]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/linux-nat.c
Improve ptrace-error detection on Linux targets
[thirdparty/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdbsupport/gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "gdbsupport/agent.h"
62 #include "tracepoint.h"
63 #include "gdbsupport/buffer.h"
64 #include "target-descriptions.h"
65 #include "gdbsupport/filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "gdbsupport/fileio.h"
69 #include "gdbsupport/scope-exit.h"
70
71 /* This comment documents high-level logic of this file.
72
73 Waiting for events in sync mode
74 ===============================
75
76 When waiting for an event in a specific thread, we just use waitpid,
77 passing the specific pid, and not passing WNOHANG.
78
79 When waiting for an event in all threads, waitpid is not quite good:
80
81 - If the thread group leader exits while other threads in the thread
82 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
83 return an exit status until the other threads in the group are
84 reaped.
85
86 - When a non-leader thread execs, that thread just vanishes without
87 reporting an exit (so we'd hang if we waited for it explicitly in
88 that case). The exec event is instead reported to the TGID pid.
89
90 The solution is to always use -1 and WNOHANG, together with
91 sigsuspend.
92
93 First, we use non-blocking waitpid to check for events. If nothing is
94 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
95 it means something happened to a child process. As soon as we know
96 there's an event, we get back to calling nonblocking waitpid.
97
98 Note that SIGCHLD should be blocked between waitpid and sigsuspend
99 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
100 when it's blocked, the signal becomes pending and sigsuspend
101 immediately notices it and returns.
102
103 Waiting for events in async mode (TARGET_WNOHANG)
104 =================================================
105
106 In async mode, GDB should always be ready to handle both user input
107 and target events, so neither blocking waitpid nor sigsuspend are
108 viable options. Instead, we should asynchronously notify the GDB main
109 event loop whenever there's an unprocessed event from the target. We
110 detect asynchronous target events by handling SIGCHLD signals. To
111 notify the event loop about target events, the self-pipe trick is used
112 --- a pipe is registered as waitable event source in the event loop,
113 the event loop select/poll's on the read end of this pipe (as well on
114 other event sources, e.g., stdin), and the SIGCHLD handler writes a
115 byte to this pipe. This is more portable than relying on
116 pselect/ppoll, since on kernels that lack those syscalls, libc
117 emulates them with select/poll+sigprocmask, and that is racy
118 (a.k.a. plain broken).
119
120 Obviously, if we fail to notify the event loop if there's a target
121 event, it's bad. OTOH, if we notify the event loop when there's no
122 event from the target, linux_nat_wait will detect that there's no real
123 event to report, and return event of type TARGET_WAITKIND_IGNORE.
124 This is mostly harmless, but it will waste time and is better avoided.
125
126 The main design point is that every time GDB is outside linux-nat.c,
127 we have a SIGCHLD handler installed that is called when something
128 happens to the target and notifies the GDB event loop. Whenever GDB
129 core decides to handle the event, and calls into linux-nat.c, we
130 process things as in sync mode, except that the we never block in
131 sigsuspend.
132
133 While processing an event, we may end up momentarily blocked in
134 waitpid calls. Those waitpid calls, while blocking, are guarantied to
135 return quickly. E.g., in all-stop mode, before reporting to the core
136 that an LWP hit a breakpoint, all LWPs are stopped by sending them
137 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
138 Note that this is different from blocking indefinitely waiting for the
139 next event --- here, we're already handling an event.
140
141 Use of signals
142 ==============
143
144 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
145 signal is not entirely significant; we just need for a signal to be delivered,
146 so that we can intercept it. SIGSTOP's advantage is that it can not be
147 blocked. A disadvantage is that it is not a real-time signal, so it can only
148 be queued once; we do not keep track of other sources of SIGSTOP.
149
150 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
151 use them, because they have special behavior when the signal is generated -
152 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
153 kills the entire thread group.
154
155 A delivered SIGSTOP would stop the entire thread group, not just the thread we
156 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
157 cancel it (by PTRACE_CONT without passing SIGSTOP).
158
159 We could use a real-time signal instead. This would solve those problems; we
160 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
161 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
162 generates it, and there are races with trying to find a signal that is not
163 blocked.
164
165 Exec events
166 ===========
167
168 The case of a thread group (process) with 3 or more threads, and a
169 thread other than the leader execs is worth detailing:
170
171 On an exec, the Linux kernel destroys all threads except the execing
172 one in the thread group, and resets the execing thread's tid to the
173 tgid. No exit notification is sent for the execing thread -- from the
174 ptracer's perspective, it appears as though the execing thread just
175 vanishes. Until we reap all other threads except the leader and the
176 execing thread, the leader will be zombie, and the execing thread will
177 be in `D (disc sleep)' state. As soon as all other threads are
178 reaped, the execing thread changes its tid to the tgid, and the
179 previous (zombie) leader vanishes, giving place to the "new"
180 leader. */
181
182 #ifndef O_LARGEFILE
183 #define O_LARGEFILE 0
184 #endif
185
186 struct linux_nat_target *linux_target;
187
188 /* Does the current host support PTRACE_GETREGSET? */
189 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
190
191 static unsigned int debug_linux_nat;
192 static void
193 show_debug_linux_nat (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195 {
196 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
197 value);
198 }
199
200 struct simple_pid_list
201 {
202 int pid;
203 int status;
204 struct simple_pid_list *next;
205 };
206 struct simple_pid_list *stopped_pids;
207
208 /* Whether target_thread_events is in effect. */
209 static int report_thread_events;
210
211 /* Async mode support. */
212
213 /* The read/write ends of the pipe registered as waitable file in the
214 event loop. */
215 static int linux_nat_event_pipe[2] = { -1, -1 };
216
217 /* True if we're currently in async mode. */
218 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
219
220 /* Flush the event pipe. */
221
222 static void
223 async_file_flush (void)
224 {
225 int ret;
226 char buf;
227
228 do
229 {
230 ret = read (linux_nat_event_pipe[0], &buf, 1);
231 }
232 while (ret >= 0 || (ret == -1 && errno == EINTR));
233 }
234
235 /* Put something (anything, doesn't matter what, or how much) in event
236 pipe, so that the select/poll in the event-loop realizes we have
237 something to process. */
238
239 static void
240 async_file_mark (void)
241 {
242 int ret;
243
244 /* It doesn't really matter what the pipe contains, as long we end
245 up with something in it. Might as well flush the previous
246 left-overs. */
247 async_file_flush ();
248
249 do
250 {
251 ret = write (linux_nat_event_pipe[1], "+", 1);
252 }
253 while (ret == -1 && errno == EINTR);
254
255 /* Ignore EAGAIN. If the pipe is full, the event loop will already
256 be awakened anyway. */
257 }
258
259 static int kill_lwp (int lwpid, int signo);
260
261 static int stop_callback (struct lwp_info *lp);
262
263 static void block_child_signals (sigset_t *prev_mask);
264 static void restore_child_signals_mask (sigset_t *prev_mask);
265
266 struct lwp_info;
267 static struct lwp_info *add_lwp (ptid_t ptid);
268 static void purge_lwp_list (int pid);
269 static void delete_lwp (ptid_t ptid);
270 static struct lwp_info *find_lwp_pid (ptid_t ptid);
271
272 static int lwp_status_pending_p (struct lwp_info *lp);
273
274 static void save_stop_reason (struct lwp_info *lp);
275
276 \f
277 /* LWP accessors. */
278
279 /* See nat/linux-nat.h. */
280
281 ptid_t
282 ptid_of_lwp (struct lwp_info *lwp)
283 {
284 return lwp->ptid;
285 }
286
287 /* See nat/linux-nat.h. */
288
289 void
290 lwp_set_arch_private_info (struct lwp_info *lwp,
291 struct arch_lwp_info *info)
292 {
293 lwp->arch_private = info;
294 }
295
296 /* See nat/linux-nat.h. */
297
298 struct arch_lwp_info *
299 lwp_arch_private_info (struct lwp_info *lwp)
300 {
301 return lwp->arch_private;
302 }
303
304 /* See nat/linux-nat.h. */
305
306 int
307 lwp_is_stopped (struct lwp_info *lwp)
308 {
309 return lwp->stopped;
310 }
311
312 /* See nat/linux-nat.h. */
313
314 enum target_stop_reason
315 lwp_stop_reason (struct lwp_info *lwp)
316 {
317 return lwp->stop_reason;
318 }
319
320 /* See nat/linux-nat.h. */
321
322 int
323 lwp_is_stepping (struct lwp_info *lwp)
324 {
325 return lwp->step;
326 }
327
328 \f
329 /* Trivial list manipulation functions to keep track of a list of
330 new stopped processes. */
331 static void
332 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
333 {
334 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
335
336 new_pid->pid = pid;
337 new_pid->status = status;
338 new_pid->next = *listp;
339 *listp = new_pid;
340 }
341
342 static int
343 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
344 {
345 struct simple_pid_list **p;
346
347 for (p = listp; *p != NULL; p = &(*p)->next)
348 if ((*p)->pid == pid)
349 {
350 struct simple_pid_list *next = (*p)->next;
351
352 *statusp = (*p)->status;
353 xfree (*p);
354 *p = next;
355 return 1;
356 }
357 return 0;
358 }
359
360 /* Return the ptrace options that we want to try to enable. */
361
362 static int
363 linux_nat_ptrace_options (int attached)
364 {
365 int options = 0;
366
367 if (!attached)
368 options |= PTRACE_O_EXITKILL;
369
370 options |= (PTRACE_O_TRACESYSGOOD
371 | PTRACE_O_TRACEVFORKDONE
372 | PTRACE_O_TRACEVFORK
373 | PTRACE_O_TRACEFORK
374 | PTRACE_O_TRACEEXEC);
375
376 return options;
377 }
378
379 /* Initialize ptrace and procfs warnings and check for supported
380 ptrace features given PID.
381
382 ATTACHED should be nonzero iff we attached to the inferior. */
383
384 static void
385 linux_init_ptrace_procfs (pid_t pid, int attached)
386 {
387 int options = linux_nat_ptrace_options (attached);
388
389 linux_enable_event_reporting (pid, options);
390 linux_ptrace_init_warnings ();
391 linux_proc_init_warnings ();
392 }
393
394 linux_nat_target::~linux_nat_target ()
395 {}
396
397 void
398 linux_nat_target::post_attach (int pid)
399 {
400 linux_init_ptrace_procfs (pid, 1);
401 }
402
403 void
404 linux_nat_target::post_startup_inferior (ptid_t ptid)
405 {
406 linux_init_ptrace_procfs (ptid.pid (), 0);
407 }
408
409 /* Return the number of known LWPs in the tgid given by PID. */
410
411 static int
412 num_lwps (int pid)
413 {
414 int count = 0;
415 struct lwp_info *lp;
416
417 for (lp = lwp_list; lp; lp = lp->next)
418 if (lp->ptid.pid () == pid)
419 count++;
420
421 return count;
422 }
423
424 /* Deleter for lwp_info unique_ptr specialisation. */
425
426 struct lwp_deleter
427 {
428 void operator() (struct lwp_info *lwp) const
429 {
430 delete_lwp (lwp->ptid);
431 }
432 };
433
434 /* A unique_ptr specialisation for lwp_info. */
435
436 typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up;
437
438 /* Target hook for follow_fork. On entry inferior_ptid must be the
439 ptid of the followed inferior. At return, inferior_ptid will be
440 unchanged. */
441
442 int
443 linux_nat_target::follow_fork (int follow_child, int detach_fork)
444 {
445 if (!follow_child)
446 {
447 struct lwp_info *child_lp = NULL;
448 int has_vforked;
449 ptid_t parent_ptid, child_ptid;
450 int parent_pid, child_pid;
451
452 has_vforked = (inferior_thread ()->pending_follow.kind
453 == TARGET_WAITKIND_VFORKED);
454 parent_ptid = inferior_ptid;
455 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
456 parent_pid = parent_ptid.lwp ();
457 child_pid = child_ptid.lwp ();
458
459 /* We're already attached to the parent, by default. */
460 child_lp = add_lwp (child_ptid);
461 child_lp->stopped = 1;
462 child_lp->last_resume_kind = resume_stop;
463
464 /* Detach new forked process? */
465 if (detach_fork)
466 {
467 int child_stop_signal = 0;
468 bool detach_child = true;
469
470 /* Move CHILD_LP into a unique_ptr and clear the source pointer
471 to prevent us doing anything stupid with it. */
472 lwp_info_up child_lp_ptr (child_lp);
473 child_lp = nullptr;
474
475 linux_target->low_prepare_to_resume (child_lp_ptr.get ());
476
477 /* When debugging an inferior in an architecture that supports
478 hardware single stepping on a kernel without commit
479 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
480 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
481 set if the parent process had them set.
482 To work around this, single step the child process
483 once before detaching to clear the flags. */
484
485 /* Note that we consult the parent's architecture instead of
486 the child's because there's no inferior for the child at
487 this point. */
488 if (!gdbarch_software_single_step_p (target_thread_architecture
489 (parent_ptid)))
490 {
491 int status;
492
493 linux_disable_event_reporting (child_pid);
494 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
495 perror_with_name (_("Couldn't do single step"));
496 if (my_waitpid (child_pid, &status, 0) < 0)
497 perror_with_name (_("Couldn't wait vfork process"));
498 else
499 {
500 detach_child = WIFSTOPPED (status);
501 child_stop_signal = WSTOPSIG (status);
502 }
503 }
504
505 if (detach_child)
506 {
507 int signo = child_stop_signal;
508
509 if (signo != 0
510 && !signal_pass_state (gdb_signal_from_host (signo)))
511 signo = 0;
512 ptrace (PTRACE_DETACH, child_pid, 0, signo);
513 }
514 }
515 else
516 {
517 scoped_restore save_inferior_ptid
518 = make_scoped_restore (&inferior_ptid);
519 inferior_ptid = child_ptid;
520
521 /* Let the thread_db layer learn about this new process. */
522 check_for_thread_db ();
523 }
524
525 if (has_vforked)
526 {
527 struct lwp_info *parent_lp;
528
529 parent_lp = find_lwp_pid (parent_ptid);
530 gdb_assert (linux_supports_tracefork () >= 0);
531
532 if (linux_supports_tracevforkdone ())
533 {
534 if (debug_linux_nat)
535 fprintf_unfiltered (gdb_stdlog,
536 "LCFF: waiting for VFORK_DONE on %d\n",
537 parent_pid);
538 parent_lp->stopped = 1;
539
540 /* We'll handle the VFORK_DONE event like any other
541 event, in target_wait. */
542 }
543 else
544 {
545 /* We can't insert breakpoints until the child has
546 finished with the shared memory region. We need to
547 wait until that happens. Ideal would be to just
548 call:
549 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
550 - waitpid (parent_pid, &status, __WALL);
551 However, most architectures can't handle a syscall
552 being traced on the way out if it wasn't traced on
553 the way in.
554
555 We might also think to loop, continuing the child
556 until it exits or gets a SIGTRAP. One problem is
557 that the child might call ptrace with PTRACE_TRACEME.
558
559 There's no simple and reliable way to figure out when
560 the vforked child will be done with its copy of the
561 shared memory. We could step it out of the syscall,
562 two instructions, let it go, and then single-step the
563 parent once. When we have hardware single-step, this
564 would work; with software single-step it could still
565 be made to work but we'd have to be able to insert
566 single-step breakpoints in the child, and we'd have
567 to insert -just- the single-step breakpoint in the
568 parent. Very awkward.
569
570 In the end, the best we can do is to make sure it
571 runs for a little while. Hopefully it will be out of
572 range of any breakpoints we reinsert. Usually this
573 is only the single-step breakpoint at vfork's return
574 point. */
575
576 if (debug_linux_nat)
577 fprintf_unfiltered (gdb_stdlog,
578 "LCFF: no VFORK_DONE "
579 "support, sleeping a bit\n");
580
581 usleep (10000);
582
583 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
584 and leave it pending. The next linux_nat_resume call
585 will notice a pending event, and bypasses actually
586 resuming the inferior. */
587 parent_lp->status = 0;
588 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
589 parent_lp->stopped = 1;
590
591 /* If we're in async mode, need to tell the event loop
592 there's something here to process. */
593 if (target_is_async_p ())
594 async_file_mark ();
595 }
596 }
597 }
598 else
599 {
600 struct lwp_info *child_lp;
601
602 child_lp = add_lwp (inferior_ptid);
603 child_lp->stopped = 1;
604 child_lp->last_resume_kind = resume_stop;
605
606 /* Let the thread_db layer learn about this new process. */
607 check_for_thread_db ();
608 }
609
610 return 0;
611 }
612
613 \f
614 int
615 linux_nat_target::insert_fork_catchpoint (int pid)
616 {
617 return !linux_supports_tracefork ();
618 }
619
620 int
621 linux_nat_target::remove_fork_catchpoint (int pid)
622 {
623 return 0;
624 }
625
626 int
627 linux_nat_target::insert_vfork_catchpoint (int pid)
628 {
629 return !linux_supports_tracefork ();
630 }
631
632 int
633 linux_nat_target::remove_vfork_catchpoint (int pid)
634 {
635 return 0;
636 }
637
638 int
639 linux_nat_target::insert_exec_catchpoint (int pid)
640 {
641 return !linux_supports_tracefork ();
642 }
643
644 int
645 linux_nat_target::remove_exec_catchpoint (int pid)
646 {
647 return 0;
648 }
649
650 int
651 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
652 gdb::array_view<const int> syscall_counts)
653 {
654 if (!linux_supports_tracesysgood ())
655 return 1;
656
657 /* On GNU/Linux, we ignore the arguments. It means that we only
658 enable the syscall catchpoints, but do not disable them.
659
660 Also, we do not use the `syscall_counts' information because we do not
661 filter system calls here. We let GDB do the logic for us. */
662 return 0;
663 }
664
665 /* List of known LWPs, keyed by LWP PID. This speeds up the common
666 case of mapping a PID returned from the kernel to our corresponding
667 lwp_info data structure. */
668 static htab_t lwp_lwpid_htab;
669
670 /* Calculate a hash from a lwp_info's LWP PID. */
671
672 static hashval_t
673 lwp_info_hash (const void *ap)
674 {
675 const struct lwp_info *lp = (struct lwp_info *) ap;
676 pid_t pid = lp->ptid.lwp ();
677
678 return iterative_hash_object (pid, 0);
679 }
680
681 /* Equality function for the lwp_info hash table. Compares the LWP's
682 PID. */
683
684 static int
685 lwp_lwpid_htab_eq (const void *a, const void *b)
686 {
687 const struct lwp_info *entry = (const struct lwp_info *) a;
688 const struct lwp_info *element = (const struct lwp_info *) b;
689
690 return entry->ptid.lwp () == element->ptid.lwp ();
691 }
692
693 /* Create the lwp_lwpid_htab hash table. */
694
695 static void
696 lwp_lwpid_htab_create (void)
697 {
698 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
699 }
700
701 /* Add LP to the hash table. */
702
703 static void
704 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
705 {
706 void **slot;
707
708 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
709 gdb_assert (slot != NULL && *slot == NULL);
710 *slot = lp;
711 }
712
713 /* Head of doubly-linked list of known LWPs. Sorted by reverse
714 creation order. This order is assumed in some cases. E.g.,
715 reaping status after killing alls lwps of a process: the leader LWP
716 must be reaped last. */
717 struct lwp_info *lwp_list;
718
719 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
720
721 static void
722 lwp_list_add (struct lwp_info *lp)
723 {
724 lp->next = lwp_list;
725 if (lwp_list != NULL)
726 lwp_list->prev = lp;
727 lwp_list = lp;
728 }
729
730 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
731 list. */
732
733 static void
734 lwp_list_remove (struct lwp_info *lp)
735 {
736 /* Remove from sorted-by-creation-order list. */
737 if (lp->next != NULL)
738 lp->next->prev = lp->prev;
739 if (lp->prev != NULL)
740 lp->prev->next = lp->next;
741 if (lp == lwp_list)
742 lwp_list = lp->next;
743 }
744
745 \f
746
747 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
748 _initialize_linux_nat. */
749 static sigset_t suspend_mask;
750
751 /* Signals to block to make that sigsuspend work. */
752 static sigset_t blocked_mask;
753
754 /* SIGCHLD action. */
755 struct sigaction sigchld_action;
756
757 /* Block child signals (SIGCHLD and linux threads signals), and store
758 the previous mask in PREV_MASK. */
759
760 static void
761 block_child_signals (sigset_t *prev_mask)
762 {
763 /* Make sure SIGCHLD is blocked. */
764 if (!sigismember (&blocked_mask, SIGCHLD))
765 sigaddset (&blocked_mask, SIGCHLD);
766
767 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
768 }
769
770 /* Restore child signals mask, previously returned by
771 block_child_signals. */
772
773 static void
774 restore_child_signals_mask (sigset_t *prev_mask)
775 {
776 sigprocmask (SIG_SETMASK, prev_mask, NULL);
777 }
778
779 /* Mask of signals to pass directly to the inferior. */
780 static sigset_t pass_mask;
781
782 /* Update signals to pass to the inferior. */
783 void
784 linux_nat_target::pass_signals
785 (gdb::array_view<const unsigned char> pass_signals)
786 {
787 int signo;
788
789 sigemptyset (&pass_mask);
790
791 for (signo = 1; signo < NSIG; signo++)
792 {
793 int target_signo = gdb_signal_from_host (signo);
794 if (target_signo < pass_signals.size () && pass_signals[target_signo])
795 sigaddset (&pass_mask, signo);
796 }
797 }
798
799 \f
800
801 /* Prototypes for local functions. */
802 static int stop_wait_callback (struct lwp_info *lp);
803 static int resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid);
804 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
805
806 \f
807
808 /* Destroy and free LP. */
809
810 static void
811 lwp_free (struct lwp_info *lp)
812 {
813 /* Let the arch specific bits release arch_lwp_info. */
814 linux_target->low_delete_thread (lp->arch_private);
815
816 xfree (lp);
817 }
818
819 /* Traversal function for purge_lwp_list. */
820
821 static int
822 lwp_lwpid_htab_remove_pid (void **slot, void *info)
823 {
824 struct lwp_info *lp = (struct lwp_info *) *slot;
825 int pid = *(int *) info;
826
827 if (lp->ptid.pid () == pid)
828 {
829 htab_clear_slot (lwp_lwpid_htab, slot);
830 lwp_list_remove (lp);
831 lwp_free (lp);
832 }
833
834 return 1;
835 }
836
837 /* Remove all LWPs belong to PID from the lwp list. */
838
839 static void
840 purge_lwp_list (int pid)
841 {
842 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
843 }
844
845 /* Add the LWP specified by PTID to the list. PTID is the first LWP
846 in the process. Return a pointer to the structure describing the
847 new LWP.
848
849 This differs from add_lwp in that we don't let the arch specific
850 bits know about this new thread. Current clients of this callback
851 take the opportunity to install watchpoints in the new thread, and
852 we shouldn't do that for the first thread. If we're spawning a
853 child ("run"), the thread executes the shell wrapper first, and we
854 shouldn't touch it until it execs the program we want to debug.
855 For "attach", it'd be okay to call the callback, but it's not
856 necessary, because watchpoints can't yet have been inserted into
857 the inferior. */
858
859 static struct lwp_info *
860 add_initial_lwp (ptid_t ptid)
861 {
862 struct lwp_info *lp;
863
864 gdb_assert (ptid.lwp_p ());
865
866 lp = XNEW (struct lwp_info);
867
868 memset (lp, 0, sizeof (struct lwp_info));
869
870 lp->last_resume_kind = resume_continue;
871 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
872
873 lp->ptid = ptid;
874 lp->core = -1;
875
876 /* Add to sorted-by-reverse-creation-order list. */
877 lwp_list_add (lp);
878
879 /* Add to keyed-by-pid htab. */
880 lwp_lwpid_htab_add_lwp (lp);
881
882 return lp;
883 }
884
885 /* Add the LWP specified by PID to the list. Return a pointer to the
886 structure describing the new LWP. The LWP should already be
887 stopped. */
888
889 static struct lwp_info *
890 add_lwp (ptid_t ptid)
891 {
892 struct lwp_info *lp;
893
894 lp = add_initial_lwp (ptid);
895
896 /* Let the arch specific bits know about this new thread. Current
897 clients of this callback take the opportunity to install
898 watchpoints in the new thread. We don't do this for the first
899 thread though. See add_initial_lwp. */
900 linux_target->low_new_thread (lp);
901
902 return lp;
903 }
904
905 /* Remove the LWP specified by PID from the list. */
906
907 static void
908 delete_lwp (ptid_t ptid)
909 {
910 struct lwp_info *lp;
911 void **slot;
912 struct lwp_info dummy;
913
914 dummy.ptid = ptid;
915 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
916 if (slot == NULL)
917 return;
918
919 lp = *(struct lwp_info **) slot;
920 gdb_assert (lp != NULL);
921
922 htab_clear_slot (lwp_lwpid_htab, slot);
923
924 /* Remove from sorted-by-creation-order list. */
925 lwp_list_remove (lp);
926
927 /* Release. */
928 lwp_free (lp);
929 }
930
931 /* Return a pointer to the structure describing the LWP corresponding
932 to PID. If no corresponding LWP could be found, return NULL. */
933
934 static struct lwp_info *
935 find_lwp_pid (ptid_t ptid)
936 {
937 struct lwp_info *lp;
938 int lwp;
939 struct lwp_info dummy;
940
941 if (ptid.lwp_p ())
942 lwp = ptid.lwp ();
943 else
944 lwp = ptid.pid ();
945
946 dummy.ptid = ptid_t (0, lwp, 0);
947 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
948 return lp;
949 }
950
951 /* See nat/linux-nat.h. */
952
953 struct lwp_info *
954 iterate_over_lwps (ptid_t filter,
955 gdb::function_view<iterate_over_lwps_ftype> callback)
956 {
957 struct lwp_info *lp, *lpnext;
958
959 for (lp = lwp_list; lp; lp = lpnext)
960 {
961 lpnext = lp->next;
962
963 if (lp->ptid.matches (filter))
964 {
965 if (callback (lp) != 0)
966 return lp;
967 }
968 }
969
970 return NULL;
971 }
972
973 /* Update our internal state when changing from one checkpoint to
974 another indicated by NEW_PTID. We can only switch single-threaded
975 applications, so we only create one new LWP, and the previous list
976 is discarded. */
977
978 void
979 linux_nat_switch_fork (ptid_t new_ptid)
980 {
981 struct lwp_info *lp;
982
983 purge_lwp_list (inferior_ptid.pid ());
984
985 lp = add_lwp (new_ptid);
986 lp->stopped = 1;
987
988 /* This changes the thread's ptid while preserving the gdb thread
989 num. Also changes the inferior pid, while preserving the
990 inferior num. */
991 thread_change_ptid (inferior_ptid, new_ptid);
992
993 /* We've just told GDB core that the thread changed target id, but,
994 in fact, it really is a different thread, with different register
995 contents. */
996 registers_changed ();
997 }
998
999 /* Handle the exit of a single thread LP. */
1000
1001 static void
1002 exit_lwp (struct lwp_info *lp)
1003 {
1004 struct thread_info *th = find_thread_ptid (lp->ptid);
1005
1006 if (th)
1007 {
1008 if (print_thread_events)
1009 printf_unfiltered (_("[%s exited]\n"),
1010 target_pid_to_str (lp->ptid).c_str ());
1011
1012 delete_thread (th);
1013 }
1014
1015 delete_lwp (lp->ptid);
1016 }
1017
1018 /* Wait for the LWP specified by LP, which we have just attached to.
1019 Returns a wait status for that LWP, to cache. */
1020
1021 static int
1022 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1023 {
1024 pid_t new_pid, pid = ptid.lwp ();
1025 int status;
1026
1027 if (linux_proc_pid_is_stopped (pid))
1028 {
1029 if (debug_linux_nat)
1030 fprintf_unfiltered (gdb_stdlog,
1031 "LNPAW: Attaching to a stopped process\n");
1032
1033 /* The process is definitely stopped. It is in a job control
1034 stop, unless the kernel predates the TASK_STOPPED /
1035 TASK_TRACED distinction, in which case it might be in a
1036 ptrace stop. Make sure it is in a ptrace stop; from there we
1037 can kill it, signal it, et cetera.
1038
1039 First make sure there is a pending SIGSTOP. Since we are
1040 already attached, the process can not transition from stopped
1041 to running without a PTRACE_CONT; so we know this signal will
1042 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1043 probably already in the queue (unless this kernel is old
1044 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1045 is not an RT signal, it can only be queued once. */
1046 kill_lwp (pid, SIGSTOP);
1047
1048 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1049 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1050 ptrace (PTRACE_CONT, pid, 0, 0);
1051 }
1052
1053 /* Make sure the initial process is stopped. The user-level threads
1054 layer might want to poke around in the inferior, and that won't
1055 work if things haven't stabilized yet. */
1056 new_pid = my_waitpid (pid, &status, __WALL);
1057 gdb_assert (pid == new_pid);
1058
1059 if (!WIFSTOPPED (status))
1060 {
1061 /* The pid we tried to attach has apparently just exited. */
1062 if (debug_linux_nat)
1063 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1064 pid, status_to_str (status));
1065 return status;
1066 }
1067
1068 if (WSTOPSIG (status) != SIGSTOP)
1069 {
1070 *signalled = 1;
1071 if (debug_linux_nat)
1072 fprintf_unfiltered (gdb_stdlog,
1073 "LNPAW: Received %s after attaching\n",
1074 status_to_str (status));
1075 }
1076
1077 return status;
1078 }
1079
1080 void
1081 linux_nat_target::create_inferior (const char *exec_file,
1082 const std::string &allargs,
1083 char **env, int from_tty)
1084 {
1085 maybe_disable_address_space_randomization restore_personality
1086 (disable_randomization);
1087
1088 /* The fork_child mechanism is synchronous and calls target_wait, so
1089 we have to mask the async mode. */
1090
1091 /* Make sure we report all signals during startup. */
1092 pass_signals ({});
1093
1094 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
1095 }
1096
1097 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1098 already attached. Returns true if a new LWP is found, false
1099 otherwise. */
1100
1101 static int
1102 attach_proc_task_lwp_callback (ptid_t ptid)
1103 {
1104 struct lwp_info *lp;
1105
1106 /* Ignore LWPs we're already attached to. */
1107 lp = find_lwp_pid (ptid);
1108 if (lp == NULL)
1109 {
1110 int lwpid = ptid.lwp ();
1111
1112 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1113 {
1114 int err = errno;
1115
1116 /* Be quiet if we simply raced with the thread exiting.
1117 EPERM is returned if the thread's task still exists, and
1118 is marked as exited or zombie, as well as other
1119 conditions, so in that case, confirm the status in
1120 /proc/PID/status. */
1121 if (err == ESRCH
1122 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1123 {
1124 if (debug_linux_nat)
1125 {
1126 fprintf_unfiltered (gdb_stdlog,
1127 "Cannot attach to lwp %d: "
1128 "thread is gone (%d: %s)\n",
1129 lwpid, err, safe_strerror (err));
1130 }
1131 }
1132 else
1133 {
1134 std::string reason
1135 = linux_ptrace_attach_fail_reason_lwp (ptid, err);
1136
1137 warning (_("Cannot attach to lwp %d: %s"),
1138 lwpid, reason.c_str ());
1139 }
1140 }
1141 else
1142 {
1143 if (debug_linux_nat)
1144 fprintf_unfiltered (gdb_stdlog,
1145 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1146 target_pid_to_str (ptid).c_str ());
1147
1148 lp = add_lwp (ptid);
1149
1150 /* The next time we wait for this LWP we'll see a SIGSTOP as
1151 PTRACE_ATTACH brings it to a halt. */
1152 lp->signalled = 1;
1153
1154 /* We need to wait for a stop before being able to make the
1155 next ptrace call on this LWP. */
1156 lp->must_set_ptrace_flags = 1;
1157
1158 /* So that wait collects the SIGSTOP. */
1159 lp->resumed = 1;
1160
1161 /* Also add the LWP to gdb's thread list, in case a
1162 matching libthread_db is not found (or the process uses
1163 raw clone). */
1164 add_thread (lp->ptid);
1165 set_running (lp->ptid, 1);
1166 set_executing (lp->ptid, 1);
1167 }
1168
1169 return 1;
1170 }
1171 return 0;
1172 }
1173
1174 void
1175 linux_nat_target::attach (const char *args, int from_tty)
1176 {
1177 struct lwp_info *lp;
1178 int status;
1179 ptid_t ptid;
1180
1181 /* Make sure we report all signals during attach. */
1182 pass_signals ({});
1183
1184 try
1185 {
1186 inf_ptrace_target::attach (args, from_tty);
1187 }
1188 catch (const gdb_exception_error &ex)
1189 {
1190 int saved_errno = errno;
1191 pid_t pid = parse_pid_to_attach (args);
1192 std::string reason = linux_ptrace_attach_fail_reason (pid, saved_errno);
1193
1194 if (!reason.empty ())
1195 throw_error (ex.error, "warning: %s\n%s", reason.c_str (),
1196 ex.what ());
1197 else
1198 throw_error (ex.error, "%s", ex.what ());
1199 }
1200
1201 /* The ptrace base target adds the main thread with (pid,0,0)
1202 format. Decorate it with lwp info. */
1203 ptid = ptid_t (inferior_ptid.pid (),
1204 inferior_ptid.pid (),
1205 0);
1206 thread_change_ptid (inferior_ptid, ptid);
1207
1208 /* Add the initial process as the first LWP to the list. */
1209 lp = add_initial_lwp (ptid);
1210
1211 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1212 if (!WIFSTOPPED (status))
1213 {
1214 if (WIFEXITED (status))
1215 {
1216 int exit_code = WEXITSTATUS (status);
1217
1218 target_terminal::ours ();
1219 target_mourn_inferior (inferior_ptid);
1220 if (exit_code == 0)
1221 error (_("Unable to attach: program exited normally."));
1222 else
1223 error (_("Unable to attach: program exited with code %d."),
1224 exit_code);
1225 }
1226 else if (WIFSIGNALED (status))
1227 {
1228 enum gdb_signal signo;
1229
1230 target_terminal::ours ();
1231 target_mourn_inferior (inferior_ptid);
1232
1233 signo = gdb_signal_from_host (WTERMSIG (status));
1234 error (_("Unable to attach: program terminated with signal "
1235 "%s, %s."),
1236 gdb_signal_to_name (signo),
1237 gdb_signal_to_string (signo));
1238 }
1239
1240 internal_error (__FILE__, __LINE__,
1241 _("unexpected status %d for PID %ld"),
1242 status, (long) ptid.lwp ());
1243 }
1244
1245 lp->stopped = 1;
1246
1247 /* Save the wait status to report later. */
1248 lp->resumed = 1;
1249 if (debug_linux_nat)
1250 fprintf_unfiltered (gdb_stdlog,
1251 "LNA: waitpid %ld, saving status %s\n",
1252 (long) lp->ptid.pid (), status_to_str (status));
1253
1254 lp->status = status;
1255
1256 /* We must attach to every LWP. If /proc is mounted, use that to
1257 find them now. The inferior may be using raw clone instead of
1258 using pthreads. But even if it is using pthreads, thread_db
1259 walks structures in the inferior's address space to find the list
1260 of threads/LWPs, and those structures may well be corrupted.
1261 Note that once thread_db is loaded, we'll still use it to list
1262 threads and associate pthread info with each LWP. */
1263 linux_proc_attach_tgid_threads (lp->ptid.pid (),
1264 attach_proc_task_lwp_callback);
1265
1266 if (target_can_async_p ())
1267 target_async (1);
1268 }
1269
1270 /* Get pending signal of THREAD as a host signal number, for detaching
1271 purposes. This is the signal the thread last stopped for, which we
1272 need to deliver to the thread when detaching, otherwise, it'd be
1273 suppressed/lost. */
1274
1275 static int
1276 get_detach_signal (struct lwp_info *lp)
1277 {
1278 enum gdb_signal signo = GDB_SIGNAL_0;
1279
1280 /* If we paused threads momentarily, we may have stored pending
1281 events in lp->status or lp->waitstatus (see stop_wait_callback),
1282 and GDB core hasn't seen any signal for those threads.
1283 Otherwise, the last signal reported to the core is found in the
1284 thread object's stop_signal.
1285
1286 There's a corner case that isn't handled here at present. Only
1287 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1288 stop_signal make sense as a real signal to pass to the inferior.
1289 Some catchpoint related events, like
1290 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1291 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1292 those traps are debug API (ptrace in our case) related and
1293 induced; the inferior wouldn't see them if it wasn't being
1294 traced. Hence, we should never pass them to the inferior, even
1295 when set to pass state. Since this corner case isn't handled by
1296 infrun.c when proceeding with a signal, for consistency, neither
1297 do we handle it here (or elsewhere in the file we check for
1298 signal pass state). Normally SIGTRAP isn't set to pass state, so
1299 this is really a corner case. */
1300
1301 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1302 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1303 else if (lp->status)
1304 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1305 else
1306 {
1307 struct thread_info *tp = find_thread_ptid (lp->ptid);
1308
1309 if (target_is_non_stop_p () && !tp->executing)
1310 {
1311 if (tp->suspend.waitstatus_pending_p)
1312 signo = tp->suspend.waitstatus.value.sig;
1313 else
1314 signo = tp->suspend.stop_signal;
1315 }
1316 else if (!target_is_non_stop_p ())
1317 {
1318 struct target_waitstatus last;
1319 ptid_t last_ptid;
1320
1321 get_last_target_status (&last_ptid, &last);
1322
1323 if (lp->ptid.lwp () == last_ptid.lwp ())
1324 signo = tp->suspend.stop_signal;
1325 }
1326 }
1327
1328 if (signo == GDB_SIGNAL_0)
1329 {
1330 if (debug_linux_nat)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "GPT: lwp %s has no pending signal\n",
1333 target_pid_to_str (lp->ptid).c_str ());
1334 }
1335 else if (!signal_pass_state (signo))
1336 {
1337 if (debug_linux_nat)
1338 fprintf_unfiltered (gdb_stdlog,
1339 "GPT: lwp %s had signal %s, "
1340 "but it is in no pass state\n",
1341 target_pid_to_str (lp->ptid).c_str (),
1342 gdb_signal_to_string (signo));
1343 }
1344 else
1345 {
1346 if (debug_linux_nat)
1347 fprintf_unfiltered (gdb_stdlog,
1348 "GPT: lwp %s has pending signal %s\n",
1349 target_pid_to_str (lp->ptid).c_str (),
1350 gdb_signal_to_string (signo));
1351
1352 return gdb_signal_to_host (signo);
1353 }
1354
1355 return 0;
1356 }
1357
1358 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1359 signal number that should be passed to the LWP when detaching.
1360 Otherwise pass any pending signal the LWP may have, if any. */
1361
1362 static void
1363 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1364 {
1365 int lwpid = lp->ptid.lwp ();
1366 int signo;
1367
1368 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1369
1370 if (debug_linux_nat && lp->status)
1371 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1372 strsignal (WSTOPSIG (lp->status)),
1373 target_pid_to_str (lp->ptid).c_str ());
1374
1375 /* If there is a pending SIGSTOP, get rid of it. */
1376 if (lp->signalled)
1377 {
1378 if (debug_linux_nat)
1379 fprintf_unfiltered (gdb_stdlog,
1380 "DC: Sending SIGCONT to %s\n",
1381 target_pid_to_str (lp->ptid).c_str ());
1382
1383 kill_lwp (lwpid, SIGCONT);
1384 lp->signalled = 0;
1385 }
1386
1387 if (signo_p == NULL)
1388 {
1389 /* Pass on any pending signal for this LWP. */
1390 signo = get_detach_signal (lp);
1391 }
1392 else
1393 signo = *signo_p;
1394
1395 /* Preparing to resume may try to write registers, and fail if the
1396 lwp is zombie. If that happens, ignore the error. We'll handle
1397 it below, when detach fails with ESRCH. */
1398 try
1399 {
1400 linux_target->low_prepare_to_resume (lp);
1401 }
1402 catch (const gdb_exception_error &ex)
1403 {
1404 if (!check_ptrace_stopped_lwp_gone (lp))
1405 throw;
1406 }
1407
1408 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1409 {
1410 int save_errno = errno;
1411
1412 /* We know the thread exists, so ESRCH must mean the lwp is
1413 zombie. This can happen if one of the already-detached
1414 threads exits the whole thread group. In that case we're
1415 still attached, and must reap the lwp. */
1416 if (save_errno == ESRCH)
1417 {
1418 int ret, status;
1419
1420 ret = my_waitpid (lwpid, &status, __WALL);
1421 if (ret == -1)
1422 {
1423 warning (_("Couldn't reap LWP %d while detaching: %s"),
1424 lwpid, strerror (errno));
1425 }
1426 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1427 {
1428 warning (_("Reaping LWP %d while detaching "
1429 "returned unexpected status 0x%x"),
1430 lwpid, status);
1431 }
1432 }
1433 else
1434 {
1435 error (_("Can't detach %s: %s"),
1436 target_pid_to_str (lp->ptid).c_str (),
1437 safe_strerror (save_errno));
1438 }
1439 }
1440 else if (debug_linux_nat)
1441 {
1442 fprintf_unfiltered (gdb_stdlog,
1443 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1444 target_pid_to_str (lp->ptid).c_str (),
1445 strsignal (signo));
1446 }
1447
1448 delete_lwp (lp->ptid);
1449 }
1450
1451 static int
1452 detach_callback (struct lwp_info *lp)
1453 {
1454 /* We don't actually detach from the thread group leader just yet.
1455 If the thread group exits, we must reap the zombie clone lwps
1456 before we're able to reap the leader. */
1457 if (lp->ptid.lwp () != lp->ptid.pid ())
1458 detach_one_lwp (lp, NULL);
1459 return 0;
1460 }
1461
1462 void
1463 linux_nat_target::detach (inferior *inf, int from_tty)
1464 {
1465 struct lwp_info *main_lwp;
1466 int pid = inf->pid;
1467
1468 /* Don't unregister from the event loop, as there may be other
1469 inferiors running. */
1470
1471 /* Stop all threads before detaching. ptrace requires that the
1472 thread is stopped to sucessfully detach. */
1473 iterate_over_lwps (ptid_t (pid), stop_callback);
1474 /* ... and wait until all of them have reported back that
1475 they're no longer running. */
1476 iterate_over_lwps (ptid_t (pid), stop_wait_callback);
1477
1478 iterate_over_lwps (ptid_t (pid), detach_callback);
1479
1480 /* Only the initial process should be left right now. */
1481 gdb_assert (num_lwps (pid) == 1);
1482
1483 main_lwp = find_lwp_pid (ptid_t (pid));
1484
1485 if (forks_exist_p ())
1486 {
1487 /* Multi-fork case. The current inferior_ptid is being detached
1488 from, but there are other viable forks to debug. Detach from
1489 the current fork, and context-switch to the first
1490 available. */
1491 linux_fork_detach (from_tty);
1492 }
1493 else
1494 {
1495 target_announce_detach (from_tty);
1496
1497 /* Pass on any pending signal for the last LWP. */
1498 int signo = get_detach_signal (main_lwp);
1499
1500 detach_one_lwp (main_lwp, &signo);
1501
1502 detach_success (inf);
1503 }
1504 }
1505
1506 /* Resume execution of the inferior process. If STEP is nonzero,
1507 single-step it. If SIGNAL is nonzero, give it that signal. */
1508
1509 static void
1510 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1511 enum gdb_signal signo)
1512 {
1513 lp->step = step;
1514
1515 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1516 We only presently need that if the LWP is stepped though (to
1517 handle the case of stepping a breakpoint instruction). */
1518 if (step)
1519 {
1520 struct regcache *regcache = get_thread_regcache (lp->ptid);
1521
1522 lp->stop_pc = regcache_read_pc (regcache);
1523 }
1524 else
1525 lp->stop_pc = 0;
1526
1527 linux_target->low_prepare_to_resume (lp);
1528 linux_target->low_resume (lp->ptid, step, signo);
1529
1530 /* Successfully resumed. Clear state that no longer makes sense,
1531 and mark the LWP as running. Must not do this before resuming
1532 otherwise if that fails other code will be confused. E.g., we'd
1533 later try to stop the LWP and hang forever waiting for a stop
1534 status. Note that we must not throw after this is cleared,
1535 otherwise handle_zombie_lwp_error would get confused. */
1536 lp->stopped = 0;
1537 lp->core = -1;
1538 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1539 registers_changed_ptid (lp->ptid);
1540 }
1541
1542 /* Called when we try to resume a stopped LWP and that errors out. If
1543 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1544 or about to become), discard the error, clear any pending status
1545 the LWP may have, and return true (we'll collect the exit status
1546 soon enough). Otherwise, return false. */
1547
1548 static int
1549 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1550 {
1551 /* If we get an error after resuming the LWP successfully, we'd
1552 confuse !T state for the LWP being gone. */
1553 gdb_assert (lp->stopped);
1554
1555 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1556 because even if ptrace failed with ESRCH, the tracee may be "not
1557 yet fully dead", but already refusing ptrace requests. In that
1558 case the tracee has 'R (Running)' state for a little bit
1559 (observed in Linux 3.18). See also the note on ESRCH in the
1560 ptrace(2) man page. Instead, check whether the LWP has any state
1561 other than ptrace-stopped. */
1562
1563 /* Don't assume anything if /proc/PID/status can't be read. */
1564 if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0)
1565 {
1566 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1567 lp->status = 0;
1568 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1569 return 1;
1570 }
1571 return 0;
1572 }
1573
1574 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1575 disappears while we try to resume it. */
1576
1577 static void
1578 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1579 {
1580 try
1581 {
1582 linux_resume_one_lwp_throw (lp, step, signo);
1583 }
1584 catch (const gdb_exception_error &ex)
1585 {
1586 if (!check_ptrace_stopped_lwp_gone (lp))
1587 throw;
1588 }
1589 }
1590
1591 /* Resume LP. */
1592
1593 static void
1594 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1595 {
1596 if (lp->stopped)
1597 {
1598 struct inferior *inf = find_inferior_ptid (lp->ptid);
1599
1600 if (inf->vfork_child != NULL)
1601 {
1602 if (debug_linux_nat)
1603 fprintf_unfiltered (gdb_stdlog,
1604 "RC: Not resuming %s (vfork parent)\n",
1605 target_pid_to_str (lp->ptid).c_str ());
1606 }
1607 else if (!lwp_status_pending_p (lp))
1608 {
1609 if (debug_linux_nat)
1610 fprintf_unfiltered (gdb_stdlog,
1611 "RC: Resuming sibling %s, %s, %s\n",
1612 target_pid_to_str (lp->ptid).c_str (),
1613 (signo != GDB_SIGNAL_0
1614 ? strsignal (gdb_signal_to_host (signo))
1615 : "0"),
1616 step ? "step" : "resume");
1617
1618 linux_resume_one_lwp (lp, step, signo);
1619 }
1620 else
1621 {
1622 if (debug_linux_nat)
1623 fprintf_unfiltered (gdb_stdlog,
1624 "RC: Not resuming sibling %s (has pending)\n",
1625 target_pid_to_str (lp->ptid).c_str ());
1626 }
1627 }
1628 else
1629 {
1630 if (debug_linux_nat)
1631 fprintf_unfiltered (gdb_stdlog,
1632 "RC: Not resuming sibling %s (not stopped)\n",
1633 target_pid_to_str (lp->ptid).c_str ());
1634 }
1635 }
1636
1637 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1638 Resume LWP with the last stop signal, if it is in pass state. */
1639
1640 static int
1641 linux_nat_resume_callback (struct lwp_info *lp, struct lwp_info *except)
1642 {
1643 enum gdb_signal signo = GDB_SIGNAL_0;
1644
1645 if (lp == except)
1646 return 0;
1647
1648 if (lp->stopped)
1649 {
1650 struct thread_info *thread;
1651
1652 thread = find_thread_ptid (lp->ptid);
1653 if (thread != NULL)
1654 {
1655 signo = thread->suspend.stop_signal;
1656 thread->suspend.stop_signal = GDB_SIGNAL_0;
1657 }
1658 }
1659
1660 resume_lwp (lp, 0, signo);
1661 return 0;
1662 }
1663
1664 static int
1665 resume_clear_callback (struct lwp_info *lp)
1666 {
1667 lp->resumed = 0;
1668 lp->last_resume_kind = resume_stop;
1669 return 0;
1670 }
1671
1672 static int
1673 resume_set_callback (struct lwp_info *lp)
1674 {
1675 lp->resumed = 1;
1676 lp->last_resume_kind = resume_continue;
1677 return 0;
1678 }
1679
1680 void
1681 linux_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1682 {
1683 struct lwp_info *lp;
1684 int resume_many;
1685
1686 if (debug_linux_nat)
1687 fprintf_unfiltered (gdb_stdlog,
1688 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1689 step ? "step" : "resume",
1690 target_pid_to_str (ptid).c_str (),
1691 (signo != GDB_SIGNAL_0
1692 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1693 target_pid_to_str (inferior_ptid).c_str ());
1694
1695 /* A specific PTID means `step only this process id'. */
1696 resume_many = (minus_one_ptid == ptid
1697 || ptid.is_pid ());
1698
1699 /* Mark the lwps we're resuming as resumed. */
1700 iterate_over_lwps (ptid, resume_set_callback);
1701
1702 /* See if it's the current inferior that should be handled
1703 specially. */
1704 if (resume_many)
1705 lp = find_lwp_pid (inferior_ptid);
1706 else
1707 lp = find_lwp_pid (ptid);
1708 gdb_assert (lp != NULL);
1709
1710 /* Remember if we're stepping. */
1711 lp->last_resume_kind = step ? resume_step : resume_continue;
1712
1713 /* If we have a pending wait status for this thread, there is no
1714 point in resuming the process. But first make sure that
1715 linux_nat_wait won't preemptively handle the event - we
1716 should never take this short-circuit if we are going to
1717 leave LP running, since we have skipped resuming all the
1718 other threads. This bit of code needs to be synchronized
1719 with linux_nat_wait. */
1720
1721 if (lp->status && WIFSTOPPED (lp->status))
1722 {
1723 if (!lp->step
1724 && WSTOPSIG (lp->status)
1725 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1726 {
1727 if (debug_linux_nat)
1728 fprintf_unfiltered (gdb_stdlog,
1729 "LLR: Not short circuiting for ignored "
1730 "status 0x%x\n", lp->status);
1731
1732 /* FIXME: What should we do if we are supposed to continue
1733 this thread with a signal? */
1734 gdb_assert (signo == GDB_SIGNAL_0);
1735 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1736 lp->status = 0;
1737 }
1738 }
1739
1740 if (lwp_status_pending_p (lp))
1741 {
1742 /* FIXME: What should we do if we are supposed to continue
1743 this thread with a signal? */
1744 gdb_assert (signo == GDB_SIGNAL_0);
1745
1746 if (debug_linux_nat)
1747 fprintf_unfiltered (gdb_stdlog,
1748 "LLR: Short circuiting for status 0x%x\n",
1749 lp->status);
1750
1751 if (target_can_async_p ())
1752 {
1753 target_async (1);
1754 /* Tell the event loop we have something to process. */
1755 async_file_mark ();
1756 }
1757 return;
1758 }
1759
1760 if (resume_many)
1761 iterate_over_lwps (ptid, [=] (struct lwp_info *info)
1762 {
1763 return linux_nat_resume_callback (info, lp);
1764 });
1765
1766 if (debug_linux_nat)
1767 fprintf_unfiltered (gdb_stdlog,
1768 "LLR: %s %s, %s (resume event thread)\n",
1769 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1770 target_pid_to_str (lp->ptid).c_str (),
1771 (signo != GDB_SIGNAL_0
1772 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1773
1774 linux_resume_one_lwp (lp, step, signo);
1775
1776 if (target_can_async_p ())
1777 target_async (1);
1778 }
1779
1780 /* Send a signal to an LWP. */
1781
1782 static int
1783 kill_lwp (int lwpid, int signo)
1784 {
1785 int ret;
1786
1787 errno = 0;
1788 ret = syscall (__NR_tkill, lwpid, signo);
1789 if (errno == ENOSYS)
1790 {
1791 /* If tkill fails, then we are not using nptl threads, a
1792 configuration we no longer support. */
1793 perror_with_name (("tkill"));
1794 }
1795 return ret;
1796 }
1797
1798 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1799 event, check if the core is interested in it: if not, ignore the
1800 event, and keep waiting; otherwise, we need to toggle the LWP's
1801 syscall entry/exit status, since the ptrace event itself doesn't
1802 indicate it, and report the trap to higher layers. */
1803
1804 static int
1805 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1806 {
1807 struct target_waitstatus *ourstatus = &lp->waitstatus;
1808 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1809 thread_info *thread = find_thread_ptid (lp->ptid);
1810 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread);
1811
1812 if (stopping)
1813 {
1814 /* If we're stopping threads, there's a SIGSTOP pending, which
1815 makes it so that the LWP reports an immediate syscall return,
1816 followed by the SIGSTOP. Skip seeing that "return" using
1817 PTRACE_CONT directly, and let stop_wait_callback collect the
1818 SIGSTOP. Later when the thread is resumed, a new syscall
1819 entry event. If we didn't do this (and returned 0), we'd
1820 leave a syscall entry pending, and our caller, by using
1821 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1822 itself. Later, when the user re-resumes this LWP, we'd see
1823 another syscall entry event and we'd mistake it for a return.
1824
1825 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1826 (leaving immediately with LWP->signalled set, without issuing
1827 a PTRACE_CONT), it would still be problematic to leave this
1828 syscall enter pending, as later when the thread is resumed,
1829 it would then see the same syscall exit mentioned above,
1830 followed by the delayed SIGSTOP, while the syscall didn't
1831 actually get to execute. It seems it would be even more
1832 confusing to the user. */
1833
1834 if (debug_linux_nat)
1835 fprintf_unfiltered (gdb_stdlog,
1836 "LHST: ignoring syscall %d "
1837 "for LWP %ld (stopping threads), "
1838 "resuming with PTRACE_CONT for SIGSTOP\n",
1839 syscall_number,
1840 lp->ptid.lwp ());
1841
1842 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1843 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
1844 lp->stopped = 0;
1845 return 1;
1846 }
1847
1848 /* Always update the entry/return state, even if this particular
1849 syscall isn't interesting to the core now. In async mode,
1850 the user could install a new catchpoint for this syscall
1851 between syscall enter/return, and we'll need to know to
1852 report a syscall return if that happens. */
1853 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1854 ? TARGET_WAITKIND_SYSCALL_RETURN
1855 : TARGET_WAITKIND_SYSCALL_ENTRY);
1856
1857 if (catch_syscall_enabled ())
1858 {
1859 if (catching_syscall_number (syscall_number))
1860 {
1861 /* Alright, an event to report. */
1862 ourstatus->kind = lp->syscall_state;
1863 ourstatus->value.syscall_number = syscall_number;
1864
1865 if (debug_linux_nat)
1866 fprintf_unfiltered (gdb_stdlog,
1867 "LHST: stopping for %s of syscall %d"
1868 " for LWP %ld\n",
1869 lp->syscall_state
1870 == TARGET_WAITKIND_SYSCALL_ENTRY
1871 ? "entry" : "return",
1872 syscall_number,
1873 lp->ptid.lwp ());
1874 return 0;
1875 }
1876
1877 if (debug_linux_nat)
1878 fprintf_unfiltered (gdb_stdlog,
1879 "LHST: ignoring %s of syscall %d "
1880 "for LWP %ld\n",
1881 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1882 ? "entry" : "return",
1883 syscall_number,
1884 lp->ptid.lwp ());
1885 }
1886 else
1887 {
1888 /* If we had been syscall tracing, and hence used PT_SYSCALL
1889 before on this LWP, it could happen that the user removes all
1890 syscall catchpoints before we get to process this event.
1891 There are two noteworthy issues here:
1892
1893 - When stopped at a syscall entry event, resuming with
1894 PT_STEP still resumes executing the syscall and reports a
1895 syscall return.
1896
1897 - Only PT_SYSCALL catches syscall enters. If we last
1898 single-stepped this thread, then this event can't be a
1899 syscall enter. If we last single-stepped this thread, this
1900 has to be a syscall exit.
1901
1902 The points above mean that the next resume, be it PT_STEP or
1903 PT_CONTINUE, can not trigger a syscall trace event. */
1904 if (debug_linux_nat)
1905 fprintf_unfiltered (gdb_stdlog,
1906 "LHST: caught syscall event "
1907 "with no syscall catchpoints."
1908 " %d for LWP %ld, ignoring\n",
1909 syscall_number,
1910 lp->ptid.lwp ());
1911 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1912 }
1913
1914 /* The core isn't interested in this event. For efficiency, avoid
1915 stopping all threads only to have the core resume them all again.
1916 Since we're not stopping threads, if we're still syscall tracing
1917 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1918 subsequent syscall. Simply resume using the inf-ptrace layer,
1919 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1920
1921 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1922 return 1;
1923 }
1924
1925 /* Handle a GNU/Linux extended wait response. If we see a clone
1926 event, we need to add the new LWP to our list (and not report the
1927 trap to higher layers). This function returns non-zero if the
1928 event should be ignored and we should wait again. If STOPPING is
1929 true, the new LWP remains stopped, otherwise it is continued. */
1930
1931 static int
1932 linux_handle_extended_wait (struct lwp_info *lp, int status)
1933 {
1934 int pid = lp->ptid.lwp ();
1935 struct target_waitstatus *ourstatus = &lp->waitstatus;
1936 int event = linux_ptrace_get_extended_event (status);
1937
1938 /* All extended events we currently use are mid-syscall. Only
1939 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1940 you have to be using PTRACE_SEIZE to get that. */
1941 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1942
1943 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1944 || event == PTRACE_EVENT_CLONE)
1945 {
1946 unsigned long new_pid;
1947 int ret;
1948
1949 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1950
1951 /* If we haven't already seen the new PID stop, wait for it now. */
1952 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1953 {
1954 /* The new child has a pending SIGSTOP. We can't affect it until it
1955 hits the SIGSTOP, but we're already attached. */
1956 ret = my_waitpid (new_pid, &status, __WALL);
1957 if (ret == -1)
1958 perror_with_name (_("waiting for new child"));
1959 else if (ret != new_pid)
1960 internal_error (__FILE__, __LINE__,
1961 _("wait returned unexpected PID %d"), ret);
1962 else if (!WIFSTOPPED (status))
1963 internal_error (__FILE__, __LINE__,
1964 _("wait returned unexpected status 0x%x"), status);
1965 }
1966
1967 ourstatus->value.related_pid = ptid_t (new_pid, new_pid, 0);
1968
1969 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1970 {
1971 /* The arch-specific native code may need to know about new
1972 forks even if those end up never mapped to an
1973 inferior. */
1974 linux_target->low_new_fork (lp, new_pid);
1975 }
1976
1977 if (event == PTRACE_EVENT_FORK
1978 && linux_fork_checkpointing_p (lp->ptid.pid ()))
1979 {
1980 /* Handle checkpointing by linux-fork.c here as a special
1981 case. We don't want the follow-fork-mode or 'catch fork'
1982 to interfere with this. */
1983
1984 /* This won't actually modify the breakpoint list, but will
1985 physically remove the breakpoints from the child. */
1986 detach_breakpoints (ptid_t (new_pid, new_pid, 0));
1987
1988 /* Retain child fork in ptrace (stopped) state. */
1989 if (!find_fork_pid (new_pid))
1990 add_fork (new_pid);
1991
1992 /* Report as spurious, so that infrun doesn't want to follow
1993 this fork. We're actually doing an infcall in
1994 linux-fork.c. */
1995 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1996
1997 /* Report the stop to the core. */
1998 return 0;
1999 }
2000
2001 if (event == PTRACE_EVENT_FORK)
2002 ourstatus->kind = TARGET_WAITKIND_FORKED;
2003 else if (event == PTRACE_EVENT_VFORK)
2004 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2005 else if (event == PTRACE_EVENT_CLONE)
2006 {
2007 struct lwp_info *new_lp;
2008
2009 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2010
2011 if (debug_linux_nat)
2012 fprintf_unfiltered (gdb_stdlog,
2013 "LHEW: Got clone event "
2014 "from LWP %d, new child is LWP %ld\n",
2015 pid, new_pid);
2016
2017 new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid, 0));
2018 new_lp->stopped = 1;
2019 new_lp->resumed = 1;
2020
2021 /* If the thread_db layer is active, let it record the user
2022 level thread id and status, and add the thread to GDB's
2023 list. */
2024 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2025 {
2026 /* The process is not using thread_db. Add the LWP to
2027 GDB's list. */
2028 target_post_attach (new_lp->ptid.lwp ());
2029 add_thread (new_lp->ptid);
2030 }
2031
2032 /* Even if we're stopping the thread for some reason
2033 internal to this module, from the perspective of infrun
2034 and the user/frontend, this new thread is running until
2035 it next reports a stop. */
2036 set_running (new_lp->ptid, 1);
2037 set_executing (new_lp->ptid, 1);
2038
2039 if (WSTOPSIG (status) != SIGSTOP)
2040 {
2041 /* This can happen if someone starts sending signals to
2042 the new thread before it gets a chance to run, which
2043 have a lower number than SIGSTOP (e.g. SIGUSR1).
2044 This is an unlikely case, and harder to handle for
2045 fork / vfork than for clone, so we do not try - but
2046 we handle it for clone events here. */
2047
2048 new_lp->signalled = 1;
2049
2050 /* We created NEW_LP so it cannot yet contain STATUS. */
2051 gdb_assert (new_lp->status == 0);
2052
2053 /* Save the wait status to report later. */
2054 if (debug_linux_nat)
2055 fprintf_unfiltered (gdb_stdlog,
2056 "LHEW: waitpid of new LWP %ld, "
2057 "saving status %s\n",
2058 (long) new_lp->ptid.lwp (),
2059 status_to_str (status));
2060 new_lp->status = status;
2061 }
2062 else if (report_thread_events)
2063 {
2064 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2065 new_lp->status = status;
2066 }
2067
2068 return 1;
2069 }
2070
2071 return 0;
2072 }
2073
2074 if (event == PTRACE_EVENT_EXEC)
2075 {
2076 if (debug_linux_nat)
2077 fprintf_unfiltered (gdb_stdlog,
2078 "LHEW: Got exec event from LWP %ld\n",
2079 lp->ptid.lwp ());
2080
2081 ourstatus->kind = TARGET_WAITKIND_EXECD;
2082 ourstatus->value.execd_pathname
2083 = xstrdup (linux_proc_pid_to_exec_file (pid));
2084
2085 /* The thread that execed must have been resumed, but, when a
2086 thread execs, it changes its tid to the tgid, and the old
2087 tgid thread might have not been resumed. */
2088 lp->resumed = 1;
2089 return 0;
2090 }
2091
2092 if (event == PTRACE_EVENT_VFORK_DONE)
2093 {
2094 if (current_inferior ()->waiting_for_vfork_done)
2095 {
2096 if (debug_linux_nat)
2097 fprintf_unfiltered (gdb_stdlog,
2098 "LHEW: Got expected PTRACE_EVENT_"
2099 "VFORK_DONE from LWP %ld: stopping\n",
2100 lp->ptid.lwp ());
2101
2102 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2103 return 0;
2104 }
2105
2106 if (debug_linux_nat)
2107 fprintf_unfiltered (gdb_stdlog,
2108 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2109 "from LWP %ld: ignoring\n",
2110 lp->ptid.lwp ());
2111 return 1;
2112 }
2113
2114 internal_error (__FILE__, __LINE__,
2115 _("unknown ptrace event %d"), event);
2116 }
2117
2118 /* Suspend waiting for a signal. We're mostly interested in
2119 SIGCHLD/SIGINT. */
2120
2121 static void
2122 wait_for_signal ()
2123 {
2124 if (debug_linux_nat)
2125 fprintf_unfiltered (gdb_stdlog, "linux-nat: about to sigsuspend\n");
2126 sigsuspend (&suspend_mask);
2127
2128 /* If the quit flag is set, it means that the user pressed Ctrl-C
2129 and we're debugging a process that is running on a separate
2130 terminal, so we must forward the Ctrl-C to the inferior. (If the
2131 inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2132 inferior directly.) We must do this here because functions that
2133 need to block waiting for a signal loop forever until there's an
2134 event to report before returning back to the event loop. */
2135 if (!target_terminal::is_ours ())
2136 {
2137 if (check_quit_flag ())
2138 target_pass_ctrlc ();
2139 }
2140 }
2141
2142 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2143 exited. */
2144
2145 static int
2146 wait_lwp (struct lwp_info *lp)
2147 {
2148 pid_t pid;
2149 int status = 0;
2150 int thread_dead = 0;
2151 sigset_t prev_mask;
2152
2153 gdb_assert (!lp->stopped);
2154 gdb_assert (lp->status == 0);
2155
2156 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2157 block_child_signals (&prev_mask);
2158
2159 for (;;)
2160 {
2161 pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG);
2162 if (pid == -1 && errno == ECHILD)
2163 {
2164 /* The thread has previously exited. We need to delete it
2165 now because if this was a non-leader thread execing, we
2166 won't get an exit event. See comments on exec events at
2167 the top of the file. */
2168 thread_dead = 1;
2169 if (debug_linux_nat)
2170 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2171 target_pid_to_str (lp->ptid).c_str ());
2172 }
2173 if (pid != 0)
2174 break;
2175
2176 /* Bugs 10970, 12702.
2177 Thread group leader may have exited in which case we'll lock up in
2178 waitpid if there are other threads, even if they are all zombies too.
2179 Basically, we're not supposed to use waitpid this way.
2180 tkill(pid,0) cannot be used here as it gets ESRCH for both
2181 for zombie and running processes.
2182
2183 As a workaround, check if we're waiting for the thread group leader and
2184 if it's a zombie, and avoid calling waitpid if it is.
2185
2186 This is racy, what if the tgl becomes a zombie right after we check?
2187 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2188 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2189
2190 if (lp->ptid.pid () == lp->ptid.lwp ()
2191 && linux_proc_pid_is_zombie (lp->ptid.lwp ()))
2192 {
2193 thread_dead = 1;
2194 if (debug_linux_nat)
2195 fprintf_unfiltered (gdb_stdlog,
2196 "WL: Thread group leader %s vanished.\n",
2197 target_pid_to_str (lp->ptid).c_str ());
2198 break;
2199 }
2200
2201 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2202 get invoked despite our caller had them intentionally blocked by
2203 block_child_signals. This is sensitive only to the loop of
2204 linux_nat_wait_1 and there if we get called my_waitpid gets called
2205 again before it gets to sigsuspend so we can safely let the handlers
2206 get executed here. */
2207 wait_for_signal ();
2208 }
2209
2210 restore_child_signals_mask (&prev_mask);
2211
2212 if (!thread_dead)
2213 {
2214 gdb_assert (pid == lp->ptid.lwp ());
2215
2216 if (debug_linux_nat)
2217 {
2218 fprintf_unfiltered (gdb_stdlog,
2219 "WL: waitpid %s received %s\n",
2220 target_pid_to_str (lp->ptid).c_str (),
2221 status_to_str (status));
2222 }
2223
2224 /* Check if the thread has exited. */
2225 if (WIFEXITED (status) || WIFSIGNALED (status))
2226 {
2227 if (report_thread_events
2228 || lp->ptid.pid () == lp->ptid.lwp ())
2229 {
2230 if (debug_linux_nat)
2231 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2232 lp->ptid.pid ());
2233
2234 /* If this is the leader exiting, it means the whole
2235 process is gone. Store the status to report to the
2236 core. Store it in lp->waitstatus, because lp->status
2237 would be ambiguous (W_EXITCODE(0,0) == 0). */
2238 store_waitstatus (&lp->waitstatus, status);
2239 return 0;
2240 }
2241
2242 thread_dead = 1;
2243 if (debug_linux_nat)
2244 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2245 target_pid_to_str (lp->ptid).c_str ());
2246 }
2247 }
2248
2249 if (thread_dead)
2250 {
2251 exit_lwp (lp);
2252 return 0;
2253 }
2254
2255 gdb_assert (WIFSTOPPED (status));
2256 lp->stopped = 1;
2257
2258 if (lp->must_set_ptrace_flags)
2259 {
2260 struct inferior *inf = find_inferior_pid (lp->ptid.pid ());
2261 int options = linux_nat_ptrace_options (inf->attach_flag);
2262
2263 linux_enable_event_reporting (lp->ptid.lwp (), options);
2264 lp->must_set_ptrace_flags = 0;
2265 }
2266
2267 /* Handle GNU/Linux's syscall SIGTRAPs. */
2268 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2269 {
2270 /* No longer need the sysgood bit. The ptrace event ends up
2271 recorded in lp->waitstatus if we care for it. We can carry
2272 on handling the event like a regular SIGTRAP from here
2273 on. */
2274 status = W_STOPCODE (SIGTRAP);
2275 if (linux_handle_syscall_trap (lp, 1))
2276 return wait_lwp (lp);
2277 }
2278 else
2279 {
2280 /* Almost all other ptrace-stops are known to be outside of system
2281 calls, with further exceptions in linux_handle_extended_wait. */
2282 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2283 }
2284
2285 /* Handle GNU/Linux's extended waitstatus for trace events. */
2286 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2287 && linux_is_extended_waitstatus (status))
2288 {
2289 if (debug_linux_nat)
2290 fprintf_unfiltered (gdb_stdlog,
2291 "WL: Handling extended status 0x%06x\n",
2292 status);
2293 linux_handle_extended_wait (lp, status);
2294 return 0;
2295 }
2296
2297 return status;
2298 }
2299
2300 /* Send a SIGSTOP to LP. */
2301
2302 static int
2303 stop_callback (struct lwp_info *lp)
2304 {
2305 if (!lp->stopped && !lp->signalled)
2306 {
2307 int ret;
2308
2309 if (debug_linux_nat)
2310 {
2311 fprintf_unfiltered (gdb_stdlog,
2312 "SC: kill %s **<SIGSTOP>**\n",
2313 target_pid_to_str (lp->ptid).c_str ());
2314 }
2315 errno = 0;
2316 ret = kill_lwp (lp->ptid.lwp (), SIGSTOP);
2317 if (debug_linux_nat)
2318 {
2319 fprintf_unfiltered (gdb_stdlog,
2320 "SC: lwp kill %d %s\n",
2321 ret,
2322 errno ? safe_strerror (errno) : "ERRNO-OK");
2323 }
2324
2325 lp->signalled = 1;
2326 gdb_assert (lp->status == 0);
2327 }
2328
2329 return 0;
2330 }
2331
2332 /* Request a stop on LWP. */
2333
2334 void
2335 linux_stop_lwp (struct lwp_info *lwp)
2336 {
2337 stop_callback (lwp);
2338 }
2339
2340 /* See linux-nat.h */
2341
2342 void
2343 linux_stop_and_wait_all_lwps (void)
2344 {
2345 /* Stop all LWP's ... */
2346 iterate_over_lwps (minus_one_ptid, stop_callback);
2347
2348 /* ... and wait until all of them have reported back that
2349 they're no longer running. */
2350 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
2351 }
2352
2353 /* See linux-nat.h */
2354
2355 void
2356 linux_unstop_all_lwps (void)
2357 {
2358 iterate_over_lwps (minus_one_ptid,
2359 [] (struct lwp_info *info)
2360 {
2361 return resume_stopped_resumed_lwps (info, minus_one_ptid);
2362 });
2363 }
2364
2365 /* Return non-zero if LWP PID has a pending SIGINT. */
2366
2367 static int
2368 linux_nat_has_pending_sigint (int pid)
2369 {
2370 sigset_t pending, blocked, ignored;
2371
2372 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2373
2374 if (sigismember (&pending, SIGINT)
2375 && !sigismember (&ignored, SIGINT))
2376 return 1;
2377
2378 return 0;
2379 }
2380
2381 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2382
2383 static int
2384 set_ignore_sigint (struct lwp_info *lp)
2385 {
2386 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2387 flag to consume the next one. */
2388 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2389 && WSTOPSIG (lp->status) == SIGINT)
2390 lp->status = 0;
2391 else
2392 lp->ignore_sigint = 1;
2393
2394 return 0;
2395 }
2396
2397 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2398 This function is called after we know the LWP has stopped; if the LWP
2399 stopped before the expected SIGINT was delivered, then it will never have
2400 arrived. Also, if the signal was delivered to a shared queue and consumed
2401 by a different thread, it will never be delivered to this LWP. */
2402
2403 static void
2404 maybe_clear_ignore_sigint (struct lwp_info *lp)
2405 {
2406 if (!lp->ignore_sigint)
2407 return;
2408
2409 if (!linux_nat_has_pending_sigint (lp->ptid.lwp ()))
2410 {
2411 if (debug_linux_nat)
2412 fprintf_unfiltered (gdb_stdlog,
2413 "MCIS: Clearing bogus flag for %s\n",
2414 target_pid_to_str (lp->ptid).c_str ());
2415 lp->ignore_sigint = 0;
2416 }
2417 }
2418
2419 /* Fetch the possible triggered data watchpoint info and store it in
2420 LP.
2421
2422 On some archs, like x86, that use debug registers to set
2423 watchpoints, it's possible that the way to know which watched
2424 address trapped, is to check the register that is used to select
2425 which address to watch. Problem is, between setting the watchpoint
2426 and reading back which data address trapped, the user may change
2427 the set of watchpoints, and, as a consequence, GDB changes the
2428 debug registers in the inferior. To avoid reading back a stale
2429 stopped-data-address when that happens, we cache in LP the fact
2430 that a watchpoint trapped, and the corresponding data address, as
2431 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2432 registers meanwhile, we have the cached data we can rely on. */
2433
2434 static int
2435 check_stopped_by_watchpoint (struct lwp_info *lp)
2436 {
2437 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2438 inferior_ptid = lp->ptid;
2439
2440 if (linux_target->low_stopped_by_watchpoint ())
2441 {
2442 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2443 lp->stopped_data_address_p
2444 = linux_target->low_stopped_data_address (&lp->stopped_data_address);
2445 }
2446
2447 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2448 }
2449
2450 /* Returns true if the LWP had stopped for a watchpoint. */
2451
2452 bool
2453 linux_nat_target::stopped_by_watchpoint ()
2454 {
2455 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2456
2457 gdb_assert (lp != NULL);
2458
2459 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2460 }
2461
2462 bool
2463 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2464 {
2465 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2466
2467 gdb_assert (lp != NULL);
2468
2469 *addr_p = lp->stopped_data_address;
2470
2471 return lp->stopped_data_address_p;
2472 }
2473
2474 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2475
2476 bool
2477 linux_nat_target::low_status_is_event (int status)
2478 {
2479 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2480 }
2481
2482 /* Wait until LP is stopped. */
2483
2484 static int
2485 stop_wait_callback (struct lwp_info *lp)
2486 {
2487 struct inferior *inf = find_inferior_ptid (lp->ptid);
2488
2489 /* If this is a vfork parent, bail out, it is not going to report
2490 any SIGSTOP until the vfork is done with. */
2491 if (inf->vfork_child != NULL)
2492 return 0;
2493
2494 if (!lp->stopped)
2495 {
2496 int status;
2497
2498 status = wait_lwp (lp);
2499 if (status == 0)
2500 return 0;
2501
2502 if (lp->ignore_sigint && WIFSTOPPED (status)
2503 && WSTOPSIG (status) == SIGINT)
2504 {
2505 lp->ignore_sigint = 0;
2506
2507 errno = 0;
2508 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
2509 lp->stopped = 0;
2510 if (debug_linux_nat)
2511 fprintf_unfiltered (gdb_stdlog,
2512 "PTRACE_CONT %s, 0, 0 (%s) "
2513 "(discarding SIGINT)\n",
2514 target_pid_to_str (lp->ptid).c_str (),
2515 errno ? safe_strerror (errno) : "OK");
2516
2517 return stop_wait_callback (lp);
2518 }
2519
2520 maybe_clear_ignore_sigint (lp);
2521
2522 if (WSTOPSIG (status) != SIGSTOP)
2523 {
2524 /* The thread was stopped with a signal other than SIGSTOP. */
2525
2526 if (debug_linux_nat)
2527 fprintf_unfiltered (gdb_stdlog,
2528 "SWC: Pending event %s in %s\n",
2529 status_to_str ((int) status),
2530 target_pid_to_str (lp->ptid).c_str ());
2531
2532 /* Save the sigtrap event. */
2533 lp->status = status;
2534 gdb_assert (lp->signalled);
2535 save_stop_reason (lp);
2536 }
2537 else
2538 {
2539 /* We caught the SIGSTOP that we intended to catch. */
2540
2541 if (debug_linux_nat)
2542 fprintf_unfiltered (gdb_stdlog,
2543 "SWC: Expected SIGSTOP caught for %s.\n",
2544 target_pid_to_str (lp->ptid).c_str ());
2545
2546 lp->signalled = 0;
2547
2548 /* If we are waiting for this stop so we can report the thread
2549 stopped then we need to record this status. Otherwise, we can
2550 now discard this stop event. */
2551 if (lp->last_resume_kind == resume_stop)
2552 {
2553 lp->status = status;
2554 save_stop_reason (lp);
2555 }
2556 }
2557 }
2558
2559 return 0;
2560 }
2561
2562 /* Return non-zero if LP has a wait status pending. Discard the
2563 pending event and resume the LWP if the event that originally
2564 caused the stop became uninteresting. */
2565
2566 static int
2567 status_callback (struct lwp_info *lp)
2568 {
2569 /* Only report a pending wait status if we pretend that this has
2570 indeed been resumed. */
2571 if (!lp->resumed)
2572 return 0;
2573
2574 if (!lwp_status_pending_p (lp))
2575 return 0;
2576
2577 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2578 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2579 {
2580 struct regcache *regcache = get_thread_regcache (lp->ptid);
2581 CORE_ADDR pc;
2582 int discard = 0;
2583
2584 pc = regcache_read_pc (regcache);
2585
2586 if (pc != lp->stop_pc)
2587 {
2588 if (debug_linux_nat)
2589 fprintf_unfiltered (gdb_stdlog,
2590 "SC: PC of %s changed. was=%s, now=%s\n",
2591 target_pid_to_str (lp->ptid).c_str (),
2592 paddress (target_gdbarch (), lp->stop_pc),
2593 paddress (target_gdbarch (), pc));
2594 discard = 1;
2595 }
2596
2597 #if !USE_SIGTRAP_SIGINFO
2598 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2599 {
2600 if (debug_linux_nat)
2601 fprintf_unfiltered (gdb_stdlog,
2602 "SC: previous breakpoint of %s, at %s gone\n",
2603 target_pid_to_str (lp->ptid).c_str (),
2604 paddress (target_gdbarch (), lp->stop_pc));
2605
2606 discard = 1;
2607 }
2608 #endif
2609
2610 if (discard)
2611 {
2612 if (debug_linux_nat)
2613 fprintf_unfiltered (gdb_stdlog,
2614 "SC: pending event of %s cancelled.\n",
2615 target_pid_to_str (lp->ptid).c_str ());
2616
2617 lp->status = 0;
2618 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2619 return 0;
2620 }
2621 }
2622
2623 return 1;
2624 }
2625
2626 /* Count the LWP's that have had events. */
2627
2628 static int
2629 count_events_callback (struct lwp_info *lp, int *count)
2630 {
2631 gdb_assert (count != NULL);
2632
2633 /* Select only resumed LWPs that have an event pending. */
2634 if (lp->resumed && lwp_status_pending_p (lp))
2635 (*count)++;
2636
2637 return 0;
2638 }
2639
2640 /* Select the LWP (if any) that is currently being single-stepped. */
2641
2642 static int
2643 select_singlestep_lwp_callback (struct lwp_info *lp)
2644 {
2645 if (lp->last_resume_kind == resume_step
2646 && lp->status != 0)
2647 return 1;
2648 else
2649 return 0;
2650 }
2651
2652 /* Returns true if LP has a status pending. */
2653
2654 static int
2655 lwp_status_pending_p (struct lwp_info *lp)
2656 {
2657 /* We check for lp->waitstatus in addition to lp->status, because we
2658 can have pending process exits recorded in lp->status and
2659 W_EXITCODE(0,0) happens to be 0. */
2660 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2661 }
2662
2663 /* Select the Nth LWP that has had an event. */
2664
2665 static int
2666 select_event_lwp_callback (struct lwp_info *lp, int *selector)
2667 {
2668 gdb_assert (selector != NULL);
2669
2670 /* Select only resumed LWPs that have an event pending. */
2671 if (lp->resumed && lwp_status_pending_p (lp))
2672 if ((*selector)-- == 0)
2673 return 1;
2674
2675 return 0;
2676 }
2677
2678 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2679 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2680 and save the result in the LWP's stop_reason field. If it stopped
2681 for a breakpoint, decrement the PC if necessary on the lwp's
2682 architecture. */
2683
2684 static void
2685 save_stop_reason (struct lwp_info *lp)
2686 {
2687 struct regcache *regcache;
2688 struct gdbarch *gdbarch;
2689 CORE_ADDR pc;
2690 CORE_ADDR sw_bp_pc;
2691 #if USE_SIGTRAP_SIGINFO
2692 siginfo_t siginfo;
2693 #endif
2694
2695 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2696 gdb_assert (lp->status != 0);
2697
2698 if (!linux_target->low_status_is_event (lp->status))
2699 return;
2700
2701 regcache = get_thread_regcache (lp->ptid);
2702 gdbarch = regcache->arch ();
2703
2704 pc = regcache_read_pc (regcache);
2705 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2706
2707 #if USE_SIGTRAP_SIGINFO
2708 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2709 {
2710 if (siginfo.si_signo == SIGTRAP)
2711 {
2712 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2713 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2714 {
2715 /* The si_code is ambiguous on this arch -- check debug
2716 registers. */
2717 if (!check_stopped_by_watchpoint (lp))
2718 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2719 }
2720 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2721 {
2722 /* If we determine the LWP stopped for a SW breakpoint,
2723 trust it. Particularly don't check watchpoint
2724 registers, because at least on s390, we'd find
2725 stopped-by-watchpoint as long as there's a watchpoint
2726 set. */
2727 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2728 }
2729 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2730 {
2731 /* This can indicate either a hardware breakpoint or
2732 hardware watchpoint. Check debug registers. */
2733 if (!check_stopped_by_watchpoint (lp))
2734 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2735 }
2736 else if (siginfo.si_code == TRAP_TRACE)
2737 {
2738 if (debug_linux_nat)
2739 fprintf_unfiltered (gdb_stdlog,
2740 "CSBB: %s stopped by trace\n",
2741 target_pid_to_str (lp->ptid).c_str ());
2742
2743 /* We may have single stepped an instruction that
2744 triggered a watchpoint. In that case, on some
2745 architectures (such as x86), instead of TRAP_HWBKPT,
2746 si_code indicates TRAP_TRACE, and we need to check
2747 the debug registers separately. */
2748 check_stopped_by_watchpoint (lp);
2749 }
2750 }
2751 }
2752 #else
2753 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2754 && software_breakpoint_inserted_here_p (regcache->aspace (),
2755 sw_bp_pc))
2756 {
2757 /* The LWP was either continued, or stepped a software
2758 breakpoint instruction. */
2759 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2760 }
2761
2762 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2763 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2764
2765 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2766 check_stopped_by_watchpoint (lp);
2767 #endif
2768
2769 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2770 {
2771 if (debug_linux_nat)
2772 fprintf_unfiltered (gdb_stdlog,
2773 "CSBB: %s stopped by software breakpoint\n",
2774 target_pid_to_str (lp->ptid).c_str ());
2775
2776 /* Back up the PC if necessary. */
2777 if (pc != sw_bp_pc)
2778 regcache_write_pc (regcache, sw_bp_pc);
2779
2780 /* Update this so we record the correct stop PC below. */
2781 pc = sw_bp_pc;
2782 }
2783 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2784 {
2785 if (debug_linux_nat)
2786 fprintf_unfiltered (gdb_stdlog,
2787 "CSBB: %s stopped by hardware breakpoint\n",
2788 target_pid_to_str (lp->ptid).c_str ());
2789 }
2790 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2791 {
2792 if (debug_linux_nat)
2793 fprintf_unfiltered (gdb_stdlog,
2794 "CSBB: %s stopped by hardware watchpoint\n",
2795 target_pid_to_str (lp->ptid).c_str ());
2796 }
2797
2798 lp->stop_pc = pc;
2799 }
2800
2801
2802 /* Returns true if the LWP had stopped for a software breakpoint. */
2803
2804 bool
2805 linux_nat_target::stopped_by_sw_breakpoint ()
2806 {
2807 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2808
2809 gdb_assert (lp != NULL);
2810
2811 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2812 }
2813
2814 /* Implement the supports_stopped_by_sw_breakpoint method. */
2815
2816 bool
2817 linux_nat_target::supports_stopped_by_sw_breakpoint ()
2818 {
2819 return USE_SIGTRAP_SIGINFO;
2820 }
2821
2822 /* Returns true if the LWP had stopped for a hardware
2823 breakpoint/watchpoint. */
2824
2825 bool
2826 linux_nat_target::stopped_by_hw_breakpoint ()
2827 {
2828 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2829
2830 gdb_assert (lp != NULL);
2831
2832 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2833 }
2834
2835 /* Implement the supports_stopped_by_hw_breakpoint method. */
2836
2837 bool
2838 linux_nat_target::supports_stopped_by_hw_breakpoint ()
2839 {
2840 return USE_SIGTRAP_SIGINFO;
2841 }
2842
2843 /* Select one LWP out of those that have events pending. */
2844
2845 static void
2846 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2847 {
2848 int num_events = 0;
2849 int random_selector;
2850 struct lwp_info *event_lp = NULL;
2851
2852 /* Record the wait status for the original LWP. */
2853 (*orig_lp)->status = *status;
2854
2855 /* In all-stop, give preference to the LWP that is being
2856 single-stepped. There will be at most one, and it will be the
2857 LWP that the core is most interested in. If we didn't do this,
2858 then we'd have to handle pending step SIGTRAPs somehow in case
2859 the core later continues the previously-stepped thread, as
2860 otherwise we'd report the pending SIGTRAP then, and the core, not
2861 having stepped the thread, wouldn't understand what the trap was
2862 for, and therefore would report it to the user as a random
2863 signal. */
2864 if (!target_is_non_stop_p ())
2865 {
2866 event_lp = iterate_over_lwps (filter, select_singlestep_lwp_callback);
2867 if (event_lp != NULL)
2868 {
2869 if (debug_linux_nat)
2870 fprintf_unfiltered (gdb_stdlog,
2871 "SEL: Select single-step %s\n",
2872 target_pid_to_str (event_lp->ptid).c_str ());
2873 }
2874 }
2875
2876 if (event_lp == NULL)
2877 {
2878 /* Pick one at random, out of those which have had events. */
2879
2880 /* First see how many events we have. */
2881 iterate_over_lwps (filter,
2882 [&] (struct lwp_info *info)
2883 {
2884 return count_events_callback (info, &num_events);
2885 });
2886 gdb_assert (num_events > 0);
2887
2888 /* Now randomly pick a LWP out of those that have had
2889 events. */
2890 random_selector = (int)
2891 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2892
2893 if (debug_linux_nat && num_events > 1)
2894 fprintf_unfiltered (gdb_stdlog,
2895 "SEL: Found %d events, selecting #%d\n",
2896 num_events, random_selector);
2897
2898 event_lp
2899 = (iterate_over_lwps
2900 (filter,
2901 [&] (struct lwp_info *info)
2902 {
2903 return select_event_lwp_callback (info,
2904 &random_selector);
2905 }));
2906 }
2907
2908 if (event_lp != NULL)
2909 {
2910 /* Switch the event LWP. */
2911 *orig_lp = event_lp;
2912 *status = event_lp->status;
2913 }
2914
2915 /* Flush the wait status for the event LWP. */
2916 (*orig_lp)->status = 0;
2917 }
2918
2919 /* Return non-zero if LP has been resumed. */
2920
2921 static int
2922 resumed_callback (struct lwp_info *lp)
2923 {
2924 return lp->resumed;
2925 }
2926
2927 /* Check if we should go on and pass this event to common code.
2928 Return the affected lwp if we are, or NULL otherwise. */
2929
2930 static struct lwp_info *
2931 linux_nat_filter_event (int lwpid, int status)
2932 {
2933 struct lwp_info *lp;
2934 int event = linux_ptrace_get_extended_event (status);
2935
2936 lp = find_lwp_pid (ptid_t (lwpid));
2937
2938 /* Check for stop events reported by a process we didn't already
2939 know about - anything not already in our LWP list.
2940
2941 If we're expecting to receive stopped processes after
2942 fork, vfork, and clone events, then we'll just add the
2943 new one to our list and go back to waiting for the event
2944 to be reported - the stopped process might be returned
2945 from waitpid before or after the event is.
2946
2947 But note the case of a non-leader thread exec'ing after the
2948 leader having exited, and gone from our lists. The non-leader
2949 thread changes its tid to the tgid. */
2950
2951 if (WIFSTOPPED (status) && lp == NULL
2952 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2953 {
2954 /* A multi-thread exec after we had seen the leader exiting. */
2955 if (debug_linux_nat)
2956 fprintf_unfiltered (gdb_stdlog,
2957 "LLW: Re-adding thread group leader LWP %d.\n",
2958 lwpid);
2959
2960 lp = add_lwp (ptid_t (lwpid, lwpid, 0));
2961 lp->stopped = 1;
2962 lp->resumed = 1;
2963 add_thread (lp->ptid);
2964 }
2965
2966 if (WIFSTOPPED (status) && !lp)
2967 {
2968 if (debug_linux_nat)
2969 fprintf_unfiltered (gdb_stdlog,
2970 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
2971 (long) lwpid, status_to_str (status));
2972 add_to_pid_list (&stopped_pids, lwpid, status);
2973 return NULL;
2974 }
2975
2976 /* Make sure we don't report an event for the exit of an LWP not in
2977 our list, i.e. not part of the current process. This can happen
2978 if we detach from a program we originally forked and then it
2979 exits. */
2980 if (!WIFSTOPPED (status) && !lp)
2981 return NULL;
2982
2983 /* This LWP is stopped now. (And if dead, this prevents it from
2984 ever being continued.) */
2985 lp->stopped = 1;
2986
2987 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2988 {
2989 struct inferior *inf = find_inferior_pid (lp->ptid.pid ());
2990 int options = linux_nat_ptrace_options (inf->attach_flag);
2991
2992 linux_enable_event_reporting (lp->ptid.lwp (), options);
2993 lp->must_set_ptrace_flags = 0;
2994 }
2995
2996 /* Handle GNU/Linux's syscall SIGTRAPs. */
2997 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2998 {
2999 /* No longer need the sysgood bit. The ptrace event ends up
3000 recorded in lp->waitstatus if we care for it. We can carry
3001 on handling the event like a regular SIGTRAP from here
3002 on. */
3003 status = W_STOPCODE (SIGTRAP);
3004 if (linux_handle_syscall_trap (lp, 0))
3005 return NULL;
3006 }
3007 else
3008 {
3009 /* Almost all other ptrace-stops are known to be outside of system
3010 calls, with further exceptions in linux_handle_extended_wait. */
3011 lp->syscall_state = TARGET_WAITKIND_IGNORE;
3012 }
3013
3014 /* Handle GNU/Linux's extended waitstatus for trace events. */
3015 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3016 && linux_is_extended_waitstatus (status))
3017 {
3018 if (debug_linux_nat)
3019 fprintf_unfiltered (gdb_stdlog,
3020 "LLW: Handling extended status 0x%06x\n",
3021 status);
3022 if (linux_handle_extended_wait (lp, status))
3023 return NULL;
3024 }
3025
3026 /* Check if the thread has exited. */
3027 if (WIFEXITED (status) || WIFSIGNALED (status))
3028 {
3029 if (!report_thread_events
3030 && num_lwps (lp->ptid.pid ()) > 1)
3031 {
3032 if (debug_linux_nat)
3033 fprintf_unfiltered (gdb_stdlog,
3034 "LLW: %s exited.\n",
3035 target_pid_to_str (lp->ptid).c_str ());
3036
3037 /* If there is at least one more LWP, then the exit signal
3038 was not the end of the debugged application and should be
3039 ignored. */
3040 exit_lwp (lp);
3041 return NULL;
3042 }
3043
3044 /* Note that even if the leader was ptrace-stopped, it can still
3045 exit, if e.g., some other thread brings down the whole
3046 process (calls `exit'). So don't assert that the lwp is
3047 resumed. */
3048 if (debug_linux_nat)
3049 fprintf_unfiltered (gdb_stdlog,
3050 "LWP %ld exited (resumed=%d)\n",
3051 lp->ptid.lwp (), lp->resumed);
3052
3053 /* Dead LWP's aren't expected to reported a pending sigstop. */
3054 lp->signalled = 0;
3055
3056 /* Store the pending event in the waitstatus, because
3057 W_EXITCODE(0,0) == 0. */
3058 store_waitstatus (&lp->waitstatus, status);
3059 return lp;
3060 }
3061
3062 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3063 an attempt to stop an LWP. */
3064 if (lp->signalled
3065 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3066 {
3067 lp->signalled = 0;
3068
3069 if (lp->last_resume_kind == resume_stop)
3070 {
3071 if (debug_linux_nat)
3072 fprintf_unfiltered (gdb_stdlog,
3073 "LLW: resume_stop SIGSTOP caught for %s.\n",
3074 target_pid_to_str (lp->ptid).c_str ());
3075 }
3076 else
3077 {
3078 /* This is a delayed SIGSTOP. Filter out the event. */
3079
3080 if (debug_linux_nat)
3081 fprintf_unfiltered (gdb_stdlog,
3082 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3083 lp->step ?
3084 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3085 target_pid_to_str (lp->ptid).c_str ());
3086
3087 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3088 gdb_assert (lp->resumed);
3089 return NULL;
3090 }
3091 }
3092
3093 /* Make sure we don't report a SIGINT that we have already displayed
3094 for another thread. */
3095 if (lp->ignore_sigint
3096 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3097 {
3098 if (debug_linux_nat)
3099 fprintf_unfiltered (gdb_stdlog,
3100 "LLW: Delayed SIGINT caught for %s.\n",
3101 target_pid_to_str (lp->ptid).c_str ());
3102
3103 /* This is a delayed SIGINT. */
3104 lp->ignore_sigint = 0;
3105
3106 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3107 if (debug_linux_nat)
3108 fprintf_unfiltered (gdb_stdlog,
3109 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3110 lp->step ?
3111 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3112 target_pid_to_str (lp->ptid).c_str ());
3113 gdb_assert (lp->resumed);
3114
3115 /* Discard the event. */
3116 return NULL;
3117 }
3118
3119 /* Don't report signals that GDB isn't interested in, such as
3120 signals that are neither printed nor stopped upon. Stopping all
3121 threads can be a bit time-consuming so if we want decent
3122 performance with heavily multi-threaded programs, especially when
3123 they're using a high frequency timer, we'd better avoid it if we
3124 can. */
3125 if (WIFSTOPPED (status))
3126 {
3127 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3128
3129 if (!target_is_non_stop_p ())
3130 {
3131 /* Only do the below in all-stop, as we currently use SIGSTOP
3132 to implement target_stop (see linux_nat_stop) in
3133 non-stop. */
3134 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3135 {
3136 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3137 forwarded to the entire process group, that is, all LWPs
3138 will receive it - unless they're using CLONE_THREAD to
3139 share signals. Since we only want to report it once, we
3140 mark it as ignored for all LWPs except this one. */
3141 iterate_over_lwps (ptid_t (lp->ptid.pid ()), set_ignore_sigint);
3142 lp->ignore_sigint = 0;
3143 }
3144 else
3145 maybe_clear_ignore_sigint (lp);
3146 }
3147
3148 /* When using hardware single-step, we need to report every signal.
3149 Otherwise, signals in pass_mask may be short-circuited
3150 except signals that might be caused by a breakpoint. */
3151 if (!lp->step
3152 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3153 && !linux_wstatus_maybe_breakpoint (status))
3154 {
3155 linux_resume_one_lwp (lp, lp->step, signo);
3156 if (debug_linux_nat)
3157 fprintf_unfiltered (gdb_stdlog,
3158 "LLW: %s %s, %s (preempt 'handle')\n",
3159 lp->step ?
3160 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3161 target_pid_to_str (lp->ptid).c_str (),
3162 (signo != GDB_SIGNAL_0
3163 ? strsignal (gdb_signal_to_host (signo))
3164 : "0"));
3165 return NULL;
3166 }
3167 }
3168
3169 /* An interesting event. */
3170 gdb_assert (lp);
3171 lp->status = status;
3172 save_stop_reason (lp);
3173 return lp;
3174 }
3175
3176 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3177 their exits until all other threads in the group have exited. */
3178
3179 static void
3180 check_zombie_leaders (void)
3181 {
3182 for (inferior *inf : all_inferiors ())
3183 {
3184 struct lwp_info *leader_lp;
3185
3186 if (inf->pid == 0)
3187 continue;
3188
3189 leader_lp = find_lwp_pid (ptid_t (inf->pid));
3190 if (leader_lp != NULL
3191 /* Check if there are other threads in the group, as we may
3192 have raced with the inferior simply exiting. */
3193 && num_lwps (inf->pid) > 1
3194 && linux_proc_pid_is_zombie (inf->pid))
3195 {
3196 if (debug_linux_nat)
3197 fprintf_unfiltered (gdb_stdlog,
3198 "CZL: Thread group leader %d zombie "
3199 "(it exited, or another thread execd).\n",
3200 inf->pid);
3201
3202 /* A leader zombie can mean one of two things:
3203
3204 - It exited, and there's an exit status pending
3205 available, or only the leader exited (not the whole
3206 program). In the latter case, we can't waitpid the
3207 leader's exit status until all other threads are gone.
3208
3209 - There are 3 or more threads in the group, and a thread
3210 other than the leader exec'd. See comments on exec
3211 events at the top of the file. We could try
3212 distinguishing the exit and exec cases, by waiting once
3213 more, and seeing if something comes out, but it doesn't
3214 sound useful. The previous leader _does_ go away, and
3215 we'll re-add the new one once we see the exec event
3216 (which is just the same as what would happen if the
3217 previous leader did exit voluntarily before some other
3218 thread execs). */
3219
3220 if (debug_linux_nat)
3221 fprintf_unfiltered (gdb_stdlog,
3222 "CZL: Thread group leader %d vanished.\n",
3223 inf->pid);
3224 exit_lwp (leader_lp);
3225 }
3226 }
3227 }
3228
3229 /* Convenience function that is called when the kernel reports an exit
3230 event. This decides whether to report the event to GDB as a
3231 process exit event, a thread exit event, or to suppress the
3232 event. */
3233
3234 static ptid_t
3235 filter_exit_event (struct lwp_info *event_child,
3236 struct target_waitstatus *ourstatus)
3237 {
3238 ptid_t ptid = event_child->ptid;
3239
3240 if (num_lwps (ptid.pid ()) > 1)
3241 {
3242 if (report_thread_events)
3243 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3244 else
3245 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3246
3247 exit_lwp (event_child);
3248 }
3249
3250 return ptid;
3251 }
3252
3253 static ptid_t
3254 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
3255 int target_options)
3256 {
3257 sigset_t prev_mask;
3258 enum resume_kind last_resume_kind;
3259 struct lwp_info *lp;
3260 int status;
3261
3262 if (debug_linux_nat)
3263 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3264
3265 /* The first time we get here after starting a new inferior, we may
3266 not have added it to the LWP list yet - this is the earliest
3267 moment at which we know its PID. */
3268 if (inferior_ptid.is_pid ())
3269 {
3270 /* Upgrade the main thread's ptid. */
3271 thread_change_ptid (inferior_ptid,
3272 ptid_t (inferior_ptid.pid (),
3273 inferior_ptid.pid (), 0));
3274
3275 lp = add_initial_lwp (inferior_ptid);
3276 lp->resumed = 1;
3277 }
3278
3279 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3280 block_child_signals (&prev_mask);
3281
3282 /* First check if there is a LWP with a wait status pending. */
3283 lp = iterate_over_lwps (ptid, status_callback);
3284 if (lp != NULL)
3285 {
3286 if (debug_linux_nat)
3287 fprintf_unfiltered (gdb_stdlog,
3288 "LLW: Using pending wait status %s for %s.\n",
3289 status_to_str (lp->status),
3290 target_pid_to_str (lp->ptid).c_str ());
3291 }
3292
3293 /* But if we don't find a pending event, we'll have to wait. Always
3294 pull all events out of the kernel. We'll randomly select an
3295 event LWP out of all that have events, to prevent starvation. */
3296
3297 while (lp == NULL)
3298 {
3299 pid_t lwpid;
3300
3301 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3302 quirks:
3303
3304 - If the thread group leader exits while other threads in the
3305 thread group still exist, waitpid(TGID, ...) hangs. That
3306 waitpid won't return an exit status until the other threads
3307 in the group are reapped.
3308
3309 - When a non-leader thread execs, that thread just vanishes
3310 without reporting an exit (so we'd hang if we waited for it
3311 explicitly in that case). The exec event is reported to
3312 the TGID pid. */
3313
3314 errno = 0;
3315 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3316
3317 if (debug_linux_nat)
3318 fprintf_unfiltered (gdb_stdlog,
3319 "LNW: waitpid(-1, ...) returned %d, %s\n",
3320 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3321
3322 if (lwpid > 0)
3323 {
3324 if (debug_linux_nat)
3325 {
3326 fprintf_unfiltered (gdb_stdlog,
3327 "LLW: waitpid %ld received %s\n",
3328 (long) lwpid, status_to_str (status));
3329 }
3330
3331 linux_nat_filter_event (lwpid, status);
3332 /* Retry until nothing comes out of waitpid. A single
3333 SIGCHLD can indicate more than one child stopped. */
3334 continue;
3335 }
3336
3337 /* Now that we've pulled all events out of the kernel, resume
3338 LWPs that don't have an interesting event to report. */
3339 iterate_over_lwps (minus_one_ptid,
3340 [] (struct lwp_info *info)
3341 {
3342 return resume_stopped_resumed_lwps (info, minus_one_ptid);
3343 });
3344
3345 /* ... and find an LWP with a status to report to the core, if
3346 any. */
3347 lp = iterate_over_lwps (ptid, status_callback);
3348 if (lp != NULL)
3349 break;
3350
3351 /* Check for zombie thread group leaders. Those can't be reaped
3352 until all other threads in the thread group are. */
3353 check_zombie_leaders ();
3354
3355 /* If there are no resumed children left, bail. We'd be stuck
3356 forever in the sigsuspend call below otherwise. */
3357 if (iterate_over_lwps (ptid, resumed_callback) == NULL)
3358 {
3359 if (debug_linux_nat)
3360 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3361
3362 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3363
3364 restore_child_signals_mask (&prev_mask);
3365 return minus_one_ptid;
3366 }
3367
3368 /* No interesting event to report to the core. */
3369
3370 if (target_options & TARGET_WNOHANG)
3371 {
3372 if (debug_linux_nat)
3373 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3374
3375 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3376 restore_child_signals_mask (&prev_mask);
3377 return minus_one_ptid;
3378 }
3379
3380 /* We shouldn't end up here unless we want to try again. */
3381 gdb_assert (lp == NULL);
3382
3383 /* Block until we get an event reported with SIGCHLD. */
3384 wait_for_signal ();
3385 }
3386
3387 gdb_assert (lp);
3388
3389 status = lp->status;
3390 lp->status = 0;
3391
3392 if (!target_is_non_stop_p ())
3393 {
3394 /* Now stop all other LWP's ... */
3395 iterate_over_lwps (minus_one_ptid, stop_callback);
3396
3397 /* ... and wait until all of them have reported back that
3398 they're no longer running. */
3399 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
3400 }
3401
3402 /* If we're not waiting for a specific LWP, choose an event LWP from
3403 among those that have had events. Giving equal priority to all
3404 LWPs that have had events helps prevent starvation. */
3405 if (ptid == minus_one_ptid || ptid.is_pid ())
3406 select_event_lwp (ptid, &lp, &status);
3407
3408 gdb_assert (lp != NULL);
3409
3410 /* Now that we've selected our final event LWP, un-adjust its PC if
3411 it was a software breakpoint, and we can't reliably support the
3412 "stopped by software breakpoint" stop reason. */
3413 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3414 && !USE_SIGTRAP_SIGINFO)
3415 {
3416 struct regcache *regcache = get_thread_regcache (lp->ptid);
3417 struct gdbarch *gdbarch = regcache->arch ();
3418 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3419
3420 if (decr_pc != 0)
3421 {
3422 CORE_ADDR pc;
3423
3424 pc = regcache_read_pc (regcache);
3425 regcache_write_pc (regcache, pc + decr_pc);
3426 }
3427 }
3428
3429 /* We'll need this to determine whether to report a SIGSTOP as
3430 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3431 clears it. */
3432 last_resume_kind = lp->last_resume_kind;
3433
3434 if (!target_is_non_stop_p ())
3435 {
3436 /* In all-stop, from the core's perspective, all LWPs are now
3437 stopped until a new resume action is sent over. */
3438 iterate_over_lwps (minus_one_ptid, resume_clear_callback);
3439 }
3440 else
3441 {
3442 resume_clear_callback (lp);
3443 }
3444
3445 if (linux_target->low_status_is_event (status))
3446 {
3447 if (debug_linux_nat)
3448 fprintf_unfiltered (gdb_stdlog,
3449 "LLW: trap ptid is %s.\n",
3450 target_pid_to_str (lp->ptid).c_str ());
3451 }
3452
3453 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3454 {
3455 *ourstatus = lp->waitstatus;
3456 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3457 }
3458 else
3459 store_waitstatus (ourstatus, status);
3460
3461 if (debug_linux_nat)
3462 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3463
3464 restore_child_signals_mask (&prev_mask);
3465
3466 if (last_resume_kind == resume_stop
3467 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3468 && WSTOPSIG (status) == SIGSTOP)
3469 {
3470 /* A thread that has been requested to stop by GDB with
3471 target_stop, and it stopped cleanly, so report as SIG0. The
3472 use of SIGSTOP is an implementation detail. */
3473 ourstatus->value.sig = GDB_SIGNAL_0;
3474 }
3475
3476 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3477 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3478 lp->core = -1;
3479 else
3480 lp->core = linux_common_core_of_thread (lp->ptid);
3481
3482 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3483 return filter_exit_event (lp, ourstatus);
3484
3485 return lp->ptid;
3486 }
3487
3488 /* Resume LWPs that are currently stopped without any pending status
3489 to report, but are resumed from the core's perspective. */
3490
3491 static int
3492 resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid)
3493 {
3494 if (!lp->stopped)
3495 {
3496 if (debug_linux_nat)
3497 fprintf_unfiltered (gdb_stdlog,
3498 "RSRL: NOT resuming LWP %s, not stopped\n",
3499 target_pid_to_str (lp->ptid).c_str ());
3500 }
3501 else if (!lp->resumed)
3502 {
3503 if (debug_linux_nat)
3504 fprintf_unfiltered (gdb_stdlog,
3505 "RSRL: NOT resuming LWP %s, not resumed\n",
3506 target_pid_to_str (lp->ptid).c_str ());
3507 }
3508 else if (lwp_status_pending_p (lp))
3509 {
3510 if (debug_linux_nat)
3511 fprintf_unfiltered (gdb_stdlog,
3512 "RSRL: NOT resuming LWP %s, has pending status\n",
3513 target_pid_to_str (lp->ptid).c_str ());
3514 }
3515 else
3516 {
3517 struct regcache *regcache = get_thread_regcache (lp->ptid);
3518 struct gdbarch *gdbarch = regcache->arch ();
3519
3520 try
3521 {
3522 CORE_ADDR pc = regcache_read_pc (regcache);
3523 int leave_stopped = 0;
3524
3525 /* Don't bother if there's a breakpoint at PC that we'd hit
3526 immediately, and we're not waiting for this LWP. */
3527 if (!lp->ptid.matches (wait_ptid))
3528 {
3529 if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3530 leave_stopped = 1;
3531 }
3532
3533 if (!leave_stopped)
3534 {
3535 if (debug_linux_nat)
3536 fprintf_unfiltered (gdb_stdlog,
3537 "RSRL: resuming stopped-resumed LWP %s at "
3538 "%s: step=%d\n",
3539 target_pid_to_str (lp->ptid).c_str (),
3540 paddress (gdbarch, pc),
3541 lp->step);
3542
3543 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3544 }
3545 }
3546 catch (const gdb_exception_error &ex)
3547 {
3548 if (!check_ptrace_stopped_lwp_gone (lp))
3549 throw;
3550 }
3551 }
3552
3553 return 0;
3554 }
3555
3556 ptid_t
3557 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
3558 int target_options)
3559 {
3560 ptid_t event_ptid;
3561
3562 if (debug_linux_nat)
3563 {
3564 std::string options_string = target_options_to_string (target_options);
3565 fprintf_unfiltered (gdb_stdlog,
3566 "linux_nat_wait: [%s], [%s]\n",
3567 target_pid_to_str (ptid).c_str (),
3568 options_string.c_str ());
3569 }
3570
3571 /* Flush the async file first. */
3572 if (target_is_async_p ())
3573 async_file_flush ();
3574
3575 /* Resume LWPs that are currently stopped without any pending status
3576 to report, but are resumed from the core's perspective. LWPs get
3577 in this state if we find them stopping at a time we're not
3578 interested in reporting the event (target_wait on a
3579 specific_process, for example, see linux_nat_wait_1), and
3580 meanwhile the event became uninteresting. Don't bother resuming
3581 LWPs we're not going to wait for if they'd stop immediately. */
3582 if (target_is_non_stop_p ())
3583 iterate_over_lwps (minus_one_ptid,
3584 [=] (struct lwp_info *info)
3585 {
3586 return resume_stopped_resumed_lwps (info, ptid);
3587 });
3588
3589 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options);
3590
3591 /* If we requested any event, and something came out, assume there
3592 may be more. If we requested a specific lwp or process, also
3593 assume there may be more. */
3594 if (target_is_async_p ()
3595 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3596 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3597 || ptid != minus_one_ptid))
3598 async_file_mark ();
3599
3600 return event_ptid;
3601 }
3602
3603 /* Kill one LWP. */
3604
3605 static void
3606 kill_one_lwp (pid_t pid)
3607 {
3608 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3609
3610 errno = 0;
3611 kill_lwp (pid, SIGKILL);
3612 if (debug_linux_nat)
3613 {
3614 int save_errno = errno;
3615
3616 fprintf_unfiltered (gdb_stdlog,
3617 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3618 save_errno ? safe_strerror (save_errno) : "OK");
3619 }
3620
3621 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3622
3623 errno = 0;
3624 ptrace (PTRACE_KILL, pid, 0, 0);
3625 if (debug_linux_nat)
3626 {
3627 int save_errno = errno;
3628
3629 fprintf_unfiltered (gdb_stdlog,
3630 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3631 save_errno ? safe_strerror (save_errno) : "OK");
3632 }
3633 }
3634
3635 /* Wait for an LWP to die. */
3636
3637 static void
3638 kill_wait_one_lwp (pid_t pid)
3639 {
3640 pid_t res;
3641
3642 /* We must make sure that there are no pending events (delayed
3643 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3644 program doesn't interfere with any following debugging session. */
3645
3646 do
3647 {
3648 res = my_waitpid (pid, NULL, __WALL);
3649 if (res != (pid_t) -1)
3650 {
3651 if (debug_linux_nat)
3652 fprintf_unfiltered (gdb_stdlog,
3653 "KWC: wait %ld received unknown.\n",
3654 (long) pid);
3655 /* The Linux kernel sometimes fails to kill a thread
3656 completely after PTRACE_KILL; that goes from the stop
3657 point in do_fork out to the one in get_signal_to_deliver
3658 and waits again. So kill it again. */
3659 kill_one_lwp (pid);
3660 }
3661 }
3662 while (res == pid);
3663
3664 gdb_assert (res == -1 && errno == ECHILD);
3665 }
3666
3667 /* Callback for iterate_over_lwps. */
3668
3669 static int
3670 kill_callback (struct lwp_info *lp)
3671 {
3672 kill_one_lwp (lp->ptid.lwp ());
3673 return 0;
3674 }
3675
3676 /* Callback for iterate_over_lwps. */
3677
3678 static int
3679 kill_wait_callback (struct lwp_info *lp)
3680 {
3681 kill_wait_one_lwp (lp->ptid.lwp ());
3682 return 0;
3683 }
3684
3685 /* Kill the fork children of any threads of inferior INF that are
3686 stopped at a fork event. */
3687
3688 static void
3689 kill_unfollowed_fork_children (struct inferior *inf)
3690 {
3691 for (thread_info *thread : inf->non_exited_threads ())
3692 {
3693 struct target_waitstatus *ws = &thread->pending_follow;
3694
3695 if (ws->kind == TARGET_WAITKIND_FORKED
3696 || ws->kind == TARGET_WAITKIND_VFORKED)
3697 {
3698 ptid_t child_ptid = ws->value.related_pid;
3699 int child_pid = child_ptid.pid ();
3700 int child_lwp = child_ptid.lwp ();
3701
3702 kill_one_lwp (child_lwp);
3703 kill_wait_one_lwp (child_lwp);
3704
3705 /* Let the arch-specific native code know this process is
3706 gone. */
3707 linux_target->low_forget_process (child_pid);
3708 }
3709 }
3710 }
3711
3712 void
3713 linux_nat_target::kill ()
3714 {
3715 /* If we're stopped while forking and we haven't followed yet,
3716 kill the other task. We need to do this first because the
3717 parent will be sleeping if this is a vfork. */
3718 kill_unfollowed_fork_children (current_inferior ());
3719
3720 if (forks_exist_p ())
3721 linux_fork_killall ();
3722 else
3723 {
3724 ptid_t ptid = ptid_t (inferior_ptid.pid ());
3725
3726 /* Stop all threads before killing them, since ptrace requires
3727 that the thread is stopped to sucessfully PTRACE_KILL. */
3728 iterate_over_lwps (ptid, stop_callback);
3729 /* ... and wait until all of them have reported back that
3730 they're no longer running. */
3731 iterate_over_lwps (ptid, stop_wait_callback);
3732
3733 /* Kill all LWP's ... */
3734 iterate_over_lwps (ptid, kill_callback);
3735
3736 /* ... and wait until we've flushed all events. */
3737 iterate_over_lwps (ptid, kill_wait_callback);
3738 }
3739
3740 target_mourn_inferior (inferior_ptid);
3741 }
3742
3743 void
3744 linux_nat_target::mourn_inferior ()
3745 {
3746 int pid = inferior_ptid.pid ();
3747
3748 purge_lwp_list (pid);
3749
3750 if (! forks_exist_p ())
3751 /* Normal case, no other forks available. */
3752 inf_ptrace_target::mourn_inferior ();
3753 else
3754 /* Multi-fork case. The current inferior_ptid has exited, but
3755 there are other viable forks to debug. Delete the exiting
3756 one and context-switch to the first available. */
3757 linux_fork_mourn_inferior ();
3758
3759 /* Let the arch-specific native code know this process is gone. */
3760 linux_target->low_forget_process (pid);
3761 }
3762
3763 /* Convert a native/host siginfo object, into/from the siginfo in the
3764 layout of the inferiors' architecture. */
3765
3766 static void
3767 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3768 {
3769 /* If the low target didn't do anything, then just do a straight
3770 memcpy. */
3771 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction))
3772 {
3773 if (direction == 1)
3774 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3775 else
3776 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3777 }
3778 }
3779
3780 static enum target_xfer_status
3781 linux_xfer_siginfo (enum target_object object,
3782 const char *annex, gdb_byte *readbuf,
3783 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3784 ULONGEST *xfered_len)
3785 {
3786 int pid;
3787 siginfo_t siginfo;
3788 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3789
3790 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3791 gdb_assert (readbuf || writebuf);
3792
3793 pid = inferior_ptid.lwp ();
3794 if (pid == 0)
3795 pid = inferior_ptid.pid ();
3796
3797 if (offset > sizeof (siginfo))
3798 return TARGET_XFER_E_IO;
3799
3800 errno = 0;
3801 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3802 if (errno != 0)
3803 return TARGET_XFER_E_IO;
3804
3805 /* When GDB is built as a 64-bit application, ptrace writes into
3806 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3807 inferior with a 64-bit GDB should look the same as debugging it
3808 with a 32-bit GDB, we need to convert it. GDB core always sees
3809 the converted layout, so any read/write will have to be done
3810 post-conversion. */
3811 siginfo_fixup (&siginfo, inf_siginfo, 0);
3812
3813 if (offset + len > sizeof (siginfo))
3814 len = sizeof (siginfo) - offset;
3815
3816 if (readbuf != NULL)
3817 memcpy (readbuf, inf_siginfo + offset, len);
3818 else
3819 {
3820 memcpy (inf_siginfo + offset, writebuf, len);
3821
3822 /* Convert back to ptrace layout before flushing it out. */
3823 siginfo_fixup (&siginfo, inf_siginfo, 1);
3824
3825 errno = 0;
3826 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3827 if (errno != 0)
3828 return TARGET_XFER_E_IO;
3829 }
3830
3831 *xfered_len = len;
3832 return TARGET_XFER_OK;
3833 }
3834
3835 static enum target_xfer_status
3836 linux_nat_xfer_osdata (enum target_object object,
3837 const char *annex, gdb_byte *readbuf,
3838 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3839 ULONGEST *xfered_len);
3840
3841 static enum target_xfer_status
3842 linux_proc_xfer_partial (enum target_object object,
3843 const char *annex, gdb_byte *readbuf,
3844 const gdb_byte *writebuf,
3845 ULONGEST offset, LONGEST len, ULONGEST *xfered_len);
3846
3847 enum target_xfer_status
3848 linux_nat_target::xfer_partial (enum target_object object,
3849 const char *annex, gdb_byte *readbuf,
3850 const gdb_byte *writebuf,
3851 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3852 {
3853 enum target_xfer_status xfer;
3854
3855 if (object == TARGET_OBJECT_SIGNAL_INFO)
3856 return linux_xfer_siginfo (object, annex, readbuf, writebuf,
3857 offset, len, xfered_len);
3858
3859 /* The target is connected but no live inferior is selected. Pass
3860 this request down to a lower stratum (e.g., the executable
3861 file). */
3862 if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid)
3863 return TARGET_XFER_EOF;
3864
3865 if (object == TARGET_OBJECT_AUXV)
3866 return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
3867 offset, len, xfered_len);
3868
3869 if (object == TARGET_OBJECT_OSDATA)
3870 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf,
3871 offset, len, xfered_len);
3872
3873 /* GDB calculates all addresses in the largest possible address
3874 width.
3875 The address width must be masked before its final use - either by
3876 linux_proc_xfer_partial or inf_ptrace_target::xfer_partial.
3877
3878 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
3879
3880 if (object == TARGET_OBJECT_MEMORY)
3881 {
3882 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
3883
3884 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
3885 offset &= ((ULONGEST) 1 << addr_bit) - 1;
3886 }
3887
3888 xfer = linux_proc_xfer_partial (object, annex, readbuf, writebuf,
3889 offset, len, xfered_len);
3890 if (xfer != TARGET_XFER_EOF)
3891 return xfer;
3892
3893 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3894 offset, len, xfered_len);
3895 }
3896
3897 bool
3898 linux_nat_target::thread_alive (ptid_t ptid)
3899 {
3900 /* As long as a PTID is in lwp list, consider it alive. */
3901 return find_lwp_pid (ptid) != NULL;
3902 }
3903
3904 /* Implement the to_update_thread_list target method for this
3905 target. */
3906
3907 void
3908 linux_nat_target::update_thread_list ()
3909 {
3910 struct lwp_info *lwp;
3911
3912 /* We add/delete threads from the list as clone/exit events are
3913 processed, so just try deleting exited threads still in the
3914 thread list. */
3915 delete_exited_threads ();
3916
3917 /* Update the processor core that each lwp/thread was last seen
3918 running on. */
3919 ALL_LWPS (lwp)
3920 {
3921 /* Avoid accessing /proc if the thread hasn't run since we last
3922 time we fetched the thread's core. Accessing /proc becomes
3923 noticeably expensive when we have thousands of LWPs. */
3924 if (lwp->core == -1)
3925 lwp->core = linux_common_core_of_thread (lwp->ptid);
3926 }
3927 }
3928
3929 std::string
3930 linux_nat_target::pid_to_str (ptid_t ptid)
3931 {
3932 if (ptid.lwp_p ()
3933 && (ptid.pid () != ptid.lwp ()
3934 || num_lwps (ptid.pid ()) > 1))
3935 return string_printf ("LWP %ld", ptid.lwp ());
3936
3937 return normal_pid_to_str (ptid);
3938 }
3939
3940 const char *
3941 linux_nat_target::thread_name (struct thread_info *thr)
3942 {
3943 return linux_proc_tid_get_name (thr->ptid);
3944 }
3945
3946 /* Accepts an integer PID; Returns a string representing a file that
3947 can be opened to get the symbols for the child process. */
3948
3949 char *
3950 linux_nat_target::pid_to_exec_file (int pid)
3951 {
3952 return linux_proc_pid_to_exec_file (pid);
3953 }
3954
3955 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3956 Because we can use a single read/write call, this can be much more
3957 efficient than banging away at PTRACE_PEEKTEXT. */
3958
3959 static enum target_xfer_status
3960 linux_proc_xfer_partial (enum target_object object,
3961 const char *annex, gdb_byte *readbuf,
3962 const gdb_byte *writebuf,
3963 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3964 {
3965 LONGEST ret;
3966 int fd;
3967 char filename[64];
3968
3969 if (object != TARGET_OBJECT_MEMORY)
3970 return TARGET_XFER_EOF;
3971
3972 /* Don't bother for one word. */
3973 if (len < 3 * sizeof (long))
3974 return TARGET_XFER_EOF;
3975
3976 /* We could keep this file open and cache it - possibly one per
3977 thread. That requires some juggling, but is even faster. */
3978 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3979 inferior_ptid.lwp ());
3980 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
3981 | O_LARGEFILE), 0);
3982 if (fd == -1)
3983 return TARGET_XFER_EOF;
3984
3985 /* Use pread64/pwrite64 if available, since they save a syscall and can
3986 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
3987 debugging a SPARC64 application). */
3988 #ifdef HAVE_PREAD64
3989 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
3990 : pwrite64 (fd, writebuf, len, offset));
3991 #else
3992 ret = lseek (fd, offset, SEEK_SET);
3993 if (ret != -1)
3994 ret = (readbuf ? read (fd, readbuf, len)
3995 : write (fd, writebuf, len));
3996 #endif
3997
3998 close (fd);
3999
4000 if (ret == -1 || ret == 0)
4001 return TARGET_XFER_EOF;
4002 else
4003 {
4004 *xfered_len = ret;
4005 return TARGET_XFER_OK;
4006 }
4007 }
4008
4009
4010 /* Parse LINE as a signal set and add its set bits to SIGS. */
4011
4012 static void
4013 add_line_to_sigset (const char *line, sigset_t *sigs)
4014 {
4015 int len = strlen (line) - 1;
4016 const char *p;
4017 int signum;
4018
4019 if (line[len] != '\n')
4020 error (_("Could not parse signal set: %s"), line);
4021
4022 p = line;
4023 signum = len * 4;
4024 while (len-- > 0)
4025 {
4026 int digit;
4027
4028 if (*p >= '0' && *p <= '9')
4029 digit = *p - '0';
4030 else if (*p >= 'a' && *p <= 'f')
4031 digit = *p - 'a' + 10;
4032 else
4033 error (_("Could not parse signal set: %s"), line);
4034
4035 signum -= 4;
4036
4037 if (digit & 1)
4038 sigaddset (sigs, signum + 1);
4039 if (digit & 2)
4040 sigaddset (sigs, signum + 2);
4041 if (digit & 4)
4042 sigaddset (sigs, signum + 3);
4043 if (digit & 8)
4044 sigaddset (sigs, signum + 4);
4045
4046 p++;
4047 }
4048 }
4049
4050 /* Find process PID's pending signals from /proc/pid/status and set
4051 SIGS to match. */
4052
4053 void
4054 linux_proc_pending_signals (int pid, sigset_t *pending,
4055 sigset_t *blocked, sigset_t *ignored)
4056 {
4057 char buffer[PATH_MAX], fname[PATH_MAX];
4058
4059 sigemptyset (pending);
4060 sigemptyset (blocked);
4061 sigemptyset (ignored);
4062 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4063 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4064 if (procfile == NULL)
4065 error (_("Could not open %s"), fname);
4066
4067 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4068 {
4069 /* Normal queued signals are on the SigPnd line in the status
4070 file. However, 2.6 kernels also have a "shared" pending
4071 queue for delivering signals to a thread group, so check for
4072 a ShdPnd line also.
4073
4074 Unfortunately some Red Hat kernels include the shared pending
4075 queue but not the ShdPnd status field. */
4076
4077 if (startswith (buffer, "SigPnd:\t"))
4078 add_line_to_sigset (buffer + 8, pending);
4079 else if (startswith (buffer, "ShdPnd:\t"))
4080 add_line_to_sigset (buffer + 8, pending);
4081 else if (startswith (buffer, "SigBlk:\t"))
4082 add_line_to_sigset (buffer + 8, blocked);
4083 else if (startswith (buffer, "SigIgn:\t"))
4084 add_line_to_sigset (buffer + 8, ignored);
4085 }
4086 }
4087
4088 static enum target_xfer_status
4089 linux_nat_xfer_osdata (enum target_object object,
4090 const char *annex, gdb_byte *readbuf,
4091 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4092 ULONGEST *xfered_len)
4093 {
4094 gdb_assert (object == TARGET_OBJECT_OSDATA);
4095
4096 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4097 if (*xfered_len == 0)
4098 return TARGET_XFER_EOF;
4099 else
4100 return TARGET_XFER_OK;
4101 }
4102
4103 std::vector<static_tracepoint_marker>
4104 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid)
4105 {
4106 char s[IPA_CMD_BUF_SIZE];
4107 int pid = inferior_ptid.pid ();
4108 std::vector<static_tracepoint_marker> markers;
4109 const char *p = s;
4110 ptid_t ptid = ptid_t (pid, 0, 0);
4111 static_tracepoint_marker marker;
4112
4113 /* Pause all */
4114 target_stop (ptid);
4115
4116 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4117 s[sizeof ("qTfSTM")] = 0;
4118
4119 agent_run_command (pid, s, strlen (s) + 1);
4120
4121 /* Unpause all. */
4122 SCOPE_EXIT { target_continue_no_signal (ptid); };
4123
4124 while (*p++ == 'm')
4125 {
4126 do
4127 {
4128 parse_static_tracepoint_marker_definition (p, &p, &marker);
4129
4130 if (strid == NULL || marker.str_id == strid)
4131 markers.push_back (std::move (marker));
4132 }
4133 while (*p++ == ','); /* comma-separated list */
4134
4135 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4136 s[sizeof ("qTsSTM")] = 0;
4137 agent_run_command (pid, s, strlen (s) + 1);
4138 p = s;
4139 }
4140
4141 return markers;
4142 }
4143
4144 /* target_is_async_p implementation. */
4145
4146 bool
4147 linux_nat_target::is_async_p ()
4148 {
4149 return linux_is_async_p ();
4150 }
4151
4152 /* target_can_async_p implementation. */
4153
4154 bool
4155 linux_nat_target::can_async_p ()
4156 {
4157 /* We're always async, unless the user explicitly prevented it with the
4158 "maint set target-async" command. */
4159 return target_async_permitted;
4160 }
4161
4162 bool
4163 linux_nat_target::supports_non_stop ()
4164 {
4165 return 1;
4166 }
4167
4168 /* to_always_non_stop_p implementation. */
4169
4170 bool
4171 linux_nat_target::always_non_stop_p ()
4172 {
4173 return 1;
4174 }
4175
4176 /* True if we want to support multi-process. To be removed when GDB
4177 supports multi-exec. */
4178
4179 int linux_multi_process = 1;
4180
4181 bool
4182 linux_nat_target::supports_multi_process ()
4183 {
4184 return linux_multi_process;
4185 }
4186
4187 bool
4188 linux_nat_target::supports_disable_randomization ()
4189 {
4190 #ifdef HAVE_PERSONALITY
4191 return 1;
4192 #else
4193 return 0;
4194 #endif
4195 }
4196
4197 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4198 so we notice when any child changes state, and notify the
4199 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4200 above to wait for the arrival of a SIGCHLD. */
4201
4202 static void
4203 sigchld_handler (int signo)
4204 {
4205 int old_errno = errno;
4206
4207 if (debug_linux_nat)
4208 ui_file_write_async_safe (gdb_stdlog,
4209 "sigchld\n", sizeof ("sigchld\n") - 1);
4210
4211 if (signo == SIGCHLD
4212 && linux_nat_event_pipe[0] != -1)
4213 async_file_mark (); /* Let the event loop know that there are
4214 events to handle. */
4215
4216 errno = old_errno;
4217 }
4218
4219 /* Callback registered with the target events file descriptor. */
4220
4221 static void
4222 handle_target_event (int error, gdb_client_data client_data)
4223 {
4224 inferior_event_handler (INF_REG_EVENT, NULL);
4225 }
4226
4227 /* Create/destroy the target events pipe. Returns previous state. */
4228
4229 static int
4230 linux_async_pipe (int enable)
4231 {
4232 int previous = linux_is_async_p ();
4233
4234 if (previous != enable)
4235 {
4236 sigset_t prev_mask;
4237
4238 /* Block child signals while we create/destroy the pipe, as
4239 their handler writes to it. */
4240 block_child_signals (&prev_mask);
4241
4242 if (enable)
4243 {
4244 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4245 internal_error (__FILE__, __LINE__,
4246 "creating event pipe failed.");
4247
4248 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4249 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4250 }
4251 else
4252 {
4253 close (linux_nat_event_pipe[0]);
4254 close (linux_nat_event_pipe[1]);
4255 linux_nat_event_pipe[0] = -1;
4256 linux_nat_event_pipe[1] = -1;
4257 }
4258
4259 restore_child_signals_mask (&prev_mask);
4260 }
4261
4262 return previous;
4263 }
4264
4265 /* target_async implementation. */
4266
4267 void
4268 linux_nat_target::async (int enable)
4269 {
4270 if (enable)
4271 {
4272 if (!linux_async_pipe (1))
4273 {
4274 add_file_handler (linux_nat_event_pipe[0],
4275 handle_target_event, NULL);
4276 /* There may be pending events to handle. Tell the event loop
4277 to poll them. */
4278 async_file_mark ();
4279 }
4280 }
4281 else
4282 {
4283 delete_file_handler (linux_nat_event_pipe[0]);
4284 linux_async_pipe (0);
4285 }
4286 return;
4287 }
4288
4289 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4290 event came out. */
4291
4292 static int
4293 linux_nat_stop_lwp (struct lwp_info *lwp)
4294 {
4295 if (!lwp->stopped)
4296 {
4297 if (debug_linux_nat)
4298 fprintf_unfiltered (gdb_stdlog,
4299 "LNSL: running -> suspending %s\n",
4300 target_pid_to_str (lwp->ptid).c_str ());
4301
4302
4303 if (lwp->last_resume_kind == resume_stop)
4304 {
4305 if (debug_linux_nat)
4306 fprintf_unfiltered (gdb_stdlog,
4307 "linux-nat: already stopping LWP %ld at "
4308 "GDB's request\n",
4309 lwp->ptid.lwp ());
4310 return 0;
4311 }
4312
4313 stop_callback (lwp);
4314 lwp->last_resume_kind = resume_stop;
4315 }
4316 else
4317 {
4318 /* Already known to be stopped; do nothing. */
4319
4320 if (debug_linux_nat)
4321 {
4322 if (find_thread_ptid (lwp->ptid)->stop_requested)
4323 fprintf_unfiltered (gdb_stdlog,
4324 "LNSL: already stopped/stop_requested %s\n",
4325 target_pid_to_str (lwp->ptid).c_str ());
4326 else
4327 fprintf_unfiltered (gdb_stdlog,
4328 "LNSL: already stopped/no "
4329 "stop_requested yet %s\n",
4330 target_pid_to_str (lwp->ptid).c_str ());
4331 }
4332 }
4333 return 0;
4334 }
4335
4336 void
4337 linux_nat_target::stop (ptid_t ptid)
4338 {
4339 iterate_over_lwps (ptid, linux_nat_stop_lwp);
4340 }
4341
4342 void
4343 linux_nat_target::close ()
4344 {
4345 /* Unregister from the event loop. */
4346 if (is_async_p ())
4347 async (0);
4348
4349 inf_ptrace_target::close ();
4350 }
4351
4352 /* When requests are passed down from the linux-nat layer to the
4353 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4354 used. The address space pointer is stored in the inferior object,
4355 but the common code that is passed such ptid can't tell whether
4356 lwpid is a "main" process id or not (it assumes so). We reverse
4357 look up the "main" process id from the lwp here. */
4358
4359 struct address_space *
4360 linux_nat_target::thread_address_space (ptid_t ptid)
4361 {
4362 struct lwp_info *lwp;
4363 struct inferior *inf;
4364 int pid;
4365
4366 if (ptid.lwp () == 0)
4367 {
4368 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4369 tgid. */
4370 lwp = find_lwp_pid (ptid);
4371 pid = lwp->ptid.pid ();
4372 }
4373 else
4374 {
4375 /* A (pid,lwpid,0) ptid. */
4376 pid = ptid.pid ();
4377 }
4378
4379 inf = find_inferior_pid (pid);
4380 gdb_assert (inf != NULL);
4381 return inf->aspace;
4382 }
4383
4384 /* Return the cached value of the processor core for thread PTID. */
4385
4386 int
4387 linux_nat_target::core_of_thread (ptid_t ptid)
4388 {
4389 struct lwp_info *info = find_lwp_pid (ptid);
4390
4391 if (info)
4392 return info->core;
4393 return -1;
4394 }
4395
4396 /* Implementation of to_filesystem_is_local. */
4397
4398 bool
4399 linux_nat_target::filesystem_is_local ()
4400 {
4401 struct inferior *inf = current_inferior ();
4402
4403 if (inf->fake_pid_p || inf->pid == 0)
4404 return true;
4405
4406 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4407 }
4408
4409 /* Convert the INF argument passed to a to_fileio_* method
4410 to a process ID suitable for passing to its corresponding
4411 linux_mntns_* function. If INF is non-NULL then the
4412 caller is requesting the filesystem seen by INF. If INF
4413 is NULL then the caller is requesting the filesystem seen
4414 by the GDB. We fall back to GDB's filesystem in the case
4415 that INF is non-NULL but its PID is unknown. */
4416
4417 static pid_t
4418 linux_nat_fileio_pid_of (struct inferior *inf)
4419 {
4420 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4421 return getpid ();
4422 else
4423 return inf->pid;
4424 }
4425
4426 /* Implementation of to_fileio_open. */
4427
4428 int
4429 linux_nat_target::fileio_open (struct inferior *inf, const char *filename,
4430 int flags, int mode, int warn_if_slow,
4431 int *target_errno)
4432 {
4433 int nat_flags;
4434 mode_t nat_mode;
4435 int fd;
4436
4437 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4438 || fileio_to_host_mode (mode, &nat_mode) == -1)
4439 {
4440 *target_errno = FILEIO_EINVAL;
4441 return -1;
4442 }
4443
4444 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4445 filename, nat_flags, nat_mode);
4446 if (fd == -1)
4447 *target_errno = host_to_fileio_error (errno);
4448
4449 return fd;
4450 }
4451
4452 /* Implementation of to_fileio_readlink. */
4453
4454 gdb::optional<std::string>
4455 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename,
4456 int *target_errno)
4457 {
4458 char buf[PATH_MAX];
4459 int len;
4460
4461 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4462 filename, buf, sizeof (buf));
4463 if (len < 0)
4464 {
4465 *target_errno = host_to_fileio_error (errno);
4466 return {};
4467 }
4468
4469 return std::string (buf, len);
4470 }
4471
4472 /* Implementation of to_fileio_unlink. */
4473
4474 int
4475 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename,
4476 int *target_errno)
4477 {
4478 int ret;
4479
4480 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4481 filename);
4482 if (ret == -1)
4483 *target_errno = host_to_fileio_error (errno);
4484
4485 return ret;
4486 }
4487
4488 /* Implementation of the to_thread_events method. */
4489
4490 void
4491 linux_nat_target::thread_events (int enable)
4492 {
4493 report_thread_events = enable;
4494 }
4495
4496 linux_nat_target::linux_nat_target ()
4497 {
4498 /* We don't change the stratum; this target will sit at
4499 process_stratum and thread_db will set at thread_stratum. This
4500 is a little strange, since this is a multi-threaded-capable
4501 target, but we want to be on the stack below thread_db, and we
4502 also want to be used for single-threaded processes. */
4503 }
4504
4505 /* See linux-nat.h. */
4506
4507 int
4508 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4509 {
4510 int pid;
4511
4512 pid = ptid.lwp ();
4513 if (pid == 0)
4514 pid = ptid.pid ();
4515
4516 errno = 0;
4517 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4518 if (errno != 0)
4519 {
4520 memset (siginfo, 0, sizeof (*siginfo));
4521 return 0;
4522 }
4523 return 1;
4524 }
4525
4526 /* See nat/linux-nat.h. */
4527
4528 ptid_t
4529 current_lwp_ptid (void)
4530 {
4531 gdb_assert (inferior_ptid.lwp_p ());
4532 return inferior_ptid;
4533 }
4534
4535 void
4536 _initialize_linux_nat (void)
4537 {
4538 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4539 &debug_linux_nat, _("\
4540 Set debugging of GNU/Linux lwp module."), _("\
4541 Show debugging of GNU/Linux lwp module."), _("\
4542 Enables printf debugging output."),
4543 NULL,
4544 show_debug_linux_nat,
4545 &setdebuglist, &showdebuglist);
4546
4547 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4548 &debug_linux_namespaces, _("\
4549 Set debugging of GNU/Linux namespaces module."), _("\
4550 Show debugging of GNU/Linux namespaces module."), _("\
4551 Enables printf debugging output."),
4552 NULL,
4553 NULL,
4554 &setdebuglist, &showdebuglist);
4555
4556 /* Install a SIGCHLD handler. */
4557 sigchld_action.sa_handler = sigchld_handler;
4558 sigemptyset (&sigchld_action.sa_mask);
4559 sigchld_action.sa_flags = SA_RESTART;
4560
4561 /* Make it the default. */
4562 sigaction (SIGCHLD, &sigchld_action, NULL);
4563
4564 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4565 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4566 sigdelset (&suspend_mask, SIGCHLD);
4567
4568 sigemptyset (&blocked_mask);
4569
4570 lwp_lwpid_htab_create ();
4571
4572 /* Set the proper function to generate a message when ptrace
4573 fails. */
4574 inf_ptrace_me_fail_reason = linux_ptrace_me_fail_reason;
4575 }
4576 \f
4577
4578 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4579 the GNU/Linux Threads library and therefore doesn't really belong
4580 here. */
4581
4582 /* Return the set of signals used by the threads library in *SET. */
4583
4584 void
4585 lin_thread_get_thread_signals (sigset_t *set)
4586 {
4587 sigemptyset (set);
4588
4589 /* NPTL reserves the first two RT signals, but does not provide any
4590 way for the debugger to query the signal numbers - fortunately
4591 they don't change. */
4592 sigaddset (set, __SIGRTMIN);
4593 sigaddset (set, __SIGRTMIN + 1);
4594 }