 close (fd);
3927
3928 if (ret == 0)
3929 return TARGET_XFER_EOF;
3930 else
3931 {
3932 *xfered_len = ret;
3933 return TARGET_XFER_OK;
3934 }
3935 }
3936
3937
3938 /* Enumerate spufs IDs for process PID. */
3939 static LONGEST
3940 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
3941 {
3942 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3943 LONGEST pos = 0;
3944 LONGEST written = 0;
3945 char path[128];
3946 DIR *dir;
3947 struct dirent *entry;
3948
3949 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
3950 dir = opendir (path);
3951 if (!dir)
3952 return -1;
3953
3954 rewinddir (dir);
3955 while ((entry = readdir (dir)) != NULL)
3956 {
3957 struct stat st;
3958 struct statfs stfs;
3959 int fd;
3960
3961 fd = atoi (entry->d_name);
3962 if (!fd)
3963 continue;
3964
3965 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
3966 if (stat (path, &st) != 0)
3967 continue;
3968 if (!S_ISDIR (st.st_mode))
3969 continue;
3970
3971 if (statfs (path, &stfs) != 0)
3972 continue;
3973 if (stfs.f_type != SPUFS_MAGIC)
3974 continue;
3975
3976 if (pos >= offset && pos + 4 <= offset + len)
3977 {
3978 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
3979 written += 4;
3980 }
3981 pos += 4;
3982 }
3983
3984 closedir (dir);
3985 return written;
3986 }
3987
3988 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
3989 object type, using the /proc file system. */
3990
3991 static enum target_xfer_status
3992 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
3993 const char *annex, gdb_byte *readbuf,
3994 const gdb_byte *writebuf,
3995 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3996 {
3997 char buf[128];
3998 int fd = 0;
3999 int ret = -1;
4000 int pid = ptid_get_pid (inferior_ptid);
4001
4002 if (!annex)
4003 {
4004 if (!readbuf)
4005 return TARGET_XFER_E_IO;
4006 else
4007 {
4008 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4009
4010 if (l < 0)
4011 return TARGET_XFER_E_IO;
4012 else if (l == 0)
4013 return TARGET_XFER_EOF;
4014 else
4015 {
4016 *xfered_len = (ULONGEST) l;
4017 return TARGET_XFER_OK;
4018 }
4019 }
4020 }
4021
4022 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4023 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4024 if (fd <= 0)
4025 return TARGET_XFER_E_IO;
4026
4027 if (offset != 0
4028 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4029 {
4030 close (fd);
4031 return TARGET_XFER_EOF;
4032 }
4033
4034 if (writebuf)
4035 ret = write (fd, writebuf, (size_t) len);
4036 else if (readbuf)
4037 ret = read (fd, readbuf, (size_t) len);
4038
4039 close (fd);
4040
4041 if (ret < 0)
4042 return TARGET_XFER_E_IO;
4043 else if (ret == 0)
4044 return TARGET_XFER_EOF;
4045 else
4046 {
4047 *xfered_len = (ULONGEST) ret;
4048 return TARGET_XFER_OK;
4049 }
4050 }
4051
4052
4053 /* Parse LINE as a signal set and add its set bits to SIGS. */
4054
4055 static void
4056 add_line_to_sigset (const char *line, sigset_t *sigs)
4057 {
4058 int len = strlen (line) - 1;
4059 const char *p;
4060 int signum;
4061
4062 if (line[len] != '\n')
4063 error (_("Could not parse signal set: %s"), line);
4064
4065 p = line;
4066 signum = len * 4;
4067 while (len-- > 0)
4068 {
4069 int digit;
4070
4071 if (*p >= '0' && *p <= '9')
4072 digit = *p - '0';
4073 else if (*p >= 'a' && *p <= 'f')
4074 digit = *p - 'a' + 10;
4075 else
4076 error (_("Could not parse signal set: %s"), line);
4077
4078 signum -= 4;
4079
4080 if (digit & 1)
4081 sigaddset (sigs, signum + 1);
4082 if (digit & 2)
4083 sigaddset (sigs, signum + 2);
4084 if (digit & 4)
4085 sigaddset (sigs, signum + 3);
4086 if (digit & 8)
4087 sigaddset (sigs, signum + 4);
4088
4089 p++;
4090 }
4091 }
4092
4093 /* Find process PID's pending signals from /proc/pid/status and set
4094 SIGS to match. */
4095
4096 void
4097 linux_proc_pending_signals (int pid, sigset_t *pending,
4098 sigset_t *blocked, sigset_t *ignored)
4099 {
4100 FILE *procfile;
4101 char buffer[PATH_MAX], fname[PATH_MAX];
4102 struct cleanup *cleanup;
4103
4104 sigemptyset (pending);
4105 sigemptyset (blocked);
4106 sigemptyset (ignored);
4107 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4108 procfile = gdb_fopen_cloexec (fname, "r");
4109 if (procfile == NULL)
4110 error (_("Could not open %s"), fname);
4111 cleanup = make_cleanup_fclose (procfile);
4112
4113 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4114 {
4115 /* Normal queued signals are on the SigPnd line in the status
4116 file. However, 2.6 kernels also have a "shared" pending
4117 queue for delivering signals to a thread group, so check for
4118 a ShdPnd line also.
4119
4120 Unfortunately some Red Hat kernels include the shared pending
4121 queue but not the ShdPnd status field. */
4122
4123 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4124 add_line_to_sigset (buffer + 8, pending);
4125 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4126 add_line_to_sigset (buffer + 8, pending);
4127 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4128 add_line_to_sigset (buffer + 8, blocked);
4129 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4130 add_line_to_sigset (buffer + 8, ignored);
4131 }
4132
4133 do_cleanups (cleanup);
4134 }
4135
4136 static enum target_xfer_status
4137 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4138 const char *annex, gdb_byte *readbuf,
4139 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4140 ULONGEST *xfered_len)
4141 {
4142 gdb_assert (object == TARGET_OBJECT_OSDATA);
4143
4144 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4145 if (*xfered_len == 0)
4146 return TARGET_XFER_EOF;
4147 else
4148 return TARGET_XFER_OK;
4149 }
4150
4151 static enum target_xfer_status
4152 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4153 const char *annex, gdb_byte *readbuf,
4154 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4155 ULONGEST *xfered_len)
4156 {
4157 enum target_xfer_status xfer;
4158
4159 if (object == TARGET_OBJECT_AUXV)
4160 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4161 offset, len, xfered_len);
4162
4163 if (object == TARGET_OBJECT_OSDATA)
4164 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4165 offset, len, xfered_len);
4166
4167 if (object == TARGET_OBJECT_SPU)
4168 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4169 offset, len, xfered_len);
4170
4171 /* GDB calculates all the addresses in possibly larget width of the address.
4172 Address width needs to be masked before its final use - either by
4173 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4174
4175 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4176
4177 if (object == TARGET_OBJECT_MEMORY)
4178 {
4179 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4180
4181 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4182 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4183 }
4184
4185 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4186 offset, len, xfered_len);
4187 if (xfer != TARGET_XFER_EOF)
4188 return xfer;
4189
4190 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4191 offset, len, xfered_len);
4192 }
4193
4194 static void
4195 cleanup_target_stop (void *arg)
4196 {
4197 ptid_t *ptid = (ptid_t *) arg;
4198
4199 gdb_assert (arg != NULL);
4200
4201 /* Unpause all */
4202 target_resume (*ptid, 0, GDB_SIGNAL_0);
4203 }
4204
4205 static VEC(static_tracepoint_marker_p) *
4206 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4207 const char *strid)
4208 {
4209 char s[IPA_CMD_BUF_SIZE];
4210 struct cleanup *old_chain;
4211 int pid = ptid_get_pid (inferior_ptid);
4212 VEC(static_tracepoint_marker_p) *markers = NULL;
4213 struct static_tracepoint_marker *marker = NULL;
4214 char *p = s;
4215 ptid_t ptid = ptid_build (pid, 0, 0);
4216
4217 /* Pause all */
4218 target_stop (ptid);
4219
4220 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4221 s[sizeof ("qTfSTM")] = 0;
4222
4223 agent_run_command (pid, s, strlen (s) + 1);
4224
4225 old_chain = make_cleanup (free_current_marker, &marker);
4226 make_cleanup (cleanup_target_stop, &ptid);
4227
4228 while (*p++ == 'm')
4229 {
4230 if (marker == NULL)
4231 marker = XCNEW (struct static_tracepoint_marker);
4232
4233 do
4234 {
4235 parse_static_tracepoint_marker_definition (p, &p, marker);
4236
4237 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4238 {
4239 VEC_safe_push (static_tracepoint_marker_p,
4240 markers, marker);
4241 marker = NULL;
4242 }
4243 else
4244 {
4245 release_static_tracepoint_marker (marker);
4246 memset (marker, 0, sizeof (*marker));
4247 }
4248 }
4249 while (*p++ == ','); /* comma-separated list */
4250
4251 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4252 s[sizeof ("qTsSTM")] = 0;
4253 agent_run_command (pid, s, strlen (s) + 1);
4254 p = s;
4255 }
4256
4257 do_cleanups (old_chain);
4258
4259 return markers;
4260 }
4261
4262 /* Create a prototype generic GNU/Linux target. The client can override
4263 it with local methods. */
4264
4265 static void
4266 linux_target_install_ops (struct target_ops *t)
4267 {
4268 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4269 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4270 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4271 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4272 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4273 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4274 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4275 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4276 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4277 t->to_post_attach = linux_child_post_attach;
4278 t->to_follow_fork = linux_child_follow_fork;
4279
4280 super_xfer_partial = t->to_xfer_partial;
4281 t->to_xfer_partial = linux_xfer_partial;
4282
4283 t->to_static_tracepoint_markers_by_strid
4284 = linux_child_static_tracepoint_markers_by_strid;
4285 }
4286
4287 struct target_ops *
4288 linux_target (void)
4289 {
4290 struct target_ops *t;
4291
4292 t = inf_ptrace_target ();
4293 linux_target_install_ops (t);
4294
4295 return t;
4296 }
4297
4298 struct target_ops *
4299 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4300 {
4301 struct target_ops *t;
4302
4303 t = inf_ptrace_trad_target (register_u_offset);
4304 linux_target_install_ops (t);
4305
4306 return t;
4307 }
4308
4309 /* target_is_async_p implementation. */
4310
4311 static int
4312 linux_nat_is_async_p (struct target_ops *ops)
4313 {
4314 return linux_is_async_p ();
4315 }
4316
4317 /* target_can_async_p implementation. */
4318
4319 static int
4320 linux_nat_can_async_p (struct target_ops *ops)
4321 {
4322 /* NOTE: palves 2008-03-21: We're only async when the user requests
4323 it explicitly with the "set target-async" command.
4324 Someday, linux will always be async. */
4325 return target_async_permitted;
4326 }
4327
4328 static int
4329 linux_nat_supports_non_stop (struct target_ops *self)
4330 {
4331 return 1;
4332 }
4333
4334 /* True if we want to support multi-process. To be removed when GDB
4335 supports multi-exec. */
4336
4337 int linux_multi_process = 1;
4338
4339 static int
4340 linux_nat_supports_multi_process (struct target_ops *self)
4341 {
4342 return linux_multi_process;
4343 }
4344
4345 static int
4346 linux_nat_supports_disable_randomization (struct target_ops *self)
4347 {
4348 #ifdef HAVE_PERSONALITY
4349 return 1;
4350 #else
4351 return 0;
4352 #endif
4353 }
4354
4355 static int async_terminal_is_ours = 1;
4356
4357 /* target_terminal_inferior implementation.
4358
4359 This is a wrapper around child_terminal_inferior to add async support. */
4360
4361 static void
4362 linux_nat_terminal_inferior (struct target_ops *self)
4363 {
4364 /* Like target_terminal_inferior, use target_can_async_p, not
4365 target_is_async_p, since at this point the target is not async
4366 yet. If it can async, then we know it will become async prior to
4367 resume. */
4368 if (!target_can_async_p ())
4369 {
4370 /* Async mode is disabled. */
4371 child_terminal_inferior (self);
4372 return;
4373 }
4374
4375 child_terminal_inferior (self);
4376
4377 /* Calls to target_terminal_*() are meant to be idempotent. */
4378 if (!async_terminal_is_ours)
4379 return;
4380
4381 delete_file_handler (input_fd);
4382 async_terminal_is_ours = 0;
4383 set_sigint_trap ();
4384 }
4385
4386 /* target_terminal_ours implementation.
4387
4388 This is a wrapper around child_terminal_ours to add async support (and
4389 implement the target_terminal_ours vs target_terminal_ours_for_output
4390 distinction). child_terminal_ours is currently no different than
4391 child_terminal_ours_for_output.
4392 We leave target_terminal_ours_for_output alone, leaving it to
4393 child_terminal_ours_for_output. */
4394
4395 static void
4396 linux_nat_terminal_ours (struct target_ops *self)
4397 {
4398 /* GDB should never give the terminal to the inferior if the
4399 inferior is running in the background (run&, continue&, etc.),
4400 but claiming it sure should. */
4401 child_terminal_ours (self);
4402
4403 if (async_terminal_is_ours)
4404 return;
4405
4406 clear_sigint_trap ();
4407 add_file_handler (input_fd, stdin_event_handler, 0);
4408 async_terminal_is_ours = 1;
4409 }
4410
4411 static void (*async_client_callback) (enum inferior_event_type event_type,
4412 void *context);
4413 static void *async_client_context;
4414
4415 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4416 so we notice when any child changes state, and notify the
4417 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4418 above to wait for the arrival of a SIGCHLD. */
4419
4420 static void
4421 sigchld_handler (int signo)
4422 {
4423 int old_errno = errno;
4424
4425 if (debug_linux_nat)
4426 ui_file_write_async_safe (gdb_stdlog,
4427 "sigchld\n", sizeof ("sigchld\n") - 1);
4428
4429 if (signo == SIGCHLD
4430 && linux_nat_event_pipe[0] != -1)
4431 async_file_mark (); /* Let the event loop know that there are
4432 events to handle. */
4433
4434 errno = old_errno;
4435 }
4436
4437 /* Callback registered with the target events file descriptor. */
4438
4439 static void
4440 handle_target_event (int error, gdb_client_data client_data)
4441 {
4442 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4443 }
4444
4445 /* Create/destroy the target events pipe. Returns previous state. */
4446
4447 static int
4448 linux_async_pipe (int enable)
4449 {
4450 int previous = linux_is_async_p ();
4451
4452 if (previous != enable)
4453 {
4454 sigset_t prev_mask;
4455
4456 /* Block child signals while we create/destroy the pipe, as
4457 their handler writes to it. */
4458 block_child_signals (&prev_mask);
4459
4460 if (enable)
4461 {
4462 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4463 internal_error (__FILE__, __LINE__,
4464 "creating event pipe failed.");
4465
4466 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4467 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4468 }
4469 else
4470 {
4471 close (linux_nat_event_pipe[0]);
4472 close (linux_nat_event_pipe[1]);
4473 linux_nat_event_pipe[0] = -1;
4474 linux_nat_event_pipe[1] = -1;
4475 }
4476
4477 restore_child_signals_mask (&prev_mask);
4478 }
4479
4480 return previous;
4481 }
4482
4483 /* target_async implementation. */
4484
4485 static void
4486 linux_nat_async (struct target_ops *ops,
4487 void (*callback) (enum inferior_event_type event_type,
4488 void *context),
4489 void *context)
4490 {
4491 if (callback != NULL)
4492 {
4493 async_client_callback = callback;
4494 async_client_context = context;
4495 if (!linux_async_pipe (1))
4496 {
4497 add_file_handler (linux_nat_event_pipe[0],
4498 handle_target_event, NULL);
4499 /* There may be pending events to handle. Tell the event loop
4500 to poll them. */
4501 async_file_mark ();
4502 }
4503 }
4504 else
4505 {
4506 async_client_callback = callback;
4507 async_client_context = context;
4508 delete_file_handler (linux_nat_event_pipe[0]);
4509 linux_async_pipe (0);
4510 }
4511 return;
4512 }
4513
4514 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4515 event came out. */
4516
4517 static int
4518 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4519 {
4520 if (!lwp->stopped)
4521 {
4522 if (debug_linux_nat)
4523 fprintf_unfiltered (gdb_stdlog,
4524 "LNSL: running -> suspending %s\n",
4525 target_pid_to_str (lwp->ptid));
4526
4527
4528 if (lwp->last_resume_kind == resume_stop)
4529 {
4530 if (debug_linux_nat)
4531 fprintf_unfiltered (gdb_stdlog,
4532 "linux-nat: already stopping LWP %ld at "
4533 "GDB's request\n",
4534 ptid_get_lwp (lwp->ptid));
4535 return 0;
4536 }
4537
4538 stop_callback (lwp, NULL);
4539 lwp->last_resume_kind = resume_stop;
4540 }
4541 else
4542 {
4543 /* Already known to be stopped; do nothing. */
4544
4545 if (debug_linux_nat)
4546 {
4547 if (find_thread_ptid (lwp->ptid)->stop_requested)
4548 fprintf_unfiltered (gdb_stdlog,
4549 "LNSL: already stopped/stop_requested %s\n",
4550 target_pid_to_str (lwp->ptid));
4551 else
4552 fprintf_unfiltered (gdb_stdlog,
4553 "LNSL: already stopped/no "
4554 "stop_requested yet %s\n",
4555 target_pid_to_str (lwp->ptid));
4556 }
4557 }
4558 return 0;
4559 }
4560
4561 static void
4562 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4563 {
4564 if (non_stop)
4565 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4566 else
4567 linux_ops->to_stop (linux_ops, ptid);
4568 }
4569
4570 static void
4571 linux_nat_close (struct target_ops *self)
4572 {
4573 /* Unregister from the event loop. */
4574 if (linux_nat_is_async_p (self))
4575 linux_nat_async (self, NULL, NULL);
4576
4577 if (linux_ops->to_close)
4578 linux_ops->to_close (linux_ops);
4579
4580 super_close (self);
4581 }
4582
4583 /* When requests are passed down from the linux-nat layer to the
4584 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4585 used. The address space pointer is stored in the inferior object,
4586 but the common code that is passed such ptid can't tell whether
4587 lwpid is a "main" process id or not (it assumes so). We reverse
4588 look up the "main" process id from the lwp here. */
4589
4590 static struct address_space *
4591 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4592 {
4593 struct lwp_info *lwp;
4594 struct inferior *inf;
4595 int pid;
4596
4597 if (ptid_get_lwp (ptid) == 0)
4598 {
4599 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4600 tgid. */
4601 lwp = find_lwp_pid (ptid);
4602 pid = ptid_get_pid (lwp->ptid);
4603 }
4604 else
4605 {
4606 /* A (pid,lwpid,0) ptid. */
4607 pid = ptid_get_pid (ptid);
4608 }
4609
4610 inf = find_inferior_pid (pid);
4611 gdb_assert (inf != NULL);
4612 return inf->aspace;
4613 }
4614
4615 /* Return the cached value of the processor core for thread PTID. */
4616
4617 static int
4618 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4619 {
4620 struct lwp_info *info = find_lwp_pid (ptid);
4621
4622 if (info)
4623 return info->core;
4624 return -1;
4625 }
4626
4627 void
4628 linux_nat_add_target (struct target_ops *t)
4629 {
4630 /* Save the provided single-threaded target. We save this in a separate
4631 variable because another target we've inherited from (e.g. inf-ptrace)
4632 may have saved a pointer to T; we want to use it for the final
4633 process stratum target. */
4634 linux_ops_saved = *t;
4635 linux_ops = &linux_ops_saved;
4636
4637 /* Override some methods for multithreading. */
4638 t->to_create_inferior = linux_nat_create_inferior;
4639 t->to_attach = linux_nat_attach;
4640 t->to_detach = linux_nat_detach;
4641 t->to_resume = linux_nat_resume;
4642 t->to_wait = linux_nat_wait;
4643 t->to_pass_signals = linux_nat_pass_signals;
4644 t->to_xfer_partial = linux_nat_xfer_partial;
4645 t->to_kill = linux_nat_kill;
4646 t->to_mourn_inferior = linux_nat_mourn_inferior;
4647 t->to_thread_alive = linux_nat_thread_alive;
4648 t->to_pid_to_str = linux_nat_pid_to_str;
4649 t->to_thread_name = linux_nat_thread_name;
4650 t->to_has_thread_control = tc_schedlock;
4651 t->to_thread_address_space = linux_nat_thread_address_space;
4652 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4653 t->to_stopped_data_address = linux_nat_stopped_data_address;
4654
4655 t->to_can_async_p = linux_nat_can_async_p;
4656 t->to_is_async_p = linux_nat_is_async_p;
4657 t->to_supports_non_stop = linux_nat_supports_non_stop;
4658 t->to_async = linux_nat_async;
4659 t->to_terminal_inferior = linux_nat_terminal_inferior;
4660 t->to_terminal_ours = linux_nat_terminal_ours;
4661
4662 super_close = t->to_close;
4663 t->to_close = linux_nat_close;
4664
4665 /* Methods for non-stop support. */
4666 t->to_stop = linux_nat_stop;
4667
4668 t->to_supports_multi_process = linux_nat_supports_multi_process;
4669
4670 t->to_supports_disable_randomization
4671 = linux_nat_supports_disable_randomization;
4672
4673 t->to_core_of_thread = linux_nat_core_of_thread;
4674
4675 /* We don't change the stratum; this target will sit at
4676 process_stratum and thread_db will set at thread_stratum. This
4677 is a little strange, since this is a multi-threaded-capable
4678 target, but we want to be on the stack below thread_db, and we
4679 also want to be used for single-threaded processes. */
4680
4681 add_target (t);
4682 }
4683
4684 /* Register a method to call whenever a new thread is attached. */
4685 void
4686 linux_nat_set_new_thread (struct target_ops *t,
4687 void (*new_thread) (struct lwp_info *))
4688 {
4689 /* Save the pointer. We only support a single registered instance
4690 of the GNU/Linux native target, so we do not need to map this to
4691 T. */
4692 linux_nat_new_thread = new_thread;
4693 }
4694
4695 /* See declaration in linux-nat.h. */
4696
4697 void
4698 linux_nat_set_new_fork (struct target_ops *t,
4699 linux_nat_new_fork_ftype *new_fork)
4700 {
4701 /* Save the pointer. */
4702 linux_nat_new_fork = new_fork;
4703 }
4704
4705 /* See declaration in linux-nat.h. */
4706
4707 void
4708 linux_nat_set_forget_process (struct target_ops *t,
4709 linux_nat_forget_process_ftype *fn)
4710 {
4711 /* Save the pointer. */
4712 linux_nat_forget_process_hook = fn;
4713 }
4714
4715 /* See declaration in linux-nat.h. */
4716
4717 void
4718 linux_nat_forget_process (pid_t pid)
4719 {
4720 if (linux_nat_forget_process_hook != NULL)
4721 linux_nat_forget_process_hook (pid);
4722 }
4723
4724 /* Register a method that converts a siginfo object between the layout
4725 that ptrace returns, and the layout in the architecture of the
4726 inferior. */
4727 void
4728 linux_nat_set_siginfo_fixup (struct target_ops *t,
4729 int (*siginfo_fixup) (siginfo_t *,
4730 gdb_byte *,
4731 int))
4732 {
4733 /* Save the pointer. */
4734 linux_nat_siginfo_fixup = siginfo_fixup;
4735 }
4736
4737 /* Register a method to call prior to resuming a thread. */
4738
4739 void
4740 linux_nat_set_prepare_to_resume (struct target_ops *t,
4741 void (*prepare_to_resume) (struct lwp_info *))
4742 {
4743 /* Save the pointer. */
4744 linux_nat_prepare_to_resume = prepare_to_resume;
4745 }
4746
4747 /* See linux-nat.h. */
4748
4749 int
4750 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4751 {
4752 int pid;
4753
4754 pid = ptid_get_lwp (ptid);
4755 if (pid == 0)
4756 pid = ptid_get_pid (ptid);
4757
4758 errno = 0;
4759 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4760 if (errno != 0)
4761 {
4762 memset (siginfo, 0, sizeof (*siginfo));
4763 return 0;
4764 }
4765 return 1;
4766 }
4767
4768 /* Provide a prototype to silence -Wmissing-prototypes. */
4769 extern initialize_file_ftype _initialize_linux_nat;
4770
4771 void
4772 _initialize_linux_nat (void)
4773 {
4774 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4775 &debug_linux_nat, _("\
4776 Set debugging of GNU/Linux lwp module."), _("\
4777 Show debugging of GNU/Linux lwp module."), _("\
4778 Enables printf debugging output."),
4779 NULL,
4780 show_debug_linux_nat,
4781 &setdebuglist, &showdebuglist);
4782
4783 /* Save this mask as the default. */
4784 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4785
4786 /* Install a SIGCHLD handler. */
4787 sigchld_action.sa_handler = sigchld_handler;
4788 sigemptyset (&sigchld_action.sa_mask);
4789 sigchld_action.sa_flags = SA_RESTART;
4790
4791 /* Make it the default. */
4792 sigaction (SIGCHLD, &sigchld_action, NULL);
4793
4794 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4795 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4796 sigdelset (&suspend_mask, SIGCHLD);
4797
4798 sigemptyset (&blocked_mask);
4799
4800 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to
4801 support read-only process state. */
4802 linux_ptrace_set_additional_flags (PTRACE_O_TRACESYSGOOD
4803 | PTRACE_O_TRACEVFORKDONE
4804 | PTRACE_O_TRACEVFORK
4805 | PTRACE_O_TRACEFORK
4806 | PTRACE_O_TRACEEXEC);
4807 }
4808 \f
4809
4810 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4811 the GNU/Linux Threads library and therefore doesn't really belong
4812 here. */
4813
4814 /* Read variable NAME in the target and return its value if found.
4815 Otherwise return zero. It is assumed that the type of the variable
4816 is `int'. */
4817
4818 static int
4819 get_signo (const char *name)
4820 {
4821 struct bound_minimal_symbol ms;
4822 int signo;
4823
4824 ms = lookup_minimal_symbol (name, NULL, NULL);
4825 if (ms.minsym == NULL)
4826 return 0;
4827
4828 if (target_read_memory (BMSYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
4829 sizeof (signo)) != 0)
4830 return 0;
4831
4832 return signo;
4833 }
4834
4835 /* Return the set of signals used by the threads library in *SET. */
4836
4837 void
4838 lin_thread_get_thread_signals (sigset_t *set)
4839 {
4840 struct sigaction action;
4841 int restart, cancel;
4842
4843 sigemptyset (&blocked_mask);
4844 sigemptyset (set);
4845
4846 restart = get_signo ("__pthread_sig_restart");
4847 cancel = get_signo ("__pthread_sig_cancel");
4848
4849 /* LinuxThreads normally uses the first two RT signals, but in some legacy
4850 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
4851 not provide any way for the debugger to query the signal numbers -
4852 fortunately they don't change! */
4853
4854 if (restart == 0)
4855 restart = __SIGRTMIN;
4856
4857 if (cancel == 0)
4858 cancel = __SIGRTMIN + 1;
4859
4860 sigaddset (set, restart);
4861 sigaddset (set, cancel);
4862
4863 /* The GNU/Linux Threads library makes terminating threads send a
4864 special "cancel" signal instead of SIGCHLD. Make sure we catch
4865 those (to prevent them from terminating GDB itself, which is
4866 likely to be their default action) and treat them the same way as
4867 SIGCHLD. */
4868
4869 action.sa_handler = sigchld_handler;
4870 sigemptyset (&action.sa_mask);
4871 action.sa_flags = SA_RESTART;
4872 sigaction (cancel, &action, NULL);
4873
4874 /* We block the "cancel" signal throughout this code ... */
4875 sigaddset (&blocked_mask, cancel);
4876 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
4877
4878 /* ... except during a sigsuspend. */
4879 sigdelset (&suspend_mask, cancel);
4880 }