]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/linux-nat.c
Add target_ops argument to to_terminal_inferior
[thirdparty/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "nat/linux-nat.h"
24 #include "nat/linux-waitpid.h"
25 #include <string.h>
26 #include "gdb_wait.h"
27 #include "gdb_assert.h"
28 #ifdef HAVE_TKILL_SYSCALL
29 #include <unistd.h>
30 #include <sys/syscall.h>
31 #endif
32 #include <sys/ptrace.h>
33 #include "linux-nat.h"
34 #include "linux-ptrace.h"
35 #include "linux-procfs.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
38 #include "gdbcmd.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
43 #include "auxv.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include <sys/stat.h> /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include <dirent.h>
57 #include "xml-support.h"
58 #include "terminal.h"
59 #include <sys/vfs.h>
60 #include "solib.h"
61 #include "linux-osdata.h"
62 #include "linux-tdep.h"
63 #include "symfile.h"
64 #include "agent.h"
65 #include "tracepoint.h"
66 #include "exceptions.h"
67 #include "buffer.h"
68 #include "target-descriptions.h"
69 #include "filestuff.h"
70
71 #ifndef SPUFS_MAGIC
72 #define SPUFS_MAGIC 0x23c9b64e
73 #endif
74
75 #ifdef HAVE_PERSONALITY
76 # include <sys/personality.h>
77 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
78 # define ADDR_NO_RANDOMIZE 0x0040000
79 # endif
80 #endif /* HAVE_PERSONALITY */
81
82 /* This comment documents high-level logic of this file.
83
84 Waiting for events in sync mode
85 ===============================
86
87 When waiting for an event in a specific thread, we just use waitpid, passing
88 the specific pid, and not passing WNOHANG.
89
90 When waiting for an event in all threads, waitpid is not quite good. Prior to
91 version 2.4, Linux can either wait for event in main thread, or in secondary
92 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
93 miss an event. The solution is to use non-blocking waitpid, together with
94 sigsuspend. First, we use non-blocking waitpid to get an event in the main
95 process, if any. Second, we use non-blocking waitpid with the __WCLONED
96 flag to check for events in cloned processes. If nothing is found, we use
97 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
98 happened to a child process -- and SIGCHLD will be delivered both for events
99 in main debugged process and in cloned processes. As soon as we know there's
100 an event, we get back to calling nonblocking waitpid with and without
101 __WCLONED.
102
103 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
104 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
105 blocked, the signal becomes pending and sigsuspend immediately
106 notices it and returns.
107
108 Waiting for events in async mode
109 ================================
110
111 In async mode, GDB should always be ready to handle both user input
112 and target events, so neither blocking waitpid nor sigsuspend are
113 viable options. Instead, we should asynchronously notify the GDB main
114 event loop whenever there's an unprocessed event from the target. We
115 detect asynchronous target events by handling SIGCHLD signals. To
116 notify the event loop about target events, the self-pipe trick is used
117 --- a pipe is registered as waitable event source in the event loop,
118 the event loop select/poll's on the read end of this pipe (as well on
119 other event sources, e.g., stdin), and the SIGCHLD handler writes a
120 byte to this pipe. This is more portable than relying on
121 pselect/ppoll, since on kernels that lack those syscalls, libc
122 emulates them with select/poll+sigprocmask, and that is racy
123 (a.k.a. plain broken).
124
125 Obviously, if we fail to notify the event loop if there's a target
126 event, it's bad. OTOH, if we notify the event loop when there's no
127 event from the target, linux_nat_wait will detect that there's no real
128 event to report, and return event of type TARGET_WAITKIND_IGNORE.
129 This is mostly harmless, but it will waste time and is better avoided.
130
131 The main design point is that every time GDB is outside linux-nat.c,
132 we have a SIGCHLD handler installed that is called when something
133 happens to the target and notifies the GDB event loop. Whenever GDB
134 core decides to handle the event, and calls into linux-nat.c, we
135 process things as in sync mode, except that the we never block in
136 sigsuspend.
137
138 While processing an event, we may end up momentarily blocked in
139 waitpid calls. Those waitpid calls, while blocking, are guarantied to
140 return quickly. E.g., in all-stop mode, before reporting to the core
141 that an LWP hit a breakpoint, all LWPs are stopped by sending them
142 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
143 Note that this is different from blocking indefinitely waiting for the
144 next event --- here, we're already handling an event.
145
146 Use of signals
147 ==============
148
149 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
150 signal is not entirely significant; we just need for a signal to be delivered,
151 so that we can intercept it. SIGSTOP's advantage is that it can not be
152 blocked. A disadvantage is that it is not a real-time signal, so it can only
153 be queued once; we do not keep track of other sources of SIGSTOP.
154
155 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
156 use them, because they have special behavior when the signal is generated -
157 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
158 kills the entire thread group.
159
160 A delivered SIGSTOP would stop the entire thread group, not just the thread we
161 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
162 cancel it (by PTRACE_CONT without passing SIGSTOP).
163
164 We could use a real-time signal instead. This would solve those problems; we
165 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
166 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
167 generates it, and there are races with trying to find a signal that is not
168 blocked. */
169
170 #ifndef O_LARGEFILE
171 #define O_LARGEFILE 0
172 #endif
173
174 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
175 the use of the multi-threaded target. */
176 static struct target_ops *linux_ops;
177 static struct target_ops linux_ops_saved;
178
179 /* The method to call, if any, when a new thread is attached. */
180 static void (*linux_nat_new_thread) (struct lwp_info *);
181
182 /* The method to call, if any, when a new fork is attached. */
183 static linux_nat_new_fork_ftype *linux_nat_new_fork;
184
185 /* The method to call, if any, when a process is no longer
186 attached. */
187 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
188
189 /* Hook to call prior to resuming a thread. */
190 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
191
192 /* The method to call, if any, when the siginfo object needs to be
193 converted between the layout returned by ptrace, and the layout in
194 the architecture of the inferior. */
195 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
196 gdb_byte *,
197 int);
198
199 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
200 Called by our to_xfer_partial. */
201 static target_xfer_partial_ftype *super_xfer_partial;
202
203 static unsigned int debug_linux_nat;
204 static void
205 show_debug_linux_nat (struct ui_file *file, int from_tty,
206 struct cmd_list_element *c, const char *value)
207 {
208 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
209 value);
210 }
211
212 struct simple_pid_list
213 {
214 int pid;
215 int status;
216 struct simple_pid_list *next;
217 };
218 struct simple_pid_list *stopped_pids;
219
220 /* Async mode support. */
221
222 /* The read/write ends of the pipe registered as waitable file in the
223 event loop. */
224 static int linux_nat_event_pipe[2] = { -1, -1 };
225
226 /* Flush the event pipe. */
227
228 static void
229 async_file_flush (void)
230 {
231 int ret;
232 char buf;
233
234 do
235 {
236 ret = read (linux_nat_event_pipe[0], &buf, 1);
237 }
238 while (ret >= 0 || (ret == -1 && errno == EINTR));
239 }
240
241 /* Put something (anything, doesn't matter what, or how much) in event
242 pipe, so that the select/poll in the event-loop realizes we have
243 something to process. */
244
245 static void
246 async_file_mark (void)
247 {
248 int ret;
249
250 /* It doesn't really matter what the pipe contains, as long we end
251 up with something in it. Might as well flush the previous
252 left-overs. */
253 async_file_flush ();
254
255 do
256 {
257 ret = write (linux_nat_event_pipe[1], "+", 1);
258 }
259 while (ret == -1 && errno == EINTR);
260
261 /* Ignore EAGAIN. If the pipe is full, the event loop will already
262 be awakened anyway. */
263 }
264
265 static int kill_lwp (int lwpid, int signo);
266
267 static int stop_callback (struct lwp_info *lp, void *data);
268
269 static void block_child_signals (sigset_t *prev_mask);
270 static void restore_child_signals_mask (sigset_t *prev_mask);
271
272 struct lwp_info;
273 static struct lwp_info *add_lwp (ptid_t ptid);
274 static void purge_lwp_list (int pid);
275 static void delete_lwp (ptid_t ptid);
276 static struct lwp_info *find_lwp_pid (ptid_t ptid);
277
278 \f
279 /* Trivial list manipulation functions to keep track of a list of
280 new stopped processes. */
281 static void
282 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
283 {
284 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
285
286 new_pid->pid = pid;
287 new_pid->status = status;
288 new_pid->next = *listp;
289 *listp = new_pid;
290 }
291
292 static int
293 in_pid_list_p (struct simple_pid_list *list, int pid)
294 {
295 struct simple_pid_list *p;
296
297 for (p = list; p != NULL; p = p->next)
298 if (p->pid == pid)
299 return 1;
300 return 0;
301 }
302
303 static int
304 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
305 {
306 struct simple_pid_list **p;
307
308 for (p = listp; *p != NULL; p = &(*p)->next)
309 if ((*p)->pid == pid)
310 {
311 struct simple_pid_list *next = (*p)->next;
312
313 *statusp = (*p)->status;
314 xfree (*p);
315 *p = next;
316 return 1;
317 }
318 return 0;
319 }
320
321 /* Initialize ptrace warnings and check for supported ptrace
322 features given PID. */
323
324 static void
325 linux_init_ptrace (pid_t pid)
326 {
327 linux_enable_event_reporting (pid);
328 linux_ptrace_init_warnings ();
329 }
330
331 static void
332 linux_child_post_attach (struct target_ops *self, int pid)
333 {
334 linux_init_ptrace (pid);
335 }
336
337 static void
338 linux_child_post_startup_inferior (ptid_t ptid)
339 {
340 linux_init_ptrace (ptid_get_pid (ptid));
341 }
342
343 /* Return the number of known LWPs in the tgid given by PID. */
344
345 static int
346 num_lwps (int pid)
347 {
348 int count = 0;
349 struct lwp_info *lp;
350
351 for (lp = lwp_list; lp; lp = lp->next)
352 if (ptid_get_pid (lp->ptid) == pid)
353 count++;
354
355 return count;
356 }
357
358 /* Call delete_lwp with prototype compatible for make_cleanup. */
359
360 static void
361 delete_lwp_cleanup (void *lp_voidp)
362 {
363 struct lwp_info *lp = lp_voidp;
364
365 delete_lwp (lp->ptid);
366 }
367
368 static int
369 linux_child_follow_fork (struct target_ops *ops, int follow_child,
370 int detach_fork)
371 {
372 int has_vforked;
373 int parent_pid, child_pid;
374
375 has_vforked = (inferior_thread ()->pending_follow.kind
376 == TARGET_WAITKIND_VFORKED);
377 parent_pid = ptid_get_lwp (inferior_ptid);
378 if (parent_pid == 0)
379 parent_pid = ptid_get_pid (inferior_ptid);
380 child_pid
381 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
382
383 if (has_vforked
384 && !non_stop /* Non-stop always resumes both branches. */
385 && (!target_is_async_p () || sync_execution)
386 && !(follow_child || detach_fork || sched_multi))
387 {
388 /* The parent stays blocked inside the vfork syscall until the
389 child execs or exits. If we don't let the child run, then
390 the parent stays blocked. If we're telling the parent to run
391 in the foreground, the user will not be able to ctrl-c to get
392 back the terminal, effectively hanging the debug session. */
393 fprintf_filtered (gdb_stderr, _("\
394 Can not resume the parent process over vfork in the foreground while\n\
395 holding the child stopped. Try \"set detach-on-fork\" or \
396 \"set schedule-multiple\".\n"));
397 /* FIXME output string > 80 columns. */
398 return 1;
399 }
400
401 if (! follow_child)
402 {
403 struct lwp_info *child_lp = NULL;
404
405 /* We're already attached to the parent, by default. */
406
407 /* Detach new forked process? */
408 if (detach_fork)
409 {
410 struct cleanup *old_chain;
411
412 /* Before detaching from the child, remove all breakpoints
413 from it. If we forked, then this has already been taken
414 care of by infrun.c. If we vforked however, any
415 breakpoint inserted in the parent is visible in the
416 child, even those added while stopped in a vfork
417 catchpoint. This will remove the breakpoints from the
418 parent also, but they'll be reinserted below. */
419 if (has_vforked)
420 {
421 /* keep breakpoints list in sync. */
422 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
423 }
424
425 if (info_verbose || debug_linux_nat)
426 {
427 target_terminal_ours ();
428 fprintf_filtered (gdb_stdlog,
429 "Detaching after fork from "
430 "child process %d.\n",
431 child_pid);
432 }
433
434 old_chain = save_inferior_ptid ();
435 inferior_ptid = ptid_build (child_pid, child_pid, 0);
436
437 child_lp = add_lwp (inferior_ptid);
438 child_lp->stopped = 1;
439 child_lp->last_resume_kind = resume_stop;
440 make_cleanup (delete_lwp_cleanup, child_lp);
441
442 if (linux_nat_prepare_to_resume != NULL)
443 linux_nat_prepare_to_resume (child_lp);
444 ptrace (PTRACE_DETACH, child_pid, 0, 0);
445
446 do_cleanups (old_chain);
447 }
448 else
449 {
450 struct inferior *parent_inf, *child_inf;
451 struct cleanup *old_chain;
452
453 /* Add process to GDB's tables. */
454 child_inf = add_inferior (child_pid);
455
456 parent_inf = current_inferior ();
457 child_inf->attach_flag = parent_inf->attach_flag;
458 copy_terminal_info (child_inf, parent_inf);
459 child_inf->gdbarch = parent_inf->gdbarch;
460 copy_inferior_target_desc_info (child_inf, parent_inf);
461
462 old_chain = save_inferior_ptid ();
463 save_current_program_space ();
464
465 inferior_ptid = ptid_build (child_pid, child_pid, 0);
466 add_thread (inferior_ptid);
467 child_lp = add_lwp (inferior_ptid);
468 child_lp->stopped = 1;
469 child_lp->last_resume_kind = resume_stop;
470 child_inf->symfile_flags = SYMFILE_NO_READ;
471
472 /* If this is a vfork child, then the address-space is
473 shared with the parent. */
474 if (has_vforked)
475 {
476 child_inf->pspace = parent_inf->pspace;
477 child_inf->aspace = parent_inf->aspace;
478
479 /* The parent will be frozen until the child is done
480 with the shared region. Keep track of the
481 parent. */
482 child_inf->vfork_parent = parent_inf;
483 child_inf->pending_detach = 0;
484 parent_inf->vfork_child = child_inf;
485 parent_inf->pending_detach = 0;
486 }
487 else
488 {
489 child_inf->aspace = new_address_space ();
490 child_inf->pspace = add_program_space (child_inf->aspace);
491 child_inf->removable = 1;
492 set_current_program_space (child_inf->pspace);
493 clone_program_space (child_inf->pspace, parent_inf->pspace);
494
495 /* Let the shared library layer (solib-svr4) learn about
496 this new process, relocate the cloned exec, pull in
497 shared libraries, and install the solib event
498 breakpoint. If a "cloned-VM" event was propagated
499 better throughout the core, this wouldn't be
500 required. */
501 solib_create_inferior_hook (0);
502 }
503
504 /* Let the thread_db layer learn about this new process. */
505 check_for_thread_db ();
506
507 do_cleanups (old_chain);
508 }
509
510 if (has_vforked)
511 {
512 struct lwp_info *parent_lp;
513 struct inferior *parent_inf;
514
515 parent_inf = current_inferior ();
516
517 /* If we detached from the child, then we have to be careful
518 to not insert breakpoints in the parent until the child
519 is done with the shared memory region. However, if we're
520 staying attached to the child, then we can and should
521 insert breakpoints, so that we can debug it. A
522 subsequent child exec or exit is enough to know when does
523 the child stops using the parent's address space. */
524 parent_inf->waiting_for_vfork_done = detach_fork;
525 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
526
527 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
528 gdb_assert (linux_supports_tracefork () >= 0);
529
530 if (linux_supports_tracevforkdone ())
531 {
532 if (debug_linux_nat)
533 fprintf_unfiltered (gdb_stdlog,
534 "LCFF: waiting for VFORK_DONE on %d\n",
535 parent_pid);
536 parent_lp->stopped = 1;
537
538 /* We'll handle the VFORK_DONE event like any other
539 event, in target_wait. */
540 }
541 else
542 {
543 /* We can't insert breakpoints until the child has
544 finished with the shared memory region. We need to
545 wait until that happens. Ideal would be to just
546 call:
547 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
548 - waitpid (parent_pid, &status, __WALL);
549 However, most architectures can't handle a syscall
550 being traced on the way out if it wasn't traced on
551 the way in.
552
553 We might also think to loop, continuing the child
554 until it exits or gets a SIGTRAP. One problem is
555 that the child might call ptrace with PTRACE_TRACEME.
556
557 There's no simple and reliable way to figure out when
558 the vforked child will be done with its copy of the
559 shared memory. We could step it out of the syscall,
560 two instructions, let it go, and then single-step the
561 parent once. When we have hardware single-step, this
562 would work; with software single-step it could still
563 be made to work but we'd have to be able to insert
564 single-step breakpoints in the child, and we'd have
565 to insert -just- the single-step breakpoint in the
566 parent. Very awkward.
567
568 In the end, the best we can do is to make sure it
569 runs for a little while. Hopefully it will be out of
570 range of any breakpoints we reinsert. Usually this
571 is only the single-step breakpoint at vfork's return
572 point. */
573
574 if (debug_linux_nat)
575 fprintf_unfiltered (gdb_stdlog,
576 "LCFF: no VFORK_DONE "
577 "support, sleeping a bit\n");
578
579 usleep (10000);
580
581 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
582 and leave it pending. The next linux_nat_resume call
583 will notice a pending event, and bypasses actually
584 resuming the inferior. */
585 parent_lp->status = 0;
586 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
587 parent_lp->stopped = 1;
588
589 /* If we're in async mode, need to tell the event loop
590 there's something here to process. */
591 if (target_can_async_p ())
592 async_file_mark ();
593 }
594 }
595 }
596 else
597 {
598 struct inferior *parent_inf, *child_inf;
599 struct lwp_info *child_lp;
600 struct program_space *parent_pspace;
601
602 if (info_verbose || debug_linux_nat)
603 {
604 target_terminal_ours ();
605 if (has_vforked)
606 fprintf_filtered (gdb_stdlog,
607 _("Attaching after process %d "
608 "vfork to child process %d.\n"),
609 parent_pid, child_pid);
610 else
611 fprintf_filtered (gdb_stdlog,
612 _("Attaching after process %d "
613 "fork to child process %d.\n"),
614 parent_pid, child_pid);
615 }
616
617 /* Add the new inferior first, so that the target_detach below
618 doesn't unpush the target. */
619
620 child_inf = add_inferior (child_pid);
621
622 parent_inf = current_inferior ();
623 child_inf->attach_flag = parent_inf->attach_flag;
624 copy_terminal_info (child_inf, parent_inf);
625 child_inf->gdbarch = parent_inf->gdbarch;
626 copy_inferior_target_desc_info (child_inf, parent_inf);
627
628 parent_pspace = parent_inf->pspace;
629
630 /* If we're vforking, we want to hold on to the parent until the
631 child exits or execs. At child exec or exit time we can
632 remove the old breakpoints from the parent and detach or
633 resume debugging it. Otherwise, detach the parent now; we'll
634 want to reuse it's program/address spaces, but we can't set
635 them to the child before removing breakpoints from the
636 parent, otherwise, the breakpoints module could decide to
637 remove breakpoints from the wrong process (since they'd be
638 assigned to the same address space). */
639
640 if (has_vforked)
641 {
642 gdb_assert (child_inf->vfork_parent == NULL);
643 gdb_assert (parent_inf->vfork_child == NULL);
644 child_inf->vfork_parent = parent_inf;
645 child_inf->pending_detach = 0;
646 parent_inf->vfork_child = child_inf;
647 parent_inf->pending_detach = detach_fork;
648 parent_inf->waiting_for_vfork_done = 0;
649 }
650 else if (detach_fork)
651 target_detach (NULL, 0);
652
653 /* Note that the detach above makes PARENT_INF dangling. */
654
655 /* Add the child thread to the appropriate lists, and switch to
656 this new thread, before cloning the program space, and
657 informing the solib layer about this new process. */
658
659 inferior_ptid = ptid_build (child_pid, child_pid, 0);
660 add_thread (inferior_ptid);
661 child_lp = add_lwp (inferior_ptid);
662 child_lp->stopped = 1;
663 child_lp->last_resume_kind = resume_stop;
664
665 /* If this is a vfork child, then the address-space is shared
666 with the parent. If we detached from the parent, then we can
667 reuse the parent's program/address spaces. */
668 if (has_vforked || detach_fork)
669 {
670 child_inf->pspace = parent_pspace;
671 child_inf->aspace = child_inf->pspace->aspace;
672 }
673 else
674 {
675 child_inf->aspace = new_address_space ();
676 child_inf->pspace = add_program_space (child_inf->aspace);
677 child_inf->removable = 1;
678 child_inf->symfile_flags = SYMFILE_NO_READ;
679 set_current_program_space (child_inf->pspace);
680 clone_program_space (child_inf->pspace, parent_pspace);
681
682 /* Let the shared library layer (solib-svr4) learn about
683 this new process, relocate the cloned exec, pull in
684 shared libraries, and install the solib event breakpoint.
685 If a "cloned-VM" event was propagated better throughout
686 the core, this wouldn't be required. */
687 solib_create_inferior_hook (0);
688 }
689
690 /* Let the thread_db layer learn about this new process. */
691 check_for_thread_db ();
692 }
693
694 return 0;
695 }
696
697 \f
698 static int
699 linux_child_insert_fork_catchpoint (int pid)
700 {
701 return !linux_supports_tracefork ();
702 }
703
704 static int
705 linux_child_remove_fork_catchpoint (int pid)
706 {
707 return 0;
708 }
709
710 static int
711 linux_child_insert_vfork_catchpoint (int pid)
712 {
713 return !linux_supports_tracefork ();
714 }
715
716 static int
717 linux_child_remove_vfork_catchpoint (int pid)
718 {
719 return 0;
720 }
721
722 static int
723 linux_child_insert_exec_catchpoint (int pid)
724 {
725 return !linux_supports_tracefork ();
726 }
727
728 static int
729 linux_child_remove_exec_catchpoint (int pid)
730 {
731 return 0;
732 }
733
734 static int
735 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
736 int table_size, int *table)
737 {
738 if (!linux_supports_tracesysgood ())
739 return 1;
740
741 /* On GNU/Linux, we ignore the arguments. It means that we only
742 enable the syscall catchpoints, but do not disable them.
743
744 Also, we do not use the `table' information because we do not
745 filter system calls here. We let GDB do the logic for us. */
746 return 0;
747 }
748
749 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
750 are processes sharing the same VM space. A multi-threaded process
751 is basically a group of such processes. However, such a grouping
752 is almost entirely a user-space issue; the kernel doesn't enforce
753 such a grouping at all (this might change in the future). In
754 general, we'll rely on the threads library (i.e. the GNU/Linux
755 Threads library) to provide such a grouping.
756
757 It is perfectly well possible to write a multi-threaded application
758 without the assistance of a threads library, by using the clone
759 system call directly. This module should be able to give some
760 rudimentary support for debugging such applications if developers
761 specify the CLONE_PTRACE flag in the clone system call, and are
762 using the Linux kernel 2.4 or above.
763
764 Note that there are some peculiarities in GNU/Linux that affect
765 this code:
766
767 - In general one should specify the __WCLONE flag to waitpid in
768 order to make it report events for any of the cloned processes
769 (and leave it out for the initial process). However, if a cloned
770 process has exited the exit status is only reported if the
771 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
772 we cannot use it since GDB must work on older systems too.
773
774 - When a traced, cloned process exits and is waited for by the
775 debugger, the kernel reassigns it to the original parent and
776 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
777 library doesn't notice this, which leads to the "zombie problem":
778 When debugged a multi-threaded process that spawns a lot of
779 threads will run out of processes, even if the threads exit,
780 because the "zombies" stay around. */
781
782 /* List of known LWPs. */
783 struct lwp_info *lwp_list;
784 \f
785
786 /* Original signal mask. */
787 static sigset_t normal_mask;
788
789 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
790 _initialize_linux_nat. */
791 static sigset_t suspend_mask;
792
793 /* Signals to block to make that sigsuspend work. */
794 static sigset_t blocked_mask;
795
796 /* SIGCHLD action. */
797 struct sigaction sigchld_action;
798
799 /* Block child signals (SIGCHLD and linux threads signals), and store
800 the previous mask in PREV_MASK. */
801
802 static void
803 block_child_signals (sigset_t *prev_mask)
804 {
805 /* Make sure SIGCHLD is blocked. */
806 if (!sigismember (&blocked_mask, SIGCHLD))
807 sigaddset (&blocked_mask, SIGCHLD);
808
809 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
810 }
811
812 /* Restore child signals mask, previously returned by
813 block_child_signals. */
814
815 static void
816 restore_child_signals_mask (sigset_t *prev_mask)
817 {
818 sigprocmask (SIG_SETMASK, prev_mask, NULL);
819 }
820
821 /* Mask of signals to pass directly to the inferior. */
822 static sigset_t pass_mask;
823
824 /* Update signals to pass to the inferior. */
825 static void
826 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
827 {
828 int signo;
829
830 sigemptyset (&pass_mask);
831
832 for (signo = 1; signo < NSIG; signo++)
833 {
834 int target_signo = gdb_signal_from_host (signo);
835 if (target_signo < numsigs && pass_signals[target_signo])
836 sigaddset (&pass_mask, signo);
837 }
838 }
839
840 \f
841
842 /* Prototypes for local functions. */
843 static int stop_wait_callback (struct lwp_info *lp, void *data);
844 static int linux_thread_alive (ptid_t ptid);
845 static char *linux_child_pid_to_exec_file (int pid);
846
847 \f
848 /* Convert wait status STATUS to a string. Used for printing debug
849 messages only. */
850
851 static char *
852 status_to_str (int status)
853 {
854 static char buf[64];
855
856 if (WIFSTOPPED (status))
857 {
858 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
859 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
860 strsignal (SIGTRAP));
861 else
862 snprintf (buf, sizeof (buf), "%s (stopped)",
863 strsignal (WSTOPSIG (status)));
864 }
865 else if (WIFSIGNALED (status))
866 snprintf (buf, sizeof (buf), "%s (terminated)",
867 strsignal (WTERMSIG (status)));
868 else
869 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
870
871 return buf;
872 }
873
874 /* Destroy and free LP. */
875
876 static void
877 lwp_free (struct lwp_info *lp)
878 {
879 xfree (lp->arch_private);
880 xfree (lp);
881 }
882
883 /* Remove all LWPs belong to PID from the lwp list. */
884
885 static void
886 purge_lwp_list (int pid)
887 {
888 struct lwp_info *lp, *lpprev, *lpnext;
889
890 lpprev = NULL;
891
892 for (lp = lwp_list; lp; lp = lpnext)
893 {
894 lpnext = lp->next;
895
896 if (ptid_get_pid (lp->ptid) == pid)
897 {
898 if (lp == lwp_list)
899 lwp_list = lp->next;
900 else
901 lpprev->next = lp->next;
902
903 lwp_free (lp);
904 }
905 else
906 lpprev = lp;
907 }
908 }
909
910 /* Add the LWP specified by PTID to the list. PTID is the first LWP
911 in the process. Return a pointer to the structure describing the
912 new LWP.
913
914 This differs from add_lwp in that we don't let the arch specific
915 bits know about this new thread. Current clients of this callback
916 take the opportunity to install watchpoints in the new thread, and
917 we shouldn't do that for the first thread. If we're spawning a
918 child ("run"), the thread executes the shell wrapper first, and we
919 shouldn't touch it until it execs the program we want to debug.
920 For "attach", it'd be okay to call the callback, but it's not
921 necessary, because watchpoints can't yet have been inserted into
922 the inferior. */
923
924 static struct lwp_info *
925 add_initial_lwp (ptid_t ptid)
926 {
927 struct lwp_info *lp;
928
929 gdb_assert (ptid_lwp_p (ptid));
930
931 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
932
933 memset (lp, 0, sizeof (struct lwp_info));
934
935 lp->last_resume_kind = resume_continue;
936 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
937
938 lp->ptid = ptid;
939 lp->core = -1;
940
941 lp->next = lwp_list;
942 lwp_list = lp;
943
944 return lp;
945 }
946
947 /* Add the LWP specified by PID to the list. Return a pointer to the
948 structure describing the new LWP. The LWP should already be
949 stopped. */
950
951 static struct lwp_info *
952 add_lwp (ptid_t ptid)
953 {
954 struct lwp_info *lp;
955
956 lp = add_initial_lwp (ptid);
957
958 /* Let the arch specific bits know about this new thread. Current
959 clients of this callback take the opportunity to install
960 watchpoints in the new thread. We don't do this for the first
961 thread though. See add_initial_lwp. */
962 if (linux_nat_new_thread != NULL)
963 linux_nat_new_thread (lp);
964
965 return lp;
966 }
967
968 /* Remove the LWP specified by PID from the list. */
969
970 static void
971 delete_lwp (ptid_t ptid)
972 {
973 struct lwp_info *lp, *lpprev;
974
975 lpprev = NULL;
976
977 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
978 if (ptid_equal (lp->ptid, ptid))
979 break;
980
981 if (!lp)
982 return;
983
984 if (lpprev)
985 lpprev->next = lp->next;
986 else
987 lwp_list = lp->next;
988
989 lwp_free (lp);
990 }
991
992 /* Return a pointer to the structure describing the LWP corresponding
993 to PID. If no corresponding LWP could be found, return NULL. */
994
995 static struct lwp_info *
996 find_lwp_pid (ptid_t ptid)
997 {
998 struct lwp_info *lp;
999 int lwp;
1000
1001 if (ptid_lwp_p (ptid))
1002 lwp = ptid_get_lwp (ptid);
1003 else
1004 lwp = ptid_get_pid (ptid);
1005
1006 for (lp = lwp_list; lp; lp = lp->next)
1007 if (lwp == ptid_get_lwp (lp->ptid))
1008 return lp;
1009
1010 return NULL;
1011 }
1012
1013 /* Call CALLBACK with its second argument set to DATA for every LWP in
1014 the list. If CALLBACK returns 1 for a particular LWP, return a
1015 pointer to the structure describing that LWP immediately.
1016 Otherwise return NULL. */
1017
1018 struct lwp_info *
1019 iterate_over_lwps (ptid_t filter,
1020 int (*callback) (struct lwp_info *, void *),
1021 void *data)
1022 {
1023 struct lwp_info *lp, *lpnext;
1024
1025 for (lp = lwp_list; lp; lp = lpnext)
1026 {
1027 lpnext = lp->next;
1028
1029 if (ptid_match (lp->ptid, filter))
1030 {
1031 if ((*callback) (lp, data))
1032 return lp;
1033 }
1034 }
1035
1036 return NULL;
1037 }
1038
1039 /* Update our internal state when changing from one checkpoint to
1040 another indicated by NEW_PTID. We can only switch single-threaded
1041 applications, so we only create one new LWP, and the previous list
1042 is discarded. */
1043
1044 void
1045 linux_nat_switch_fork (ptid_t new_ptid)
1046 {
1047 struct lwp_info *lp;
1048
1049 purge_lwp_list (ptid_get_pid (inferior_ptid));
1050
1051 lp = add_lwp (new_ptid);
1052 lp->stopped = 1;
1053
1054 /* This changes the thread's ptid while preserving the gdb thread
1055 num. Also changes the inferior pid, while preserving the
1056 inferior num. */
1057 thread_change_ptid (inferior_ptid, new_ptid);
1058
1059 /* We've just told GDB core that the thread changed target id, but,
1060 in fact, it really is a different thread, with different register
1061 contents. */
1062 registers_changed ();
1063 }
1064
1065 /* Handle the exit of a single thread LP. */
1066
1067 static void
1068 exit_lwp (struct lwp_info *lp)
1069 {
1070 struct thread_info *th = find_thread_ptid (lp->ptid);
1071
1072 if (th)
1073 {
1074 if (print_thread_events)
1075 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1076
1077 delete_thread (lp->ptid);
1078 }
1079
1080 delete_lwp (lp->ptid);
1081 }
1082
1083 /* Wait for the LWP specified by LP, which we have just attached to.
1084 Returns a wait status for that LWP, to cache. */
1085
1086 static int
1087 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1088 int *signalled)
1089 {
1090 pid_t new_pid, pid = ptid_get_lwp (ptid);
1091 int status;
1092
1093 if (linux_proc_pid_is_stopped (pid))
1094 {
1095 if (debug_linux_nat)
1096 fprintf_unfiltered (gdb_stdlog,
1097 "LNPAW: Attaching to a stopped process\n");
1098
1099 /* The process is definitely stopped. It is in a job control
1100 stop, unless the kernel predates the TASK_STOPPED /
1101 TASK_TRACED distinction, in which case it might be in a
1102 ptrace stop. Make sure it is in a ptrace stop; from there we
1103 can kill it, signal it, et cetera.
1104
1105 First make sure there is a pending SIGSTOP. Since we are
1106 already attached, the process can not transition from stopped
1107 to running without a PTRACE_CONT; so we know this signal will
1108 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1109 probably already in the queue (unless this kernel is old
1110 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1111 is not an RT signal, it can only be queued once. */
1112 kill_lwp (pid, SIGSTOP);
1113
1114 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1115 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1116 ptrace (PTRACE_CONT, pid, 0, 0);
1117 }
1118
1119 /* Make sure the initial process is stopped. The user-level threads
1120 layer might want to poke around in the inferior, and that won't
1121 work if things haven't stabilized yet. */
1122 new_pid = my_waitpid (pid, &status, 0);
1123 if (new_pid == -1 && errno == ECHILD)
1124 {
1125 if (first)
1126 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1127
1128 /* Try again with __WCLONE to check cloned processes. */
1129 new_pid = my_waitpid (pid, &status, __WCLONE);
1130 *cloned = 1;
1131 }
1132
1133 gdb_assert (pid == new_pid);
1134
1135 if (!WIFSTOPPED (status))
1136 {
1137 /* The pid we tried to attach has apparently just exited. */
1138 if (debug_linux_nat)
1139 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1140 pid, status_to_str (status));
1141 return status;
1142 }
1143
1144 if (WSTOPSIG (status) != SIGSTOP)
1145 {
1146 *signalled = 1;
1147 if (debug_linux_nat)
1148 fprintf_unfiltered (gdb_stdlog,
1149 "LNPAW: Received %s after attaching\n",
1150 status_to_str (status));
1151 }
1152
1153 return status;
1154 }
1155
1156 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1157 the new LWP could not be attached, or 1 if we're already auto
1158 attached to this thread, but haven't processed the
1159 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1160 its existance, without considering it an error. */
1161
1162 int
1163 lin_lwp_attach_lwp (ptid_t ptid)
1164 {
1165 struct lwp_info *lp;
1166 int lwpid;
1167
1168 gdb_assert (ptid_lwp_p (ptid));
1169
1170 lp = find_lwp_pid (ptid);
1171 lwpid = ptid_get_lwp (ptid);
1172
1173 /* We assume that we're already attached to any LWP that has an id
1174 equal to the overall process id, and to any LWP that is already
1175 in our list of LWPs. If we're not seeing exit events from threads
1176 and we've had PID wraparound since we last tried to stop all threads,
1177 this assumption might be wrong; fortunately, this is very unlikely
1178 to happen. */
1179 if (lwpid != ptid_get_pid (ptid) && lp == NULL)
1180 {
1181 int status, cloned = 0, signalled = 0;
1182
1183 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1184 {
1185 if (linux_supports_tracefork ())
1186 {
1187 /* If we haven't stopped all threads when we get here,
1188 we may have seen a thread listed in thread_db's list,
1189 but not processed the PTRACE_EVENT_CLONE yet. If
1190 that's the case, ignore this new thread, and let
1191 normal event handling discover it later. */
1192 if (in_pid_list_p (stopped_pids, lwpid))
1193 {
1194 /* We've already seen this thread stop, but we
1195 haven't seen the PTRACE_EVENT_CLONE extended
1196 event yet. */
1197 return 0;
1198 }
1199 else
1200 {
1201 int new_pid;
1202 int status;
1203
1204 /* See if we've got a stop for this new child
1205 pending. If so, we're already attached. */
1206 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1207 if (new_pid == -1 && errno == ECHILD)
1208 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1209 if (new_pid != -1)
1210 {
1211 if (WIFSTOPPED (status))
1212 add_to_pid_list (&stopped_pids, lwpid, status);
1213 return 1;
1214 }
1215 }
1216 }
1217
1218 /* If we fail to attach to the thread, issue a warning,
1219 but continue. One way this can happen is if thread
1220 creation is interrupted; as of Linux kernel 2.6.19, a
1221 bug may place threads in the thread list and then fail
1222 to create them. */
1223 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1224 safe_strerror (errno));
1225 return -1;
1226 }
1227
1228 if (debug_linux_nat)
1229 fprintf_unfiltered (gdb_stdlog,
1230 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1231 target_pid_to_str (ptid));
1232
1233 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1234 if (!WIFSTOPPED (status))
1235 return 1;
1236
1237 lp = add_lwp (ptid);
1238 lp->stopped = 1;
1239 lp->cloned = cloned;
1240 lp->signalled = signalled;
1241 if (WSTOPSIG (status) != SIGSTOP)
1242 {
1243 lp->resumed = 1;
1244 lp->status = status;
1245 }
1246
1247 target_post_attach (ptid_get_lwp (lp->ptid));
1248
1249 if (debug_linux_nat)
1250 {
1251 fprintf_unfiltered (gdb_stdlog,
1252 "LLAL: waitpid %s received %s\n",
1253 target_pid_to_str (ptid),
1254 status_to_str (status));
1255 }
1256 }
1257 else
1258 {
1259 /* We assume that the LWP representing the original process is
1260 already stopped. Mark it as stopped in the data structure
1261 that the GNU/linux ptrace layer uses to keep track of
1262 threads. Note that this won't have already been done since
1263 the main thread will have, we assume, been stopped by an
1264 attach from a different layer. */
1265 if (lp == NULL)
1266 lp = add_lwp (ptid);
1267 lp->stopped = 1;
1268 }
1269
1270 lp->last_resume_kind = resume_stop;
1271 return 0;
1272 }
1273
1274 static void
1275 linux_nat_create_inferior (struct target_ops *ops,
1276 char *exec_file, char *allargs, char **env,
1277 int from_tty)
1278 {
1279 #ifdef HAVE_PERSONALITY
1280 int personality_orig = 0, personality_set = 0;
1281 #endif /* HAVE_PERSONALITY */
1282
1283 /* The fork_child mechanism is synchronous and calls target_wait, so
1284 we have to mask the async mode. */
1285
1286 #ifdef HAVE_PERSONALITY
1287 if (disable_randomization)
1288 {
1289 errno = 0;
1290 personality_orig = personality (0xffffffff);
1291 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1292 {
1293 personality_set = 1;
1294 personality (personality_orig | ADDR_NO_RANDOMIZE);
1295 }
1296 if (errno != 0 || (personality_set
1297 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1298 warning (_("Error disabling address space randomization: %s"),
1299 safe_strerror (errno));
1300 }
1301 #endif /* HAVE_PERSONALITY */
1302
1303 /* Make sure we report all signals during startup. */
1304 linux_nat_pass_signals (0, NULL);
1305
1306 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1307
1308 #ifdef HAVE_PERSONALITY
1309 if (personality_set)
1310 {
1311 errno = 0;
1312 personality (personality_orig);
1313 if (errno != 0)
1314 warning (_("Error restoring address space randomization: %s"),
1315 safe_strerror (errno));
1316 }
1317 #endif /* HAVE_PERSONALITY */
1318 }
1319
1320 static void
1321 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1322 {
1323 struct lwp_info *lp;
1324 int status;
1325 ptid_t ptid;
1326 volatile struct gdb_exception ex;
1327
1328 /* Make sure we report all signals during attach. */
1329 linux_nat_pass_signals (0, NULL);
1330
1331 TRY_CATCH (ex, RETURN_MASK_ERROR)
1332 {
1333 linux_ops->to_attach (ops, args, from_tty);
1334 }
1335 if (ex.reason < 0)
1336 {
1337 pid_t pid = parse_pid_to_attach (args);
1338 struct buffer buffer;
1339 char *message, *buffer_s;
1340
1341 message = xstrdup (ex.message);
1342 make_cleanup (xfree, message);
1343
1344 buffer_init (&buffer);
1345 linux_ptrace_attach_warnings (pid, &buffer);
1346
1347 buffer_grow_str0 (&buffer, "");
1348 buffer_s = buffer_finish (&buffer);
1349 make_cleanup (xfree, buffer_s);
1350
1351 throw_error (ex.error, "%s%s", buffer_s, message);
1352 }
1353
1354 /* The ptrace base target adds the main thread with (pid,0,0)
1355 format. Decorate it with lwp info. */
1356 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1357 ptid_get_pid (inferior_ptid),
1358 0);
1359 thread_change_ptid (inferior_ptid, ptid);
1360
1361 /* Add the initial process as the first LWP to the list. */
1362 lp = add_initial_lwp (ptid);
1363
1364 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1365 &lp->signalled);
1366 if (!WIFSTOPPED (status))
1367 {
1368 if (WIFEXITED (status))
1369 {
1370 int exit_code = WEXITSTATUS (status);
1371
1372 target_terminal_ours ();
1373 target_mourn_inferior ();
1374 if (exit_code == 0)
1375 error (_("Unable to attach: program exited normally."));
1376 else
1377 error (_("Unable to attach: program exited with code %d."),
1378 exit_code);
1379 }
1380 else if (WIFSIGNALED (status))
1381 {
1382 enum gdb_signal signo;
1383
1384 target_terminal_ours ();
1385 target_mourn_inferior ();
1386
1387 signo = gdb_signal_from_host (WTERMSIG (status));
1388 error (_("Unable to attach: program terminated with signal "
1389 "%s, %s."),
1390 gdb_signal_to_name (signo),
1391 gdb_signal_to_string (signo));
1392 }
1393
1394 internal_error (__FILE__, __LINE__,
1395 _("unexpected status %d for PID %ld"),
1396 status, (long) ptid_get_lwp (ptid));
1397 }
1398
1399 lp->stopped = 1;
1400
1401 /* Save the wait status to report later. */
1402 lp->resumed = 1;
1403 if (debug_linux_nat)
1404 fprintf_unfiltered (gdb_stdlog,
1405 "LNA: waitpid %ld, saving status %s\n",
1406 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1407
1408 lp->status = status;
1409
1410 if (target_can_async_p ())
1411 target_async (inferior_event_handler, 0);
1412 }
1413
1414 /* Get pending status of LP. */
1415 static int
1416 get_pending_status (struct lwp_info *lp, int *status)
1417 {
1418 enum gdb_signal signo = GDB_SIGNAL_0;
1419
1420 /* If we paused threads momentarily, we may have stored pending
1421 events in lp->status or lp->waitstatus (see stop_wait_callback),
1422 and GDB core hasn't seen any signal for those threads.
1423 Otherwise, the last signal reported to the core is found in the
1424 thread object's stop_signal.
1425
1426 There's a corner case that isn't handled here at present. Only
1427 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1428 stop_signal make sense as a real signal to pass to the inferior.
1429 Some catchpoint related events, like
1430 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1431 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1432 those traps are debug API (ptrace in our case) related and
1433 induced; the inferior wouldn't see them if it wasn't being
1434 traced. Hence, we should never pass them to the inferior, even
1435 when set to pass state. Since this corner case isn't handled by
1436 infrun.c when proceeding with a signal, for consistency, neither
1437 do we handle it here (or elsewhere in the file we check for
1438 signal pass state). Normally SIGTRAP isn't set to pass state, so
1439 this is really a corner case. */
1440
1441 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1442 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1443 else if (lp->status)
1444 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1445 else if (non_stop && !is_executing (lp->ptid))
1446 {
1447 struct thread_info *tp = find_thread_ptid (lp->ptid);
1448
1449 signo = tp->suspend.stop_signal;
1450 }
1451 else if (!non_stop)
1452 {
1453 struct target_waitstatus last;
1454 ptid_t last_ptid;
1455
1456 get_last_target_status (&last_ptid, &last);
1457
1458 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1459 {
1460 struct thread_info *tp = find_thread_ptid (lp->ptid);
1461
1462 signo = tp->suspend.stop_signal;
1463 }
1464 }
1465
1466 *status = 0;
1467
1468 if (signo == GDB_SIGNAL_0)
1469 {
1470 if (debug_linux_nat)
1471 fprintf_unfiltered (gdb_stdlog,
1472 "GPT: lwp %s has no pending signal\n",
1473 target_pid_to_str (lp->ptid));
1474 }
1475 else if (!signal_pass_state (signo))
1476 {
1477 if (debug_linux_nat)
1478 fprintf_unfiltered (gdb_stdlog,
1479 "GPT: lwp %s had signal %s, "
1480 "but it is in no pass state\n",
1481 target_pid_to_str (lp->ptid),
1482 gdb_signal_to_string (signo));
1483 }
1484 else
1485 {
1486 *status = W_STOPCODE (gdb_signal_to_host (signo));
1487
1488 if (debug_linux_nat)
1489 fprintf_unfiltered (gdb_stdlog,
1490 "GPT: lwp %s has pending signal %s\n",
1491 target_pid_to_str (lp->ptid),
1492 gdb_signal_to_string (signo));
1493 }
1494
1495 return 0;
1496 }
1497
1498 static int
1499 detach_callback (struct lwp_info *lp, void *data)
1500 {
1501 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1502
1503 if (debug_linux_nat && lp->status)
1504 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1505 strsignal (WSTOPSIG (lp->status)),
1506 target_pid_to_str (lp->ptid));
1507
1508 /* If there is a pending SIGSTOP, get rid of it. */
1509 if (lp->signalled)
1510 {
1511 if (debug_linux_nat)
1512 fprintf_unfiltered (gdb_stdlog,
1513 "DC: Sending SIGCONT to %s\n",
1514 target_pid_to_str (lp->ptid));
1515
1516 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1517 lp->signalled = 0;
1518 }
1519
1520 /* We don't actually detach from the LWP that has an id equal to the
1521 overall process id just yet. */
1522 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1523 {
1524 int status = 0;
1525
1526 /* Pass on any pending signal for this LWP. */
1527 get_pending_status (lp, &status);
1528
1529 if (linux_nat_prepare_to_resume != NULL)
1530 linux_nat_prepare_to_resume (lp);
1531 errno = 0;
1532 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1533 WSTOPSIG (status)) < 0)
1534 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1535 safe_strerror (errno));
1536
1537 if (debug_linux_nat)
1538 fprintf_unfiltered (gdb_stdlog,
1539 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1540 target_pid_to_str (lp->ptid),
1541 strsignal (WSTOPSIG (status)));
1542
1543 delete_lwp (lp->ptid);
1544 }
1545
1546 return 0;
1547 }
1548
1549 static void
1550 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1551 {
1552 int pid;
1553 int status;
1554 struct lwp_info *main_lwp;
1555
1556 pid = ptid_get_pid (inferior_ptid);
1557
1558 /* Don't unregister from the event loop, as there may be other
1559 inferiors running. */
1560
1561 /* Stop all threads before detaching. ptrace requires that the
1562 thread is stopped to sucessfully detach. */
1563 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1564 /* ... and wait until all of them have reported back that
1565 they're no longer running. */
1566 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1567
1568 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1569
1570 /* Only the initial process should be left right now. */
1571 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1572
1573 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1574
1575 /* Pass on any pending signal for the last LWP. */
1576 if ((args == NULL || *args == '\0')
1577 && get_pending_status (main_lwp, &status) != -1
1578 && WIFSTOPPED (status))
1579 {
1580 char *tem;
1581
1582 /* Put the signal number in ARGS so that inf_ptrace_detach will
1583 pass it along with PTRACE_DETACH. */
1584 tem = alloca (8);
1585 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1586 args = tem;
1587 if (debug_linux_nat)
1588 fprintf_unfiltered (gdb_stdlog,
1589 "LND: Sending signal %s to %s\n",
1590 args,
1591 target_pid_to_str (main_lwp->ptid));
1592 }
1593
1594 if (linux_nat_prepare_to_resume != NULL)
1595 linux_nat_prepare_to_resume (main_lwp);
1596 delete_lwp (main_lwp->ptid);
1597
1598 if (forks_exist_p ())
1599 {
1600 /* Multi-fork case. The current inferior_ptid is being detached
1601 from, but there are other viable forks to debug. Detach from
1602 the current fork, and context-switch to the first
1603 available. */
1604 linux_fork_detach (args, from_tty);
1605 }
1606 else
1607 linux_ops->to_detach (ops, args, from_tty);
1608 }
1609
1610 /* Resume LP. */
1611
1612 static void
1613 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1614 {
1615 if (lp->stopped)
1616 {
1617 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1618
1619 if (inf->vfork_child != NULL)
1620 {
1621 if (debug_linux_nat)
1622 fprintf_unfiltered (gdb_stdlog,
1623 "RC: Not resuming %s (vfork parent)\n",
1624 target_pid_to_str (lp->ptid));
1625 }
1626 else if (lp->status == 0
1627 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1628 {
1629 if (debug_linux_nat)
1630 fprintf_unfiltered (gdb_stdlog,
1631 "RC: Resuming sibling %s, %s, %s\n",
1632 target_pid_to_str (lp->ptid),
1633 (signo != GDB_SIGNAL_0
1634 ? strsignal (gdb_signal_to_host (signo))
1635 : "0"),
1636 step ? "step" : "resume");
1637
1638 if (linux_nat_prepare_to_resume != NULL)
1639 linux_nat_prepare_to_resume (lp);
1640 linux_ops->to_resume (linux_ops,
1641 pid_to_ptid (ptid_get_lwp (lp->ptid)),
1642 step, signo);
1643 lp->stopped = 0;
1644 lp->step = step;
1645 lp->stopped_by_watchpoint = 0;
1646 }
1647 else
1648 {
1649 if (debug_linux_nat)
1650 fprintf_unfiltered (gdb_stdlog,
1651 "RC: Not resuming sibling %s (has pending)\n",
1652 target_pid_to_str (lp->ptid));
1653 }
1654 }
1655 else
1656 {
1657 if (debug_linux_nat)
1658 fprintf_unfiltered (gdb_stdlog,
1659 "RC: Not resuming sibling %s (not stopped)\n",
1660 target_pid_to_str (lp->ptid));
1661 }
1662 }
1663
1664 /* Resume LWP, with the last stop signal, if it is in pass state. */
1665
1666 static int
1667 linux_nat_resume_callback (struct lwp_info *lp, void *data)
1668 {
1669 enum gdb_signal signo = GDB_SIGNAL_0;
1670
1671 if (lp->stopped)
1672 {
1673 struct thread_info *thread;
1674
1675 thread = find_thread_ptid (lp->ptid);
1676 if (thread != NULL)
1677 {
1678 if (signal_pass_state (thread->suspend.stop_signal))
1679 signo = thread->suspend.stop_signal;
1680 thread->suspend.stop_signal = GDB_SIGNAL_0;
1681 }
1682 }
1683
1684 resume_lwp (lp, 0, signo);
1685 return 0;
1686 }
1687
1688 static int
1689 resume_clear_callback (struct lwp_info *lp, void *data)
1690 {
1691 lp->resumed = 0;
1692 lp->last_resume_kind = resume_stop;
1693 return 0;
1694 }
1695
1696 static int
1697 resume_set_callback (struct lwp_info *lp, void *data)
1698 {
1699 lp->resumed = 1;
1700 lp->last_resume_kind = resume_continue;
1701 return 0;
1702 }
1703
1704 static void
1705 linux_nat_resume (struct target_ops *ops,
1706 ptid_t ptid, int step, enum gdb_signal signo)
1707 {
1708 struct lwp_info *lp;
1709 int resume_many;
1710
1711 if (debug_linux_nat)
1712 fprintf_unfiltered (gdb_stdlog,
1713 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1714 step ? "step" : "resume",
1715 target_pid_to_str (ptid),
1716 (signo != GDB_SIGNAL_0
1717 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1718 target_pid_to_str (inferior_ptid));
1719
1720 /* A specific PTID means `step only this process id'. */
1721 resume_many = (ptid_equal (minus_one_ptid, ptid)
1722 || ptid_is_pid (ptid));
1723
1724 /* Mark the lwps we're resuming as resumed. */
1725 iterate_over_lwps (ptid, resume_set_callback, NULL);
1726
1727 /* See if it's the current inferior that should be handled
1728 specially. */
1729 if (resume_many)
1730 lp = find_lwp_pid (inferior_ptid);
1731 else
1732 lp = find_lwp_pid (ptid);
1733 gdb_assert (lp != NULL);
1734
1735 /* Remember if we're stepping. */
1736 lp->step = step;
1737 lp->last_resume_kind = step ? resume_step : resume_continue;
1738
1739 /* If we have a pending wait status for this thread, there is no
1740 point in resuming the process. But first make sure that
1741 linux_nat_wait won't preemptively handle the event - we
1742 should never take this short-circuit if we are going to
1743 leave LP running, since we have skipped resuming all the
1744 other threads. This bit of code needs to be synchronized
1745 with linux_nat_wait. */
1746
1747 if (lp->status && WIFSTOPPED (lp->status))
1748 {
1749 if (!lp->step
1750 && WSTOPSIG (lp->status)
1751 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1752 {
1753 if (debug_linux_nat)
1754 fprintf_unfiltered (gdb_stdlog,
1755 "LLR: Not short circuiting for ignored "
1756 "status 0x%x\n", lp->status);
1757
1758 /* FIXME: What should we do if we are supposed to continue
1759 this thread with a signal? */
1760 gdb_assert (signo == GDB_SIGNAL_0);
1761 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1762 lp->status = 0;
1763 }
1764 }
1765
1766 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1767 {
1768 /* FIXME: What should we do if we are supposed to continue
1769 this thread with a signal? */
1770 gdb_assert (signo == GDB_SIGNAL_0);
1771
1772 if (debug_linux_nat)
1773 fprintf_unfiltered (gdb_stdlog,
1774 "LLR: Short circuiting for status 0x%x\n",
1775 lp->status);
1776
1777 if (target_can_async_p ())
1778 {
1779 target_async (inferior_event_handler, 0);
1780 /* Tell the event loop we have something to process. */
1781 async_file_mark ();
1782 }
1783 return;
1784 }
1785
1786 /* Mark LWP as not stopped to prevent it from being continued by
1787 linux_nat_resume_callback. */
1788 lp->stopped = 0;
1789
1790 if (resume_many)
1791 iterate_over_lwps (ptid, linux_nat_resume_callback, NULL);
1792
1793 /* Convert to something the lower layer understands. */
1794 ptid = pid_to_ptid (ptid_get_lwp (lp->ptid));
1795
1796 if (linux_nat_prepare_to_resume != NULL)
1797 linux_nat_prepare_to_resume (lp);
1798 linux_ops->to_resume (linux_ops, ptid, step, signo);
1799 lp->stopped_by_watchpoint = 0;
1800
1801 if (debug_linux_nat)
1802 fprintf_unfiltered (gdb_stdlog,
1803 "LLR: %s %s, %s (resume event thread)\n",
1804 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1805 target_pid_to_str (ptid),
1806 (signo != GDB_SIGNAL_0
1807 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1808
1809 if (target_can_async_p ())
1810 target_async (inferior_event_handler, 0);
1811 }
1812
1813 /* Send a signal to an LWP. */
1814
1815 static int
1816 kill_lwp (int lwpid, int signo)
1817 {
1818 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1819 fails, then we are not using nptl threads and we should be using kill. */
1820
1821 #ifdef HAVE_TKILL_SYSCALL
1822 {
1823 static int tkill_failed;
1824
1825 if (!tkill_failed)
1826 {
1827 int ret;
1828
1829 errno = 0;
1830 ret = syscall (__NR_tkill, lwpid, signo);
1831 if (errno != ENOSYS)
1832 return ret;
1833 tkill_failed = 1;
1834 }
1835 }
1836 #endif
1837
1838 return kill (lwpid, signo);
1839 }
1840
1841 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1842 event, check if the core is interested in it: if not, ignore the
1843 event, and keep waiting; otherwise, we need to toggle the LWP's
1844 syscall entry/exit status, since the ptrace event itself doesn't
1845 indicate it, and report the trap to higher layers. */
1846
1847 static int
1848 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1849 {
1850 struct target_waitstatus *ourstatus = &lp->waitstatus;
1851 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1852 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1853
1854 if (stopping)
1855 {
1856 /* If we're stopping threads, there's a SIGSTOP pending, which
1857 makes it so that the LWP reports an immediate syscall return,
1858 followed by the SIGSTOP. Skip seeing that "return" using
1859 PTRACE_CONT directly, and let stop_wait_callback collect the
1860 SIGSTOP. Later when the thread is resumed, a new syscall
1861 entry event. If we didn't do this (and returned 0), we'd
1862 leave a syscall entry pending, and our caller, by using
1863 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1864 itself. Later, when the user re-resumes this LWP, we'd see
1865 another syscall entry event and we'd mistake it for a return.
1866
1867 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1868 (leaving immediately with LWP->signalled set, without issuing
1869 a PTRACE_CONT), it would still be problematic to leave this
1870 syscall enter pending, as later when the thread is resumed,
1871 it would then see the same syscall exit mentioned above,
1872 followed by the delayed SIGSTOP, while the syscall didn't
1873 actually get to execute. It seems it would be even more
1874 confusing to the user. */
1875
1876 if (debug_linux_nat)
1877 fprintf_unfiltered (gdb_stdlog,
1878 "LHST: ignoring syscall %d "
1879 "for LWP %ld (stopping threads), "
1880 "resuming with PTRACE_CONT for SIGSTOP\n",
1881 syscall_number,
1882 ptid_get_lwp (lp->ptid));
1883
1884 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1885 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1886 return 1;
1887 }
1888
1889 if (catch_syscall_enabled ())
1890 {
1891 /* Always update the entry/return state, even if this particular
1892 syscall isn't interesting to the core now. In async mode,
1893 the user could install a new catchpoint for this syscall
1894 between syscall enter/return, and we'll need to know to
1895 report a syscall return if that happens. */
1896 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1897 ? TARGET_WAITKIND_SYSCALL_RETURN
1898 : TARGET_WAITKIND_SYSCALL_ENTRY);
1899
1900 if (catching_syscall_number (syscall_number))
1901 {
1902 /* Alright, an event to report. */
1903 ourstatus->kind = lp->syscall_state;
1904 ourstatus->value.syscall_number = syscall_number;
1905
1906 if (debug_linux_nat)
1907 fprintf_unfiltered (gdb_stdlog,
1908 "LHST: stopping for %s of syscall %d"
1909 " for LWP %ld\n",
1910 lp->syscall_state
1911 == TARGET_WAITKIND_SYSCALL_ENTRY
1912 ? "entry" : "return",
1913 syscall_number,
1914 ptid_get_lwp (lp->ptid));
1915 return 0;
1916 }
1917
1918 if (debug_linux_nat)
1919 fprintf_unfiltered (gdb_stdlog,
1920 "LHST: ignoring %s of syscall %d "
1921 "for LWP %ld\n",
1922 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1923 ? "entry" : "return",
1924 syscall_number,
1925 ptid_get_lwp (lp->ptid));
1926 }
1927 else
1928 {
1929 /* If we had been syscall tracing, and hence used PT_SYSCALL
1930 before on this LWP, it could happen that the user removes all
1931 syscall catchpoints before we get to process this event.
1932 There are two noteworthy issues here:
1933
1934 - When stopped at a syscall entry event, resuming with
1935 PT_STEP still resumes executing the syscall and reports a
1936 syscall return.
1937
1938 - Only PT_SYSCALL catches syscall enters. If we last
1939 single-stepped this thread, then this event can't be a
1940 syscall enter. If we last single-stepped this thread, this
1941 has to be a syscall exit.
1942
1943 The points above mean that the next resume, be it PT_STEP or
1944 PT_CONTINUE, can not trigger a syscall trace event. */
1945 if (debug_linux_nat)
1946 fprintf_unfiltered (gdb_stdlog,
1947 "LHST: caught syscall event "
1948 "with no syscall catchpoints."
1949 " %d for LWP %ld, ignoring\n",
1950 syscall_number,
1951 ptid_get_lwp (lp->ptid));
1952 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1953 }
1954
1955 /* The core isn't interested in this event. For efficiency, avoid
1956 stopping all threads only to have the core resume them all again.
1957 Since we're not stopping threads, if we're still syscall tracing
1958 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1959 subsequent syscall. Simply resume using the inf-ptrace layer,
1960 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1961
1962 /* Note that gdbarch_get_syscall_number may access registers, hence
1963 fill a regcache. */
1964 registers_changed ();
1965 if (linux_nat_prepare_to_resume != NULL)
1966 linux_nat_prepare_to_resume (lp);
1967 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
1968 lp->step, GDB_SIGNAL_0);
1969 return 1;
1970 }
1971
1972 /* Handle a GNU/Linux extended wait response. If we see a clone
1973 event, we need to add the new LWP to our list (and not report the
1974 trap to higher layers). This function returns non-zero if the
1975 event should be ignored and we should wait again. If STOPPING is
1976 true, the new LWP remains stopped, otherwise it is continued. */
1977
1978 static int
1979 linux_handle_extended_wait (struct lwp_info *lp, int status,
1980 int stopping)
1981 {
1982 int pid = ptid_get_lwp (lp->ptid);
1983 struct target_waitstatus *ourstatus = &lp->waitstatus;
1984 int event = status >> 16;
1985
1986 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1987 || event == PTRACE_EVENT_CLONE)
1988 {
1989 unsigned long new_pid;
1990 int ret;
1991
1992 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1993
1994 /* If we haven't already seen the new PID stop, wait for it now. */
1995 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1996 {
1997 /* The new child has a pending SIGSTOP. We can't affect it until it
1998 hits the SIGSTOP, but we're already attached. */
1999 ret = my_waitpid (new_pid, &status,
2000 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2001 if (ret == -1)
2002 perror_with_name (_("waiting for new child"));
2003 else if (ret != new_pid)
2004 internal_error (__FILE__, __LINE__,
2005 _("wait returned unexpected PID %d"), ret);
2006 else if (!WIFSTOPPED (status))
2007 internal_error (__FILE__, __LINE__,
2008 _("wait returned unexpected status 0x%x"), status);
2009 }
2010
2011 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2012
2013 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2014 {
2015 /* The arch-specific native code may need to know about new
2016 forks even if those end up never mapped to an
2017 inferior. */
2018 if (linux_nat_new_fork != NULL)
2019 linux_nat_new_fork (lp, new_pid);
2020 }
2021
2022 if (event == PTRACE_EVENT_FORK
2023 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2024 {
2025 /* Handle checkpointing by linux-fork.c here as a special
2026 case. We don't want the follow-fork-mode or 'catch fork'
2027 to interfere with this. */
2028
2029 /* This won't actually modify the breakpoint list, but will
2030 physically remove the breakpoints from the child. */
2031 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2032
2033 /* Retain child fork in ptrace (stopped) state. */
2034 if (!find_fork_pid (new_pid))
2035 add_fork (new_pid);
2036
2037 /* Report as spurious, so that infrun doesn't want to follow
2038 this fork. We're actually doing an infcall in
2039 linux-fork.c. */
2040 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2041
2042 /* Report the stop to the core. */
2043 return 0;
2044 }
2045
2046 if (event == PTRACE_EVENT_FORK)
2047 ourstatus->kind = TARGET_WAITKIND_FORKED;
2048 else if (event == PTRACE_EVENT_VFORK)
2049 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2050 else
2051 {
2052 struct lwp_info *new_lp;
2053
2054 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2055
2056 if (debug_linux_nat)
2057 fprintf_unfiltered (gdb_stdlog,
2058 "LHEW: Got clone event "
2059 "from LWP %d, new child is LWP %ld\n",
2060 pid, new_pid);
2061
2062 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2063 new_lp->cloned = 1;
2064 new_lp->stopped = 1;
2065
2066 if (WSTOPSIG (status) != SIGSTOP)
2067 {
2068 /* This can happen if someone starts sending signals to
2069 the new thread before it gets a chance to run, which
2070 have a lower number than SIGSTOP (e.g. SIGUSR1).
2071 This is an unlikely case, and harder to handle for
2072 fork / vfork than for clone, so we do not try - but
2073 we handle it for clone events here. We'll send
2074 the other signal on to the thread below. */
2075
2076 new_lp->signalled = 1;
2077 }
2078 else
2079 {
2080 struct thread_info *tp;
2081
2082 /* When we stop for an event in some other thread, and
2083 pull the thread list just as this thread has cloned,
2084 we'll have seen the new thread in the thread_db list
2085 before handling the CLONE event (glibc's
2086 pthread_create adds the new thread to the thread list
2087 before clone'ing, and has the kernel fill in the
2088 thread's tid on the clone call with
2089 CLONE_PARENT_SETTID). If that happened, and the core
2090 had requested the new thread to stop, we'll have
2091 killed it with SIGSTOP. But since SIGSTOP is not an
2092 RT signal, it can only be queued once. We need to be
2093 careful to not resume the LWP if we wanted it to
2094 stop. In that case, we'll leave the SIGSTOP pending.
2095 It will later be reported as GDB_SIGNAL_0. */
2096 tp = find_thread_ptid (new_lp->ptid);
2097 if (tp != NULL && tp->stop_requested)
2098 new_lp->last_resume_kind = resume_stop;
2099 else
2100 status = 0;
2101 }
2102
2103 if (non_stop)
2104 {
2105 /* Add the new thread to GDB's lists as soon as possible
2106 so that:
2107
2108 1) the frontend doesn't have to wait for a stop to
2109 display them, and,
2110
2111 2) we tag it with the correct running state. */
2112
2113 /* If the thread_db layer is active, let it know about
2114 this new thread, and add it to GDB's list. */
2115 if (!thread_db_attach_lwp (new_lp->ptid))
2116 {
2117 /* We're not using thread_db. Add it to GDB's
2118 list. */
2119 target_post_attach (ptid_get_lwp (new_lp->ptid));
2120 add_thread (new_lp->ptid);
2121 }
2122
2123 if (!stopping)
2124 {
2125 set_running (new_lp->ptid, 1);
2126 set_executing (new_lp->ptid, 1);
2127 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2128 resume_stop. */
2129 new_lp->last_resume_kind = resume_continue;
2130 }
2131 }
2132
2133 if (status != 0)
2134 {
2135 /* We created NEW_LP so it cannot yet contain STATUS. */
2136 gdb_assert (new_lp->status == 0);
2137
2138 /* Save the wait status to report later. */
2139 if (debug_linux_nat)
2140 fprintf_unfiltered (gdb_stdlog,
2141 "LHEW: waitpid of new LWP %ld, "
2142 "saving status %s\n",
2143 (long) ptid_get_lwp (new_lp->ptid),
2144 status_to_str (status));
2145 new_lp->status = status;
2146 }
2147
2148 /* Note the need to use the low target ops to resume, to
2149 handle resuming with PT_SYSCALL if we have syscall
2150 catchpoints. */
2151 if (!stopping)
2152 {
2153 new_lp->resumed = 1;
2154
2155 if (status == 0)
2156 {
2157 gdb_assert (new_lp->last_resume_kind == resume_continue);
2158 if (debug_linux_nat)
2159 fprintf_unfiltered (gdb_stdlog,
2160 "LHEW: resuming new LWP %ld\n",
2161 ptid_get_lwp (new_lp->ptid));
2162 if (linux_nat_prepare_to_resume != NULL)
2163 linux_nat_prepare_to_resume (new_lp);
2164 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2165 0, GDB_SIGNAL_0);
2166 new_lp->stopped = 0;
2167 }
2168 }
2169
2170 if (debug_linux_nat)
2171 fprintf_unfiltered (gdb_stdlog,
2172 "LHEW: resuming parent LWP %d\n", pid);
2173 if (linux_nat_prepare_to_resume != NULL)
2174 linux_nat_prepare_to_resume (lp);
2175 linux_ops->to_resume (linux_ops,
2176 pid_to_ptid (ptid_get_lwp (lp->ptid)),
2177 0, GDB_SIGNAL_0);
2178
2179 return 1;
2180 }
2181
2182 return 0;
2183 }
2184
2185 if (event == PTRACE_EVENT_EXEC)
2186 {
2187 if (debug_linux_nat)
2188 fprintf_unfiltered (gdb_stdlog,
2189 "LHEW: Got exec event from LWP %ld\n",
2190 ptid_get_lwp (lp->ptid));
2191
2192 ourstatus->kind = TARGET_WAITKIND_EXECD;
2193 ourstatus->value.execd_pathname
2194 = xstrdup (linux_child_pid_to_exec_file (pid));
2195
2196 return 0;
2197 }
2198
2199 if (event == PTRACE_EVENT_VFORK_DONE)
2200 {
2201 if (current_inferior ()->waiting_for_vfork_done)
2202 {
2203 if (debug_linux_nat)
2204 fprintf_unfiltered (gdb_stdlog,
2205 "LHEW: Got expected PTRACE_EVENT_"
2206 "VFORK_DONE from LWP %ld: stopping\n",
2207 ptid_get_lwp (lp->ptid));
2208
2209 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2210 return 0;
2211 }
2212
2213 if (debug_linux_nat)
2214 fprintf_unfiltered (gdb_stdlog,
2215 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2216 "from LWP %ld: resuming\n",
2217 ptid_get_lwp (lp->ptid));
2218 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2219 return 1;
2220 }
2221
2222 internal_error (__FILE__, __LINE__,
2223 _("unknown ptrace event %d"), event);
2224 }
2225
2226 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2227 exited. */
2228
2229 static int
2230 wait_lwp (struct lwp_info *lp)
2231 {
2232 pid_t pid;
2233 int status = 0;
2234 int thread_dead = 0;
2235 sigset_t prev_mask;
2236
2237 gdb_assert (!lp->stopped);
2238 gdb_assert (lp->status == 0);
2239
2240 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2241 block_child_signals (&prev_mask);
2242
2243 for (;;)
2244 {
2245 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2246 was right and we should just call sigsuspend. */
2247
2248 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2249 if (pid == -1 && errno == ECHILD)
2250 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2251 if (pid == -1 && errno == ECHILD)
2252 {
2253 /* The thread has previously exited. We need to delete it
2254 now because, for some vendor 2.4 kernels with NPTL
2255 support backported, there won't be an exit event unless
2256 it is the main thread. 2.6 kernels will report an exit
2257 event for each thread that exits, as expected. */
2258 thread_dead = 1;
2259 if (debug_linux_nat)
2260 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2261 target_pid_to_str (lp->ptid));
2262 }
2263 if (pid != 0)
2264 break;
2265
2266 /* Bugs 10970, 12702.
2267 Thread group leader may have exited in which case we'll lock up in
2268 waitpid if there are other threads, even if they are all zombies too.
2269 Basically, we're not supposed to use waitpid this way.
2270 __WCLONE is not applicable for the leader so we can't use that.
2271 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2272 process; it gets ESRCH both for the zombie and for running processes.
2273
2274 As a workaround, check if we're waiting for the thread group leader and
2275 if it's a zombie, and avoid calling waitpid if it is.
2276
2277 This is racy, what if the tgl becomes a zombie right after we check?
2278 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2279 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2280
2281 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2282 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2283 {
2284 thread_dead = 1;
2285 if (debug_linux_nat)
2286 fprintf_unfiltered (gdb_stdlog,
2287 "WL: Thread group leader %s vanished.\n",
2288 target_pid_to_str (lp->ptid));
2289 break;
2290 }
2291
2292 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2293 get invoked despite our caller had them intentionally blocked by
2294 block_child_signals. This is sensitive only to the loop of
2295 linux_nat_wait_1 and there if we get called my_waitpid gets called
2296 again before it gets to sigsuspend so we can safely let the handlers
2297 get executed here. */
2298
2299 sigsuspend (&suspend_mask);
2300 }
2301
2302 restore_child_signals_mask (&prev_mask);
2303
2304 if (!thread_dead)
2305 {
2306 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2307
2308 if (debug_linux_nat)
2309 {
2310 fprintf_unfiltered (gdb_stdlog,
2311 "WL: waitpid %s received %s\n",
2312 target_pid_to_str (lp->ptid),
2313 status_to_str (status));
2314 }
2315
2316 /* Check if the thread has exited. */
2317 if (WIFEXITED (status) || WIFSIGNALED (status))
2318 {
2319 thread_dead = 1;
2320 if (debug_linux_nat)
2321 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2322 target_pid_to_str (lp->ptid));
2323 }
2324 }
2325
2326 if (thread_dead)
2327 {
2328 exit_lwp (lp);
2329 return 0;
2330 }
2331
2332 gdb_assert (WIFSTOPPED (status));
2333
2334 /* Handle GNU/Linux's syscall SIGTRAPs. */
2335 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2336 {
2337 /* No longer need the sysgood bit. The ptrace event ends up
2338 recorded in lp->waitstatus if we care for it. We can carry
2339 on handling the event like a regular SIGTRAP from here
2340 on. */
2341 status = W_STOPCODE (SIGTRAP);
2342 if (linux_handle_syscall_trap (lp, 1))
2343 return wait_lwp (lp);
2344 }
2345
2346 /* Handle GNU/Linux's extended waitstatus for trace events. */
2347 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2348 {
2349 if (debug_linux_nat)
2350 fprintf_unfiltered (gdb_stdlog,
2351 "WL: Handling extended status 0x%06x\n",
2352 status);
2353 if (linux_handle_extended_wait (lp, status, 1))
2354 return wait_lwp (lp);
2355 }
2356
2357 return status;
2358 }
2359
2360 /* Send a SIGSTOP to LP. */
2361
2362 static int
2363 stop_callback (struct lwp_info *lp, void *data)
2364 {
2365 if (!lp->stopped && !lp->signalled)
2366 {
2367 int ret;
2368
2369 if (debug_linux_nat)
2370 {
2371 fprintf_unfiltered (gdb_stdlog,
2372 "SC: kill %s **<SIGSTOP>**\n",
2373 target_pid_to_str (lp->ptid));
2374 }
2375 errno = 0;
2376 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2377 if (debug_linux_nat)
2378 {
2379 fprintf_unfiltered (gdb_stdlog,
2380 "SC: lwp kill %d %s\n",
2381 ret,
2382 errno ? safe_strerror (errno) : "ERRNO-OK");
2383 }
2384
2385 lp->signalled = 1;
2386 gdb_assert (lp->status == 0);
2387 }
2388
2389 return 0;
2390 }
2391
2392 /* Request a stop on LWP. */
2393
2394 void
2395 linux_stop_lwp (struct lwp_info *lwp)
2396 {
2397 stop_callback (lwp, NULL);
2398 }
2399
2400 /* Return non-zero if LWP PID has a pending SIGINT. */
2401
2402 static int
2403 linux_nat_has_pending_sigint (int pid)
2404 {
2405 sigset_t pending, blocked, ignored;
2406
2407 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2408
2409 if (sigismember (&pending, SIGINT)
2410 && !sigismember (&ignored, SIGINT))
2411 return 1;
2412
2413 return 0;
2414 }
2415
2416 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2417
2418 static int
2419 set_ignore_sigint (struct lwp_info *lp, void *data)
2420 {
2421 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2422 flag to consume the next one. */
2423 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2424 && WSTOPSIG (lp->status) == SIGINT)
2425 lp->status = 0;
2426 else
2427 lp->ignore_sigint = 1;
2428
2429 return 0;
2430 }
2431
2432 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2433 This function is called after we know the LWP has stopped; if the LWP
2434 stopped before the expected SIGINT was delivered, then it will never have
2435 arrived. Also, if the signal was delivered to a shared queue and consumed
2436 by a different thread, it will never be delivered to this LWP. */
2437
2438 static void
2439 maybe_clear_ignore_sigint (struct lwp_info *lp)
2440 {
2441 if (!lp->ignore_sigint)
2442 return;
2443
2444 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2445 {
2446 if (debug_linux_nat)
2447 fprintf_unfiltered (gdb_stdlog,
2448 "MCIS: Clearing bogus flag for %s\n",
2449 target_pid_to_str (lp->ptid));
2450 lp->ignore_sigint = 0;
2451 }
2452 }
2453
2454 /* Fetch the possible triggered data watchpoint info and store it in
2455 LP.
2456
2457 On some archs, like x86, that use debug registers to set
2458 watchpoints, it's possible that the way to know which watched
2459 address trapped, is to check the register that is used to select
2460 which address to watch. Problem is, between setting the watchpoint
2461 and reading back which data address trapped, the user may change
2462 the set of watchpoints, and, as a consequence, GDB changes the
2463 debug registers in the inferior. To avoid reading back a stale
2464 stopped-data-address when that happens, we cache in LP the fact
2465 that a watchpoint trapped, and the corresponding data address, as
2466 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2467 registers meanwhile, we have the cached data we can rely on. */
2468
2469 static void
2470 save_sigtrap (struct lwp_info *lp)
2471 {
2472 struct cleanup *old_chain;
2473
2474 if (linux_ops->to_stopped_by_watchpoint == NULL)
2475 {
2476 lp->stopped_by_watchpoint = 0;
2477 return;
2478 }
2479
2480 old_chain = save_inferior_ptid ();
2481 inferior_ptid = lp->ptid;
2482
2483 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint (linux_ops);
2484
2485 if (lp->stopped_by_watchpoint)
2486 {
2487 if (linux_ops->to_stopped_data_address != NULL)
2488 lp->stopped_data_address_p =
2489 linux_ops->to_stopped_data_address (&current_target,
2490 &lp->stopped_data_address);
2491 else
2492 lp->stopped_data_address_p = 0;
2493 }
2494
2495 do_cleanups (old_chain);
2496 }
2497
2498 /* See save_sigtrap. */
2499
2500 static int
2501 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2502 {
2503 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2504
2505 gdb_assert (lp != NULL);
2506
2507 return lp->stopped_by_watchpoint;
2508 }
2509
2510 static int
2511 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2512 {
2513 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2514
2515 gdb_assert (lp != NULL);
2516
2517 *addr_p = lp->stopped_data_address;
2518
2519 return lp->stopped_data_address_p;
2520 }
2521
2522 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2523
2524 static int
2525 sigtrap_is_event (int status)
2526 {
2527 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2528 }
2529
2530 /* SIGTRAP-like events recognizer. */
2531
2532 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2533
2534 /* Check for SIGTRAP-like events in LP. */
2535
2536 static int
2537 linux_nat_lp_status_is_event (struct lwp_info *lp)
2538 {
2539 /* We check for lp->waitstatus in addition to lp->status, because we can
2540 have pending process exits recorded in lp->status
2541 and W_EXITCODE(0,0) == 0. We should probably have an additional
2542 lp->status_p flag. */
2543
2544 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2545 && linux_nat_status_is_event (lp->status));
2546 }
2547
2548 /* Set alternative SIGTRAP-like events recognizer. If
2549 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2550 applied. */
2551
2552 void
2553 linux_nat_set_status_is_event (struct target_ops *t,
2554 int (*status_is_event) (int status))
2555 {
2556 linux_nat_status_is_event = status_is_event;
2557 }
2558
2559 /* Wait until LP is stopped. */
2560
2561 static int
2562 stop_wait_callback (struct lwp_info *lp, void *data)
2563 {
2564 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2565
2566 /* If this is a vfork parent, bail out, it is not going to report
2567 any SIGSTOP until the vfork is done with. */
2568 if (inf->vfork_child != NULL)
2569 return 0;
2570
2571 if (!lp->stopped)
2572 {
2573 int status;
2574
2575 status = wait_lwp (lp);
2576 if (status == 0)
2577 return 0;
2578
2579 if (lp->ignore_sigint && WIFSTOPPED (status)
2580 && WSTOPSIG (status) == SIGINT)
2581 {
2582 lp->ignore_sigint = 0;
2583
2584 errno = 0;
2585 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2586 if (debug_linux_nat)
2587 fprintf_unfiltered (gdb_stdlog,
2588 "PTRACE_CONT %s, 0, 0 (%s) "
2589 "(discarding SIGINT)\n",
2590 target_pid_to_str (lp->ptid),
2591 errno ? safe_strerror (errno) : "OK");
2592
2593 return stop_wait_callback (lp, NULL);
2594 }
2595
2596 maybe_clear_ignore_sigint (lp);
2597
2598 if (WSTOPSIG (status) != SIGSTOP)
2599 {
2600 /* The thread was stopped with a signal other than SIGSTOP. */
2601
2602 save_sigtrap (lp);
2603
2604 if (debug_linux_nat)
2605 fprintf_unfiltered (gdb_stdlog,
2606 "SWC: Pending event %s in %s\n",
2607 status_to_str ((int) status),
2608 target_pid_to_str (lp->ptid));
2609
2610 /* Save the sigtrap event. */
2611 lp->status = status;
2612 gdb_assert (!lp->stopped);
2613 gdb_assert (lp->signalled);
2614 lp->stopped = 1;
2615 }
2616 else
2617 {
2618 /* We caught the SIGSTOP that we intended to catch, so
2619 there's no SIGSTOP pending. */
2620
2621 if (debug_linux_nat)
2622 fprintf_unfiltered (gdb_stdlog,
2623 "SWC: Delayed SIGSTOP caught for %s.\n",
2624 target_pid_to_str (lp->ptid));
2625
2626 lp->stopped = 1;
2627
2628 /* Reset SIGNALLED only after the stop_wait_callback call
2629 above as it does gdb_assert on SIGNALLED. */
2630 lp->signalled = 0;
2631 }
2632 }
2633
2634 return 0;
2635 }
2636
2637 /* Return non-zero if LP has a wait status pending. */
2638
2639 static int
2640 status_callback (struct lwp_info *lp, void *data)
2641 {
2642 /* Only report a pending wait status if we pretend that this has
2643 indeed been resumed. */
2644 if (!lp->resumed)
2645 return 0;
2646
2647 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2648 {
2649 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2650 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2651 0', so a clean process exit can not be stored pending in
2652 lp->status, it is indistinguishable from
2653 no-pending-status. */
2654 return 1;
2655 }
2656
2657 if (lp->status != 0)
2658 return 1;
2659
2660 return 0;
2661 }
2662
2663 /* Return non-zero if LP isn't stopped. */
2664
2665 static int
2666 running_callback (struct lwp_info *lp, void *data)
2667 {
2668 return (!lp->stopped
2669 || ((lp->status != 0
2670 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2671 && lp->resumed));
2672 }
2673
2674 /* Count the LWP's that have had events. */
2675
2676 static int
2677 count_events_callback (struct lwp_info *lp, void *data)
2678 {
2679 int *count = data;
2680
2681 gdb_assert (count != NULL);
2682
2683 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2684 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2685 (*count)++;
2686
2687 return 0;
2688 }
2689
2690 /* Select the LWP (if any) that is currently being single-stepped. */
2691
2692 static int
2693 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2694 {
2695 if (lp->last_resume_kind == resume_step
2696 && lp->status != 0)
2697 return 1;
2698 else
2699 return 0;
2700 }
2701
2702 /* Select the Nth LWP that has had a SIGTRAP event. */
2703
2704 static int
2705 select_event_lwp_callback (struct lwp_info *lp, void *data)
2706 {
2707 int *selector = data;
2708
2709 gdb_assert (selector != NULL);
2710
2711 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2712 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2713 if ((*selector)-- == 0)
2714 return 1;
2715
2716 return 0;
2717 }
2718
2719 static int
2720 cancel_breakpoint (struct lwp_info *lp)
2721 {
2722 /* Arrange for a breakpoint to be hit again later. We don't keep
2723 the SIGTRAP status and don't forward the SIGTRAP signal to the
2724 LWP. We will handle the current event, eventually we will resume
2725 this LWP, and this breakpoint will trap again.
2726
2727 If we do not do this, then we run the risk that the user will
2728 delete or disable the breakpoint, but the LWP will have already
2729 tripped on it. */
2730
2731 struct regcache *regcache = get_thread_regcache (lp->ptid);
2732 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2733 CORE_ADDR pc;
2734
2735 pc = regcache_read_pc (regcache) - target_decr_pc_after_break (gdbarch);
2736 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2737 {
2738 if (debug_linux_nat)
2739 fprintf_unfiltered (gdb_stdlog,
2740 "CB: Push back breakpoint for %s\n",
2741 target_pid_to_str (lp->ptid));
2742
2743 /* Back up the PC if necessary. */
2744 if (target_decr_pc_after_break (gdbarch))
2745 regcache_write_pc (regcache, pc);
2746
2747 return 1;
2748 }
2749 return 0;
2750 }
2751
2752 static int
2753 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2754 {
2755 struct lwp_info *event_lp = data;
2756
2757 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2758 if (lp == event_lp)
2759 return 0;
2760
2761 /* If a LWP other than the LWP that we're reporting an event for has
2762 hit a GDB breakpoint (as opposed to some random trap signal),
2763 then just arrange for it to hit it again later. We don't keep
2764 the SIGTRAP status and don't forward the SIGTRAP signal to the
2765 LWP. We will handle the current event, eventually we will resume
2766 all LWPs, and this one will get its breakpoint trap again.
2767
2768 If we do not do this, then we run the risk that the user will
2769 delete or disable the breakpoint, but the LWP will have already
2770 tripped on it. */
2771
2772 if (linux_nat_lp_status_is_event (lp)
2773 && cancel_breakpoint (lp))
2774 /* Throw away the SIGTRAP. */
2775 lp->status = 0;
2776
2777 return 0;
2778 }
2779
2780 /* Select one LWP out of those that have events pending. */
2781
2782 static void
2783 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2784 {
2785 int num_events = 0;
2786 int random_selector;
2787 struct lwp_info *event_lp;
2788
2789 /* Record the wait status for the original LWP. */
2790 (*orig_lp)->status = *status;
2791
2792 /* Give preference to any LWP that is being single-stepped. */
2793 event_lp = iterate_over_lwps (filter,
2794 select_singlestep_lwp_callback, NULL);
2795 if (event_lp != NULL)
2796 {
2797 if (debug_linux_nat)
2798 fprintf_unfiltered (gdb_stdlog,
2799 "SEL: Select single-step %s\n",
2800 target_pid_to_str (event_lp->ptid));
2801 }
2802 else
2803 {
2804 /* No single-stepping LWP. Select one at random, out of those
2805 which have had SIGTRAP events. */
2806
2807 /* First see how many SIGTRAP events we have. */
2808 iterate_over_lwps (filter, count_events_callback, &num_events);
2809
2810 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2811 random_selector = (int)
2812 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2813
2814 if (debug_linux_nat && num_events > 1)
2815 fprintf_unfiltered (gdb_stdlog,
2816 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2817 num_events, random_selector);
2818
2819 event_lp = iterate_over_lwps (filter,
2820 select_event_lwp_callback,
2821 &random_selector);
2822 }
2823
2824 if (event_lp != NULL)
2825 {
2826 /* Switch the event LWP. */
2827 *orig_lp = event_lp;
2828 *status = event_lp->status;
2829 }
2830
2831 /* Flush the wait status for the event LWP. */
2832 (*orig_lp)->status = 0;
2833 }
2834
2835 /* Return non-zero if LP has been resumed. */
2836
2837 static int
2838 resumed_callback (struct lwp_info *lp, void *data)
2839 {
2840 return lp->resumed;
2841 }
2842
2843 /* Stop an active thread, verify it still exists, then resume it. If
2844 the thread ends up with a pending status, then it is not resumed,
2845 and *DATA (really a pointer to int), is set. */
2846
2847 static int
2848 stop_and_resume_callback (struct lwp_info *lp, void *data)
2849 {
2850 int *new_pending_p = data;
2851
2852 if (!lp->stopped)
2853 {
2854 ptid_t ptid = lp->ptid;
2855
2856 stop_callback (lp, NULL);
2857 stop_wait_callback (lp, NULL);
2858
2859 /* Resume if the lwp still exists, and the core wanted it
2860 running. */
2861 lp = find_lwp_pid (ptid);
2862 if (lp != NULL)
2863 {
2864 if (lp->last_resume_kind == resume_stop
2865 && lp->status == 0)
2866 {
2867 /* The core wanted the LWP to stop. Even if it stopped
2868 cleanly (with SIGSTOP), leave the event pending. */
2869 if (debug_linux_nat)
2870 fprintf_unfiltered (gdb_stdlog,
2871 "SARC: core wanted LWP %ld stopped "
2872 "(leaving SIGSTOP pending)\n",
2873 ptid_get_lwp (lp->ptid));
2874 lp->status = W_STOPCODE (SIGSTOP);
2875 }
2876
2877 if (lp->status == 0)
2878 {
2879 if (debug_linux_nat)
2880 fprintf_unfiltered (gdb_stdlog,
2881 "SARC: re-resuming LWP %ld\n",
2882 ptid_get_lwp (lp->ptid));
2883 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
2884 }
2885 else
2886 {
2887 if (debug_linux_nat)
2888 fprintf_unfiltered (gdb_stdlog,
2889 "SARC: not re-resuming LWP %ld "
2890 "(has pending)\n",
2891 ptid_get_lwp (lp->ptid));
2892 if (new_pending_p)
2893 *new_pending_p = 1;
2894 }
2895 }
2896 }
2897 return 0;
2898 }
2899
2900 /* Check if we should go on and pass this event to common code.
2901 Return the affected lwp if we are, or NULL otherwise. If we stop
2902 all lwps temporarily, we may end up with new pending events in some
2903 other lwp. In that case set *NEW_PENDING_P to true. */
2904
2905 static struct lwp_info *
2906 linux_nat_filter_event (int lwpid, int status, int *new_pending_p)
2907 {
2908 struct lwp_info *lp;
2909
2910 *new_pending_p = 0;
2911
2912 lp = find_lwp_pid (pid_to_ptid (lwpid));
2913
2914 /* Check for stop events reported by a process we didn't already
2915 know about - anything not already in our LWP list.
2916
2917 If we're expecting to receive stopped processes after
2918 fork, vfork, and clone events, then we'll just add the
2919 new one to our list and go back to waiting for the event
2920 to be reported - the stopped process might be returned
2921 from waitpid before or after the event is.
2922
2923 But note the case of a non-leader thread exec'ing after the
2924 leader having exited, and gone from our lists. The non-leader
2925 thread changes its tid to the tgid. */
2926
2927 if (WIFSTOPPED (status) && lp == NULL
2928 && (WSTOPSIG (status) == SIGTRAP && status >> 16 == PTRACE_EVENT_EXEC))
2929 {
2930 /* A multi-thread exec after we had seen the leader exiting. */
2931 if (debug_linux_nat)
2932 fprintf_unfiltered (gdb_stdlog,
2933 "LLW: Re-adding thread group leader LWP %d.\n",
2934 lwpid);
2935
2936 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2937 lp->stopped = 1;
2938 lp->resumed = 1;
2939 add_thread (lp->ptid);
2940 }
2941
2942 if (WIFSTOPPED (status) && !lp)
2943 {
2944 add_to_pid_list (&stopped_pids, lwpid, status);
2945 return NULL;
2946 }
2947
2948 /* Make sure we don't report an event for the exit of an LWP not in
2949 our list, i.e. not part of the current process. This can happen
2950 if we detach from a program we originally forked and then it
2951 exits. */
2952 if (!WIFSTOPPED (status) && !lp)
2953 return NULL;
2954
2955 /* Handle GNU/Linux's syscall SIGTRAPs. */
2956 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2957 {
2958 /* No longer need the sysgood bit. The ptrace event ends up
2959 recorded in lp->waitstatus if we care for it. We can carry
2960 on handling the event like a regular SIGTRAP from here
2961 on. */
2962 status = W_STOPCODE (SIGTRAP);
2963 if (linux_handle_syscall_trap (lp, 0))
2964 return NULL;
2965 }
2966
2967 /* Handle GNU/Linux's extended waitstatus for trace events. */
2968 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2969 {
2970 if (debug_linux_nat)
2971 fprintf_unfiltered (gdb_stdlog,
2972 "LLW: Handling extended status 0x%06x\n",
2973 status);
2974 if (linux_handle_extended_wait (lp, status, 0))
2975 return NULL;
2976 }
2977
2978 if (linux_nat_status_is_event (status))
2979 save_sigtrap (lp);
2980
2981 /* Check if the thread has exited. */
2982 if ((WIFEXITED (status) || WIFSIGNALED (status))
2983 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
2984 {
2985 /* If this is the main thread, we must stop all threads and verify
2986 if they are still alive. This is because in the nptl thread model
2987 on Linux 2.4, there is no signal issued for exiting LWPs
2988 other than the main thread. We only get the main thread exit
2989 signal once all child threads have already exited. If we
2990 stop all the threads and use the stop_wait_callback to check
2991 if they have exited we can determine whether this signal
2992 should be ignored or whether it means the end of the debugged
2993 application, regardless of which threading model is being
2994 used. */
2995 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2996 {
2997 lp->stopped = 1;
2998 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
2999 stop_and_resume_callback, new_pending_p);
3000 }
3001
3002 if (debug_linux_nat)
3003 fprintf_unfiltered (gdb_stdlog,
3004 "LLW: %s exited.\n",
3005 target_pid_to_str (lp->ptid));
3006
3007 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3008 {
3009 /* If there is at least one more LWP, then the exit signal
3010 was not the end of the debugged application and should be
3011 ignored. */
3012 exit_lwp (lp);
3013 return NULL;
3014 }
3015 }
3016
3017 /* Check if the current LWP has previously exited. In the nptl
3018 thread model, LWPs other than the main thread do not issue
3019 signals when they exit so we must check whenever the thread has
3020 stopped. A similar check is made in stop_wait_callback(). */
3021 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3022 {
3023 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
3024
3025 if (debug_linux_nat)
3026 fprintf_unfiltered (gdb_stdlog,
3027 "LLW: %s exited.\n",
3028 target_pid_to_str (lp->ptid));
3029
3030 exit_lwp (lp);
3031
3032 /* Make sure there is at least one thread running. */
3033 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3034
3035 /* Discard the event. */
3036 return NULL;
3037 }
3038
3039 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3040 an attempt to stop an LWP. */
3041 if (lp->signalled
3042 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3043 {
3044 if (debug_linux_nat)
3045 fprintf_unfiltered (gdb_stdlog,
3046 "LLW: Delayed SIGSTOP caught for %s.\n",
3047 target_pid_to_str (lp->ptid));
3048
3049 lp->signalled = 0;
3050
3051 if (lp->last_resume_kind != resume_stop)
3052 {
3053 /* This is a delayed SIGSTOP. */
3054
3055 registers_changed ();
3056
3057 if (linux_nat_prepare_to_resume != NULL)
3058 linux_nat_prepare_to_resume (lp);
3059 linux_ops->to_resume (linux_ops,
3060 pid_to_ptid (ptid_get_lwp (lp->ptid)),
3061 lp->step, GDB_SIGNAL_0);
3062 if (debug_linux_nat)
3063 fprintf_unfiltered (gdb_stdlog,
3064 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3065 lp->step ?
3066 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3067 target_pid_to_str (lp->ptid));
3068
3069 lp->stopped = 0;
3070 gdb_assert (lp->resumed);
3071
3072 /* Discard the event. */
3073 return NULL;
3074 }
3075 }
3076
3077 /* Make sure we don't report a SIGINT that we have already displayed
3078 for another thread. */
3079 if (lp->ignore_sigint
3080 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3081 {
3082 if (debug_linux_nat)
3083 fprintf_unfiltered (gdb_stdlog,
3084 "LLW: Delayed SIGINT caught for %s.\n",
3085 target_pid_to_str (lp->ptid));
3086
3087 /* This is a delayed SIGINT. */
3088 lp->ignore_sigint = 0;
3089
3090 registers_changed ();
3091 if (linux_nat_prepare_to_resume != NULL)
3092 linux_nat_prepare_to_resume (lp);
3093 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
3094 lp->step, GDB_SIGNAL_0);
3095 if (debug_linux_nat)
3096 fprintf_unfiltered (gdb_stdlog,
3097 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3098 lp->step ?
3099 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3100 target_pid_to_str (lp->ptid));
3101
3102 lp->stopped = 0;
3103 gdb_assert (lp->resumed);
3104
3105 /* Discard the event. */
3106 return NULL;
3107 }
3108
3109 /* An interesting event. */
3110 gdb_assert (lp);
3111 lp->status = status;
3112 return lp;
3113 }
3114
3115 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3116 their exits until all other threads in the group have exited. */
3117
3118 static void
3119 check_zombie_leaders (void)
3120 {
3121 struct inferior *inf;
3122
3123 ALL_INFERIORS (inf)
3124 {
3125 struct lwp_info *leader_lp;
3126
3127 if (inf->pid == 0)
3128 continue;
3129
3130 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3131 if (leader_lp != NULL
3132 /* Check if there are other threads in the group, as we may
3133 have raced with the inferior simply exiting. */
3134 && num_lwps (inf->pid) > 1
3135 && linux_proc_pid_is_zombie (inf->pid))
3136 {
3137 if (debug_linux_nat)
3138 fprintf_unfiltered (gdb_stdlog,
3139 "CZL: Thread group leader %d zombie "
3140 "(it exited, or another thread execd).\n",
3141 inf->pid);
3142
3143 /* A leader zombie can mean one of two things:
3144
3145 - It exited, and there's an exit status pending
3146 available, or only the leader exited (not the whole
3147 program). In the latter case, we can't waitpid the
3148 leader's exit status until all other threads are gone.
3149
3150 - There are 3 or more threads in the group, and a thread
3151 other than the leader exec'd. On an exec, the Linux
3152 kernel destroys all other threads (except the execing
3153 one) in the thread group, and resets the execing thread's
3154 tid to the tgid. No exit notification is sent for the
3155 execing thread -- from the ptracer's perspective, it
3156 appears as though the execing thread just vanishes.
3157 Until we reap all other threads except the leader and the
3158 execing thread, the leader will be zombie, and the
3159 execing thread will be in `D (disc sleep)'. As soon as
3160 all other threads are reaped, the execing thread changes
3161 it's tid to the tgid, and the previous (zombie) leader
3162 vanishes, giving place to the "new" leader. We could try
3163 distinguishing the exit and exec cases, by waiting once
3164 more, and seeing if something comes out, but it doesn't
3165 sound useful. The previous leader _does_ go away, and
3166 we'll re-add the new one once we see the exec event
3167 (which is just the same as what would happen if the
3168 previous leader did exit voluntarily before some other
3169 thread execs). */
3170
3171 if (debug_linux_nat)
3172 fprintf_unfiltered (gdb_stdlog,
3173 "CZL: Thread group leader %d vanished.\n",
3174 inf->pid);
3175 exit_lwp (leader_lp);
3176 }
3177 }
3178 }
3179
3180 static ptid_t
3181 linux_nat_wait_1 (struct target_ops *ops,
3182 ptid_t ptid, struct target_waitstatus *ourstatus,
3183 int target_options)
3184 {
3185 static sigset_t prev_mask;
3186 enum resume_kind last_resume_kind;
3187 struct lwp_info *lp;
3188 int status;
3189
3190 if (debug_linux_nat)
3191 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3192
3193 /* The first time we get here after starting a new inferior, we may
3194 not have added it to the LWP list yet - this is the earliest
3195 moment at which we know its PID. */
3196 if (ptid_is_pid (inferior_ptid))
3197 {
3198 /* Upgrade the main thread's ptid. */
3199 thread_change_ptid (inferior_ptid,
3200 ptid_build (ptid_get_pid (inferior_ptid),
3201 ptid_get_pid (inferior_ptid), 0));
3202
3203 lp = add_initial_lwp (inferior_ptid);
3204 lp->resumed = 1;
3205 }
3206
3207 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3208 block_child_signals (&prev_mask);
3209
3210 retry:
3211 lp = NULL;
3212 status = 0;
3213
3214 /* First check if there is a LWP with a wait status pending. */
3215 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3216 {
3217 /* Any LWP in the PTID group that's been resumed will do. */
3218 lp = iterate_over_lwps (ptid, status_callback, NULL);
3219 if (lp)
3220 {
3221 if (debug_linux_nat && lp->status)
3222 fprintf_unfiltered (gdb_stdlog,
3223 "LLW: Using pending wait status %s for %s.\n",
3224 status_to_str (lp->status),
3225 target_pid_to_str (lp->ptid));
3226 }
3227 }
3228 else if (ptid_lwp_p (ptid))
3229 {
3230 if (debug_linux_nat)
3231 fprintf_unfiltered (gdb_stdlog,
3232 "LLW: Waiting for specific LWP %s.\n",
3233 target_pid_to_str (ptid));
3234
3235 /* We have a specific LWP to check. */
3236 lp = find_lwp_pid (ptid);
3237 gdb_assert (lp);
3238
3239 if (debug_linux_nat && lp->status)
3240 fprintf_unfiltered (gdb_stdlog,
3241 "LLW: Using pending wait status %s for %s.\n",
3242 status_to_str (lp->status),
3243 target_pid_to_str (lp->ptid));
3244
3245 /* We check for lp->waitstatus in addition to lp->status,
3246 because we can have pending process exits recorded in
3247 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3248 an additional lp->status_p flag. */
3249 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3250 lp = NULL;
3251 }
3252
3253 if (!target_can_async_p ())
3254 {
3255 /* Causes SIGINT to be passed on to the attached process. */
3256 set_sigint_trap ();
3257 }
3258
3259 /* But if we don't find a pending event, we'll have to wait. */
3260
3261 while (lp == NULL)
3262 {
3263 pid_t lwpid;
3264
3265 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3266 quirks:
3267
3268 - If the thread group leader exits while other threads in the
3269 thread group still exist, waitpid(TGID, ...) hangs. That
3270 waitpid won't return an exit status until the other threads
3271 in the group are reapped.
3272
3273 - When a non-leader thread execs, that thread just vanishes
3274 without reporting an exit (so we'd hang if we waited for it
3275 explicitly in that case). The exec event is reported to
3276 the TGID pid. */
3277
3278 errno = 0;
3279 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3280 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3281 lwpid = my_waitpid (-1, &status, WNOHANG);
3282
3283 if (debug_linux_nat)
3284 fprintf_unfiltered (gdb_stdlog,
3285 "LNW: waitpid(-1, ...) returned %d, %s\n",
3286 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3287
3288 if (lwpid > 0)
3289 {
3290 /* If this is true, then we paused LWPs momentarily, and may
3291 now have pending events to handle. */
3292 int new_pending;
3293
3294 if (debug_linux_nat)
3295 {
3296 fprintf_unfiltered (gdb_stdlog,
3297 "LLW: waitpid %ld received %s\n",
3298 (long) lwpid, status_to_str (status));
3299 }
3300
3301 lp = linux_nat_filter_event (lwpid, status, &new_pending);
3302
3303 /* STATUS is now no longer valid, use LP->STATUS instead. */
3304 status = 0;
3305
3306 if (lp && !ptid_match (lp->ptid, ptid))
3307 {
3308 gdb_assert (lp->resumed);
3309
3310 if (debug_linux_nat)
3311 fprintf (stderr,
3312 "LWP %ld got an event %06x, leaving pending.\n",
3313 ptid_get_lwp (lp->ptid), lp->status);
3314
3315 if (WIFSTOPPED (lp->status))
3316 {
3317 if (WSTOPSIG (lp->status) != SIGSTOP)
3318 {
3319 /* Cancel breakpoint hits. The breakpoint may
3320 be removed before we fetch events from this
3321 process to report to the core. It is best
3322 not to assume the moribund breakpoints
3323 heuristic always handles these cases --- it
3324 could be too many events go through to the
3325 core before this one is handled. All-stop
3326 always cancels breakpoint hits in all
3327 threads. */
3328 if (non_stop
3329 && linux_nat_lp_status_is_event (lp)
3330 && cancel_breakpoint (lp))
3331 {
3332 /* Throw away the SIGTRAP. */
3333 lp->status = 0;
3334
3335 if (debug_linux_nat)
3336 fprintf (stderr,
3337 "LLW: LWP %ld hit a breakpoint while"
3338 " waiting for another process;"
3339 " cancelled it\n",
3340 ptid_get_lwp (lp->ptid));
3341 }
3342 lp->stopped = 1;
3343 }
3344 else
3345 {
3346 lp->stopped = 1;
3347 lp->signalled = 0;
3348 }
3349 }
3350 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3351 {
3352 if (debug_linux_nat)
3353 fprintf (stderr,
3354 "Process %ld exited while stopping LWPs\n",
3355 ptid_get_lwp (lp->ptid));
3356
3357 /* This was the last lwp in the process. Since
3358 events are serialized to GDB core, and we can't
3359 report this one right now, but GDB core and the
3360 other target layers will want to be notified
3361 about the exit code/signal, leave the status
3362 pending for the next time we're able to report
3363 it. */
3364
3365 /* Prevent trying to stop this thread again. We'll
3366 never try to resume it because it has a pending
3367 status. */
3368 lp->stopped = 1;
3369
3370 /* Dead LWP's aren't expected to reported a pending
3371 sigstop. */
3372 lp->signalled = 0;
3373
3374 /* Store the pending event in the waitstatus as
3375 well, because W_EXITCODE(0,0) == 0. */
3376 store_waitstatus (&lp->waitstatus, lp->status);
3377 }
3378
3379 /* Keep looking. */
3380 lp = NULL;
3381 }
3382
3383 if (new_pending)
3384 {
3385 /* Some LWP now has a pending event. Go all the way
3386 back to check it. */
3387 goto retry;
3388 }
3389
3390 if (lp)
3391 {
3392 /* We got an event to report to the core. */
3393 break;
3394 }
3395
3396 /* Retry until nothing comes out of waitpid. A single
3397 SIGCHLD can indicate more than one child stopped. */
3398 continue;
3399 }
3400
3401 /* Check for zombie thread group leaders. Those can't be reaped
3402 until all other threads in the thread group are. */
3403 check_zombie_leaders ();
3404
3405 /* If there are no resumed children left, bail. We'd be stuck
3406 forever in the sigsuspend call below otherwise. */
3407 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3408 {
3409 if (debug_linux_nat)
3410 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3411
3412 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3413
3414 if (!target_can_async_p ())
3415 clear_sigint_trap ();
3416
3417 restore_child_signals_mask (&prev_mask);
3418 return minus_one_ptid;
3419 }
3420
3421 /* No interesting event to report to the core. */
3422
3423 if (target_options & TARGET_WNOHANG)
3424 {
3425 if (debug_linux_nat)
3426 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3427
3428 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3429 restore_child_signals_mask (&prev_mask);
3430 return minus_one_ptid;
3431 }
3432
3433 /* We shouldn't end up here unless we want to try again. */
3434 gdb_assert (lp == NULL);
3435
3436 /* Block until we get an event reported with SIGCHLD. */
3437 sigsuspend (&suspend_mask);
3438 }
3439
3440 if (!target_can_async_p ())
3441 clear_sigint_trap ();
3442
3443 gdb_assert (lp);
3444
3445 status = lp->status;
3446 lp->status = 0;
3447
3448 /* Don't report signals that GDB isn't interested in, such as
3449 signals that are neither printed nor stopped upon. Stopping all
3450 threads can be a bit time-consuming so if we want decent
3451 performance with heavily multi-threaded programs, especially when
3452 they're using a high frequency timer, we'd better avoid it if we
3453 can. */
3454
3455 if (WIFSTOPPED (status))
3456 {
3457 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3458
3459 /* When using hardware single-step, we need to report every signal.
3460 Otherwise, signals in pass_mask may be short-circuited. */
3461 if (!lp->step
3462 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3463 {
3464 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3465 here? It is not clear we should. GDB may not expect
3466 other threads to run. On the other hand, not resuming
3467 newly attached threads may cause an unwanted delay in
3468 getting them running. */
3469 registers_changed ();
3470 if (linux_nat_prepare_to_resume != NULL)
3471 linux_nat_prepare_to_resume (lp);
3472 linux_ops->to_resume (linux_ops,
3473 pid_to_ptid (ptid_get_lwp (lp->ptid)),
3474 lp->step, signo);
3475 if (debug_linux_nat)
3476 fprintf_unfiltered (gdb_stdlog,
3477 "LLW: %s %s, %s (preempt 'handle')\n",
3478 lp->step ?
3479 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3480 target_pid_to_str (lp->ptid),
3481 (signo != GDB_SIGNAL_0
3482 ? strsignal (gdb_signal_to_host (signo))
3483 : "0"));
3484 lp->stopped = 0;
3485 goto retry;
3486 }
3487
3488 if (!non_stop)
3489 {
3490 /* Only do the below in all-stop, as we currently use SIGINT
3491 to implement target_stop (see linux_nat_stop) in
3492 non-stop. */
3493 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3494 {
3495 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3496 forwarded to the entire process group, that is, all LWPs
3497 will receive it - unless they're using CLONE_THREAD to
3498 share signals. Since we only want to report it once, we
3499 mark it as ignored for all LWPs except this one. */
3500 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3501 set_ignore_sigint, NULL);
3502 lp->ignore_sigint = 0;
3503 }
3504 else
3505 maybe_clear_ignore_sigint (lp);
3506 }
3507 }
3508
3509 /* This LWP is stopped now. */
3510 lp->stopped = 1;
3511
3512 if (debug_linux_nat)
3513 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3514 status_to_str (status), target_pid_to_str (lp->ptid));
3515
3516 if (!non_stop)
3517 {
3518 /* Now stop all other LWP's ... */
3519 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3520
3521 /* ... and wait until all of them have reported back that
3522 they're no longer running. */
3523 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3524
3525 /* If we're not waiting for a specific LWP, choose an event LWP
3526 from among those that have had events. Giving equal priority
3527 to all LWPs that have had events helps prevent
3528 starvation. */
3529 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3530 select_event_lwp (ptid, &lp, &status);
3531
3532 /* Now that we've selected our final event LWP, cancel any
3533 breakpoints in other LWPs that have hit a GDB breakpoint.
3534 See the comment in cancel_breakpoints_callback to find out
3535 why. */
3536 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3537
3538 /* We'll need this to determine whether to report a SIGSTOP as
3539 TARGET_WAITKIND_0. Need to take a copy because
3540 resume_clear_callback clears it. */
3541 last_resume_kind = lp->last_resume_kind;
3542
3543 /* In all-stop, from the core's perspective, all LWPs are now
3544 stopped until a new resume action is sent over. */
3545 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3546 }
3547 else
3548 {
3549 /* See above. */
3550 last_resume_kind = lp->last_resume_kind;
3551 resume_clear_callback (lp, NULL);
3552 }
3553
3554 if (linux_nat_status_is_event (status))
3555 {
3556 if (debug_linux_nat)
3557 fprintf_unfiltered (gdb_stdlog,
3558 "LLW: trap ptid is %s.\n",
3559 target_pid_to_str (lp->ptid));
3560 }
3561
3562 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3563 {
3564 *ourstatus = lp->waitstatus;
3565 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3566 }
3567 else
3568 store_waitstatus (ourstatus, status);
3569
3570 if (debug_linux_nat)
3571 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3572
3573 restore_child_signals_mask (&prev_mask);
3574
3575 if (last_resume_kind == resume_stop
3576 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3577 && WSTOPSIG (status) == SIGSTOP)
3578 {
3579 /* A thread that has been requested to stop by GDB with
3580 target_stop, and it stopped cleanly, so report as SIG0. The
3581 use of SIGSTOP is an implementation detail. */
3582 ourstatus->value.sig = GDB_SIGNAL_0;
3583 }
3584
3585 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3586 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3587 lp->core = -1;
3588 else
3589 lp->core = linux_common_core_of_thread (lp->ptid);
3590
3591 return lp->ptid;
3592 }
3593
3594 /* Resume LWPs that are currently stopped without any pending status
3595 to report, but are resumed from the core's perspective. */
3596
3597 static int
3598 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3599 {
3600 ptid_t *wait_ptid_p = data;
3601
3602 if (lp->stopped
3603 && lp->resumed
3604 && lp->status == 0
3605 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3606 {
3607 struct regcache *regcache = get_thread_regcache (lp->ptid);
3608 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3609 CORE_ADDR pc = regcache_read_pc (regcache);
3610
3611 gdb_assert (is_executing (lp->ptid));
3612
3613 /* Don't bother if there's a breakpoint at PC that we'd hit
3614 immediately, and we're not waiting for this LWP. */
3615 if (!ptid_match (lp->ptid, *wait_ptid_p))
3616 {
3617 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3618 return 0;
3619 }
3620
3621 if (debug_linux_nat)
3622 fprintf_unfiltered (gdb_stdlog,
3623 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3624 target_pid_to_str (lp->ptid),
3625 paddress (gdbarch, pc),
3626 lp->step);
3627
3628 registers_changed ();
3629 if (linux_nat_prepare_to_resume != NULL)
3630 linux_nat_prepare_to_resume (lp);
3631 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
3632 lp->step, GDB_SIGNAL_0);
3633 lp->stopped = 0;
3634 lp->stopped_by_watchpoint = 0;
3635 }
3636
3637 return 0;
3638 }
3639
3640 static ptid_t
3641 linux_nat_wait (struct target_ops *ops,
3642 ptid_t ptid, struct target_waitstatus *ourstatus,
3643 int target_options)
3644 {
3645 ptid_t event_ptid;
3646
3647 if (debug_linux_nat)
3648 {
3649 char *options_string;
3650
3651 options_string = target_options_to_string (target_options);
3652 fprintf_unfiltered (gdb_stdlog,
3653 "linux_nat_wait: [%s], [%s]\n",
3654 target_pid_to_str (ptid),
3655 options_string);
3656 xfree (options_string);
3657 }
3658
3659 /* Flush the async file first. */
3660 if (target_can_async_p ())
3661 async_file_flush ();
3662
3663 /* Resume LWPs that are currently stopped without any pending status
3664 to report, but are resumed from the core's perspective. LWPs get
3665 in this state if we find them stopping at a time we're not
3666 interested in reporting the event (target_wait on a
3667 specific_process, for example, see linux_nat_wait_1), and
3668 meanwhile the event became uninteresting. Don't bother resuming
3669 LWPs we're not going to wait for if they'd stop immediately. */
3670 if (non_stop)
3671 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3672
3673 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3674
3675 /* If we requested any event, and something came out, assume there
3676 may be more. If we requested a specific lwp or process, also
3677 assume there may be more. */
3678 if (target_can_async_p ()
3679 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3680 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3681 || !ptid_equal (ptid, minus_one_ptid)))
3682 async_file_mark ();
3683
3684 /* Get ready for the next event. */
3685 if (target_can_async_p ())
3686 target_async (inferior_event_handler, 0);
3687
3688 return event_ptid;
3689 }
3690
3691 static int
3692 kill_callback (struct lwp_info *lp, void *data)
3693 {
3694 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3695
3696 errno = 0;
3697 kill (ptid_get_lwp (lp->ptid), SIGKILL);
3698 if (debug_linux_nat)
3699 fprintf_unfiltered (gdb_stdlog,
3700 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3701 target_pid_to_str (lp->ptid),
3702 errno ? safe_strerror (errno) : "OK");
3703
3704 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3705
3706 errno = 0;
3707 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3708 if (debug_linux_nat)
3709 fprintf_unfiltered (gdb_stdlog,
3710 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3711 target_pid_to_str (lp->ptid),
3712 errno ? safe_strerror (errno) : "OK");
3713
3714 return 0;
3715 }
3716
3717 static int
3718 kill_wait_callback (struct lwp_info *lp, void *data)
3719 {
3720 pid_t pid;
3721
3722 /* We must make sure that there are no pending events (delayed
3723 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3724 program doesn't interfere with any following debugging session. */
3725
3726 /* For cloned processes we must check both with __WCLONE and
3727 without, since the exit status of a cloned process isn't reported
3728 with __WCLONE. */
3729 if (lp->cloned)
3730 {
3731 do
3732 {
3733 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3734 if (pid != (pid_t) -1)
3735 {
3736 if (debug_linux_nat)
3737 fprintf_unfiltered (gdb_stdlog,
3738 "KWC: wait %s received unknown.\n",
3739 target_pid_to_str (lp->ptid));
3740 /* The Linux kernel sometimes fails to kill a thread
3741 completely after PTRACE_KILL; that goes from the stop
3742 point in do_fork out to the one in
3743 get_signal_to_deliever and waits again. So kill it
3744 again. */
3745 kill_callback (lp, NULL);
3746 }
3747 }
3748 while (pid == ptid_get_lwp (lp->ptid));
3749
3750 gdb_assert (pid == -1 && errno == ECHILD);
3751 }
3752
3753 do
3754 {
3755 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3756 if (pid != (pid_t) -1)
3757 {
3758 if (debug_linux_nat)
3759 fprintf_unfiltered (gdb_stdlog,
3760 "KWC: wait %s received unk.\n",
3761 target_pid_to_str (lp->ptid));
3762 /* See the call to kill_callback above. */
3763 kill_callback (lp, NULL);
3764 }
3765 }
3766 while (pid == ptid_get_lwp (lp->ptid));
3767
3768 gdb_assert (pid == -1 && errno == ECHILD);
3769 return 0;
3770 }
3771
3772 static void
3773 linux_nat_kill (struct target_ops *ops)
3774 {
3775 struct target_waitstatus last;
3776 ptid_t last_ptid;
3777 int status;
3778
3779 /* If we're stopped while forking and we haven't followed yet,
3780 kill the other task. We need to do this first because the
3781 parent will be sleeping if this is a vfork. */
3782
3783 get_last_target_status (&last_ptid, &last);
3784
3785 if (last.kind == TARGET_WAITKIND_FORKED
3786 || last.kind == TARGET_WAITKIND_VFORKED)
3787 {
3788 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3789 wait (&status);
3790
3791 /* Let the arch-specific native code know this process is
3792 gone. */
3793 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3794 }
3795
3796 if (forks_exist_p ())
3797 linux_fork_killall ();
3798 else
3799 {
3800 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3801
3802 /* Stop all threads before killing them, since ptrace requires
3803 that the thread is stopped to sucessfully PTRACE_KILL. */
3804 iterate_over_lwps (ptid, stop_callback, NULL);
3805 /* ... and wait until all of them have reported back that
3806 they're no longer running. */
3807 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3808
3809 /* Kill all LWP's ... */
3810 iterate_over_lwps (ptid, kill_callback, NULL);
3811
3812 /* ... and wait until we've flushed all events. */
3813 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3814 }
3815
3816 target_mourn_inferior ();
3817 }
3818
3819 static void
3820 linux_nat_mourn_inferior (struct target_ops *ops)
3821 {
3822 int pid = ptid_get_pid (inferior_ptid);
3823
3824 purge_lwp_list (pid);
3825
3826 if (! forks_exist_p ())
3827 /* Normal case, no other forks available. */
3828 linux_ops->to_mourn_inferior (ops);
3829 else
3830 /* Multi-fork case. The current inferior_ptid has exited, but
3831 there are other viable forks to debug. Delete the exiting
3832 one and context-switch to the first available. */
3833 linux_fork_mourn_inferior ();
3834
3835 /* Let the arch-specific native code know this process is gone. */
3836 linux_nat_forget_process (pid);
3837 }
3838
3839 /* Convert a native/host siginfo object, into/from the siginfo in the
3840 layout of the inferiors' architecture. */
3841
3842 static void
3843 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3844 {
3845 int done = 0;
3846
3847 if (linux_nat_siginfo_fixup != NULL)
3848 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3849
3850 /* If there was no callback, or the callback didn't do anything,
3851 then just do a straight memcpy. */
3852 if (!done)
3853 {
3854 if (direction == 1)
3855 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3856 else
3857 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3858 }
3859 }
3860
3861 static enum target_xfer_status
3862 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3863 const char *annex, gdb_byte *readbuf,
3864 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3865 ULONGEST *xfered_len)
3866 {
3867 int pid;
3868 siginfo_t siginfo;
3869 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3870
3871 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3872 gdb_assert (readbuf || writebuf);
3873
3874 pid = ptid_get_lwp (inferior_ptid);
3875 if (pid == 0)
3876 pid = ptid_get_pid (inferior_ptid);
3877
3878 if (offset > sizeof (siginfo))
3879 return TARGET_XFER_E_IO;
3880
3881 errno = 0;
3882 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3883 if (errno != 0)
3884 return TARGET_XFER_E_IO;
3885
3886 /* When GDB is built as a 64-bit application, ptrace writes into
3887 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3888 inferior with a 64-bit GDB should look the same as debugging it
3889 with a 32-bit GDB, we need to convert it. GDB core always sees
3890 the converted layout, so any read/write will have to be done
3891 post-conversion. */
3892 siginfo_fixup (&siginfo, inf_siginfo, 0);
3893
3894 if (offset + len > sizeof (siginfo))
3895 len = sizeof (siginfo) - offset;
3896
3897 if (readbuf != NULL)
3898 memcpy (readbuf, inf_siginfo + offset, len);
3899 else
3900 {
3901 memcpy (inf_siginfo + offset, writebuf, len);
3902
3903 /* Convert back to ptrace layout before flushing it out. */
3904 siginfo_fixup (&siginfo, inf_siginfo, 1);
3905
3906 errno = 0;
3907 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3908 if (errno != 0)
3909 return TARGET_XFER_E_IO;
3910 }
3911
3912 *xfered_len = len;
3913 return TARGET_XFER_OK;
3914 }
3915
3916 static enum target_xfer_status
3917 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3918 const char *annex, gdb_byte *readbuf,
3919 const gdb_byte *writebuf,
3920 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3921 {
3922 struct cleanup *old_chain;
3923 enum target_xfer_status xfer;
3924
3925 if (object == TARGET_OBJECT_SIGNAL_INFO)
3926 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3927 offset, len, xfered_len);
3928
3929 /* The target is connected but no live inferior is selected. Pass
3930 this request down to a lower stratum (e.g., the executable
3931 file). */
3932 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3933 return TARGET_XFER_EOF;
3934
3935 old_chain = save_inferior_ptid ();
3936
3937 if (ptid_lwp_p (inferior_ptid))
3938 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3939
3940 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3941 offset, len, xfered_len);
3942
3943 do_cleanups (old_chain);
3944 return xfer;
3945 }
3946
3947 static int
3948 linux_thread_alive (ptid_t ptid)
3949 {
3950 int err, tmp_errno;
3951
3952 gdb_assert (ptid_lwp_p (ptid));
3953
3954 /* Send signal 0 instead of anything ptrace, because ptracing a
3955 running thread errors out claiming that the thread doesn't
3956 exist. */
3957 err = kill_lwp (ptid_get_lwp (ptid), 0);
3958 tmp_errno = errno;
3959 if (debug_linux_nat)
3960 fprintf_unfiltered (gdb_stdlog,
3961 "LLTA: KILL(SIG0) %s (%s)\n",
3962 target_pid_to_str (ptid),
3963 err ? safe_strerror (tmp_errno) : "OK");
3964
3965 if (err != 0)
3966 return 0;
3967
3968 return 1;
3969 }
3970
3971 static int
3972 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3973 {
3974 return linux_thread_alive (ptid);
3975 }
3976
3977 static char *
3978 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3979 {
3980 static char buf[64];
3981
3982 if (ptid_lwp_p (ptid)
3983 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3984 || num_lwps (ptid_get_pid (ptid)) > 1))
3985 {
3986 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3987 return buf;
3988 }
3989
3990 return normal_pid_to_str (ptid);
3991 }
3992
3993 static char *
3994 linux_nat_thread_name (struct thread_info *thr)
3995 {
3996 int pid = ptid_get_pid (thr->ptid);
3997 long lwp = ptid_get_lwp (thr->ptid);
3998 #define FORMAT "/proc/%d/task/%ld/comm"
3999 char buf[sizeof (FORMAT) + 30];
4000 FILE *comm_file;
4001 char *result = NULL;
4002
4003 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4004 comm_file = gdb_fopen_cloexec (buf, "r");
4005 if (comm_file)
4006 {
4007 /* Not exported by the kernel, so we define it here. */
4008 #define COMM_LEN 16
4009 static char line[COMM_LEN + 1];
4010
4011 if (fgets (line, sizeof (line), comm_file))
4012 {
4013 char *nl = strchr (line, '\n');
4014
4015 if (nl)
4016 *nl = '\0';
4017 if (*line != '\0')
4018 result = line;
4019 }
4020
4021 fclose (comm_file);
4022 }
4023
4024 #undef COMM_LEN
4025 #undef FORMAT
4026
4027 return result;
4028 }
4029
4030 /* Accepts an integer PID; Returns a string representing a file that
4031 can be opened to get the symbols for the child process. */
4032
4033 static char *
4034 linux_child_pid_to_exec_file (int pid)
4035 {
4036 char *name1, *name2;
4037
4038 name1 = xmalloc (PATH_MAX);
4039 name2 = xmalloc (PATH_MAX);
4040 make_cleanup (xfree, name1);
4041 make_cleanup (xfree, name2);
4042 memset (name2, 0, PATH_MAX);
4043
4044 xsnprintf (name1, PATH_MAX, "/proc/%d/exe", pid);
4045 if (readlink (name1, name2, PATH_MAX - 1) > 0)
4046 return name2;
4047 else
4048 return name1;
4049 }
4050
4051 /* Records the thread's register state for the corefile note
4052 section. */
4053
4054 static char *
4055 linux_nat_collect_thread_registers (const struct regcache *regcache,
4056 ptid_t ptid, bfd *obfd,
4057 char *note_data, int *note_size,
4058 enum gdb_signal stop_signal)
4059 {
4060 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4061 const struct regset *regset;
4062 int core_regset_p;
4063 gdb_gregset_t gregs;
4064 gdb_fpregset_t fpregs;
4065
4066 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4067
4068 if (core_regset_p
4069 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4070 sizeof (gregs)))
4071 != NULL && regset->collect_regset != NULL)
4072 regset->collect_regset (regset, regcache, -1, &gregs, sizeof (gregs));
4073 else
4074 fill_gregset (regcache, &gregs, -1);
4075
4076 note_data = (char *) elfcore_write_prstatus
4077 (obfd, note_data, note_size, ptid_get_lwp (ptid),
4078 gdb_signal_to_host (stop_signal), &gregs);
4079
4080 if (core_regset_p
4081 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4082 sizeof (fpregs)))
4083 != NULL && regset->collect_regset != NULL)
4084 regset->collect_regset (regset, regcache, -1, &fpregs, sizeof (fpregs));
4085 else
4086 fill_fpregset (regcache, &fpregs, -1);
4087
4088 note_data = (char *) elfcore_write_prfpreg (obfd, note_data, note_size,
4089 &fpregs, sizeof (fpregs));
4090
4091 return note_data;
4092 }
4093
4094 /* Fills the "to_make_corefile_note" target vector. Builds the note
4095 section for a corefile, and returns it in a malloc buffer. */
4096
4097 static char *
4098 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4099 {
4100 /* FIXME: uweigand/2011-10-06: Once all GNU/Linux architectures have been
4101 converted to gdbarch_core_regset_sections, this function can go away. */
4102 return linux_make_corefile_notes (target_gdbarch (), obfd, note_size,
4103 linux_nat_collect_thread_registers);
4104 }
4105
4106 /* Implement the to_xfer_partial interface for memory reads using the /proc
4107 filesystem. Because we can use a single read() call for /proc, this
4108 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4109 but it doesn't support writes. */
4110
4111 static enum target_xfer_status
4112 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4113 const char *annex, gdb_byte *readbuf,
4114 const gdb_byte *writebuf,
4115 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
4116 {
4117 LONGEST ret;
4118 int fd;
4119 char filename[64];
4120
4121 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4122 return 0;
4123
4124 /* Don't bother for one word. */
4125 if (len < 3 * sizeof (long))
4126 return TARGET_XFER_EOF;
4127
4128 /* We could keep this file open and cache it - possibly one per
4129 thread. That requires some juggling, but is even faster. */
4130 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
4131 ptid_get_pid (inferior_ptid));
4132 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4133 if (fd == -1)
4134 return TARGET_XFER_EOF;
4135
4136 /* If pread64 is available, use it. It's faster if the kernel
4137 supports it (only one syscall), and it's 64-bit safe even on
4138 32-bit platforms (for instance, SPARC debugging a SPARC64
4139 application). */
4140 #ifdef HAVE_PREAD64
4141 if (pread64 (fd, readbuf, len, offset) != len)
4142 #else
4143 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4144 #endif
4145 ret = 0;
4146 else
4147 ret = len;
4148
4149 close (fd);
4150
4151 if (ret == 0)
4152 return TARGET_XFER_EOF;
4153 else
4154 {
4155 *xfered_len = ret;
4156 return TARGET_XFER_OK;
4157 }
4158 }
4159
4160
4161 /* Enumerate spufs IDs for process PID. */
4162 static LONGEST
4163 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4164 {
4165 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4166 LONGEST pos = 0;
4167 LONGEST written = 0;
4168 char path[128];
4169 DIR *dir;
4170 struct dirent *entry;
4171
4172 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4173 dir = opendir (path);
4174 if (!dir)
4175 return -1;
4176
4177 rewinddir (dir);
4178 while ((entry = readdir (dir)) != NULL)
4179 {
4180 struct stat st;
4181 struct statfs stfs;
4182 int fd;
4183
4184 fd = atoi (entry->d_name);
4185 if (!fd)
4186 continue;
4187
4188 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4189 if (stat (path, &st) != 0)
4190 continue;
4191 if (!S_ISDIR (st.st_mode))
4192 continue;
4193
4194 if (statfs (path, &stfs) != 0)
4195 continue;
4196 if (stfs.f_type != SPUFS_MAGIC)
4197 continue;
4198
4199 if (pos >= offset && pos + 4 <= offset + len)
4200 {
4201 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4202 written += 4;
4203 }
4204 pos += 4;
4205 }
4206
4207 closedir (dir);
4208 return written;
4209 }
4210
4211 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4212 object type, using the /proc file system. */
4213
4214 static enum target_xfer_status
4215 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4216 const char *annex, gdb_byte *readbuf,
4217 const gdb_byte *writebuf,
4218 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4219 {
4220 char buf[128];
4221 int fd = 0;
4222 int ret = -1;
4223 int pid = ptid_get_pid (inferior_ptid);
4224
4225 if (!annex)
4226 {
4227 if (!readbuf)
4228 return TARGET_XFER_E_IO;
4229 else
4230 {
4231 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4232
4233 if (l < 0)
4234 return TARGET_XFER_E_IO;
4235 else if (l == 0)
4236 return TARGET_XFER_EOF;
4237 else
4238 {
4239 *xfered_len = (ULONGEST) l;
4240 return TARGET_XFER_OK;
4241 }
4242 }
4243 }
4244
4245 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4246 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4247 if (fd <= 0)
4248 return TARGET_XFER_E_IO;
4249
4250 if (offset != 0
4251 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4252 {
4253 close (fd);
4254 return TARGET_XFER_EOF;
4255 }
4256
4257 if (writebuf)
4258 ret = write (fd, writebuf, (size_t) len);
4259 else if (readbuf)
4260 ret = read (fd, readbuf, (size_t) len);
4261
4262 close (fd);
4263
4264 if (ret < 0)
4265 return TARGET_XFER_E_IO;
4266 else if (ret == 0)
4267 return TARGET_XFER_EOF;
4268 else
4269 {
4270 *xfered_len = (ULONGEST) ret;
4271 return TARGET_XFER_OK;
4272 }
4273 }
4274
4275
4276 /* Parse LINE as a signal set and add its set bits to SIGS. */
4277
4278 static void
4279 add_line_to_sigset (const char *line, sigset_t *sigs)
4280 {
4281 int len = strlen (line) - 1;
4282 const char *p;
4283 int signum;
4284
4285 if (line[len] != '\n')
4286 error (_("Could not parse signal set: %s"), line);
4287
4288 p = line;
4289 signum = len * 4;
4290 while (len-- > 0)
4291 {
4292 int digit;
4293
4294 if (*p >= '0' && *p <= '9')
4295 digit = *p - '0';
4296 else if (*p >= 'a' && *p <= 'f')
4297 digit = *p - 'a' + 10;
4298 else
4299 error (_("Could not parse signal set: %s"), line);
4300
4301 signum -= 4;
4302
4303 if (digit & 1)
4304 sigaddset (sigs, signum + 1);
4305 if (digit & 2)
4306 sigaddset (sigs, signum + 2);
4307 if (digit & 4)
4308 sigaddset (sigs, signum + 3);
4309 if (digit & 8)
4310 sigaddset (sigs, signum + 4);
4311
4312 p++;
4313 }
4314 }
4315
4316 /* Find process PID's pending signals from /proc/pid/status and set
4317 SIGS to match. */
4318
4319 void
4320 linux_proc_pending_signals (int pid, sigset_t *pending,
4321 sigset_t *blocked, sigset_t *ignored)
4322 {
4323 FILE *procfile;
4324 char buffer[PATH_MAX], fname[PATH_MAX];
4325 struct cleanup *cleanup;
4326
4327 sigemptyset (pending);
4328 sigemptyset (blocked);
4329 sigemptyset (ignored);
4330 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4331 procfile = gdb_fopen_cloexec (fname, "r");
4332 if (procfile == NULL)
4333 error (_("Could not open %s"), fname);
4334 cleanup = make_cleanup_fclose (procfile);
4335
4336 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4337 {
4338 /* Normal queued signals are on the SigPnd line in the status
4339 file. However, 2.6 kernels also have a "shared" pending
4340 queue for delivering signals to a thread group, so check for
4341 a ShdPnd line also.
4342
4343 Unfortunately some Red Hat kernels include the shared pending
4344 queue but not the ShdPnd status field. */
4345
4346 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4347 add_line_to_sigset (buffer + 8, pending);
4348 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4349 add_line_to_sigset (buffer + 8, pending);
4350 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4351 add_line_to_sigset (buffer + 8, blocked);
4352 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4353 add_line_to_sigset (buffer + 8, ignored);
4354 }
4355
4356 do_cleanups (cleanup);
4357 }
4358
4359 static enum target_xfer_status
4360 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4361 const char *annex, gdb_byte *readbuf,
4362 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4363 ULONGEST *xfered_len)
4364 {
4365 gdb_assert (object == TARGET_OBJECT_OSDATA);
4366
4367 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4368 if (*xfered_len == 0)
4369 return TARGET_XFER_EOF;
4370 else
4371 return TARGET_XFER_OK;
4372 }
4373
4374 static enum target_xfer_status
4375 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4376 const char *annex, gdb_byte *readbuf,
4377 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4378 ULONGEST *xfered_len)
4379 {
4380 enum target_xfer_status xfer;
4381
4382 if (object == TARGET_OBJECT_AUXV)
4383 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4384 offset, len, xfered_len);
4385
4386 if (object == TARGET_OBJECT_OSDATA)
4387 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4388 offset, len, xfered_len);
4389
4390 if (object == TARGET_OBJECT_SPU)
4391 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4392 offset, len, xfered_len);
4393
4394 /* GDB calculates all the addresses in possibly larget width of the address.
4395 Address width needs to be masked before its final use - either by
4396 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4397
4398 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4399
4400 if (object == TARGET_OBJECT_MEMORY)
4401 {
4402 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4403
4404 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4405 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4406 }
4407
4408 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4409 offset, len, xfered_len);
4410 if (xfer != TARGET_XFER_EOF)
4411 return xfer;
4412
4413 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4414 offset, len, xfered_len);
4415 }
4416
4417 static void
4418 cleanup_target_stop (void *arg)
4419 {
4420 ptid_t *ptid = (ptid_t *) arg;
4421
4422 gdb_assert (arg != NULL);
4423
4424 /* Unpause all */
4425 target_resume (*ptid, 0, GDB_SIGNAL_0);
4426 }
4427
4428 static VEC(static_tracepoint_marker_p) *
4429 linux_child_static_tracepoint_markers_by_strid (const char *strid)
4430 {
4431 char s[IPA_CMD_BUF_SIZE];
4432 struct cleanup *old_chain;
4433 int pid = ptid_get_pid (inferior_ptid);
4434 VEC(static_tracepoint_marker_p) *markers = NULL;
4435 struct static_tracepoint_marker *marker = NULL;
4436 char *p = s;
4437 ptid_t ptid = ptid_build (pid, 0, 0);
4438
4439 /* Pause all */
4440 target_stop (ptid);
4441
4442 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4443 s[sizeof ("qTfSTM")] = 0;
4444
4445 agent_run_command (pid, s, strlen (s) + 1);
4446
4447 old_chain = make_cleanup (free_current_marker, &marker);
4448 make_cleanup (cleanup_target_stop, &ptid);
4449
4450 while (*p++ == 'm')
4451 {
4452 if (marker == NULL)
4453 marker = XCNEW (struct static_tracepoint_marker);
4454
4455 do
4456 {
4457 parse_static_tracepoint_marker_definition (p, &p, marker);
4458
4459 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4460 {
4461 VEC_safe_push (static_tracepoint_marker_p,
4462 markers, marker);
4463 marker = NULL;
4464 }
4465 else
4466 {
4467 release_static_tracepoint_marker (marker);
4468 memset (marker, 0, sizeof (*marker));
4469 }
4470 }
4471 while (*p++ == ','); /* comma-separated list */
4472
4473 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4474 s[sizeof ("qTsSTM")] = 0;
4475 agent_run_command (pid, s, strlen (s) + 1);
4476 p = s;
4477 }
4478
4479 do_cleanups (old_chain);
4480
4481 return markers;
4482 }
4483
4484 /* Create a prototype generic GNU/Linux target. The client can override
4485 it with local methods. */
4486
4487 static void
4488 linux_target_install_ops (struct target_ops *t)
4489 {
4490 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4491 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4492 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4493 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4494 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4495 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4496 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4497 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4498 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4499 t->to_post_attach = linux_child_post_attach;
4500 t->to_follow_fork = linux_child_follow_fork;
4501 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4502
4503 super_xfer_partial = t->to_xfer_partial;
4504 t->to_xfer_partial = linux_xfer_partial;
4505
4506 t->to_static_tracepoint_markers_by_strid
4507 = linux_child_static_tracepoint_markers_by_strid;
4508 }
4509
4510 struct target_ops *
4511 linux_target (void)
4512 {
4513 struct target_ops *t;
4514
4515 t = inf_ptrace_target ();
4516 linux_target_install_ops (t);
4517
4518 return t;
4519 }
4520
4521 struct target_ops *
4522 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4523 {
4524 struct target_ops *t;
4525
4526 t = inf_ptrace_trad_target (register_u_offset);
4527 linux_target_install_ops (t);
4528
4529 return t;
4530 }
4531
4532 /* target_is_async_p implementation. */
4533
4534 static int
4535 linux_nat_is_async_p (struct target_ops *ops)
4536 {
4537 /* NOTE: palves 2008-03-21: We're only async when the user requests
4538 it explicitly with the "set target-async" command.
4539 Someday, linux will always be async. */
4540 return target_async_permitted;
4541 }
4542
4543 /* target_can_async_p implementation. */
4544
4545 static int
4546 linux_nat_can_async_p (struct target_ops *ops)
4547 {
4548 /* NOTE: palves 2008-03-21: We're only async when the user requests
4549 it explicitly with the "set target-async" command.
4550 Someday, linux will always be async. */
4551 return target_async_permitted;
4552 }
4553
4554 static int
4555 linux_nat_supports_non_stop (void)
4556 {
4557 return 1;
4558 }
4559
4560 /* True if we want to support multi-process. To be removed when GDB
4561 supports multi-exec. */
4562
4563 int linux_multi_process = 1;
4564
4565 static int
4566 linux_nat_supports_multi_process (void)
4567 {
4568 return linux_multi_process;
4569 }
4570
4571 static int
4572 linux_nat_supports_disable_randomization (void)
4573 {
4574 #ifdef HAVE_PERSONALITY
4575 return 1;
4576 #else
4577 return 0;
4578 #endif
4579 }
4580
4581 static int async_terminal_is_ours = 1;
4582
4583 /* target_terminal_inferior implementation. */
4584
4585 static void
4586 linux_nat_terminal_inferior (struct target_ops *self)
4587 {
4588 if (!target_is_async_p ())
4589 {
4590 /* Async mode is disabled. */
4591 terminal_inferior (self);
4592 return;
4593 }
4594
4595 terminal_inferior (self);
4596
4597 /* Calls to target_terminal_*() are meant to be idempotent. */
4598 if (!async_terminal_is_ours)
4599 return;
4600
4601 delete_file_handler (input_fd);
4602 async_terminal_is_ours = 0;
4603 set_sigint_trap ();
4604 }
4605
4606 /* target_terminal_ours implementation. */
4607
4608 static void
4609 linux_nat_terminal_ours (void)
4610 {
4611 if (!target_is_async_p ())
4612 {
4613 /* Async mode is disabled. */
4614 terminal_ours ();
4615 return;
4616 }
4617
4618 /* GDB should never give the terminal to the inferior if the
4619 inferior is running in the background (run&, continue&, etc.),
4620 but claiming it sure should. */
4621 terminal_ours ();
4622
4623 if (async_terminal_is_ours)
4624 return;
4625
4626 clear_sigint_trap ();
4627 add_file_handler (input_fd, stdin_event_handler, 0);
4628 async_terminal_is_ours = 1;
4629 }
4630
4631 static void (*async_client_callback) (enum inferior_event_type event_type,
4632 void *context);
4633 static void *async_client_context;
4634
4635 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4636 so we notice when any child changes state, and notify the
4637 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4638 above to wait for the arrival of a SIGCHLD. */
4639
4640 static void
4641 sigchld_handler (int signo)
4642 {
4643 int old_errno = errno;
4644
4645 if (debug_linux_nat)
4646 ui_file_write_async_safe (gdb_stdlog,
4647 "sigchld\n", sizeof ("sigchld\n") - 1);
4648
4649 if (signo == SIGCHLD
4650 && linux_nat_event_pipe[0] != -1)
4651 async_file_mark (); /* Let the event loop know that there are
4652 events to handle. */
4653
4654 errno = old_errno;
4655 }
4656
4657 /* Callback registered with the target events file descriptor. */
4658
4659 static void
4660 handle_target_event (int error, gdb_client_data client_data)
4661 {
4662 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4663 }
4664
4665 /* Create/destroy the target events pipe. Returns previous state. */
4666
4667 static int
4668 linux_async_pipe (int enable)
4669 {
4670 int previous = (linux_nat_event_pipe[0] != -1);
4671
4672 if (previous != enable)
4673 {
4674 sigset_t prev_mask;
4675
4676 /* Block child signals while we create/destroy the pipe, as
4677 their handler writes to it. */
4678 block_child_signals (&prev_mask);
4679
4680 if (enable)
4681 {
4682 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4683 internal_error (__FILE__, __LINE__,
4684 "creating event pipe failed.");
4685
4686 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4687 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4688 }
4689 else
4690 {
4691 close (linux_nat_event_pipe[0]);
4692 close (linux_nat_event_pipe[1]);
4693 linux_nat_event_pipe[0] = -1;
4694 linux_nat_event_pipe[1] = -1;
4695 }
4696
4697 restore_child_signals_mask (&prev_mask);
4698 }
4699
4700 return previous;
4701 }
4702
4703 /* target_async implementation. */
4704
4705 static void
4706 linux_nat_async (struct target_ops *ops,
4707 void (*callback) (enum inferior_event_type event_type,
4708 void *context),
4709 void *context)
4710 {
4711 if (callback != NULL)
4712 {
4713 async_client_callback = callback;
4714 async_client_context = context;
4715 if (!linux_async_pipe (1))
4716 {
4717 add_file_handler (linux_nat_event_pipe[0],
4718 handle_target_event, NULL);
4719 /* There may be pending events to handle. Tell the event loop
4720 to poll them. */
4721 async_file_mark ();
4722 }
4723 }
4724 else
4725 {
4726 async_client_callback = callback;
4727 async_client_context = context;
4728 delete_file_handler (linux_nat_event_pipe[0]);
4729 linux_async_pipe (0);
4730 }
4731 return;
4732 }
4733
4734 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4735 event came out. */
4736
4737 static int
4738 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4739 {
4740 if (!lwp->stopped)
4741 {
4742 if (debug_linux_nat)
4743 fprintf_unfiltered (gdb_stdlog,
4744 "LNSL: running -> suspending %s\n",
4745 target_pid_to_str (lwp->ptid));
4746
4747
4748 if (lwp->last_resume_kind == resume_stop)
4749 {
4750 if (debug_linux_nat)
4751 fprintf_unfiltered (gdb_stdlog,
4752 "linux-nat: already stopping LWP %ld at "
4753 "GDB's request\n",
4754 ptid_get_lwp (lwp->ptid));
4755 return 0;
4756 }
4757
4758 stop_callback (lwp, NULL);
4759 lwp->last_resume_kind = resume_stop;
4760 }
4761 else
4762 {
4763 /* Already known to be stopped; do nothing. */
4764
4765 if (debug_linux_nat)
4766 {
4767 if (find_thread_ptid (lwp->ptid)->stop_requested)
4768 fprintf_unfiltered (gdb_stdlog,
4769 "LNSL: already stopped/stop_requested %s\n",
4770 target_pid_to_str (lwp->ptid));
4771 else
4772 fprintf_unfiltered (gdb_stdlog,
4773 "LNSL: already stopped/no "
4774 "stop_requested yet %s\n",
4775 target_pid_to_str (lwp->ptid));
4776 }
4777 }
4778 return 0;
4779 }
4780
4781 static void
4782 linux_nat_stop (ptid_t ptid)
4783 {
4784 if (non_stop)
4785 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4786 else
4787 linux_ops->to_stop (ptid);
4788 }
4789
4790 static void
4791 linux_nat_close (struct target_ops *self)
4792 {
4793 /* Unregister from the event loop. */
4794 if (linux_nat_is_async_p (NULL))
4795 linux_nat_async (NULL, NULL, 0);
4796
4797 if (linux_ops->to_close)
4798 linux_ops->to_close (linux_ops);
4799 }
4800
4801 /* When requests are passed down from the linux-nat layer to the
4802 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4803 used. The address space pointer is stored in the inferior object,
4804 but the common code that is passed such ptid can't tell whether
4805 lwpid is a "main" process id or not (it assumes so). We reverse
4806 look up the "main" process id from the lwp here. */
4807
4808 static struct address_space *
4809 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4810 {
4811 struct lwp_info *lwp;
4812 struct inferior *inf;
4813 int pid;
4814
4815 pid = ptid_get_lwp (ptid);
4816 if (ptid_get_lwp (ptid) == 0)
4817 {
4818 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4819 tgid. */
4820 lwp = find_lwp_pid (ptid);
4821 pid = ptid_get_pid (lwp->ptid);
4822 }
4823 else
4824 {
4825 /* A (pid,lwpid,0) ptid. */
4826 pid = ptid_get_pid (ptid);
4827 }
4828
4829 inf = find_inferior_pid (pid);
4830 gdb_assert (inf != NULL);
4831 return inf->aspace;
4832 }
4833
4834 /* Return the cached value of the processor core for thread PTID. */
4835
4836 static int
4837 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4838 {
4839 struct lwp_info *info = find_lwp_pid (ptid);
4840
4841 if (info)
4842 return info->core;
4843 return -1;
4844 }
4845
4846 void
4847 linux_nat_add_target (struct target_ops *t)
4848 {
4849 /* Save the provided single-threaded target. We save this in a separate
4850 variable because another target we've inherited from (e.g. inf-ptrace)
4851 may have saved a pointer to T; we want to use it for the final
4852 process stratum target. */
4853 linux_ops_saved = *t;
4854 linux_ops = &linux_ops_saved;
4855
4856 /* Override some methods for multithreading. */
4857 t->to_create_inferior = linux_nat_create_inferior;
4858 t->to_attach = linux_nat_attach;
4859 t->to_detach = linux_nat_detach;
4860 t->to_resume = linux_nat_resume;
4861 t->to_wait = linux_nat_wait;
4862 t->to_pass_signals = linux_nat_pass_signals;
4863 t->to_xfer_partial = linux_nat_xfer_partial;
4864 t->to_kill = linux_nat_kill;
4865 t->to_mourn_inferior = linux_nat_mourn_inferior;
4866 t->to_thread_alive = linux_nat_thread_alive;
4867 t->to_pid_to_str = linux_nat_pid_to_str;
4868 t->to_thread_name = linux_nat_thread_name;
4869 t->to_has_thread_control = tc_schedlock;
4870 t->to_thread_address_space = linux_nat_thread_address_space;
4871 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4872 t->to_stopped_data_address = linux_nat_stopped_data_address;
4873
4874 t->to_can_async_p = linux_nat_can_async_p;
4875 t->to_is_async_p = linux_nat_is_async_p;
4876 t->to_supports_non_stop = linux_nat_supports_non_stop;
4877 t->to_async = linux_nat_async;
4878 t->to_terminal_inferior = linux_nat_terminal_inferior;
4879 t->to_terminal_ours = linux_nat_terminal_ours;
4880 t->to_close = linux_nat_close;
4881
4882 /* Methods for non-stop support. */
4883 t->to_stop = linux_nat_stop;
4884
4885 t->to_supports_multi_process = linux_nat_supports_multi_process;
4886
4887 t->to_supports_disable_randomization
4888 = linux_nat_supports_disable_randomization;
4889
4890 t->to_core_of_thread = linux_nat_core_of_thread;
4891
4892 /* We don't change the stratum; this target will sit at
4893 process_stratum and thread_db will set at thread_stratum. This
4894 is a little strange, since this is a multi-threaded-capable
4895 target, but we want to be on the stack below thread_db, and we
4896 also want to be used for single-threaded processes. */
4897
4898 add_target (t);
4899 }
4900
4901 /* Register a method to call whenever a new thread is attached. */
4902 void
4903 linux_nat_set_new_thread (struct target_ops *t,
4904 void (*new_thread) (struct lwp_info *))
4905 {
4906 /* Save the pointer. We only support a single registered instance
4907 of the GNU/Linux native target, so we do not need to map this to
4908 T. */
4909 linux_nat_new_thread = new_thread;
4910 }
4911
4912 /* See declaration in linux-nat.h. */
4913
4914 void
4915 linux_nat_set_new_fork (struct target_ops *t,
4916 linux_nat_new_fork_ftype *new_fork)
4917 {
4918 /* Save the pointer. */
4919 linux_nat_new_fork = new_fork;
4920 }
4921
4922 /* See declaration in linux-nat.h. */
4923
4924 void
4925 linux_nat_set_forget_process (struct target_ops *t,
4926 linux_nat_forget_process_ftype *fn)
4927 {
4928 /* Save the pointer. */
4929 linux_nat_forget_process_hook = fn;
4930 }
4931
4932 /* See declaration in linux-nat.h. */
4933
4934 void
4935 linux_nat_forget_process (pid_t pid)
4936 {
4937 if (linux_nat_forget_process_hook != NULL)
4938 linux_nat_forget_process_hook (pid);
4939 }
4940
4941 /* Register a method that converts a siginfo object between the layout
4942 that ptrace returns, and the layout in the architecture of the
4943 inferior. */
4944 void
4945 linux_nat_set_siginfo_fixup (struct target_ops *t,
4946 int (*siginfo_fixup) (siginfo_t *,
4947 gdb_byte *,
4948 int))
4949 {
4950 /* Save the pointer. */
4951 linux_nat_siginfo_fixup = siginfo_fixup;
4952 }
4953
4954 /* Register a method to call prior to resuming a thread. */
4955
4956 void
4957 linux_nat_set_prepare_to_resume (struct target_ops *t,
4958 void (*prepare_to_resume) (struct lwp_info *))
4959 {
4960 /* Save the pointer. */
4961 linux_nat_prepare_to_resume = prepare_to_resume;
4962 }
4963
4964 /* See linux-nat.h. */
4965
4966 int
4967 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4968 {
4969 int pid;
4970
4971 pid = ptid_get_lwp (ptid);
4972 if (pid == 0)
4973 pid = ptid_get_pid (ptid);
4974
4975 errno = 0;
4976 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4977 if (errno != 0)
4978 {
4979 memset (siginfo, 0, sizeof (*siginfo));
4980 return 0;
4981 }
4982 return 1;
4983 }
4984
4985 /* Provide a prototype to silence -Wmissing-prototypes. */
4986 extern initialize_file_ftype _initialize_linux_nat;
4987
4988 void
4989 _initialize_linux_nat (void)
4990 {
4991 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4992 &debug_linux_nat, _("\
4993 Set debugging of GNU/Linux lwp module."), _("\
4994 Show debugging of GNU/Linux lwp module."), _("\
4995 Enables printf debugging output."),
4996 NULL,
4997 show_debug_linux_nat,
4998 &setdebuglist, &showdebuglist);
4999
5000 /* Save this mask as the default. */
5001 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5002
5003 /* Install a SIGCHLD handler. */
5004 sigchld_action.sa_handler = sigchld_handler;
5005 sigemptyset (&sigchld_action.sa_mask);
5006 sigchld_action.sa_flags = SA_RESTART;
5007
5008 /* Make it the default. */
5009 sigaction (SIGCHLD, &sigchld_action, NULL);
5010
5011 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5012 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5013 sigdelset (&suspend_mask, SIGCHLD);
5014
5015 sigemptyset (&blocked_mask);
5016 }
5017 \f
5018
5019 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5020 the GNU/Linux Threads library and therefore doesn't really belong
5021 here. */
5022
5023 /* Read variable NAME in the target and return its value if found.
5024 Otherwise return zero. It is assumed that the type of the variable
5025 is `int'. */
5026
5027 static int
5028 get_signo (const char *name)
5029 {
5030 struct minimal_symbol *ms;
5031 int signo;
5032
5033 ms = lookup_minimal_symbol (name, NULL, NULL);
5034 if (ms == NULL)
5035 return 0;
5036
5037 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5038 sizeof (signo)) != 0)
5039 return 0;
5040
5041 return signo;
5042 }
5043
5044 /* Return the set of signals used by the threads library in *SET. */
5045
5046 void
5047 lin_thread_get_thread_signals (sigset_t *set)
5048 {
5049 struct sigaction action;
5050 int restart, cancel;
5051
5052 sigemptyset (&blocked_mask);
5053 sigemptyset (set);
5054
5055 restart = get_signo ("__pthread_sig_restart");
5056 cancel = get_signo ("__pthread_sig_cancel");
5057
5058 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5059 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5060 not provide any way for the debugger to query the signal numbers -
5061 fortunately they don't change! */
5062
5063 if (restart == 0)
5064 restart = __SIGRTMIN;
5065
5066 if (cancel == 0)
5067 cancel = __SIGRTMIN + 1;
5068
5069 sigaddset (set, restart);
5070 sigaddset (set, cancel);
5071
5072 /* The GNU/Linux Threads library makes terminating threads send a
5073 special "cancel" signal instead of SIGCHLD. Make sure we catch
5074 those (to prevent them from terminating GDB itself, which is
5075 likely to be their default action) and treat them the same way as
5076 SIGCHLD. */
5077
5078 action.sa_handler = sigchld_handler;
5079 sigemptyset (&action.sa_mask);
5080 action.sa_flags = SA_RESTART;
5081 sigaction (cancel, &action, NULL);
5082
5083 /* We block the "cancel" signal throughout this code ... */
5084 sigaddset (&blocked_mask, cancel);
5085 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5086
5087 /* ... except during a sigsuspend. */
5088 sigdelset (&suspend_mask, cancel);
5089 }