]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/linux-nat.c
select_event_lwp_callback: update comments
[thirdparty/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "nat/linux-ptrace.h"
34 #include "nat/linux-procfs.h"
35 #include "nat/linux-personality.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
38 #include "gdbcmd.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
43 #include "auxv.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include <sys/stat.h> /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include <dirent.h>
57 #include "xml-support.h"
58 #include <sys/vfs.h>
59 #include "solib.h"
60 #include "nat/linux-osdata.h"
61 #include "linux-tdep.h"
62 #include "symfile.h"
63 #include "agent.h"
64 #include "tracepoint.h"
65 #include "buffer.h"
66 #include "target-descriptions.h"
67 #include "filestuff.h"
68 #include "objfiles.h"
69
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid, passing
80 the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good. Prior to
83 version 2.4, Linux can either wait for event in main thread, or in secondary
84 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
85 miss an event. The solution is to use non-blocking waitpid, together with
86 sigsuspend. First, we use non-blocking waitpid to get an event in the main
87 process, if any. Second, we use non-blocking waitpid with the __WCLONED
88 flag to check for events in cloned processes. If nothing is found, we use
89 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
90 happened to a child process -- and SIGCHLD will be delivered both for events
91 in main debugged process and in cloned processes. As soon as we know there's
92 an event, we get back to calling nonblocking waitpid with and without
93 __WCLONED.
94
95 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
96 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
97 blocked, the signal becomes pending and sigsuspend immediately
98 notices it and returns.
99
100 Waiting for events in async mode
101 ================================
102
103 In async mode, GDB should always be ready to handle both user input
104 and target events, so neither blocking waitpid nor sigsuspend are
105 viable options. Instead, we should asynchronously notify the GDB main
106 event loop whenever there's an unprocessed event from the target. We
107 detect asynchronous target events by handling SIGCHLD signals. To
108 notify the event loop about target events, the self-pipe trick is used
109 --- a pipe is registered as waitable event source in the event loop,
110 the event loop select/poll's on the read end of this pipe (as well on
111 other event sources, e.g., stdin), and the SIGCHLD handler writes a
112 byte to this pipe. This is more portable than relying on
113 pselect/ppoll, since on kernels that lack those syscalls, libc
114 emulates them with select/poll+sigprocmask, and that is racy
115 (a.k.a. plain broken).
116
117 Obviously, if we fail to notify the event loop if there's a target
118 event, it's bad. OTOH, if we notify the event loop when there's no
119 event from the target, linux_nat_wait will detect that there's no real
120 event to report, and return event of type TARGET_WAITKIND_IGNORE.
121 This is mostly harmless, but it will waste time and is better avoided.
122
123 The main design point is that every time GDB is outside linux-nat.c,
124 we have a SIGCHLD handler installed that is called when something
125 happens to the target and notifies the GDB event loop. Whenever GDB
126 core decides to handle the event, and calls into linux-nat.c, we
127 process things as in sync mode, except that the we never block in
128 sigsuspend.
129
130 While processing an event, we may end up momentarily blocked in
131 waitpid calls. Those waitpid calls, while blocking, are guarantied to
132 return quickly. E.g., in all-stop mode, before reporting to the core
133 that an LWP hit a breakpoint, all LWPs are stopped by sending them
134 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
135 Note that this is different from blocking indefinitely waiting for the
136 next event --- here, we're already handling an event.
137
138 Use of signals
139 ==============
140
141 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
142 signal is not entirely significant; we just need for a signal to be delivered,
143 so that we can intercept it. SIGSTOP's advantage is that it can not be
144 blocked. A disadvantage is that it is not a real-time signal, so it can only
145 be queued once; we do not keep track of other sources of SIGSTOP.
146
147 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
148 use them, because they have special behavior when the signal is generated -
149 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
150 kills the entire thread group.
151
152 A delivered SIGSTOP would stop the entire thread group, not just the thread we
153 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
154 cancel it (by PTRACE_CONT without passing SIGSTOP).
155
156 We could use a real-time signal instead. This would solve those problems; we
157 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
158 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
159 generates it, and there are races with trying to find a signal that is not
160 blocked. */
161
162 #ifndef O_LARGEFILE
163 #define O_LARGEFILE 0
164 #endif
165
166 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
167 the use of the multi-threaded target. */
168 static struct target_ops *linux_ops;
169 static struct target_ops linux_ops_saved;
170
171 /* The method to call, if any, when a new thread is attached. */
172 static void (*linux_nat_new_thread) (struct lwp_info *);
173
174 /* The method to call, if any, when a new fork is attached. */
175 static linux_nat_new_fork_ftype *linux_nat_new_fork;
176
177 /* The method to call, if any, when a process is no longer
178 attached. */
179 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
180
181 /* Hook to call prior to resuming a thread. */
182 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
183
184 /* The method to call, if any, when the siginfo object needs to be
185 converted between the layout returned by ptrace, and the layout in
186 the architecture of the inferior. */
187 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
188 gdb_byte *,
189 int);
190
191 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
192 Called by our to_xfer_partial. */
193 static target_xfer_partial_ftype *super_xfer_partial;
194
195 /* The saved to_close method, inherited from inf-ptrace.c.
196 Called by our to_close. */
197 static void (*super_close) (struct target_ops *);
198
199 static unsigned int debug_linux_nat;
200 static void
201 show_debug_linux_nat (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
205 value);
206 }
207
208 struct simple_pid_list
209 {
210 int pid;
211 int status;
212 struct simple_pid_list *next;
213 };
214 struct simple_pid_list *stopped_pids;
215
216 /* Async mode support. */
217
218 /* The read/write ends of the pipe registered as waitable file in the
219 event loop. */
220 static int linux_nat_event_pipe[2] = { -1, -1 };
221
222 /* True if we're currently in async mode. */
223 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
224
225 /* Flush the event pipe. */
226
227 static void
228 async_file_flush (void)
229 {
230 int ret;
231 char buf;
232
233 do
234 {
235 ret = read (linux_nat_event_pipe[0], &buf, 1);
236 }
237 while (ret >= 0 || (ret == -1 && errno == EINTR));
238 }
239
240 /* Put something (anything, doesn't matter what, or how much) in event
241 pipe, so that the select/poll in the event-loop realizes we have
242 something to process. */
243
244 static void
245 async_file_mark (void)
246 {
247 int ret;
248
249 /* It doesn't really matter what the pipe contains, as long we end
250 up with something in it. Might as well flush the previous
251 left-overs. */
252 async_file_flush ();
253
254 do
255 {
256 ret = write (linux_nat_event_pipe[1], "+", 1);
257 }
258 while (ret == -1 && errno == EINTR);
259
260 /* Ignore EAGAIN. If the pipe is full, the event loop will already
261 be awakened anyway. */
262 }
263
264 static int kill_lwp (int lwpid, int signo);
265
266 static int stop_callback (struct lwp_info *lp, void *data);
267 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
268
269 static void block_child_signals (sigset_t *prev_mask);
270 static void restore_child_signals_mask (sigset_t *prev_mask);
271
272 struct lwp_info;
273 static struct lwp_info *add_lwp (ptid_t ptid);
274 static void purge_lwp_list (int pid);
275 static void delete_lwp (ptid_t ptid);
276 static struct lwp_info *find_lwp_pid (ptid_t ptid);
277
278 static int lwp_status_pending_p (struct lwp_info *lp);
279
280 static int check_stopped_by_breakpoint (struct lwp_info *lp);
281 static int sigtrap_is_event (int status);
282 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
283
284 \f
285 /* Trivial list manipulation functions to keep track of a list of
286 new stopped processes. */
287 static void
288 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
289 {
290 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
291
292 new_pid->pid = pid;
293 new_pid->status = status;
294 new_pid->next = *listp;
295 *listp = new_pid;
296 }
297
298 static int
299 in_pid_list_p (struct simple_pid_list *list, int pid)
300 {
301 struct simple_pid_list *p;
302
303 for (p = list; p != NULL; p = p->next)
304 if (p->pid == pid)
305 return 1;
306 return 0;
307 }
308
309 static int
310 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
311 {
312 struct simple_pid_list **p;
313
314 for (p = listp; *p != NULL; p = &(*p)->next)
315 if ((*p)->pid == pid)
316 {
317 struct simple_pid_list *next = (*p)->next;
318
319 *statusp = (*p)->status;
320 xfree (*p);
321 *p = next;
322 return 1;
323 }
324 return 0;
325 }
326
327 /* Initialize ptrace warnings and check for supported ptrace
328 features given PID.
329
330 ATTACHED should be nonzero iff we attached to the inferior. */
331
332 static void
333 linux_init_ptrace (pid_t pid, int attached)
334 {
335 linux_enable_event_reporting (pid, attached);
336 linux_ptrace_init_warnings ();
337 }
338
339 static void
340 linux_child_post_attach (struct target_ops *self, int pid)
341 {
342 linux_init_ptrace (pid, 1);
343 }
344
345 static void
346 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
347 {
348 linux_init_ptrace (ptid_get_pid (ptid), 0);
349 }
350
351 /* Return the number of known LWPs in the tgid given by PID. */
352
353 static int
354 num_lwps (int pid)
355 {
356 int count = 0;
357 struct lwp_info *lp;
358
359 for (lp = lwp_list; lp; lp = lp->next)
360 if (ptid_get_pid (lp->ptid) == pid)
361 count++;
362
363 return count;
364 }
365
366 /* Call delete_lwp with prototype compatible for make_cleanup. */
367
368 static void
369 delete_lwp_cleanup (void *lp_voidp)
370 {
371 struct lwp_info *lp = lp_voidp;
372
373 delete_lwp (lp->ptid);
374 }
375
376 /* Target hook for follow_fork. On entry inferior_ptid must be the
377 ptid of the followed inferior. At return, inferior_ptid will be
378 unchanged. */
379
380 static int
381 linux_child_follow_fork (struct target_ops *ops, int follow_child,
382 int detach_fork)
383 {
384 if (!follow_child)
385 {
386 struct lwp_info *child_lp = NULL;
387 int status = W_STOPCODE (0);
388 struct cleanup *old_chain;
389 int has_vforked;
390 ptid_t parent_ptid, child_ptid;
391 int parent_pid, child_pid;
392
393 has_vforked = (inferior_thread ()->pending_follow.kind
394 == TARGET_WAITKIND_VFORKED);
395 parent_ptid = inferior_ptid;
396 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
397 parent_pid = ptid_get_lwp (parent_ptid);
398 child_pid = ptid_get_lwp (child_ptid);
399
400 /* We're already attached to the parent, by default. */
401 old_chain = save_inferior_ptid ();
402 inferior_ptid = child_ptid;
403 child_lp = add_lwp (inferior_ptid);
404 child_lp->stopped = 1;
405 child_lp->last_resume_kind = resume_stop;
406
407 /* Detach new forked process? */
408 if (detach_fork)
409 {
410 make_cleanup (delete_lwp_cleanup, child_lp);
411
412 if (linux_nat_prepare_to_resume != NULL)
413 linux_nat_prepare_to_resume (child_lp);
414
415 /* When debugging an inferior in an architecture that supports
416 hardware single stepping on a kernel without commit
417 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
418 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
419 set if the parent process had them set.
420 To work around this, single step the child process
421 once before detaching to clear the flags. */
422
423 if (!gdbarch_software_single_step_p (target_thread_architecture
424 (child_lp->ptid)))
425 {
426 linux_disable_event_reporting (child_pid);
427 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
428 perror_with_name (_("Couldn't do single step"));
429 if (my_waitpid (child_pid, &status, 0) < 0)
430 perror_with_name (_("Couldn't wait vfork process"));
431 }
432
433 if (WIFSTOPPED (status))
434 {
435 int signo;
436
437 signo = WSTOPSIG (status);
438 if (signo != 0
439 && !signal_pass_state (gdb_signal_from_host (signo)))
440 signo = 0;
441 ptrace (PTRACE_DETACH, child_pid, 0, signo);
442 }
443
444 /* Resets value of inferior_ptid to parent ptid. */
445 do_cleanups (old_chain);
446 }
447 else
448 {
449 /* Let the thread_db layer learn about this new process. */
450 check_for_thread_db ();
451 }
452
453 do_cleanups (old_chain);
454
455 if (has_vforked)
456 {
457 struct lwp_info *parent_lp;
458
459 parent_lp = find_lwp_pid (parent_ptid);
460 gdb_assert (linux_supports_tracefork () >= 0);
461
462 if (linux_supports_tracevforkdone ())
463 {
464 if (debug_linux_nat)
465 fprintf_unfiltered (gdb_stdlog,
466 "LCFF: waiting for VFORK_DONE on %d\n",
467 parent_pid);
468 parent_lp->stopped = 1;
469
470 /* We'll handle the VFORK_DONE event like any other
471 event, in target_wait. */
472 }
473 else
474 {
475 /* We can't insert breakpoints until the child has
476 finished with the shared memory region. We need to
477 wait until that happens. Ideal would be to just
478 call:
479 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
480 - waitpid (parent_pid, &status, __WALL);
481 However, most architectures can't handle a syscall
482 being traced on the way out if it wasn't traced on
483 the way in.
484
485 We might also think to loop, continuing the child
486 until it exits or gets a SIGTRAP. One problem is
487 that the child might call ptrace with PTRACE_TRACEME.
488
489 There's no simple and reliable way to figure out when
490 the vforked child will be done with its copy of the
491 shared memory. We could step it out of the syscall,
492 two instructions, let it go, and then single-step the
493 parent once. When we have hardware single-step, this
494 would work; with software single-step it could still
495 be made to work but we'd have to be able to insert
496 single-step breakpoints in the child, and we'd have
497 to insert -just- the single-step breakpoint in the
498 parent. Very awkward.
499
500 In the end, the best we can do is to make sure it
501 runs for a little while. Hopefully it will be out of
502 range of any breakpoints we reinsert. Usually this
503 is only the single-step breakpoint at vfork's return
504 point. */
505
506 if (debug_linux_nat)
507 fprintf_unfiltered (gdb_stdlog,
508 "LCFF: no VFORK_DONE "
509 "support, sleeping a bit\n");
510
511 usleep (10000);
512
513 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
514 and leave it pending. The next linux_nat_resume call
515 will notice a pending event, and bypasses actually
516 resuming the inferior. */
517 parent_lp->status = 0;
518 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
519 parent_lp->stopped = 1;
520
521 /* If we're in async mode, need to tell the event loop
522 there's something here to process. */
523 if (target_is_async_p ())
524 async_file_mark ();
525 }
526 }
527 }
528 else
529 {
530 struct lwp_info *child_lp;
531
532 child_lp = add_lwp (inferior_ptid);
533 child_lp->stopped = 1;
534 child_lp->last_resume_kind = resume_stop;
535
536 /* Let the thread_db layer learn about this new process. */
537 check_for_thread_db ();
538 }
539
540 return 0;
541 }
542
543 \f
544 static int
545 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
546 {
547 return !linux_supports_tracefork ();
548 }
549
550 static int
551 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
552 {
553 return 0;
554 }
555
556 static int
557 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
558 {
559 return !linux_supports_tracefork ();
560 }
561
562 static int
563 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
564 {
565 return 0;
566 }
567
568 static int
569 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
570 {
571 return !linux_supports_tracefork ();
572 }
573
574 static int
575 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
576 {
577 return 0;
578 }
579
580 static int
581 linux_child_set_syscall_catchpoint (struct target_ops *self,
582 int pid, int needed, int any_count,
583 int table_size, int *table)
584 {
585 if (!linux_supports_tracesysgood ())
586 return 1;
587
588 /* On GNU/Linux, we ignore the arguments. It means that we only
589 enable the syscall catchpoints, but do not disable them.
590
591 Also, we do not use the `table' information because we do not
592 filter system calls here. We let GDB do the logic for us. */
593 return 0;
594 }
595
596 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
597 are processes sharing the same VM space. A multi-threaded process
598 is basically a group of such processes. However, such a grouping
599 is almost entirely a user-space issue; the kernel doesn't enforce
600 such a grouping at all (this might change in the future). In
601 general, we'll rely on the threads library (i.e. the GNU/Linux
602 Threads library) to provide such a grouping.
603
604 It is perfectly well possible to write a multi-threaded application
605 without the assistance of a threads library, by using the clone
606 system call directly. This module should be able to give some
607 rudimentary support for debugging such applications if developers
608 specify the CLONE_PTRACE flag in the clone system call, and are
609 using the Linux kernel 2.4 or above.
610
611 Note that there are some peculiarities in GNU/Linux that affect
612 this code:
613
614 - In general one should specify the __WCLONE flag to waitpid in
615 order to make it report events for any of the cloned processes
616 (and leave it out for the initial process). However, if a cloned
617 process has exited the exit status is only reported if the
618 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
619 we cannot use it since GDB must work on older systems too.
620
621 - When a traced, cloned process exits and is waited for by the
622 debugger, the kernel reassigns it to the original parent and
623 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
624 library doesn't notice this, which leads to the "zombie problem":
625 When debugged a multi-threaded process that spawns a lot of
626 threads will run out of processes, even if the threads exit,
627 because the "zombies" stay around. */
628
629 /* List of known LWPs. */
630 struct lwp_info *lwp_list;
631 \f
632
633 /* Original signal mask. */
634 static sigset_t normal_mask;
635
636 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
637 _initialize_linux_nat. */
638 static sigset_t suspend_mask;
639
640 /* Signals to block to make that sigsuspend work. */
641 static sigset_t blocked_mask;
642
643 /* SIGCHLD action. */
644 struct sigaction sigchld_action;
645
646 /* Block child signals (SIGCHLD and linux threads signals), and store
647 the previous mask in PREV_MASK. */
648
649 static void
650 block_child_signals (sigset_t *prev_mask)
651 {
652 /* Make sure SIGCHLD is blocked. */
653 if (!sigismember (&blocked_mask, SIGCHLD))
654 sigaddset (&blocked_mask, SIGCHLD);
655
656 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
657 }
658
659 /* Restore child signals mask, previously returned by
660 block_child_signals. */
661
662 static void
663 restore_child_signals_mask (sigset_t *prev_mask)
664 {
665 sigprocmask (SIG_SETMASK, prev_mask, NULL);
666 }
667
668 /* Mask of signals to pass directly to the inferior. */
669 static sigset_t pass_mask;
670
671 /* Update signals to pass to the inferior. */
672 static void
673 linux_nat_pass_signals (struct target_ops *self,
674 int numsigs, unsigned char *pass_signals)
675 {
676 int signo;
677
678 sigemptyset (&pass_mask);
679
680 for (signo = 1; signo < NSIG; signo++)
681 {
682 int target_signo = gdb_signal_from_host (signo);
683 if (target_signo < numsigs && pass_signals[target_signo])
684 sigaddset (&pass_mask, signo);
685 }
686 }
687
688 \f
689
690 /* Prototypes for local functions. */
691 static int stop_wait_callback (struct lwp_info *lp, void *data);
692 static int linux_thread_alive (ptid_t ptid);
693 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
694 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
695
696 \f
697
698 /* Destroy and free LP. */
699
700 static void
701 lwp_free (struct lwp_info *lp)
702 {
703 xfree (lp->arch_private);
704 xfree (lp);
705 }
706
707 /* Remove all LWPs belong to PID from the lwp list. */
708
709 static void
710 purge_lwp_list (int pid)
711 {
712 struct lwp_info *lp, *lpprev, *lpnext;
713
714 lpprev = NULL;
715
716 for (lp = lwp_list; lp; lp = lpnext)
717 {
718 lpnext = lp->next;
719
720 if (ptid_get_pid (lp->ptid) == pid)
721 {
722 if (lp == lwp_list)
723 lwp_list = lp->next;
724 else
725 lpprev->next = lp->next;
726
727 lwp_free (lp);
728 }
729 else
730 lpprev = lp;
731 }
732 }
733
734 /* Add the LWP specified by PTID to the list. PTID is the first LWP
735 in the process. Return a pointer to the structure describing the
736 new LWP.
737
738 This differs from add_lwp in that we don't let the arch specific
739 bits know about this new thread. Current clients of this callback
740 take the opportunity to install watchpoints in the new thread, and
741 we shouldn't do that for the first thread. If we're spawning a
742 child ("run"), the thread executes the shell wrapper first, and we
743 shouldn't touch it until it execs the program we want to debug.
744 For "attach", it'd be okay to call the callback, but it's not
745 necessary, because watchpoints can't yet have been inserted into
746 the inferior. */
747
748 static struct lwp_info *
749 add_initial_lwp (ptid_t ptid)
750 {
751 struct lwp_info *lp;
752
753 gdb_assert (ptid_lwp_p (ptid));
754
755 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
756
757 memset (lp, 0, sizeof (struct lwp_info));
758
759 lp->last_resume_kind = resume_continue;
760 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
761
762 lp->ptid = ptid;
763 lp->core = -1;
764
765 lp->next = lwp_list;
766 lwp_list = lp;
767
768 return lp;
769 }
770
771 /* Add the LWP specified by PID to the list. Return a pointer to the
772 structure describing the new LWP. The LWP should already be
773 stopped. */
774
775 static struct lwp_info *
776 add_lwp (ptid_t ptid)
777 {
778 struct lwp_info *lp;
779
780 lp = add_initial_lwp (ptid);
781
782 /* Let the arch specific bits know about this new thread. Current
783 clients of this callback take the opportunity to install
784 watchpoints in the new thread. We don't do this for the first
785 thread though. See add_initial_lwp. */
786 if (linux_nat_new_thread != NULL)
787 linux_nat_new_thread (lp);
788
789 return lp;
790 }
791
792 /* Remove the LWP specified by PID from the list. */
793
794 static void
795 delete_lwp (ptid_t ptid)
796 {
797 struct lwp_info *lp, *lpprev;
798
799 lpprev = NULL;
800
801 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
802 if (ptid_equal (lp->ptid, ptid))
803 break;
804
805 if (!lp)
806 return;
807
808 if (lpprev)
809 lpprev->next = lp->next;
810 else
811 lwp_list = lp->next;
812
813 lwp_free (lp);
814 }
815
816 /* Return a pointer to the structure describing the LWP corresponding
817 to PID. If no corresponding LWP could be found, return NULL. */
818
819 static struct lwp_info *
820 find_lwp_pid (ptid_t ptid)
821 {
822 struct lwp_info *lp;
823 int lwp;
824
825 if (ptid_lwp_p (ptid))
826 lwp = ptid_get_lwp (ptid);
827 else
828 lwp = ptid_get_pid (ptid);
829
830 for (lp = lwp_list; lp; lp = lp->next)
831 if (lwp == ptid_get_lwp (lp->ptid))
832 return lp;
833
834 return NULL;
835 }
836
837 /* Call CALLBACK with its second argument set to DATA for every LWP in
838 the list. If CALLBACK returns 1 for a particular LWP, return a
839 pointer to the structure describing that LWP immediately.
840 Otherwise return NULL. */
841
842 struct lwp_info *
843 iterate_over_lwps (ptid_t filter,
844 int (*callback) (struct lwp_info *, void *),
845 void *data)
846 {
847 struct lwp_info *lp, *lpnext;
848
849 for (lp = lwp_list; lp; lp = lpnext)
850 {
851 lpnext = lp->next;
852
853 if (ptid_match (lp->ptid, filter))
854 {
855 if ((*callback) (lp, data))
856 return lp;
857 }
858 }
859
860 return NULL;
861 }
862
863 /* Update our internal state when changing from one checkpoint to
864 another indicated by NEW_PTID. We can only switch single-threaded
865 applications, so we only create one new LWP, and the previous list
866 is discarded. */
867
868 void
869 linux_nat_switch_fork (ptid_t new_ptid)
870 {
871 struct lwp_info *lp;
872
873 purge_lwp_list (ptid_get_pid (inferior_ptid));
874
875 lp = add_lwp (new_ptid);
876 lp->stopped = 1;
877
878 /* This changes the thread's ptid while preserving the gdb thread
879 num. Also changes the inferior pid, while preserving the
880 inferior num. */
881 thread_change_ptid (inferior_ptid, new_ptid);
882
883 /* We've just told GDB core that the thread changed target id, but,
884 in fact, it really is a different thread, with different register
885 contents. */
886 registers_changed ();
887 }
888
889 /* Handle the exit of a single thread LP. */
890
891 static void
892 exit_lwp (struct lwp_info *lp)
893 {
894 struct thread_info *th = find_thread_ptid (lp->ptid);
895
896 if (th)
897 {
898 if (print_thread_events)
899 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
900
901 delete_thread (lp->ptid);
902 }
903
904 delete_lwp (lp->ptid);
905 }
906
907 /* Wait for the LWP specified by LP, which we have just attached to.
908 Returns a wait status for that LWP, to cache. */
909
910 static int
911 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
912 int *signalled)
913 {
914 pid_t new_pid, pid = ptid_get_lwp (ptid);
915 int status;
916
917 if (linux_proc_pid_is_stopped (pid))
918 {
919 if (debug_linux_nat)
920 fprintf_unfiltered (gdb_stdlog,
921 "LNPAW: Attaching to a stopped process\n");
922
923 /* The process is definitely stopped. It is in a job control
924 stop, unless the kernel predates the TASK_STOPPED /
925 TASK_TRACED distinction, in which case it might be in a
926 ptrace stop. Make sure it is in a ptrace stop; from there we
927 can kill it, signal it, et cetera.
928
929 First make sure there is a pending SIGSTOP. Since we are
930 already attached, the process can not transition from stopped
931 to running without a PTRACE_CONT; so we know this signal will
932 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
933 probably already in the queue (unless this kernel is old
934 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
935 is not an RT signal, it can only be queued once. */
936 kill_lwp (pid, SIGSTOP);
937
938 /* Finally, resume the stopped process. This will deliver the SIGSTOP
939 (or a higher priority signal, just like normal PTRACE_ATTACH). */
940 ptrace (PTRACE_CONT, pid, 0, 0);
941 }
942
943 /* Make sure the initial process is stopped. The user-level threads
944 layer might want to poke around in the inferior, and that won't
945 work if things haven't stabilized yet. */
946 new_pid = my_waitpid (pid, &status, 0);
947 if (new_pid == -1 && errno == ECHILD)
948 {
949 if (first)
950 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
951
952 /* Try again with __WCLONE to check cloned processes. */
953 new_pid = my_waitpid (pid, &status, __WCLONE);
954 *cloned = 1;
955 }
956
957 gdb_assert (pid == new_pid);
958
959 if (!WIFSTOPPED (status))
960 {
961 /* The pid we tried to attach has apparently just exited. */
962 if (debug_linux_nat)
963 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
964 pid, status_to_str (status));
965 return status;
966 }
967
968 if (WSTOPSIG (status) != SIGSTOP)
969 {
970 *signalled = 1;
971 if (debug_linux_nat)
972 fprintf_unfiltered (gdb_stdlog,
973 "LNPAW: Received %s after attaching\n",
974 status_to_str (status));
975 }
976
977 return status;
978 }
979
980 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
981 the new LWP could not be attached, or 1 if we're already auto
982 attached to this thread, but haven't processed the
983 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
984 its existance, without considering it an error. */
985
986 int
987 lin_lwp_attach_lwp (ptid_t ptid)
988 {
989 struct lwp_info *lp;
990 int lwpid;
991
992 gdb_assert (ptid_lwp_p (ptid));
993
994 lp = find_lwp_pid (ptid);
995 lwpid = ptid_get_lwp (ptid);
996
997 /* We assume that we're already attached to any LWP that is already
998 in our list of LWPs. If we're not seeing exit events from threads
999 and we've had PID wraparound since we last tried to stop all threads,
1000 this assumption might be wrong; fortunately, this is very unlikely
1001 to happen. */
1002 if (lp == NULL)
1003 {
1004 int status, cloned = 0, signalled = 0;
1005
1006 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1007 {
1008 if (linux_supports_tracefork ())
1009 {
1010 /* If we haven't stopped all threads when we get here,
1011 we may have seen a thread listed in thread_db's list,
1012 but not processed the PTRACE_EVENT_CLONE yet. If
1013 that's the case, ignore this new thread, and let
1014 normal event handling discover it later. */
1015 if (in_pid_list_p (stopped_pids, lwpid))
1016 {
1017 /* We've already seen this thread stop, but we
1018 haven't seen the PTRACE_EVENT_CLONE extended
1019 event yet. */
1020 if (debug_linux_nat)
1021 fprintf_unfiltered (gdb_stdlog,
1022 "LLAL: attach failed, but already seen "
1023 "this thread %s stop\n",
1024 target_pid_to_str (ptid));
1025 return 1;
1026 }
1027 else
1028 {
1029 int new_pid;
1030 int status;
1031
1032 if (debug_linux_nat)
1033 fprintf_unfiltered (gdb_stdlog,
1034 "LLAL: attach failed, and haven't seen "
1035 "this thread %s stop yet\n",
1036 target_pid_to_str (ptid));
1037
1038 /* We may or may not be attached to the LWP already.
1039 Try waitpid on it. If that errors, we're not
1040 attached to the LWP yet. Otherwise, we're
1041 already attached. */
1042 gdb_assert (lwpid > 0);
1043 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1044 if (new_pid == -1 && errno == ECHILD)
1045 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1046 if (new_pid != -1)
1047 {
1048 if (new_pid == 0)
1049 {
1050 /* The child hasn't stopped for its initial
1051 SIGSTOP stop yet. */
1052 if (debug_linux_nat)
1053 fprintf_unfiltered (gdb_stdlog,
1054 "LLAL: child hasn't "
1055 "stopped yet\n");
1056 }
1057 else if (WIFSTOPPED (status))
1058 {
1059 if (debug_linux_nat)
1060 fprintf_unfiltered (gdb_stdlog,
1061 "LLAL: adding to stopped_pids\n");
1062 add_to_pid_list (&stopped_pids, lwpid, status);
1063 }
1064 return 1;
1065 }
1066 }
1067 }
1068
1069 /* If we fail to attach to the thread, issue a warning,
1070 but continue. One way this can happen is if thread
1071 creation is interrupted; as of Linux kernel 2.6.19, a
1072 bug may place threads in the thread list and then fail
1073 to create them. */
1074 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1075 safe_strerror (errno));
1076 return -1;
1077 }
1078
1079 if (debug_linux_nat)
1080 fprintf_unfiltered (gdb_stdlog,
1081 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1082 target_pid_to_str (ptid));
1083
1084 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1085 if (!WIFSTOPPED (status))
1086 return 1;
1087
1088 lp = add_lwp (ptid);
1089 lp->stopped = 1;
1090 lp->last_resume_kind = resume_stop;
1091 lp->cloned = cloned;
1092 lp->signalled = signalled;
1093 if (WSTOPSIG (status) != SIGSTOP)
1094 {
1095 lp->resumed = 1;
1096 lp->status = status;
1097 }
1098
1099 target_post_attach (ptid_get_lwp (lp->ptid));
1100
1101 if (debug_linux_nat)
1102 {
1103 fprintf_unfiltered (gdb_stdlog,
1104 "LLAL: waitpid %s received %s\n",
1105 target_pid_to_str (ptid),
1106 status_to_str (status));
1107 }
1108 }
1109
1110 return 0;
1111 }
1112
1113 static void
1114 linux_nat_create_inferior (struct target_ops *ops,
1115 char *exec_file, char *allargs, char **env,
1116 int from_tty)
1117 {
1118 struct cleanup *restore_personality
1119 = maybe_disable_address_space_randomization (disable_randomization);
1120
1121 /* The fork_child mechanism is synchronous and calls target_wait, so
1122 we have to mask the async mode. */
1123
1124 /* Make sure we report all signals during startup. */
1125 linux_nat_pass_signals (ops, 0, NULL);
1126
1127 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1128
1129 do_cleanups (restore_personality);
1130 }
1131
1132 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1133 already attached. Returns true if a new LWP is found, false
1134 otherwise. */
1135
1136 static int
1137 attach_proc_task_lwp_callback (ptid_t ptid)
1138 {
1139 struct lwp_info *lp;
1140
1141 /* Ignore LWPs we're already attached to. */
1142 lp = find_lwp_pid (ptid);
1143 if (lp == NULL)
1144 {
1145 int lwpid = ptid_get_lwp (ptid);
1146
1147 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1148 {
1149 int err = errno;
1150
1151 /* Be quiet if we simply raced with the thread exiting.
1152 EPERM is returned if the thread's task still exists, and
1153 is marked as exited or zombie, as well as other
1154 conditions, so in that case, confirm the status in
1155 /proc/PID/status. */
1156 if (err == ESRCH
1157 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1158 {
1159 if (debug_linux_nat)
1160 {
1161 fprintf_unfiltered (gdb_stdlog,
1162 "Cannot attach to lwp %d: "
1163 "thread is gone (%d: %s)\n",
1164 lwpid, err, safe_strerror (err));
1165 }
1166 }
1167 else
1168 {
1169 warning (_("Cannot attach to lwp %d: %s"),
1170 lwpid,
1171 linux_ptrace_attach_fail_reason_string (ptid,
1172 err));
1173 }
1174 }
1175 else
1176 {
1177 if (debug_linux_nat)
1178 fprintf_unfiltered (gdb_stdlog,
1179 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1180 target_pid_to_str (ptid));
1181
1182 lp = add_lwp (ptid);
1183 lp->cloned = 1;
1184
1185 /* The next time we wait for this LWP we'll see a SIGSTOP as
1186 PTRACE_ATTACH brings it to a halt. */
1187 lp->signalled = 1;
1188
1189 /* We need to wait for a stop before being able to make the
1190 next ptrace call on this LWP. */
1191 lp->must_set_ptrace_flags = 1;
1192 }
1193
1194 return 1;
1195 }
1196 return 0;
1197 }
1198
1199 static void
1200 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1201 {
1202 struct lwp_info *lp;
1203 int status;
1204 ptid_t ptid;
1205
1206 /* Make sure we report all signals during attach. */
1207 linux_nat_pass_signals (ops, 0, NULL);
1208
1209 TRY
1210 {
1211 linux_ops->to_attach (ops, args, from_tty);
1212 }
1213 CATCH (ex, RETURN_MASK_ERROR)
1214 {
1215 pid_t pid = parse_pid_to_attach (args);
1216 struct buffer buffer;
1217 char *message, *buffer_s;
1218
1219 message = xstrdup (ex.message);
1220 make_cleanup (xfree, message);
1221
1222 buffer_init (&buffer);
1223 linux_ptrace_attach_fail_reason (pid, &buffer);
1224
1225 buffer_grow_str0 (&buffer, "");
1226 buffer_s = buffer_finish (&buffer);
1227 make_cleanup (xfree, buffer_s);
1228
1229 if (*buffer_s != '\0')
1230 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1231 else
1232 throw_error (ex.error, "%s", message);
1233 }
1234 END_CATCH
1235
1236 /* The ptrace base target adds the main thread with (pid,0,0)
1237 format. Decorate it with lwp info. */
1238 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1239 ptid_get_pid (inferior_ptid),
1240 0);
1241 thread_change_ptid (inferior_ptid, ptid);
1242
1243 /* Add the initial process as the first LWP to the list. */
1244 lp = add_initial_lwp (ptid);
1245
1246 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1247 &lp->signalled);
1248 if (!WIFSTOPPED (status))
1249 {
1250 if (WIFEXITED (status))
1251 {
1252 int exit_code = WEXITSTATUS (status);
1253
1254 target_terminal_ours ();
1255 target_mourn_inferior ();
1256 if (exit_code == 0)
1257 error (_("Unable to attach: program exited normally."));
1258 else
1259 error (_("Unable to attach: program exited with code %d."),
1260 exit_code);
1261 }
1262 else if (WIFSIGNALED (status))
1263 {
1264 enum gdb_signal signo;
1265
1266 target_terminal_ours ();
1267 target_mourn_inferior ();
1268
1269 signo = gdb_signal_from_host (WTERMSIG (status));
1270 error (_("Unable to attach: program terminated with signal "
1271 "%s, %s."),
1272 gdb_signal_to_name (signo),
1273 gdb_signal_to_string (signo));
1274 }
1275
1276 internal_error (__FILE__, __LINE__,
1277 _("unexpected status %d for PID %ld"),
1278 status, (long) ptid_get_lwp (ptid));
1279 }
1280
1281 lp->stopped = 1;
1282
1283 /* Save the wait status to report later. */
1284 lp->resumed = 1;
1285 if (debug_linux_nat)
1286 fprintf_unfiltered (gdb_stdlog,
1287 "LNA: waitpid %ld, saving status %s\n",
1288 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1289
1290 lp->status = status;
1291
1292 /* We must attach to every LWP. If /proc is mounted, use that to
1293 find them now. The inferior may be using raw clone instead of
1294 using pthreads. But even if it is using pthreads, thread_db
1295 walks structures in the inferior's address space to find the list
1296 of threads/LWPs, and those structures may well be corrupted.
1297 Note that once thread_db is loaded, we'll still use it to list
1298 threads and associate pthread info with each LWP. */
1299 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1300 attach_proc_task_lwp_callback);
1301
1302 if (target_can_async_p ())
1303 target_async (inferior_event_handler, 0);
1304 }
1305
1306 /* Get pending status of LP. */
1307 static int
1308 get_pending_status (struct lwp_info *lp, int *status)
1309 {
1310 enum gdb_signal signo = GDB_SIGNAL_0;
1311
1312 /* If we paused threads momentarily, we may have stored pending
1313 events in lp->status or lp->waitstatus (see stop_wait_callback),
1314 and GDB core hasn't seen any signal for those threads.
1315 Otherwise, the last signal reported to the core is found in the
1316 thread object's stop_signal.
1317
1318 There's a corner case that isn't handled here at present. Only
1319 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1320 stop_signal make sense as a real signal to pass to the inferior.
1321 Some catchpoint related events, like
1322 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1323 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1324 those traps are debug API (ptrace in our case) related and
1325 induced; the inferior wouldn't see them if it wasn't being
1326 traced. Hence, we should never pass them to the inferior, even
1327 when set to pass state. Since this corner case isn't handled by
1328 infrun.c when proceeding with a signal, for consistency, neither
1329 do we handle it here (or elsewhere in the file we check for
1330 signal pass state). Normally SIGTRAP isn't set to pass state, so
1331 this is really a corner case. */
1332
1333 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1334 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1335 else if (lp->status)
1336 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1337 else if (non_stop && !is_executing (lp->ptid))
1338 {
1339 struct thread_info *tp = find_thread_ptid (lp->ptid);
1340
1341 signo = tp->suspend.stop_signal;
1342 }
1343 else if (!non_stop)
1344 {
1345 struct target_waitstatus last;
1346 ptid_t last_ptid;
1347
1348 get_last_target_status (&last_ptid, &last);
1349
1350 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1351 {
1352 struct thread_info *tp = find_thread_ptid (lp->ptid);
1353
1354 signo = tp->suspend.stop_signal;
1355 }
1356 }
1357
1358 *status = 0;
1359
1360 if (signo == GDB_SIGNAL_0)
1361 {
1362 if (debug_linux_nat)
1363 fprintf_unfiltered (gdb_stdlog,
1364 "GPT: lwp %s has no pending signal\n",
1365 target_pid_to_str (lp->ptid));
1366 }
1367 else if (!signal_pass_state (signo))
1368 {
1369 if (debug_linux_nat)
1370 fprintf_unfiltered (gdb_stdlog,
1371 "GPT: lwp %s had signal %s, "
1372 "but it is in no pass state\n",
1373 target_pid_to_str (lp->ptid),
1374 gdb_signal_to_string (signo));
1375 }
1376 else
1377 {
1378 *status = W_STOPCODE (gdb_signal_to_host (signo));
1379
1380 if (debug_linux_nat)
1381 fprintf_unfiltered (gdb_stdlog,
1382 "GPT: lwp %s has pending signal %s\n",
1383 target_pid_to_str (lp->ptid),
1384 gdb_signal_to_string (signo));
1385 }
1386
1387 return 0;
1388 }
1389
1390 static int
1391 detach_callback (struct lwp_info *lp, void *data)
1392 {
1393 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1394
1395 if (debug_linux_nat && lp->status)
1396 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1397 strsignal (WSTOPSIG (lp->status)),
1398 target_pid_to_str (lp->ptid));
1399
1400 /* If there is a pending SIGSTOP, get rid of it. */
1401 if (lp->signalled)
1402 {
1403 if (debug_linux_nat)
1404 fprintf_unfiltered (gdb_stdlog,
1405 "DC: Sending SIGCONT to %s\n",
1406 target_pid_to_str (lp->ptid));
1407
1408 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1409 lp->signalled = 0;
1410 }
1411
1412 /* We don't actually detach from the LWP that has an id equal to the
1413 overall process id just yet. */
1414 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1415 {
1416 int status = 0;
1417
1418 /* Pass on any pending signal for this LWP. */
1419 get_pending_status (lp, &status);
1420
1421 if (linux_nat_prepare_to_resume != NULL)
1422 linux_nat_prepare_to_resume (lp);
1423 errno = 0;
1424 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1425 WSTOPSIG (status)) < 0)
1426 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1427 safe_strerror (errno));
1428
1429 if (debug_linux_nat)
1430 fprintf_unfiltered (gdb_stdlog,
1431 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1432 target_pid_to_str (lp->ptid),
1433 strsignal (WSTOPSIG (status)));
1434
1435 delete_lwp (lp->ptid);
1436 }
1437
1438 return 0;
1439 }
1440
1441 static void
1442 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1443 {
1444 int pid;
1445 int status;
1446 struct lwp_info *main_lwp;
1447
1448 pid = ptid_get_pid (inferior_ptid);
1449
1450 /* Don't unregister from the event loop, as there may be other
1451 inferiors running. */
1452
1453 /* Stop all threads before detaching. ptrace requires that the
1454 thread is stopped to sucessfully detach. */
1455 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1456 /* ... and wait until all of them have reported back that
1457 they're no longer running. */
1458 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1459
1460 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1461
1462 /* Only the initial process should be left right now. */
1463 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1464
1465 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1466
1467 /* Pass on any pending signal for the last LWP. */
1468 if ((args == NULL || *args == '\0')
1469 && get_pending_status (main_lwp, &status) != -1
1470 && WIFSTOPPED (status))
1471 {
1472 char *tem;
1473
1474 /* Put the signal number in ARGS so that inf_ptrace_detach will
1475 pass it along with PTRACE_DETACH. */
1476 tem = alloca (8);
1477 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1478 args = tem;
1479 if (debug_linux_nat)
1480 fprintf_unfiltered (gdb_stdlog,
1481 "LND: Sending signal %s to %s\n",
1482 args,
1483 target_pid_to_str (main_lwp->ptid));
1484 }
1485
1486 if (linux_nat_prepare_to_resume != NULL)
1487 linux_nat_prepare_to_resume (main_lwp);
1488 delete_lwp (main_lwp->ptid);
1489
1490 if (forks_exist_p ())
1491 {
1492 /* Multi-fork case. The current inferior_ptid is being detached
1493 from, but there are other viable forks to debug. Detach from
1494 the current fork, and context-switch to the first
1495 available. */
1496 linux_fork_detach (args, from_tty);
1497 }
1498 else
1499 linux_ops->to_detach (ops, args, from_tty);
1500 }
1501
1502 /* Resume execution of the inferior process. If STEP is nonzero,
1503 single-step it. If SIGNAL is nonzero, give it that signal. */
1504
1505 static void
1506 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1507 {
1508 lp->step = step;
1509
1510 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1511 We only presently need that if the LWP is stepped though (to
1512 handle the case of stepping a breakpoint instruction). */
1513 if (step)
1514 {
1515 struct regcache *regcache = get_thread_regcache (lp->ptid);
1516
1517 lp->stop_pc = regcache_read_pc (regcache);
1518 }
1519 else
1520 lp->stop_pc = 0;
1521
1522 if (linux_nat_prepare_to_resume != NULL)
1523 linux_nat_prepare_to_resume (lp);
1524 linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1525 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1526 lp->stopped = 0;
1527 registers_changed_ptid (lp->ptid);
1528 }
1529
1530 /* Resume LP. */
1531
1532 static void
1533 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1534 {
1535 if (lp->stopped)
1536 {
1537 struct inferior *inf = find_inferior_ptid (lp->ptid);
1538
1539 if (inf->vfork_child != NULL)
1540 {
1541 if (debug_linux_nat)
1542 fprintf_unfiltered (gdb_stdlog,
1543 "RC: Not resuming %s (vfork parent)\n",
1544 target_pid_to_str (lp->ptid));
1545 }
1546 else if (!lwp_status_pending_p (lp))
1547 {
1548 if (debug_linux_nat)
1549 fprintf_unfiltered (gdb_stdlog,
1550 "RC: Resuming sibling %s, %s, %s\n",
1551 target_pid_to_str (lp->ptid),
1552 (signo != GDB_SIGNAL_0
1553 ? strsignal (gdb_signal_to_host (signo))
1554 : "0"),
1555 step ? "step" : "resume");
1556
1557 linux_resume_one_lwp (lp, step, signo);
1558 }
1559 else
1560 {
1561 if (debug_linux_nat)
1562 fprintf_unfiltered (gdb_stdlog,
1563 "RC: Not resuming sibling %s (has pending)\n",
1564 target_pid_to_str (lp->ptid));
1565 }
1566 }
1567 else
1568 {
1569 if (debug_linux_nat)
1570 fprintf_unfiltered (gdb_stdlog,
1571 "RC: Not resuming sibling %s (not stopped)\n",
1572 target_pid_to_str (lp->ptid));
1573 }
1574 }
1575
1576 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1577 Resume LWP with the last stop signal, if it is in pass state. */
1578
1579 static int
1580 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1581 {
1582 enum gdb_signal signo = GDB_SIGNAL_0;
1583
1584 if (lp == except)
1585 return 0;
1586
1587 if (lp->stopped)
1588 {
1589 struct thread_info *thread;
1590
1591 thread = find_thread_ptid (lp->ptid);
1592 if (thread != NULL)
1593 {
1594 signo = thread->suspend.stop_signal;
1595 thread->suspend.stop_signal = GDB_SIGNAL_0;
1596 }
1597 }
1598
1599 resume_lwp (lp, 0, signo);
1600 return 0;
1601 }
1602
1603 static int
1604 resume_clear_callback (struct lwp_info *lp, void *data)
1605 {
1606 lp->resumed = 0;
1607 lp->last_resume_kind = resume_stop;
1608 return 0;
1609 }
1610
1611 static int
1612 resume_set_callback (struct lwp_info *lp, void *data)
1613 {
1614 lp->resumed = 1;
1615 lp->last_resume_kind = resume_continue;
1616 return 0;
1617 }
1618
1619 static void
1620 linux_nat_resume (struct target_ops *ops,
1621 ptid_t ptid, int step, enum gdb_signal signo)
1622 {
1623 struct lwp_info *lp;
1624 int resume_many;
1625
1626 if (debug_linux_nat)
1627 fprintf_unfiltered (gdb_stdlog,
1628 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1629 step ? "step" : "resume",
1630 target_pid_to_str (ptid),
1631 (signo != GDB_SIGNAL_0
1632 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1633 target_pid_to_str (inferior_ptid));
1634
1635 /* A specific PTID means `step only this process id'. */
1636 resume_many = (ptid_equal (minus_one_ptid, ptid)
1637 || ptid_is_pid (ptid));
1638
1639 /* Mark the lwps we're resuming as resumed. */
1640 iterate_over_lwps (ptid, resume_set_callback, NULL);
1641
1642 /* See if it's the current inferior that should be handled
1643 specially. */
1644 if (resume_many)
1645 lp = find_lwp_pid (inferior_ptid);
1646 else
1647 lp = find_lwp_pid (ptid);
1648 gdb_assert (lp != NULL);
1649
1650 /* Remember if we're stepping. */
1651 lp->last_resume_kind = step ? resume_step : resume_continue;
1652
1653 /* If we have a pending wait status for this thread, there is no
1654 point in resuming the process. But first make sure that
1655 linux_nat_wait won't preemptively handle the event - we
1656 should never take this short-circuit if we are going to
1657 leave LP running, since we have skipped resuming all the
1658 other threads. This bit of code needs to be synchronized
1659 with linux_nat_wait. */
1660
1661 if (lp->status && WIFSTOPPED (lp->status))
1662 {
1663 if (!lp->step
1664 && WSTOPSIG (lp->status)
1665 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1666 {
1667 if (debug_linux_nat)
1668 fprintf_unfiltered (gdb_stdlog,
1669 "LLR: Not short circuiting for ignored "
1670 "status 0x%x\n", lp->status);
1671
1672 /* FIXME: What should we do if we are supposed to continue
1673 this thread with a signal? */
1674 gdb_assert (signo == GDB_SIGNAL_0);
1675 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1676 lp->status = 0;
1677 }
1678 }
1679
1680 if (lwp_status_pending_p (lp))
1681 {
1682 /* FIXME: What should we do if we are supposed to continue
1683 this thread with a signal? */
1684 gdb_assert (signo == GDB_SIGNAL_0);
1685
1686 if (debug_linux_nat)
1687 fprintf_unfiltered (gdb_stdlog,
1688 "LLR: Short circuiting for status 0x%x\n",
1689 lp->status);
1690
1691 if (target_can_async_p ())
1692 {
1693 target_async (inferior_event_handler, 0);
1694 /* Tell the event loop we have something to process. */
1695 async_file_mark ();
1696 }
1697 return;
1698 }
1699
1700 if (resume_many)
1701 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1702
1703 linux_resume_one_lwp (lp, step, signo);
1704
1705 if (debug_linux_nat)
1706 fprintf_unfiltered (gdb_stdlog,
1707 "LLR: %s %s, %s (resume event thread)\n",
1708 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1709 target_pid_to_str (ptid),
1710 (signo != GDB_SIGNAL_0
1711 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1712
1713 if (target_can_async_p ())
1714 target_async (inferior_event_handler, 0);
1715 }
1716
1717 /* Send a signal to an LWP. */
1718
1719 static int
1720 kill_lwp (int lwpid, int signo)
1721 {
1722 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1723 fails, then we are not using nptl threads and we should be using kill. */
1724
1725 #ifdef HAVE_TKILL_SYSCALL
1726 {
1727 static int tkill_failed;
1728
1729 if (!tkill_failed)
1730 {
1731 int ret;
1732
1733 errno = 0;
1734 ret = syscall (__NR_tkill, lwpid, signo);
1735 if (errno != ENOSYS)
1736 return ret;
1737 tkill_failed = 1;
1738 }
1739 }
1740 #endif
1741
1742 return kill (lwpid, signo);
1743 }
1744
1745 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1746 event, check if the core is interested in it: if not, ignore the
1747 event, and keep waiting; otherwise, we need to toggle the LWP's
1748 syscall entry/exit status, since the ptrace event itself doesn't
1749 indicate it, and report the trap to higher layers. */
1750
1751 static int
1752 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1753 {
1754 struct target_waitstatus *ourstatus = &lp->waitstatus;
1755 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1756 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1757
1758 if (stopping)
1759 {
1760 /* If we're stopping threads, there's a SIGSTOP pending, which
1761 makes it so that the LWP reports an immediate syscall return,
1762 followed by the SIGSTOP. Skip seeing that "return" using
1763 PTRACE_CONT directly, and let stop_wait_callback collect the
1764 SIGSTOP. Later when the thread is resumed, a new syscall
1765 entry event. If we didn't do this (and returned 0), we'd
1766 leave a syscall entry pending, and our caller, by using
1767 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1768 itself. Later, when the user re-resumes this LWP, we'd see
1769 another syscall entry event and we'd mistake it for a return.
1770
1771 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1772 (leaving immediately with LWP->signalled set, without issuing
1773 a PTRACE_CONT), it would still be problematic to leave this
1774 syscall enter pending, as later when the thread is resumed,
1775 it would then see the same syscall exit mentioned above,
1776 followed by the delayed SIGSTOP, while the syscall didn't
1777 actually get to execute. It seems it would be even more
1778 confusing to the user. */
1779
1780 if (debug_linux_nat)
1781 fprintf_unfiltered (gdb_stdlog,
1782 "LHST: ignoring syscall %d "
1783 "for LWP %ld (stopping threads), "
1784 "resuming with PTRACE_CONT for SIGSTOP\n",
1785 syscall_number,
1786 ptid_get_lwp (lp->ptid));
1787
1788 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1789 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1790 lp->stopped = 0;
1791 return 1;
1792 }
1793
1794 if (catch_syscall_enabled ())
1795 {
1796 /* Always update the entry/return state, even if this particular
1797 syscall isn't interesting to the core now. In async mode,
1798 the user could install a new catchpoint for this syscall
1799 between syscall enter/return, and we'll need to know to
1800 report a syscall return if that happens. */
1801 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1802 ? TARGET_WAITKIND_SYSCALL_RETURN
1803 : TARGET_WAITKIND_SYSCALL_ENTRY);
1804
1805 if (catching_syscall_number (syscall_number))
1806 {
1807 /* Alright, an event to report. */
1808 ourstatus->kind = lp->syscall_state;
1809 ourstatus->value.syscall_number = syscall_number;
1810
1811 if (debug_linux_nat)
1812 fprintf_unfiltered (gdb_stdlog,
1813 "LHST: stopping for %s of syscall %d"
1814 " for LWP %ld\n",
1815 lp->syscall_state
1816 == TARGET_WAITKIND_SYSCALL_ENTRY
1817 ? "entry" : "return",
1818 syscall_number,
1819 ptid_get_lwp (lp->ptid));
1820 return 0;
1821 }
1822
1823 if (debug_linux_nat)
1824 fprintf_unfiltered (gdb_stdlog,
1825 "LHST: ignoring %s of syscall %d "
1826 "for LWP %ld\n",
1827 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1828 ? "entry" : "return",
1829 syscall_number,
1830 ptid_get_lwp (lp->ptid));
1831 }
1832 else
1833 {
1834 /* If we had been syscall tracing, and hence used PT_SYSCALL
1835 before on this LWP, it could happen that the user removes all
1836 syscall catchpoints before we get to process this event.
1837 There are two noteworthy issues here:
1838
1839 - When stopped at a syscall entry event, resuming with
1840 PT_STEP still resumes executing the syscall and reports a
1841 syscall return.
1842
1843 - Only PT_SYSCALL catches syscall enters. If we last
1844 single-stepped this thread, then this event can't be a
1845 syscall enter. If we last single-stepped this thread, this
1846 has to be a syscall exit.
1847
1848 The points above mean that the next resume, be it PT_STEP or
1849 PT_CONTINUE, can not trigger a syscall trace event. */
1850 if (debug_linux_nat)
1851 fprintf_unfiltered (gdb_stdlog,
1852 "LHST: caught syscall event "
1853 "with no syscall catchpoints."
1854 " %d for LWP %ld, ignoring\n",
1855 syscall_number,
1856 ptid_get_lwp (lp->ptid));
1857 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1858 }
1859
1860 /* The core isn't interested in this event. For efficiency, avoid
1861 stopping all threads only to have the core resume them all again.
1862 Since we're not stopping threads, if we're still syscall tracing
1863 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1864 subsequent syscall. Simply resume using the inf-ptrace layer,
1865 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1866
1867 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1868 return 1;
1869 }
1870
1871 /* Handle a GNU/Linux extended wait response. If we see a clone
1872 event, we need to add the new LWP to our list (and not report the
1873 trap to higher layers). This function returns non-zero if the
1874 event should be ignored and we should wait again. If STOPPING is
1875 true, the new LWP remains stopped, otherwise it is continued. */
1876
1877 static int
1878 linux_handle_extended_wait (struct lwp_info *lp, int status,
1879 int stopping)
1880 {
1881 int pid = ptid_get_lwp (lp->ptid);
1882 struct target_waitstatus *ourstatus = &lp->waitstatus;
1883 int event = linux_ptrace_get_extended_event (status);
1884
1885 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1886 || event == PTRACE_EVENT_CLONE)
1887 {
1888 unsigned long new_pid;
1889 int ret;
1890
1891 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1892
1893 /* If we haven't already seen the new PID stop, wait for it now. */
1894 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1895 {
1896 /* The new child has a pending SIGSTOP. We can't affect it until it
1897 hits the SIGSTOP, but we're already attached. */
1898 ret = my_waitpid (new_pid, &status,
1899 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1900 if (ret == -1)
1901 perror_with_name (_("waiting for new child"));
1902 else if (ret != new_pid)
1903 internal_error (__FILE__, __LINE__,
1904 _("wait returned unexpected PID %d"), ret);
1905 else if (!WIFSTOPPED (status))
1906 internal_error (__FILE__, __LINE__,
1907 _("wait returned unexpected status 0x%x"), status);
1908 }
1909
1910 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
1911
1912 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1913 {
1914 /* The arch-specific native code may need to know about new
1915 forks even if those end up never mapped to an
1916 inferior. */
1917 if (linux_nat_new_fork != NULL)
1918 linux_nat_new_fork (lp, new_pid);
1919 }
1920
1921 if (event == PTRACE_EVENT_FORK
1922 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
1923 {
1924 /* Handle checkpointing by linux-fork.c here as a special
1925 case. We don't want the follow-fork-mode or 'catch fork'
1926 to interfere with this. */
1927
1928 /* This won't actually modify the breakpoint list, but will
1929 physically remove the breakpoints from the child. */
1930 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
1931
1932 /* Retain child fork in ptrace (stopped) state. */
1933 if (!find_fork_pid (new_pid))
1934 add_fork (new_pid);
1935
1936 /* Report as spurious, so that infrun doesn't want to follow
1937 this fork. We're actually doing an infcall in
1938 linux-fork.c. */
1939 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1940
1941 /* Report the stop to the core. */
1942 return 0;
1943 }
1944
1945 if (event == PTRACE_EVENT_FORK)
1946 ourstatus->kind = TARGET_WAITKIND_FORKED;
1947 else if (event == PTRACE_EVENT_VFORK)
1948 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1949 else
1950 {
1951 struct lwp_info *new_lp;
1952
1953 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1954
1955 if (debug_linux_nat)
1956 fprintf_unfiltered (gdb_stdlog,
1957 "LHEW: Got clone event "
1958 "from LWP %d, new child is LWP %ld\n",
1959 pid, new_pid);
1960
1961 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
1962 new_lp->cloned = 1;
1963 new_lp->stopped = 1;
1964
1965 if (WSTOPSIG (status) != SIGSTOP)
1966 {
1967 /* This can happen if someone starts sending signals to
1968 the new thread before it gets a chance to run, which
1969 have a lower number than SIGSTOP (e.g. SIGUSR1).
1970 This is an unlikely case, and harder to handle for
1971 fork / vfork than for clone, so we do not try - but
1972 we handle it for clone events here. We'll send
1973 the other signal on to the thread below. */
1974
1975 new_lp->signalled = 1;
1976 }
1977 else
1978 {
1979 struct thread_info *tp;
1980
1981 /* When we stop for an event in some other thread, and
1982 pull the thread list just as this thread has cloned,
1983 we'll have seen the new thread in the thread_db list
1984 before handling the CLONE event (glibc's
1985 pthread_create adds the new thread to the thread list
1986 before clone'ing, and has the kernel fill in the
1987 thread's tid on the clone call with
1988 CLONE_PARENT_SETTID). If that happened, and the core
1989 had requested the new thread to stop, we'll have
1990 killed it with SIGSTOP. But since SIGSTOP is not an
1991 RT signal, it can only be queued once. We need to be
1992 careful to not resume the LWP if we wanted it to
1993 stop. In that case, we'll leave the SIGSTOP pending.
1994 It will later be reported as GDB_SIGNAL_0. */
1995 tp = find_thread_ptid (new_lp->ptid);
1996 if (tp != NULL && tp->stop_requested)
1997 new_lp->last_resume_kind = resume_stop;
1998 else
1999 status = 0;
2000 }
2001
2002 /* If the thread_db layer is active, let it record the user
2003 level thread id and status, and add the thread to GDB's
2004 list. */
2005 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2006 {
2007 /* The process is not using thread_db. Add the LWP to
2008 GDB's list. */
2009 target_post_attach (ptid_get_lwp (new_lp->ptid));
2010 add_thread (new_lp->ptid);
2011 }
2012
2013 if (!stopping)
2014 {
2015 set_running (new_lp->ptid, 1);
2016 set_executing (new_lp->ptid, 1);
2017 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2018 resume_stop. */
2019 new_lp->last_resume_kind = resume_continue;
2020 }
2021
2022 if (status != 0)
2023 {
2024 /* We created NEW_LP so it cannot yet contain STATUS. */
2025 gdb_assert (new_lp->status == 0);
2026
2027 /* Save the wait status to report later. */
2028 if (debug_linux_nat)
2029 fprintf_unfiltered (gdb_stdlog,
2030 "LHEW: waitpid of new LWP %ld, "
2031 "saving status %s\n",
2032 (long) ptid_get_lwp (new_lp->ptid),
2033 status_to_str (status));
2034 new_lp->status = status;
2035 }
2036
2037 new_lp->resumed = !stopping;
2038 return 1;
2039 }
2040
2041 return 0;
2042 }
2043
2044 if (event == PTRACE_EVENT_EXEC)
2045 {
2046 if (debug_linux_nat)
2047 fprintf_unfiltered (gdb_stdlog,
2048 "LHEW: Got exec event from LWP %ld\n",
2049 ptid_get_lwp (lp->ptid));
2050
2051 ourstatus->kind = TARGET_WAITKIND_EXECD;
2052 ourstatus->value.execd_pathname
2053 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2054
2055 /* The thread that execed must have been resumed, but, when a
2056 thread execs, it changes its tid to the tgid, and the old
2057 tgid thread might have not been resumed. */
2058 lp->resumed = 1;
2059 return 0;
2060 }
2061
2062 if (event == PTRACE_EVENT_VFORK_DONE)
2063 {
2064 if (current_inferior ()->waiting_for_vfork_done)
2065 {
2066 if (debug_linux_nat)
2067 fprintf_unfiltered (gdb_stdlog,
2068 "LHEW: Got expected PTRACE_EVENT_"
2069 "VFORK_DONE from LWP %ld: stopping\n",
2070 ptid_get_lwp (lp->ptid));
2071
2072 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2073 return 0;
2074 }
2075
2076 if (debug_linux_nat)
2077 fprintf_unfiltered (gdb_stdlog,
2078 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2079 "from LWP %ld: ignoring\n",
2080 ptid_get_lwp (lp->ptid));
2081 return 1;
2082 }
2083
2084 internal_error (__FILE__, __LINE__,
2085 _("unknown ptrace event %d"), event);
2086 }
2087
2088 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2089 exited. */
2090
2091 static int
2092 wait_lwp (struct lwp_info *lp)
2093 {
2094 pid_t pid;
2095 int status = 0;
2096 int thread_dead = 0;
2097 sigset_t prev_mask;
2098
2099 gdb_assert (!lp->stopped);
2100 gdb_assert (lp->status == 0);
2101
2102 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2103 block_child_signals (&prev_mask);
2104
2105 for (;;)
2106 {
2107 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2108 was right and we should just call sigsuspend. */
2109
2110 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2111 if (pid == -1 && errno == ECHILD)
2112 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2113 if (pid == -1 && errno == ECHILD)
2114 {
2115 /* The thread has previously exited. We need to delete it
2116 now because, for some vendor 2.4 kernels with NPTL
2117 support backported, there won't be an exit event unless
2118 it is the main thread. 2.6 kernels will report an exit
2119 event for each thread that exits, as expected. */
2120 thread_dead = 1;
2121 if (debug_linux_nat)
2122 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2123 target_pid_to_str (lp->ptid));
2124 }
2125 if (pid != 0)
2126 break;
2127
2128 /* Bugs 10970, 12702.
2129 Thread group leader may have exited in which case we'll lock up in
2130 waitpid if there are other threads, even if they are all zombies too.
2131 Basically, we're not supposed to use waitpid this way.
2132 __WCLONE is not applicable for the leader so we can't use that.
2133 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2134 process; it gets ESRCH both for the zombie and for running processes.
2135
2136 As a workaround, check if we're waiting for the thread group leader and
2137 if it's a zombie, and avoid calling waitpid if it is.
2138
2139 This is racy, what if the tgl becomes a zombie right after we check?
2140 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2141 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2142
2143 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2144 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2145 {
2146 thread_dead = 1;
2147 if (debug_linux_nat)
2148 fprintf_unfiltered (gdb_stdlog,
2149 "WL: Thread group leader %s vanished.\n",
2150 target_pid_to_str (lp->ptid));
2151 break;
2152 }
2153
2154 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2155 get invoked despite our caller had them intentionally blocked by
2156 block_child_signals. This is sensitive only to the loop of
2157 linux_nat_wait_1 and there if we get called my_waitpid gets called
2158 again before it gets to sigsuspend so we can safely let the handlers
2159 get executed here. */
2160
2161 if (debug_linux_nat)
2162 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2163 sigsuspend (&suspend_mask);
2164 }
2165
2166 restore_child_signals_mask (&prev_mask);
2167
2168 if (!thread_dead)
2169 {
2170 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2171
2172 if (debug_linux_nat)
2173 {
2174 fprintf_unfiltered (gdb_stdlog,
2175 "WL: waitpid %s received %s\n",
2176 target_pid_to_str (lp->ptid),
2177 status_to_str (status));
2178 }
2179
2180 /* Check if the thread has exited. */
2181 if (WIFEXITED (status) || WIFSIGNALED (status))
2182 {
2183 thread_dead = 1;
2184 if (debug_linux_nat)
2185 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2186 target_pid_to_str (lp->ptid));
2187 }
2188 }
2189
2190 if (thread_dead)
2191 {
2192 exit_lwp (lp);
2193 return 0;
2194 }
2195
2196 gdb_assert (WIFSTOPPED (status));
2197 lp->stopped = 1;
2198
2199 if (lp->must_set_ptrace_flags)
2200 {
2201 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2202
2203 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), inf->attach_flag);
2204 lp->must_set_ptrace_flags = 0;
2205 }
2206
2207 /* Handle GNU/Linux's syscall SIGTRAPs. */
2208 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2209 {
2210 /* No longer need the sysgood bit. The ptrace event ends up
2211 recorded in lp->waitstatus if we care for it. We can carry
2212 on handling the event like a regular SIGTRAP from here
2213 on. */
2214 status = W_STOPCODE (SIGTRAP);
2215 if (linux_handle_syscall_trap (lp, 1))
2216 return wait_lwp (lp);
2217 }
2218
2219 /* Handle GNU/Linux's extended waitstatus for trace events. */
2220 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2221 && linux_is_extended_waitstatus (status))
2222 {
2223 if (debug_linux_nat)
2224 fprintf_unfiltered (gdb_stdlog,
2225 "WL: Handling extended status 0x%06x\n",
2226 status);
2227 linux_handle_extended_wait (lp, status, 1);
2228 return 0;
2229 }
2230
2231 return status;
2232 }
2233
2234 /* Send a SIGSTOP to LP. */
2235
2236 static int
2237 stop_callback (struct lwp_info *lp, void *data)
2238 {
2239 if (!lp->stopped && !lp->signalled)
2240 {
2241 int ret;
2242
2243 if (debug_linux_nat)
2244 {
2245 fprintf_unfiltered (gdb_stdlog,
2246 "SC: kill %s **<SIGSTOP>**\n",
2247 target_pid_to_str (lp->ptid));
2248 }
2249 errno = 0;
2250 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2251 if (debug_linux_nat)
2252 {
2253 fprintf_unfiltered (gdb_stdlog,
2254 "SC: lwp kill %d %s\n",
2255 ret,
2256 errno ? safe_strerror (errno) : "ERRNO-OK");
2257 }
2258
2259 lp->signalled = 1;
2260 gdb_assert (lp->status == 0);
2261 }
2262
2263 return 0;
2264 }
2265
2266 /* Request a stop on LWP. */
2267
2268 void
2269 linux_stop_lwp (struct lwp_info *lwp)
2270 {
2271 stop_callback (lwp, NULL);
2272 }
2273
2274 /* See linux-nat.h */
2275
2276 void
2277 linux_stop_and_wait_all_lwps (void)
2278 {
2279 /* Stop all LWP's ... */
2280 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2281
2282 /* ... and wait until all of them have reported back that
2283 they're no longer running. */
2284 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2285 }
2286
2287 /* See linux-nat.h */
2288
2289 void
2290 linux_unstop_all_lwps (void)
2291 {
2292 iterate_over_lwps (minus_one_ptid,
2293 resume_stopped_resumed_lwps, &minus_one_ptid);
2294 }
2295
2296 /* Return non-zero if LWP PID has a pending SIGINT. */
2297
2298 static int
2299 linux_nat_has_pending_sigint (int pid)
2300 {
2301 sigset_t pending, blocked, ignored;
2302
2303 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2304
2305 if (sigismember (&pending, SIGINT)
2306 && !sigismember (&ignored, SIGINT))
2307 return 1;
2308
2309 return 0;
2310 }
2311
2312 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2313
2314 static int
2315 set_ignore_sigint (struct lwp_info *lp, void *data)
2316 {
2317 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2318 flag to consume the next one. */
2319 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2320 && WSTOPSIG (lp->status) == SIGINT)
2321 lp->status = 0;
2322 else
2323 lp->ignore_sigint = 1;
2324
2325 return 0;
2326 }
2327
2328 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2329 This function is called after we know the LWP has stopped; if the LWP
2330 stopped before the expected SIGINT was delivered, then it will never have
2331 arrived. Also, if the signal was delivered to a shared queue and consumed
2332 by a different thread, it will never be delivered to this LWP. */
2333
2334 static void
2335 maybe_clear_ignore_sigint (struct lwp_info *lp)
2336 {
2337 if (!lp->ignore_sigint)
2338 return;
2339
2340 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2341 {
2342 if (debug_linux_nat)
2343 fprintf_unfiltered (gdb_stdlog,
2344 "MCIS: Clearing bogus flag for %s\n",
2345 target_pid_to_str (lp->ptid));
2346 lp->ignore_sigint = 0;
2347 }
2348 }
2349
2350 /* Fetch the possible triggered data watchpoint info and store it in
2351 LP.
2352
2353 On some archs, like x86, that use debug registers to set
2354 watchpoints, it's possible that the way to know which watched
2355 address trapped, is to check the register that is used to select
2356 which address to watch. Problem is, between setting the watchpoint
2357 and reading back which data address trapped, the user may change
2358 the set of watchpoints, and, as a consequence, GDB changes the
2359 debug registers in the inferior. To avoid reading back a stale
2360 stopped-data-address when that happens, we cache in LP the fact
2361 that a watchpoint trapped, and the corresponding data address, as
2362 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2363 registers meanwhile, we have the cached data we can rely on. */
2364
2365 static int
2366 check_stopped_by_watchpoint (struct lwp_info *lp)
2367 {
2368 struct cleanup *old_chain;
2369
2370 if (linux_ops->to_stopped_by_watchpoint == NULL)
2371 return 0;
2372
2373 old_chain = save_inferior_ptid ();
2374 inferior_ptid = lp->ptid;
2375
2376 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2377 {
2378 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2379
2380 if (linux_ops->to_stopped_data_address != NULL)
2381 lp->stopped_data_address_p =
2382 linux_ops->to_stopped_data_address (&current_target,
2383 &lp->stopped_data_address);
2384 else
2385 lp->stopped_data_address_p = 0;
2386 }
2387
2388 do_cleanups (old_chain);
2389
2390 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2391 }
2392
2393 /* Called when the LWP stopped for a trap that could be explained by a
2394 watchpoint or a breakpoint. */
2395
2396 static void
2397 save_sigtrap (struct lwp_info *lp)
2398 {
2399 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2400 gdb_assert (lp->status != 0);
2401
2402 /* Check first if this was a SW/HW breakpoint before checking
2403 watchpoints, because at least s390 can't tell the data address of
2404 hardware watchpoint hits, and the kernel returns
2405 stopped-by-watchpoint as long as there's a watchpoint set. */
2406 if (linux_nat_status_is_event (lp->status))
2407 check_stopped_by_breakpoint (lp);
2408
2409 /* Note that TRAP_HWBKPT can indicate either a hardware breakpoint
2410 or hardware watchpoint. Check which is which if we got
2411 TARGET_STOPPED_BY_HW_BREAKPOINT. */
2412 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON
2413 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2414 check_stopped_by_watchpoint (lp);
2415 }
2416
2417 /* Returns true if the LWP had stopped for a watchpoint. */
2418
2419 static int
2420 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2421 {
2422 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2423
2424 gdb_assert (lp != NULL);
2425
2426 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2427 }
2428
2429 static int
2430 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2431 {
2432 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2433
2434 gdb_assert (lp != NULL);
2435
2436 *addr_p = lp->stopped_data_address;
2437
2438 return lp->stopped_data_address_p;
2439 }
2440
2441 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2442
2443 static int
2444 sigtrap_is_event (int status)
2445 {
2446 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2447 }
2448
2449 /* Set alternative SIGTRAP-like events recognizer. If
2450 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2451 applied. */
2452
2453 void
2454 linux_nat_set_status_is_event (struct target_ops *t,
2455 int (*status_is_event) (int status))
2456 {
2457 linux_nat_status_is_event = status_is_event;
2458 }
2459
2460 /* Wait until LP is stopped. */
2461
2462 static int
2463 stop_wait_callback (struct lwp_info *lp, void *data)
2464 {
2465 struct inferior *inf = find_inferior_ptid (lp->ptid);
2466
2467 /* If this is a vfork parent, bail out, it is not going to report
2468 any SIGSTOP until the vfork is done with. */
2469 if (inf->vfork_child != NULL)
2470 return 0;
2471
2472 if (!lp->stopped)
2473 {
2474 int status;
2475
2476 status = wait_lwp (lp);
2477 if (status == 0)
2478 return 0;
2479
2480 if (lp->ignore_sigint && WIFSTOPPED (status)
2481 && WSTOPSIG (status) == SIGINT)
2482 {
2483 lp->ignore_sigint = 0;
2484
2485 errno = 0;
2486 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2487 lp->stopped = 0;
2488 if (debug_linux_nat)
2489 fprintf_unfiltered (gdb_stdlog,
2490 "PTRACE_CONT %s, 0, 0 (%s) "
2491 "(discarding SIGINT)\n",
2492 target_pid_to_str (lp->ptid),
2493 errno ? safe_strerror (errno) : "OK");
2494
2495 return stop_wait_callback (lp, NULL);
2496 }
2497
2498 maybe_clear_ignore_sigint (lp);
2499
2500 if (WSTOPSIG (status) != SIGSTOP)
2501 {
2502 /* The thread was stopped with a signal other than SIGSTOP. */
2503
2504 if (debug_linux_nat)
2505 fprintf_unfiltered (gdb_stdlog,
2506 "SWC: Pending event %s in %s\n",
2507 status_to_str ((int) status),
2508 target_pid_to_str (lp->ptid));
2509
2510 /* Save the sigtrap event. */
2511 lp->status = status;
2512 gdb_assert (lp->signalled);
2513 save_sigtrap (lp);
2514 }
2515 else
2516 {
2517 /* We caught the SIGSTOP that we intended to catch, so
2518 there's no SIGSTOP pending. */
2519
2520 if (debug_linux_nat)
2521 fprintf_unfiltered (gdb_stdlog,
2522 "SWC: Delayed SIGSTOP caught for %s.\n",
2523 target_pid_to_str (lp->ptid));
2524
2525 /* Reset SIGNALLED only after the stop_wait_callback call
2526 above as it does gdb_assert on SIGNALLED. */
2527 lp->signalled = 0;
2528 }
2529 }
2530
2531 return 0;
2532 }
2533
2534 /* Return non-zero if LP has a wait status pending. Discard the
2535 pending event and resume the LWP if the event that originally
2536 caused the stop became uninteresting. */
2537
2538 static int
2539 status_callback (struct lwp_info *lp, void *data)
2540 {
2541 /* Only report a pending wait status if we pretend that this has
2542 indeed been resumed. */
2543 if (!lp->resumed)
2544 return 0;
2545
2546 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2547 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2548 {
2549 struct regcache *regcache = get_thread_regcache (lp->ptid);
2550 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2551 CORE_ADDR pc;
2552 int discard = 0;
2553
2554 gdb_assert (lp->status != 0);
2555
2556 pc = regcache_read_pc (regcache);
2557
2558 if (pc != lp->stop_pc)
2559 {
2560 if (debug_linux_nat)
2561 fprintf_unfiltered (gdb_stdlog,
2562 "SC: PC of %s changed. was=%s, now=%s\n",
2563 target_pid_to_str (lp->ptid),
2564 paddress (target_gdbarch (), lp->stop_pc),
2565 paddress (target_gdbarch (), pc));
2566 discard = 1;
2567 }
2568
2569 #if !USE_SIGTRAP_SIGINFO
2570 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2571 {
2572 if (debug_linux_nat)
2573 fprintf_unfiltered (gdb_stdlog,
2574 "SC: previous breakpoint of %s, at %s gone\n",
2575 target_pid_to_str (lp->ptid),
2576 paddress (target_gdbarch (), lp->stop_pc));
2577
2578 discard = 1;
2579 }
2580 #endif
2581
2582 if (discard)
2583 {
2584 if (debug_linux_nat)
2585 fprintf_unfiltered (gdb_stdlog,
2586 "SC: pending event of %s cancelled.\n",
2587 target_pid_to_str (lp->ptid));
2588
2589 lp->status = 0;
2590 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2591 return 0;
2592 }
2593 return 1;
2594 }
2595
2596 return lwp_status_pending_p (lp);
2597 }
2598
2599 /* Return non-zero if LP isn't stopped. */
2600
2601 static int
2602 running_callback (struct lwp_info *lp, void *data)
2603 {
2604 return (!lp->stopped
2605 || (lwp_status_pending_p (lp) && lp->resumed));
2606 }
2607
2608 /* Count the LWP's that have had events. */
2609
2610 static int
2611 count_events_callback (struct lwp_info *lp, void *data)
2612 {
2613 int *count = data;
2614
2615 gdb_assert (count != NULL);
2616
2617 /* Select only resumed LWPs that have an event pending. */
2618 if (lp->resumed && lwp_status_pending_p (lp))
2619 (*count)++;
2620
2621 return 0;
2622 }
2623
2624 /* Select the LWP (if any) that is currently being single-stepped. */
2625
2626 static int
2627 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2628 {
2629 if (lp->last_resume_kind == resume_step
2630 && lp->status != 0)
2631 return 1;
2632 else
2633 return 0;
2634 }
2635
2636 /* Returns true if LP has a status pending. */
2637
2638 static int
2639 lwp_status_pending_p (struct lwp_info *lp)
2640 {
2641 /* We check for lp->waitstatus in addition to lp->status, because we
2642 can have pending process exits recorded in lp->status and
2643 W_EXITCODE(0,0) happens to be 0. */
2644 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2645 }
2646
2647 /* Select the Nth LWP that has had an event. */
2648
2649 static int
2650 select_event_lwp_callback (struct lwp_info *lp, void *data)
2651 {
2652 int *selector = data;
2653
2654 gdb_assert (selector != NULL);
2655
2656 /* Select only resumed LWPs that have an event pending. */
2657 if (lp->resumed && lwp_status_pending_p (lp))
2658 if ((*selector)-- == 0)
2659 return 1;
2660
2661 return 0;
2662 }
2663
2664 /* Called when the LWP got a signal/trap that could be explained by a
2665 software or hardware breakpoint. */
2666
2667 static int
2668 check_stopped_by_breakpoint (struct lwp_info *lp)
2669 {
2670 /* Arrange for a breakpoint to be hit again later. We don't keep
2671 the SIGTRAP status and don't forward the SIGTRAP signal to the
2672 LWP. We will handle the current event, eventually we will resume
2673 this LWP, and this breakpoint will trap again.
2674
2675 If we do not do this, then we run the risk that the user will
2676 delete or disable the breakpoint, but the LWP will have already
2677 tripped on it. */
2678
2679 struct regcache *regcache = get_thread_regcache (lp->ptid);
2680 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2681 CORE_ADDR pc;
2682 CORE_ADDR sw_bp_pc;
2683 #if USE_SIGTRAP_SIGINFO
2684 siginfo_t siginfo;
2685 #endif
2686
2687 pc = regcache_read_pc (regcache);
2688 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2689
2690 #if USE_SIGTRAP_SIGINFO
2691 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2692 {
2693 if (siginfo.si_signo == SIGTRAP)
2694 {
2695 if (siginfo.si_code == GDB_ARCH_TRAP_BRKPT)
2696 {
2697 if (debug_linux_nat)
2698 fprintf_unfiltered (gdb_stdlog,
2699 "CSBB: Push back software "
2700 "breakpoint for %s\n",
2701 target_pid_to_str (lp->ptid));
2702
2703 /* Back up the PC if necessary. */
2704 if (pc != sw_bp_pc)
2705 regcache_write_pc (regcache, sw_bp_pc);
2706
2707 lp->stop_pc = sw_bp_pc;
2708 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2709 return 1;
2710 }
2711 else if (siginfo.si_code == TRAP_HWBKPT)
2712 {
2713 if (debug_linux_nat)
2714 fprintf_unfiltered (gdb_stdlog,
2715 "CSBB: Push back hardware "
2716 "breakpoint/watchpoint for %s\n",
2717 target_pid_to_str (lp->ptid));
2718
2719 lp->stop_pc = pc;
2720 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2721 return 1;
2722 }
2723 }
2724 }
2725 #else
2726 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2727 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2728 sw_bp_pc))
2729 {
2730 /* The LWP was either continued, or stepped a software
2731 breakpoint instruction. */
2732 if (debug_linux_nat)
2733 fprintf_unfiltered (gdb_stdlog,
2734 "CB: Push back software breakpoint for %s\n",
2735 target_pid_to_str (lp->ptid));
2736
2737 /* Back up the PC if necessary. */
2738 if (pc != sw_bp_pc)
2739 regcache_write_pc (regcache, sw_bp_pc);
2740
2741 lp->stop_pc = sw_bp_pc;
2742 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2743 return 1;
2744 }
2745
2746 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2747 {
2748 if (debug_linux_nat)
2749 fprintf_unfiltered (gdb_stdlog,
2750 "CB: Push back hardware breakpoint for %s\n",
2751 target_pid_to_str (lp->ptid));
2752
2753 lp->stop_pc = pc;
2754 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2755 return 1;
2756 }
2757 #endif
2758
2759 return 0;
2760 }
2761
2762
2763 /* Returns true if the LWP had stopped for a software breakpoint. */
2764
2765 static int
2766 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops)
2767 {
2768 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2769
2770 gdb_assert (lp != NULL);
2771
2772 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2773 }
2774
2775 /* Implement the supports_stopped_by_sw_breakpoint method. */
2776
2777 static int
2778 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
2779 {
2780 return USE_SIGTRAP_SIGINFO;
2781 }
2782
2783 /* Returns true if the LWP had stopped for a hardware
2784 breakpoint/watchpoint. */
2785
2786 static int
2787 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops)
2788 {
2789 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2790
2791 gdb_assert (lp != NULL);
2792
2793 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2794 }
2795
2796 /* Implement the supports_stopped_by_hw_breakpoint method. */
2797
2798 static int
2799 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
2800 {
2801 return USE_SIGTRAP_SIGINFO;
2802 }
2803
2804 /* Select one LWP out of those that have events pending. */
2805
2806 static void
2807 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2808 {
2809 int num_events = 0;
2810 int random_selector;
2811 struct lwp_info *event_lp = NULL;
2812
2813 /* Record the wait status for the original LWP. */
2814 (*orig_lp)->status = *status;
2815
2816 /* In all-stop, give preference to the LWP that is being
2817 single-stepped. There will be at most one, and it will be the
2818 LWP that the core is most interested in. If we didn't do this,
2819 then we'd have to handle pending step SIGTRAPs somehow in case
2820 the core later continues the previously-stepped thread, as
2821 otherwise we'd report the pending SIGTRAP then, and the core, not
2822 having stepped the thread, wouldn't understand what the trap was
2823 for, and therefore would report it to the user as a random
2824 signal. */
2825 if (!non_stop)
2826 {
2827 event_lp = iterate_over_lwps (filter,
2828 select_singlestep_lwp_callback, NULL);
2829 if (event_lp != NULL)
2830 {
2831 if (debug_linux_nat)
2832 fprintf_unfiltered (gdb_stdlog,
2833 "SEL: Select single-step %s\n",
2834 target_pid_to_str (event_lp->ptid));
2835 }
2836 }
2837
2838 if (event_lp == NULL)
2839 {
2840 /* Pick one at random, out of those which have had events. */
2841
2842 /* First see how many events we have. */
2843 iterate_over_lwps (filter, count_events_callback, &num_events);
2844
2845 /* Now randomly pick a LWP out of those that have had
2846 events. */
2847 random_selector = (int)
2848 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2849
2850 if (debug_linux_nat && num_events > 1)
2851 fprintf_unfiltered (gdb_stdlog,
2852 "SEL: Found %d events, selecting #%d\n",
2853 num_events, random_selector);
2854
2855 event_lp = iterate_over_lwps (filter,
2856 select_event_lwp_callback,
2857 &random_selector);
2858 }
2859
2860 if (event_lp != NULL)
2861 {
2862 /* Switch the event LWP. */
2863 *orig_lp = event_lp;
2864 *status = event_lp->status;
2865 }
2866
2867 /* Flush the wait status for the event LWP. */
2868 (*orig_lp)->status = 0;
2869 }
2870
2871 /* Return non-zero if LP has been resumed. */
2872
2873 static int
2874 resumed_callback (struct lwp_info *lp, void *data)
2875 {
2876 return lp->resumed;
2877 }
2878
2879 /* Stop an active thread, verify it still exists, then resume it. If
2880 the thread ends up with a pending status, then it is not resumed,
2881 and *DATA (really a pointer to int), is set. */
2882
2883 static int
2884 stop_and_resume_callback (struct lwp_info *lp, void *data)
2885 {
2886 if (!lp->stopped)
2887 {
2888 ptid_t ptid = lp->ptid;
2889
2890 stop_callback (lp, NULL);
2891 stop_wait_callback (lp, NULL);
2892
2893 /* Resume if the lwp still exists, and the core wanted it
2894 running. */
2895 lp = find_lwp_pid (ptid);
2896 if (lp != NULL)
2897 {
2898 if (lp->last_resume_kind == resume_stop
2899 && !lwp_status_pending_p (lp))
2900 {
2901 /* The core wanted the LWP to stop. Even if it stopped
2902 cleanly (with SIGSTOP), leave the event pending. */
2903 if (debug_linux_nat)
2904 fprintf_unfiltered (gdb_stdlog,
2905 "SARC: core wanted LWP %ld stopped "
2906 "(leaving SIGSTOP pending)\n",
2907 ptid_get_lwp (lp->ptid));
2908 lp->status = W_STOPCODE (SIGSTOP);
2909 }
2910
2911 if (!lwp_status_pending_p (lp))
2912 {
2913 if (debug_linux_nat)
2914 fprintf_unfiltered (gdb_stdlog,
2915 "SARC: re-resuming LWP %ld\n",
2916 ptid_get_lwp (lp->ptid));
2917 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
2918 }
2919 else
2920 {
2921 if (debug_linux_nat)
2922 fprintf_unfiltered (gdb_stdlog,
2923 "SARC: not re-resuming LWP %ld "
2924 "(has pending)\n",
2925 ptid_get_lwp (lp->ptid));
2926 }
2927 }
2928 }
2929 return 0;
2930 }
2931
2932 /* Check if we should go on and pass this event to common code.
2933 Return the affected lwp if we are, or NULL otherwise. */
2934
2935 static struct lwp_info *
2936 linux_nat_filter_event (int lwpid, int status)
2937 {
2938 struct lwp_info *lp;
2939 int event = linux_ptrace_get_extended_event (status);
2940
2941 lp = find_lwp_pid (pid_to_ptid (lwpid));
2942
2943 /* Check for stop events reported by a process we didn't already
2944 know about - anything not already in our LWP list.
2945
2946 If we're expecting to receive stopped processes after
2947 fork, vfork, and clone events, then we'll just add the
2948 new one to our list and go back to waiting for the event
2949 to be reported - the stopped process might be returned
2950 from waitpid before or after the event is.
2951
2952 But note the case of a non-leader thread exec'ing after the
2953 leader having exited, and gone from our lists. The non-leader
2954 thread changes its tid to the tgid. */
2955
2956 if (WIFSTOPPED (status) && lp == NULL
2957 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2958 {
2959 /* A multi-thread exec after we had seen the leader exiting. */
2960 if (debug_linux_nat)
2961 fprintf_unfiltered (gdb_stdlog,
2962 "LLW: Re-adding thread group leader LWP %d.\n",
2963 lwpid);
2964
2965 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2966 lp->stopped = 1;
2967 lp->resumed = 1;
2968 add_thread (lp->ptid);
2969 }
2970
2971 if (WIFSTOPPED (status) && !lp)
2972 {
2973 if (debug_linux_nat)
2974 fprintf_unfiltered (gdb_stdlog,
2975 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
2976 (long) lwpid, status_to_str (status));
2977 add_to_pid_list (&stopped_pids, lwpid, status);
2978 return NULL;
2979 }
2980
2981 /* Make sure we don't report an event for the exit of an LWP not in
2982 our list, i.e. not part of the current process. This can happen
2983 if we detach from a program we originally forked and then it
2984 exits. */
2985 if (!WIFSTOPPED (status) && !lp)
2986 return NULL;
2987
2988 /* This LWP is stopped now. (And if dead, this prevents it from
2989 ever being continued.) */
2990 lp->stopped = 1;
2991
2992 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2993 {
2994 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2995
2996 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), inf->attach_flag);
2997 lp->must_set_ptrace_flags = 0;
2998 }
2999
3000 /* Handle GNU/Linux's syscall SIGTRAPs. */
3001 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3002 {
3003 /* No longer need the sysgood bit. The ptrace event ends up
3004 recorded in lp->waitstatus if we care for it. We can carry
3005 on handling the event like a regular SIGTRAP from here
3006 on. */
3007 status = W_STOPCODE (SIGTRAP);
3008 if (linux_handle_syscall_trap (lp, 0))
3009 return NULL;
3010 }
3011
3012 /* Handle GNU/Linux's extended waitstatus for trace events. */
3013 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3014 && linux_is_extended_waitstatus (status))
3015 {
3016 if (debug_linux_nat)
3017 fprintf_unfiltered (gdb_stdlog,
3018 "LLW: Handling extended status 0x%06x\n",
3019 status);
3020 if (linux_handle_extended_wait (lp, status, 0))
3021 return NULL;
3022 }
3023
3024 /* Check if the thread has exited. */
3025 if (WIFEXITED (status) || WIFSIGNALED (status))
3026 {
3027 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3028 {
3029 /* If this is the main thread, we must stop all threads and
3030 verify if they are still alive. This is because in the
3031 nptl thread model on Linux 2.4, there is no signal issued
3032 for exiting LWPs other than the main thread. We only get
3033 the main thread exit signal once all child threads have
3034 already exited. If we stop all the threads and use the
3035 stop_wait_callback to check if they have exited we can
3036 determine whether this signal should be ignored or
3037 whether it means the end of the debugged application,
3038 regardless of which threading model is being used. */
3039 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
3040 {
3041 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3042 stop_and_resume_callback, NULL);
3043 }
3044
3045 if (debug_linux_nat)
3046 fprintf_unfiltered (gdb_stdlog,
3047 "LLW: %s exited.\n",
3048 target_pid_to_str (lp->ptid));
3049
3050 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3051 {
3052 /* If there is at least one more LWP, then the exit signal
3053 was not the end of the debugged application and should be
3054 ignored. */
3055 exit_lwp (lp);
3056 return NULL;
3057 }
3058 }
3059
3060 gdb_assert (lp->resumed);
3061
3062 if (debug_linux_nat)
3063 fprintf_unfiltered (gdb_stdlog,
3064 "Process %ld exited\n",
3065 ptid_get_lwp (lp->ptid));
3066
3067 /* This was the last lwp in the process. Since events are
3068 serialized to GDB core, we may not be able report this one
3069 right now, but GDB core and the other target layers will want
3070 to be notified about the exit code/signal, leave the status
3071 pending for the next time we're able to report it. */
3072
3073 /* Dead LWP's aren't expected to reported a pending sigstop. */
3074 lp->signalled = 0;
3075
3076 /* Store the pending event in the waitstatus, because
3077 W_EXITCODE(0,0) == 0. */
3078 store_waitstatus (&lp->waitstatus, status);
3079 return lp;
3080 }
3081
3082 /* Check if the current LWP has previously exited. In the nptl
3083 thread model, LWPs other than the main thread do not issue
3084 signals when they exit so we must check whenever the thread has
3085 stopped. A similar check is made in stop_wait_callback(). */
3086 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3087 {
3088 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
3089
3090 if (debug_linux_nat)
3091 fprintf_unfiltered (gdb_stdlog,
3092 "LLW: %s exited.\n",
3093 target_pid_to_str (lp->ptid));
3094
3095 exit_lwp (lp);
3096
3097 /* Make sure there is at least one thread running. */
3098 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3099
3100 /* Discard the event. */
3101 return NULL;
3102 }
3103
3104 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3105 an attempt to stop an LWP. */
3106 if (lp->signalled
3107 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3108 {
3109 if (debug_linux_nat)
3110 fprintf_unfiltered (gdb_stdlog,
3111 "LLW: Delayed SIGSTOP caught for %s.\n",
3112 target_pid_to_str (lp->ptid));
3113
3114 lp->signalled = 0;
3115
3116 if (lp->last_resume_kind != resume_stop)
3117 {
3118 /* This is a delayed SIGSTOP. */
3119
3120 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3121 if (debug_linux_nat)
3122 fprintf_unfiltered (gdb_stdlog,
3123 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3124 lp->step ?
3125 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3126 target_pid_to_str (lp->ptid));
3127
3128 gdb_assert (lp->resumed);
3129
3130 /* Discard the event. */
3131 return NULL;
3132 }
3133 }
3134
3135 /* Make sure we don't report a SIGINT that we have already displayed
3136 for another thread. */
3137 if (lp->ignore_sigint
3138 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3139 {
3140 if (debug_linux_nat)
3141 fprintf_unfiltered (gdb_stdlog,
3142 "LLW: Delayed SIGINT caught for %s.\n",
3143 target_pid_to_str (lp->ptid));
3144
3145 /* This is a delayed SIGINT. */
3146 lp->ignore_sigint = 0;
3147
3148 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3149 if (debug_linux_nat)
3150 fprintf_unfiltered (gdb_stdlog,
3151 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3152 lp->step ?
3153 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3154 target_pid_to_str (lp->ptid));
3155 gdb_assert (lp->resumed);
3156
3157 /* Discard the event. */
3158 return NULL;
3159 }
3160
3161 /* Don't report signals that GDB isn't interested in, such as
3162 signals that are neither printed nor stopped upon. Stopping all
3163 threads can be a bit time-consuming so if we want decent
3164 performance with heavily multi-threaded programs, especially when
3165 they're using a high frequency timer, we'd better avoid it if we
3166 can. */
3167 if (WIFSTOPPED (status))
3168 {
3169 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3170
3171 if (!non_stop)
3172 {
3173 /* Only do the below in all-stop, as we currently use SIGSTOP
3174 to implement target_stop (see linux_nat_stop) in
3175 non-stop. */
3176 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3177 {
3178 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3179 forwarded to the entire process group, that is, all LWPs
3180 will receive it - unless they're using CLONE_THREAD to
3181 share signals. Since we only want to report it once, we
3182 mark it as ignored for all LWPs except this one. */
3183 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3184 set_ignore_sigint, NULL);
3185 lp->ignore_sigint = 0;
3186 }
3187 else
3188 maybe_clear_ignore_sigint (lp);
3189 }
3190
3191 /* When using hardware single-step, we need to report every signal.
3192 Otherwise, signals in pass_mask may be short-circuited
3193 except signals that might be caused by a breakpoint. */
3194 if (!lp->step
3195 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3196 && !linux_wstatus_maybe_breakpoint (status))
3197 {
3198 linux_resume_one_lwp (lp, lp->step, signo);
3199 if (debug_linux_nat)
3200 fprintf_unfiltered (gdb_stdlog,
3201 "LLW: %s %s, %s (preempt 'handle')\n",
3202 lp->step ?
3203 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3204 target_pid_to_str (lp->ptid),
3205 (signo != GDB_SIGNAL_0
3206 ? strsignal (gdb_signal_to_host (signo))
3207 : "0"));
3208 return NULL;
3209 }
3210 }
3211
3212 /* An interesting event. */
3213 gdb_assert (lp);
3214 lp->status = status;
3215 save_sigtrap (lp);
3216 return lp;
3217 }
3218
3219 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3220 their exits until all other threads in the group have exited. */
3221
3222 static void
3223 check_zombie_leaders (void)
3224 {
3225 struct inferior *inf;
3226
3227 ALL_INFERIORS (inf)
3228 {
3229 struct lwp_info *leader_lp;
3230
3231 if (inf->pid == 0)
3232 continue;
3233
3234 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3235 if (leader_lp != NULL
3236 /* Check if there are other threads in the group, as we may
3237 have raced with the inferior simply exiting. */
3238 && num_lwps (inf->pid) > 1
3239 && linux_proc_pid_is_zombie (inf->pid))
3240 {
3241 if (debug_linux_nat)
3242 fprintf_unfiltered (gdb_stdlog,
3243 "CZL: Thread group leader %d zombie "
3244 "(it exited, or another thread execd).\n",
3245 inf->pid);
3246
3247 /* A leader zombie can mean one of two things:
3248
3249 - It exited, and there's an exit status pending
3250 available, or only the leader exited (not the whole
3251 program). In the latter case, we can't waitpid the
3252 leader's exit status until all other threads are gone.
3253
3254 - There are 3 or more threads in the group, and a thread
3255 other than the leader exec'd. On an exec, the Linux
3256 kernel destroys all other threads (except the execing
3257 one) in the thread group, and resets the execing thread's
3258 tid to the tgid. No exit notification is sent for the
3259 execing thread -- from the ptracer's perspective, it
3260 appears as though the execing thread just vanishes.
3261 Until we reap all other threads except the leader and the
3262 execing thread, the leader will be zombie, and the
3263 execing thread will be in `D (disc sleep)'. As soon as
3264 all other threads are reaped, the execing thread changes
3265 it's tid to the tgid, and the previous (zombie) leader
3266 vanishes, giving place to the "new" leader. We could try
3267 distinguishing the exit and exec cases, by waiting once
3268 more, and seeing if something comes out, but it doesn't
3269 sound useful. The previous leader _does_ go away, and
3270 we'll re-add the new one once we see the exec event
3271 (which is just the same as what would happen if the
3272 previous leader did exit voluntarily before some other
3273 thread execs). */
3274
3275 if (debug_linux_nat)
3276 fprintf_unfiltered (gdb_stdlog,
3277 "CZL: Thread group leader %d vanished.\n",
3278 inf->pid);
3279 exit_lwp (leader_lp);
3280 }
3281 }
3282 }
3283
3284 static ptid_t
3285 linux_nat_wait_1 (struct target_ops *ops,
3286 ptid_t ptid, struct target_waitstatus *ourstatus,
3287 int target_options)
3288 {
3289 sigset_t prev_mask;
3290 enum resume_kind last_resume_kind;
3291 struct lwp_info *lp;
3292 int status;
3293
3294 if (debug_linux_nat)
3295 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3296
3297 /* The first time we get here after starting a new inferior, we may
3298 not have added it to the LWP list yet - this is the earliest
3299 moment at which we know its PID. */
3300 if (ptid_is_pid (inferior_ptid))
3301 {
3302 /* Upgrade the main thread's ptid. */
3303 thread_change_ptid (inferior_ptid,
3304 ptid_build (ptid_get_pid (inferior_ptid),
3305 ptid_get_pid (inferior_ptid), 0));
3306
3307 lp = add_initial_lwp (inferior_ptid);
3308 lp->resumed = 1;
3309 }
3310
3311 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3312 block_child_signals (&prev_mask);
3313
3314 /* First check if there is a LWP with a wait status pending. */
3315 lp = iterate_over_lwps (ptid, status_callback, NULL);
3316 if (lp != NULL)
3317 {
3318 if (debug_linux_nat)
3319 fprintf_unfiltered (gdb_stdlog,
3320 "LLW: Using pending wait status %s for %s.\n",
3321 status_to_str (lp->status),
3322 target_pid_to_str (lp->ptid));
3323 }
3324
3325 if (!target_is_async_p ())
3326 {
3327 /* Causes SIGINT to be passed on to the attached process. */
3328 set_sigint_trap ();
3329 }
3330
3331 /* But if we don't find a pending event, we'll have to wait. Always
3332 pull all events out of the kernel. We'll randomly select an
3333 event LWP out of all that have events, to prevent starvation. */
3334
3335 while (lp == NULL)
3336 {
3337 pid_t lwpid;
3338
3339 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3340 quirks:
3341
3342 - If the thread group leader exits while other threads in the
3343 thread group still exist, waitpid(TGID, ...) hangs. That
3344 waitpid won't return an exit status until the other threads
3345 in the group are reapped.
3346
3347 - When a non-leader thread execs, that thread just vanishes
3348 without reporting an exit (so we'd hang if we waited for it
3349 explicitly in that case). The exec event is reported to
3350 the TGID pid. */
3351
3352 errno = 0;
3353 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3354 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3355 lwpid = my_waitpid (-1, &status, WNOHANG);
3356
3357 if (debug_linux_nat)
3358 fprintf_unfiltered (gdb_stdlog,
3359 "LNW: waitpid(-1, ...) returned %d, %s\n",
3360 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3361
3362 if (lwpid > 0)
3363 {
3364 if (debug_linux_nat)
3365 {
3366 fprintf_unfiltered (gdb_stdlog,
3367 "LLW: waitpid %ld received %s\n",
3368 (long) lwpid, status_to_str (status));
3369 }
3370
3371 linux_nat_filter_event (lwpid, status);
3372 /* Retry until nothing comes out of waitpid. A single
3373 SIGCHLD can indicate more than one child stopped. */
3374 continue;
3375 }
3376
3377 /* Now that we've pulled all events out of the kernel, resume
3378 LWPs that don't have an interesting event to report. */
3379 iterate_over_lwps (minus_one_ptid,
3380 resume_stopped_resumed_lwps, &minus_one_ptid);
3381
3382 /* ... and find an LWP with a status to report to the core, if
3383 any. */
3384 lp = iterate_over_lwps (ptid, status_callback, NULL);
3385 if (lp != NULL)
3386 break;
3387
3388 /* Check for zombie thread group leaders. Those can't be reaped
3389 until all other threads in the thread group are. */
3390 check_zombie_leaders ();
3391
3392 /* If there are no resumed children left, bail. We'd be stuck
3393 forever in the sigsuspend call below otherwise. */
3394 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3395 {
3396 if (debug_linux_nat)
3397 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3398
3399 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3400
3401 if (!target_is_async_p ())
3402 clear_sigint_trap ();
3403
3404 restore_child_signals_mask (&prev_mask);
3405 return minus_one_ptid;
3406 }
3407
3408 /* No interesting event to report to the core. */
3409
3410 if (target_options & TARGET_WNOHANG)
3411 {
3412 if (debug_linux_nat)
3413 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3414
3415 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3416 restore_child_signals_mask (&prev_mask);
3417 return minus_one_ptid;
3418 }
3419
3420 /* We shouldn't end up here unless we want to try again. */
3421 gdb_assert (lp == NULL);
3422
3423 /* Block until we get an event reported with SIGCHLD. */
3424 if (debug_linux_nat)
3425 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3426 sigsuspend (&suspend_mask);
3427 }
3428
3429 if (!target_is_async_p ())
3430 clear_sigint_trap ();
3431
3432 gdb_assert (lp);
3433
3434 status = lp->status;
3435 lp->status = 0;
3436
3437 if (!non_stop)
3438 {
3439 /* Now stop all other LWP's ... */
3440 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3441
3442 /* ... and wait until all of them have reported back that
3443 they're no longer running. */
3444 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3445 }
3446
3447 /* If we're not waiting for a specific LWP, choose an event LWP from
3448 among those that have had events. Giving equal priority to all
3449 LWPs that have had events helps prevent starvation. */
3450 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3451 select_event_lwp (ptid, &lp, &status);
3452
3453 gdb_assert (lp != NULL);
3454
3455 /* Now that we've selected our final event LWP, un-adjust its PC if
3456 it was a software breakpoint, and we can't reliably support the
3457 "stopped by software breakpoint" stop reason. */
3458 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3459 && !USE_SIGTRAP_SIGINFO)
3460 {
3461 struct regcache *regcache = get_thread_regcache (lp->ptid);
3462 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3463 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3464
3465 if (decr_pc != 0)
3466 {
3467 CORE_ADDR pc;
3468
3469 pc = regcache_read_pc (regcache);
3470 regcache_write_pc (regcache, pc + decr_pc);
3471 }
3472 }
3473
3474 /* We'll need this to determine whether to report a SIGSTOP as
3475 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3476 clears it. */
3477 last_resume_kind = lp->last_resume_kind;
3478
3479 if (!non_stop)
3480 {
3481 /* In all-stop, from the core's perspective, all LWPs are now
3482 stopped until a new resume action is sent over. */
3483 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3484 }
3485 else
3486 {
3487 resume_clear_callback (lp, NULL);
3488 }
3489
3490 if (linux_nat_status_is_event (status))
3491 {
3492 if (debug_linux_nat)
3493 fprintf_unfiltered (gdb_stdlog,
3494 "LLW: trap ptid is %s.\n",
3495 target_pid_to_str (lp->ptid));
3496 }
3497
3498 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3499 {
3500 *ourstatus = lp->waitstatus;
3501 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3502 }
3503 else
3504 store_waitstatus (ourstatus, status);
3505
3506 if (debug_linux_nat)
3507 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3508
3509 restore_child_signals_mask (&prev_mask);
3510
3511 if (last_resume_kind == resume_stop
3512 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3513 && WSTOPSIG (status) == SIGSTOP)
3514 {
3515 /* A thread that has been requested to stop by GDB with
3516 target_stop, and it stopped cleanly, so report as SIG0. The
3517 use of SIGSTOP is an implementation detail. */
3518 ourstatus->value.sig = GDB_SIGNAL_0;
3519 }
3520
3521 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3522 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3523 lp->core = -1;
3524 else
3525 lp->core = linux_common_core_of_thread (lp->ptid);
3526
3527 return lp->ptid;
3528 }
3529
3530 /* Resume LWPs that are currently stopped without any pending status
3531 to report, but are resumed from the core's perspective. */
3532
3533 static int
3534 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3535 {
3536 ptid_t *wait_ptid_p = data;
3537
3538 if (lp->stopped
3539 && lp->resumed
3540 && !lwp_status_pending_p (lp))
3541 {
3542 struct regcache *regcache = get_thread_regcache (lp->ptid);
3543 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3544 CORE_ADDR pc = regcache_read_pc (regcache);
3545
3546 /* Don't bother if there's a breakpoint at PC that we'd hit
3547 immediately, and we're not waiting for this LWP. */
3548 if (!ptid_match (lp->ptid, *wait_ptid_p))
3549 {
3550 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3551 return 0;
3552 }
3553
3554 if (debug_linux_nat)
3555 fprintf_unfiltered (gdb_stdlog,
3556 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3557 target_pid_to_str (lp->ptid),
3558 paddress (gdbarch, pc),
3559 lp->step);
3560
3561 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3562 }
3563
3564 return 0;
3565 }
3566
3567 static ptid_t
3568 linux_nat_wait (struct target_ops *ops,
3569 ptid_t ptid, struct target_waitstatus *ourstatus,
3570 int target_options)
3571 {
3572 ptid_t event_ptid;
3573
3574 if (debug_linux_nat)
3575 {
3576 char *options_string;
3577
3578 options_string = target_options_to_string (target_options);
3579 fprintf_unfiltered (gdb_stdlog,
3580 "linux_nat_wait: [%s], [%s]\n",
3581 target_pid_to_str (ptid),
3582 options_string);
3583 xfree (options_string);
3584 }
3585
3586 /* Flush the async file first. */
3587 if (target_is_async_p ())
3588 async_file_flush ();
3589
3590 /* Resume LWPs that are currently stopped without any pending status
3591 to report, but are resumed from the core's perspective. LWPs get
3592 in this state if we find them stopping at a time we're not
3593 interested in reporting the event (target_wait on a
3594 specific_process, for example, see linux_nat_wait_1), and
3595 meanwhile the event became uninteresting. Don't bother resuming
3596 LWPs we're not going to wait for if they'd stop immediately. */
3597 if (non_stop)
3598 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3599
3600 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3601
3602 /* If we requested any event, and something came out, assume there
3603 may be more. If we requested a specific lwp or process, also
3604 assume there may be more. */
3605 if (target_is_async_p ()
3606 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3607 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3608 || !ptid_equal (ptid, minus_one_ptid)))
3609 async_file_mark ();
3610
3611 return event_ptid;
3612 }
3613
3614 static int
3615 kill_callback (struct lwp_info *lp, void *data)
3616 {
3617 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3618
3619 errno = 0;
3620 kill_lwp (ptid_get_lwp (lp->ptid), SIGKILL);
3621 if (debug_linux_nat)
3622 {
3623 int save_errno = errno;
3624
3625 fprintf_unfiltered (gdb_stdlog,
3626 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3627 target_pid_to_str (lp->ptid),
3628 save_errno ? safe_strerror (save_errno) : "OK");
3629 }
3630
3631 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3632
3633 errno = 0;
3634 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3635 if (debug_linux_nat)
3636 {
3637 int save_errno = errno;
3638
3639 fprintf_unfiltered (gdb_stdlog,
3640 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3641 target_pid_to_str (lp->ptid),
3642 save_errno ? safe_strerror (save_errno) : "OK");
3643 }
3644
3645 return 0;
3646 }
3647
3648 static int
3649 kill_wait_callback (struct lwp_info *lp, void *data)
3650 {
3651 pid_t pid;
3652
3653 /* We must make sure that there are no pending events (delayed
3654 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3655 program doesn't interfere with any following debugging session. */
3656
3657 /* For cloned processes we must check both with __WCLONE and
3658 without, since the exit status of a cloned process isn't reported
3659 with __WCLONE. */
3660 if (lp->cloned)
3661 {
3662 do
3663 {
3664 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3665 if (pid != (pid_t) -1)
3666 {
3667 if (debug_linux_nat)
3668 fprintf_unfiltered (gdb_stdlog,
3669 "KWC: wait %s received unknown.\n",
3670 target_pid_to_str (lp->ptid));
3671 /* The Linux kernel sometimes fails to kill a thread
3672 completely after PTRACE_KILL; that goes from the stop
3673 point in do_fork out to the one in
3674 get_signal_to_deliever and waits again. So kill it
3675 again. */
3676 kill_callback (lp, NULL);
3677 }
3678 }
3679 while (pid == ptid_get_lwp (lp->ptid));
3680
3681 gdb_assert (pid == -1 && errno == ECHILD);
3682 }
3683
3684 do
3685 {
3686 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3687 if (pid != (pid_t) -1)
3688 {
3689 if (debug_linux_nat)
3690 fprintf_unfiltered (gdb_stdlog,
3691 "KWC: wait %s received unk.\n",
3692 target_pid_to_str (lp->ptid));
3693 /* See the call to kill_callback above. */
3694 kill_callback (lp, NULL);
3695 }
3696 }
3697 while (pid == ptid_get_lwp (lp->ptid));
3698
3699 gdb_assert (pid == -1 && errno == ECHILD);
3700 return 0;
3701 }
3702
3703 static void
3704 linux_nat_kill (struct target_ops *ops)
3705 {
3706 struct target_waitstatus last;
3707 ptid_t last_ptid;
3708 int status;
3709
3710 /* If we're stopped while forking and we haven't followed yet,
3711 kill the other task. We need to do this first because the
3712 parent will be sleeping if this is a vfork. */
3713
3714 get_last_target_status (&last_ptid, &last);
3715
3716 if (last.kind == TARGET_WAITKIND_FORKED
3717 || last.kind == TARGET_WAITKIND_VFORKED)
3718 {
3719 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3720 wait (&status);
3721
3722 /* Let the arch-specific native code know this process is
3723 gone. */
3724 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3725 }
3726
3727 if (forks_exist_p ())
3728 linux_fork_killall ();
3729 else
3730 {
3731 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3732
3733 /* Stop all threads before killing them, since ptrace requires
3734 that the thread is stopped to sucessfully PTRACE_KILL. */
3735 iterate_over_lwps (ptid, stop_callback, NULL);
3736 /* ... and wait until all of them have reported back that
3737 they're no longer running. */
3738 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3739
3740 /* Kill all LWP's ... */
3741 iterate_over_lwps (ptid, kill_callback, NULL);
3742
3743 /* ... and wait until we've flushed all events. */
3744 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3745 }
3746
3747 target_mourn_inferior ();
3748 }
3749
3750 static void
3751 linux_nat_mourn_inferior (struct target_ops *ops)
3752 {
3753 int pid = ptid_get_pid (inferior_ptid);
3754
3755 purge_lwp_list (pid);
3756
3757 if (! forks_exist_p ())
3758 /* Normal case, no other forks available. */
3759 linux_ops->to_mourn_inferior (ops);
3760 else
3761 /* Multi-fork case. The current inferior_ptid has exited, but
3762 there are other viable forks to debug. Delete the exiting
3763 one and context-switch to the first available. */
3764 linux_fork_mourn_inferior ();
3765
3766 /* Let the arch-specific native code know this process is gone. */
3767 linux_nat_forget_process (pid);
3768 }
3769
3770 /* Convert a native/host siginfo object, into/from the siginfo in the
3771 layout of the inferiors' architecture. */
3772
3773 static void
3774 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3775 {
3776 int done = 0;
3777
3778 if (linux_nat_siginfo_fixup != NULL)
3779 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3780
3781 /* If there was no callback, or the callback didn't do anything,
3782 then just do a straight memcpy. */
3783 if (!done)
3784 {
3785 if (direction == 1)
3786 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3787 else
3788 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3789 }
3790 }
3791
3792 static enum target_xfer_status
3793 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3794 const char *annex, gdb_byte *readbuf,
3795 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3796 ULONGEST *xfered_len)
3797 {
3798 int pid;
3799 siginfo_t siginfo;
3800 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3801
3802 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3803 gdb_assert (readbuf || writebuf);
3804
3805 pid = ptid_get_lwp (inferior_ptid);
3806 if (pid == 0)
3807 pid = ptid_get_pid (inferior_ptid);
3808
3809 if (offset > sizeof (siginfo))
3810 return TARGET_XFER_E_IO;
3811
3812 errno = 0;
3813 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3814 if (errno != 0)
3815 return TARGET_XFER_E_IO;
3816
3817 /* When GDB is built as a 64-bit application, ptrace writes into
3818 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3819 inferior with a 64-bit GDB should look the same as debugging it
3820 with a 32-bit GDB, we need to convert it. GDB core always sees
3821 the converted layout, so any read/write will have to be done
3822 post-conversion. */
3823 siginfo_fixup (&siginfo, inf_siginfo, 0);
3824
3825 if (offset + len > sizeof (siginfo))
3826 len = sizeof (siginfo) - offset;
3827
3828 if (readbuf != NULL)
3829 memcpy (readbuf, inf_siginfo + offset, len);
3830 else
3831 {
3832 memcpy (inf_siginfo + offset, writebuf, len);
3833
3834 /* Convert back to ptrace layout before flushing it out. */
3835 siginfo_fixup (&siginfo, inf_siginfo, 1);
3836
3837 errno = 0;
3838 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3839 if (errno != 0)
3840 return TARGET_XFER_E_IO;
3841 }
3842
3843 *xfered_len = len;
3844 return TARGET_XFER_OK;
3845 }
3846
3847 static enum target_xfer_status
3848 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3849 const char *annex, gdb_byte *readbuf,
3850 const gdb_byte *writebuf,
3851 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3852 {
3853 struct cleanup *old_chain;
3854 enum target_xfer_status xfer;
3855
3856 if (object == TARGET_OBJECT_SIGNAL_INFO)
3857 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3858 offset, len, xfered_len);
3859
3860 /* The target is connected but no live inferior is selected. Pass
3861 this request down to a lower stratum (e.g., the executable
3862 file). */
3863 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3864 return TARGET_XFER_EOF;
3865
3866 old_chain = save_inferior_ptid ();
3867
3868 if (ptid_lwp_p (inferior_ptid))
3869 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3870
3871 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3872 offset, len, xfered_len);
3873
3874 do_cleanups (old_chain);
3875 return xfer;
3876 }
3877
3878 static int
3879 linux_thread_alive (ptid_t ptid)
3880 {
3881 int err, tmp_errno;
3882
3883 gdb_assert (ptid_lwp_p (ptid));
3884
3885 /* Send signal 0 instead of anything ptrace, because ptracing a
3886 running thread errors out claiming that the thread doesn't
3887 exist. */
3888 err = kill_lwp (ptid_get_lwp (ptid), 0);
3889 tmp_errno = errno;
3890 if (debug_linux_nat)
3891 fprintf_unfiltered (gdb_stdlog,
3892 "LLTA: KILL(SIG0) %s (%s)\n",
3893 target_pid_to_str (ptid),
3894 err ? safe_strerror (tmp_errno) : "OK");
3895
3896 if (err != 0)
3897 return 0;
3898
3899 return 1;
3900 }
3901
3902 static int
3903 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3904 {
3905 return linux_thread_alive (ptid);
3906 }
3907
3908 static char *
3909 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3910 {
3911 static char buf[64];
3912
3913 if (ptid_lwp_p (ptid)
3914 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3915 || num_lwps (ptid_get_pid (ptid)) > 1))
3916 {
3917 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3918 return buf;
3919 }
3920
3921 return normal_pid_to_str (ptid);
3922 }
3923
3924 static char *
3925 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
3926 {
3927 int pid = ptid_get_pid (thr->ptid);
3928 long lwp = ptid_get_lwp (thr->ptid);
3929 #define FORMAT "/proc/%d/task/%ld/comm"
3930 char buf[sizeof (FORMAT) + 30];
3931 FILE *comm_file;
3932 char *result = NULL;
3933
3934 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
3935 comm_file = gdb_fopen_cloexec (buf, "r");
3936 if (comm_file)
3937 {
3938 /* Not exported by the kernel, so we define it here. */
3939 #define COMM_LEN 16
3940 static char line[COMM_LEN + 1];
3941
3942 if (fgets (line, sizeof (line), comm_file))
3943 {
3944 char *nl = strchr (line, '\n');
3945
3946 if (nl)
3947 *nl = '\0';
3948 if (*line != '\0')
3949 result = line;
3950 }
3951
3952 fclose (comm_file);
3953 }
3954
3955 #undef COMM_LEN
3956 #undef FORMAT
3957
3958 return result;
3959 }
3960
3961 /* Accepts an integer PID; Returns a string representing a file that
3962 can be opened to get the symbols for the child process. */
3963
3964 static char *
3965 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
3966 {
3967 static char buf[PATH_MAX];
3968 char name[PATH_MAX];
3969
3970 xsnprintf (name, PATH_MAX, "/proc/%d/exe", pid);
3971 memset (buf, 0, PATH_MAX);
3972 if (readlink (name, buf, PATH_MAX - 1) <= 0)
3973 strcpy (buf, name);
3974
3975 return buf;
3976 }
3977
3978 /* Implement the to_xfer_partial interface for memory reads using the /proc
3979 filesystem. Because we can use a single read() call for /proc, this
3980 can be much more efficient than banging away at PTRACE_PEEKTEXT,
3981 but it doesn't support writes. */
3982
3983 static enum target_xfer_status
3984 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3985 const char *annex, gdb_byte *readbuf,
3986 const gdb_byte *writebuf,
3987 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3988 {
3989 LONGEST ret;
3990 int fd;
3991 char filename[64];
3992
3993 if (object != TARGET_OBJECT_MEMORY || !readbuf)
3994 return 0;
3995
3996 /* Don't bother for one word. */
3997 if (len < 3 * sizeof (long))
3998 return TARGET_XFER_EOF;
3999
4000 /* We could keep this file open and cache it - possibly one per
4001 thread. That requires some juggling, but is even faster. */
4002 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
4003 ptid_get_pid (inferior_ptid));
4004 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4005 if (fd == -1)
4006 return TARGET_XFER_EOF;
4007
4008 /* If pread64 is available, use it. It's faster if the kernel
4009 supports it (only one syscall), and it's 64-bit safe even on
4010 32-bit platforms (for instance, SPARC debugging a SPARC64
4011 application). */
4012 #ifdef HAVE_PREAD64
4013 if (pread64 (fd, readbuf, len, offset) != len)
4014 #else
4015 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4016 #endif
4017 ret = 0;
4018 else
4019 ret = len;
4020
4021 close (fd);
4022
4023 if (ret == 0)
4024 return TARGET_XFER_EOF;
4025 else
4026 {
4027 *xfered_len = ret;
4028 return TARGET_XFER_OK;
4029 }
4030 }
4031
4032
4033 /* Enumerate spufs IDs for process PID. */
4034 static LONGEST
4035 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4036 {
4037 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4038 LONGEST pos = 0;
4039 LONGEST written = 0;
4040 char path[128];
4041 DIR *dir;
4042 struct dirent *entry;
4043
4044 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4045 dir = opendir (path);
4046 if (!dir)
4047 return -1;
4048
4049 rewinddir (dir);
4050 while ((entry = readdir (dir)) != NULL)
4051 {
4052 struct stat st;
4053 struct statfs stfs;
4054 int fd;
4055
4056 fd = atoi (entry->d_name);
4057 if (!fd)
4058 continue;
4059
4060 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4061 if (stat (path, &st) != 0)
4062 continue;
4063 if (!S_ISDIR (st.st_mode))
4064 continue;
4065
4066 if (statfs (path, &stfs) != 0)
4067 continue;
4068 if (stfs.f_type != SPUFS_MAGIC)
4069 continue;
4070
4071 if (pos >= offset && pos + 4 <= offset + len)
4072 {
4073 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4074 written += 4;
4075 }
4076 pos += 4;
4077 }
4078
4079 closedir (dir);
4080 return written;
4081 }
4082
4083 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4084 object type, using the /proc file system. */
4085
4086 static enum target_xfer_status
4087 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4088 const char *annex, gdb_byte *readbuf,
4089 const gdb_byte *writebuf,
4090 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4091 {
4092 char buf[128];
4093 int fd = 0;
4094 int ret = -1;
4095 int pid = ptid_get_pid (inferior_ptid);
4096
4097 if (!annex)
4098 {
4099 if (!readbuf)
4100 return TARGET_XFER_E_IO;
4101 else
4102 {
4103 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4104
4105 if (l < 0)
4106 return TARGET_XFER_E_IO;
4107 else if (l == 0)
4108 return TARGET_XFER_EOF;
4109 else
4110 {
4111 *xfered_len = (ULONGEST) l;
4112 return TARGET_XFER_OK;
4113 }
4114 }
4115 }
4116
4117 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4118 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4119 if (fd <= 0)
4120 return TARGET_XFER_E_IO;
4121
4122 if (offset != 0
4123 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4124 {
4125 close (fd);
4126 return TARGET_XFER_EOF;
4127 }
4128
4129 if (writebuf)
4130 ret = write (fd, writebuf, (size_t) len);
4131 else if (readbuf)
4132 ret = read (fd, readbuf, (size_t) len);
4133
4134 close (fd);
4135
4136 if (ret < 0)
4137 return TARGET_XFER_E_IO;
4138 else if (ret == 0)
4139 return TARGET_XFER_EOF;
4140 else
4141 {
4142 *xfered_len = (ULONGEST) ret;
4143 return TARGET_XFER_OK;
4144 }
4145 }
4146
4147
4148 /* Parse LINE as a signal set and add its set bits to SIGS. */
4149
4150 static void
4151 add_line_to_sigset (const char *line, sigset_t *sigs)
4152 {
4153 int len = strlen (line) - 1;
4154 const char *p;
4155 int signum;
4156
4157 if (line[len] != '\n')
4158 error (_("Could not parse signal set: %s"), line);
4159
4160 p = line;
4161 signum = len * 4;
4162 while (len-- > 0)
4163 {
4164 int digit;
4165
4166 if (*p >= '0' && *p <= '9')
4167 digit = *p - '0';
4168 else if (*p >= 'a' && *p <= 'f')
4169 digit = *p - 'a' + 10;
4170 else
4171 error (_("Could not parse signal set: %s"), line);
4172
4173 signum -= 4;
4174
4175 if (digit & 1)
4176 sigaddset (sigs, signum + 1);
4177 if (digit & 2)
4178 sigaddset (sigs, signum + 2);
4179 if (digit & 4)
4180 sigaddset (sigs, signum + 3);
4181 if (digit & 8)
4182 sigaddset (sigs, signum + 4);
4183
4184 p++;
4185 }
4186 }
4187
4188 /* Find process PID's pending signals from /proc/pid/status and set
4189 SIGS to match. */
4190
4191 void
4192 linux_proc_pending_signals (int pid, sigset_t *pending,
4193 sigset_t *blocked, sigset_t *ignored)
4194 {
4195 FILE *procfile;
4196 char buffer[PATH_MAX], fname[PATH_MAX];
4197 struct cleanup *cleanup;
4198
4199 sigemptyset (pending);
4200 sigemptyset (blocked);
4201 sigemptyset (ignored);
4202 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4203 procfile = gdb_fopen_cloexec (fname, "r");
4204 if (procfile == NULL)
4205 error (_("Could not open %s"), fname);
4206 cleanup = make_cleanup_fclose (procfile);
4207
4208 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4209 {
4210 /* Normal queued signals are on the SigPnd line in the status
4211 file. However, 2.6 kernels also have a "shared" pending
4212 queue for delivering signals to a thread group, so check for
4213 a ShdPnd line also.
4214
4215 Unfortunately some Red Hat kernels include the shared pending
4216 queue but not the ShdPnd status field. */
4217
4218 if (startswith (buffer, "SigPnd:\t"))
4219 add_line_to_sigset (buffer + 8, pending);
4220 else if (startswith (buffer, "ShdPnd:\t"))
4221 add_line_to_sigset (buffer + 8, pending);
4222 else if (startswith (buffer, "SigBlk:\t"))
4223 add_line_to_sigset (buffer + 8, blocked);
4224 else if (startswith (buffer, "SigIgn:\t"))
4225 add_line_to_sigset (buffer + 8, ignored);
4226 }
4227
4228 do_cleanups (cleanup);
4229 }
4230
4231 static enum target_xfer_status
4232 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4233 const char *annex, gdb_byte *readbuf,
4234 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4235 ULONGEST *xfered_len)
4236 {
4237 gdb_assert (object == TARGET_OBJECT_OSDATA);
4238
4239 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4240 if (*xfered_len == 0)
4241 return TARGET_XFER_EOF;
4242 else
4243 return TARGET_XFER_OK;
4244 }
4245
4246 static enum target_xfer_status
4247 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4248 const char *annex, gdb_byte *readbuf,
4249 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4250 ULONGEST *xfered_len)
4251 {
4252 enum target_xfer_status xfer;
4253
4254 if (object == TARGET_OBJECT_AUXV)
4255 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4256 offset, len, xfered_len);
4257
4258 if (object == TARGET_OBJECT_OSDATA)
4259 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4260 offset, len, xfered_len);
4261
4262 if (object == TARGET_OBJECT_SPU)
4263 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4264 offset, len, xfered_len);
4265
4266 /* GDB calculates all the addresses in possibly larget width of the address.
4267 Address width needs to be masked before its final use - either by
4268 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4269
4270 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4271
4272 if (object == TARGET_OBJECT_MEMORY)
4273 {
4274 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4275
4276 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4277 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4278 }
4279
4280 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4281 offset, len, xfered_len);
4282 if (xfer != TARGET_XFER_EOF)
4283 return xfer;
4284
4285 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4286 offset, len, xfered_len);
4287 }
4288
4289 static void
4290 cleanup_target_stop (void *arg)
4291 {
4292 ptid_t *ptid = (ptid_t *) arg;
4293
4294 gdb_assert (arg != NULL);
4295
4296 /* Unpause all */
4297 target_resume (*ptid, 0, GDB_SIGNAL_0);
4298 }
4299
4300 static VEC(static_tracepoint_marker_p) *
4301 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4302 const char *strid)
4303 {
4304 char s[IPA_CMD_BUF_SIZE];
4305 struct cleanup *old_chain;
4306 int pid = ptid_get_pid (inferior_ptid);
4307 VEC(static_tracepoint_marker_p) *markers = NULL;
4308 struct static_tracepoint_marker *marker = NULL;
4309 char *p = s;
4310 ptid_t ptid = ptid_build (pid, 0, 0);
4311
4312 /* Pause all */
4313 target_stop (ptid);
4314
4315 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4316 s[sizeof ("qTfSTM")] = 0;
4317
4318 agent_run_command (pid, s, strlen (s) + 1);
4319
4320 old_chain = make_cleanup (free_current_marker, &marker);
4321 make_cleanup (cleanup_target_stop, &ptid);
4322
4323 while (*p++ == 'm')
4324 {
4325 if (marker == NULL)
4326 marker = XCNEW (struct static_tracepoint_marker);
4327
4328 do
4329 {
4330 parse_static_tracepoint_marker_definition (p, &p, marker);
4331
4332 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4333 {
4334 VEC_safe_push (static_tracepoint_marker_p,
4335 markers, marker);
4336 marker = NULL;
4337 }
4338 else
4339 {
4340 release_static_tracepoint_marker (marker);
4341 memset (marker, 0, sizeof (*marker));
4342 }
4343 }
4344 while (*p++ == ','); /* comma-separated list */
4345
4346 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4347 s[sizeof ("qTsSTM")] = 0;
4348 agent_run_command (pid, s, strlen (s) + 1);
4349 p = s;
4350 }
4351
4352 do_cleanups (old_chain);
4353
4354 return markers;
4355 }
4356
4357 /* Create a prototype generic GNU/Linux target. The client can override
4358 it with local methods. */
4359
4360 static void
4361 linux_target_install_ops (struct target_ops *t)
4362 {
4363 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4364 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4365 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4366 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4367 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4368 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4369 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4370 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4371 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4372 t->to_post_attach = linux_child_post_attach;
4373 t->to_follow_fork = linux_child_follow_fork;
4374
4375 super_xfer_partial = t->to_xfer_partial;
4376 t->to_xfer_partial = linux_xfer_partial;
4377
4378 t->to_static_tracepoint_markers_by_strid
4379 = linux_child_static_tracepoint_markers_by_strid;
4380 }
4381
4382 struct target_ops *
4383 linux_target (void)
4384 {
4385 struct target_ops *t;
4386
4387 t = inf_ptrace_target ();
4388 linux_target_install_ops (t);
4389
4390 return t;
4391 }
4392
4393 struct target_ops *
4394 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4395 {
4396 struct target_ops *t;
4397
4398 t = inf_ptrace_trad_target (register_u_offset);
4399 linux_target_install_ops (t);
4400
4401 return t;
4402 }
4403
4404 /* target_is_async_p implementation. */
4405
4406 static int
4407 linux_nat_is_async_p (struct target_ops *ops)
4408 {
4409 return linux_is_async_p ();
4410 }
4411
4412 /* target_can_async_p implementation. */
4413
4414 static int
4415 linux_nat_can_async_p (struct target_ops *ops)
4416 {
4417 /* NOTE: palves 2008-03-21: We're only async when the user requests
4418 it explicitly with the "set target-async" command.
4419 Someday, linux will always be async. */
4420 return target_async_permitted;
4421 }
4422
4423 static int
4424 linux_nat_supports_non_stop (struct target_ops *self)
4425 {
4426 return 1;
4427 }
4428
4429 /* True if we want to support multi-process. To be removed when GDB
4430 supports multi-exec. */
4431
4432 int linux_multi_process = 1;
4433
4434 static int
4435 linux_nat_supports_multi_process (struct target_ops *self)
4436 {
4437 return linux_multi_process;
4438 }
4439
4440 static int
4441 linux_nat_supports_disable_randomization (struct target_ops *self)
4442 {
4443 #ifdef HAVE_PERSONALITY
4444 return 1;
4445 #else
4446 return 0;
4447 #endif
4448 }
4449
4450 static int async_terminal_is_ours = 1;
4451
4452 /* target_terminal_inferior implementation.
4453
4454 This is a wrapper around child_terminal_inferior to add async support. */
4455
4456 static void
4457 linux_nat_terminal_inferior (struct target_ops *self)
4458 {
4459 /* Like target_terminal_inferior, use target_can_async_p, not
4460 target_is_async_p, since at this point the target is not async
4461 yet. If it can async, then we know it will become async prior to
4462 resume. */
4463 if (!target_can_async_p ())
4464 {
4465 /* Async mode is disabled. */
4466 child_terminal_inferior (self);
4467 return;
4468 }
4469
4470 child_terminal_inferior (self);
4471
4472 /* Calls to target_terminal_*() are meant to be idempotent. */
4473 if (!async_terminal_is_ours)
4474 return;
4475
4476 delete_file_handler (input_fd);
4477 async_terminal_is_ours = 0;
4478 set_sigint_trap ();
4479 }
4480
4481 /* target_terminal_ours implementation.
4482
4483 This is a wrapper around child_terminal_ours to add async support (and
4484 implement the target_terminal_ours vs target_terminal_ours_for_output
4485 distinction). child_terminal_ours is currently no different than
4486 child_terminal_ours_for_output.
4487 We leave target_terminal_ours_for_output alone, leaving it to
4488 child_terminal_ours_for_output. */
4489
4490 static void
4491 linux_nat_terminal_ours (struct target_ops *self)
4492 {
4493 /* GDB should never give the terminal to the inferior if the
4494 inferior is running in the background (run&, continue&, etc.),
4495 but claiming it sure should. */
4496 child_terminal_ours (self);
4497
4498 if (async_terminal_is_ours)
4499 return;
4500
4501 clear_sigint_trap ();
4502 add_file_handler (input_fd, stdin_event_handler, 0);
4503 async_terminal_is_ours = 1;
4504 }
4505
4506 static void (*async_client_callback) (enum inferior_event_type event_type,
4507 void *context);
4508 static void *async_client_context;
4509
4510 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4511 so we notice when any child changes state, and notify the
4512 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4513 above to wait for the arrival of a SIGCHLD. */
4514
4515 static void
4516 sigchld_handler (int signo)
4517 {
4518 int old_errno = errno;
4519
4520 if (debug_linux_nat)
4521 ui_file_write_async_safe (gdb_stdlog,
4522 "sigchld\n", sizeof ("sigchld\n") - 1);
4523
4524 if (signo == SIGCHLD
4525 && linux_nat_event_pipe[0] != -1)
4526 async_file_mark (); /* Let the event loop know that there are
4527 events to handle. */
4528
4529 errno = old_errno;
4530 }
4531
4532 /* Callback registered with the target events file descriptor. */
4533
4534 static void
4535 handle_target_event (int error, gdb_client_data client_data)
4536 {
4537 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4538 }
4539
4540 /* Create/destroy the target events pipe. Returns previous state. */
4541
4542 static int
4543 linux_async_pipe (int enable)
4544 {
4545 int previous = linux_is_async_p ();
4546
4547 if (previous != enable)
4548 {
4549 sigset_t prev_mask;
4550
4551 /* Block child signals while we create/destroy the pipe, as
4552 their handler writes to it. */
4553 block_child_signals (&prev_mask);
4554
4555 if (enable)
4556 {
4557 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4558 internal_error (__FILE__, __LINE__,
4559 "creating event pipe failed.");
4560
4561 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4562 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4563 }
4564 else
4565 {
4566 close (linux_nat_event_pipe[0]);
4567 close (linux_nat_event_pipe[1]);
4568 linux_nat_event_pipe[0] = -1;
4569 linux_nat_event_pipe[1] = -1;
4570 }
4571
4572 restore_child_signals_mask (&prev_mask);
4573 }
4574
4575 return previous;
4576 }
4577
4578 /* target_async implementation. */
4579
4580 static void
4581 linux_nat_async (struct target_ops *ops,
4582 void (*callback) (enum inferior_event_type event_type,
4583 void *context),
4584 void *context)
4585 {
4586 if (callback != NULL)
4587 {
4588 async_client_callback = callback;
4589 async_client_context = context;
4590 if (!linux_async_pipe (1))
4591 {
4592 add_file_handler (linux_nat_event_pipe[0],
4593 handle_target_event, NULL);
4594 /* There may be pending events to handle. Tell the event loop
4595 to poll them. */
4596 async_file_mark ();
4597 }
4598 }
4599 else
4600 {
4601 async_client_callback = callback;
4602 async_client_context = context;
4603 delete_file_handler (linux_nat_event_pipe[0]);
4604 linux_async_pipe (0);
4605 }
4606 return;
4607 }
4608
4609 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4610 event came out. */
4611
4612 static int
4613 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4614 {
4615 if (!lwp->stopped)
4616 {
4617 if (debug_linux_nat)
4618 fprintf_unfiltered (gdb_stdlog,
4619 "LNSL: running -> suspending %s\n",
4620 target_pid_to_str (lwp->ptid));
4621
4622
4623 if (lwp->last_resume_kind == resume_stop)
4624 {
4625 if (debug_linux_nat)
4626 fprintf_unfiltered (gdb_stdlog,
4627 "linux-nat: already stopping LWP %ld at "
4628 "GDB's request\n",
4629 ptid_get_lwp (lwp->ptid));
4630 return 0;
4631 }
4632
4633 stop_callback (lwp, NULL);
4634 lwp->last_resume_kind = resume_stop;
4635 }
4636 else
4637 {
4638 /* Already known to be stopped; do nothing. */
4639
4640 if (debug_linux_nat)
4641 {
4642 if (find_thread_ptid (lwp->ptid)->stop_requested)
4643 fprintf_unfiltered (gdb_stdlog,
4644 "LNSL: already stopped/stop_requested %s\n",
4645 target_pid_to_str (lwp->ptid));
4646 else
4647 fprintf_unfiltered (gdb_stdlog,
4648 "LNSL: already stopped/no "
4649 "stop_requested yet %s\n",
4650 target_pid_to_str (lwp->ptid));
4651 }
4652 }
4653 return 0;
4654 }
4655
4656 static void
4657 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4658 {
4659 if (non_stop)
4660 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4661 else
4662 linux_ops->to_stop (linux_ops, ptid);
4663 }
4664
4665 static void
4666 linux_nat_close (struct target_ops *self)
4667 {
4668 /* Unregister from the event loop. */
4669 if (linux_nat_is_async_p (self))
4670 linux_nat_async (self, NULL, NULL);
4671
4672 if (linux_ops->to_close)
4673 linux_ops->to_close (linux_ops);
4674
4675 super_close (self);
4676 }
4677
4678 /* When requests are passed down from the linux-nat layer to the
4679 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4680 used. The address space pointer is stored in the inferior object,
4681 but the common code that is passed such ptid can't tell whether
4682 lwpid is a "main" process id or not (it assumes so). We reverse
4683 look up the "main" process id from the lwp here. */
4684
4685 static struct address_space *
4686 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4687 {
4688 struct lwp_info *lwp;
4689 struct inferior *inf;
4690 int pid;
4691
4692 if (ptid_get_lwp (ptid) == 0)
4693 {
4694 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4695 tgid. */
4696 lwp = find_lwp_pid (ptid);
4697 pid = ptid_get_pid (lwp->ptid);
4698 }
4699 else
4700 {
4701 /* A (pid,lwpid,0) ptid. */
4702 pid = ptid_get_pid (ptid);
4703 }
4704
4705 inf = find_inferior_pid (pid);
4706 gdb_assert (inf != NULL);
4707 return inf->aspace;
4708 }
4709
4710 /* Return the cached value of the processor core for thread PTID. */
4711
4712 static int
4713 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4714 {
4715 struct lwp_info *info = find_lwp_pid (ptid);
4716
4717 if (info)
4718 return info->core;
4719 return -1;
4720 }
4721
4722 void
4723 linux_nat_add_target (struct target_ops *t)
4724 {
4725 /* Save the provided single-threaded target. We save this in a separate
4726 variable because another target we've inherited from (e.g. inf-ptrace)
4727 may have saved a pointer to T; we want to use it for the final
4728 process stratum target. */
4729 linux_ops_saved = *t;
4730 linux_ops = &linux_ops_saved;
4731
4732 /* Override some methods for multithreading. */
4733 t->to_create_inferior = linux_nat_create_inferior;
4734 t->to_attach = linux_nat_attach;
4735 t->to_detach = linux_nat_detach;
4736 t->to_resume = linux_nat_resume;
4737 t->to_wait = linux_nat_wait;
4738 t->to_pass_signals = linux_nat_pass_signals;
4739 t->to_xfer_partial = linux_nat_xfer_partial;
4740 t->to_kill = linux_nat_kill;
4741 t->to_mourn_inferior = linux_nat_mourn_inferior;
4742 t->to_thread_alive = linux_nat_thread_alive;
4743 t->to_pid_to_str = linux_nat_pid_to_str;
4744 t->to_thread_name = linux_nat_thread_name;
4745 t->to_has_thread_control = tc_schedlock;
4746 t->to_thread_address_space = linux_nat_thread_address_space;
4747 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4748 t->to_stopped_data_address = linux_nat_stopped_data_address;
4749 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint;
4750 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint;
4751 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint;
4752 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint;
4753
4754 t->to_can_async_p = linux_nat_can_async_p;
4755 t->to_is_async_p = linux_nat_is_async_p;
4756 t->to_supports_non_stop = linux_nat_supports_non_stop;
4757 t->to_async = linux_nat_async;
4758 t->to_terminal_inferior = linux_nat_terminal_inferior;
4759 t->to_terminal_ours = linux_nat_terminal_ours;
4760
4761 super_close = t->to_close;
4762 t->to_close = linux_nat_close;
4763
4764 /* Methods for non-stop support. */
4765 t->to_stop = linux_nat_stop;
4766
4767 t->to_supports_multi_process = linux_nat_supports_multi_process;
4768
4769 t->to_supports_disable_randomization
4770 = linux_nat_supports_disable_randomization;
4771
4772 t->to_core_of_thread = linux_nat_core_of_thread;
4773
4774 /* We don't change the stratum; this target will sit at
4775 process_stratum and thread_db will set at thread_stratum. This
4776 is a little strange, since this is a multi-threaded-capable
4777 target, but we want to be on the stack below thread_db, and we
4778 also want to be used for single-threaded processes. */
4779
4780 add_target (t);
4781 }
4782
4783 /* Register a method to call whenever a new thread is attached. */
4784 void
4785 linux_nat_set_new_thread (struct target_ops *t,
4786 void (*new_thread) (struct lwp_info *))
4787 {
4788 /* Save the pointer. We only support a single registered instance
4789 of the GNU/Linux native target, so we do not need to map this to
4790 T. */
4791 linux_nat_new_thread = new_thread;
4792 }
4793
4794 /* See declaration in linux-nat.h. */
4795
4796 void
4797 linux_nat_set_new_fork (struct target_ops *t,
4798 linux_nat_new_fork_ftype *new_fork)
4799 {
4800 /* Save the pointer. */
4801 linux_nat_new_fork = new_fork;
4802 }
4803
4804 /* See declaration in linux-nat.h. */
4805
4806 void
4807 linux_nat_set_forget_process (struct target_ops *t,
4808 linux_nat_forget_process_ftype *fn)
4809 {
4810 /* Save the pointer. */
4811 linux_nat_forget_process_hook = fn;
4812 }
4813
4814 /* See declaration in linux-nat.h. */
4815
4816 void
4817 linux_nat_forget_process (pid_t pid)
4818 {
4819 if (linux_nat_forget_process_hook != NULL)
4820 linux_nat_forget_process_hook (pid);
4821 }
4822
4823 /* Register a method that converts a siginfo object between the layout
4824 that ptrace returns, and the layout in the architecture of the
4825 inferior. */
4826 void
4827 linux_nat_set_siginfo_fixup (struct target_ops *t,
4828 int (*siginfo_fixup) (siginfo_t *,
4829 gdb_byte *,
4830 int))
4831 {
4832 /* Save the pointer. */
4833 linux_nat_siginfo_fixup = siginfo_fixup;
4834 }
4835
4836 /* Register a method to call prior to resuming a thread. */
4837
4838 void
4839 linux_nat_set_prepare_to_resume (struct target_ops *t,
4840 void (*prepare_to_resume) (struct lwp_info *))
4841 {
4842 /* Save the pointer. */
4843 linux_nat_prepare_to_resume = prepare_to_resume;
4844 }
4845
4846 /* See linux-nat.h. */
4847
4848 int
4849 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4850 {
4851 int pid;
4852
4853 pid = ptid_get_lwp (ptid);
4854 if (pid == 0)
4855 pid = ptid_get_pid (ptid);
4856
4857 errno = 0;
4858 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4859 if (errno != 0)
4860 {
4861 memset (siginfo, 0, sizeof (*siginfo));
4862 return 0;
4863 }
4864 return 1;
4865 }
4866
4867 /* Provide a prototype to silence -Wmissing-prototypes. */
4868 extern initialize_file_ftype _initialize_linux_nat;
4869
4870 void
4871 _initialize_linux_nat (void)
4872 {
4873 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4874 &debug_linux_nat, _("\
4875 Set debugging of GNU/Linux lwp module."), _("\
4876 Show debugging of GNU/Linux lwp module."), _("\
4877 Enables printf debugging output."),
4878 NULL,
4879 show_debug_linux_nat,
4880 &setdebuglist, &showdebuglist);
4881
4882 /* Save this mask as the default. */
4883 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4884
4885 /* Install a SIGCHLD handler. */
4886 sigchld_action.sa_handler = sigchld_handler;
4887 sigemptyset (&sigchld_action.sa_mask);
4888 sigchld_action.sa_flags = SA_RESTART;
4889
4890 /* Make it the default. */
4891 sigaction (SIGCHLD, &sigchld_action, NULL);
4892
4893 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4894 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4895 sigdelset (&suspend_mask, SIGCHLD);
4896
4897 sigemptyset (&blocked_mask);
4898
4899 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to
4900 support read-only process state. */
4901 linux_ptrace_set_additional_flags (PTRACE_O_TRACESYSGOOD
4902 | PTRACE_O_TRACEVFORKDONE
4903 | PTRACE_O_TRACEVFORK
4904 | PTRACE_O_TRACEFORK
4905 | PTRACE_O_TRACEEXEC);
4906 }
4907 \f
4908
4909 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4910 the GNU/Linux Threads library and therefore doesn't really belong
4911 here. */
4912
4913 /* Read variable NAME in the target and return its value if found.
4914 Otherwise return zero. It is assumed that the type of the variable
4915 is `int'. */
4916
4917 static int
4918 get_signo (const char *name)
4919 {
4920 struct bound_minimal_symbol ms;
4921 int signo;
4922
4923 ms = lookup_minimal_symbol (name, NULL, NULL);
4924 if (ms.minsym == NULL)
4925 return 0;
4926
4927 if (target_read_memory (BMSYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
4928 sizeof (signo)) != 0)
4929 return 0;
4930
4931 return signo;
4932 }
4933
4934 /* Return the set of signals used by the threads library in *SET. */
4935
4936 void
4937 lin_thread_get_thread_signals (sigset_t *set)
4938 {
4939 struct sigaction action;
4940 int restart, cancel;
4941
4942 sigemptyset (&blocked_mask);
4943 sigemptyset (set);
4944
4945 restart = get_signo ("__pthread_sig_restart");
4946 cancel = get_signo ("__pthread_sig_cancel");
4947
4948 /* LinuxThreads normally uses the first two RT signals, but in some legacy
4949 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
4950 not provide any way for the debugger to query the signal numbers -
4951 fortunately they don't change! */
4952
4953 if (restart == 0)
4954 restart = __SIGRTMIN;
4955
4956 if (cancel == 0)
4957 cancel = __SIGRTMIN + 1;
4958
4959 sigaddset (set, restart);
4960 sigaddset (set, cancel);
4961
4962 /* The GNU/Linux Threads library makes terminating threads send a
4963 special "cancel" signal instead of SIGCHLD. Make sure we catch
4964 those (to prevent them from terminating GDB itself, which is
4965 likely to be their default action) and treat them the same way as
4966 SIGCHLD. */
4967
4968 action.sa_handler = sigchld_handler;
4969 sigemptyset (&action.sa_mask);
4970 action.sa_flags = SA_RESTART;
4971 sigaction (cancel, &action, NULL);
4972
4973 /* We block the "cancel" signal throughout this code ... */
4974 sigaddset (&blocked_mask, cancel);
4975 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
4976
4977 /* ... except during a sigsuspend. */
4978 sigdelset (&suspend_mask, cancel);
4979 }