]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/linux-nat.c
Remove some GDBSERVER checks from linux-ptrace
[thirdparty/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include <string.h>
27 #include "gdb_wait.h"
28 #include "gdb_assert.h"
29 #ifdef HAVE_TKILL_SYSCALL
30 #include <unistd.h>
31 #include <sys/syscall.h>
32 #endif
33 #include <sys/ptrace.h>
34 #include "linux-nat.h"
35 #include "nat/linux-ptrace.h"
36 #include "nat/linux-procfs.h"
37 #include "linux-fork.h"
38 #include "gdbthread.h"
39 #include "gdbcmd.h"
40 #include "regcache.h"
41 #include "regset.h"
42 #include "inf-child.h"
43 #include "inf-ptrace.h"
44 #include "auxv.h"
45 #include <sys/procfs.h> /* for elf_gregset etc. */
46 #include "elf-bfd.h" /* for elfcore_write_* */
47 #include "gregset.h" /* for gregset */
48 #include "gdbcore.h" /* for get_exec_file */
49 #include <ctype.h> /* for isdigit */
50 #include <sys/stat.h> /* for struct stat */
51 #include <fcntl.h> /* for O_RDONLY */
52 #include "inf-loop.h"
53 #include "event-loop.h"
54 #include "event-top.h"
55 #include <pwd.h>
56 #include <sys/types.h>
57 #include <dirent.h>
58 #include "xml-support.h"
59 #include "terminal.h"
60 #include <sys/vfs.h>
61 #include "solib.h"
62 #include "nat/linux-osdata.h"
63 #include "linux-tdep.h"
64 #include "symfile.h"
65 #include "agent.h"
66 #include "tracepoint.h"
67 #include "exceptions.h"
68 #include "buffer.h"
69 #include "target-descriptions.h"
70 #include "filestuff.h"
71 #include "objfiles.h"
72
73 #ifndef SPUFS_MAGIC
74 #define SPUFS_MAGIC 0x23c9b64e
75 #endif
76
77 #ifdef HAVE_PERSONALITY
78 # include <sys/personality.h>
79 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
80 # define ADDR_NO_RANDOMIZE 0x0040000
81 # endif
82 #endif /* HAVE_PERSONALITY */
83
84 /* This comment documents high-level logic of this file.
85
86 Waiting for events in sync mode
87 ===============================
88
89 When waiting for an event in a specific thread, we just use waitpid, passing
90 the specific pid, and not passing WNOHANG.
91
92 When waiting for an event in all threads, waitpid is not quite good. Prior to
93 version 2.4, Linux can either wait for event in main thread, or in secondary
94 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
95 miss an event. The solution is to use non-blocking waitpid, together with
96 sigsuspend. First, we use non-blocking waitpid to get an event in the main
97 process, if any. Second, we use non-blocking waitpid with the __WCLONED
98 flag to check for events in cloned processes. If nothing is found, we use
99 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
100 happened to a child process -- and SIGCHLD will be delivered both for events
101 in main debugged process and in cloned processes. As soon as we know there's
102 an event, we get back to calling nonblocking waitpid with and without
103 __WCLONED.
104
105 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
106 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
107 blocked, the signal becomes pending and sigsuspend immediately
108 notices it and returns.
109
110 Waiting for events in async mode
111 ================================
112
113 In async mode, GDB should always be ready to handle both user input
114 and target events, so neither blocking waitpid nor sigsuspend are
115 viable options. Instead, we should asynchronously notify the GDB main
116 event loop whenever there's an unprocessed event from the target. We
117 detect asynchronous target events by handling SIGCHLD signals. To
118 notify the event loop about target events, the self-pipe trick is used
119 --- a pipe is registered as waitable event source in the event loop,
120 the event loop select/poll's on the read end of this pipe (as well on
121 other event sources, e.g., stdin), and the SIGCHLD handler writes a
122 byte to this pipe. This is more portable than relying on
123 pselect/ppoll, since on kernels that lack those syscalls, libc
124 emulates them with select/poll+sigprocmask, and that is racy
125 (a.k.a. plain broken).
126
127 Obviously, if we fail to notify the event loop if there's a target
128 event, it's bad. OTOH, if we notify the event loop when there's no
129 event from the target, linux_nat_wait will detect that there's no real
130 event to report, and return event of type TARGET_WAITKIND_IGNORE.
131 This is mostly harmless, but it will waste time and is better avoided.
132
133 The main design point is that every time GDB is outside linux-nat.c,
134 we have a SIGCHLD handler installed that is called when something
135 happens to the target and notifies the GDB event loop. Whenever GDB
136 core decides to handle the event, and calls into linux-nat.c, we
137 process things as in sync mode, except that the we never block in
138 sigsuspend.
139
140 While processing an event, we may end up momentarily blocked in
141 waitpid calls. Those waitpid calls, while blocking, are guarantied to
142 return quickly. E.g., in all-stop mode, before reporting to the core
143 that an LWP hit a breakpoint, all LWPs are stopped by sending them
144 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
145 Note that this is different from blocking indefinitely waiting for the
146 next event --- here, we're already handling an event.
147
148 Use of signals
149 ==============
150
151 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
152 signal is not entirely significant; we just need for a signal to be delivered,
153 so that we can intercept it. SIGSTOP's advantage is that it can not be
154 blocked. A disadvantage is that it is not a real-time signal, so it can only
155 be queued once; we do not keep track of other sources of SIGSTOP.
156
157 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
158 use them, because they have special behavior when the signal is generated -
159 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
160 kills the entire thread group.
161
162 A delivered SIGSTOP would stop the entire thread group, not just the thread we
163 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
164 cancel it (by PTRACE_CONT without passing SIGSTOP).
165
166 We could use a real-time signal instead. This would solve those problems; we
167 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
168 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
169 generates it, and there are races with trying to find a signal that is not
170 blocked. */
171
172 #ifndef O_LARGEFILE
173 #define O_LARGEFILE 0
174 #endif
175
176 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
177 the use of the multi-threaded target. */
178 static struct target_ops *linux_ops;
179 static struct target_ops linux_ops_saved;
180
181 /* The method to call, if any, when a new thread is attached. */
182 static void (*linux_nat_new_thread) (struct lwp_info *);
183
184 /* The method to call, if any, when a new fork is attached. */
185 static linux_nat_new_fork_ftype *linux_nat_new_fork;
186
187 /* The method to call, if any, when a process is no longer
188 attached. */
189 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
190
191 /* Hook to call prior to resuming a thread. */
192 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
193
194 /* The method to call, if any, when the siginfo object needs to be
195 converted between the layout returned by ptrace, and the layout in
196 the architecture of the inferior. */
197 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
198 gdb_byte *,
199 int);
200
201 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
202 Called by our to_xfer_partial. */
203 static target_xfer_partial_ftype *super_xfer_partial;
204
205 /* The saved to_close method, inherited from inf-ptrace.c.
206 Called by our to_close. */
207 static void (*super_close) (struct target_ops *);
208
209 static unsigned int debug_linux_nat;
210 static void
211 show_debug_linux_nat (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
215 value);
216 }
217
218 struct simple_pid_list
219 {
220 int pid;
221 int status;
222 struct simple_pid_list *next;
223 };
224 struct simple_pid_list *stopped_pids;
225
226 /* Async mode support. */
227
228 /* The read/write ends of the pipe registered as waitable file in the
229 event loop. */
230 static int linux_nat_event_pipe[2] = { -1, -1 };
231
232 /* Flush the event pipe. */
233
234 static void
235 async_file_flush (void)
236 {
237 int ret;
238 char buf;
239
240 do
241 {
242 ret = read (linux_nat_event_pipe[0], &buf, 1);
243 }
244 while (ret >= 0 || (ret == -1 && errno == EINTR));
245 }
246
247 /* Put something (anything, doesn't matter what, or how much) in event
248 pipe, so that the select/poll in the event-loop realizes we have
249 something to process. */
250
251 static void
252 async_file_mark (void)
253 {
254 int ret;
255
256 /* It doesn't really matter what the pipe contains, as long we end
257 up with something in it. Might as well flush the previous
258 left-overs. */
259 async_file_flush ();
260
261 do
262 {
263 ret = write (linux_nat_event_pipe[1], "+", 1);
264 }
265 while (ret == -1 && errno == EINTR);
266
267 /* Ignore EAGAIN. If the pipe is full, the event loop will already
268 be awakened anyway. */
269 }
270
271 static int kill_lwp (int lwpid, int signo);
272
273 static int stop_callback (struct lwp_info *lp, void *data);
274
275 static void block_child_signals (sigset_t *prev_mask);
276 static void restore_child_signals_mask (sigset_t *prev_mask);
277
278 struct lwp_info;
279 static struct lwp_info *add_lwp (ptid_t ptid);
280 static void purge_lwp_list (int pid);
281 static void delete_lwp (ptid_t ptid);
282 static struct lwp_info *find_lwp_pid (ptid_t ptid);
283
284 \f
285 /* Trivial list manipulation functions to keep track of a list of
286 new stopped processes. */
287 static void
288 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
289 {
290 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
291
292 new_pid->pid = pid;
293 new_pid->status = status;
294 new_pid->next = *listp;
295 *listp = new_pid;
296 }
297
298 static int
299 in_pid_list_p (struct simple_pid_list *list, int pid)
300 {
301 struct simple_pid_list *p;
302
303 for (p = list; p != NULL; p = p->next)
304 if (p->pid == pid)
305 return 1;
306 return 0;
307 }
308
309 static int
310 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
311 {
312 struct simple_pid_list **p;
313
314 for (p = listp; *p != NULL; p = &(*p)->next)
315 if ((*p)->pid == pid)
316 {
317 struct simple_pid_list *next = (*p)->next;
318
319 *statusp = (*p)->status;
320 xfree (*p);
321 *p = next;
322 return 1;
323 }
324 return 0;
325 }
326
327 /* Initialize ptrace warnings and check for supported ptrace
328 features given PID. */
329
330 static void
331 linux_init_ptrace (pid_t pid)
332 {
333 linux_enable_event_reporting (pid);
334 linux_ptrace_init_warnings ();
335 }
336
337 static void
338 linux_child_post_attach (struct target_ops *self, int pid)
339 {
340 linux_init_ptrace (pid);
341 }
342
343 static void
344 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
345 {
346 linux_init_ptrace (ptid_get_pid (ptid));
347 }
348
349 /* Return the number of known LWPs in the tgid given by PID. */
350
351 static int
352 num_lwps (int pid)
353 {
354 int count = 0;
355 struct lwp_info *lp;
356
357 for (lp = lwp_list; lp; lp = lp->next)
358 if (ptid_get_pid (lp->ptid) == pid)
359 count++;
360
361 return count;
362 }
363
364 /* Call delete_lwp with prototype compatible for make_cleanup. */
365
366 static void
367 delete_lwp_cleanup (void *lp_voidp)
368 {
369 struct lwp_info *lp = lp_voidp;
370
371 delete_lwp (lp->ptid);
372 }
373
374 static int
375 linux_child_follow_fork (struct target_ops *ops, int follow_child,
376 int detach_fork)
377 {
378 int has_vforked;
379 int parent_pid, child_pid;
380
381 has_vforked = (inferior_thread ()->pending_follow.kind
382 == TARGET_WAITKIND_VFORKED);
383 parent_pid = ptid_get_lwp (inferior_ptid);
384 if (parent_pid == 0)
385 parent_pid = ptid_get_pid (inferior_ptid);
386 child_pid
387 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
388
389 if (has_vforked
390 && !non_stop /* Non-stop always resumes both branches. */
391 && (!target_is_async_p () || sync_execution)
392 && !(follow_child || detach_fork || sched_multi))
393 {
394 /* The parent stays blocked inside the vfork syscall until the
395 child execs or exits. If we don't let the child run, then
396 the parent stays blocked. If we're telling the parent to run
397 in the foreground, the user will not be able to ctrl-c to get
398 back the terminal, effectively hanging the debug session. */
399 fprintf_filtered (gdb_stderr, _("\
400 Can not resume the parent process over vfork in the foreground while\n\
401 holding the child stopped. Try \"set detach-on-fork\" or \
402 \"set schedule-multiple\".\n"));
403 /* FIXME output string > 80 columns. */
404 return 1;
405 }
406
407 if (! follow_child)
408 {
409 struct lwp_info *child_lp = NULL;
410
411 /* We're already attached to the parent, by default. */
412
413 /* Detach new forked process? */
414 if (detach_fork)
415 {
416 struct cleanup *old_chain;
417 int status = W_STOPCODE (0);
418
419 /* Before detaching from the child, remove all breakpoints
420 from it. If we forked, then this has already been taken
421 care of by infrun.c. If we vforked however, any
422 breakpoint inserted in the parent is visible in the
423 child, even those added while stopped in a vfork
424 catchpoint. This will remove the breakpoints from the
425 parent also, but they'll be reinserted below. */
426 if (has_vforked)
427 {
428 /* keep breakpoints list in sync. */
429 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
430 }
431
432 if (info_verbose || debug_linux_nat)
433 {
434 target_terminal_ours ();
435 fprintf_filtered (gdb_stdlog,
436 "Detaching after fork from "
437 "child process %d.\n",
438 child_pid);
439 }
440
441 old_chain = save_inferior_ptid ();
442 inferior_ptid = ptid_build (child_pid, child_pid, 0);
443
444 child_lp = add_lwp (inferior_ptid);
445 child_lp->stopped = 1;
446 child_lp->last_resume_kind = resume_stop;
447 make_cleanup (delete_lwp_cleanup, child_lp);
448
449 if (linux_nat_prepare_to_resume != NULL)
450 linux_nat_prepare_to_resume (child_lp);
451
452 /* When debugging an inferior in an architecture that supports
453 hardware single stepping on a kernel without commit
454 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
455 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
456 set if the parent process had them set.
457 To work around this, single step the child process
458 once before detaching to clear the flags. */
459
460 if (!gdbarch_software_single_step_p (target_thread_architecture
461 (child_lp->ptid)))
462 {
463 linux_disable_event_reporting (child_pid);
464 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
465 perror_with_name (_("Couldn't do single step"));
466 if (my_waitpid (child_pid, &status, 0) < 0)
467 perror_with_name (_("Couldn't wait vfork process"));
468 }
469
470 if (WIFSTOPPED (status))
471 {
472 int signo;
473
474 signo = WSTOPSIG (status);
475 if (signo != 0
476 && !signal_pass_state (gdb_signal_from_host (signo)))
477 signo = 0;
478 ptrace (PTRACE_DETACH, child_pid, 0, signo);
479 }
480
481 do_cleanups (old_chain);
482 }
483 else
484 {
485 struct inferior *parent_inf, *child_inf;
486 struct cleanup *old_chain;
487
488 /* Add process to GDB's tables. */
489 child_inf = add_inferior (child_pid);
490
491 parent_inf = current_inferior ();
492 child_inf->attach_flag = parent_inf->attach_flag;
493 copy_terminal_info (child_inf, parent_inf);
494 child_inf->gdbarch = parent_inf->gdbarch;
495 copy_inferior_target_desc_info (child_inf, parent_inf);
496
497 old_chain = save_inferior_ptid ();
498 save_current_program_space ();
499
500 inferior_ptid = ptid_build (child_pid, child_pid, 0);
501 add_thread (inferior_ptid);
502 child_lp = add_lwp (inferior_ptid);
503 child_lp->stopped = 1;
504 child_lp->last_resume_kind = resume_stop;
505 child_inf->symfile_flags = SYMFILE_NO_READ;
506
507 /* If this is a vfork child, then the address-space is
508 shared with the parent. */
509 if (has_vforked)
510 {
511 child_inf->pspace = parent_inf->pspace;
512 child_inf->aspace = parent_inf->aspace;
513
514 /* The parent will be frozen until the child is done
515 with the shared region. Keep track of the
516 parent. */
517 child_inf->vfork_parent = parent_inf;
518 child_inf->pending_detach = 0;
519 parent_inf->vfork_child = child_inf;
520 parent_inf->pending_detach = 0;
521 }
522 else
523 {
524 child_inf->aspace = new_address_space ();
525 child_inf->pspace = add_program_space (child_inf->aspace);
526 child_inf->removable = 1;
527 set_current_program_space (child_inf->pspace);
528 clone_program_space (child_inf->pspace, parent_inf->pspace);
529
530 /* Let the shared library layer (solib-svr4) learn about
531 this new process, relocate the cloned exec, pull in
532 shared libraries, and install the solib event
533 breakpoint. If a "cloned-VM" event was propagated
534 better throughout the core, this wouldn't be
535 required. */
536 solib_create_inferior_hook (0);
537 }
538
539 /* Let the thread_db layer learn about this new process. */
540 check_for_thread_db ();
541
542 do_cleanups (old_chain);
543 }
544
545 if (has_vforked)
546 {
547 struct lwp_info *parent_lp;
548 struct inferior *parent_inf;
549
550 parent_inf = current_inferior ();
551
552 /* If we detached from the child, then we have to be careful
553 to not insert breakpoints in the parent until the child
554 is done with the shared memory region. However, if we're
555 staying attached to the child, then we can and should
556 insert breakpoints, so that we can debug it. A
557 subsequent child exec or exit is enough to know when does
558 the child stops using the parent's address space. */
559 parent_inf->waiting_for_vfork_done = detach_fork;
560 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
561
562 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
563 gdb_assert (linux_supports_tracefork () >= 0);
564
565 if (linux_supports_tracevforkdone ())
566 {
567 if (debug_linux_nat)
568 fprintf_unfiltered (gdb_stdlog,
569 "LCFF: waiting for VFORK_DONE on %d\n",
570 parent_pid);
571 parent_lp->stopped = 1;
572
573 /* We'll handle the VFORK_DONE event like any other
574 event, in target_wait. */
575 }
576 else
577 {
578 /* We can't insert breakpoints until the child has
579 finished with the shared memory region. We need to
580 wait until that happens. Ideal would be to just
581 call:
582 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
583 - waitpid (parent_pid, &status, __WALL);
584 However, most architectures can't handle a syscall
585 being traced on the way out if it wasn't traced on
586 the way in.
587
588 We might also think to loop, continuing the child
589 until it exits or gets a SIGTRAP. One problem is
590 that the child might call ptrace with PTRACE_TRACEME.
591
592 There's no simple and reliable way to figure out when
593 the vforked child will be done with its copy of the
594 shared memory. We could step it out of the syscall,
595 two instructions, let it go, and then single-step the
596 parent once. When we have hardware single-step, this
597 would work; with software single-step it could still
598 be made to work but we'd have to be able to insert
599 single-step breakpoints in the child, and we'd have
600 to insert -just- the single-step breakpoint in the
601 parent. Very awkward.
602
603 In the end, the best we can do is to make sure it
604 runs for a little while. Hopefully it will be out of
605 range of any breakpoints we reinsert. Usually this
606 is only the single-step breakpoint at vfork's return
607 point. */
608
609 if (debug_linux_nat)
610 fprintf_unfiltered (gdb_stdlog,
611 "LCFF: no VFORK_DONE "
612 "support, sleeping a bit\n");
613
614 usleep (10000);
615
616 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
617 and leave it pending. The next linux_nat_resume call
618 will notice a pending event, and bypasses actually
619 resuming the inferior. */
620 parent_lp->status = 0;
621 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
622 parent_lp->stopped = 1;
623
624 /* If we're in async mode, need to tell the event loop
625 there's something here to process. */
626 if (target_can_async_p ())
627 async_file_mark ();
628 }
629 }
630 }
631 else
632 {
633 struct inferior *parent_inf, *child_inf;
634 struct lwp_info *child_lp;
635 struct program_space *parent_pspace;
636
637 if (info_verbose || debug_linux_nat)
638 {
639 target_terminal_ours ();
640 if (has_vforked)
641 fprintf_filtered (gdb_stdlog,
642 _("Attaching after process %d "
643 "vfork to child process %d.\n"),
644 parent_pid, child_pid);
645 else
646 fprintf_filtered (gdb_stdlog,
647 _("Attaching after process %d "
648 "fork to child process %d.\n"),
649 parent_pid, child_pid);
650 }
651
652 /* Add the new inferior first, so that the target_detach below
653 doesn't unpush the target. */
654
655 child_inf = add_inferior (child_pid);
656
657 parent_inf = current_inferior ();
658 child_inf->attach_flag = parent_inf->attach_flag;
659 copy_terminal_info (child_inf, parent_inf);
660 child_inf->gdbarch = parent_inf->gdbarch;
661 copy_inferior_target_desc_info (child_inf, parent_inf);
662
663 parent_pspace = parent_inf->pspace;
664
665 /* If we're vforking, we want to hold on to the parent until the
666 child exits or execs. At child exec or exit time we can
667 remove the old breakpoints from the parent and detach or
668 resume debugging it. Otherwise, detach the parent now; we'll
669 want to reuse it's program/address spaces, but we can't set
670 them to the child before removing breakpoints from the
671 parent, otherwise, the breakpoints module could decide to
672 remove breakpoints from the wrong process (since they'd be
673 assigned to the same address space). */
674
675 if (has_vforked)
676 {
677 gdb_assert (child_inf->vfork_parent == NULL);
678 gdb_assert (parent_inf->vfork_child == NULL);
679 child_inf->vfork_parent = parent_inf;
680 child_inf->pending_detach = 0;
681 parent_inf->vfork_child = child_inf;
682 parent_inf->pending_detach = detach_fork;
683 parent_inf->waiting_for_vfork_done = 0;
684 }
685 else if (detach_fork)
686 target_detach (NULL, 0);
687
688 /* Note that the detach above makes PARENT_INF dangling. */
689
690 /* Add the child thread to the appropriate lists, and switch to
691 this new thread, before cloning the program space, and
692 informing the solib layer about this new process. */
693
694 inferior_ptid = ptid_build (child_pid, child_pid, 0);
695 add_thread (inferior_ptid);
696 child_lp = add_lwp (inferior_ptid);
697 child_lp->stopped = 1;
698 child_lp->last_resume_kind = resume_stop;
699
700 /* If this is a vfork child, then the address-space is shared
701 with the parent. If we detached from the parent, then we can
702 reuse the parent's program/address spaces. */
703 if (has_vforked || detach_fork)
704 {
705 child_inf->pspace = parent_pspace;
706 child_inf->aspace = child_inf->pspace->aspace;
707 }
708 else
709 {
710 child_inf->aspace = new_address_space ();
711 child_inf->pspace = add_program_space (child_inf->aspace);
712 child_inf->removable = 1;
713 child_inf->symfile_flags = SYMFILE_NO_READ;
714 set_current_program_space (child_inf->pspace);
715 clone_program_space (child_inf->pspace, parent_pspace);
716
717 /* Let the shared library layer (solib-svr4) learn about
718 this new process, relocate the cloned exec, pull in
719 shared libraries, and install the solib event breakpoint.
720 If a "cloned-VM" event was propagated better throughout
721 the core, this wouldn't be required. */
722 solib_create_inferior_hook (0);
723 }
724
725 /* Let the thread_db layer learn about this new process. */
726 check_for_thread_db ();
727 }
728
729 return 0;
730 }
731
732 \f
733 static int
734 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
735 {
736 return !linux_supports_tracefork ();
737 }
738
739 static int
740 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
741 {
742 return 0;
743 }
744
745 static int
746 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
747 {
748 return !linux_supports_tracefork ();
749 }
750
751 static int
752 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
753 {
754 return 0;
755 }
756
757 static int
758 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
759 {
760 return !linux_supports_tracefork ();
761 }
762
763 static int
764 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
765 {
766 return 0;
767 }
768
769 static int
770 linux_child_set_syscall_catchpoint (struct target_ops *self,
771 int pid, int needed, int any_count,
772 int table_size, int *table)
773 {
774 if (!linux_supports_tracesysgood ())
775 return 1;
776
777 /* On GNU/Linux, we ignore the arguments. It means that we only
778 enable the syscall catchpoints, but do not disable them.
779
780 Also, we do not use the `table' information because we do not
781 filter system calls here. We let GDB do the logic for us. */
782 return 0;
783 }
784
785 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
786 are processes sharing the same VM space. A multi-threaded process
787 is basically a group of such processes. However, such a grouping
788 is almost entirely a user-space issue; the kernel doesn't enforce
789 such a grouping at all (this might change in the future). In
790 general, we'll rely on the threads library (i.e. the GNU/Linux
791 Threads library) to provide such a grouping.
792
793 It is perfectly well possible to write a multi-threaded application
794 without the assistance of a threads library, by using the clone
795 system call directly. This module should be able to give some
796 rudimentary support for debugging such applications if developers
797 specify the CLONE_PTRACE flag in the clone system call, and are
798 using the Linux kernel 2.4 or above.
799
800 Note that there are some peculiarities in GNU/Linux that affect
801 this code:
802
803 - In general one should specify the __WCLONE flag to waitpid in
804 order to make it report events for any of the cloned processes
805 (and leave it out for the initial process). However, if a cloned
806 process has exited the exit status is only reported if the
807 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
808 we cannot use it since GDB must work on older systems too.
809
810 - When a traced, cloned process exits and is waited for by the
811 debugger, the kernel reassigns it to the original parent and
812 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
813 library doesn't notice this, which leads to the "zombie problem":
814 When debugged a multi-threaded process that spawns a lot of
815 threads will run out of processes, even if the threads exit,
816 because the "zombies" stay around. */
817
818 /* List of known LWPs. */
819 struct lwp_info *lwp_list;
820 \f
821
822 /* Original signal mask. */
823 static sigset_t normal_mask;
824
825 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
826 _initialize_linux_nat. */
827 static sigset_t suspend_mask;
828
829 /* Signals to block to make that sigsuspend work. */
830 static sigset_t blocked_mask;
831
832 /* SIGCHLD action. */
833 struct sigaction sigchld_action;
834
835 /* Block child signals (SIGCHLD and linux threads signals), and store
836 the previous mask in PREV_MASK. */
837
838 static void
839 block_child_signals (sigset_t *prev_mask)
840 {
841 /* Make sure SIGCHLD is blocked. */
842 if (!sigismember (&blocked_mask, SIGCHLD))
843 sigaddset (&blocked_mask, SIGCHLD);
844
845 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
846 }
847
848 /* Restore child signals mask, previously returned by
849 block_child_signals. */
850
851 static void
852 restore_child_signals_mask (sigset_t *prev_mask)
853 {
854 sigprocmask (SIG_SETMASK, prev_mask, NULL);
855 }
856
857 /* Mask of signals to pass directly to the inferior. */
858 static sigset_t pass_mask;
859
860 /* Update signals to pass to the inferior. */
861 static void
862 linux_nat_pass_signals (struct target_ops *self,
863 int numsigs, unsigned char *pass_signals)
864 {
865 int signo;
866
867 sigemptyset (&pass_mask);
868
869 for (signo = 1; signo < NSIG; signo++)
870 {
871 int target_signo = gdb_signal_from_host (signo);
872 if (target_signo < numsigs && pass_signals[target_signo])
873 sigaddset (&pass_mask, signo);
874 }
875 }
876
877 \f
878
879 /* Prototypes for local functions. */
880 static int stop_wait_callback (struct lwp_info *lp, void *data);
881 static int linux_thread_alive (ptid_t ptid);
882 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
883
884 \f
885
886 /* Destroy and free LP. */
887
888 static void
889 lwp_free (struct lwp_info *lp)
890 {
891 xfree (lp->arch_private);
892 xfree (lp);
893 }
894
895 /* Remove all LWPs belong to PID from the lwp list. */
896
897 static void
898 purge_lwp_list (int pid)
899 {
900 struct lwp_info *lp, *lpprev, *lpnext;
901
902 lpprev = NULL;
903
904 for (lp = lwp_list; lp; lp = lpnext)
905 {
906 lpnext = lp->next;
907
908 if (ptid_get_pid (lp->ptid) == pid)
909 {
910 if (lp == lwp_list)
911 lwp_list = lp->next;
912 else
913 lpprev->next = lp->next;
914
915 lwp_free (lp);
916 }
917 else
918 lpprev = lp;
919 }
920 }
921
922 /* Add the LWP specified by PTID to the list. PTID is the first LWP
923 in the process. Return a pointer to the structure describing the
924 new LWP.
925
926 This differs from add_lwp in that we don't let the arch specific
927 bits know about this new thread. Current clients of this callback
928 take the opportunity to install watchpoints in the new thread, and
929 we shouldn't do that for the first thread. If we're spawning a
930 child ("run"), the thread executes the shell wrapper first, and we
931 shouldn't touch it until it execs the program we want to debug.
932 For "attach", it'd be okay to call the callback, but it's not
933 necessary, because watchpoints can't yet have been inserted into
934 the inferior. */
935
936 static struct lwp_info *
937 add_initial_lwp (ptid_t ptid)
938 {
939 struct lwp_info *lp;
940
941 gdb_assert (ptid_lwp_p (ptid));
942
943 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
944
945 memset (lp, 0, sizeof (struct lwp_info));
946
947 lp->last_resume_kind = resume_continue;
948 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
949
950 lp->ptid = ptid;
951 lp->core = -1;
952
953 lp->next = lwp_list;
954 lwp_list = lp;
955
956 return lp;
957 }
958
959 /* Add the LWP specified by PID to the list. Return a pointer to the
960 structure describing the new LWP. The LWP should already be
961 stopped. */
962
963 static struct lwp_info *
964 add_lwp (ptid_t ptid)
965 {
966 struct lwp_info *lp;
967
968 lp = add_initial_lwp (ptid);
969
970 /* Let the arch specific bits know about this new thread. Current
971 clients of this callback take the opportunity to install
972 watchpoints in the new thread. We don't do this for the first
973 thread though. See add_initial_lwp. */
974 if (linux_nat_new_thread != NULL)
975 linux_nat_new_thread (lp);
976
977 return lp;
978 }
979
980 /* Remove the LWP specified by PID from the list. */
981
982 static void
983 delete_lwp (ptid_t ptid)
984 {
985 struct lwp_info *lp, *lpprev;
986
987 lpprev = NULL;
988
989 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
990 if (ptid_equal (lp->ptid, ptid))
991 break;
992
993 if (!lp)
994 return;
995
996 if (lpprev)
997 lpprev->next = lp->next;
998 else
999 lwp_list = lp->next;
1000
1001 lwp_free (lp);
1002 }
1003
1004 /* Return a pointer to the structure describing the LWP corresponding
1005 to PID. If no corresponding LWP could be found, return NULL. */
1006
1007 static struct lwp_info *
1008 find_lwp_pid (ptid_t ptid)
1009 {
1010 struct lwp_info *lp;
1011 int lwp;
1012
1013 if (ptid_lwp_p (ptid))
1014 lwp = ptid_get_lwp (ptid);
1015 else
1016 lwp = ptid_get_pid (ptid);
1017
1018 for (lp = lwp_list; lp; lp = lp->next)
1019 if (lwp == ptid_get_lwp (lp->ptid))
1020 return lp;
1021
1022 return NULL;
1023 }
1024
1025 /* Call CALLBACK with its second argument set to DATA for every LWP in
1026 the list. If CALLBACK returns 1 for a particular LWP, return a
1027 pointer to the structure describing that LWP immediately.
1028 Otherwise return NULL. */
1029
1030 struct lwp_info *
1031 iterate_over_lwps (ptid_t filter,
1032 int (*callback) (struct lwp_info *, void *),
1033 void *data)
1034 {
1035 struct lwp_info *lp, *lpnext;
1036
1037 for (lp = lwp_list; lp; lp = lpnext)
1038 {
1039 lpnext = lp->next;
1040
1041 if (ptid_match (lp->ptid, filter))
1042 {
1043 if ((*callback) (lp, data))
1044 return lp;
1045 }
1046 }
1047
1048 return NULL;
1049 }
1050
1051 /* Update our internal state when changing from one checkpoint to
1052 another indicated by NEW_PTID. We can only switch single-threaded
1053 applications, so we only create one new LWP, and the previous list
1054 is discarded. */
1055
1056 void
1057 linux_nat_switch_fork (ptid_t new_ptid)
1058 {
1059 struct lwp_info *lp;
1060
1061 purge_lwp_list (ptid_get_pid (inferior_ptid));
1062
1063 lp = add_lwp (new_ptid);
1064 lp->stopped = 1;
1065
1066 /* This changes the thread's ptid while preserving the gdb thread
1067 num. Also changes the inferior pid, while preserving the
1068 inferior num. */
1069 thread_change_ptid (inferior_ptid, new_ptid);
1070
1071 /* We've just told GDB core that the thread changed target id, but,
1072 in fact, it really is a different thread, with different register
1073 contents. */
1074 registers_changed ();
1075 }
1076
1077 /* Handle the exit of a single thread LP. */
1078
1079 static void
1080 exit_lwp (struct lwp_info *lp)
1081 {
1082 struct thread_info *th = find_thread_ptid (lp->ptid);
1083
1084 if (th)
1085 {
1086 if (print_thread_events)
1087 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1088
1089 delete_thread (lp->ptid);
1090 }
1091
1092 delete_lwp (lp->ptid);
1093 }
1094
1095 /* Wait for the LWP specified by LP, which we have just attached to.
1096 Returns a wait status for that LWP, to cache. */
1097
1098 static int
1099 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1100 int *signalled)
1101 {
1102 pid_t new_pid, pid = ptid_get_lwp (ptid);
1103 int status;
1104
1105 if (linux_proc_pid_is_stopped (pid))
1106 {
1107 if (debug_linux_nat)
1108 fprintf_unfiltered (gdb_stdlog,
1109 "LNPAW: Attaching to a stopped process\n");
1110
1111 /* The process is definitely stopped. It is in a job control
1112 stop, unless the kernel predates the TASK_STOPPED /
1113 TASK_TRACED distinction, in which case it might be in a
1114 ptrace stop. Make sure it is in a ptrace stop; from there we
1115 can kill it, signal it, et cetera.
1116
1117 First make sure there is a pending SIGSTOP. Since we are
1118 already attached, the process can not transition from stopped
1119 to running without a PTRACE_CONT; so we know this signal will
1120 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1121 probably already in the queue (unless this kernel is old
1122 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1123 is not an RT signal, it can only be queued once. */
1124 kill_lwp (pid, SIGSTOP);
1125
1126 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1127 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1128 ptrace (PTRACE_CONT, pid, 0, 0);
1129 }
1130
1131 /* Make sure the initial process is stopped. The user-level threads
1132 layer might want to poke around in the inferior, and that won't
1133 work if things haven't stabilized yet. */
1134 new_pid = my_waitpid (pid, &status, 0);
1135 if (new_pid == -1 && errno == ECHILD)
1136 {
1137 if (first)
1138 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1139
1140 /* Try again with __WCLONE to check cloned processes. */
1141 new_pid = my_waitpid (pid, &status, __WCLONE);
1142 *cloned = 1;
1143 }
1144
1145 gdb_assert (pid == new_pid);
1146
1147 if (!WIFSTOPPED (status))
1148 {
1149 /* The pid we tried to attach has apparently just exited. */
1150 if (debug_linux_nat)
1151 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1152 pid, status_to_str (status));
1153 return status;
1154 }
1155
1156 if (WSTOPSIG (status) != SIGSTOP)
1157 {
1158 *signalled = 1;
1159 if (debug_linux_nat)
1160 fprintf_unfiltered (gdb_stdlog,
1161 "LNPAW: Received %s after attaching\n",
1162 status_to_str (status));
1163 }
1164
1165 return status;
1166 }
1167
1168 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1169 the new LWP could not be attached, or 1 if we're already auto
1170 attached to this thread, but haven't processed the
1171 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1172 its existance, without considering it an error. */
1173
1174 int
1175 lin_lwp_attach_lwp (ptid_t ptid)
1176 {
1177 struct lwp_info *lp;
1178 int lwpid;
1179
1180 gdb_assert (ptid_lwp_p (ptid));
1181
1182 lp = find_lwp_pid (ptid);
1183 lwpid = ptid_get_lwp (ptid);
1184
1185 /* We assume that we're already attached to any LWP that has an id
1186 equal to the overall process id, and to any LWP that is already
1187 in our list of LWPs. If we're not seeing exit events from threads
1188 and we've had PID wraparound since we last tried to stop all threads,
1189 this assumption might be wrong; fortunately, this is very unlikely
1190 to happen. */
1191 if (lwpid != ptid_get_pid (ptid) && lp == NULL)
1192 {
1193 int status, cloned = 0, signalled = 0;
1194
1195 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1196 {
1197 if (linux_supports_tracefork ())
1198 {
1199 /* If we haven't stopped all threads when we get here,
1200 we may have seen a thread listed in thread_db's list,
1201 but not processed the PTRACE_EVENT_CLONE yet. If
1202 that's the case, ignore this new thread, and let
1203 normal event handling discover it later. */
1204 if (in_pid_list_p (stopped_pids, lwpid))
1205 {
1206 /* We've already seen this thread stop, but we
1207 haven't seen the PTRACE_EVENT_CLONE extended
1208 event yet. */
1209 return 0;
1210 }
1211 else
1212 {
1213 int new_pid;
1214 int status;
1215
1216 /* See if we've got a stop for this new child
1217 pending. If so, we're already attached. */
1218 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1219 if (new_pid == -1 && errno == ECHILD)
1220 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1221 if (new_pid != -1)
1222 {
1223 if (WIFSTOPPED (status))
1224 add_to_pid_list (&stopped_pids, lwpid, status);
1225 return 1;
1226 }
1227 }
1228 }
1229
1230 /* If we fail to attach to the thread, issue a warning,
1231 but continue. One way this can happen is if thread
1232 creation is interrupted; as of Linux kernel 2.6.19, a
1233 bug may place threads in the thread list and then fail
1234 to create them. */
1235 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1236 safe_strerror (errno));
1237 return -1;
1238 }
1239
1240 if (debug_linux_nat)
1241 fprintf_unfiltered (gdb_stdlog,
1242 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1243 target_pid_to_str (ptid));
1244
1245 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1246 if (!WIFSTOPPED (status))
1247 return 1;
1248
1249 lp = add_lwp (ptid);
1250 lp->stopped = 1;
1251 lp->cloned = cloned;
1252 lp->signalled = signalled;
1253 if (WSTOPSIG (status) != SIGSTOP)
1254 {
1255 lp->resumed = 1;
1256 lp->status = status;
1257 }
1258
1259 target_post_attach (ptid_get_lwp (lp->ptid));
1260
1261 if (debug_linux_nat)
1262 {
1263 fprintf_unfiltered (gdb_stdlog,
1264 "LLAL: waitpid %s received %s\n",
1265 target_pid_to_str (ptid),
1266 status_to_str (status));
1267 }
1268 }
1269 else
1270 {
1271 /* We assume that the LWP representing the original process is
1272 already stopped. Mark it as stopped in the data structure
1273 that the GNU/linux ptrace layer uses to keep track of
1274 threads. Note that this won't have already been done since
1275 the main thread will have, we assume, been stopped by an
1276 attach from a different layer. */
1277 if (lp == NULL)
1278 lp = add_lwp (ptid);
1279 lp->stopped = 1;
1280 }
1281
1282 lp->last_resume_kind = resume_stop;
1283 return 0;
1284 }
1285
1286 static void
1287 linux_nat_create_inferior (struct target_ops *ops,
1288 char *exec_file, char *allargs, char **env,
1289 int from_tty)
1290 {
1291 #ifdef HAVE_PERSONALITY
1292 int personality_orig = 0, personality_set = 0;
1293 #endif /* HAVE_PERSONALITY */
1294
1295 /* The fork_child mechanism is synchronous and calls target_wait, so
1296 we have to mask the async mode. */
1297
1298 #ifdef HAVE_PERSONALITY
1299 if (disable_randomization)
1300 {
1301 errno = 0;
1302 personality_orig = personality (0xffffffff);
1303 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1304 {
1305 personality_set = 1;
1306 personality (personality_orig | ADDR_NO_RANDOMIZE);
1307 }
1308 if (errno != 0 || (personality_set
1309 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1310 warning (_("Error disabling address space randomization: %s"),
1311 safe_strerror (errno));
1312 }
1313 #endif /* HAVE_PERSONALITY */
1314
1315 /* Make sure we report all signals during startup. */
1316 linux_nat_pass_signals (ops, 0, NULL);
1317
1318 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1319
1320 #ifdef HAVE_PERSONALITY
1321 if (personality_set)
1322 {
1323 errno = 0;
1324 personality (personality_orig);
1325 if (errno != 0)
1326 warning (_("Error restoring address space randomization: %s"),
1327 safe_strerror (errno));
1328 }
1329 #endif /* HAVE_PERSONALITY */
1330 }
1331
1332 static void
1333 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1334 {
1335 struct lwp_info *lp;
1336 int status;
1337 ptid_t ptid;
1338 volatile struct gdb_exception ex;
1339
1340 /* Make sure we report all signals during attach. */
1341 linux_nat_pass_signals (ops, 0, NULL);
1342
1343 TRY_CATCH (ex, RETURN_MASK_ERROR)
1344 {
1345 linux_ops->to_attach (ops, args, from_tty);
1346 }
1347 if (ex.reason < 0)
1348 {
1349 pid_t pid = parse_pid_to_attach (args);
1350 struct buffer buffer;
1351 char *message, *buffer_s;
1352
1353 message = xstrdup (ex.message);
1354 make_cleanup (xfree, message);
1355
1356 buffer_init (&buffer);
1357 linux_ptrace_attach_fail_reason (pid, &buffer);
1358
1359 buffer_grow_str0 (&buffer, "");
1360 buffer_s = buffer_finish (&buffer);
1361 make_cleanup (xfree, buffer_s);
1362
1363 if (*buffer_s != '\0')
1364 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1365 else
1366 throw_error (ex.error, "%s", message);
1367 }
1368
1369 /* The ptrace base target adds the main thread with (pid,0,0)
1370 format. Decorate it with lwp info. */
1371 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1372 ptid_get_pid (inferior_ptid),
1373 0);
1374 thread_change_ptid (inferior_ptid, ptid);
1375
1376 /* Add the initial process as the first LWP to the list. */
1377 lp = add_initial_lwp (ptid);
1378
1379 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1380 &lp->signalled);
1381 if (!WIFSTOPPED (status))
1382 {
1383 if (WIFEXITED (status))
1384 {
1385 int exit_code = WEXITSTATUS (status);
1386
1387 target_terminal_ours ();
1388 target_mourn_inferior ();
1389 if (exit_code == 0)
1390 error (_("Unable to attach: program exited normally."));
1391 else
1392 error (_("Unable to attach: program exited with code %d."),
1393 exit_code);
1394 }
1395 else if (WIFSIGNALED (status))
1396 {
1397 enum gdb_signal signo;
1398
1399 target_terminal_ours ();
1400 target_mourn_inferior ();
1401
1402 signo = gdb_signal_from_host (WTERMSIG (status));
1403 error (_("Unable to attach: program terminated with signal "
1404 "%s, %s."),
1405 gdb_signal_to_name (signo),
1406 gdb_signal_to_string (signo));
1407 }
1408
1409 internal_error (__FILE__, __LINE__,
1410 _("unexpected status %d for PID %ld"),
1411 status, (long) ptid_get_lwp (ptid));
1412 }
1413
1414 lp->stopped = 1;
1415
1416 /* Save the wait status to report later. */
1417 lp->resumed = 1;
1418 if (debug_linux_nat)
1419 fprintf_unfiltered (gdb_stdlog,
1420 "LNA: waitpid %ld, saving status %s\n",
1421 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1422
1423 lp->status = status;
1424
1425 if (target_can_async_p ())
1426 target_async (inferior_event_handler, 0);
1427 }
1428
1429 /* Get pending status of LP. */
1430 static int
1431 get_pending_status (struct lwp_info *lp, int *status)
1432 {
1433 enum gdb_signal signo = GDB_SIGNAL_0;
1434
1435 /* If we paused threads momentarily, we may have stored pending
1436 events in lp->status or lp->waitstatus (see stop_wait_callback),
1437 and GDB core hasn't seen any signal for those threads.
1438 Otherwise, the last signal reported to the core is found in the
1439 thread object's stop_signal.
1440
1441 There's a corner case that isn't handled here at present. Only
1442 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1443 stop_signal make sense as a real signal to pass to the inferior.
1444 Some catchpoint related events, like
1445 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1446 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1447 those traps are debug API (ptrace in our case) related and
1448 induced; the inferior wouldn't see them if it wasn't being
1449 traced. Hence, we should never pass them to the inferior, even
1450 when set to pass state. Since this corner case isn't handled by
1451 infrun.c when proceeding with a signal, for consistency, neither
1452 do we handle it here (or elsewhere in the file we check for
1453 signal pass state). Normally SIGTRAP isn't set to pass state, so
1454 this is really a corner case. */
1455
1456 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1457 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1458 else if (lp->status)
1459 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1460 else if (non_stop && !is_executing (lp->ptid))
1461 {
1462 struct thread_info *tp = find_thread_ptid (lp->ptid);
1463
1464 signo = tp->suspend.stop_signal;
1465 }
1466 else if (!non_stop)
1467 {
1468 struct target_waitstatus last;
1469 ptid_t last_ptid;
1470
1471 get_last_target_status (&last_ptid, &last);
1472
1473 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1474 {
1475 struct thread_info *tp = find_thread_ptid (lp->ptid);
1476
1477 signo = tp->suspend.stop_signal;
1478 }
1479 }
1480
1481 *status = 0;
1482
1483 if (signo == GDB_SIGNAL_0)
1484 {
1485 if (debug_linux_nat)
1486 fprintf_unfiltered (gdb_stdlog,
1487 "GPT: lwp %s has no pending signal\n",
1488 target_pid_to_str (lp->ptid));
1489 }
1490 else if (!signal_pass_state (signo))
1491 {
1492 if (debug_linux_nat)
1493 fprintf_unfiltered (gdb_stdlog,
1494 "GPT: lwp %s had signal %s, "
1495 "but it is in no pass state\n",
1496 target_pid_to_str (lp->ptid),
1497 gdb_signal_to_string (signo));
1498 }
1499 else
1500 {
1501 *status = W_STOPCODE (gdb_signal_to_host (signo));
1502
1503 if (debug_linux_nat)
1504 fprintf_unfiltered (gdb_stdlog,
1505 "GPT: lwp %s has pending signal %s\n",
1506 target_pid_to_str (lp->ptid),
1507 gdb_signal_to_string (signo));
1508 }
1509
1510 return 0;
1511 }
1512
1513 static int
1514 detach_callback (struct lwp_info *lp, void *data)
1515 {
1516 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1517
1518 if (debug_linux_nat && lp->status)
1519 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1520 strsignal (WSTOPSIG (lp->status)),
1521 target_pid_to_str (lp->ptid));
1522
1523 /* If there is a pending SIGSTOP, get rid of it. */
1524 if (lp->signalled)
1525 {
1526 if (debug_linux_nat)
1527 fprintf_unfiltered (gdb_stdlog,
1528 "DC: Sending SIGCONT to %s\n",
1529 target_pid_to_str (lp->ptid));
1530
1531 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1532 lp->signalled = 0;
1533 }
1534
1535 /* We don't actually detach from the LWP that has an id equal to the
1536 overall process id just yet. */
1537 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1538 {
1539 int status = 0;
1540
1541 /* Pass on any pending signal for this LWP. */
1542 get_pending_status (lp, &status);
1543
1544 if (linux_nat_prepare_to_resume != NULL)
1545 linux_nat_prepare_to_resume (lp);
1546 errno = 0;
1547 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1548 WSTOPSIG (status)) < 0)
1549 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1550 safe_strerror (errno));
1551
1552 if (debug_linux_nat)
1553 fprintf_unfiltered (gdb_stdlog,
1554 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1555 target_pid_to_str (lp->ptid),
1556 strsignal (WSTOPSIG (status)));
1557
1558 delete_lwp (lp->ptid);
1559 }
1560
1561 return 0;
1562 }
1563
1564 static void
1565 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1566 {
1567 int pid;
1568 int status;
1569 struct lwp_info *main_lwp;
1570
1571 pid = ptid_get_pid (inferior_ptid);
1572
1573 /* Don't unregister from the event loop, as there may be other
1574 inferiors running. */
1575
1576 /* Stop all threads before detaching. ptrace requires that the
1577 thread is stopped to sucessfully detach. */
1578 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1579 /* ... and wait until all of them have reported back that
1580 they're no longer running. */
1581 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1582
1583 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1584
1585 /* Only the initial process should be left right now. */
1586 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1587
1588 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1589
1590 /* Pass on any pending signal for the last LWP. */
1591 if ((args == NULL || *args == '\0')
1592 && get_pending_status (main_lwp, &status) != -1
1593 && WIFSTOPPED (status))
1594 {
1595 char *tem;
1596
1597 /* Put the signal number in ARGS so that inf_ptrace_detach will
1598 pass it along with PTRACE_DETACH. */
1599 tem = alloca (8);
1600 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1601 args = tem;
1602 if (debug_linux_nat)
1603 fprintf_unfiltered (gdb_stdlog,
1604 "LND: Sending signal %s to %s\n",
1605 args,
1606 target_pid_to_str (main_lwp->ptid));
1607 }
1608
1609 if (linux_nat_prepare_to_resume != NULL)
1610 linux_nat_prepare_to_resume (main_lwp);
1611 delete_lwp (main_lwp->ptid);
1612
1613 if (forks_exist_p ())
1614 {
1615 /* Multi-fork case. The current inferior_ptid is being detached
1616 from, but there are other viable forks to debug. Detach from
1617 the current fork, and context-switch to the first
1618 available. */
1619 linux_fork_detach (args, from_tty);
1620 }
1621 else
1622 linux_ops->to_detach (ops, args, from_tty);
1623 }
1624
1625 /* Resume LP. */
1626
1627 static void
1628 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1629 {
1630 if (lp->stopped)
1631 {
1632 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1633
1634 if (inf->vfork_child != NULL)
1635 {
1636 if (debug_linux_nat)
1637 fprintf_unfiltered (gdb_stdlog,
1638 "RC: Not resuming %s (vfork parent)\n",
1639 target_pid_to_str (lp->ptid));
1640 }
1641 else if (lp->status == 0
1642 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1643 {
1644 if (debug_linux_nat)
1645 fprintf_unfiltered (gdb_stdlog,
1646 "RC: Resuming sibling %s, %s, %s\n",
1647 target_pid_to_str (lp->ptid),
1648 (signo != GDB_SIGNAL_0
1649 ? strsignal (gdb_signal_to_host (signo))
1650 : "0"),
1651 step ? "step" : "resume");
1652
1653 if (linux_nat_prepare_to_resume != NULL)
1654 linux_nat_prepare_to_resume (lp);
1655 linux_ops->to_resume (linux_ops,
1656 pid_to_ptid (ptid_get_lwp (lp->ptid)),
1657 step, signo);
1658 lp->stopped = 0;
1659 lp->step = step;
1660 lp->stopped_by_watchpoint = 0;
1661 }
1662 else
1663 {
1664 if (debug_linux_nat)
1665 fprintf_unfiltered (gdb_stdlog,
1666 "RC: Not resuming sibling %s (has pending)\n",
1667 target_pid_to_str (lp->ptid));
1668 }
1669 }
1670 else
1671 {
1672 if (debug_linux_nat)
1673 fprintf_unfiltered (gdb_stdlog,
1674 "RC: Not resuming sibling %s (not stopped)\n",
1675 target_pid_to_str (lp->ptid));
1676 }
1677 }
1678
1679 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1680 Resume LWP with the last stop signal, if it is in pass state. */
1681
1682 static int
1683 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1684 {
1685 enum gdb_signal signo = GDB_SIGNAL_0;
1686
1687 if (lp == except)
1688 return 0;
1689
1690 if (lp->stopped)
1691 {
1692 struct thread_info *thread;
1693
1694 thread = find_thread_ptid (lp->ptid);
1695 if (thread != NULL)
1696 {
1697 if (signal_pass_state (thread->suspend.stop_signal))
1698 signo = thread->suspend.stop_signal;
1699 thread->suspend.stop_signal = GDB_SIGNAL_0;
1700 }
1701 }
1702
1703 resume_lwp (lp, 0, signo);
1704 return 0;
1705 }
1706
1707 static int
1708 resume_clear_callback (struct lwp_info *lp, void *data)
1709 {
1710 lp->resumed = 0;
1711 lp->last_resume_kind = resume_stop;
1712 return 0;
1713 }
1714
1715 static int
1716 resume_set_callback (struct lwp_info *lp, void *data)
1717 {
1718 lp->resumed = 1;
1719 lp->last_resume_kind = resume_continue;
1720 return 0;
1721 }
1722
1723 static void
1724 linux_nat_resume (struct target_ops *ops,
1725 ptid_t ptid, int step, enum gdb_signal signo)
1726 {
1727 struct lwp_info *lp;
1728 int resume_many;
1729
1730 if (debug_linux_nat)
1731 fprintf_unfiltered (gdb_stdlog,
1732 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1733 step ? "step" : "resume",
1734 target_pid_to_str (ptid),
1735 (signo != GDB_SIGNAL_0
1736 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1737 target_pid_to_str (inferior_ptid));
1738
1739 /* A specific PTID means `step only this process id'. */
1740 resume_many = (ptid_equal (minus_one_ptid, ptid)
1741 || ptid_is_pid (ptid));
1742
1743 /* Mark the lwps we're resuming as resumed. */
1744 iterate_over_lwps (ptid, resume_set_callback, NULL);
1745
1746 /* See if it's the current inferior that should be handled
1747 specially. */
1748 if (resume_many)
1749 lp = find_lwp_pid (inferior_ptid);
1750 else
1751 lp = find_lwp_pid (ptid);
1752 gdb_assert (lp != NULL);
1753
1754 /* Remember if we're stepping. */
1755 lp->step = step;
1756 lp->last_resume_kind = step ? resume_step : resume_continue;
1757
1758 /* If we have a pending wait status for this thread, there is no
1759 point in resuming the process. But first make sure that
1760 linux_nat_wait won't preemptively handle the event - we
1761 should never take this short-circuit if we are going to
1762 leave LP running, since we have skipped resuming all the
1763 other threads. This bit of code needs to be synchronized
1764 with linux_nat_wait. */
1765
1766 if (lp->status && WIFSTOPPED (lp->status))
1767 {
1768 if (!lp->step
1769 && WSTOPSIG (lp->status)
1770 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1771 {
1772 if (debug_linux_nat)
1773 fprintf_unfiltered (gdb_stdlog,
1774 "LLR: Not short circuiting for ignored "
1775 "status 0x%x\n", lp->status);
1776
1777 /* FIXME: What should we do if we are supposed to continue
1778 this thread with a signal? */
1779 gdb_assert (signo == GDB_SIGNAL_0);
1780 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1781 lp->status = 0;
1782 }
1783 }
1784
1785 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1786 {
1787 /* FIXME: What should we do if we are supposed to continue
1788 this thread with a signal? */
1789 gdb_assert (signo == GDB_SIGNAL_0);
1790
1791 if (debug_linux_nat)
1792 fprintf_unfiltered (gdb_stdlog,
1793 "LLR: Short circuiting for status 0x%x\n",
1794 lp->status);
1795
1796 if (target_can_async_p ())
1797 {
1798 target_async (inferior_event_handler, 0);
1799 /* Tell the event loop we have something to process. */
1800 async_file_mark ();
1801 }
1802 return;
1803 }
1804
1805 if (resume_many)
1806 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1807
1808 /* Convert to something the lower layer understands. */
1809 ptid = pid_to_ptid (ptid_get_lwp (lp->ptid));
1810
1811 if (linux_nat_prepare_to_resume != NULL)
1812 linux_nat_prepare_to_resume (lp);
1813 linux_ops->to_resume (linux_ops, ptid, step, signo);
1814 lp->stopped_by_watchpoint = 0;
1815 lp->stopped = 0;
1816
1817 if (debug_linux_nat)
1818 fprintf_unfiltered (gdb_stdlog,
1819 "LLR: %s %s, %s (resume event thread)\n",
1820 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1821 target_pid_to_str (ptid),
1822 (signo != GDB_SIGNAL_0
1823 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1824
1825 if (target_can_async_p ())
1826 target_async (inferior_event_handler, 0);
1827 }
1828
1829 /* Send a signal to an LWP. */
1830
1831 static int
1832 kill_lwp (int lwpid, int signo)
1833 {
1834 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1835 fails, then we are not using nptl threads and we should be using kill. */
1836
1837 #ifdef HAVE_TKILL_SYSCALL
1838 {
1839 static int tkill_failed;
1840
1841 if (!tkill_failed)
1842 {
1843 int ret;
1844
1845 errno = 0;
1846 ret = syscall (__NR_tkill, lwpid, signo);
1847 if (errno != ENOSYS)
1848 return ret;
1849 tkill_failed = 1;
1850 }
1851 }
1852 #endif
1853
1854 return kill (lwpid, signo);
1855 }
1856
1857 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1858 event, check if the core is interested in it: if not, ignore the
1859 event, and keep waiting; otherwise, we need to toggle the LWP's
1860 syscall entry/exit status, since the ptrace event itself doesn't
1861 indicate it, and report the trap to higher layers. */
1862
1863 static int
1864 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1865 {
1866 struct target_waitstatus *ourstatus = &lp->waitstatus;
1867 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1868 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1869
1870 if (stopping)
1871 {
1872 /* If we're stopping threads, there's a SIGSTOP pending, which
1873 makes it so that the LWP reports an immediate syscall return,
1874 followed by the SIGSTOP. Skip seeing that "return" using
1875 PTRACE_CONT directly, and let stop_wait_callback collect the
1876 SIGSTOP. Later when the thread is resumed, a new syscall
1877 entry event. If we didn't do this (and returned 0), we'd
1878 leave a syscall entry pending, and our caller, by using
1879 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1880 itself. Later, when the user re-resumes this LWP, we'd see
1881 another syscall entry event and we'd mistake it for a return.
1882
1883 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1884 (leaving immediately with LWP->signalled set, without issuing
1885 a PTRACE_CONT), it would still be problematic to leave this
1886 syscall enter pending, as later when the thread is resumed,
1887 it would then see the same syscall exit mentioned above,
1888 followed by the delayed SIGSTOP, while the syscall didn't
1889 actually get to execute. It seems it would be even more
1890 confusing to the user. */
1891
1892 if (debug_linux_nat)
1893 fprintf_unfiltered (gdb_stdlog,
1894 "LHST: ignoring syscall %d "
1895 "for LWP %ld (stopping threads), "
1896 "resuming with PTRACE_CONT for SIGSTOP\n",
1897 syscall_number,
1898 ptid_get_lwp (lp->ptid));
1899
1900 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1901 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1902 lp->stopped = 0;
1903 return 1;
1904 }
1905
1906 if (catch_syscall_enabled ())
1907 {
1908 /* Always update the entry/return state, even if this particular
1909 syscall isn't interesting to the core now. In async mode,
1910 the user could install a new catchpoint for this syscall
1911 between syscall enter/return, and we'll need to know to
1912 report a syscall return if that happens. */
1913 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1914 ? TARGET_WAITKIND_SYSCALL_RETURN
1915 : TARGET_WAITKIND_SYSCALL_ENTRY);
1916
1917 if (catching_syscall_number (syscall_number))
1918 {
1919 /* Alright, an event to report. */
1920 ourstatus->kind = lp->syscall_state;
1921 ourstatus->value.syscall_number = syscall_number;
1922
1923 if (debug_linux_nat)
1924 fprintf_unfiltered (gdb_stdlog,
1925 "LHST: stopping for %s of syscall %d"
1926 " for LWP %ld\n",
1927 lp->syscall_state
1928 == TARGET_WAITKIND_SYSCALL_ENTRY
1929 ? "entry" : "return",
1930 syscall_number,
1931 ptid_get_lwp (lp->ptid));
1932 return 0;
1933 }
1934
1935 if (debug_linux_nat)
1936 fprintf_unfiltered (gdb_stdlog,
1937 "LHST: ignoring %s of syscall %d "
1938 "for LWP %ld\n",
1939 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1940 ? "entry" : "return",
1941 syscall_number,
1942 ptid_get_lwp (lp->ptid));
1943 }
1944 else
1945 {
1946 /* If we had been syscall tracing, and hence used PT_SYSCALL
1947 before on this LWP, it could happen that the user removes all
1948 syscall catchpoints before we get to process this event.
1949 There are two noteworthy issues here:
1950
1951 - When stopped at a syscall entry event, resuming with
1952 PT_STEP still resumes executing the syscall and reports a
1953 syscall return.
1954
1955 - Only PT_SYSCALL catches syscall enters. If we last
1956 single-stepped this thread, then this event can't be a
1957 syscall enter. If we last single-stepped this thread, this
1958 has to be a syscall exit.
1959
1960 The points above mean that the next resume, be it PT_STEP or
1961 PT_CONTINUE, can not trigger a syscall trace event. */
1962 if (debug_linux_nat)
1963 fprintf_unfiltered (gdb_stdlog,
1964 "LHST: caught syscall event "
1965 "with no syscall catchpoints."
1966 " %d for LWP %ld, ignoring\n",
1967 syscall_number,
1968 ptid_get_lwp (lp->ptid));
1969 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1970 }
1971
1972 /* The core isn't interested in this event. For efficiency, avoid
1973 stopping all threads only to have the core resume them all again.
1974 Since we're not stopping threads, if we're still syscall tracing
1975 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1976 subsequent syscall. Simply resume using the inf-ptrace layer,
1977 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1978
1979 /* Note that gdbarch_get_syscall_number may access registers, hence
1980 fill a regcache. */
1981 registers_changed ();
1982 if (linux_nat_prepare_to_resume != NULL)
1983 linux_nat_prepare_to_resume (lp);
1984 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
1985 lp->step, GDB_SIGNAL_0);
1986 lp->stopped = 0;
1987 return 1;
1988 }
1989
1990 /* Handle a GNU/Linux extended wait response. If we see a clone
1991 event, we need to add the new LWP to our list (and not report the
1992 trap to higher layers). This function returns non-zero if the
1993 event should be ignored and we should wait again. If STOPPING is
1994 true, the new LWP remains stopped, otherwise it is continued. */
1995
1996 static int
1997 linux_handle_extended_wait (struct lwp_info *lp, int status,
1998 int stopping)
1999 {
2000 int pid = ptid_get_lwp (lp->ptid);
2001 struct target_waitstatus *ourstatus = &lp->waitstatus;
2002 int event = status >> 16;
2003
2004 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2005 || event == PTRACE_EVENT_CLONE)
2006 {
2007 unsigned long new_pid;
2008 int ret;
2009
2010 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2011
2012 /* If we haven't already seen the new PID stop, wait for it now. */
2013 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2014 {
2015 /* The new child has a pending SIGSTOP. We can't affect it until it
2016 hits the SIGSTOP, but we're already attached. */
2017 ret = my_waitpid (new_pid, &status,
2018 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2019 if (ret == -1)
2020 perror_with_name (_("waiting for new child"));
2021 else if (ret != new_pid)
2022 internal_error (__FILE__, __LINE__,
2023 _("wait returned unexpected PID %d"), ret);
2024 else if (!WIFSTOPPED (status))
2025 internal_error (__FILE__, __LINE__,
2026 _("wait returned unexpected status 0x%x"), status);
2027 }
2028
2029 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2030
2031 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2032 {
2033 /* The arch-specific native code may need to know about new
2034 forks even if those end up never mapped to an
2035 inferior. */
2036 if (linux_nat_new_fork != NULL)
2037 linux_nat_new_fork (lp, new_pid);
2038 }
2039
2040 if (event == PTRACE_EVENT_FORK
2041 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2042 {
2043 /* Handle checkpointing by linux-fork.c here as a special
2044 case. We don't want the follow-fork-mode or 'catch fork'
2045 to interfere with this. */
2046
2047 /* This won't actually modify the breakpoint list, but will
2048 physically remove the breakpoints from the child. */
2049 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2050
2051 /* Retain child fork in ptrace (stopped) state. */
2052 if (!find_fork_pid (new_pid))
2053 add_fork (new_pid);
2054
2055 /* Report as spurious, so that infrun doesn't want to follow
2056 this fork. We're actually doing an infcall in
2057 linux-fork.c. */
2058 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2059
2060 /* Report the stop to the core. */
2061 return 0;
2062 }
2063
2064 if (event == PTRACE_EVENT_FORK)
2065 ourstatus->kind = TARGET_WAITKIND_FORKED;
2066 else if (event == PTRACE_EVENT_VFORK)
2067 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2068 else
2069 {
2070 struct lwp_info *new_lp;
2071
2072 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2073
2074 if (debug_linux_nat)
2075 fprintf_unfiltered (gdb_stdlog,
2076 "LHEW: Got clone event "
2077 "from LWP %d, new child is LWP %ld\n",
2078 pid, new_pid);
2079
2080 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2081 new_lp->cloned = 1;
2082 new_lp->stopped = 1;
2083
2084 if (WSTOPSIG (status) != SIGSTOP)
2085 {
2086 /* This can happen if someone starts sending signals to
2087 the new thread before it gets a chance to run, which
2088 have a lower number than SIGSTOP (e.g. SIGUSR1).
2089 This is an unlikely case, and harder to handle for
2090 fork / vfork than for clone, so we do not try - but
2091 we handle it for clone events here. We'll send
2092 the other signal on to the thread below. */
2093
2094 new_lp->signalled = 1;
2095 }
2096 else
2097 {
2098 struct thread_info *tp;
2099
2100 /* When we stop for an event in some other thread, and
2101 pull the thread list just as this thread has cloned,
2102 we'll have seen the new thread in the thread_db list
2103 before handling the CLONE event (glibc's
2104 pthread_create adds the new thread to the thread list
2105 before clone'ing, and has the kernel fill in the
2106 thread's tid on the clone call with
2107 CLONE_PARENT_SETTID). If that happened, and the core
2108 had requested the new thread to stop, we'll have
2109 killed it with SIGSTOP. But since SIGSTOP is not an
2110 RT signal, it can only be queued once. We need to be
2111 careful to not resume the LWP if we wanted it to
2112 stop. In that case, we'll leave the SIGSTOP pending.
2113 It will later be reported as GDB_SIGNAL_0. */
2114 tp = find_thread_ptid (new_lp->ptid);
2115 if (tp != NULL && tp->stop_requested)
2116 new_lp->last_resume_kind = resume_stop;
2117 else
2118 status = 0;
2119 }
2120
2121 if (non_stop)
2122 {
2123 /* Add the new thread to GDB's lists as soon as possible
2124 so that:
2125
2126 1) the frontend doesn't have to wait for a stop to
2127 display them, and,
2128
2129 2) we tag it with the correct running state. */
2130
2131 /* If the thread_db layer is active, let it know about
2132 this new thread, and add it to GDB's list. */
2133 if (!thread_db_attach_lwp (new_lp->ptid))
2134 {
2135 /* We're not using thread_db. Add it to GDB's
2136 list. */
2137 target_post_attach (ptid_get_lwp (new_lp->ptid));
2138 add_thread (new_lp->ptid);
2139 }
2140
2141 if (!stopping)
2142 {
2143 set_running (new_lp->ptid, 1);
2144 set_executing (new_lp->ptid, 1);
2145 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2146 resume_stop. */
2147 new_lp->last_resume_kind = resume_continue;
2148 }
2149 }
2150
2151 if (status != 0)
2152 {
2153 /* We created NEW_LP so it cannot yet contain STATUS. */
2154 gdb_assert (new_lp->status == 0);
2155
2156 /* Save the wait status to report later. */
2157 if (debug_linux_nat)
2158 fprintf_unfiltered (gdb_stdlog,
2159 "LHEW: waitpid of new LWP %ld, "
2160 "saving status %s\n",
2161 (long) ptid_get_lwp (new_lp->ptid),
2162 status_to_str (status));
2163 new_lp->status = status;
2164 }
2165
2166 /* Note the need to use the low target ops to resume, to
2167 handle resuming with PT_SYSCALL if we have syscall
2168 catchpoints. */
2169 if (!stopping)
2170 {
2171 new_lp->resumed = 1;
2172
2173 if (status == 0)
2174 {
2175 gdb_assert (new_lp->last_resume_kind == resume_continue);
2176 if (debug_linux_nat)
2177 fprintf_unfiltered (gdb_stdlog,
2178 "LHEW: resuming new LWP %ld\n",
2179 ptid_get_lwp (new_lp->ptid));
2180 if (linux_nat_prepare_to_resume != NULL)
2181 linux_nat_prepare_to_resume (new_lp);
2182 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2183 0, GDB_SIGNAL_0);
2184 new_lp->stopped = 0;
2185 }
2186 }
2187
2188 if (debug_linux_nat)
2189 fprintf_unfiltered (gdb_stdlog,
2190 "LHEW: resuming parent LWP %d\n", pid);
2191 if (linux_nat_prepare_to_resume != NULL)
2192 linux_nat_prepare_to_resume (lp);
2193 linux_ops->to_resume (linux_ops,
2194 pid_to_ptid (ptid_get_lwp (lp->ptid)),
2195 0, GDB_SIGNAL_0);
2196 lp->stopped = 0;
2197 return 1;
2198 }
2199
2200 return 0;
2201 }
2202
2203 if (event == PTRACE_EVENT_EXEC)
2204 {
2205 if (debug_linux_nat)
2206 fprintf_unfiltered (gdb_stdlog,
2207 "LHEW: Got exec event from LWP %ld\n",
2208 ptid_get_lwp (lp->ptid));
2209
2210 ourstatus->kind = TARGET_WAITKIND_EXECD;
2211 ourstatus->value.execd_pathname
2212 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2213
2214 return 0;
2215 }
2216
2217 if (event == PTRACE_EVENT_VFORK_DONE)
2218 {
2219 if (current_inferior ()->waiting_for_vfork_done)
2220 {
2221 if (debug_linux_nat)
2222 fprintf_unfiltered (gdb_stdlog,
2223 "LHEW: Got expected PTRACE_EVENT_"
2224 "VFORK_DONE from LWP %ld: stopping\n",
2225 ptid_get_lwp (lp->ptid));
2226
2227 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2228 return 0;
2229 }
2230
2231 if (debug_linux_nat)
2232 fprintf_unfiltered (gdb_stdlog,
2233 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2234 "from LWP %ld: resuming\n",
2235 ptid_get_lwp (lp->ptid));
2236 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2237 return 1;
2238 }
2239
2240 internal_error (__FILE__, __LINE__,
2241 _("unknown ptrace event %d"), event);
2242 }
2243
2244 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2245 exited. */
2246
2247 static int
2248 wait_lwp (struct lwp_info *lp)
2249 {
2250 pid_t pid;
2251 int status = 0;
2252 int thread_dead = 0;
2253 sigset_t prev_mask;
2254
2255 gdb_assert (!lp->stopped);
2256 gdb_assert (lp->status == 0);
2257
2258 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2259 block_child_signals (&prev_mask);
2260
2261 for (;;)
2262 {
2263 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2264 was right and we should just call sigsuspend. */
2265
2266 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2267 if (pid == -1 && errno == ECHILD)
2268 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2269 if (pid == -1 && errno == ECHILD)
2270 {
2271 /* The thread has previously exited. We need to delete it
2272 now because, for some vendor 2.4 kernels with NPTL
2273 support backported, there won't be an exit event unless
2274 it is the main thread. 2.6 kernels will report an exit
2275 event for each thread that exits, as expected. */
2276 thread_dead = 1;
2277 if (debug_linux_nat)
2278 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2279 target_pid_to_str (lp->ptid));
2280 }
2281 if (pid != 0)
2282 break;
2283
2284 /* Bugs 10970, 12702.
2285 Thread group leader may have exited in which case we'll lock up in
2286 waitpid if there are other threads, even if they are all zombies too.
2287 Basically, we're not supposed to use waitpid this way.
2288 __WCLONE is not applicable for the leader so we can't use that.
2289 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2290 process; it gets ESRCH both for the zombie and for running processes.
2291
2292 As a workaround, check if we're waiting for the thread group leader and
2293 if it's a zombie, and avoid calling waitpid if it is.
2294
2295 This is racy, what if the tgl becomes a zombie right after we check?
2296 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2297 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2298
2299 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2300 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2301 {
2302 thread_dead = 1;
2303 if (debug_linux_nat)
2304 fprintf_unfiltered (gdb_stdlog,
2305 "WL: Thread group leader %s vanished.\n",
2306 target_pid_to_str (lp->ptid));
2307 break;
2308 }
2309
2310 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2311 get invoked despite our caller had them intentionally blocked by
2312 block_child_signals. This is sensitive only to the loop of
2313 linux_nat_wait_1 and there if we get called my_waitpid gets called
2314 again before it gets to sigsuspend so we can safely let the handlers
2315 get executed here. */
2316
2317 sigsuspend (&suspend_mask);
2318 }
2319
2320 restore_child_signals_mask (&prev_mask);
2321
2322 if (!thread_dead)
2323 {
2324 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2325
2326 if (debug_linux_nat)
2327 {
2328 fprintf_unfiltered (gdb_stdlog,
2329 "WL: waitpid %s received %s\n",
2330 target_pid_to_str (lp->ptid),
2331 status_to_str (status));
2332 }
2333
2334 /* Check if the thread has exited. */
2335 if (WIFEXITED (status) || WIFSIGNALED (status))
2336 {
2337 thread_dead = 1;
2338 if (debug_linux_nat)
2339 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2340 target_pid_to_str (lp->ptid));
2341 }
2342 }
2343
2344 if (thread_dead)
2345 {
2346 exit_lwp (lp);
2347 return 0;
2348 }
2349
2350 gdb_assert (WIFSTOPPED (status));
2351 lp->stopped = 1;
2352
2353 /* Handle GNU/Linux's syscall SIGTRAPs. */
2354 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2355 {
2356 /* No longer need the sysgood bit. The ptrace event ends up
2357 recorded in lp->waitstatus if we care for it. We can carry
2358 on handling the event like a regular SIGTRAP from here
2359 on. */
2360 status = W_STOPCODE (SIGTRAP);
2361 if (linux_handle_syscall_trap (lp, 1))
2362 return wait_lwp (lp);
2363 }
2364
2365 /* Handle GNU/Linux's extended waitstatus for trace events. */
2366 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2367 {
2368 if (debug_linux_nat)
2369 fprintf_unfiltered (gdb_stdlog,
2370 "WL: Handling extended status 0x%06x\n",
2371 status);
2372 if (linux_handle_extended_wait (lp, status, 1))
2373 return wait_lwp (lp);
2374 }
2375
2376 return status;
2377 }
2378
2379 /* Send a SIGSTOP to LP. */
2380
2381 static int
2382 stop_callback (struct lwp_info *lp, void *data)
2383 {
2384 if (!lp->stopped && !lp->signalled)
2385 {
2386 int ret;
2387
2388 if (debug_linux_nat)
2389 {
2390 fprintf_unfiltered (gdb_stdlog,
2391 "SC: kill %s **<SIGSTOP>**\n",
2392 target_pid_to_str (lp->ptid));
2393 }
2394 errno = 0;
2395 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2396 if (debug_linux_nat)
2397 {
2398 fprintf_unfiltered (gdb_stdlog,
2399 "SC: lwp kill %d %s\n",
2400 ret,
2401 errno ? safe_strerror (errno) : "ERRNO-OK");
2402 }
2403
2404 lp->signalled = 1;
2405 gdb_assert (lp->status == 0);
2406 }
2407
2408 return 0;
2409 }
2410
2411 /* Request a stop on LWP. */
2412
2413 void
2414 linux_stop_lwp (struct lwp_info *lwp)
2415 {
2416 stop_callback (lwp, NULL);
2417 }
2418
2419 /* Return non-zero if LWP PID has a pending SIGINT. */
2420
2421 static int
2422 linux_nat_has_pending_sigint (int pid)
2423 {
2424 sigset_t pending, blocked, ignored;
2425
2426 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2427
2428 if (sigismember (&pending, SIGINT)
2429 && !sigismember (&ignored, SIGINT))
2430 return 1;
2431
2432 return 0;
2433 }
2434
2435 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2436
2437 static int
2438 set_ignore_sigint (struct lwp_info *lp, void *data)
2439 {
2440 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2441 flag to consume the next one. */
2442 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2443 && WSTOPSIG (lp->status) == SIGINT)
2444 lp->status = 0;
2445 else
2446 lp->ignore_sigint = 1;
2447
2448 return 0;
2449 }
2450
2451 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2452 This function is called after we know the LWP has stopped; if the LWP
2453 stopped before the expected SIGINT was delivered, then it will never have
2454 arrived. Also, if the signal was delivered to a shared queue and consumed
2455 by a different thread, it will never be delivered to this LWP. */
2456
2457 static void
2458 maybe_clear_ignore_sigint (struct lwp_info *lp)
2459 {
2460 if (!lp->ignore_sigint)
2461 return;
2462
2463 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2464 {
2465 if (debug_linux_nat)
2466 fprintf_unfiltered (gdb_stdlog,
2467 "MCIS: Clearing bogus flag for %s\n",
2468 target_pid_to_str (lp->ptid));
2469 lp->ignore_sigint = 0;
2470 }
2471 }
2472
2473 /* Fetch the possible triggered data watchpoint info and store it in
2474 LP.
2475
2476 On some archs, like x86, that use debug registers to set
2477 watchpoints, it's possible that the way to know which watched
2478 address trapped, is to check the register that is used to select
2479 which address to watch. Problem is, between setting the watchpoint
2480 and reading back which data address trapped, the user may change
2481 the set of watchpoints, and, as a consequence, GDB changes the
2482 debug registers in the inferior. To avoid reading back a stale
2483 stopped-data-address when that happens, we cache in LP the fact
2484 that a watchpoint trapped, and the corresponding data address, as
2485 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2486 registers meanwhile, we have the cached data we can rely on. */
2487
2488 static void
2489 save_sigtrap (struct lwp_info *lp)
2490 {
2491 struct cleanup *old_chain;
2492
2493 if (linux_ops->to_stopped_by_watchpoint == NULL)
2494 {
2495 lp->stopped_by_watchpoint = 0;
2496 return;
2497 }
2498
2499 old_chain = save_inferior_ptid ();
2500 inferior_ptid = lp->ptid;
2501
2502 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint (linux_ops);
2503
2504 if (lp->stopped_by_watchpoint)
2505 {
2506 if (linux_ops->to_stopped_data_address != NULL)
2507 lp->stopped_data_address_p =
2508 linux_ops->to_stopped_data_address (&current_target,
2509 &lp->stopped_data_address);
2510 else
2511 lp->stopped_data_address_p = 0;
2512 }
2513
2514 do_cleanups (old_chain);
2515 }
2516
2517 /* See save_sigtrap. */
2518
2519 static int
2520 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2521 {
2522 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2523
2524 gdb_assert (lp != NULL);
2525
2526 return lp->stopped_by_watchpoint;
2527 }
2528
2529 static int
2530 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2531 {
2532 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2533
2534 gdb_assert (lp != NULL);
2535
2536 *addr_p = lp->stopped_data_address;
2537
2538 return lp->stopped_data_address_p;
2539 }
2540
2541 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2542
2543 static int
2544 sigtrap_is_event (int status)
2545 {
2546 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2547 }
2548
2549 /* SIGTRAP-like events recognizer. */
2550
2551 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2552
2553 /* Check for SIGTRAP-like events in LP. */
2554
2555 static int
2556 linux_nat_lp_status_is_event (struct lwp_info *lp)
2557 {
2558 /* We check for lp->waitstatus in addition to lp->status, because we can
2559 have pending process exits recorded in lp->status
2560 and W_EXITCODE(0,0) == 0. We should probably have an additional
2561 lp->status_p flag. */
2562
2563 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2564 && linux_nat_status_is_event (lp->status));
2565 }
2566
2567 /* Set alternative SIGTRAP-like events recognizer. If
2568 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2569 applied. */
2570
2571 void
2572 linux_nat_set_status_is_event (struct target_ops *t,
2573 int (*status_is_event) (int status))
2574 {
2575 linux_nat_status_is_event = status_is_event;
2576 }
2577
2578 /* Wait until LP is stopped. */
2579
2580 static int
2581 stop_wait_callback (struct lwp_info *lp, void *data)
2582 {
2583 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2584
2585 /* If this is a vfork parent, bail out, it is not going to report
2586 any SIGSTOP until the vfork is done with. */
2587 if (inf->vfork_child != NULL)
2588 return 0;
2589
2590 if (!lp->stopped)
2591 {
2592 int status;
2593
2594 status = wait_lwp (lp);
2595 if (status == 0)
2596 return 0;
2597
2598 if (lp->ignore_sigint && WIFSTOPPED (status)
2599 && WSTOPSIG (status) == SIGINT)
2600 {
2601 lp->ignore_sigint = 0;
2602
2603 errno = 0;
2604 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2605 lp->stopped = 0;
2606 if (debug_linux_nat)
2607 fprintf_unfiltered (gdb_stdlog,
2608 "PTRACE_CONT %s, 0, 0 (%s) "
2609 "(discarding SIGINT)\n",
2610 target_pid_to_str (lp->ptid),
2611 errno ? safe_strerror (errno) : "OK");
2612
2613 return stop_wait_callback (lp, NULL);
2614 }
2615
2616 maybe_clear_ignore_sigint (lp);
2617
2618 if (WSTOPSIG (status) != SIGSTOP)
2619 {
2620 /* The thread was stopped with a signal other than SIGSTOP. */
2621
2622 save_sigtrap (lp);
2623
2624 if (debug_linux_nat)
2625 fprintf_unfiltered (gdb_stdlog,
2626 "SWC: Pending event %s in %s\n",
2627 status_to_str ((int) status),
2628 target_pid_to_str (lp->ptid));
2629
2630 /* Save the sigtrap event. */
2631 lp->status = status;
2632 gdb_assert (lp->signalled);
2633 }
2634 else
2635 {
2636 /* We caught the SIGSTOP that we intended to catch, so
2637 there's no SIGSTOP pending. */
2638
2639 if (debug_linux_nat)
2640 fprintf_unfiltered (gdb_stdlog,
2641 "SWC: Delayed SIGSTOP caught for %s.\n",
2642 target_pid_to_str (lp->ptid));
2643
2644 /* Reset SIGNALLED only after the stop_wait_callback call
2645 above as it does gdb_assert on SIGNALLED. */
2646 lp->signalled = 0;
2647 }
2648 }
2649
2650 return 0;
2651 }
2652
2653 /* Return non-zero if LP has a wait status pending. */
2654
2655 static int
2656 status_callback (struct lwp_info *lp, void *data)
2657 {
2658 /* Only report a pending wait status if we pretend that this has
2659 indeed been resumed. */
2660 if (!lp->resumed)
2661 return 0;
2662
2663 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2664 {
2665 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2666 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2667 0', so a clean process exit can not be stored pending in
2668 lp->status, it is indistinguishable from
2669 no-pending-status. */
2670 return 1;
2671 }
2672
2673 if (lp->status != 0)
2674 return 1;
2675
2676 return 0;
2677 }
2678
2679 /* Return non-zero if LP isn't stopped. */
2680
2681 static int
2682 running_callback (struct lwp_info *lp, void *data)
2683 {
2684 return (!lp->stopped
2685 || ((lp->status != 0
2686 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2687 && lp->resumed));
2688 }
2689
2690 /* Count the LWP's that have had events. */
2691
2692 static int
2693 count_events_callback (struct lwp_info *lp, void *data)
2694 {
2695 int *count = data;
2696
2697 gdb_assert (count != NULL);
2698
2699 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2700 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2701 (*count)++;
2702
2703 return 0;
2704 }
2705
2706 /* Select the LWP (if any) that is currently being single-stepped. */
2707
2708 static int
2709 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2710 {
2711 if (lp->last_resume_kind == resume_step
2712 && lp->status != 0)
2713 return 1;
2714 else
2715 return 0;
2716 }
2717
2718 /* Select the Nth LWP that has had a SIGTRAP event. */
2719
2720 static int
2721 select_event_lwp_callback (struct lwp_info *lp, void *data)
2722 {
2723 int *selector = data;
2724
2725 gdb_assert (selector != NULL);
2726
2727 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2728 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2729 if ((*selector)-- == 0)
2730 return 1;
2731
2732 return 0;
2733 }
2734
2735 static int
2736 cancel_breakpoint (struct lwp_info *lp)
2737 {
2738 /* Arrange for a breakpoint to be hit again later. We don't keep
2739 the SIGTRAP status and don't forward the SIGTRAP signal to the
2740 LWP. We will handle the current event, eventually we will resume
2741 this LWP, and this breakpoint will trap again.
2742
2743 If we do not do this, then we run the risk that the user will
2744 delete or disable the breakpoint, but the LWP will have already
2745 tripped on it. */
2746
2747 struct regcache *regcache = get_thread_regcache (lp->ptid);
2748 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2749 CORE_ADDR pc;
2750
2751 pc = regcache_read_pc (regcache) - target_decr_pc_after_break (gdbarch);
2752 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2753 {
2754 if (debug_linux_nat)
2755 fprintf_unfiltered (gdb_stdlog,
2756 "CB: Push back breakpoint for %s\n",
2757 target_pid_to_str (lp->ptid));
2758
2759 /* Back up the PC if necessary. */
2760 if (target_decr_pc_after_break (gdbarch))
2761 regcache_write_pc (regcache, pc);
2762
2763 return 1;
2764 }
2765 return 0;
2766 }
2767
2768 static int
2769 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2770 {
2771 struct lwp_info *event_lp = data;
2772
2773 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2774 if (lp == event_lp)
2775 return 0;
2776
2777 /* If a LWP other than the LWP that we're reporting an event for has
2778 hit a GDB breakpoint (as opposed to some random trap signal),
2779 then just arrange for it to hit it again later. We don't keep
2780 the SIGTRAP status and don't forward the SIGTRAP signal to the
2781 LWP. We will handle the current event, eventually we will resume
2782 all LWPs, and this one will get its breakpoint trap again.
2783
2784 If we do not do this, then we run the risk that the user will
2785 delete or disable the breakpoint, but the LWP will have already
2786 tripped on it. */
2787
2788 if (linux_nat_lp_status_is_event (lp)
2789 && cancel_breakpoint (lp))
2790 /* Throw away the SIGTRAP. */
2791 lp->status = 0;
2792
2793 return 0;
2794 }
2795
2796 /* Select one LWP out of those that have events pending. */
2797
2798 static void
2799 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2800 {
2801 int num_events = 0;
2802 int random_selector;
2803 struct lwp_info *event_lp;
2804
2805 /* Record the wait status for the original LWP. */
2806 (*orig_lp)->status = *status;
2807
2808 /* Give preference to any LWP that is being single-stepped. */
2809 event_lp = iterate_over_lwps (filter,
2810 select_singlestep_lwp_callback, NULL);
2811 if (event_lp != NULL)
2812 {
2813 if (debug_linux_nat)
2814 fprintf_unfiltered (gdb_stdlog,
2815 "SEL: Select single-step %s\n",
2816 target_pid_to_str (event_lp->ptid));
2817 }
2818 else
2819 {
2820 /* No single-stepping LWP. Select one at random, out of those
2821 which have had SIGTRAP events. */
2822
2823 /* First see how many SIGTRAP events we have. */
2824 iterate_over_lwps (filter, count_events_callback, &num_events);
2825
2826 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2827 random_selector = (int)
2828 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2829
2830 if (debug_linux_nat && num_events > 1)
2831 fprintf_unfiltered (gdb_stdlog,
2832 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2833 num_events, random_selector);
2834
2835 event_lp = iterate_over_lwps (filter,
2836 select_event_lwp_callback,
2837 &random_selector);
2838 }
2839
2840 if (event_lp != NULL)
2841 {
2842 /* Switch the event LWP. */
2843 *orig_lp = event_lp;
2844 *status = event_lp->status;
2845 }
2846
2847 /* Flush the wait status for the event LWP. */
2848 (*orig_lp)->status = 0;
2849 }
2850
2851 /* Return non-zero if LP has been resumed. */
2852
2853 static int
2854 resumed_callback (struct lwp_info *lp, void *data)
2855 {
2856 return lp->resumed;
2857 }
2858
2859 /* Stop an active thread, verify it still exists, then resume it. If
2860 the thread ends up with a pending status, then it is not resumed,
2861 and *DATA (really a pointer to int), is set. */
2862
2863 static int
2864 stop_and_resume_callback (struct lwp_info *lp, void *data)
2865 {
2866 int *new_pending_p = data;
2867
2868 if (!lp->stopped)
2869 {
2870 ptid_t ptid = lp->ptid;
2871
2872 stop_callback (lp, NULL);
2873 stop_wait_callback (lp, NULL);
2874
2875 /* Resume if the lwp still exists, and the core wanted it
2876 running. */
2877 lp = find_lwp_pid (ptid);
2878 if (lp != NULL)
2879 {
2880 if (lp->last_resume_kind == resume_stop
2881 && lp->status == 0)
2882 {
2883 /* The core wanted the LWP to stop. Even if it stopped
2884 cleanly (with SIGSTOP), leave the event pending. */
2885 if (debug_linux_nat)
2886 fprintf_unfiltered (gdb_stdlog,
2887 "SARC: core wanted LWP %ld stopped "
2888 "(leaving SIGSTOP pending)\n",
2889 ptid_get_lwp (lp->ptid));
2890 lp->status = W_STOPCODE (SIGSTOP);
2891 }
2892
2893 if (lp->status == 0)
2894 {
2895 if (debug_linux_nat)
2896 fprintf_unfiltered (gdb_stdlog,
2897 "SARC: re-resuming LWP %ld\n",
2898 ptid_get_lwp (lp->ptid));
2899 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
2900 }
2901 else
2902 {
2903 if (debug_linux_nat)
2904 fprintf_unfiltered (gdb_stdlog,
2905 "SARC: not re-resuming LWP %ld "
2906 "(has pending)\n",
2907 ptid_get_lwp (lp->ptid));
2908 if (new_pending_p)
2909 *new_pending_p = 1;
2910 }
2911 }
2912 }
2913 return 0;
2914 }
2915
2916 /* Check if we should go on and pass this event to common code.
2917 Return the affected lwp if we are, or NULL otherwise. If we stop
2918 all lwps temporarily, we may end up with new pending events in some
2919 other lwp. In that case set *NEW_PENDING_P to true. */
2920
2921 static struct lwp_info *
2922 linux_nat_filter_event (int lwpid, int status, int *new_pending_p)
2923 {
2924 struct lwp_info *lp;
2925
2926 *new_pending_p = 0;
2927
2928 lp = find_lwp_pid (pid_to_ptid (lwpid));
2929
2930 /* Check for stop events reported by a process we didn't already
2931 know about - anything not already in our LWP list.
2932
2933 If we're expecting to receive stopped processes after
2934 fork, vfork, and clone events, then we'll just add the
2935 new one to our list and go back to waiting for the event
2936 to be reported - the stopped process might be returned
2937 from waitpid before or after the event is.
2938
2939 But note the case of a non-leader thread exec'ing after the
2940 leader having exited, and gone from our lists. The non-leader
2941 thread changes its tid to the tgid. */
2942
2943 if (WIFSTOPPED (status) && lp == NULL
2944 && (WSTOPSIG (status) == SIGTRAP && status >> 16 == PTRACE_EVENT_EXEC))
2945 {
2946 /* A multi-thread exec after we had seen the leader exiting. */
2947 if (debug_linux_nat)
2948 fprintf_unfiltered (gdb_stdlog,
2949 "LLW: Re-adding thread group leader LWP %d.\n",
2950 lwpid);
2951
2952 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2953 lp->stopped = 1;
2954 lp->resumed = 1;
2955 add_thread (lp->ptid);
2956 }
2957
2958 if (WIFSTOPPED (status) && !lp)
2959 {
2960 add_to_pid_list (&stopped_pids, lwpid, status);
2961 return NULL;
2962 }
2963
2964 /* Make sure we don't report an event for the exit of an LWP not in
2965 our list, i.e. not part of the current process. This can happen
2966 if we detach from a program we originally forked and then it
2967 exits. */
2968 if (!WIFSTOPPED (status) && !lp)
2969 return NULL;
2970
2971 /* This LWP is stopped now. (And if dead, this prevents it from
2972 ever being continued.) */
2973 lp->stopped = 1;
2974
2975 /* Handle GNU/Linux's syscall SIGTRAPs. */
2976 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2977 {
2978 /* No longer need the sysgood bit. The ptrace event ends up
2979 recorded in lp->waitstatus if we care for it. We can carry
2980 on handling the event like a regular SIGTRAP from here
2981 on. */
2982 status = W_STOPCODE (SIGTRAP);
2983 if (linux_handle_syscall_trap (lp, 0))
2984 return NULL;
2985 }
2986
2987 /* Handle GNU/Linux's extended waitstatus for trace events. */
2988 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2989 {
2990 if (debug_linux_nat)
2991 fprintf_unfiltered (gdb_stdlog,
2992 "LLW: Handling extended status 0x%06x\n",
2993 status);
2994 if (linux_handle_extended_wait (lp, status, 0))
2995 return NULL;
2996 }
2997
2998 if (linux_nat_status_is_event (status))
2999 save_sigtrap (lp);
3000
3001 /* Check if the thread has exited. */
3002 if ((WIFEXITED (status) || WIFSIGNALED (status))
3003 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
3004 {
3005 /* If this is the main thread, we must stop all threads and verify
3006 if they are still alive. This is because in the nptl thread model
3007 on Linux 2.4, there is no signal issued for exiting LWPs
3008 other than the main thread. We only get the main thread exit
3009 signal once all child threads have already exited. If we
3010 stop all the threads and use the stop_wait_callback to check
3011 if they have exited we can determine whether this signal
3012 should be ignored or whether it means the end of the debugged
3013 application, regardless of which threading model is being
3014 used. */
3015 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
3016 {
3017 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3018 stop_and_resume_callback, new_pending_p);
3019 }
3020
3021 if (debug_linux_nat)
3022 fprintf_unfiltered (gdb_stdlog,
3023 "LLW: %s exited.\n",
3024 target_pid_to_str (lp->ptid));
3025
3026 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3027 {
3028 /* If there is at least one more LWP, then the exit signal
3029 was not the end of the debugged application and should be
3030 ignored. */
3031 exit_lwp (lp);
3032 return NULL;
3033 }
3034 }
3035
3036 /* Check if the current LWP has previously exited. In the nptl
3037 thread model, LWPs other than the main thread do not issue
3038 signals when they exit so we must check whenever the thread has
3039 stopped. A similar check is made in stop_wait_callback(). */
3040 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3041 {
3042 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
3043
3044 if (debug_linux_nat)
3045 fprintf_unfiltered (gdb_stdlog,
3046 "LLW: %s exited.\n",
3047 target_pid_to_str (lp->ptid));
3048
3049 exit_lwp (lp);
3050
3051 /* Make sure there is at least one thread running. */
3052 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3053
3054 /* Discard the event. */
3055 return NULL;
3056 }
3057
3058 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3059 an attempt to stop an LWP. */
3060 if (lp->signalled
3061 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3062 {
3063 if (debug_linux_nat)
3064 fprintf_unfiltered (gdb_stdlog,
3065 "LLW: Delayed SIGSTOP caught for %s.\n",
3066 target_pid_to_str (lp->ptid));
3067
3068 lp->signalled = 0;
3069
3070 if (lp->last_resume_kind != resume_stop)
3071 {
3072 /* This is a delayed SIGSTOP. */
3073
3074 registers_changed ();
3075
3076 if (linux_nat_prepare_to_resume != NULL)
3077 linux_nat_prepare_to_resume (lp);
3078 linux_ops->to_resume (linux_ops,
3079 pid_to_ptid (ptid_get_lwp (lp->ptid)),
3080 lp->step, GDB_SIGNAL_0);
3081 if (debug_linux_nat)
3082 fprintf_unfiltered (gdb_stdlog,
3083 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3084 lp->step ?
3085 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3086 target_pid_to_str (lp->ptid));
3087
3088 lp->stopped = 0;
3089 gdb_assert (lp->resumed);
3090
3091 /* Discard the event. */
3092 return NULL;
3093 }
3094 }
3095
3096 /* Make sure we don't report a SIGINT that we have already displayed
3097 for another thread. */
3098 if (lp->ignore_sigint
3099 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3100 {
3101 if (debug_linux_nat)
3102 fprintf_unfiltered (gdb_stdlog,
3103 "LLW: Delayed SIGINT caught for %s.\n",
3104 target_pid_to_str (lp->ptid));
3105
3106 /* This is a delayed SIGINT. */
3107 lp->ignore_sigint = 0;
3108
3109 registers_changed ();
3110 if (linux_nat_prepare_to_resume != NULL)
3111 linux_nat_prepare_to_resume (lp);
3112 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
3113 lp->step, GDB_SIGNAL_0);
3114 if (debug_linux_nat)
3115 fprintf_unfiltered (gdb_stdlog,
3116 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3117 lp->step ?
3118 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3119 target_pid_to_str (lp->ptid));
3120
3121 lp->stopped = 0;
3122 gdb_assert (lp->resumed);
3123
3124 /* Discard the event. */
3125 return NULL;
3126 }
3127
3128 /* An interesting event. */
3129 gdb_assert (lp);
3130 lp->status = status;
3131 return lp;
3132 }
3133
3134 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3135 their exits until all other threads in the group have exited. */
3136
3137 static void
3138 check_zombie_leaders (void)
3139 {
3140 struct inferior *inf;
3141
3142 ALL_INFERIORS (inf)
3143 {
3144 struct lwp_info *leader_lp;
3145
3146 if (inf->pid == 0)
3147 continue;
3148
3149 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3150 if (leader_lp != NULL
3151 /* Check if there are other threads in the group, as we may
3152 have raced with the inferior simply exiting. */
3153 && num_lwps (inf->pid) > 1
3154 && linux_proc_pid_is_zombie (inf->pid))
3155 {
3156 if (debug_linux_nat)
3157 fprintf_unfiltered (gdb_stdlog,
3158 "CZL: Thread group leader %d zombie "
3159 "(it exited, or another thread execd).\n",
3160 inf->pid);
3161
3162 /* A leader zombie can mean one of two things:
3163
3164 - It exited, and there's an exit status pending
3165 available, or only the leader exited (not the whole
3166 program). In the latter case, we can't waitpid the
3167 leader's exit status until all other threads are gone.
3168
3169 - There are 3 or more threads in the group, and a thread
3170 other than the leader exec'd. On an exec, the Linux
3171 kernel destroys all other threads (except the execing
3172 one) in the thread group, and resets the execing thread's
3173 tid to the tgid. No exit notification is sent for the
3174 execing thread -- from the ptracer's perspective, it
3175 appears as though the execing thread just vanishes.
3176 Until we reap all other threads except the leader and the
3177 execing thread, the leader will be zombie, and the
3178 execing thread will be in `D (disc sleep)'. As soon as
3179 all other threads are reaped, the execing thread changes
3180 it's tid to the tgid, and the previous (zombie) leader
3181 vanishes, giving place to the "new" leader. We could try
3182 distinguishing the exit and exec cases, by waiting once
3183 more, and seeing if something comes out, but it doesn't
3184 sound useful. The previous leader _does_ go away, and
3185 we'll re-add the new one once we see the exec event
3186 (which is just the same as what would happen if the
3187 previous leader did exit voluntarily before some other
3188 thread execs). */
3189
3190 if (debug_linux_nat)
3191 fprintf_unfiltered (gdb_stdlog,
3192 "CZL: Thread group leader %d vanished.\n",
3193 inf->pid);
3194 exit_lwp (leader_lp);
3195 }
3196 }
3197 }
3198
3199 static ptid_t
3200 linux_nat_wait_1 (struct target_ops *ops,
3201 ptid_t ptid, struct target_waitstatus *ourstatus,
3202 int target_options)
3203 {
3204 static sigset_t prev_mask;
3205 enum resume_kind last_resume_kind;
3206 struct lwp_info *lp;
3207 int status;
3208
3209 if (debug_linux_nat)
3210 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3211
3212 /* The first time we get here after starting a new inferior, we may
3213 not have added it to the LWP list yet - this is the earliest
3214 moment at which we know its PID. */
3215 if (ptid_is_pid (inferior_ptid))
3216 {
3217 /* Upgrade the main thread's ptid. */
3218 thread_change_ptid (inferior_ptid,
3219 ptid_build (ptid_get_pid (inferior_ptid),
3220 ptid_get_pid (inferior_ptid), 0));
3221
3222 lp = add_initial_lwp (inferior_ptid);
3223 lp->resumed = 1;
3224 }
3225
3226 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3227 block_child_signals (&prev_mask);
3228
3229 retry:
3230 lp = NULL;
3231 status = 0;
3232
3233 /* First check if there is a LWP with a wait status pending. */
3234 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3235 {
3236 /* Any LWP in the PTID group that's been resumed will do. */
3237 lp = iterate_over_lwps (ptid, status_callback, NULL);
3238 if (lp)
3239 {
3240 if (debug_linux_nat && lp->status)
3241 fprintf_unfiltered (gdb_stdlog,
3242 "LLW: Using pending wait status %s for %s.\n",
3243 status_to_str (lp->status),
3244 target_pid_to_str (lp->ptid));
3245 }
3246 }
3247 else if (ptid_lwp_p (ptid))
3248 {
3249 if (debug_linux_nat)
3250 fprintf_unfiltered (gdb_stdlog,
3251 "LLW: Waiting for specific LWP %s.\n",
3252 target_pid_to_str (ptid));
3253
3254 /* We have a specific LWP to check. */
3255 lp = find_lwp_pid (ptid);
3256 gdb_assert (lp);
3257
3258 if (debug_linux_nat && lp->status)
3259 fprintf_unfiltered (gdb_stdlog,
3260 "LLW: Using pending wait status %s for %s.\n",
3261 status_to_str (lp->status),
3262 target_pid_to_str (lp->ptid));
3263
3264 /* We check for lp->waitstatus in addition to lp->status,
3265 because we can have pending process exits recorded in
3266 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3267 an additional lp->status_p flag. */
3268 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3269 lp = NULL;
3270 }
3271
3272 if (!target_can_async_p ())
3273 {
3274 /* Causes SIGINT to be passed on to the attached process. */
3275 set_sigint_trap ();
3276 }
3277
3278 /* But if we don't find a pending event, we'll have to wait. */
3279
3280 while (lp == NULL)
3281 {
3282 pid_t lwpid;
3283
3284 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3285 quirks:
3286
3287 - If the thread group leader exits while other threads in the
3288 thread group still exist, waitpid(TGID, ...) hangs. That
3289 waitpid won't return an exit status until the other threads
3290 in the group are reapped.
3291
3292 - When a non-leader thread execs, that thread just vanishes
3293 without reporting an exit (so we'd hang if we waited for it
3294 explicitly in that case). The exec event is reported to
3295 the TGID pid. */
3296
3297 errno = 0;
3298 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3299 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3300 lwpid = my_waitpid (-1, &status, WNOHANG);
3301
3302 if (debug_linux_nat)
3303 fprintf_unfiltered (gdb_stdlog,
3304 "LNW: waitpid(-1, ...) returned %d, %s\n",
3305 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3306
3307 if (lwpid > 0)
3308 {
3309 /* If this is true, then we paused LWPs momentarily, and may
3310 now have pending events to handle. */
3311 int new_pending;
3312
3313 if (debug_linux_nat)
3314 {
3315 fprintf_unfiltered (gdb_stdlog,
3316 "LLW: waitpid %ld received %s\n",
3317 (long) lwpid, status_to_str (status));
3318 }
3319
3320 lp = linux_nat_filter_event (lwpid, status, &new_pending);
3321
3322 /* STATUS is now no longer valid, use LP->STATUS instead. */
3323 status = 0;
3324
3325 if (lp && !ptid_match (lp->ptid, ptid))
3326 {
3327 gdb_assert (lp->resumed);
3328
3329 if (debug_linux_nat)
3330 fprintf (stderr,
3331 "LWP %ld got an event %06x, leaving pending.\n",
3332 ptid_get_lwp (lp->ptid), lp->status);
3333
3334 if (WIFSTOPPED (lp->status))
3335 {
3336 if (WSTOPSIG (lp->status) != SIGSTOP)
3337 {
3338 /* Cancel breakpoint hits. The breakpoint may
3339 be removed before we fetch events from this
3340 process to report to the core. It is best
3341 not to assume the moribund breakpoints
3342 heuristic always handles these cases --- it
3343 could be too many events go through to the
3344 core before this one is handled. All-stop
3345 always cancels breakpoint hits in all
3346 threads. */
3347 if (non_stop
3348 && linux_nat_lp_status_is_event (lp)
3349 && cancel_breakpoint (lp))
3350 {
3351 /* Throw away the SIGTRAP. */
3352 lp->status = 0;
3353
3354 if (debug_linux_nat)
3355 fprintf (stderr,
3356 "LLW: LWP %ld hit a breakpoint while"
3357 " waiting for another process;"
3358 " cancelled it\n",
3359 ptid_get_lwp (lp->ptid));
3360 }
3361 }
3362 else
3363 lp->signalled = 0;
3364 }
3365 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3366 {
3367 if (debug_linux_nat)
3368 fprintf (stderr,
3369 "Process %ld exited while stopping LWPs\n",
3370 ptid_get_lwp (lp->ptid));
3371
3372 /* This was the last lwp in the process. Since
3373 events are serialized to GDB core, and we can't
3374 report this one right now, but GDB core and the
3375 other target layers will want to be notified
3376 about the exit code/signal, leave the status
3377 pending for the next time we're able to report
3378 it. */
3379
3380 /* Dead LWP's aren't expected to reported a pending
3381 sigstop. */
3382 lp->signalled = 0;
3383
3384 /* Store the pending event in the waitstatus as
3385 well, because W_EXITCODE(0,0) == 0. */
3386 store_waitstatus (&lp->waitstatus, lp->status);
3387 }
3388
3389 /* Keep looking. */
3390 lp = NULL;
3391 }
3392
3393 if (new_pending)
3394 {
3395 /* Some LWP now has a pending event. Go all the way
3396 back to check it. */
3397 goto retry;
3398 }
3399
3400 if (lp)
3401 {
3402 /* We got an event to report to the core. */
3403 break;
3404 }
3405
3406 /* Retry until nothing comes out of waitpid. A single
3407 SIGCHLD can indicate more than one child stopped. */
3408 continue;
3409 }
3410
3411 /* Check for zombie thread group leaders. Those can't be reaped
3412 until all other threads in the thread group are. */
3413 check_zombie_leaders ();
3414
3415 /* If there are no resumed children left, bail. We'd be stuck
3416 forever in the sigsuspend call below otherwise. */
3417 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3418 {
3419 if (debug_linux_nat)
3420 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3421
3422 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3423
3424 if (!target_can_async_p ())
3425 clear_sigint_trap ();
3426
3427 restore_child_signals_mask (&prev_mask);
3428 return minus_one_ptid;
3429 }
3430
3431 /* No interesting event to report to the core. */
3432
3433 if (target_options & TARGET_WNOHANG)
3434 {
3435 if (debug_linux_nat)
3436 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3437
3438 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3439 restore_child_signals_mask (&prev_mask);
3440 return minus_one_ptid;
3441 }
3442
3443 /* We shouldn't end up here unless we want to try again. */
3444 gdb_assert (lp == NULL);
3445
3446 /* Block until we get an event reported with SIGCHLD. */
3447 sigsuspend (&suspend_mask);
3448 }
3449
3450 if (!target_can_async_p ())
3451 clear_sigint_trap ();
3452
3453 gdb_assert (lp);
3454
3455 status = lp->status;
3456 lp->status = 0;
3457
3458 /* Don't report signals that GDB isn't interested in, such as
3459 signals that are neither printed nor stopped upon. Stopping all
3460 threads can be a bit time-consuming so if we want decent
3461 performance with heavily multi-threaded programs, especially when
3462 they're using a high frequency timer, we'd better avoid it if we
3463 can. */
3464
3465 if (WIFSTOPPED (status))
3466 {
3467 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3468
3469 /* When using hardware single-step, we need to report every signal.
3470 Otherwise, signals in pass_mask may be short-circuited. */
3471 if (!lp->step
3472 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3473 {
3474 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3475 here? It is not clear we should. GDB may not expect
3476 other threads to run. On the other hand, not resuming
3477 newly attached threads may cause an unwanted delay in
3478 getting them running. */
3479 registers_changed ();
3480 if (linux_nat_prepare_to_resume != NULL)
3481 linux_nat_prepare_to_resume (lp);
3482 linux_ops->to_resume (linux_ops,
3483 pid_to_ptid (ptid_get_lwp (lp->ptid)),
3484 lp->step, signo);
3485 if (debug_linux_nat)
3486 fprintf_unfiltered (gdb_stdlog,
3487 "LLW: %s %s, %s (preempt 'handle')\n",
3488 lp->step ?
3489 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3490 target_pid_to_str (lp->ptid),
3491 (signo != GDB_SIGNAL_0
3492 ? strsignal (gdb_signal_to_host (signo))
3493 : "0"));
3494 lp->stopped = 0;
3495 goto retry;
3496 }
3497
3498 if (!non_stop)
3499 {
3500 /* Only do the below in all-stop, as we currently use SIGINT
3501 to implement target_stop (see linux_nat_stop) in
3502 non-stop. */
3503 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3504 {
3505 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3506 forwarded to the entire process group, that is, all LWPs
3507 will receive it - unless they're using CLONE_THREAD to
3508 share signals. Since we only want to report it once, we
3509 mark it as ignored for all LWPs except this one. */
3510 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3511 set_ignore_sigint, NULL);
3512 lp->ignore_sigint = 0;
3513 }
3514 else
3515 maybe_clear_ignore_sigint (lp);
3516 }
3517 }
3518
3519 /* This LWP is stopped now. */
3520 lp->stopped = 1;
3521
3522 if (debug_linux_nat)
3523 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3524 status_to_str (status), target_pid_to_str (lp->ptid));
3525
3526 if (!non_stop)
3527 {
3528 /* Now stop all other LWP's ... */
3529 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3530
3531 /* ... and wait until all of them have reported back that
3532 they're no longer running. */
3533 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3534
3535 /* If we're not waiting for a specific LWP, choose an event LWP
3536 from among those that have had events. Giving equal priority
3537 to all LWPs that have had events helps prevent
3538 starvation. */
3539 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3540 select_event_lwp (ptid, &lp, &status);
3541
3542 /* Now that we've selected our final event LWP, cancel any
3543 breakpoints in other LWPs that have hit a GDB breakpoint.
3544 See the comment in cancel_breakpoints_callback to find out
3545 why. */
3546 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3547
3548 /* We'll need this to determine whether to report a SIGSTOP as
3549 TARGET_WAITKIND_0. Need to take a copy because
3550 resume_clear_callback clears it. */
3551 last_resume_kind = lp->last_resume_kind;
3552
3553 /* In all-stop, from the core's perspective, all LWPs are now
3554 stopped until a new resume action is sent over. */
3555 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3556 }
3557 else
3558 {
3559 /* See above. */
3560 last_resume_kind = lp->last_resume_kind;
3561 resume_clear_callback (lp, NULL);
3562 }
3563
3564 if (linux_nat_status_is_event (status))
3565 {
3566 if (debug_linux_nat)
3567 fprintf_unfiltered (gdb_stdlog,
3568 "LLW: trap ptid is %s.\n",
3569 target_pid_to_str (lp->ptid));
3570 }
3571
3572 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3573 {
3574 *ourstatus = lp->waitstatus;
3575 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3576 }
3577 else
3578 store_waitstatus (ourstatus, status);
3579
3580 if (debug_linux_nat)
3581 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3582
3583 restore_child_signals_mask (&prev_mask);
3584
3585 if (last_resume_kind == resume_stop
3586 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3587 && WSTOPSIG (status) == SIGSTOP)
3588 {
3589 /* A thread that has been requested to stop by GDB with
3590 target_stop, and it stopped cleanly, so report as SIG0. The
3591 use of SIGSTOP is an implementation detail. */
3592 ourstatus->value.sig = GDB_SIGNAL_0;
3593 }
3594
3595 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3596 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3597 lp->core = -1;
3598 else
3599 lp->core = linux_common_core_of_thread (lp->ptid);
3600
3601 return lp->ptid;
3602 }
3603
3604 /* Resume LWPs that are currently stopped without any pending status
3605 to report, but are resumed from the core's perspective. */
3606
3607 static int
3608 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3609 {
3610 ptid_t *wait_ptid_p = data;
3611
3612 if (lp->stopped
3613 && lp->resumed
3614 && lp->status == 0
3615 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3616 {
3617 struct regcache *regcache = get_thread_regcache (lp->ptid);
3618 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3619 CORE_ADDR pc = regcache_read_pc (regcache);
3620
3621 gdb_assert (is_executing (lp->ptid));
3622
3623 /* Don't bother if there's a breakpoint at PC that we'd hit
3624 immediately, and we're not waiting for this LWP. */
3625 if (!ptid_match (lp->ptid, *wait_ptid_p))
3626 {
3627 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3628 return 0;
3629 }
3630
3631 if (debug_linux_nat)
3632 fprintf_unfiltered (gdb_stdlog,
3633 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3634 target_pid_to_str (lp->ptid),
3635 paddress (gdbarch, pc),
3636 lp->step);
3637
3638 registers_changed ();
3639 if (linux_nat_prepare_to_resume != NULL)
3640 linux_nat_prepare_to_resume (lp);
3641 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
3642 lp->step, GDB_SIGNAL_0);
3643 lp->stopped = 0;
3644 lp->stopped_by_watchpoint = 0;
3645 }
3646
3647 return 0;
3648 }
3649
3650 static ptid_t
3651 linux_nat_wait (struct target_ops *ops,
3652 ptid_t ptid, struct target_waitstatus *ourstatus,
3653 int target_options)
3654 {
3655 ptid_t event_ptid;
3656
3657 if (debug_linux_nat)
3658 {
3659 char *options_string;
3660
3661 options_string = target_options_to_string (target_options);
3662 fprintf_unfiltered (gdb_stdlog,
3663 "linux_nat_wait: [%s], [%s]\n",
3664 target_pid_to_str (ptid),
3665 options_string);
3666 xfree (options_string);
3667 }
3668
3669 /* Flush the async file first. */
3670 if (target_can_async_p ())
3671 async_file_flush ();
3672
3673 /* Resume LWPs that are currently stopped without any pending status
3674 to report, but are resumed from the core's perspective. LWPs get
3675 in this state if we find them stopping at a time we're not
3676 interested in reporting the event (target_wait on a
3677 specific_process, for example, see linux_nat_wait_1), and
3678 meanwhile the event became uninteresting. Don't bother resuming
3679 LWPs we're not going to wait for if they'd stop immediately. */
3680 if (non_stop)
3681 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3682
3683 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3684
3685 /* If we requested any event, and something came out, assume there
3686 may be more. If we requested a specific lwp or process, also
3687 assume there may be more. */
3688 if (target_can_async_p ()
3689 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3690 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3691 || !ptid_equal (ptid, minus_one_ptid)))
3692 async_file_mark ();
3693
3694 /* Get ready for the next event. */
3695 if (target_can_async_p ())
3696 target_async (inferior_event_handler, 0);
3697
3698 return event_ptid;
3699 }
3700
3701 static int
3702 kill_callback (struct lwp_info *lp, void *data)
3703 {
3704 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3705
3706 errno = 0;
3707 kill_lwp (ptid_get_lwp (lp->ptid), SIGKILL);
3708 if (debug_linux_nat)
3709 {
3710 int save_errno = errno;
3711
3712 fprintf_unfiltered (gdb_stdlog,
3713 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3714 target_pid_to_str (lp->ptid),
3715 save_errno ? safe_strerror (save_errno) : "OK");
3716 }
3717
3718 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3719
3720 errno = 0;
3721 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3722 if (debug_linux_nat)
3723 {
3724 int save_errno = errno;
3725
3726 fprintf_unfiltered (gdb_stdlog,
3727 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3728 target_pid_to_str (lp->ptid),
3729 save_errno ? safe_strerror (save_errno) : "OK");
3730 }
3731
3732 return 0;
3733 }
3734
3735 static int
3736 kill_wait_callback (struct lwp_info *lp, void *data)
3737 {
3738 pid_t pid;
3739
3740 /* We must make sure that there are no pending events (delayed
3741 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3742 program doesn't interfere with any following debugging session. */
3743
3744 /* For cloned processes we must check both with __WCLONE and
3745 without, since the exit status of a cloned process isn't reported
3746 with __WCLONE. */
3747 if (lp->cloned)
3748 {
3749 do
3750 {
3751 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3752 if (pid != (pid_t) -1)
3753 {
3754 if (debug_linux_nat)
3755 fprintf_unfiltered (gdb_stdlog,
3756 "KWC: wait %s received unknown.\n",
3757 target_pid_to_str (lp->ptid));
3758 /* The Linux kernel sometimes fails to kill a thread
3759 completely after PTRACE_KILL; that goes from the stop
3760 point in do_fork out to the one in
3761 get_signal_to_deliever and waits again. So kill it
3762 again. */
3763 kill_callback (lp, NULL);
3764 }
3765 }
3766 while (pid == ptid_get_lwp (lp->ptid));
3767
3768 gdb_assert (pid == -1 && errno == ECHILD);
3769 }
3770
3771 do
3772 {
3773 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3774 if (pid != (pid_t) -1)
3775 {
3776 if (debug_linux_nat)
3777 fprintf_unfiltered (gdb_stdlog,
3778 "KWC: wait %s received unk.\n",
3779 target_pid_to_str (lp->ptid));
3780 /* See the call to kill_callback above. */
3781 kill_callback (lp, NULL);
3782 }
3783 }
3784 while (pid == ptid_get_lwp (lp->ptid));
3785
3786 gdb_assert (pid == -1 && errno == ECHILD);
3787 return 0;
3788 }
3789
3790 static void
3791 linux_nat_kill (struct target_ops *ops)
3792 {
3793 struct target_waitstatus last;
3794 ptid_t last_ptid;
3795 int status;
3796
3797 /* If we're stopped while forking and we haven't followed yet,
3798 kill the other task. We need to do this first because the
3799 parent will be sleeping if this is a vfork. */
3800
3801 get_last_target_status (&last_ptid, &last);
3802
3803 if (last.kind == TARGET_WAITKIND_FORKED
3804 || last.kind == TARGET_WAITKIND_VFORKED)
3805 {
3806 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3807 wait (&status);
3808
3809 /* Let the arch-specific native code know this process is
3810 gone. */
3811 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3812 }
3813
3814 if (forks_exist_p ())
3815 linux_fork_killall ();
3816 else
3817 {
3818 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3819
3820 /* Stop all threads before killing them, since ptrace requires
3821 that the thread is stopped to sucessfully PTRACE_KILL. */
3822 iterate_over_lwps (ptid, stop_callback, NULL);
3823 /* ... and wait until all of them have reported back that
3824 they're no longer running. */
3825 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3826
3827 /* Kill all LWP's ... */
3828 iterate_over_lwps (ptid, kill_callback, NULL);
3829
3830 /* ... and wait until we've flushed all events. */
3831 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3832 }
3833
3834 target_mourn_inferior ();
3835 }
3836
3837 static void
3838 linux_nat_mourn_inferior (struct target_ops *ops)
3839 {
3840 int pid = ptid_get_pid (inferior_ptid);
3841
3842 purge_lwp_list (pid);
3843
3844 if (! forks_exist_p ())
3845 /* Normal case, no other forks available. */
3846 linux_ops->to_mourn_inferior (ops);
3847 else
3848 /* Multi-fork case. The current inferior_ptid has exited, but
3849 there are other viable forks to debug. Delete the exiting
3850 one and context-switch to the first available. */
3851 linux_fork_mourn_inferior ();
3852
3853 /* Let the arch-specific native code know this process is gone. */
3854 linux_nat_forget_process (pid);
3855 }
3856
3857 /* Convert a native/host siginfo object, into/from the siginfo in the
3858 layout of the inferiors' architecture. */
3859
3860 static void
3861 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3862 {
3863 int done = 0;
3864
3865 if (linux_nat_siginfo_fixup != NULL)
3866 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3867
3868 /* If there was no callback, or the callback didn't do anything,
3869 then just do a straight memcpy. */
3870 if (!done)
3871 {
3872 if (direction == 1)
3873 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3874 else
3875 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3876 }
3877 }
3878
3879 static enum target_xfer_status
3880 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3881 const char *annex, gdb_byte *readbuf,
3882 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3883 ULONGEST *xfered_len)
3884 {
3885 int pid;
3886 siginfo_t siginfo;
3887 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3888
3889 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3890 gdb_assert (readbuf || writebuf);
3891
3892 pid = ptid_get_lwp (inferior_ptid);
3893 if (pid == 0)
3894 pid = ptid_get_pid (inferior_ptid);
3895
3896 if (offset > sizeof (siginfo))
3897 return TARGET_XFER_E_IO;
3898
3899 errno = 0;
3900 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3901 if (errno != 0)
3902 return TARGET_XFER_E_IO;
3903
3904 /* When GDB is built as a 64-bit application, ptrace writes into
3905 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3906 inferior with a 64-bit GDB should look the same as debugging it
3907 with a 32-bit GDB, we need to convert it. GDB core always sees
3908 the converted layout, so any read/write will have to be done
3909 post-conversion. */
3910 siginfo_fixup (&siginfo, inf_siginfo, 0);
3911
3912 if (offset + len > sizeof (siginfo))
3913 len = sizeof (siginfo) - offset;
3914
3915 if (readbuf != NULL)
3916 memcpy (readbuf, inf_siginfo + offset, len);
3917 else
3918 {
3919 memcpy (inf_siginfo + offset, writebuf, len);
3920
3921 /* Convert back to ptrace layout before flushing it out. */
3922 siginfo_fixup (&siginfo, inf_siginfo, 1);
3923
3924 errno = 0;
3925 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3926 if (errno != 0)
3927 return TARGET_XFER_E_IO;
3928 }
3929
3930 *xfered_len = len;
3931 return TARGET_XFER_OK;
3932 }
3933
3934 static enum target_xfer_status
3935 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3936 const char *annex, gdb_byte *readbuf,
3937 const gdb_byte *writebuf,
3938 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3939 {
3940 struct cleanup *old_chain;
3941 enum target_xfer_status xfer;
3942
3943 if (object == TARGET_OBJECT_SIGNAL_INFO)
3944 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3945 offset, len, xfered_len);
3946
3947 /* The target is connected but no live inferior is selected. Pass
3948 this request down to a lower stratum (e.g., the executable
3949 file). */
3950 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3951 return TARGET_XFER_EOF;
3952
3953 old_chain = save_inferior_ptid ();
3954
3955 if (ptid_lwp_p (inferior_ptid))
3956 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3957
3958 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3959 offset, len, xfered_len);
3960
3961 do_cleanups (old_chain);
3962 return xfer;
3963 }
3964
3965 static int
3966 linux_thread_alive (ptid_t ptid)
3967 {
3968 int err, tmp_errno;
3969
3970 gdb_assert (ptid_lwp_p (ptid));
3971
3972 /* Send signal 0 instead of anything ptrace, because ptracing a
3973 running thread errors out claiming that the thread doesn't
3974 exist. */
3975 err = kill_lwp (ptid_get_lwp (ptid), 0);
3976 tmp_errno = errno;
3977 if (debug_linux_nat)
3978 fprintf_unfiltered (gdb_stdlog,
3979 "LLTA: KILL(SIG0) %s (%s)\n",
3980 target_pid_to_str (ptid),
3981 err ? safe_strerror (tmp_errno) : "OK");
3982
3983 if (err != 0)
3984 return 0;
3985
3986 return 1;
3987 }
3988
3989 static int
3990 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3991 {
3992 return linux_thread_alive (ptid);
3993 }
3994
3995 static char *
3996 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3997 {
3998 static char buf[64];
3999
4000 if (ptid_lwp_p (ptid)
4001 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
4002 || num_lwps (ptid_get_pid (ptid)) > 1))
4003 {
4004 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
4005 return buf;
4006 }
4007
4008 return normal_pid_to_str (ptid);
4009 }
4010
4011 static char *
4012 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
4013 {
4014 int pid = ptid_get_pid (thr->ptid);
4015 long lwp = ptid_get_lwp (thr->ptid);
4016 #define FORMAT "/proc/%d/task/%ld/comm"
4017 char buf[sizeof (FORMAT) + 30];
4018 FILE *comm_file;
4019 char *result = NULL;
4020
4021 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4022 comm_file = gdb_fopen_cloexec (buf, "r");
4023 if (comm_file)
4024 {
4025 /* Not exported by the kernel, so we define it here. */
4026 #define COMM_LEN 16
4027 static char line[COMM_LEN + 1];
4028
4029 if (fgets (line, sizeof (line), comm_file))
4030 {
4031 char *nl = strchr (line, '\n');
4032
4033 if (nl)
4034 *nl = '\0';
4035 if (*line != '\0')
4036 result = line;
4037 }
4038
4039 fclose (comm_file);
4040 }
4041
4042 #undef COMM_LEN
4043 #undef FORMAT
4044
4045 return result;
4046 }
4047
4048 /* Accepts an integer PID; Returns a string representing a file that
4049 can be opened to get the symbols for the child process. */
4050
4051 static char *
4052 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
4053 {
4054 static char buf[PATH_MAX];
4055 char name[PATH_MAX];
4056
4057 xsnprintf (name, PATH_MAX, "/proc/%d/exe", pid);
4058 memset (buf, 0, PATH_MAX);
4059 if (readlink (name, buf, PATH_MAX - 1) <= 0)
4060 strcpy (buf, name);
4061
4062 return buf;
4063 }
4064
4065 /* Records the thread's register state for the corefile note
4066 section. */
4067
4068 static char *
4069 linux_nat_collect_thread_registers (const struct regcache *regcache,
4070 ptid_t ptid, bfd *obfd,
4071 char *note_data, int *note_size,
4072 enum gdb_signal stop_signal)
4073 {
4074 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4075 const struct regset *regset;
4076 int core_regset_p;
4077 gdb_gregset_t gregs;
4078 gdb_fpregset_t fpregs;
4079
4080 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4081
4082 if (core_regset_p
4083 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4084 sizeof (gregs)))
4085 != NULL && regset->collect_regset != NULL)
4086 regset->collect_regset (regset, regcache, -1, &gregs, sizeof (gregs));
4087 else
4088 fill_gregset (regcache, &gregs, -1);
4089
4090 note_data = (char *) elfcore_write_prstatus
4091 (obfd, note_data, note_size, ptid_get_lwp (ptid),
4092 gdb_signal_to_host (stop_signal), &gregs);
4093
4094 if (core_regset_p
4095 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4096 sizeof (fpregs)))
4097 != NULL && regset->collect_regset != NULL)
4098 regset->collect_regset (regset, regcache, -1, &fpregs, sizeof (fpregs));
4099 else
4100 fill_fpregset (regcache, &fpregs, -1);
4101
4102 note_data = (char *) elfcore_write_prfpreg (obfd, note_data, note_size,
4103 &fpregs, sizeof (fpregs));
4104
4105 return note_data;
4106 }
4107
4108 /* Fills the "to_make_corefile_note" target vector. Builds the note
4109 section for a corefile, and returns it in a malloc buffer. */
4110
4111 static char *
4112 linux_nat_make_corefile_notes (struct target_ops *self,
4113 bfd *obfd, int *note_size)
4114 {
4115 /* FIXME: uweigand/2011-10-06: Once all GNU/Linux architectures have been
4116 converted to gdbarch_core_regset_sections, this function can go away. */
4117 return linux_make_corefile_notes (target_gdbarch (), obfd, note_size,
4118 linux_nat_collect_thread_registers);
4119 }
4120
4121 /* Implement the to_xfer_partial interface for memory reads using the /proc
4122 filesystem. Because we can use a single read() call for /proc, this
4123 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4124 but it doesn't support writes. */
4125
4126 static enum target_xfer_status
4127 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4128 const char *annex, gdb_byte *readbuf,
4129 const gdb_byte *writebuf,
4130 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
4131 {
4132 LONGEST ret;
4133 int fd;
4134 char filename[64];
4135
4136 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4137 return 0;
4138
4139 /* Don't bother for one word. */
4140 if (len < 3 * sizeof (long))
4141 return TARGET_XFER_EOF;
4142
4143 /* We could keep this file open and cache it - possibly one per
4144 thread. That requires some juggling, but is even faster. */
4145 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
4146 ptid_get_pid (inferior_ptid));
4147 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4148 if (fd == -1)
4149 return TARGET_XFER_EOF;
4150
4151 /* If pread64 is available, use it. It's faster if the kernel
4152 supports it (only one syscall), and it's 64-bit safe even on
4153 32-bit platforms (for instance, SPARC debugging a SPARC64
4154 application). */
4155 #ifdef HAVE_PREAD64
4156 if (pread64 (fd, readbuf, len, offset) != len)
4157 #else
4158 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4159 #endif
4160 ret = 0;
4161 else
4162 ret = len;
4163
4164 close (fd);
4165
4166 if (ret == 0)
4167 return TARGET_XFER_EOF;
4168 else
4169 {
4170 *xfered_len = ret;
4171 return TARGET_XFER_OK;
4172 }
4173 }
4174
4175
4176 /* Enumerate spufs IDs for process PID. */
4177 static LONGEST
4178 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4179 {
4180 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4181 LONGEST pos = 0;
4182 LONGEST written = 0;
4183 char path[128];
4184 DIR *dir;
4185 struct dirent *entry;
4186
4187 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4188 dir = opendir (path);
4189 if (!dir)
4190 return -1;
4191
4192 rewinddir (dir);
4193 while ((entry = readdir (dir)) != NULL)
4194 {
4195 struct stat st;
4196 struct statfs stfs;
4197 int fd;
4198
4199 fd = atoi (entry->d_name);
4200 if (!fd)
4201 continue;
4202
4203 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4204 if (stat (path, &st) != 0)
4205 continue;
4206 if (!S_ISDIR (st.st_mode))
4207 continue;
4208
4209 if (statfs (path, &stfs) != 0)
4210 continue;
4211 if (stfs.f_type != SPUFS_MAGIC)
4212 continue;
4213
4214 if (pos >= offset && pos + 4 <= offset + len)
4215 {
4216 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4217 written += 4;
4218 }
4219 pos += 4;
4220 }
4221
4222 closedir (dir);
4223 return written;
4224 }
4225
4226 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4227 object type, using the /proc file system. */
4228
4229 static enum target_xfer_status
4230 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4231 const char *annex, gdb_byte *readbuf,
4232 const gdb_byte *writebuf,
4233 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4234 {
4235 char buf[128];
4236 int fd = 0;
4237 int ret = -1;
4238 int pid = ptid_get_pid (inferior_ptid);
4239
4240 if (!annex)
4241 {
4242 if (!readbuf)
4243 return TARGET_XFER_E_IO;
4244 else
4245 {
4246 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4247
4248 if (l < 0)
4249 return TARGET_XFER_E_IO;
4250 else if (l == 0)
4251 return TARGET_XFER_EOF;
4252 else
4253 {
4254 *xfered_len = (ULONGEST) l;
4255 return TARGET_XFER_OK;
4256 }
4257 }
4258 }
4259
4260 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4261 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4262 if (fd <= 0)
4263 return TARGET_XFER_E_IO;
4264
4265 if (offset != 0
4266 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4267 {
4268 close (fd);
4269 return TARGET_XFER_EOF;
4270 }
4271
4272 if (writebuf)
4273 ret = write (fd, writebuf, (size_t) len);
4274 else if (readbuf)
4275 ret = read (fd, readbuf, (size_t) len);
4276
4277 close (fd);
4278
4279 if (ret < 0)
4280 return TARGET_XFER_E_IO;
4281 else if (ret == 0)
4282 return TARGET_XFER_EOF;
4283 else
4284 {
4285 *xfered_len = (ULONGEST) ret;
4286 return TARGET_XFER_OK;
4287 }
4288 }
4289
4290
4291 /* Parse LINE as a signal set and add its set bits to SIGS. */
4292
4293 static void
4294 add_line_to_sigset (const char *line, sigset_t *sigs)
4295 {
4296 int len = strlen (line) - 1;
4297 const char *p;
4298 int signum;
4299
4300 if (line[len] != '\n')
4301 error (_("Could not parse signal set: %s"), line);
4302
4303 p = line;
4304 signum = len * 4;
4305 while (len-- > 0)
4306 {
4307 int digit;
4308
4309 if (*p >= '0' && *p <= '9')
4310 digit = *p - '0';
4311 else if (*p >= 'a' && *p <= 'f')
4312 digit = *p - 'a' + 10;
4313 else
4314 error (_("Could not parse signal set: %s"), line);
4315
4316 signum -= 4;
4317
4318 if (digit & 1)
4319 sigaddset (sigs, signum + 1);
4320 if (digit & 2)
4321 sigaddset (sigs, signum + 2);
4322 if (digit & 4)
4323 sigaddset (sigs, signum + 3);
4324 if (digit & 8)
4325 sigaddset (sigs, signum + 4);
4326
4327 p++;
4328 }
4329 }
4330
4331 /* Find process PID's pending signals from /proc/pid/status and set
4332 SIGS to match. */
4333
4334 void
4335 linux_proc_pending_signals (int pid, sigset_t *pending,
4336 sigset_t *blocked, sigset_t *ignored)
4337 {
4338 FILE *procfile;
4339 char buffer[PATH_MAX], fname[PATH_MAX];
4340 struct cleanup *cleanup;
4341
4342 sigemptyset (pending);
4343 sigemptyset (blocked);
4344 sigemptyset (ignored);
4345 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4346 procfile = gdb_fopen_cloexec (fname, "r");
4347 if (procfile == NULL)
4348 error (_("Could not open %s"), fname);
4349 cleanup = make_cleanup_fclose (procfile);
4350
4351 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4352 {
4353 /* Normal queued signals are on the SigPnd line in the status
4354 file. However, 2.6 kernels also have a "shared" pending
4355 queue for delivering signals to a thread group, so check for
4356 a ShdPnd line also.
4357
4358 Unfortunately some Red Hat kernels include the shared pending
4359 queue but not the ShdPnd status field. */
4360
4361 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4362 add_line_to_sigset (buffer + 8, pending);
4363 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4364 add_line_to_sigset (buffer + 8, pending);
4365 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4366 add_line_to_sigset (buffer + 8, blocked);
4367 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4368 add_line_to_sigset (buffer + 8, ignored);
4369 }
4370
4371 do_cleanups (cleanup);
4372 }
4373
4374 static enum target_xfer_status
4375 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4376 const char *annex, gdb_byte *readbuf,
4377 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4378 ULONGEST *xfered_len)
4379 {
4380 gdb_assert (object == TARGET_OBJECT_OSDATA);
4381
4382 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4383 if (*xfered_len == 0)
4384 return TARGET_XFER_EOF;
4385 else
4386 return TARGET_XFER_OK;
4387 }
4388
4389 static enum target_xfer_status
4390 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4391 const char *annex, gdb_byte *readbuf,
4392 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4393 ULONGEST *xfered_len)
4394 {
4395 enum target_xfer_status xfer;
4396
4397 if (object == TARGET_OBJECT_AUXV)
4398 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4399 offset, len, xfered_len);
4400
4401 if (object == TARGET_OBJECT_OSDATA)
4402 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4403 offset, len, xfered_len);
4404
4405 if (object == TARGET_OBJECT_SPU)
4406 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4407 offset, len, xfered_len);
4408
4409 /* GDB calculates all the addresses in possibly larget width of the address.
4410 Address width needs to be masked before its final use - either by
4411 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4412
4413 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4414
4415 if (object == TARGET_OBJECT_MEMORY)
4416 {
4417 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4418
4419 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4420 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4421 }
4422
4423 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4424 offset, len, xfered_len);
4425 if (xfer != TARGET_XFER_EOF)
4426 return xfer;
4427
4428 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4429 offset, len, xfered_len);
4430 }
4431
4432 static void
4433 cleanup_target_stop (void *arg)
4434 {
4435 ptid_t *ptid = (ptid_t *) arg;
4436
4437 gdb_assert (arg != NULL);
4438
4439 /* Unpause all */
4440 target_resume (*ptid, 0, GDB_SIGNAL_0);
4441 }
4442
4443 static VEC(static_tracepoint_marker_p) *
4444 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4445 const char *strid)
4446 {
4447 char s[IPA_CMD_BUF_SIZE];
4448 struct cleanup *old_chain;
4449 int pid = ptid_get_pid (inferior_ptid);
4450 VEC(static_tracepoint_marker_p) *markers = NULL;
4451 struct static_tracepoint_marker *marker = NULL;
4452 char *p = s;
4453 ptid_t ptid = ptid_build (pid, 0, 0);
4454
4455 /* Pause all */
4456 target_stop (ptid);
4457
4458 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4459 s[sizeof ("qTfSTM")] = 0;
4460
4461 agent_run_command (pid, s, strlen (s) + 1);
4462
4463 old_chain = make_cleanup (free_current_marker, &marker);
4464 make_cleanup (cleanup_target_stop, &ptid);
4465
4466 while (*p++ == 'm')
4467 {
4468 if (marker == NULL)
4469 marker = XCNEW (struct static_tracepoint_marker);
4470
4471 do
4472 {
4473 parse_static_tracepoint_marker_definition (p, &p, marker);
4474
4475 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4476 {
4477 VEC_safe_push (static_tracepoint_marker_p,
4478 markers, marker);
4479 marker = NULL;
4480 }
4481 else
4482 {
4483 release_static_tracepoint_marker (marker);
4484 memset (marker, 0, sizeof (*marker));
4485 }
4486 }
4487 while (*p++ == ','); /* comma-separated list */
4488
4489 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4490 s[sizeof ("qTsSTM")] = 0;
4491 agent_run_command (pid, s, strlen (s) + 1);
4492 p = s;
4493 }
4494
4495 do_cleanups (old_chain);
4496
4497 return markers;
4498 }
4499
4500 /* Create a prototype generic GNU/Linux target. The client can override
4501 it with local methods. */
4502
4503 static void
4504 linux_target_install_ops (struct target_ops *t)
4505 {
4506 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4507 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4508 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4509 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4510 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4511 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4512 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4513 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4514 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4515 t->to_post_attach = linux_child_post_attach;
4516 t->to_follow_fork = linux_child_follow_fork;
4517 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4518
4519 super_xfer_partial = t->to_xfer_partial;
4520 t->to_xfer_partial = linux_xfer_partial;
4521
4522 t->to_static_tracepoint_markers_by_strid
4523 = linux_child_static_tracepoint_markers_by_strid;
4524 }
4525
4526 struct target_ops *
4527 linux_target (void)
4528 {
4529 struct target_ops *t;
4530
4531 t = inf_ptrace_target ();
4532 linux_target_install_ops (t);
4533
4534 return t;
4535 }
4536
4537 struct target_ops *
4538 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4539 {
4540 struct target_ops *t;
4541
4542 t = inf_ptrace_trad_target (register_u_offset);
4543 linux_target_install_ops (t);
4544
4545 return t;
4546 }
4547
4548 /* target_is_async_p implementation. */
4549
4550 static int
4551 linux_nat_is_async_p (struct target_ops *ops)
4552 {
4553 /* NOTE: palves 2008-03-21: We're only async when the user requests
4554 it explicitly with the "set target-async" command.
4555 Someday, linux will always be async. */
4556 return target_async_permitted;
4557 }
4558
4559 /* target_can_async_p implementation. */
4560
4561 static int
4562 linux_nat_can_async_p (struct target_ops *ops)
4563 {
4564 /* NOTE: palves 2008-03-21: We're only async when the user requests
4565 it explicitly with the "set target-async" command.
4566 Someday, linux will always be async. */
4567 return target_async_permitted;
4568 }
4569
4570 static int
4571 linux_nat_supports_non_stop (struct target_ops *self)
4572 {
4573 return 1;
4574 }
4575
4576 /* True if we want to support multi-process. To be removed when GDB
4577 supports multi-exec. */
4578
4579 int linux_multi_process = 1;
4580
4581 static int
4582 linux_nat_supports_multi_process (struct target_ops *self)
4583 {
4584 return linux_multi_process;
4585 }
4586
4587 static int
4588 linux_nat_supports_disable_randomization (struct target_ops *self)
4589 {
4590 #ifdef HAVE_PERSONALITY
4591 return 1;
4592 #else
4593 return 0;
4594 #endif
4595 }
4596
4597 static int async_terminal_is_ours = 1;
4598
4599 /* target_terminal_inferior implementation. */
4600
4601 static void
4602 linux_nat_terminal_inferior (struct target_ops *self)
4603 {
4604 if (!target_is_async_p ())
4605 {
4606 /* Async mode is disabled. */
4607 child_terminal_inferior (self);
4608 return;
4609 }
4610
4611 child_terminal_inferior (self);
4612
4613 /* Calls to target_terminal_*() are meant to be idempotent. */
4614 if (!async_terminal_is_ours)
4615 return;
4616
4617 delete_file_handler (input_fd);
4618 async_terminal_is_ours = 0;
4619 set_sigint_trap ();
4620 }
4621
4622 /* target_terminal_ours implementation. */
4623
4624 static void
4625 linux_nat_terminal_ours (struct target_ops *self)
4626 {
4627 if (!target_is_async_p ())
4628 {
4629 /* Async mode is disabled. */
4630 child_terminal_ours (self);
4631 return;
4632 }
4633
4634 /* GDB should never give the terminal to the inferior if the
4635 inferior is running in the background (run&, continue&, etc.),
4636 but claiming it sure should. */
4637 child_terminal_ours (self);
4638
4639 if (async_terminal_is_ours)
4640 return;
4641
4642 clear_sigint_trap ();
4643 add_file_handler (input_fd, stdin_event_handler, 0);
4644 async_terminal_is_ours = 1;
4645 }
4646
4647 static void (*async_client_callback) (enum inferior_event_type event_type,
4648 void *context);
4649 static void *async_client_context;
4650
4651 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4652 so we notice when any child changes state, and notify the
4653 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4654 above to wait for the arrival of a SIGCHLD. */
4655
4656 static void
4657 sigchld_handler (int signo)
4658 {
4659 int old_errno = errno;
4660
4661 if (debug_linux_nat)
4662 ui_file_write_async_safe (gdb_stdlog,
4663 "sigchld\n", sizeof ("sigchld\n") - 1);
4664
4665 if (signo == SIGCHLD
4666 && linux_nat_event_pipe[0] != -1)
4667 async_file_mark (); /* Let the event loop know that there are
4668 events to handle. */
4669
4670 errno = old_errno;
4671 }
4672
4673 /* Callback registered with the target events file descriptor. */
4674
4675 static void
4676 handle_target_event (int error, gdb_client_data client_data)
4677 {
4678 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4679 }
4680
4681 /* Create/destroy the target events pipe. Returns previous state. */
4682
4683 static int
4684 linux_async_pipe (int enable)
4685 {
4686 int previous = (linux_nat_event_pipe[0] != -1);
4687
4688 if (previous != enable)
4689 {
4690 sigset_t prev_mask;
4691
4692 /* Block child signals while we create/destroy the pipe, as
4693 their handler writes to it. */
4694 block_child_signals (&prev_mask);
4695
4696 if (enable)
4697 {
4698 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4699 internal_error (__FILE__, __LINE__,
4700 "creating event pipe failed.");
4701
4702 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4703 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4704 }
4705 else
4706 {
4707 close (linux_nat_event_pipe[0]);
4708 close (linux_nat_event_pipe[1]);
4709 linux_nat_event_pipe[0] = -1;
4710 linux_nat_event_pipe[1] = -1;
4711 }
4712
4713 restore_child_signals_mask (&prev_mask);
4714 }
4715
4716 return previous;
4717 }
4718
4719 /* target_async implementation. */
4720
4721 static void
4722 linux_nat_async (struct target_ops *ops,
4723 void (*callback) (enum inferior_event_type event_type,
4724 void *context),
4725 void *context)
4726 {
4727 if (callback != NULL)
4728 {
4729 async_client_callback = callback;
4730 async_client_context = context;
4731 if (!linux_async_pipe (1))
4732 {
4733 add_file_handler (linux_nat_event_pipe[0],
4734 handle_target_event, NULL);
4735 /* There may be pending events to handle. Tell the event loop
4736 to poll them. */
4737 async_file_mark ();
4738 }
4739 }
4740 else
4741 {
4742 async_client_callback = callback;
4743 async_client_context = context;
4744 delete_file_handler (linux_nat_event_pipe[0]);
4745 linux_async_pipe (0);
4746 }
4747 return;
4748 }
4749
4750 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4751 event came out. */
4752
4753 static int
4754 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4755 {
4756 if (!lwp->stopped)
4757 {
4758 if (debug_linux_nat)
4759 fprintf_unfiltered (gdb_stdlog,
4760 "LNSL: running -> suspending %s\n",
4761 target_pid_to_str (lwp->ptid));
4762
4763
4764 if (lwp->last_resume_kind == resume_stop)
4765 {
4766 if (debug_linux_nat)
4767 fprintf_unfiltered (gdb_stdlog,
4768 "linux-nat: already stopping LWP %ld at "
4769 "GDB's request\n",
4770 ptid_get_lwp (lwp->ptid));
4771 return 0;
4772 }
4773
4774 stop_callback (lwp, NULL);
4775 lwp->last_resume_kind = resume_stop;
4776 }
4777 else
4778 {
4779 /* Already known to be stopped; do nothing. */
4780
4781 if (debug_linux_nat)
4782 {
4783 if (find_thread_ptid (lwp->ptid)->stop_requested)
4784 fprintf_unfiltered (gdb_stdlog,
4785 "LNSL: already stopped/stop_requested %s\n",
4786 target_pid_to_str (lwp->ptid));
4787 else
4788 fprintf_unfiltered (gdb_stdlog,
4789 "LNSL: already stopped/no "
4790 "stop_requested yet %s\n",
4791 target_pid_to_str (lwp->ptid));
4792 }
4793 }
4794 return 0;
4795 }
4796
4797 static void
4798 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4799 {
4800 if (non_stop)
4801 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4802 else
4803 linux_ops->to_stop (linux_ops, ptid);
4804 }
4805
4806 static void
4807 linux_nat_close (struct target_ops *self)
4808 {
4809 /* Unregister from the event loop. */
4810 if (linux_nat_is_async_p (NULL))
4811 linux_nat_async (NULL, NULL, 0);
4812
4813 if (linux_ops->to_close)
4814 linux_ops->to_close (linux_ops);
4815
4816 super_close (self);
4817 }
4818
4819 /* When requests are passed down from the linux-nat layer to the
4820 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4821 used. The address space pointer is stored in the inferior object,
4822 but the common code that is passed such ptid can't tell whether
4823 lwpid is a "main" process id or not (it assumes so). We reverse
4824 look up the "main" process id from the lwp here. */
4825
4826 static struct address_space *
4827 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4828 {
4829 struct lwp_info *lwp;
4830 struct inferior *inf;
4831 int pid;
4832
4833 pid = ptid_get_lwp (ptid);
4834 if (ptid_get_lwp (ptid) == 0)
4835 {
4836 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4837 tgid. */
4838 lwp = find_lwp_pid (ptid);
4839 pid = ptid_get_pid (lwp->ptid);
4840 }
4841 else
4842 {
4843 /* A (pid,lwpid,0) ptid. */
4844 pid = ptid_get_pid (ptid);
4845 }
4846
4847 inf = find_inferior_pid (pid);
4848 gdb_assert (inf != NULL);
4849 return inf->aspace;
4850 }
4851
4852 /* Return the cached value of the processor core for thread PTID. */
4853
4854 static int
4855 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4856 {
4857 struct lwp_info *info = find_lwp_pid (ptid);
4858
4859 if (info)
4860 return info->core;
4861 return -1;
4862 }
4863
4864 void
4865 linux_nat_add_target (struct target_ops *t)
4866 {
4867 /* Save the provided single-threaded target. We save this in a separate
4868 variable because another target we've inherited from (e.g. inf-ptrace)
4869 may have saved a pointer to T; we want to use it for the final
4870 process stratum target. */
4871 linux_ops_saved = *t;
4872 linux_ops = &linux_ops_saved;
4873
4874 /* Override some methods for multithreading. */
4875 t->to_create_inferior = linux_nat_create_inferior;
4876 t->to_attach = linux_nat_attach;
4877 t->to_detach = linux_nat_detach;
4878 t->to_resume = linux_nat_resume;
4879 t->to_wait = linux_nat_wait;
4880 t->to_pass_signals = linux_nat_pass_signals;
4881 t->to_xfer_partial = linux_nat_xfer_partial;
4882 t->to_kill = linux_nat_kill;
4883 t->to_mourn_inferior = linux_nat_mourn_inferior;
4884 t->to_thread_alive = linux_nat_thread_alive;
4885 t->to_pid_to_str = linux_nat_pid_to_str;
4886 t->to_thread_name = linux_nat_thread_name;
4887 t->to_has_thread_control = tc_schedlock;
4888 t->to_thread_address_space = linux_nat_thread_address_space;
4889 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4890 t->to_stopped_data_address = linux_nat_stopped_data_address;
4891
4892 t->to_can_async_p = linux_nat_can_async_p;
4893 t->to_is_async_p = linux_nat_is_async_p;
4894 t->to_supports_non_stop = linux_nat_supports_non_stop;
4895 t->to_async = linux_nat_async;
4896 t->to_terminal_inferior = linux_nat_terminal_inferior;
4897 t->to_terminal_ours = linux_nat_terminal_ours;
4898
4899 super_close = t->to_close;
4900 t->to_close = linux_nat_close;
4901
4902 /* Methods for non-stop support. */
4903 t->to_stop = linux_nat_stop;
4904
4905 t->to_supports_multi_process = linux_nat_supports_multi_process;
4906
4907 t->to_supports_disable_randomization
4908 = linux_nat_supports_disable_randomization;
4909
4910 t->to_core_of_thread = linux_nat_core_of_thread;
4911
4912 /* We don't change the stratum; this target will sit at
4913 process_stratum and thread_db will set at thread_stratum. This
4914 is a little strange, since this is a multi-threaded-capable
4915 target, but we want to be on the stack below thread_db, and we
4916 also want to be used for single-threaded processes. */
4917
4918 add_target (t);
4919 }
4920
4921 /* Register a method to call whenever a new thread is attached. */
4922 void
4923 linux_nat_set_new_thread (struct target_ops *t,
4924 void (*new_thread) (struct lwp_info *))
4925 {
4926 /* Save the pointer. We only support a single registered instance
4927 of the GNU/Linux native target, so we do not need to map this to
4928 T. */
4929 linux_nat_new_thread = new_thread;
4930 }
4931
4932 /* See declaration in linux-nat.h. */
4933
4934 void
4935 linux_nat_set_new_fork (struct target_ops *t,
4936 linux_nat_new_fork_ftype *new_fork)
4937 {
4938 /* Save the pointer. */
4939 linux_nat_new_fork = new_fork;
4940 }
4941
4942 /* See declaration in linux-nat.h. */
4943
4944 void
4945 linux_nat_set_forget_process (struct target_ops *t,
4946 linux_nat_forget_process_ftype *fn)
4947 {
4948 /* Save the pointer. */
4949 linux_nat_forget_process_hook = fn;
4950 }
4951
4952 /* See declaration in linux-nat.h. */
4953
4954 void
4955 linux_nat_forget_process (pid_t pid)
4956 {
4957 if (linux_nat_forget_process_hook != NULL)
4958 linux_nat_forget_process_hook (pid);
4959 }
4960
4961 /* Register a method that converts a siginfo object between the layout
4962 that ptrace returns, and the layout in the architecture of the
4963 inferior. */
4964 void
4965 linux_nat_set_siginfo_fixup (struct target_ops *t,
4966 int (*siginfo_fixup) (siginfo_t *,
4967 gdb_byte *,
4968 int))
4969 {
4970 /* Save the pointer. */
4971 linux_nat_siginfo_fixup = siginfo_fixup;
4972 }
4973
4974 /* Register a method to call prior to resuming a thread. */
4975
4976 void
4977 linux_nat_set_prepare_to_resume (struct target_ops *t,
4978 void (*prepare_to_resume) (struct lwp_info *))
4979 {
4980 /* Save the pointer. */
4981 linux_nat_prepare_to_resume = prepare_to_resume;
4982 }
4983
4984 /* See linux-nat.h. */
4985
4986 int
4987 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4988 {
4989 int pid;
4990
4991 pid = ptid_get_lwp (ptid);
4992 if (pid == 0)
4993 pid = ptid_get_pid (ptid);
4994
4995 errno = 0;
4996 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4997 if (errno != 0)
4998 {
4999 memset (siginfo, 0, sizeof (*siginfo));
5000 return 0;
5001 }
5002 return 1;
5003 }
5004
5005 /* Provide a prototype to silence -Wmissing-prototypes. */
5006 extern initialize_file_ftype _initialize_linux_nat;
5007
5008 void
5009 _initialize_linux_nat (void)
5010 {
5011 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
5012 &debug_linux_nat, _("\
5013 Set debugging of GNU/Linux lwp module."), _("\
5014 Show debugging of GNU/Linux lwp module."), _("\
5015 Enables printf debugging output."),
5016 NULL,
5017 show_debug_linux_nat,
5018 &setdebuglist, &showdebuglist);
5019
5020 /* Save this mask as the default. */
5021 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5022
5023 /* Install a SIGCHLD handler. */
5024 sigchld_action.sa_handler = sigchld_handler;
5025 sigemptyset (&sigchld_action.sa_mask);
5026 sigchld_action.sa_flags = SA_RESTART;
5027
5028 /* Make it the default. */
5029 sigaction (SIGCHLD, &sigchld_action, NULL);
5030
5031 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5032 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5033 sigdelset (&suspend_mask, SIGCHLD);
5034
5035 sigemptyset (&blocked_mask);
5036
5037 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to
5038 support read-only process state. */
5039 linux_ptrace_set_additional_flags (PTRACE_O_TRACESYSGOOD
5040 | PTRACE_O_TRACEVFORKDONE
5041 | PTRACE_O_TRACEVFORK
5042 | PTRACE_O_TRACEFORK
5043 | PTRACE_O_TRACEEXEC);
5044 }
5045 \f
5046
5047 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5048 the GNU/Linux Threads library and therefore doesn't really belong
5049 here. */
5050
5051 /* Read variable NAME in the target and return its value if found.
5052 Otherwise return zero. It is assumed that the type of the variable
5053 is `int'. */
5054
5055 static int
5056 get_signo (const char *name)
5057 {
5058 struct bound_minimal_symbol ms;
5059 int signo;
5060
5061 ms = lookup_minimal_symbol (name, NULL, NULL);
5062 if (ms.minsym == NULL)
5063 return 0;
5064
5065 if (target_read_memory (BMSYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5066 sizeof (signo)) != 0)
5067 return 0;
5068
5069 return signo;
5070 }
5071
5072 /* Return the set of signals used by the threads library in *SET. */
5073
5074 void
5075 lin_thread_get_thread_signals (sigset_t *set)
5076 {
5077 struct sigaction action;
5078 int restart, cancel;
5079
5080 sigemptyset (&blocked_mask);
5081 sigemptyset (set);
5082
5083 restart = get_signo ("__pthread_sig_restart");
5084 cancel = get_signo ("__pthread_sig_cancel");
5085
5086 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5087 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5088 not provide any way for the debugger to query the signal numbers -
5089 fortunately they don't change! */
5090
5091 if (restart == 0)
5092 restart = __SIGRTMIN;
5093
5094 if (cancel == 0)
5095 cancel = __SIGRTMIN + 1;
5096
5097 sigaddset (set, restart);
5098 sigaddset (set, cancel);
5099
5100 /* The GNU/Linux Threads library makes terminating threads send a
5101 special "cancel" signal instead of SIGCHLD. Make sure we catch
5102 those (to prevent them from terminating GDB itself, which is
5103 likely to be their default action) and treat them the same way as
5104 SIGCHLD. */
5105
5106 action.sa_handler = sigchld_handler;
5107 sigemptyset (&action.sa_mask);
5108 action.sa_flags = SA_RESTART;
5109 sigaction (cancel, &action, NULL);
5110
5111 /* We block the "cancel" signal throughout this code ... */
5112 sigaddset (&blocked_mask, cancel);
5113 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5114
5115 /* ... except during a sigsuspend. */
5116 sigdelset (&suspend_mask, cancel);
5117 }