]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/linux-nat.c
gdb: Improve syscall entry/return tracking on Linux
[thirdparty/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include "nat/gdb_ptrace.h"
32 #include "linux-nat.h"
33 #include "nat/linux-ptrace.h"
34 #include "nat/linux-procfs.h"
35 #include "nat/linux-personality.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
38 #include "gdbcmd.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
43 #include "auxv.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include <sys/stat.h> /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include <dirent.h>
57 #include "xml-support.h"
58 #include <sys/vfs.h>
59 #include "solib.h"
60 #include "nat/linux-osdata.h"
61 #include "linux-tdep.h"
62 #include "symfile.h"
63 #include "agent.h"
64 #include "tracepoint.h"
65 #include "buffer.h"
66 #include "target-descriptions.h"
67 #include "filestuff.h"
68 #include "objfiles.h"
69 #include "nat/linux-namespaces.h"
70 #include "fileio.h"
71
72 #ifndef SPUFS_MAGIC
73 #define SPUFS_MAGIC 0x23c9b64e
74 #endif
75
76 /* This comment documents high-level logic of this file.
77
78 Waiting for events in sync mode
79 ===============================
80
81 When waiting for an event in a specific thread, we just use waitpid, passing
82 the specific pid, and not passing WNOHANG.
83
84 When waiting for an event in all threads, waitpid is not quite good. Prior to
85 version 2.4, Linux can either wait for event in main thread, or in secondary
86 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
87 miss an event. The solution is to use non-blocking waitpid, together with
88 sigsuspend. First, we use non-blocking waitpid to get an event in the main
89 process, if any. Second, we use non-blocking waitpid with the __WCLONED
90 flag to check for events in cloned processes. If nothing is found, we use
91 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
92 happened to a child process -- and SIGCHLD will be delivered both for events
93 in main debugged process and in cloned processes. As soon as we know there's
94 an event, we get back to calling nonblocking waitpid with and without
95 __WCLONED.
96
97 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
98 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
99 blocked, the signal becomes pending and sigsuspend immediately
100 notices it and returns.
101
102 Waiting for events in async mode
103 ================================
104
105 In async mode, GDB should always be ready to handle both user input
106 and target events, so neither blocking waitpid nor sigsuspend are
107 viable options. Instead, we should asynchronously notify the GDB main
108 event loop whenever there's an unprocessed event from the target. We
109 detect asynchronous target events by handling SIGCHLD signals. To
110 notify the event loop about target events, the self-pipe trick is used
111 --- a pipe is registered as waitable event source in the event loop,
112 the event loop select/poll's on the read end of this pipe (as well on
113 other event sources, e.g., stdin), and the SIGCHLD handler writes a
114 byte to this pipe. This is more portable than relying on
115 pselect/ppoll, since on kernels that lack those syscalls, libc
116 emulates them with select/poll+sigprocmask, and that is racy
117 (a.k.a. plain broken).
118
119 Obviously, if we fail to notify the event loop if there's a target
120 event, it's bad. OTOH, if we notify the event loop when there's no
121 event from the target, linux_nat_wait will detect that there's no real
122 event to report, and return event of type TARGET_WAITKIND_IGNORE.
123 This is mostly harmless, but it will waste time and is better avoided.
124
125 The main design point is that every time GDB is outside linux-nat.c,
126 we have a SIGCHLD handler installed that is called when something
127 happens to the target and notifies the GDB event loop. Whenever GDB
128 core decides to handle the event, and calls into linux-nat.c, we
129 process things as in sync mode, except that the we never block in
130 sigsuspend.
131
132 While processing an event, we may end up momentarily blocked in
133 waitpid calls. Those waitpid calls, while blocking, are guarantied to
134 return quickly. E.g., in all-stop mode, before reporting to the core
135 that an LWP hit a breakpoint, all LWPs are stopped by sending them
136 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
137 Note that this is different from blocking indefinitely waiting for the
138 next event --- here, we're already handling an event.
139
140 Use of signals
141 ==============
142
143 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
144 signal is not entirely significant; we just need for a signal to be delivered,
145 so that we can intercept it. SIGSTOP's advantage is that it can not be
146 blocked. A disadvantage is that it is not a real-time signal, so it can only
147 be queued once; we do not keep track of other sources of SIGSTOP.
148
149 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
150 use them, because they have special behavior when the signal is generated -
151 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
152 kills the entire thread group.
153
154 A delivered SIGSTOP would stop the entire thread group, not just the thread we
155 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
156 cancel it (by PTRACE_CONT without passing SIGSTOP).
157
158 We could use a real-time signal instead. This would solve those problems; we
159 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
160 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
161 generates it, and there are races with trying to find a signal that is not
162 blocked. */
163
164 #ifndef O_LARGEFILE
165 #define O_LARGEFILE 0
166 #endif
167
168 /* Does the current host support PTRACE_GETREGSET? */
169 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
170
171 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
172 the use of the multi-threaded target. */
173 static struct target_ops *linux_ops;
174 static struct target_ops linux_ops_saved;
175
176 /* The method to call, if any, when a new thread is attached. */
177 static void (*linux_nat_new_thread) (struct lwp_info *);
178
179 /* The method to call, if any, when a new fork is attached. */
180 static linux_nat_new_fork_ftype *linux_nat_new_fork;
181
182 /* The method to call, if any, when a process is no longer
183 attached. */
184 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
185
186 /* Hook to call prior to resuming a thread. */
187 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
188
189 /* The method to call, if any, when the siginfo object needs to be
190 converted between the layout returned by ptrace, and the layout in
191 the architecture of the inferior. */
192 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
193 gdb_byte *,
194 int);
195
196 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
197 Called by our to_xfer_partial. */
198 static target_xfer_partial_ftype *super_xfer_partial;
199
200 /* The saved to_close method, inherited from inf-ptrace.c.
201 Called by our to_close. */
202 static void (*super_close) (struct target_ops *);
203
204 static unsigned int debug_linux_nat;
205 static void
206 show_debug_linux_nat (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
208 {
209 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
210 value);
211 }
212
213 struct simple_pid_list
214 {
215 int pid;
216 int status;
217 struct simple_pid_list *next;
218 };
219 struct simple_pid_list *stopped_pids;
220
221 /* Async mode support. */
222
223 /* The read/write ends of the pipe registered as waitable file in the
224 event loop. */
225 static int linux_nat_event_pipe[2] = { -1, -1 };
226
227 /* True if we're currently in async mode. */
228 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
229
230 /* Flush the event pipe. */
231
232 static void
233 async_file_flush (void)
234 {
235 int ret;
236 char buf;
237
238 do
239 {
240 ret = read (linux_nat_event_pipe[0], &buf, 1);
241 }
242 while (ret >= 0 || (ret == -1 && errno == EINTR));
243 }
244
245 /* Put something (anything, doesn't matter what, or how much) in event
246 pipe, so that the select/poll in the event-loop realizes we have
247 something to process. */
248
249 static void
250 async_file_mark (void)
251 {
252 int ret;
253
254 /* It doesn't really matter what the pipe contains, as long we end
255 up with something in it. Might as well flush the previous
256 left-overs. */
257 async_file_flush ();
258
259 do
260 {
261 ret = write (linux_nat_event_pipe[1], "+", 1);
262 }
263 while (ret == -1 && errno == EINTR);
264
265 /* Ignore EAGAIN. If the pipe is full, the event loop will already
266 be awakened anyway. */
267 }
268
269 static int kill_lwp (int lwpid, int signo);
270
271 static int stop_callback (struct lwp_info *lp, void *data);
272 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
273
274 static void block_child_signals (sigset_t *prev_mask);
275 static void restore_child_signals_mask (sigset_t *prev_mask);
276
277 struct lwp_info;
278 static struct lwp_info *add_lwp (ptid_t ptid);
279 static void purge_lwp_list (int pid);
280 static void delete_lwp (ptid_t ptid);
281 static struct lwp_info *find_lwp_pid (ptid_t ptid);
282
283 static int lwp_status_pending_p (struct lwp_info *lp);
284
285 static int check_stopped_by_breakpoint (struct lwp_info *lp);
286 static int sigtrap_is_event (int status);
287 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
288
289 \f
290 /* LWP accessors. */
291
292 /* See nat/linux-nat.h. */
293
294 ptid_t
295 ptid_of_lwp (struct lwp_info *lwp)
296 {
297 return lwp->ptid;
298 }
299
300 /* See nat/linux-nat.h. */
301
302 void
303 lwp_set_arch_private_info (struct lwp_info *lwp,
304 struct arch_lwp_info *info)
305 {
306 lwp->arch_private = info;
307 }
308
309 /* See nat/linux-nat.h. */
310
311 struct arch_lwp_info *
312 lwp_arch_private_info (struct lwp_info *lwp)
313 {
314 return lwp->arch_private;
315 }
316
317 /* See nat/linux-nat.h. */
318
319 int
320 lwp_is_stopped (struct lwp_info *lwp)
321 {
322 return lwp->stopped;
323 }
324
325 /* See nat/linux-nat.h. */
326
327 enum target_stop_reason
328 lwp_stop_reason (struct lwp_info *lwp)
329 {
330 return lwp->stop_reason;
331 }
332
333 \f
334 /* Trivial list manipulation functions to keep track of a list of
335 new stopped processes. */
336 static void
337 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
338 {
339 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
340
341 new_pid->pid = pid;
342 new_pid->status = status;
343 new_pid->next = *listp;
344 *listp = new_pid;
345 }
346
347 static int
348 in_pid_list_p (struct simple_pid_list *list, int pid)
349 {
350 struct simple_pid_list *p;
351
352 for (p = list; p != NULL; p = p->next)
353 if (p->pid == pid)
354 return 1;
355 return 0;
356 }
357
358 static int
359 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
360 {
361 struct simple_pid_list **p;
362
363 for (p = listp; *p != NULL; p = &(*p)->next)
364 if ((*p)->pid == pid)
365 {
366 struct simple_pid_list *next = (*p)->next;
367
368 *statusp = (*p)->status;
369 xfree (*p);
370 *p = next;
371 return 1;
372 }
373 return 0;
374 }
375
376 /* Return the ptrace options that we want to try to enable. */
377
378 static int
379 linux_nat_ptrace_options (int attached)
380 {
381 int options = 0;
382
383 if (!attached)
384 options |= PTRACE_O_EXITKILL;
385
386 options |= (PTRACE_O_TRACESYSGOOD
387 | PTRACE_O_TRACEVFORKDONE
388 | PTRACE_O_TRACEVFORK
389 | PTRACE_O_TRACEFORK
390 | PTRACE_O_TRACEEXEC);
391
392 return options;
393 }
394
395 /* Initialize ptrace warnings and check for supported ptrace
396 features given PID.
397
398 ATTACHED should be nonzero iff we attached to the inferior. */
399
400 static void
401 linux_init_ptrace (pid_t pid, int attached)
402 {
403 int options = linux_nat_ptrace_options (attached);
404
405 linux_enable_event_reporting (pid, options);
406 linux_ptrace_init_warnings ();
407 }
408
409 static void
410 linux_child_post_attach (struct target_ops *self, int pid)
411 {
412 linux_init_ptrace (pid, 1);
413 }
414
415 static void
416 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
417 {
418 linux_init_ptrace (ptid_get_pid (ptid), 0);
419 }
420
421 /* Return the number of known LWPs in the tgid given by PID. */
422
423 static int
424 num_lwps (int pid)
425 {
426 int count = 0;
427 struct lwp_info *lp;
428
429 for (lp = lwp_list; lp; lp = lp->next)
430 if (ptid_get_pid (lp->ptid) == pid)
431 count++;
432
433 return count;
434 }
435
436 /* Call delete_lwp with prototype compatible for make_cleanup. */
437
438 static void
439 delete_lwp_cleanup (void *lp_voidp)
440 {
441 struct lwp_info *lp = (struct lwp_info *) lp_voidp;
442
443 delete_lwp (lp->ptid);
444 }
445
446 /* Target hook for follow_fork. On entry inferior_ptid must be the
447 ptid of the followed inferior. At return, inferior_ptid will be
448 unchanged. */
449
450 static int
451 linux_child_follow_fork (struct target_ops *ops, int follow_child,
452 int detach_fork)
453 {
454 if (!follow_child)
455 {
456 struct lwp_info *child_lp = NULL;
457 int status = W_STOPCODE (0);
458 struct cleanup *old_chain;
459 int has_vforked;
460 ptid_t parent_ptid, child_ptid;
461 int parent_pid, child_pid;
462
463 has_vforked = (inferior_thread ()->pending_follow.kind
464 == TARGET_WAITKIND_VFORKED);
465 parent_ptid = inferior_ptid;
466 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
467 parent_pid = ptid_get_lwp (parent_ptid);
468 child_pid = ptid_get_lwp (child_ptid);
469
470 /* We're already attached to the parent, by default. */
471 old_chain = save_inferior_ptid ();
472 inferior_ptid = child_ptid;
473 child_lp = add_lwp (inferior_ptid);
474 child_lp->stopped = 1;
475 child_lp->last_resume_kind = resume_stop;
476
477 /* Detach new forked process? */
478 if (detach_fork)
479 {
480 make_cleanup (delete_lwp_cleanup, child_lp);
481
482 if (linux_nat_prepare_to_resume != NULL)
483 linux_nat_prepare_to_resume (child_lp);
484
485 /* When debugging an inferior in an architecture that supports
486 hardware single stepping on a kernel without commit
487 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
488 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
489 set if the parent process had them set.
490 To work around this, single step the child process
491 once before detaching to clear the flags. */
492
493 if (!gdbarch_software_single_step_p (target_thread_architecture
494 (child_lp->ptid)))
495 {
496 linux_disable_event_reporting (child_pid);
497 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
498 perror_with_name (_("Couldn't do single step"));
499 if (my_waitpid (child_pid, &status, 0) < 0)
500 perror_with_name (_("Couldn't wait vfork process"));
501 }
502
503 if (WIFSTOPPED (status))
504 {
505 int signo;
506
507 signo = WSTOPSIG (status);
508 if (signo != 0
509 && !signal_pass_state (gdb_signal_from_host (signo)))
510 signo = 0;
511 ptrace (PTRACE_DETACH, child_pid, 0, signo);
512 }
513
514 /* Resets value of inferior_ptid to parent ptid. */
515 do_cleanups (old_chain);
516 }
517 else
518 {
519 /* Let the thread_db layer learn about this new process. */
520 check_for_thread_db ();
521 }
522
523 do_cleanups (old_chain);
524
525 if (has_vforked)
526 {
527 struct lwp_info *parent_lp;
528
529 parent_lp = find_lwp_pid (parent_ptid);
530 gdb_assert (linux_supports_tracefork () >= 0);
531
532 if (linux_supports_tracevforkdone ())
533 {
534 if (debug_linux_nat)
535 fprintf_unfiltered (gdb_stdlog,
536 "LCFF: waiting for VFORK_DONE on %d\n",
537 parent_pid);
538 parent_lp->stopped = 1;
539
540 /* We'll handle the VFORK_DONE event like any other
541 event, in target_wait. */
542 }
543 else
544 {
545 /* We can't insert breakpoints until the child has
546 finished with the shared memory region. We need to
547 wait until that happens. Ideal would be to just
548 call:
549 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
550 - waitpid (parent_pid, &status, __WALL);
551 However, most architectures can't handle a syscall
552 being traced on the way out if it wasn't traced on
553 the way in.
554
555 We might also think to loop, continuing the child
556 until it exits or gets a SIGTRAP. One problem is
557 that the child might call ptrace with PTRACE_TRACEME.
558
559 There's no simple and reliable way to figure out when
560 the vforked child will be done with its copy of the
561 shared memory. We could step it out of the syscall,
562 two instructions, let it go, and then single-step the
563 parent once. When we have hardware single-step, this
564 would work; with software single-step it could still
565 be made to work but we'd have to be able to insert
566 single-step breakpoints in the child, and we'd have
567 to insert -just- the single-step breakpoint in the
568 parent. Very awkward.
569
570 In the end, the best we can do is to make sure it
571 runs for a little while. Hopefully it will be out of
572 range of any breakpoints we reinsert. Usually this
573 is only the single-step breakpoint at vfork's return
574 point. */
575
576 if (debug_linux_nat)
577 fprintf_unfiltered (gdb_stdlog,
578 "LCFF: no VFORK_DONE "
579 "support, sleeping a bit\n");
580
581 usleep (10000);
582
583 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
584 and leave it pending. The next linux_nat_resume call
585 will notice a pending event, and bypasses actually
586 resuming the inferior. */
587 parent_lp->status = 0;
588 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
589 parent_lp->stopped = 1;
590
591 /* If we're in async mode, need to tell the event loop
592 there's something here to process. */
593 if (target_is_async_p ())
594 async_file_mark ();
595 }
596 }
597 }
598 else
599 {
600 struct lwp_info *child_lp;
601
602 child_lp = add_lwp (inferior_ptid);
603 child_lp->stopped = 1;
604 child_lp->last_resume_kind = resume_stop;
605
606 /* Let the thread_db layer learn about this new process. */
607 check_for_thread_db ();
608 }
609
610 return 0;
611 }
612
613 \f
614 static int
615 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
616 {
617 return !linux_supports_tracefork ();
618 }
619
620 static int
621 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
622 {
623 return 0;
624 }
625
626 static int
627 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
628 {
629 return !linux_supports_tracefork ();
630 }
631
632 static int
633 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
634 {
635 return 0;
636 }
637
638 static int
639 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
640 {
641 return !linux_supports_tracefork ();
642 }
643
644 static int
645 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
646 {
647 return 0;
648 }
649
650 static int
651 linux_child_set_syscall_catchpoint (struct target_ops *self,
652 int pid, int needed, int any_count,
653 int table_size, int *table)
654 {
655 if (!linux_supports_tracesysgood ())
656 return 1;
657
658 /* On GNU/Linux, we ignore the arguments. It means that we only
659 enable the syscall catchpoints, but do not disable them.
660
661 Also, we do not use the `table' information because we do not
662 filter system calls here. We let GDB do the logic for us. */
663 return 0;
664 }
665
666 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
667 are processes sharing the same VM space. A multi-threaded process
668 is basically a group of such processes. However, such a grouping
669 is almost entirely a user-space issue; the kernel doesn't enforce
670 such a grouping at all (this might change in the future). In
671 general, we'll rely on the threads library (i.e. the GNU/Linux
672 Threads library) to provide such a grouping.
673
674 It is perfectly well possible to write a multi-threaded application
675 without the assistance of a threads library, by using the clone
676 system call directly. This module should be able to give some
677 rudimentary support for debugging such applications if developers
678 specify the CLONE_PTRACE flag in the clone system call, and are
679 using the Linux kernel 2.4 or above.
680
681 Note that there are some peculiarities in GNU/Linux that affect
682 this code:
683
684 - In general one should specify the __WCLONE flag to waitpid in
685 order to make it report events for any of the cloned processes
686 (and leave it out for the initial process). However, if a cloned
687 process has exited the exit status is only reported if the
688 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
689 we cannot use it since GDB must work on older systems too.
690
691 - When a traced, cloned process exits and is waited for by the
692 debugger, the kernel reassigns it to the original parent and
693 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
694 library doesn't notice this, which leads to the "zombie problem":
695 When debugged a multi-threaded process that spawns a lot of
696 threads will run out of processes, even if the threads exit,
697 because the "zombies" stay around. */
698
699 /* List of known LWPs. */
700 struct lwp_info *lwp_list;
701 \f
702
703 /* Original signal mask. */
704 static sigset_t normal_mask;
705
706 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
707 _initialize_linux_nat. */
708 static sigset_t suspend_mask;
709
710 /* Signals to block to make that sigsuspend work. */
711 static sigset_t blocked_mask;
712
713 /* SIGCHLD action. */
714 struct sigaction sigchld_action;
715
716 /* Block child signals (SIGCHLD and linux threads signals), and store
717 the previous mask in PREV_MASK. */
718
719 static void
720 block_child_signals (sigset_t *prev_mask)
721 {
722 /* Make sure SIGCHLD is blocked. */
723 if (!sigismember (&blocked_mask, SIGCHLD))
724 sigaddset (&blocked_mask, SIGCHLD);
725
726 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
727 }
728
729 /* Restore child signals mask, previously returned by
730 block_child_signals. */
731
732 static void
733 restore_child_signals_mask (sigset_t *prev_mask)
734 {
735 sigprocmask (SIG_SETMASK, prev_mask, NULL);
736 }
737
738 /* Mask of signals to pass directly to the inferior. */
739 static sigset_t pass_mask;
740
741 /* Update signals to pass to the inferior. */
742 static void
743 linux_nat_pass_signals (struct target_ops *self,
744 int numsigs, unsigned char *pass_signals)
745 {
746 int signo;
747
748 sigemptyset (&pass_mask);
749
750 for (signo = 1; signo < NSIG; signo++)
751 {
752 int target_signo = gdb_signal_from_host (signo);
753 if (target_signo < numsigs && pass_signals[target_signo])
754 sigaddset (&pass_mask, signo);
755 }
756 }
757
758 \f
759
760 /* Prototypes for local functions. */
761 static int stop_wait_callback (struct lwp_info *lp, void *data);
762 static int linux_thread_alive (ptid_t ptid);
763 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
764 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
765
766 \f
767
768 /* Destroy and free LP. */
769
770 static void
771 lwp_free (struct lwp_info *lp)
772 {
773 xfree (lp->arch_private);
774 xfree (lp);
775 }
776
777 /* Remove all LWPs belong to PID from the lwp list. */
778
779 static void
780 purge_lwp_list (int pid)
781 {
782 struct lwp_info *lp, *lpprev, *lpnext;
783
784 lpprev = NULL;
785
786 for (lp = lwp_list; lp; lp = lpnext)
787 {
788 lpnext = lp->next;
789
790 if (ptid_get_pid (lp->ptid) == pid)
791 {
792 if (lp == lwp_list)
793 lwp_list = lp->next;
794 else
795 lpprev->next = lp->next;
796
797 lwp_free (lp);
798 }
799 else
800 lpprev = lp;
801 }
802 }
803
804 /* Add the LWP specified by PTID to the list. PTID is the first LWP
805 in the process. Return a pointer to the structure describing the
806 new LWP.
807
808 This differs from add_lwp in that we don't let the arch specific
809 bits know about this new thread. Current clients of this callback
810 take the opportunity to install watchpoints in the new thread, and
811 we shouldn't do that for the first thread. If we're spawning a
812 child ("run"), the thread executes the shell wrapper first, and we
813 shouldn't touch it until it execs the program we want to debug.
814 For "attach", it'd be okay to call the callback, but it's not
815 necessary, because watchpoints can't yet have been inserted into
816 the inferior. */
817
818 static struct lwp_info *
819 add_initial_lwp (ptid_t ptid)
820 {
821 struct lwp_info *lp;
822
823 gdb_assert (ptid_lwp_p (ptid));
824
825 lp = XNEW (struct lwp_info);
826
827 memset (lp, 0, sizeof (struct lwp_info));
828
829 lp->last_resume_kind = resume_continue;
830 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
831
832 lp->ptid = ptid;
833 lp->core = -1;
834
835 lp->next = lwp_list;
836 lwp_list = lp;
837
838 return lp;
839 }
840
841 /* Add the LWP specified by PID to the list. Return a pointer to the
842 structure describing the new LWP. The LWP should already be
843 stopped. */
844
845 static struct lwp_info *
846 add_lwp (ptid_t ptid)
847 {
848 struct lwp_info *lp;
849
850 lp = add_initial_lwp (ptid);
851
852 /* Let the arch specific bits know about this new thread. Current
853 clients of this callback take the opportunity to install
854 watchpoints in the new thread. We don't do this for the first
855 thread though. See add_initial_lwp. */
856 if (linux_nat_new_thread != NULL)
857 linux_nat_new_thread (lp);
858
859 return lp;
860 }
861
862 /* Remove the LWP specified by PID from the list. */
863
864 static void
865 delete_lwp (ptid_t ptid)
866 {
867 struct lwp_info *lp, *lpprev;
868
869 lpprev = NULL;
870
871 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
872 if (ptid_equal (lp->ptid, ptid))
873 break;
874
875 if (!lp)
876 return;
877
878 if (lpprev)
879 lpprev->next = lp->next;
880 else
881 lwp_list = lp->next;
882
883 lwp_free (lp);
884 }
885
886 /* Return a pointer to the structure describing the LWP corresponding
887 to PID. If no corresponding LWP could be found, return NULL. */
888
889 static struct lwp_info *
890 find_lwp_pid (ptid_t ptid)
891 {
892 struct lwp_info *lp;
893 int lwp;
894
895 if (ptid_lwp_p (ptid))
896 lwp = ptid_get_lwp (ptid);
897 else
898 lwp = ptid_get_pid (ptid);
899
900 for (lp = lwp_list; lp; lp = lp->next)
901 if (lwp == ptid_get_lwp (lp->ptid))
902 return lp;
903
904 return NULL;
905 }
906
907 /* See nat/linux-nat.h. */
908
909 struct lwp_info *
910 iterate_over_lwps (ptid_t filter,
911 iterate_over_lwps_ftype callback,
912 void *data)
913 {
914 struct lwp_info *lp, *lpnext;
915
916 for (lp = lwp_list; lp; lp = lpnext)
917 {
918 lpnext = lp->next;
919
920 if (ptid_match (lp->ptid, filter))
921 {
922 if ((*callback) (lp, data) != 0)
923 return lp;
924 }
925 }
926
927 return NULL;
928 }
929
930 /* Update our internal state when changing from one checkpoint to
931 another indicated by NEW_PTID. We can only switch single-threaded
932 applications, so we only create one new LWP, and the previous list
933 is discarded. */
934
935 void
936 linux_nat_switch_fork (ptid_t new_ptid)
937 {
938 struct lwp_info *lp;
939
940 purge_lwp_list (ptid_get_pid (inferior_ptid));
941
942 lp = add_lwp (new_ptid);
943 lp->stopped = 1;
944
945 /* This changes the thread's ptid while preserving the gdb thread
946 num. Also changes the inferior pid, while preserving the
947 inferior num. */
948 thread_change_ptid (inferior_ptid, new_ptid);
949
950 /* We've just told GDB core that the thread changed target id, but,
951 in fact, it really is a different thread, with different register
952 contents. */
953 registers_changed ();
954 }
955
956 /* Handle the exit of a single thread LP. */
957
958 static void
959 exit_lwp (struct lwp_info *lp)
960 {
961 struct thread_info *th = find_thread_ptid (lp->ptid);
962
963 if (th)
964 {
965 if (print_thread_events)
966 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
967
968 delete_thread (lp->ptid);
969 }
970
971 delete_lwp (lp->ptid);
972 }
973
974 /* Wait for the LWP specified by LP, which we have just attached to.
975 Returns a wait status for that LWP, to cache. */
976
977 static int
978 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
979 int *signalled)
980 {
981 pid_t new_pid, pid = ptid_get_lwp (ptid);
982 int status;
983
984 if (linux_proc_pid_is_stopped (pid))
985 {
986 if (debug_linux_nat)
987 fprintf_unfiltered (gdb_stdlog,
988 "LNPAW: Attaching to a stopped process\n");
989
990 /* The process is definitely stopped. It is in a job control
991 stop, unless the kernel predates the TASK_STOPPED /
992 TASK_TRACED distinction, in which case it might be in a
993 ptrace stop. Make sure it is in a ptrace stop; from there we
994 can kill it, signal it, et cetera.
995
996 First make sure there is a pending SIGSTOP. Since we are
997 already attached, the process can not transition from stopped
998 to running without a PTRACE_CONT; so we know this signal will
999 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1000 probably already in the queue (unless this kernel is old
1001 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1002 is not an RT signal, it can only be queued once. */
1003 kill_lwp (pid, SIGSTOP);
1004
1005 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1006 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1007 ptrace (PTRACE_CONT, pid, 0, 0);
1008 }
1009
1010 /* Make sure the initial process is stopped. The user-level threads
1011 layer might want to poke around in the inferior, and that won't
1012 work if things haven't stabilized yet. */
1013 new_pid = my_waitpid (pid, &status, 0);
1014 if (new_pid == -1 && errno == ECHILD)
1015 {
1016 if (first)
1017 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1018
1019 /* Try again with __WCLONE to check cloned processes. */
1020 new_pid = my_waitpid (pid, &status, __WCLONE);
1021 *cloned = 1;
1022 }
1023
1024 gdb_assert (pid == new_pid);
1025
1026 if (!WIFSTOPPED (status))
1027 {
1028 /* The pid we tried to attach has apparently just exited. */
1029 if (debug_linux_nat)
1030 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1031 pid, status_to_str (status));
1032 return status;
1033 }
1034
1035 if (WSTOPSIG (status) != SIGSTOP)
1036 {
1037 *signalled = 1;
1038 if (debug_linux_nat)
1039 fprintf_unfiltered (gdb_stdlog,
1040 "LNPAW: Received %s after attaching\n",
1041 status_to_str (status));
1042 }
1043
1044 return status;
1045 }
1046
1047 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1048 the new LWP could not be attached, or 1 if we're already auto
1049 attached to this thread, but haven't processed the
1050 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1051 its existance, without considering it an error. */
1052
1053 int
1054 lin_lwp_attach_lwp (ptid_t ptid)
1055 {
1056 struct lwp_info *lp;
1057 int lwpid;
1058
1059 gdb_assert (ptid_lwp_p (ptid));
1060
1061 lp = find_lwp_pid (ptid);
1062 lwpid = ptid_get_lwp (ptid);
1063
1064 /* We assume that we're already attached to any LWP that is already
1065 in our list of LWPs. If we're not seeing exit events from threads
1066 and we've had PID wraparound since we last tried to stop all threads,
1067 this assumption might be wrong; fortunately, this is very unlikely
1068 to happen. */
1069 if (lp == NULL)
1070 {
1071 int status, cloned = 0, signalled = 0;
1072
1073 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1074 {
1075 if (linux_supports_tracefork ())
1076 {
1077 /* If we haven't stopped all threads when we get here,
1078 we may have seen a thread listed in thread_db's list,
1079 but not processed the PTRACE_EVENT_CLONE yet. If
1080 that's the case, ignore this new thread, and let
1081 normal event handling discover it later. */
1082 if (in_pid_list_p (stopped_pids, lwpid))
1083 {
1084 /* We've already seen this thread stop, but we
1085 haven't seen the PTRACE_EVENT_CLONE extended
1086 event yet. */
1087 if (debug_linux_nat)
1088 fprintf_unfiltered (gdb_stdlog,
1089 "LLAL: attach failed, but already seen "
1090 "this thread %s stop\n",
1091 target_pid_to_str (ptid));
1092 return 1;
1093 }
1094 else
1095 {
1096 int new_pid;
1097 int status;
1098
1099 if (debug_linux_nat)
1100 fprintf_unfiltered (gdb_stdlog,
1101 "LLAL: attach failed, and haven't seen "
1102 "this thread %s stop yet\n",
1103 target_pid_to_str (ptid));
1104
1105 /* We may or may not be attached to the LWP already.
1106 Try waitpid on it. If that errors, we're not
1107 attached to the LWP yet. Otherwise, we're
1108 already attached. */
1109 gdb_assert (lwpid > 0);
1110 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1111 if (new_pid == -1 && errno == ECHILD)
1112 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1113 if (new_pid != -1)
1114 {
1115 if (new_pid == 0)
1116 {
1117 /* The child hasn't stopped for its initial
1118 SIGSTOP stop yet. */
1119 if (debug_linux_nat)
1120 fprintf_unfiltered (gdb_stdlog,
1121 "LLAL: child hasn't "
1122 "stopped yet\n");
1123 }
1124 else if (WIFSTOPPED (status))
1125 {
1126 if (debug_linux_nat)
1127 fprintf_unfiltered (gdb_stdlog,
1128 "LLAL: adding to stopped_pids\n");
1129 add_to_pid_list (&stopped_pids, lwpid, status);
1130 }
1131 return 1;
1132 }
1133 }
1134 }
1135
1136 /* If we fail to attach to the thread, issue a warning,
1137 but continue. One way this can happen is if thread
1138 creation is interrupted; as of Linux kernel 2.6.19, a
1139 bug may place threads in the thread list and then fail
1140 to create them. */
1141 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1142 safe_strerror (errno));
1143 return -1;
1144 }
1145
1146 if (debug_linux_nat)
1147 fprintf_unfiltered (gdb_stdlog,
1148 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1149 target_pid_to_str (ptid));
1150
1151 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1152 if (!WIFSTOPPED (status))
1153 return 1;
1154
1155 lp = add_lwp (ptid);
1156 lp->stopped = 1;
1157 lp->last_resume_kind = resume_stop;
1158 lp->cloned = cloned;
1159 lp->signalled = signalled;
1160 if (WSTOPSIG (status) != SIGSTOP)
1161 {
1162 lp->resumed = 1;
1163 lp->status = status;
1164 }
1165
1166 target_post_attach (ptid_get_lwp (lp->ptid));
1167
1168 if (debug_linux_nat)
1169 {
1170 fprintf_unfiltered (gdb_stdlog,
1171 "LLAL: waitpid %s received %s\n",
1172 target_pid_to_str (ptid),
1173 status_to_str (status));
1174 }
1175 }
1176
1177 return 0;
1178 }
1179
1180 static void
1181 linux_nat_create_inferior (struct target_ops *ops,
1182 char *exec_file, char *allargs, char **env,
1183 int from_tty)
1184 {
1185 struct cleanup *restore_personality
1186 = maybe_disable_address_space_randomization (disable_randomization);
1187
1188 /* The fork_child mechanism is synchronous and calls target_wait, so
1189 we have to mask the async mode. */
1190
1191 /* Make sure we report all signals during startup. */
1192 linux_nat_pass_signals (ops, 0, NULL);
1193
1194 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1195
1196 do_cleanups (restore_personality);
1197 }
1198
1199 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1200 already attached. Returns true if a new LWP is found, false
1201 otherwise. */
1202
1203 static int
1204 attach_proc_task_lwp_callback (ptid_t ptid)
1205 {
1206 struct lwp_info *lp;
1207
1208 /* Ignore LWPs we're already attached to. */
1209 lp = find_lwp_pid (ptid);
1210 if (lp == NULL)
1211 {
1212 int lwpid = ptid_get_lwp (ptid);
1213
1214 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1215 {
1216 int err = errno;
1217
1218 /* Be quiet if we simply raced with the thread exiting.
1219 EPERM is returned if the thread's task still exists, and
1220 is marked as exited or zombie, as well as other
1221 conditions, so in that case, confirm the status in
1222 /proc/PID/status. */
1223 if (err == ESRCH
1224 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1225 {
1226 if (debug_linux_nat)
1227 {
1228 fprintf_unfiltered (gdb_stdlog,
1229 "Cannot attach to lwp %d: "
1230 "thread is gone (%d: %s)\n",
1231 lwpid, err, safe_strerror (err));
1232 }
1233 }
1234 else
1235 {
1236 warning (_("Cannot attach to lwp %d: %s"),
1237 lwpid,
1238 linux_ptrace_attach_fail_reason_string (ptid,
1239 err));
1240 }
1241 }
1242 else
1243 {
1244 if (debug_linux_nat)
1245 fprintf_unfiltered (gdb_stdlog,
1246 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1247 target_pid_to_str (ptid));
1248
1249 lp = add_lwp (ptid);
1250 lp->cloned = 1;
1251
1252 /* The next time we wait for this LWP we'll see a SIGSTOP as
1253 PTRACE_ATTACH brings it to a halt. */
1254 lp->signalled = 1;
1255
1256 /* We need to wait for a stop before being able to make the
1257 next ptrace call on this LWP. */
1258 lp->must_set_ptrace_flags = 1;
1259 }
1260
1261 return 1;
1262 }
1263 return 0;
1264 }
1265
1266 static void
1267 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1268 {
1269 struct lwp_info *lp;
1270 int status;
1271 ptid_t ptid;
1272
1273 /* Make sure we report all signals during attach. */
1274 linux_nat_pass_signals (ops, 0, NULL);
1275
1276 TRY
1277 {
1278 linux_ops->to_attach (ops, args, from_tty);
1279 }
1280 CATCH (ex, RETURN_MASK_ERROR)
1281 {
1282 pid_t pid = parse_pid_to_attach (args);
1283 struct buffer buffer;
1284 char *message, *buffer_s;
1285
1286 message = xstrdup (ex.message);
1287 make_cleanup (xfree, message);
1288
1289 buffer_init (&buffer);
1290 linux_ptrace_attach_fail_reason (pid, &buffer);
1291
1292 buffer_grow_str0 (&buffer, "");
1293 buffer_s = buffer_finish (&buffer);
1294 make_cleanup (xfree, buffer_s);
1295
1296 if (*buffer_s != '\0')
1297 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1298 else
1299 throw_error (ex.error, "%s", message);
1300 }
1301 END_CATCH
1302
1303 /* The ptrace base target adds the main thread with (pid,0,0)
1304 format. Decorate it with lwp info. */
1305 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1306 ptid_get_pid (inferior_ptid),
1307 0);
1308 thread_change_ptid (inferior_ptid, ptid);
1309
1310 /* Add the initial process as the first LWP to the list. */
1311 lp = add_initial_lwp (ptid);
1312
1313 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1314 &lp->signalled);
1315 if (!WIFSTOPPED (status))
1316 {
1317 if (WIFEXITED (status))
1318 {
1319 int exit_code = WEXITSTATUS (status);
1320
1321 target_terminal_ours ();
1322 target_mourn_inferior ();
1323 if (exit_code == 0)
1324 error (_("Unable to attach: program exited normally."));
1325 else
1326 error (_("Unable to attach: program exited with code %d."),
1327 exit_code);
1328 }
1329 else if (WIFSIGNALED (status))
1330 {
1331 enum gdb_signal signo;
1332
1333 target_terminal_ours ();
1334 target_mourn_inferior ();
1335
1336 signo = gdb_signal_from_host (WTERMSIG (status));
1337 error (_("Unable to attach: program terminated with signal "
1338 "%s, %s."),
1339 gdb_signal_to_name (signo),
1340 gdb_signal_to_string (signo));
1341 }
1342
1343 internal_error (__FILE__, __LINE__,
1344 _("unexpected status %d for PID %ld"),
1345 status, (long) ptid_get_lwp (ptid));
1346 }
1347
1348 lp->stopped = 1;
1349
1350 /* Save the wait status to report later. */
1351 lp->resumed = 1;
1352 if (debug_linux_nat)
1353 fprintf_unfiltered (gdb_stdlog,
1354 "LNA: waitpid %ld, saving status %s\n",
1355 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1356
1357 lp->status = status;
1358
1359 /* We must attach to every LWP. If /proc is mounted, use that to
1360 find them now. The inferior may be using raw clone instead of
1361 using pthreads. But even if it is using pthreads, thread_db
1362 walks structures in the inferior's address space to find the list
1363 of threads/LWPs, and those structures may well be corrupted.
1364 Note that once thread_db is loaded, we'll still use it to list
1365 threads and associate pthread info with each LWP. */
1366 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1367 attach_proc_task_lwp_callback);
1368
1369 if (target_can_async_p ())
1370 target_async (1);
1371 }
1372
1373 /* Get pending status of LP. */
1374 static int
1375 get_pending_status (struct lwp_info *lp, int *status)
1376 {
1377 enum gdb_signal signo = GDB_SIGNAL_0;
1378
1379 /* If we paused threads momentarily, we may have stored pending
1380 events in lp->status or lp->waitstatus (see stop_wait_callback),
1381 and GDB core hasn't seen any signal for those threads.
1382 Otherwise, the last signal reported to the core is found in the
1383 thread object's stop_signal.
1384
1385 There's a corner case that isn't handled here at present. Only
1386 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1387 stop_signal make sense as a real signal to pass to the inferior.
1388 Some catchpoint related events, like
1389 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1390 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1391 those traps are debug API (ptrace in our case) related and
1392 induced; the inferior wouldn't see them if it wasn't being
1393 traced. Hence, we should never pass them to the inferior, even
1394 when set to pass state. Since this corner case isn't handled by
1395 infrun.c when proceeding with a signal, for consistency, neither
1396 do we handle it here (or elsewhere in the file we check for
1397 signal pass state). Normally SIGTRAP isn't set to pass state, so
1398 this is really a corner case. */
1399
1400 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1401 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1402 else if (lp->status)
1403 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1404 else if (target_is_non_stop_p () && !is_executing (lp->ptid))
1405 {
1406 struct thread_info *tp = find_thread_ptid (lp->ptid);
1407
1408 signo = tp->suspend.stop_signal;
1409 }
1410 else if (!target_is_non_stop_p ())
1411 {
1412 struct target_waitstatus last;
1413 ptid_t last_ptid;
1414
1415 get_last_target_status (&last_ptid, &last);
1416
1417 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1418 {
1419 struct thread_info *tp = find_thread_ptid (lp->ptid);
1420
1421 signo = tp->suspend.stop_signal;
1422 }
1423 }
1424
1425 *status = 0;
1426
1427 if (signo == GDB_SIGNAL_0)
1428 {
1429 if (debug_linux_nat)
1430 fprintf_unfiltered (gdb_stdlog,
1431 "GPT: lwp %s has no pending signal\n",
1432 target_pid_to_str (lp->ptid));
1433 }
1434 else if (!signal_pass_state (signo))
1435 {
1436 if (debug_linux_nat)
1437 fprintf_unfiltered (gdb_stdlog,
1438 "GPT: lwp %s had signal %s, "
1439 "but it is in no pass state\n",
1440 target_pid_to_str (lp->ptid),
1441 gdb_signal_to_string (signo));
1442 }
1443 else
1444 {
1445 *status = W_STOPCODE (gdb_signal_to_host (signo));
1446
1447 if (debug_linux_nat)
1448 fprintf_unfiltered (gdb_stdlog,
1449 "GPT: lwp %s has pending signal %s\n",
1450 target_pid_to_str (lp->ptid),
1451 gdb_signal_to_string (signo));
1452 }
1453
1454 return 0;
1455 }
1456
1457 static int
1458 detach_callback (struct lwp_info *lp, void *data)
1459 {
1460 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1461
1462 if (debug_linux_nat && lp->status)
1463 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1464 strsignal (WSTOPSIG (lp->status)),
1465 target_pid_to_str (lp->ptid));
1466
1467 /* If there is a pending SIGSTOP, get rid of it. */
1468 if (lp->signalled)
1469 {
1470 if (debug_linux_nat)
1471 fprintf_unfiltered (gdb_stdlog,
1472 "DC: Sending SIGCONT to %s\n",
1473 target_pid_to_str (lp->ptid));
1474
1475 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1476 lp->signalled = 0;
1477 }
1478
1479 /* We don't actually detach from the LWP that has an id equal to the
1480 overall process id just yet. */
1481 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1482 {
1483 int status = 0;
1484
1485 /* Pass on any pending signal for this LWP. */
1486 get_pending_status (lp, &status);
1487
1488 if (linux_nat_prepare_to_resume != NULL)
1489 linux_nat_prepare_to_resume (lp);
1490 errno = 0;
1491 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1492 WSTOPSIG (status)) < 0)
1493 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1494 safe_strerror (errno));
1495
1496 if (debug_linux_nat)
1497 fprintf_unfiltered (gdb_stdlog,
1498 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1499 target_pid_to_str (lp->ptid),
1500 strsignal (WSTOPSIG (status)));
1501
1502 delete_lwp (lp->ptid);
1503 }
1504
1505 return 0;
1506 }
1507
1508 static void
1509 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1510 {
1511 int pid;
1512 int status;
1513 struct lwp_info *main_lwp;
1514
1515 pid = ptid_get_pid (inferior_ptid);
1516
1517 /* Don't unregister from the event loop, as there may be other
1518 inferiors running. */
1519
1520 /* Stop all threads before detaching. ptrace requires that the
1521 thread is stopped to sucessfully detach. */
1522 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1523 /* ... and wait until all of them have reported back that
1524 they're no longer running. */
1525 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1526
1527 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1528
1529 /* Only the initial process should be left right now. */
1530 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1531
1532 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1533
1534 /* Pass on any pending signal for the last LWP. */
1535 if ((args == NULL || *args == '\0')
1536 && get_pending_status (main_lwp, &status) != -1
1537 && WIFSTOPPED (status))
1538 {
1539 char *tem;
1540
1541 /* Put the signal number in ARGS so that inf_ptrace_detach will
1542 pass it along with PTRACE_DETACH. */
1543 tem = (char *) alloca (8);
1544 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1545 args = tem;
1546 if (debug_linux_nat)
1547 fprintf_unfiltered (gdb_stdlog,
1548 "LND: Sending signal %s to %s\n",
1549 args,
1550 target_pid_to_str (main_lwp->ptid));
1551 }
1552
1553 if (linux_nat_prepare_to_resume != NULL)
1554 linux_nat_prepare_to_resume (main_lwp);
1555 delete_lwp (main_lwp->ptid);
1556
1557 if (forks_exist_p ())
1558 {
1559 /* Multi-fork case. The current inferior_ptid is being detached
1560 from, but there are other viable forks to debug. Detach from
1561 the current fork, and context-switch to the first
1562 available. */
1563 linux_fork_detach (args, from_tty);
1564 }
1565 else
1566 linux_ops->to_detach (ops, args, from_tty);
1567 }
1568
1569 /* Resume execution of the inferior process. If STEP is nonzero,
1570 single-step it. If SIGNAL is nonzero, give it that signal. */
1571
1572 static void
1573 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1574 enum gdb_signal signo)
1575 {
1576 lp->step = step;
1577
1578 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1579 We only presently need that if the LWP is stepped though (to
1580 handle the case of stepping a breakpoint instruction). */
1581 if (step)
1582 {
1583 struct regcache *regcache = get_thread_regcache (lp->ptid);
1584
1585 lp->stop_pc = regcache_read_pc (regcache);
1586 }
1587 else
1588 lp->stop_pc = 0;
1589
1590 if (linux_nat_prepare_to_resume != NULL)
1591 linux_nat_prepare_to_resume (lp);
1592 linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1593
1594 /* Successfully resumed. Clear state that no longer makes sense,
1595 and mark the LWP as running. Must not do this before resuming
1596 otherwise if that fails other code will be confused. E.g., we'd
1597 later try to stop the LWP and hang forever waiting for a stop
1598 status. Note that we must not throw after this is cleared,
1599 otherwise handle_zombie_lwp_error would get confused. */
1600 lp->stopped = 0;
1601 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1602 registers_changed_ptid (lp->ptid);
1603 }
1604
1605 /* Called when we try to resume a stopped LWP and that errors out. If
1606 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1607 or about to become), discard the error, clear any pending status
1608 the LWP may have, and return true (we'll collect the exit status
1609 soon enough). Otherwise, return false. */
1610
1611 static int
1612 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1613 {
1614 /* If we get an error after resuming the LWP successfully, we'd
1615 confuse !T state for the LWP being gone. */
1616 gdb_assert (lp->stopped);
1617
1618 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1619 because even if ptrace failed with ESRCH, the tracee may be "not
1620 yet fully dead", but already refusing ptrace requests. In that
1621 case the tracee has 'R (Running)' state for a little bit
1622 (observed in Linux 3.18). See also the note on ESRCH in the
1623 ptrace(2) man page. Instead, check whether the LWP has any state
1624 other than ptrace-stopped. */
1625
1626 /* Don't assume anything if /proc/PID/status can't be read. */
1627 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1628 {
1629 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1630 lp->status = 0;
1631 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1632 return 1;
1633 }
1634 return 0;
1635 }
1636
1637 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1638 disappears while we try to resume it. */
1639
1640 static void
1641 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1642 {
1643 TRY
1644 {
1645 linux_resume_one_lwp_throw (lp, step, signo);
1646 }
1647 CATCH (ex, RETURN_MASK_ERROR)
1648 {
1649 if (!check_ptrace_stopped_lwp_gone (lp))
1650 throw_exception (ex);
1651 }
1652 END_CATCH
1653 }
1654
1655 /* Resume LP. */
1656
1657 static void
1658 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1659 {
1660 if (lp->stopped)
1661 {
1662 struct inferior *inf = find_inferior_ptid (lp->ptid);
1663
1664 if (inf->vfork_child != NULL)
1665 {
1666 if (debug_linux_nat)
1667 fprintf_unfiltered (gdb_stdlog,
1668 "RC: Not resuming %s (vfork parent)\n",
1669 target_pid_to_str (lp->ptid));
1670 }
1671 else if (!lwp_status_pending_p (lp))
1672 {
1673 if (debug_linux_nat)
1674 fprintf_unfiltered (gdb_stdlog,
1675 "RC: Resuming sibling %s, %s, %s\n",
1676 target_pid_to_str (lp->ptid),
1677 (signo != GDB_SIGNAL_0
1678 ? strsignal (gdb_signal_to_host (signo))
1679 : "0"),
1680 step ? "step" : "resume");
1681
1682 linux_resume_one_lwp (lp, step, signo);
1683 }
1684 else
1685 {
1686 if (debug_linux_nat)
1687 fprintf_unfiltered (gdb_stdlog,
1688 "RC: Not resuming sibling %s (has pending)\n",
1689 target_pid_to_str (lp->ptid));
1690 }
1691 }
1692 else
1693 {
1694 if (debug_linux_nat)
1695 fprintf_unfiltered (gdb_stdlog,
1696 "RC: Not resuming sibling %s (not stopped)\n",
1697 target_pid_to_str (lp->ptid));
1698 }
1699 }
1700
1701 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1702 Resume LWP with the last stop signal, if it is in pass state. */
1703
1704 static int
1705 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1706 {
1707 enum gdb_signal signo = GDB_SIGNAL_0;
1708
1709 if (lp == except)
1710 return 0;
1711
1712 if (lp->stopped)
1713 {
1714 struct thread_info *thread;
1715
1716 thread = find_thread_ptid (lp->ptid);
1717 if (thread != NULL)
1718 {
1719 signo = thread->suspend.stop_signal;
1720 thread->suspend.stop_signal = GDB_SIGNAL_0;
1721 }
1722 }
1723
1724 resume_lwp (lp, 0, signo);
1725 return 0;
1726 }
1727
1728 static int
1729 resume_clear_callback (struct lwp_info *lp, void *data)
1730 {
1731 lp->resumed = 0;
1732 lp->last_resume_kind = resume_stop;
1733 return 0;
1734 }
1735
1736 static int
1737 resume_set_callback (struct lwp_info *lp, void *data)
1738 {
1739 lp->resumed = 1;
1740 lp->last_resume_kind = resume_continue;
1741 return 0;
1742 }
1743
1744 static void
1745 linux_nat_resume (struct target_ops *ops,
1746 ptid_t ptid, int step, enum gdb_signal signo)
1747 {
1748 struct lwp_info *lp;
1749 int resume_many;
1750
1751 if (debug_linux_nat)
1752 fprintf_unfiltered (gdb_stdlog,
1753 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1754 step ? "step" : "resume",
1755 target_pid_to_str (ptid),
1756 (signo != GDB_SIGNAL_0
1757 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1758 target_pid_to_str (inferior_ptid));
1759
1760 /* A specific PTID means `step only this process id'. */
1761 resume_many = (ptid_equal (minus_one_ptid, ptid)
1762 || ptid_is_pid (ptid));
1763
1764 /* Mark the lwps we're resuming as resumed. */
1765 iterate_over_lwps (ptid, resume_set_callback, NULL);
1766
1767 /* See if it's the current inferior that should be handled
1768 specially. */
1769 if (resume_many)
1770 lp = find_lwp_pid (inferior_ptid);
1771 else
1772 lp = find_lwp_pid (ptid);
1773 gdb_assert (lp != NULL);
1774
1775 /* Remember if we're stepping. */
1776 lp->last_resume_kind = step ? resume_step : resume_continue;
1777
1778 /* If we have a pending wait status for this thread, there is no
1779 point in resuming the process. But first make sure that
1780 linux_nat_wait won't preemptively handle the event - we
1781 should never take this short-circuit if we are going to
1782 leave LP running, since we have skipped resuming all the
1783 other threads. This bit of code needs to be synchronized
1784 with linux_nat_wait. */
1785
1786 if (lp->status && WIFSTOPPED (lp->status))
1787 {
1788 if (!lp->step
1789 && WSTOPSIG (lp->status)
1790 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1791 {
1792 if (debug_linux_nat)
1793 fprintf_unfiltered (gdb_stdlog,
1794 "LLR: Not short circuiting for ignored "
1795 "status 0x%x\n", lp->status);
1796
1797 /* FIXME: What should we do if we are supposed to continue
1798 this thread with a signal? */
1799 gdb_assert (signo == GDB_SIGNAL_0);
1800 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1801 lp->status = 0;
1802 }
1803 }
1804
1805 if (lwp_status_pending_p (lp))
1806 {
1807 /* FIXME: What should we do if we are supposed to continue
1808 this thread with a signal? */
1809 gdb_assert (signo == GDB_SIGNAL_0);
1810
1811 if (debug_linux_nat)
1812 fprintf_unfiltered (gdb_stdlog,
1813 "LLR: Short circuiting for status 0x%x\n",
1814 lp->status);
1815
1816 if (target_can_async_p ())
1817 {
1818 target_async (1);
1819 /* Tell the event loop we have something to process. */
1820 async_file_mark ();
1821 }
1822 return;
1823 }
1824
1825 if (resume_many)
1826 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1827
1828 if (debug_linux_nat)
1829 fprintf_unfiltered (gdb_stdlog,
1830 "LLR: %s %s, %s (resume event thread)\n",
1831 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1832 target_pid_to_str (lp->ptid),
1833 (signo != GDB_SIGNAL_0
1834 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1835
1836 linux_resume_one_lwp (lp, step, signo);
1837
1838 if (target_can_async_p ())
1839 target_async (1);
1840 }
1841
1842 /* Send a signal to an LWP. */
1843
1844 static int
1845 kill_lwp (int lwpid, int signo)
1846 {
1847 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1848 fails, then we are not using nptl threads and we should be using kill. */
1849
1850 #ifdef HAVE_TKILL_SYSCALL
1851 {
1852 static int tkill_failed;
1853
1854 if (!tkill_failed)
1855 {
1856 int ret;
1857
1858 errno = 0;
1859 ret = syscall (__NR_tkill, lwpid, signo);
1860 if (errno != ENOSYS)
1861 return ret;
1862 tkill_failed = 1;
1863 }
1864 }
1865 #endif
1866
1867 return kill (lwpid, signo);
1868 }
1869
1870 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1871 event, check if the core is interested in it: if not, ignore the
1872 event, and keep waiting; otherwise, we need to toggle the LWP's
1873 syscall entry/exit status, since the ptrace event itself doesn't
1874 indicate it, and report the trap to higher layers. */
1875
1876 static int
1877 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1878 {
1879 struct target_waitstatus *ourstatus = &lp->waitstatus;
1880 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1881 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1882
1883 if (stopping)
1884 {
1885 /* If we're stopping threads, there's a SIGSTOP pending, which
1886 makes it so that the LWP reports an immediate syscall return,
1887 followed by the SIGSTOP. Skip seeing that "return" using
1888 PTRACE_CONT directly, and let stop_wait_callback collect the
1889 SIGSTOP. Later when the thread is resumed, a new syscall
1890 entry event. If we didn't do this (and returned 0), we'd
1891 leave a syscall entry pending, and our caller, by using
1892 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1893 itself. Later, when the user re-resumes this LWP, we'd see
1894 another syscall entry event and we'd mistake it for a return.
1895
1896 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1897 (leaving immediately with LWP->signalled set, without issuing
1898 a PTRACE_CONT), it would still be problematic to leave this
1899 syscall enter pending, as later when the thread is resumed,
1900 it would then see the same syscall exit mentioned above,
1901 followed by the delayed SIGSTOP, while the syscall didn't
1902 actually get to execute. It seems it would be even more
1903 confusing to the user. */
1904
1905 if (debug_linux_nat)
1906 fprintf_unfiltered (gdb_stdlog,
1907 "LHST: ignoring syscall %d "
1908 "for LWP %ld (stopping threads), "
1909 "resuming with PTRACE_CONT for SIGSTOP\n",
1910 syscall_number,
1911 ptid_get_lwp (lp->ptid));
1912
1913 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1914 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1915 lp->stopped = 0;
1916 return 1;
1917 }
1918
1919 /* Always update the entry/return state, even if this particular
1920 syscall isn't interesting to the core now. In async mode,
1921 the user could install a new catchpoint for this syscall
1922 between syscall enter/return, and we'll need to know to
1923 report a syscall return if that happens. */
1924 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1925 ? TARGET_WAITKIND_SYSCALL_RETURN
1926 : TARGET_WAITKIND_SYSCALL_ENTRY);
1927
1928 if (catch_syscall_enabled ())
1929 {
1930 if (catching_syscall_number (syscall_number))
1931 {
1932 /* Alright, an event to report. */
1933 ourstatus->kind = lp->syscall_state;
1934 ourstatus->value.syscall_number = syscall_number;
1935
1936 if (debug_linux_nat)
1937 fprintf_unfiltered (gdb_stdlog,
1938 "LHST: stopping for %s of syscall %d"
1939 " for LWP %ld\n",
1940 lp->syscall_state
1941 == TARGET_WAITKIND_SYSCALL_ENTRY
1942 ? "entry" : "return",
1943 syscall_number,
1944 ptid_get_lwp (lp->ptid));
1945 return 0;
1946 }
1947
1948 if (debug_linux_nat)
1949 fprintf_unfiltered (gdb_stdlog,
1950 "LHST: ignoring %s of syscall %d "
1951 "for LWP %ld\n",
1952 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1953 ? "entry" : "return",
1954 syscall_number,
1955 ptid_get_lwp (lp->ptid));
1956 }
1957 else
1958 {
1959 /* If we had been syscall tracing, and hence used PT_SYSCALL
1960 before on this LWP, it could happen that the user removes all
1961 syscall catchpoints before we get to process this event.
1962 There are two noteworthy issues here:
1963
1964 - When stopped at a syscall entry event, resuming with
1965 PT_STEP still resumes executing the syscall and reports a
1966 syscall return.
1967
1968 - Only PT_SYSCALL catches syscall enters. If we last
1969 single-stepped this thread, then this event can't be a
1970 syscall enter. If we last single-stepped this thread, this
1971 has to be a syscall exit.
1972
1973 The points above mean that the next resume, be it PT_STEP or
1974 PT_CONTINUE, can not trigger a syscall trace event. */
1975 if (debug_linux_nat)
1976 fprintf_unfiltered (gdb_stdlog,
1977 "LHST: caught syscall event "
1978 "with no syscall catchpoints."
1979 " %d for LWP %ld, ignoring\n",
1980 syscall_number,
1981 ptid_get_lwp (lp->ptid));
1982 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1983 }
1984
1985 /* The core isn't interested in this event. For efficiency, avoid
1986 stopping all threads only to have the core resume them all again.
1987 Since we're not stopping threads, if we're still syscall tracing
1988 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1989 subsequent syscall. Simply resume using the inf-ptrace layer,
1990 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1991
1992 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1993 return 1;
1994 }
1995
1996 /* Handle a GNU/Linux extended wait response. If we see a clone
1997 event, we need to add the new LWP to our list (and not report the
1998 trap to higher layers). This function returns non-zero if the
1999 event should be ignored and we should wait again. If STOPPING is
2000 true, the new LWP remains stopped, otherwise it is continued. */
2001
2002 static int
2003 linux_handle_extended_wait (struct lwp_info *lp, int status)
2004 {
2005 int pid = ptid_get_lwp (lp->ptid);
2006 struct target_waitstatus *ourstatus = &lp->waitstatus;
2007 int event = linux_ptrace_get_extended_event (status);
2008
2009 /* All extended events we currently use are mid-syscall. Only
2010 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
2011 you have to be using PTRACE_SEIZE to get that. */
2012 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
2013
2014 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2015 || event == PTRACE_EVENT_CLONE)
2016 {
2017 unsigned long new_pid;
2018 int ret;
2019
2020 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2021
2022 /* If we haven't already seen the new PID stop, wait for it now. */
2023 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2024 {
2025 /* The new child has a pending SIGSTOP. We can't affect it until it
2026 hits the SIGSTOP, but we're already attached. */
2027 ret = my_waitpid (new_pid, &status,
2028 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2029 if (ret == -1)
2030 perror_with_name (_("waiting for new child"));
2031 else if (ret != new_pid)
2032 internal_error (__FILE__, __LINE__,
2033 _("wait returned unexpected PID %d"), ret);
2034 else if (!WIFSTOPPED (status))
2035 internal_error (__FILE__, __LINE__,
2036 _("wait returned unexpected status 0x%x"), status);
2037 }
2038
2039 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2040
2041 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2042 {
2043 /* The arch-specific native code may need to know about new
2044 forks even if those end up never mapped to an
2045 inferior. */
2046 if (linux_nat_new_fork != NULL)
2047 linux_nat_new_fork (lp, new_pid);
2048 }
2049
2050 if (event == PTRACE_EVENT_FORK
2051 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2052 {
2053 /* Handle checkpointing by linux-fork.c here as a special
2054 case. We don't want the follow-fork-mode or 'catch fork'
2055 to interfere with this. */
2056
2057 /* This won't actually modify the breakpoint list, but will
2058 physically remove the breakpoints from the child. */
2059 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2060
2061 /* Retain child fork in ptrace (stopped) state. */
2062 if (!find_fork_pid (new_pid))
2063 add_fork (new_pid);
2064
2065 /* Report as spurious, so that infrun doesn't want to follow
2066 this fork. We're actually doing an infcall in
2067 linux-fork.c. */
2068 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2069
2070 /* Report the stop to the core. */
2071 return 0;
2072 }
2073
2074 if (event == PTRACE_EVENT_FORK)
2075 ourstatus->kind = TARGET_WAITKIND_FORKED;
2076 else if (event == PTRACE_EVENT_VFORK)
2077 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2078 else if (event == PTRACE_EVENT_CLONE)
2079 {
2080 struct lwp_info *new_lp;
2081
2082 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2083
2084 if (debug_linux_nat)
2085 fprintf_unfiltered (gdb_stdlog,
2086 "LHEW: Got clone event "
2087 "from LWP %d, new child is LWP %ld\n",
2088 pid, new_pid);
2089
2090 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2091 new_lp->cloned = 1;
2092 new_lp->stopped = 1;
2093 new_lp->resumed = 1;
2094
2095 /* If the thread_db layer is active, let it record the user
2096 level thread id and status, and add the thread to GDB's
2097 list. */
2098 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2099 {
2100 /* The process is not using thread_db. Add the LWP to
2101 GDB's list. */
2102 target_post_attach (ptid_get_lwp (new_lp->ptid));
2103 add_thread (new_lp->ptid);
2104 }
2105
2106 /* Even if we're stopping the thread for some reason
2107 internal to this module, from the perspective of infrun
2108 and the user/frontend, this new thread is running until
2109 it next reports a stop. */
2110 set_running (new_lp->ptid, 1);
2111 set_executing (new_lp->ptid, 1);
2112
2113 if (WSTOPSIG (status) != SIGSTOP)
2114 {
2115 /* This can happen if someone starts sending signals to
2116 the new thread before it gets a chance to run, which
2117 have a lower number than SIGSTOP (e.g. SIGUSR1).
2118 This is an unlikely case, and harder to handle for
2119 fork / vfork than for clone, so we do not try - but
2120 we handle it for clone events here. */
2121
2122 new_lp->signalled = 1;
2123
2124 /* We created NEW_LP so it cannot yet contain STATUS. */
2125 gdb_assert (new_lp->status == 0);
2126
2127 /* Save the wait status to report later. */
2128 if (debug_linux_nat)
2129 fprintf_unfiltered (gdb_stdlog,
2130 "LHEW: waitpid of new LWP %ld, "
2131 "saving status %s\n",
2132 (long) ptid_get_lwp (new_lp->ptid),
2133 status_to_str (status));
2134 new_lp->status = status;
2135 }
2136
2137 return 1;
2138 }
2139
2140 return 0;
2141 }
2142
2143 if (event == PTRACE_EVENT_EXEC)
2144 {
2145 if (debug_linux_nat)
2146 fprintf_unfiltered (gdb_stdlog,
2147 "LHEW: Got exec event from LWP %ld\n",
2148 ptid_get_lwp (lp->ptid));
2149
2150 ourstatus->kind = TARGET_WAITKIND_EXECD;
2151 ourstatus->value.execd_pathname
2152 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2153
2154 /* The thread that execed must have been resumed, but, when a
2155 thread execs, it changes its tid to the tgid, and the old
2156 tgid thread might have not been resumed. */
2157 lp->resumed = 1;
2158 return 0;
2159 }
2160
2161 if (event == PTRACE_EVENT_VFORK_DONE)
2162 {
2163 if (current_inferior ()->waiting_for_vfork_done)
2164 {
2165 if (debug_linux_nat)
2166 fprintf_unfiltered (gdb_stdlog,
2167 "LHEW: Got expected PTRACE_EVENT_"
2168 "VFORK_DONE from LWP %ld: stopping\n",
2169 ptid_get_lwp (lp->ptid));
2170
2171 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2172 return 0;
2173 }
2174
2175 if (debug_linux_nat)
2176 fprintf_unfiltered (gdb_stdlog,
2177 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2178 "from LWP %ld: ignoring\n",
2179 ptid_get_lwp (lp->ptid));
2180 return 1;
2181 }
2182
2183 internal_error (__FILE__, __LINE__,
2184 _("unknown ptrace event %d"), event);
2185 }
2186
2187 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2188 exited. */
2189
2190 static int
2191 wait_lwp (struct lwp_info *lp)
2192 {
2193 pid_t pid;
2194 int status = 0;
2195 int thread_dead = 0;
2196 sigset_t prev_mask;
2197
2198 gdb_assert (!lp->stopped);
2199 gdb_assert (lp->status == 0);
2200
2201 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2202 block_child_signals (&prev_mask);
2203
2204 for (;;)
2205 {
2206 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2207 was right and we should just call sigsuspend. */
2208
2209 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2210 if (pid == -1 && errno == ECHILD)
2211 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2212 if (pid == -1 && errno == ECHILD)
2213 {
2214 /* The thread has previously exited. We need to delete it
2215 now because, for some vendor 2.4 kernels with NPTL
2216 support backported, there won't be an exit event unless
2217 it is the main thread. 2.6 kernels will report an exit
2218 event for each thread that exits, as expected. */
2219 thread_dead = 1;
2220 if (debug_linux_nat)
2221 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2222 target_pid_to_str (lp->ptid));
2223 }
2224 if (pid != 0)
2225 break;
2226
2227 /* Bugs 10970, 12702.
2228 Thread group leader may have exited in which case we'll lock up in
2229 waitpid if there are other threads, even if they are all zombies too.
2230 Basically, we're not supposed to use waitpid this way.
2231 __WCLONE is not applicable for the leader so we can't use that.
2232 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2233 process; it gets ESRCH both for the zombie and for running processes.
2234
2235 As a workaround, check if we're waiting for the thread group leader and
2236 if it's a zombie, and avoid calling waitpid if it is.
2237
2238 This is racy, what if the tgl becomes a zombie right after we check?
2239 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2240 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2241
2242 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2243 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2244 {
2245 thread_dead = 1;
2246 if (debug_linux_nat)
2247 fprintf_unfiltered (gdb_stdlog,
2248 "WL: Thread group leader %s vanished.\n",
2249 target_pid_to_str (lp->ptid));
2250 break;
2251 }
2252
2253 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2254 get invoked despite our caller had them intentionally blocked by
2255 block_child_signals. This is sensitive only to the loop of
2256 linux_nat_wait_1 and there if we get called my_waitpid gets called
2257 again before it gets to sigsuspend so we can safely let the handlers
2258 get executed here. */
2259
2260 if (debug_linux_nat)
2261 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2262 sigsuspend (&suspend_mask);
2263 }
2264
2265 restore_child_signals_mask (&prev_mask);
2266
2267 if (!thread_dead)
2268 {
2269 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2270
2271 if (debug_linux_nat)
2272 {
2273 fprintf_unfiltered (gdb_stdlog,
2274 "WL: waitpid %s received %s\n",
2275 target_pid_to_str (lp->ptid),
2276 status_to_str (status));
2277 }
2278
2279 /* Check if the thread has exited. */
2280 if (WIFEXITED (status) || WIFSIGNALED (status))
2281 {
2282 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2283 {
2284 if (debug_linux_nat)
2285 fprintf_unfiltered (gdb_stdlog, "WL: Process %d exited.\n",
2286 ptid_get_pid (lp->ptid));
2287
2288 /* This is the leader exiting, it means the whole
2289 process is gone. Store the status to report to the
2290 core. Store it in lp->waitstatus, because lp->status
2291 would be ambiguous (W_EXITCODE(0,0) == 0). */
2292 store_waitstatus (&lp->waitstatus, status);
2293 return 0;
2294 }
2295
2296 thread_dead = 1;
2297 if (debug_linux_nat)
2298 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2299 target_pid_to_str (lp->ptid));
2300 }
2301 }
2302
2303 if (thread_dead)
2304 {
2305 exit_lwp (lp);
2306 return 0;
2307 }
2308
2309 gdb_assert (WIFSTOPPED (status));
2310 lp->stopped = 1;
2311
2312 if (lp->must_set_ptrace_flags)
2313 {
2314 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2315 int options = linux_nat_ptrace_options (inf->attach_flag);
2316
2317 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2318 lp->must_set_ptrace_flags = 0;
2319 }
2320
2321 /* Handle GNU/Linux's syscall SIGTRAPs. */
2322 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2323 {
2324 /* No longer need the sysgood bit. The ptrace event ends up
2325 recorded in lp->waitstatus if we care for it. We can carry
2326 on handling the event like a regular SIGTRAP from here
2327 on. */
2328 status = W_STOPCODE (SIGTRAP);
2329 if (linux_handle_syscall_trap (lp, 1))
2330 return wait_lwp (lp);
2331 }
2332 else
2333 {
2334 /* Almost all other ptrace-stops are known to be outside of system
2335 calls, with further exceptions in linux_handle_extended_wait. */
2336 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2337 }
2338
2339 /* Handle GNU/Linux's extended waitstatus for trace events. */
2340 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2341 && linux_is_extended_waitstatus (status))
2342 {
2343 if (debug_linux_nat)
2344 fprintf_unfiltered (gdb_stdlog,
2345 "WL: Handling extended status 0x%06x\n",
2346 status);
2347 linux_handle_extended_wait (lp, status);
2348 return 0;
2349 }
2350
2351 return status;
2352 }
2353
2354 /* Send a SIGSTOP to LP. */
2355
2356 static int
2357 stop_callback (struct lwp_info *lp, void *data)
2358 {
2359 if (!lp->stopped && !lp->signalled)
2360 {
2361 int ret;
2362
2363 if (debug_linux_nat)
2364 {
2365 fprintf_unfiltered (gdb_stdlog,
2366 "SC: kill %s **<SIGSTOP>**\n",
2367 target_pid_to_str (lp->ptid));
2368 }
2369 errno = 0;
2370 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2371 if (debug_linux_nat)
2372 {
2373 fprintf_unfiltered (gdb_stdlog,
2374 "SC: lwp kill %d %s\n",
2375 ret,
2376 errno ? safe_strerror (errno) : "ERRNO-OK");
2377 }
2378
2379 lp->signalled = 1;
2380 gdb_assert (lp->status == 0);
2381 }
2382
2383 return 0;
2384 }
2385
2386 /* Request a stop on LWP. */
2387
2388 void
2389 linux_stop_lwp (struct lwp_info *lwp)
2390 {
2391 stop_callback (lwp, NULL);
2392 }
2393
2394 /* See linux-nat.h */
2395
2396 void
2397 linux_stop_and_wait_all_lwps (void)
2398 {
2399 /* Stop all LWP's ... */
2400 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2401
2402 /* ... and wait until all of them have reported back that
2403 they're no longer running. */
2404 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2405 }
2406
2407 /* See linux-nat.h */
2408
2409 void
2410 linux_unstop_all_lwps (void)
2411 {
2412 iterate_over_lwps (minus_one_ptid,
2413 resume_stopped_resumed_lwps, &minus_one_ptid);
2414 }
2415
2416 /* Return non-zero if LWP PID has a pending SIGINT. */
2417
2418 static int
2419 linux_nat_has_pending_sigint (int pid)
2420 {
2421 sigset_t pending, blocked, ignored;
2422
2423 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2424
2425 if (sigismember (&pending, SIGINT)
2426 && !sigismember (&ignored, SIGINT))
2427 return 1;
2428
2429 return 0;
2430 }
2431
2432 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2433
2434 static int
2435 set_ignore_sigint (struct lwp_info *lp, void *data)
2436 {
2437 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2438 flag to consume the next one. */
2439 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2440 && WSTOPSIG (lp->status) == SIGINT)
2441 lp->status = 0;
2442 else
2443 lp->ignore_sigint = 1;
2444
2445 return 0;
2446 }
2447
2448 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2449 This function is called after we know the LWP has stopped; if the LWP
2450 stopped before the expected SIGINT was delivered, then it will never have
2451 arrived. Also, if the signal was delivered to a shared queue and consumed
2452 by a different thread, it will never be delivered to this LWP. */
2453
2454 static void
2455 maybe_clear_ignore_sigint (struct lwp_info *lp)
2456 {
2457 if (!lp->ignore_sigint)
2458 return;
2459
2460 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2461 {
2462 if (debug_linux_nat)
2463 fprintf_unfiltered (gdb_stdlog,
2464 "MCIS: Clearing bogus flag for %s\n",
2465 target_pid_to_str (lp->ptid));
2466 lp->ignore_sigint = 0;
2467 }
2468 }
2469
2470 /* Fetch the possible triggered data watchpoint info and store it in
2471 LP.
2472
2473 On some archs, like x86, that use debug registers to set
2474 watchpoints, it's possible that the way to know which watched
2475 address trapped, is to check the register that is used to select
2476 which address to watch. Problem is, between setting the watchpoint
2477 and reading back which data address trapped, the user may change
2478 the set of watchpoints, and, as a consequence, GDB changes the
2479 debug registers in the inferior. To avoid reading back a stale
2480 stopped-data-address when that happens, we cache in LP the fact
2481 that a watchpoint trapped, and the corresponding data address, as
2482 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2483 registers meanwhile, we have the cached data we can rely on. */
2484
2485 static int
2486 check_stopped_by_watchpoint (struct lwp_info *lp)
2487 {
2488 struct cleanup *old_chain;
2489
2490 if (linux_ops->to_stopped_by_watchpoint == NULL)
2491 return 0;
2492
2493 old_chain = save_inferior_ptid ();
2494 inferior_ptid = lp->ptid;
2495
2496 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2497 {
2498 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2499
2500 if (linux_ops->to_stopped_data_address != NULL)
2501 lp->stopped_data_address_p =
2502 linux_ops->to_stopped_data_address (&current_target,
2503 &lp->stopped_data_address);
2504 else
2505 lp->stopped_data_address_p = 0;
2506 }
2507
2508 do_cleanups (old_chain);
2509
2510 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2511 }
2512
2513 /* Called when the LWP stopped for a trap that could be explained by a
2514 watchpoint or a breakpoint. */
2515
2516 static void
2517 save_sigtrap (struct lwp_info *lp)
2518 {
2519 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2520 gdb_assert (lp->status != 0);
2521
2522 /* Check first if this was a SW/HW breakpoint before checking
2523 watchpoints, because at least s390 can't tell the data address of
2524 hardware watchpoint hits, and the kernel returns
2525 stopped-by-watchpoint as long as there's a watchpoint set. */
2526 if (linux_nat_status_is_event (lp->status))
2527 check_stopped_by_breakpoint (lp);
2528
2529 /* Note that TRAP_HWBKPT can indicate either a hardware breakpoint
2530 or hardware watchpoint. Check which is which if we got
2531 TARGET_STOPPED_BY_HW_BREAKPOINT. */
2532 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON
2533 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2534 check_stopped_by_watchpoint (lp);
2535 }
2536
2537 /* Returns true if the LWP had stopped for a watchpoint. */
2538
2539 static int
2540 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2541 {
2542 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2543
2544 gdb_assert (lp != NULL);
2545
2546 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2547 }
2548
2549 static int
2550 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2551 {
2552 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2553
2554 gdb_assert (lp != NULL);
2555
2556 *addr_p = lp->stopped_data_address;
2557
2558 return lp->stopped_data_address_p;
2559 }
2560
2561 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2562
2563 static int
2564 sigtrap_is_event (int status)
2565 {
2566 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2567 }
2568
2569 /* Set alternative SIGTRAP-like events recognizer. If
2570 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2571 applied. */
2572
2573 void
2574 linux_nat_set_status_is_event (struct target_ops *t,
2575 int (*status_is_event) (int status))
2576 {
2577 linux_nat_status_is_event = status_is_event;
2578 }
2579
2580 /* Wait until LP is stopped. */
2581
2582 static int
2583 stop_wait_callback (struct lwp_info *lp, void *data)
2584 {
2585 struct inferior *inf = find_inferior_ptid (lp->ptid);
2586
2587 /* If this is a vfork parent, bail out, it is not going to report
2588 any SIGSTOP until the vfork is done with. */
2589 if (inf->vfork_child != NULL)
2590 return 0;
2591
2592 if (!lp->stopped)
2593 {
2594 int status;
2595
2596 status = wait_lwp (lp);
2597 if (status == 0)
2598 return 0;
2599
2600 if (lp->ignore_sigint && WIFSTOPPED (status)
2601 && WSTOPSIG (status) == SIGINT)
2602 {
2603 lp->ignore_sigint = 0;
2604
2605 errno = 0;
2606 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2607 lp->stopped = 0;
2608 if (debug_linux_nat)
2609 fprintf_unfiltered (gdb_stdlog,
2610 "PTRACE_CONT %s, 0, 0 (%s) "
2611 "(discarding SIGINT)\n",
2612 target_pid_to_str (lp->ptid),
2613 errno ? safe_strerror (errno) : "OK");
2614
2615 return stop_wait_callback (lp, NULL);
2616 }
2617
2618 maybe_clear_ignore_sigint (lp);
2619
2620 if (WSTOPSIG (status) != SIGSTOP)
2621 {
2622 /* The thread was stopped with a signal other than SIGSTOP. */
2623
2624 if (debug_linux_nat)
2625 fprintf_unfiltered (gdb_stdlog,
2626 "SWC: Pending event %s in %s\n",
2627 status_to_str ((int) status),
2628 target_pid_to_str (lp->ptid));
2629
2630 /* Save the sigtrap event. */
2631 lp->status = status;
2632 gdb_assert (lp->signalled);
2633 save_sigtrap (lp);
2634 }
2635 else
2636 {
2637 /* We caught the SIGSTOP that we intended to catch, so
2638 there's no SIGSTOP pending. */
2639
2640 if (debug_linux_nat)
2641 fprintf_unfiltered (gdb_stdlog,
2642 "SWC: Expected SIGSTOP caught for %s.\n",
2643 target_pid_to_str (lp->ptid));
2644
2645 /* Reset SIGNALLED only after the stop_wait_callback call
2646 above as it does gdb_assert on SIGNALLED. */
2647 lp->signalled = 0;
2648 }
2649 }
2650
2651 return 0;
2652 }
2653
2654 /* Return non-zero if LP has a wait status pending. Discard the
2655 pending event and resume the LWP if the event that originally
2656 caused the stop became uninteresting. */
2657
2658 static int
2659 status_callback (struct lwp_info *lp, void *data)
2660 {
2661 /* Only report a pending wait status if we pretend that this has
2662 indeed been resumed. */
2663 if (!lp->resumed)
2664 return 0;
2665
2666 if (!lwp_status_pending_p (lp))
2667 return 0;
2668
2669 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2670 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2671 {
2672 struct regcache *regcache = get_thread_regcache (lp->ptid);
2673 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2674 CORE_ADDR pc;
2675 int discard = 0;
2676
2677 pc = regcache_read_pc (regcache);
2678
2679 if (pc != lp->stop_pc)
2680 {
2681 if (debug_linux_nat)
2682 fprintf_unfiltered (gdb_stdlog,
2683 "SC: PC of %s changed. was=%s, now=%s\n",
2684 target_pid_to_str (lp->ptid),
2685 paddress (target_gdbarch (), lp->stop_pc),
2686 paddress (target_gdbarch (), pc));
2687 discard = 1;
2688 }
2689
2690 #if !USE_SIGTRAP_SIGINFO
2691 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2692 {
2693 if (debug_linux_nat)
2694 fprintf_unfiltered (gdb_stdlog,
2695 "SC: previous breakpoint of %s, at %s gone\n",
2696 target_pid_to_str (lp->ptid),
2697 paddress (target_gdbarch (), lp->stop_pc));
2698
2699 discard = 1;
2700 }
2701 #endif
2702
2703 if (discard)
2704 {
2705 if (debug_linux_nat)
2706 fprintf_unfiltered (gdb_stdlog,
2707 "SC: pending event of %s cancelled.\n",
2708 target_pid_to_str (lp->ptid));
2709
2710 lp->status = 0;
2711 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2712 return 0;
2713 }
2714 }
2715
2716 return 1;
2717 }
2718
2719 /* Return non-zero if LP isn't stopped. */
2720
2721 static int
2722 running_callback (struct lwp_info *lp, void *data)
2723 {
2724 return (!lp->stopped
2725 || (lwp_status_pending_p (lp) && lp->resumed));
2726 }
2727
2728 /* Count the LWP's that have had events. */
2729
2730 static int
2731 count_events_callback (struct lwp_info *lp, void *data)
2732 {
2733 int *count = (int *) data;
2734
2735 gdb_assert (count != NULL);
2736
2737 /* Select only resumed LWPs that have an event pending. */
2738 if (lp->resumed && lwp_status_pending_p (lp))
2739 (*count)++;
2740
2741 return 0;
2742 }
2743
2744 /* Select the LWP (if any) that is currently being single-stepped. */
2745
2746 static int
2747 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2748 {
2749 if (lp->last_resume_kind == resume_step
2750 && lp->status != 0)
2751 return 1;
2752 else
2753 return 0;
2754 }
2755
2756 /* Returns true if LP has a status pending. */
2757
2758 static int
2759 lwp_status_pending_p (struct lwp_info *lp)
2760 {
2761 /* We check for lp->waitstatus in addition to lp->status, because we
2762 can have pending process exits recorded in lp->status and
2763 W_EXITCODE(0,0) happens to be 0. */
2764 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2765 }
2766
2767 /* Select the Nth LWP that has had an event. */
2768
2769 static int
2770 select_event_lwp_callback (struct lwp_info *lp, void *data)
2771 {
2772 int *selector = (int *) data;
2773
2774 gdb_assert (selector != NULL);
2775
2776 /* Select only resumed LWPs that have an event pending. */
2777 if (lp->resumed && lwp_status_pending_p (lp))
2778 if ((*selector)-- == 0)
2779 return 1;
2780
2781 return 0;
2782 }
2783
2784 /* Called when the LWP got a signal/trap that could be explained by a
2785 software or hardware breakpoint. */
2786
2787 static int
2788 check_stopped_by_breakpoint (struct lwp_info *lp)
2789 {
2790 /* Arrange for a breakpoint to be hit again later. We don't keep
2791 the SIGTRAP status and don't forward the SIGTRAP signal to the
2792 LWP. We will handle the current event, eventually we will resume
2793 this LWP, and this breakpoint will trap again.
2794
2795 If we do not do this, then we run the risk that the user will
2796 delete or disable the breakpoint, but the LWP will have already
2797 tripped on it. */
2798
2799 struct regcache *regcache = get_thread_regcache (lp->ptid);
2800 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2801 CORE_ADDR pc;
2802 CORE_ADDR sw_bp_pc;
2803 #if USE_SIGTRAP_SIGINFO
2804 siginfo_t siginfo;
2805 #endif
2806
2807 pc = regcache_read_pc (regcache);
2808 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2809
2810 #if USE_SIGTRAP_SIGINFO
2811 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2812 {
2813 if (siginfo.si_signo == SIGTRAP)
2814 {
2815 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2816 {
2817 if (debug_linux_nat)
2818 fprintf_unfiltered (gdb_stdlog,
2819 "CSBB: %s stopped by software "
2820 "breakpoint\n",
2821 target_pid_to_str (lp->ptid));
2822
2823 /* Back up the PC if necessary. */
2824 if (pc != sw_bp_pc)
2825 regcache_write_pc (regcache, sw_bp_pc);
2826
2827 lp->stop_pc = sw_bp_pc;
2828 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2829 return 1;
2830 }
2831 else if (siginfo.si_code == TRAP_HWBKPT)
2832 {
2833 if (debug_linux_nat)
2834 fprintf_unfiltered (gdb_stdlog,
2835 "CSBB: %s stopped by hardware "
2836 "breakpoint/watchpoint\n",
2837 target_pid_to_str (lp->ptid));
2838
2839 lp->stop_pc = pc;
2840 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2841 return 1;
2842 }
2843 else if (siginfo.si_code == TRAP_TRACE)
2844 {
2845 if (debug_linux_nat)
2846 fprintf_unfiltered (gdb_stdlog,
2847 "CSBB: %s stopped by trace\n",
2848 target_pid_to_str (lp->ptid));
2849 }
2850 }
2851 }
2852 #else
2853 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2854 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2855 sw_bp_pc))
2856 {
2857 /* The LWP was either continued, or stepped a software
2858 breakpoint instruction. */
2859 if (debug_linux_nat)
2860 fprintf_unfiltered (gdb_stdlog,
2861 "CSBB: %s stopped by software breakpoint\n",
2862 target_pid_to_str (lp->ptid));
2863
2864 /* Back up the PC if necessary. */
2865 if (pc != sw_bp_pc)
2866 regcache_write_pc (regcache, sw_bp_pc);
2867
2868 lp->stop_pc = sw_bp_pc;
2869 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2870 return 1;
2871 }
2872
2873 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2874 {
2875 if (debug_linux_nat)
2876 fprintf_unfiltered (gdb_stdlog,
2877 "CSBB: stopped by hardware breakpoint %s\n",
2878 target_pid_to_str (lp->ptid));
2879
2880 lp->stop_pc = pc;
2881 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2882 return 1;
2883 }
2884 #endif
2885
2886 return 0;
2887 }
2888
2889
2890 /* Returns true if the LWP had stopped for a software breakpoint. */
2891
2892 static int
2893 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops)
2894 {
2895 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2896
2897 gdb_assert (lp != NULL);
2898
2899 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2900 }
2901
2902 /* Implement the supports_stopped_by_sw_breakpoint method. */
2903
2904 static int
2905 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
2906 {
2907 return USE_SIGTRAP_SIGINFO;
2908 }
2909
2910 /* Returns true if the LWP had stopped for a hardware
2911 breakpoint/watchpoint. */
2912
2913 static int
2914 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops)
2915 {
2916 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2917
2918 gdb_assert (lp != NULL);
2919
2920 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2921 }
2922
2923 /* Implement the supports_stopped_by_hw_breakpoint method. */
2924
2925 static int
2926 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
2927 {
2928 return USE_SIGTRAP_SIGINFO;
2929 }
2930
2931 /* Select one LWP out of those that have events pending. */
2932
2933 static void
2934 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2935 {
2936 int num_events = 0;
2937 int random_selector;
2938 struct lwp_info *event_lp = NULL;
2939
2940 /* Record the wait status for the original LWP. */
2941 (*orig_lp)->status = *status;
2942
2943 /* In all-stop, give preference to the LWP that is being
2944 single-stepped. There will be at most one, and it will be the
2945 LWP that the core is most interested in. If we didn't do this,
2946 then we'd have to handle pending step SIGTRAPs somehow in case
2947 the core later continues the previously-stepped thread, as
2948 otherwise we'd report the pending SIGTRAP then, and the core, not
2949 having stepped the thread, wouldn't understand what the trap was
2950 for, and therefore would report it to the user as a random
2951 signal. */
2952 if (!target_is_non_stop_p ())
2953 {
2954 event_lp = iterate_over_lwps (filter,
2955 select_singlestep_lwp_callback, NULL);
2956 if (event_lp != NULL)
2957 {
2958 if (debug_linux_nat)
2959 fprintf_unfiltered (gdb_stdlog,
2960 "SEL: Select single-step %s\n",
2961 target_pid_to_str (event_lp->ptid));
2962 }
2963 }
2964
2965 if (event_lp == NULL)
2966 {
2967 /* Pick one at random, out of those which have had events. */
2968
2969 /* First see how many events we have. */
2970 iterate_over_lwps (filter, count_events_callback, &num_events);
2971 gdb_assert (num_events > 0);
2972
2973 /* Now randomly pick a LWP out of those that have had
2974 events. */
2975 random_selector = (int)
2976 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2977
2978 if (debug_linux_nat && num_events > 1)
2979 fprintf_unfiltered (gdb_stdlog,
2980 "SEL: Found %d events, selecting #%d\n",
2981 num_events, random_selector);
2982
2983 event_lp = iterate_over_lwps (filter,
2984 select_event_lwp_callback,
2985 &random_selector);
2986 }
2987
2988 if (event_lp != NULL)
2989 {
2990 /* Switch the event LWP. */
2991 *orig_lp = event_lp;
2992 *status = event_lp->status;
2993 }
2994
2995 /* Flush the wait status for the event LWP. */
2996 (*orig_lp)->status = 0;
2997 }
2998
2999 /* Return non-zero if LP has been resumed. */
3000
3001 static int
3002 resumed_callback (struct lwp_info *lp, void *data)
3003 {
3004 return lp->resumed;
3005 }
3006
3007 /* Stop an active thread, verify it still exists, then resume it. If
3008 the thread ends up with a pending status, then it is not resumed,
3009 and *DATA (really a pointer to int), is set. */
3010
3011 static int
3012 stop_and_resume_callback (struct lwp_info *lp, void *data)
3013 {
3014 if (!lp->stopped)
3015 {
3016 ptid_t ptid = lp->ptid;
3017
3018 stop_callback (lp, NULL);
3019 stop_wait_callback (lp, NULL);
3020
3021 /* Resume if the lwp still exists, and the core wanted it
3022 running. */
3023 lp = find_lwp_pid (ptid);
3024 if (lp != NULL)
3025 {
3026 if (lp->last_resume_kind == resume_stop
3027 && !lwp_status_pending_p (lp))
3028 {
3029 /* The core wanted the LWP to stop. Even if it stopped
3030 cleanly (with SIGSTOP), leave the event pending. */
3031 if (debug_linux_nat)
3032 fprintf_unfiltered (gdb_stdlog,
3033 "SARC: core wanted LWP %ld stopped "
3034 "(leaving SIGSTOP pending)\n",
3035 ptid_get_lwp (lp->ptid));
3036 lp->status = W_STOPCODE (SIGSTOP);
3037 }
3038
3039 if (!lwp_status_pending_p (lp))
3040 {
3041 if (debug_linux_nat)
3042 fprintf_unfiltered (gdb_stdlog,
3043 "SARC: re-resuming LWP %ld\n",
3044 ptid_get_lwp (lp->ptid));
3045 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
3046 }
3047 else
3048 {
3049 if (debug_linux_nat)
3050 fprintf_unfiltered (gdb_stdlog,
3051 "SARC: not re-resuming LWP %ld "
3052 "(has pending)\n",
3053 ptid_get_lwp (lp->ptid));
3054 }
3055 }
3056 }
3057 return 0;
3058 }
3059
3060 /* Check if we should go on and pass this event to common code.
3061 Return the affected lwp if we are, or NULL otherwise. */
3062
3063 static struct lwp_info *
3064 linux_nat_filter_event (int lwpid, int status)
3065 {
3066 struct lwp_info *lp;
3067 int event = linux_ptrace_get_extended_event (status);
3068
3069 lp = find_lwp_pid (pid_to_ptid (lwpid));
3070
3071 /* Check for stop events reported by a process we didn't already
3072 know about - anything not already in our LWP list.
3073
3074 If we're expecting to receive stopped processes after
3075 fork, vfork, and clone events, then we'll just add the
3076 new one to our list and go back to waiting for the event
3077 to be reported - the stopped process might be returned
3078 from waitpid before or after the event is.
3079
3080 But note the case of a non-leader thread exec'ing after the
3081 leader having exited, and gone from our lists. The non-leader
3082 thread changes its tid to the tgid. */
3083
3084 if (WIFSTOPPED (status) && lp == NULL
3085 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
3086 {
3087 /* A multi-thread exec after we had seen the leader exiting. */
3088 if (debug_linux_nat)
3089 fprintf_unfiltered (gdb_stdlog,
3090 "LLW: Re-adding thread group leader LWP %d.\n",
3091 lwpid);
3092
3093 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
3094 lp->stopped = 1;
3095 lp->resumed = 1;
3096 add_thread (lp->ptid);
3097 }
3098
3099 if (WIFSTOPPED (status) && !lp)
3100 {
3101 if (debug_linux_nat)
3102 fprintf_unfiltered (gdb_stdlog,
3103 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
3104 (long) lwpid, status_to_str (status));
3105 add_to_pid_list (&stopped_pids, lwpid, status);
3106 return NULL;
3107 }
3108
3109 /* Make sure we don't report an event for the exit of an LWP not in
3110 our list, i.e. not part of the current process. This can happen
3111 if we detach from a program we originally forked and then it
3112 exits. */
3113 if (!WIFSTOPPED (status) && !lp)
3114 return NULL;
3115
3116 /* This LWP is stopped now. (And if dead, this prevents it from
3117 ever being continued.) */
3118 lp->stopped = 1;
3119
3120 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
3121 {
3122 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3123 int options = linux_nat_ptrace_options (inf->attach_flag);
3124
3125 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
3126 lp->must_set_ptrace_flags = 0;
3127 }
3128
3129 /* Handle GNU/Linux's syscall SIGTRAPs. */
3130 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3131 {
3132 /* No longer need the sysgood bit. The ptrace event ends up
3133 recorded in lp->waitstatus if we care for it. We can carry
3134 on handling the event like a regular SIGTRAP from here
3135 on. */
3136 status = W_STOPCODE (SIGTRAP);
3137 if (linux_handle_syscall_trap (lp, 0))
3138 return NULL;
3139 }
3140 else
3141 {
3142 /* Almost all other ptrace-stops are known to be outside of system
3143 calls, with further exceptions in linux_handle_extended_wait. */
3144 lp->syscall_state = TARGET_WAITKIND_IGNORE;
3145 }
3146
3147 /* Handle GNU/Linux's extended waitstatus for trace events. */
3148 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3149 && linux_is_extended_waitstatus (status))
3150 {
3151 if (debug_linux_nat)
3152 fprintf_unfiltered (gdb_stdlog,
3153 "LLW: Handling extended status 0x%06x\n",
3154 status);
3155 if (linux_handle_extended_wait (lp, status))
3156 return NULL;
3157 }
3158
3159 /* Check if the thread has exited. */
3160 if (WIFEXITED (status) || WIFSIGNALED (status))
3161 {
3162 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3163 {
3164 /* If this is the main thread, we must stop all threads and
3165 verify if they are still alive. This is because in the
3166 nptl thread model on Linux 2.4, there is no signal issued
3167 for exiting LWPs other than the main thread. We only get
3168 the main thread exit signal once all child threads have
3169 already exited. If we stop all the threads and use the
3170 stop_wait_callback to check if they have exited we can
3171 determine whether this signal should be ignored or
3172 whether it means the end of the debugged application,
3173 regardless of which threading model is being used. */
3174 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
3175 {
3176 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3177 stop_and_resume_callback, NULL);
3178 }
3179
3180 if (debug_linux_nat)
3181 fprintf_unfiltered (gdb_stdlog,
3182 "LLW: %s exited.\n",
3183 target_pid_to_str (lp->ptid));
3184
3185 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3186 {
3187 /* If there is at least one more LWP, then the exit signal
3188 was not the end of the debugged application and should be
3189 ignored. */
3190 exit_lwp (lp);
3191 return NULL;
3192 }
3193 }
3194
3195 /* Note that even if the leader was ptrace-stopped, it can still
3196 exit, if e.g., some other thread brings down the whole
3197 process (calls `exit'). So don't assert that the lwp is
3198 resumed. */
3199 if (debug_linux_nat)
3200 fprintf_unfiltered (gdb_stdlog,
3201 "Process %ld exited (resumed=%d)\n",
3202 ptid_get_lwp (lp->ptid), lp->resumed);
3203
3204 /* This was the last lwp in the process. Since events are
3205 serialized to GDB core, we may not be able report this one
3206 right now, but GDB core and the other target layers will want
3207 to be notified about the exit code/signal, leave the status
3208 pending for the next time we're able to report it. */
3209
3210 /* Dead LWP's aren't expected to reported a pending sigstop. */
3211 lp->signalled = 0;
3212
3213 /* Store the pending event in the waitstatus, because
3214 W_EXITCODE(0,0) == 0. */
3215 store_waitstatus (&lp->waitstatus, status);
3216 return lp;
3217 }
3218
3219 /* Check if the current LWP has previously exited. In the nptl
3220 thread model, LWPs other than the main thread do not issue
3221 signals when they exit so we must check whenever the thread has
3222 stopped. A similar check is made in stop_wait_callback(). */
3223 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3224 {
3225 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
3226
3227 if (debug_linux_nat)
3228 fprintf_unfiltered (gdb_stdlog,
3229 "LLW: %s exited.\n",
3230 target_pid_to_str (lp->ptid));
3231
3232 exit_lwp (lp);
3233
3234 /* Make sure there is at least one thread running. */
3235 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3236
3237 /* Discard the event. */
3238 return NULL;
3239 }
3240
3241 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3242 an attempt to stop an LWP. */
3243 if (lp->signalled
3244 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3245 {
3246 lp->signalled = 0;
3247
3248 if (lp->last_resume_kind == resume_stop)
3249 {
3250 if (debug_linux_nat)
3251 fprintf_unfiltered (gdb_stdlog,
3252 "LLW: resume_stop SIGSTOP caught for %s.\n",
3253 target_pid_to_str (lp->ptid));
3254 }
3255 else
3256 {
3257 /* This is a delayed SIGSTOP. Filter out the event. */
3258
3259 if (debug_linux_nat)
3260 fprintf_unfiltered (gdb_stdlog,
3261 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3262 lp->step ?
3263 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3264 target_pid_to_str (lp->ptid));
3265
3266 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3267 gdb_assert (lp->resumed);
3268 return NULL;
3269 }
3270 }
3271
3272 /* Make sure we don't report a SIGINT that we have already displayed
3273 for another thread. */
3274 if (lp->ignore_sigint
3275 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3276 {
3277 if (debug_linux_nat)
3278 fprintf_unfiltered (gdb_stdlog,
3279 "LLW: Delayed SIGINT caught for %s.\n",
3280 target_pid_to_str (lp->ptid));
3281
3282 /* This is a delayed SIGINT. */
3283 lp->ignore_sigint = 0;
3284
3285 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3286 if (debug_linux_nat)
3287 fprintf_unfiltered (gdb_stdlog,
3288 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3289 lp->step ?
3290 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3291 target_pid_to_str (lp->ptid));
3292 gdb_assert (lp->resumed);
3293
3294 /* Discard the event. */
3295 return NULL;
3296 }
3297
3298 /* Don't report signals that GDB isn't interested in, such as
3299 signals that are neither printed nor stopped upon. Stopping all
3300 threads can be a bit time-consuming so if we want decent
3301 performance with heavily multi-threaded programs, especially when
3302 they're using a high frequency timer, we'd better avoid it if we
3303 can. */
3304 if (WIFSTOPPED (status))
3305 {
3306 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3307
3308 if (!target_is_non_stop_p ())
3309 {
3310 /* Only do the below in all-stop, as we currently use SIGSTOP
3311 to implement target_stop (see linux_nat_stop) in
3312 non-stop. */
3313 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3314 {
3315 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3316 forwarded to the entire process group, that is, all LWPs
3317 will receive it - unless they're using CLONE_THREAD to
3318 share signals. Since we only want to report it once, we
3319 mark it as ignored for all LWPs except this one. */
3320 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3321 set_ignore_sigint, NULL);
3322 lp->ignore_sigint = 0;
3323 }
3324 else
3325 maybe_clear_ignore_sigint (lp);
3326 }
3327
3328 /* When using hardware single-step, we need to report every signal.
3329 Otherwise, signals in pass_mask may be short-circuited
3330 except signals that might be caused by a breakpoint. */
3331 if (!lp->step
3332 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3333 && !linux_wstatus_maybe_breakpoint (status))
3334 {
3335 linux_resume_one_lwp (lp, lp->step, signo);
3336 if (debug_linux_nat)
3337 fprintf_unfiltered (gdb_stdlog,
3338 "LLW: %s %s, %s (preempt 'handle')\n",
3339 lp->step ?
3340 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3341 target_pid_to_str (lp->ptid),
3342 (signo != GDB_SIGNAL_0
3343 ? strsignal (gdb_signal_to_host (signo))
3344 : "0"));
3345 return NULL;
3346 }
3347 }
3348
3349 /* An interesting event. */
3350 gdb_assert (lp);
3351 lp->status = status;
3352 save_sigtrap (lp);
3353 return lp;
3354 }
3355
3356 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3357 their exits until all other threads in the group have exited. */
3358
3359 static void
3360 check_zombie_leaders (void)
3361 {
3362 struct inferior *inf;
3363
3364 ALL_INFERIORS (inf)
3365 {
3366 struct lwp_info *leader_lp;
3367
3368 if (inf->pid == 0)
3369 continue;
3370
3371 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3372 if (leader_lp != NULL
3373 /* Check if there are other threads in the group, as we may
3374 have raced with the inferior simply exiting. */
3375 && num_lwps (inf->pid) > 1
3376 && linux_proc_pid_is_zombie (inf->pid))
3377 {
3378 if (debug_linux_nat)
3379 fprintf_unfiltered (gdb_stdlog,
3380 "CZL: Thread group leader %d zombie "
3381 "(it exited, or another thread execd).\n",
3382 inf->pid);
3383
3384 /* A leader zombie can mean one of two things:
3385
3386 - It exited, and there's an exit status pending
3387 available, or only the leader exited (not the whole
3388 program). In the latter case, we can't waitpid the
3389 leader's exit status until all other threads are gone.
3390
3391 - There are 3 or more threads in the group, and a thread
3392 other than the leader exec'd. On an exec, the Linux
3393 kernel destroys all other threads (except the execing
3394 one) in the thread group, and resets the execing thread's
3395 tid to the tgid. No exit notification is sent for the
3396 execing thread -- from the ptracer's perspective, it
3397 appears as though the execing thread just vanishes.
3398 Until we reap all other threads except the leader and the
3399 execing thread, the leader will be zombie, and the
3400 execing thread will be in `D (disc sleep)'. As soon as
3401 all other threads are reaped, the execing thread changes
3402 it's tid to the tgid, and the previous (zombie) leader
3403 vanishes, giving place to the "new" leader. We could try
3404 distinguishing the exit and exec cases, by waiting once
3405 more, and seeing if something comes out, but it doesn't
3406 sound useful. The previous leader _does_ go away, and
3407 we'll re-add the new one once we see the exec event
3408 (which is just the same as what would happen if the
3409 previous leader did exit voluntarily before some other
3410 thread execs). */
3411
3412 if (debug_linux_nat)
3413 fprintf_unfiltered (gdb_stdlog,
3414 "CZL: Thread group leader %d vanished.\n",
3415 inf->pid);
3416 exit_lwp (leader_lp);
3417 }
3418 }
3419 }
3420
3421 static ptid_t
3422 linux_nat_wait_1 (struct target_ops *ops,
3423 ptid_t ptid, struct target_waitstatus *ourstatus,
3424 int target_options)
3425 {
3426 sigset_t prev_mask;
3427 enum resume_kind last_resume_kind;
3428 struct lwp_info *lp;
3429 int status;
3430
3431 if (debug_linux_nat)
3432 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3433
3434 /* The first time we get here after starting a new inferior, we may
3435 not have added it to the LWP list yet - this is the earliest
3436 moment at which we know its PID. */
3437 if (ptid_is_pid (inferior_ptid))
3438 {
3439 /* Upgrade the main thread's ptid. */
3440 thread_change_ptid (inferior_ptid,
3441 ptid_build (ptid_get_pid (inferior_ptid),
3442 ptid_get_pid (inferior_ptid), 0));
3443
3444 lp = add_initial_lwp (inferior_ptid);
3445 lp->resumed = 1;
3446 }
3447
3448 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3449 block_child_signals (&prev_mask);
3450
3451 /* First check if there is a LWP with a wait status pending. */
3452 lp = iterate_over_lwps (ptid, status_callback, NULL);
3453 if (lp != NULL)
3454 {
3455 if (debug_linux_nat)
3456 fprintf_unfiltered (gdb_stdlog,
3457 "LLW: Using pending wait status %s for %s.\n",
3458 status_to_str (lp->status),
3459 target_pid_to_str (lp->ptid));
3460 }
3461
3462 /* But if we don't find a pending event, we'll have to wait. Always
3463 pull all events out of the kernel. We'll randomly select an
3464 event LWP out of all that have events, to prevent starvation. */
3465
3466 while (lp == NULL)
3467 {
3468 pid_t lwpid;
3469
3470 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3471 quirks:
3472
3473 - If the thread group leader exits while other threads in the
3474 thread group still exist, waitpid(TGID, ...) hangs. That
3475 waitpid won't return an exit status until the other threads
3476 in the group are reapped.
3477
3478 - When a non-leader thread execs, that thread just vanishes
3479 without reporting an exit (so we'd hang if we waited for it
3480 explicitly in that case). The exec event is reported to
3481 the TGID pid. */
3482
3483 errno = 0;
3484 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3485 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3486 lwpid = my_waitpid (-1, &status, WNOHANG);
3487
3488 if (debug_linux_nat)
3489 fprintf_unfiltered (gdb_stdlog,
3490 "LNW: waitpid(-1, ...) returned %d, %s\n",
3491 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3492
3493 if (lwpid > 0)
3494 {
3495 if (debug_linux_nat)
3496 {
3497 fprintf_unfiltered (gdb_stdlog,
3498 "LLW: waitpid %ld received %s\n",
3499 (long) lwpid, status_to_str (status));
3500 }
3501
3502 linux_nat_filter_event (lwpid, status);
3503 /* Retry until nothing comes out of waitpid. A single
3504 SIGCHLD can indicate more than one child stopped. */
3505 continue;
3506 }
3507
3508 /* Now that we've pulled all events out of the kernel, resume
3509 LWPs that don't have an interesting event to report. */
3510 iterate_over_lwps (minus_one_ptid,
3511 resume_stopped_resumed_lwps, &minus_one_ptid);
3512
3513 /* ... and find an LWP with a status to report to the core, if
3514 any. */
3515 lp = iterate_over_lwps (ptid, status_callback, NULL);
3516 if (lp != NULL)
3517 break;
3518
3519 /* Check for zombie thread group leaders. Those can't be reaped
3520 until all other threads in the thread group are. */
3521 check_zombie_leaders ();
3522
3523 /* If there are no resumed children left, bail. We'd be stuck
3524 forever in the sigsuspend call below otherwise. */
3525 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3526 {
3527 if (debug_linux_nat)
3528 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3529
3530 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3531
3532 restore_child_signals_mask (&prev_mask);
3533 return minus_one_ptid;
3534 }
3535
3536 /* No interesting event to report to the core. */
3537
3538 if (target_options & TARGET_WNOHANG)
3539 {
3540 if (debug_linux_nat)
3541 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3542
3543 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3544 restore_child_signals_mask (&prev_mask);
3545 return minus_one_ptid;
3546 }
3547
3548 /* We shouldn't end up here unless we want to try again. */
3549 gdb_assert (lp == NULL);
3550
3551 /* Block until we get an event reported with SIGCHLD. */
3552 if (debug_linux_nat)
3553 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3554 sigsuspend (&suspend_mask);
3555 }
3556
3557 gdb_assert (lp);
3558
3559 status = lp->status;
3560 lp->status = 0;
3561
3562 if (!target_is_non_stop_p ())
3563 {
3564 /* Now stop all other LWP's ... */
3565 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3566
3567 /* ... and wait until all of them have reported back that
3568 they're no longer running. */
3569 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3570 }
3571
3572 /* If we're not waiting for a specific LWP, choose an event LWP from
3573 among those that have had events. Giving equal priority to all
3574 LWPs that have had events helps prevent starvation. */
3575 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3576 select_event_lwp (ptid, &lp, &status);
3577
3578 gdb_assert (lp != NULL);
3579
3580 /* Now that we've selected our final event LWP, un-adjust its PC if
3581 it was a software breakpoint, and we can't reliably support the
3582 "stopped by software breakpoint" stop reason. */
3583 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3584 && !USE_SIGTRAP_SIGINFO)
3585 {
3586 struct regcache *regcache = get_thread_regcache (lp->ptid);
3587 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3588 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3589
3590 if (decr_pc != 0)
3591 {
3592 CORE_ADDR pc;
3593
3594 pc = regcache_read_pc (regcache);
3595 regcache_write_pc (regcache, pc + decr_pc);
3596 }
3597 }
3598
3599 /* We'll need this to determine whether to report a SIGSTOP as
3600 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3601 clears it. */
3602 last_resume_kind = lp->last_resume_kind;
3603
3604 if (!target_is_non_stop_p ())
3605 {
3606 /* In all-stop, from the core's perspective, all LWPs are now
3607 stopped until a new resume action is sent over. */
3608 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3609 }
3610 else
3611 {
3612 resume_clear_callback (lp, NULL);
3613 }
3614
3615 if (linux_nat_status_is_event (status))
3616 {
3617 if (debug_linux_nat)
3618 fprintf_unfiltered (gdb_stdlog,
3619 "LLW: trap ptid is %s.\n",
3620 target_pid_to_str (lp->ptid));
3621 }
3622
3623 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3624 {
3625 *ourstatus = lp->waitstatus;
3626 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3627 }
3628 else
3629 store_waitstatus (ourstatus, status);
3630
3631 if (debug_linux_nat)
3632 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3633
3634 restore_child_signals_mask (&prev_mask);
3635
3636 if (last_resume_kind == resume_stop
3637 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3638 && WSTOPSIG (status) == SIGSTOP)
3639 {
3640 /* A thread that has been requested to stop by GDB with
3641 target_stop, and it stopped cleanly, so report as SIG0. The
3642 use of SIGSTOP is an implementation detail. */
3643 ourstatus->value.sig = GDB_SIGNAL_0;
3644 }
3645
3646 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3647 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3648 lp->core = -1;
3649 else
3650 lp->core = linux_common_core_of_thread (lp->ptid);
3651
3652 return lp->ptid;
3653 }
3654
3655 /* Resume LWPs that are currently stopped without any pending status
3656 to report, but are resumed from the core's perspective. */
3657
3658 static int
3659 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3660 {
3661 ptid_t *wait_ptid_p = (ptid_t *) data;
3662
3663 if (!lp->stopped)
3664 {
3665 if (debug_linux_nat)
3666 fprintf_unfiltered (gdb_stdlog,
3667 "RSRL: NOT resuming LWP %s, not stopped\n",
3668 target_pid_to_str (lp->ptid));
3669 }
3670 else if (!lp->resumed)
3671 {
3672 if (debug_linux_nat)
3673 fprintf_unfiltered (gdb_stdlog,
3674 "RSRL: NOT resuming LWP %s, not resumed\n",
3675 target_pid_to_str (lp->ptid));
3676 }
3677 else if (lwp_status_pending_p (lp))
3678 {
3679 if (debug_linux_nat)
3680 fprintf_unfiltered (gdb_stdlog,
3681 "RSRL: NOT resuming LWP %s, has pending status\n",
3682 target_pid_to_str (lp->ptid));
3683 }
3684 else
3685 {
3686 struct regcache *regcache = get_thread_regcache (lp->ptid);
3687 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3688
3689 TRY
3690 {
3691 CORE_ADDR pc = regcache_read_pc (regcache);
3692 int leave_stopped = 0;
3693
3694 /* Don't bother if there's a breakpoint at PC that we'd hit
3695 immediately, and we're not waiting for this LWP. */
3696 if (!ptid_match (lp->ptid, *wait_ptid_p))
3697 {
3698 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3699 leave_stopped = 1;
3700 }
3701
3702 if (!leave_stopped)
3703 {
3704 if (debug_linux_nat)
3705 fprintf_unfiltered (gdb_stdlog,
3706 "RSRL: resuming stopped-resumed LWP %s at "
3707 "%s: step=%d\n",
3708 target_pid_to_str (lp->ptid),
3709 paddress (gdbarch, pc),
3710 lp->step);
3711
3712 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3713 }
3714 }
3715 CATCH (ex, RETURN_MASK_ERROR)
3716 {
3717 if (!check_ptrace_stopped_lwp_gone (lp))
3718 throw_exception (ex);
3719 }
3720 END_CATCH
3721 }
3722
3723 return 0;
3724 }
3725
3726 static ptid_t
3727 linux_nat_wait (struct target_ops *ops,
3728 ptid_t ptid, struct target_waitstatus *ourstatus,
3729 int target_options)
3730 {
3731 ptid_t event_ptid;
3732
3733 if (debug_linux_nat)
3734 {
3735 char *options_string;
3736
3737 options_string = target_options_to_string (target_options);
3738 fprintf_unfiltered (gdb_stdlog,
3739 "linux_nat_wait: [%s], [%s]\n",
3740 target_pid_to_str (ptid),
3741 options_string);
3742 xfree (options_string);
3743 }
3744
3745 /* Flush the async file first. */
3746 if (target_is_async_p ())
3747 async_file_flush ();
3748
3749 /* Resume LWPs that are currently stopped without any pending status
3750 to report, but are resumed from the core's perspective. LWPs get
3751 in this state if we find them stopping at a time we're not
3752 interested in reporting the event (target_wait on a
3753 specific_process, for example, see linux_nat_wait_1), and
3754 meanwhile the event became uninteresting. Don't bother resuming
3755 LWPs we're not going to wait for if they'd stop immediately. */
3756 if (target_is_non_stop_p ())
3757 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3758
3759 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3760
3761 /* If we requested any event, and something came out, assume there
3762 may be more. If we requested a specific lwp or process, also
3763 assume there may be more. */
3764 if (target_is_async_p ()
3765 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3766 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3767 || !ptid_equal (ptid, minus_one_ptid)))
3768 async_file_mark ();
3769
3770 return event_ptid;
3771 }
3772
3773 static int
3774 kill_callback (struct lwp_info *lp, void *data)
3775 {
3776 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3777
3778 errno = 0;
3779 kill_lwp (ptid_get_lwp (lp->ptid), SIGKILL);
3780 if (debug_linux_nat)
3781 {
3782 int save_errno = errno;
3783
3784 fprintf_unfiltered (gdb_stdlog,
3785 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3786 target_pid_to_str (lp->ptid),
3787 save_errno ? safe_strerror (save_errno) : "OK");
3788 }
3789
3790 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3791
3792 errno = 0;
3793 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3794 if (debug_linux_nat)
3795 {
3796 int save_errno = errno;
3797
3798 fprintf_unfiltered (gdb_stdlog,
3799 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3800 target_pid_to_str (lp->ptid),
3801 save_errno ? safe_strerror (save_errno) : "OK");
3802 }
3803
3804 return 0;
3805 }
3806
3807 static int
3808 kill_wait_callback (struct lwp_info *lp, void *data)
3809 {
3810 pid_t pid;
3811
3812 /* We must make sure that there are no pending events (delayed
3813 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3814 program doesn't interfere with any following debugging session. */
3815
3816 /* For cloned processes we must check both with __WCLONE and
3817 without, since the exit status of a cloned process isn't reported
3818 with __WCLONE. */
3819 if (lp->cloned)
3820 {
3821 do
3822 {
3823 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3824 if (pid != (pid_t) -1)
3825 {
3826 if (debug_linux_nat)
3827 fprintf_unfiltered (gdb_stdlog,
3828 "KWC: wait %s received unknown.\n",
3829 target_pid_to_str (lp->ptid));
3830 /* The Linux kernel sometimes fails to kill a thread
3831 completely after PTRACE_KILL; that goes from the stop
3832 point in do_fork out to the one in
3833 get_signal_to_deliever and waits again. So kill it
3834 again. */
3835 kill_callback (lp, NULL);
3836 }
3837 }
3838 while (pid == ptid_get_lwp (lp->ptid));
3839
3840 gdb_assert (pid == -1 && errno == ECHILD);
3841 }
3842
3843 do
3844 {
3845 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3846 if (pid != (pid_t) -1)
3847 {
3848 if (debug_linux_nat)
3849 fprintf_unfiltered (gdb_stdlog,
3850 "KWC: wait %s received unk.\n",
3851 target_pid_to_str (lp->ptid));
3852 /* See the call to kill_callback above. */
3853 kill_callback (lp, NULL);
3854 }
3855 }
3856 while (pid == ptid_get_lwp (lp->ptid));
3857
3858 gdb_assert (pid == -1 && errno == ECHILD);
3859 return 0;
3860 }
3861
3862 static void
3863 linux_nat_kill (struct target_ops *ops)
3864 {
3865 struct target_waitstatus last;
3866 ptid_t last_ptid;
3867 int status;
3868
3869 /* If we're stopped while forking and we haven't followed yet,
3870 kill the other task. We need to do this first because the
3871 parent will be sleeping if this is a vfork. */
3872
3873 get_last_target_status (&last_ptid, &last);
3874
3875 if (last.kind == TARGET_WAITKIND_FORKED
3876 || last.kind == TARGET_WAITKIND_VFORKED)
3877 {
3878 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3879 wait (&status);
3880
3881 /* Let the arch-specific native code know this process is
3882 gone. */
3883 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3884 }
3885
3886 if (forks_exist_p ())
3887 linux_fork_killall ();
3888 else
3889 {
3890 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3891
3892 /* Stop all threads before killing them, since ptrace requires
3893 that the thread is stopped to sucessfully PTRACE_KILL. */
3894 iterate_over_lwps (ptid, stop_callback, NULL);
3895 /* ... and wait until all of them have reported back that
3896 they're no longer running. */
3897 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3898
3899 /* Kill all LWP's ... */
3900 iterate_over_lwps (ptid, kill_callback, NULL);
3901
3902 /* ... and wait until we've flushed all events. */
3903 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3904 }
3905
3906 target_mourn_inferior ();
3907 }
3908
3909 static void
3910 linux_nat_mourn_inferior (struct target_ops *ops)
3911 {
3912 int pid = ptid_get_pid (inferior_ptid);
3913
3914 purge_lwp_list (pid);
3915
3916 if (! forks_exist_p ())
3917 /* Normal case, no other forks available. */
3918 linux_ops->to_mourn_inferior (ops);
3919 else
3920 /* Multi-fork case. The current inferior_ptid has exited, but
3921 there are other viable forks to debug. Delete the exiting
3922 one and context-switch to the first available. */
3923 linux_fork_mourn_inferior ();
3924
3925 /* Let the arch-specific native code know this process is gone. */
3926 linux_nat_forget_process (pid);
3927 }
3928
3929 /* Convert a native/host siginfo object, into/from the siginfo in the
3930 layout of the inferiors' architecture. */
3931
3932 static void
3933 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3934 {
3935 int done = 0;
3936
3937 if (linux_nat_siginfo_fixup != NULL)
3938 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3939
3940 /* If there was no callback, or the callback didn't do anything,
3941 then just do a straight memcpy. */
3942 if (!done)
3943 {
3944 if (direction == 1)
3945 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3946 else
3947 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3948 }
3949 }
3950
3951 static enum target_xfer_status
3952 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3953 const char *annex, gdb_byte *readbuf,
3954 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3955 ULONGEST *xfered_len)
3956 {
3957 int pid;
3958 siginfo_t siginfo;
3959 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3960
3961 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3962 gdb_assert (readbuf || writebuf);
3963
3964 pid = ptid_get_lwp (inferior_ptid);
3965 if (pid == 0)
3966 pid = ptid_get_pid (inferior_ptid);
3967
3968 if (offset > sizeof (siginfo))
3969 return TARGET_XFER_E_IO;
3970
3971 errno = 0;
3972 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3973 if (errno != 0)
3974 return TARGET_XFER_E_IO;
3975
3976 /* When GDB is built as a 64-bit application, ptrace writes into
3977 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3978 inferior with a 64-bit GDB should look the same as debugging it
3979 with a 32-bit GDB, we need to convert it. GDB core always sees
3980 the converted layout, so any read/write will have to be done
3981 post-conversion. */
3982 siginfo_fixup (&siginfo, inf_siginfo, 0);
3983
3984 if (offset + len > sizeof (siginfo))
3985 len = sizeof (siginfo) - offset;
3986
3987 if (readbuf != NULL)
3988 memcpy (readbuf, inf_siginfo + offset, len);
3989 else
3990 {
3991 memcpy (inf_siginfo + offset, writebuf, len);
3992
3993 /* Convert back to ptrace layout before flushing it out. */
3994 siginfo_fixup (&siginfo, inf_siginfo, 1);
3995
3996 errno = 0;
3997 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3998 if (errno != 0)
3999 return TARGET_XFER_E_IO;
4000 }
4001
4002 *xfered_len = len;
4003 return TARGET_XFER_OK;
4004 }
4005
4006 static enum target_xfer_status
4007 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
4008 const char *annex, gdb_byte *readbuf,
4009 const gdb_byte *writebuf,
4010 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4011 {
4012 struct cleanup *old_chain;
4013 enum target_xfer_status xfer;
4014
4015 if (object == TARGET_OBJECT_SIGNAL_INFO)
4016 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
4017 offset, len, xfered_len);
4018
4019 /* The target is connected but no live inferior is selected. Pass
4020 this request down to a lower stratum (e.g., the executable
4021 file). */
4022 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
4023 return TARGET_XFER_EOF;
4024
4025 old_chain = save_inferior_ptid ();
4026
4027 if (ptid_lwp_p (inferior_ptid))
4028 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
4029
4030 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4031 offset, len, xfered_len);
4032
4033 do_cleanups (old_chain);
4034 return xfer;
4035 }
4036
4037 static int
4038 linux_thread_alive (ptid_t ptid)
4039 {
4040 int err, tmp_errno;
4041
4042 gdb_assert (ptid_lwp_p (ptid));
4043
4044 /* Send signal 0 instead of anything ptrace, because ptracing a
4045 running thread errors out claiming that the thread doesn't
4046 exist. */
4047 err = kill_lwp (ptid_get_lwp (ptid), 0);
4048 tmp_errno = errno;
4049 if (debug_linux_nat)
4050 fprintf_unfiltered (gdb_stdlog,
4051 "LLTA: KILL(SIG0) %s (%s)\n",
4052 target_pid_to_str (ptid),
4053 err ? safe_strerror (tmp_errno) : "OK");
4054
4055 if (err != 0)
4056 return 0;
4057
4058 return 1;
4059 }
4060
4061 static int
4062 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4063 {
4064 return linux_thread_alive (ptid);
4065 }
4066
4067 /* Implement the to_update_thread_list target method for this
4068 target. */
4069
4070 static void
4071 linux_nat_update_thread_list (struct target_ops *ops)
4072 {
4073 if (linux_supports_traceclone ())
4074 {
4075 /* With support for clone events, we add/delete threads from the
4076 list as clone/exit events are processed, so just try deleting
4077 exited threads still in the thread list. */
4078 delete_exited_threads ();
4079 }
4080 else
4081 prune_threads ();
4082 }
4083
4084 static char *
4085 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4086 {
4087 static char buf[64];
4088
4089 if (ptid_lwp_p (ptid)
4090 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
4091 || num_lwps (ptid_get_pid (ptid)) > 1))
4092 {
4093 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
4094 return buf;
4095 }
4096
4097 return normal_pid_to_str (ptid);
4098 }
4099
4100 static char *
4101 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
4102 {
4103 int pid = ptid_get_pid (thr->ptid);
4104 long lwp = ptid_get_lwp (thr->ptid);
4105 #define FORMAT "/proc/%d/task/%ld/comm"
4106 char buf[sizeof (FORMAT) + 30];
4107 FILE *comm_file;
4108 char *result = NULL;
4109
4110 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4111 comm_file = gdb_fopen_cloexec (buf, "r");
4112 if (comm_file)
4113 {
4114 /* Not exported by the kernel, so we define it here. */
4115 #define COMM_LEN 16
4116 static char line[COMM_LEN + 1];
4117
4118 if (fgets (line, sizeof (line), comm_file))
4119 {
4120 char *nl = strchr (line, '\n');
4121
4122 if (nl)
4123 *nl = '\0';
4124 if (*line != '\0')
4125 result = line;
4126 }
4127
4128 fclose (comm_file);
4129 }
4130
4131 #undef COMM_LEN
4132 #undef FORMAT
4133
4134 return result;
4135 }
4136
4137 /* Accepts an integer PID; Returns a string representing a file that
4138 can be opened to get the symbols for the child process. */
4139
4140 static char *
4141 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
4142 {
4143 return linux_proc_pid_to_exec_file (pid);
4144 }
4145
4146 /* Implement the to_xfer_partial interface for memory reads using the /proc
4147 filesystem. Because we can use a single read() call for /proc, this
4148 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4149 but it doesn't support writes. */
4150
4151 static enum target_xfer_status
4152 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4153 const char *annex, gdb_byte *readbuf,
4154 const gdb_byte *writebuf,
4155 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
4156 {
4157 LONGEST ret;
4158 int fd;
4159 char filename[64];
4160
4161 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4162 return TARGET_XFER_EOF;
4163
4164 /* Don't bother for one word. */
4165 if (len < 3 * sizeof (long))
4166 return TARGET_XFER_EOF;
4167
4168 /* We could keep this file open and cache it - possibly one per
4169 thread. That requires some juggling, but is even faster. */
4170 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
4171 ptid_get_pid (inferior_ptid));
4172 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4173 if (fd == -1)
4174 return TARGET_XFER_EOF;
4175
4176 /* If pread64 is available, use it. It's faster if the kernel
4177 supports it (only one syscall), and it's 64-bit safe even on
4178 32-bit platforms (for instance, SPARC debugging a SPARC64
4179 application). */
4180 #ifdef HAVE_PREAD64
4181 if (pread64 (fd, readbuf, len, offset) != len)
4182 #else
4183 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4184 #endif
4185 ret = 0;
4186 else
4187 ret = len;
4188
4189 close (fd);
4190
4191 if (ret == 0)
4192 return TARGET_XFER_EOF;
4193 else
4194 {
4195 *xfered_len = ret;
4196 return TARGET_XFER_OK;
4197 }
4198 }
4199
4200
4201 /* Enumerate spufs IDs for process PID. */
4202 static LONGEST
4203 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4204 {
4205 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4206 LONGEST pos = 0;
4207 LONGEST written = 0;
4208 char path[128];
4209 DIR *dir;
4210 struct dirent *entry;
4211
4212 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4213 dir = opendir (path);
4214 if (!dir)
4215 return -1;
4216
4217 rewinddir (dir);
4218 while ((entry = readdir (dir)) != NULL)
4219 {
4220 struct stat st;
4221 struct statfs stfs;
4222 int fd;
4223
4224 fd = atoi (entry->d_name);
4225 if (!fd)
4226 continue;
4227
4228 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4229 if (stat (path, &st) != 0)
4230 continue;
4231 if (!S_ISDIR (st.st_mode))
4232 continue;
4233
4234 if (statfs (path, &stfs) != 0)
4235 continue;
4236 if (stfs.f_type != SPUFS_MAGIC)
4237 continue;
4238
4239 if (pos >= offset && pos + 4 <= offset + len)
4240 {
4241 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4242 written += 4;
4243 }
4244 pos += 4;
4245 }
4246
4247 closedir (dir);
4248 return written;
4249 }
4250
4251 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4252 object type, using the /proc file system. */
4253
4254 static enum target_xfer_status
4255 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4256 const char *annex, gdb_byte *readbuf,
4257 const gdb_byte *writebuf,
4258 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4259 {
4260 char buf[128];
4261 int fd = 0;
4262 int ret = -1;
4263 int pid = ptid_get_pid (inferior_ptid);
4264
4265 if (!annex)
4266 {
4267 if (!readbuf)
4268 return TARGET_XFER_E_IO;
4269 else
4270 {
4271 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4272
4273 if (l < 0)
4274 return TARGET_XFER_E_IO;
4275 else if (l == 0)
4276 return TARGET_XFER_EOF;
4277 else
4278 {
4279 *xfered_len = (ULONGEST) l;
4280 return TARGET_XFER_OK;
4281 }
4282 }
4283 }
4284
4285 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4286 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4287 if (fd <= 0)
4288 return TARGET_XFER_E_IO;
4289
4290 if (offset != 0
4291 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4292 {
4293 close (fd);
4294 return TARGET_XFER_EOF;
4295 }
4296
4297 if (writebuf)
4298 ret = write (fd, writebuf, (size_t) len);
4299 else if (readbuf)
4300 ret = read (fd, readbuf, (size_t) len);
4301
4302 close (fd);
4303
4304 if (ret < 0)
4305 return TARGET_XFER_E_IO;
4306 else if (ret == 0)
4307 return TARGET_XFER_EOF;
4308 else
4309 {
4310 *xfered_len = (ULONGEST) ret;
4311 return TARGET_XFER_OK;
4312 }
4313 }
4314
4315
4316 /* Parse LINE as a signal set and add its set bits to SIGS. */
4317
4318 static void
4319 add_line_to_sigset (const char *line, sigset_t *sigs)
4320 {
4321 int len = strlen (line) - 1;
4322 const char *p;
4323 int signum;
4324
4325 if (line[len] != '\n')
4326 error (_("Could not parse signal set: %s"), line);
4327
4328 p = line;
4329 signum = len * 4;
4330 while (len-- > 0)
4331 {
4332 int digit;
4333
4334 if (*p >= '0' && *p <= '9')
4335 digit = *p - '0';
4336 else if (*p >= 'a' && *p <= 'f')
4337 digit = *p - 'a' + 10;
4338 else
4339 error (_("Could not parse signal set: %s"), line);
4340
4341 signum -= 4;
4342
4343 if (digit & 1)
4344 sigaddset (sigs, signum + 1);
4345 if (digit & 2)
4346 sigaddset (sigs, signum + 2);
4347 if (digit & 4)
4348 sigaddset (sigs, signum + 3);
4349 if (digit & 8)
4350 sigaddset (sigs, signum + 4);
4351
4352 p++;
4353 }
4354 }
4355
4356 /* Find process PID's pending signals from /proc/pid/status and set
4357 SIGS to match. */
4358
4359 void
4360 linux_proc_pending_signals (int pid, sigset_t *pending,
4361 sigset_t *blocked, sigset_t *ignored)
4362 {
4363 FILE *procfile;
4364 char buffer[PATH_MAX], fname[PATH_MAX];
4365 struct cleanup *cleanup;
4366
4367 sigemptyset (pending);
4368 sigemptyset (blocked);
4369 sigemptyset (ignored);
4370 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4371 procfile = gdb_fopen_cloexec (fname, "r");
4372 if (procfile == NULL)
4373 error (_("Could not open %s"), fname);
4374 cleanup = make_cleanup_fclose (procfile);
4375
4376 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4377 {
4378 /* Normal queued signals are on the SigPnd line in the status
4379 file. However, 2.6 kernels also have a "shared" pending
4380 queue for delivering signals to a thread group, so check for
4381 a ShdPnd line also.
4382
4383 Unfortunately some Red Hat kernels include the shared pending
4384 queue but not the ShdPnd status field. */
4385
4386 if (startswith (buffer, "SigPnd:\t"))
4387 add_line_to_sigset (buffer + 8, pending);
4388 else if (startswith (buffer, "ShdPnd:\t"))
4389 add_line_to_sigset (buffer + 8, pending);
4390 else if (startswith (buffer, "SigBlk:\t"))
4391 add_line_to_sigset (buffer + 8, blocked);
4392 else if (startswith (buffer, "SigIgn:\t"))
4393 add_line_to_sigset (buffer + 8, ignored);
4394 }
4395
4396 do_cleanups (cleanup);
4397 }
4398
4399 static enum target_xfer_status
4400 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4401 const char *annex, gdb_byte *readbuf,
4402 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4403 ULONGEST *xfered_len)
4404 {
4405 gdb_assert (object == TARGET_OBJECT_OSDATA);
4406
4407 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4408 if (*xfered_len == 0)
4409 return TARGET_XFER_EOF;
4410 else
4411 return TARGET_XFER_OK;
4412 }
4413
4414 static enum target_xfer_status
4415 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4416 const char *annex, gdb_byte *readbuf,
4417 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4418 ULONGEST *xfered_len)
4419 {
4420 enum target_xfer_status xfer;
4421
4422 if (object == TARGET_OBJECT_AUXV)
4423 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4424 offset, len, xfered_len);
4425
4426 if (object == TARGET_OBJECT_OSDATA)
4427 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4428 offset, len, xfered_len);
4429
4430 if (object == TARGET_OBJECT_SPU)
4431 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4432 offset, len, xfered_len);
4433
4434 /* GDB calculates all the addresses in possibly larget width of the address.
4435 Address width needs to be masked before its final use - either by
4436 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4437
4438 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4439
4440 if (object == TARGET_OBJECT_MEMORY)
4441 {
4442 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4443
4444 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4445 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4446 }
4447
4448 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4449 offset, len, xfered_len);
4450 if (xfer != TARGET_XFER_EOF)
4451 return xfer;
4452
4453 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4454 offset, len, xfered_len);
4455 }
4456
4457 static void
4458 cleanup_target_stop (void *arg)
4459 {
4460 ptid_t *ptid = (ptid_t *) arg;
4461
4462 gdb_assert (arg != NULL);
4463
4464 /* Unpause all */
4465 target_resume (*ptid, 0, GDB_SIGNAL_0);
4466 }
4467
4468 static VEC(static_tracepoint_marker_p) *
4469 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4470 const char *strid)
4471 {
4472 char s[IPA_CMD_BUF_SIZE];
4473 struct cleanup *old_chain;
4474 int pid = ptid_get_pid (inferior_ptid);
4475 VEC(static_tracepoint_marker_p) *markers = NULL;
4476 struct static_tracepoint_marker *marker = NULL;
4477 char *p = s;
4478 ptid_t ptid = ptid_build (pid, 0, 0);
4479
4480 /* Pause all */
4481 target_stop (ptid);
4482
4483 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4484 s[sizeof ("qTfSTM")] = 0;
4485
4486 agent_run_command (pid, s, strlen (s) + 1);
4487
4488 old_chain = make_cleanup (free_current_marker, &marker);
4489 make_cleanup (cleanup_target_stop, &ptid);
4490
4491 while (*p++ == 'm')
4492 {
4493 if (marker == NULL)
4494 marker = XCNEW (struct static_tracepoint_marker);
4495
4496 do
4497 {
4498 parse_static_tracepoint_marker_definition (p, &p, marker);
4499
4500 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4501 {
4502 VEC_safe_push (static_tracepoint_marker_p,
4503 markers, marker);
4504 marker = NULL;
4505 }
4506 else
4507 {
4508 release_static_tracepoint_marker (marker);
4509 memset (marker, 0, sizeof (*marker));
4510 }
4511 }
4512 while (*p++ == ','); /* comma-separated list */
4513
4514 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4515 s[sizeof ("qTsSTM")] = 0;
4516 agent_run_command (pid, s, strlen (s) + 1);
4517 p = s;
4518 }
4519
4520 do_cleanups (old_chain);
4521
4522 return markers;
4523 }
4524
4525 /* Create a prototype generic GNU/Linux target. The client can override
4526 it with local methods. */
4527
4528 static void
4529 linux_target_install_ops (struct target_ops *t)
4530 {
4531 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4532 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4533 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4534 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4535 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4536 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4537 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4538 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4539 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4540 t->to_post_attach = linux_child_post_attach;
4541 t->to_follow_fork = linux_child_follow_fork;
4542
4543 super_xfer_partial = t->to_xfer_partial;
4544 t->to_xfer_partial = linux_xfer_partial;
4545
4546 t->to_static_tracepoint_markers_by_strid
4547 = linux_child_static_tracepoint_markers_by_strid;
4548 }
4549
4550 struct target_ops *
4551 linux_target (void)
4552 {
4553 struct target_ops *t;
4554
4555 t = inf_ptrace_target ();
4556 linux_target_install_ops (t);
4557
4558 return t;
4559 }
4560
4561 struct target_ops *
4562 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4563 {
4564 struct target_ops *t;
4565
4566 t = inf_ptrace_trad_target (register_u_offset);
4567 linux_target_install_ops (t);
4568
4569 return t;
4570 }
4571
4572 /* target_is_async_p implementation. */
4573
4574 static int
4575 linux_nat_is_async_p (struct target_ops *ops)
4576 {
4577 return linux_is_async_p ();
4578 }
4579
4580 /* target_can_async_p implementation. */
4581
4582 static int
4583 linux_nat_can_async_p (struct target_ops *ops)
4584 {
4585 /* NOTE: palves 2008-03-21: We're only async when the user requests
4586 it explicitly with the "set target-async" command.
4587 Someday, linux will always be async. */
4588 return target_async_permitted;
4589 }
4590
4591 static int
4592 linux_nat_supports_non_stop (struct target_ops *self)
4593 {
4594 return 1;
4595 }
4596
4597 /* to_always_non_stop_p implementation. */
4598
4599 static int
4600 linux_nat_always_non_stop_p (struct target_ops *self)
4601 {
4602 return 1;
4603 }
4604
4605 /* True if we want to support multi-process. To be removed when GDB
4606 supports multi-exec. */
4607
4608 int linux_multi_process = 1;
4609
4610 static int
4611 linux_nat_supports_multi_process (struct target_ops *self)
4612 {
4613 return linux_multi_process;
4614 }
4615
4616 static int
4617 linux_nat_supports_disable_randomization (struct target_ops *self)
4618 {
4619 #ifdef HAVE_PERSONALITY
4620 return 1;
4621 #else
4622 return 0;
4623 #endif
4624 }
4625
4626 static int async_terminal_is_ours = 1;
4627
4628 /* target_terminal_inferior implementation.
4629
4630 This is a wrapper around child_terminal_inferior to add async support. */
4631
4632 static void
4633 linux_nat_terminal_inferior (struct target_ops *self)
4634 {
4635 child_terminal_inferior (self);
4636
4637 /* Calls to target_terminal_*() are meant to be idempotent. */
4638 if (!async_terminal_is_ours)
4639 return;
4640
4641 delete_file_handler (input_fd);
4642 async_terminal_is_ours = 0;
4643 set_sigint_trap ();
4644 }
4645
4646 /* target_terminal_ours implementation.
4647
4648 This is a wrapper around child_terminal_ours to add async support (and
4649 implement the target_terminal_ours vs target_terminal_ours_for_output
4650 distinction). child_terminal_ours is currently no different than
4651 child_terminal_ours_for_output.
4652 We leave target_terminal_ours_for_output alone, leaving it to
4653 child_terminal_ours_for_output. */
4654
4655 static void
4656 linux_nat_terminal_ours (struct target_ops *self)
4657 {
4658 /* GDB should never give the terminal to the inferior if the
4659 inferior is running in the background (run&, continue&, etc.),
4660 but claiming it sure should. */
4661 child_terminal_ours (self);
4662
4663 if (async_terminal_is_ours)
4664 return;
4665
4666 clear_sigint_trap ();
4667 add_file_handler (input_fd, stdin_event_handler, 0);
4668 async_terminal_is_ours = 1;
4669 }
4670
4671 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4672 so we notice when any child changes state, and notify the
4673 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4674 above to wait for the arrival of a SIGCHLD. */
4675
4676 static void
4677 sigchld_handler (int signo)
4678 {
4679 int old_errno = errno;
4680
4681 if (debug_linux_nat)
4682 ui_file_write_async_safe (gdb_stdlog,
4683 "sigchld\n", sizeof ("sigchld\n") - 1);
4684
4685 if (signo == SIGCHLD
4686 && linux_nat_event_pipe[0] != -1)
4687 async_file_mark (); /* Let the event loop know that there are
4688 events to handle. */
4689
4690 errno = old_errno;
4691 }
4692
4693 /* Callback registered with the target events file descriptor. */
4694
4695 static void
4696 handle_target_event (int error, gdb_client_data client_data)
4697 {
4698 inferior_event_handler (INF_REG_EVENT, NULL);
4699 }
4700
4701 /* Create/destroy the target events pipe. Returns previous state. */
4702
4703 static int
4704 linux_async_pipe (int enable)
4705 {
4706 int previous = linux_is_async_p ();
4707
4708 if (previous != enable)
4709 {
4710 sigset_t prev_mask;
4711
4712 /* Block child signals while we create/destroy the pipe, as
4713 their handler writes to it. */
4714 block_child_signals (&prev_mask);
4715
4716 if (enable)
4717 {
4718 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4719 internal_error (__FILE__, __LINE__,
4720 "creating event pipe failed.");
4721
4722 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4723 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4724 }
4725 else
4726 {
4727 close (linux_nat_event_pipe[0]);
4728 close (linux_nat_event_pipe[1]);
4729 linux_nat_event_pipe[0] = -1;
4730 linux_nat_event_pipe[1] = -1;
4731 }
4732
4733 restore_child_signals_mask (&prev_mask);
4734 }
4735
4736 return previous;
4737 }
4738
4739 /* target_async implementation. */
4740
4741 static void
4742 linux_nat_async (struct target_ops *ops, int enable)
4743 {
4744 if (enable)
4745 {
4746 if (!linux_async_pipe (1))
4747 {
4748 add_file_handler (linux_nat_event_pipe[0],
4749 handle_target_event, NULL);
4750 /* There may be pending events to handle. Tell the event loop
4751 to poll them. */
4752 async_file_mark ();
4753 }
4754 }
4755 else
4756 {
4757 delete_file_handler (linux_nat_event_pipe[0]);
4758 linux_async_pipe (0);
4759 }
4760 return;
4761 }
4762
4763 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4764 event came out. */
4765
4766 static int
4767 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4768 {
4769 if (!lwp->stopped)
4770 {
4771 if (debug_linux_nat)
4772 fprintf_unfiltered (gdb_stdlog,
4773 "LNSL: running -> suspending %s\n",
4774 target_pid_to_str (lwp->ptid));
4775
4776
4777 if (lwp->last_resume_kind == resume_stop)
4778 {
4779 if (debug_linux_nat)
4780 fprintf_unfiltered (gdb_stdlog,
4781 "linux-nat: already stopping LWP %ld at "
4782 "GDB's request\n",
4783 ptid_get_lwp (lwp->ptid));
4784 return 0;
4785 }
4786
4787 stop_callback (lwp, NULL);
4788 lwp->last_resume_kind = resume_stop;
4789 }
4790 else
4791 {
4792 /* Already known to be stopped; do nothing. */
4793
4794 if (debug_linux_nat)
4795 {
4796 if (find_thread_ptid (lwp->ptid)->stop_requested)
4797 fprintf_unfiltered (gdb_stdlog,
4798 "LNSL: already stopped/stop_requested %s\n",
4799 target_pid_to_str (lwp->ptid));
4800 else
4801 fprintf_unfiltered (gdb_stdlog,
4802 "LNSL: already stopped/no "
4803 "stop_requested yet %s\n",
4804 target_pid_to_str (lwp->ptid));
4805 }
4806 }
4807 return 0;
4808 }
4809
4810 static void
4811 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4812 {
4813 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4814 }
4815
4816 static void
4817 linux_nat_interrupt (struct target_ops *self, ptid_t ptid)
4818 {
4819 if (non_stop)
4820 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4821 else
4822 linux_ops->to_interrupt (linux_ops, ptid);
4823 }
4824
4825 static void
4826 linux_nat_close (struct target_ops *self)
4827 {
4828 /* Unregister from the event loop. */
4829 if (linux_nat_is_async_p (self))
4830 linux_nat_async (self, 0);
4831
4832 if (linux_ops->to_close)
4833 linux_ops->to_close (linux_ops);
4834
4835 super_close (self);
4836 }
4837
4838 /* When requests are passed down from the linux-nat layer to the
4839 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4840 used. The address space pointer is stored in the inferior object,
4841 but the common code that is passed such ptid can't tell whether
4842 lwpid is a "main" process id or not (it assumes so). We reverse
4843 look up the "main" process id from the lwp here. */
4844
4845 static struct address_space *
4846 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4847 {
4848 struct lwp_info *lwp;
4849 struct inferior *inf;
4850 int pid;
4851
4852 if (ptid_get_lwp (ptid) == 0)
4853 {
4854 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4855 tgid. */
4856 lwp = find_lwp_pid (ptid);
4857 pid = ptid_get_pid (lwp->ptid);
4858 }
4859 else
4860 {
4861 /* A (pid,lwpid,0) ptid. */
4862 pid = ptid_get_pid (ptid);
4863 }
4864
4865 inf = find_inferior_pid (pid);
4866 gdb_assert (inf != NULL);
4867 return inf->aspace;
4868 }
4869
4870 /* Return the cached value of the processor core for thread PTID. */
4871
4872 static int
4873 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4874 {
4875 struct lwp_info *info = find_lwp_pid (ptid);
4876
4877 if (info)
4878 return info->core;
4879 return -1;
4880 }
4881
4882 /* Implementation of to_filesystem_is_local. */
4883
4884 static int
4885 linux_nat_filesystem_is_local (struct target_ops *ops)
4886 {
4887 struct inferior *inf = current_inferior ();
4888
4889 if (inf->fake_pid_p || inf->pid == 0)
4890 return 1;
4891
4892 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4893 }
4894
4895 /* Convert the INF argument passed to a to_fileio_* method
4896 to a process ID suitable for passing to its corresponding
4897 linux_mntns_* function. If INF is non-NULL then the
4898 caller is requesting the filesystem seen by INF. If INF
4899 is NULL then the caller is requesting the filesystem seen
4900 by the GDB. We fall back to GDB's filesystem in the case
4901 that INF is non-NULL but its PID is unknown. */
4902
4903 static pid_t
4904 linux_nat_fileio_pid_of (struct inferior *inf)
4905 {
4906 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4907 return getpid ();
4908 else
4909 return inf->pid;
4910 }
4911
4912 /* Implementation of to_fileio_open. */
4913
4914 static int
4915 linux_nat_fileio_open (struct target_ops *self,
4916 struct inferior *inf, const char *filename,
4917 int flags, int mode, int warn_if_slow,
4918 int *target_errno)
4919 {
4920 int nat_flags;
4921 mode_t nat_mode;
4922 int fd;
4923
4924 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4925 || fileio_to_host_mode (mode, &nat_mode) == -1)
4926 {
4927 *target_errno = FILEIO_EINVAL;
4928 return -1;
4929 }
4930
4931 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4932 filename, nat_flags, nat_mode);
4933 if (fd == -1)
4934 *target_errno = host_to_fileio_error (errno);
4935
4936 return fd;
4937 }
4938
4939 /* Implementation of to_fileio_readlink. */
4940
4941 static char *
4942 linux_nat_fileio_readlink (struct target_ops *self,
4943 struct inferior *inf, const char *filename,
4944 int *target_errno)
4945 {
4946 char buf[PATH_MAX];
4947 int len;
4948 char *ret;
4949
4950 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4951 filename, buf, sizeof (buf));
4952 if (len < 0)
4953 {
4954 *target_errno = host_to_fileio_error (errno);
4955 return NULL;
4956 }
4957
4958 ret = (char *) xmalloc (len + 1);
4959 memcpy (ret, buf, len);
4960 ret[len] = '\0';
4961 return ret;
4962 }
4963
4964 /* Implementation of to_fileio_unlink. */
4965
4966 static int
4967 linux_nat_fileio_unlink (struct target_ops *self,
4968 struct inferior *inf, const char *filename,
4969 int *target_errno)
4970 {
4971 int ret;
4972
4973 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4974 filename);
4975 if (ret == -1)
4976 *target_errno = host_to_fileio_error (errno);
4977
4978 return ret;
4979 }
4980
4981 void
4982 linux_nat_add_target (struct target_ops *t)
4983 {
4984 /* Save the provided single-threaded target. We save this in a separate
4985 variable because another target we've inherited from (e.g. inf-ptrace)
4986 may have saved a pointer to T; we want to use it for the final
4987 process stratum target. */
4988 linux_ops_saved = *t;
4989 linux_ops = &linux_ops_saved;
4990
4991 /* Override some methods for multithreading. */
4992 t->to_create_inferior = linux_nat_create_inferior;
4993 t->to_attach = linux_nat_attach;
4994 t->to_detach = linux_nat_detach;
4995 t->to_resume = linux_nat_resume;
4996 t->to_wait = linux_nat_wait;
4997 t->to_pass_signals = linux_nat_pass_signals;
4998 t->to_xfer_partial = linux_nat_xfer_partial;
4999 t->to_kill = linux_nat_kill;
5000 t->to_mourn_inferior = linux_nat_mourn_inferior;
5001 t->to_thread_alive = linux_nat_thread_alive;
5002 t->to_update_thread_list = linux_nat_update_thread_list;
5003 t->to_pid_to_str = linux_nat_pid_to_str;
5004 t->to_thread_name = linux_nat_thread_name;
5005 t->to_has_thread_control = tc_schedlock;
5006 t->to_thread_address_space = linux_nat_thread_address_space;
5007 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5008 t->to_stopped_data_address = linux_nat_stopped_data_address;
5009 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint;
5010 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint;
5011 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint;
5012 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint;
5013
5014 t->to_can_async_p = linux_nat_can_async_p;
5015 t->to_is_async_p = linux_nat_is_async_p;
5016 t->to_supports_non_stop = linux_nat_supports_non_stop;
5017 t->to_always_non_stop_p = linux_nat_always_non_stop_p;
5018 t->to_async = linux_nat_async;
5019 t->to_terminal_inferior = linux_nat_terminal_inferior;
5020 t->to_terminal_ours = linux_nat_terminal_ours;
5021
5022 super_close = t->to_close;
5023 t->to_close = linux_nat_close;
5024
5025 t->to_stop = linux_nat_stop;
5026 t->to_interrupt = linux_nat_interrupt;
5027
5028 t->to_supports_multi_process = linux_nat_supports_multi_process;
5029
5030 t->to_supports_disable_randomization
5031 = linux_nat_supports_disable_randomization;
5032
5033 t->to_core_of_thread = linux_nat_core_of_thread;
5034
5035 t->to_filesystem_is_local = linux_nat_filesystem_is_local;
5036 t->to_fileio_open = linux_nat_fileio_open;
5037 t->to_fileio_readlink = linux_nat_fileio_readlink;
5038 t->to_fileio_unlink = linux_nat_fileio_unlink;
5039
5040 /* We don't change the stratum; this target will sit at
5041 process_stratum and thread_db will set at thread_stratum. This
5042 is a little strange, since this is a multi-threaded-capable
5043 target, but we want to be on the stack below thread_db, and we
5044 also want to be used for single-threaded processes. */
5045
5046 add_target (t);
5047 }
5048
5049 /* Register a method to call whenever a new thread is attached. */
5050 void
5051 linux_nat_set_new_thread (struct target_ops *t,
5052 void (*new_thread) (struct lwp_info *))
5053 {
5054 /* Save the pointer. We only support a single registered instance
5055 of the GNU/Linux native target, so we do not need to map this to
5056 T. */
5057 linux_nat_new_thread = new_thread;
5058 }
5059
5060 /* See declaration in linux-nat.h. */
5061
5062 void
5063 linux_nat_set_new_fork (struct target_ops *t,
5064 linux_nat_new_fork_ftype *new_fork)
5065 {
5066 /* Save the pointer. */
5067 linux_nat_new_fork = new_fork;
5068 }
5069
5070 /* See declaration in linux-nat.h. */
5071
5072 void
5073 linux_nat_set_forget_process (struct target_ops *t,
5074 linux_nat_forget_process_ftype *fn)
5075 {
5076 /* Save the pointer. */
5077 linux_nat_forget_process_hook = fn;
5078 }
5079
5080 /* See declaration in linux-nat.h. */
5081
5082 void
5083 linux_nat_forget_process (pid_t pid)
5084 {
5085 if (linux_nat_forget_process_hook != NULL)
5086 linux_nat_forget_process_hook (pid);
5087 }
5088
5089 /* Register a method that converts a siginfo object between the layout
5090 that ptrace returns, and the layout in the architecture of the
5091 inferior. */
5092 void
5093 linux_nat_set_siginfo_fixup (struct target_ops *t,
5094 int (*siginfo_fixup) (siginfo_t *,
5095 gdb_byte *,
5096 int))
5097 {
5098 /* Save the pointer. */
5099 linux_nat_siginfo_fixup = siginfo_fixup;
5100 }
5101
5102 /* Register a method to call prior to resuming a thread. */
5103
5104 void
5105 linux_nat_set_prepare_to_resume (struct target_ops *t,
5106 void (*prepare_to_resume) (struct lwp_info *))
5107 {
5108 /* Save the pointer. */
5109 linux_nat_prepare_to_resume = prepare_to_resume;
5110 }
5111
5112 /* See linux-nat.h. */
5113
5114 int
5115 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
5116 {
5117 int pid;
5118
5119 pid = ptid_get_lwp (ptid);
5120 if (pid == 0)
5121 pid = ptid_get_pid (ptid);
5122
5123 errno = 0;
5124 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
5125 if (errno != 0)
5126 {
5127 memset (siginfo, 0, sizeof (*siginfo));
5128 return 0;
5129 }
5130 return 1;
5131 }
5132
5133 /* See nat/linux-nat.h. */
5134
5135 ptid_t
5136 current_lwp_ptid (void)
5137 {
5138 gdb_assert (ptid_lwp_p (inferior_ptid));
5139 return inferior_ptid;
5140 }
5141
5142 /* Provide a prototype to silence -Wmissing-prototypes. */
5143 extern initialize_file_ftype _initialize_linux_nat;
5144
5145 void
5146 _initialize_linux_nat (void)
5147 {
5148 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
5149 &debug_linux_nat, _("\
5150 Set debugging of GNU/Linux lwp module."), _("\
5151 Show debugging of GNU/Linux lwp module."), _("\
5152 Enables printf debugging output."),
5153 NULL,
5154 show_debug_linux_nat,
5155 &setdebuglist, &showdebuglist);
5156
5157 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
5158 &debug_linux_namespaces, _("\
5159 Set debugging of GNU/Linux namespaces module."), _("\
5160 Show debugging of GNU/Linux namespaces module."), _("\
5161 Enables printf debugging output."),
5162 NULL,
5163 NULL,
5164 &setdebuglist, &showdebuglist);
5165
5166 /* Save this mask as the default. */
5167 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5168
5169 /* Install a SIGCHLD handler. */
5170 sigchld_action.sa_handler = sigchld_handler;
5171 sigemptyset (&sigchld_action.sa_mask);
5172 sigchld_action.sa_flags = SA_RESTART;
5173
5174 /* Make it the default. */
5175 sigaction (SIGCHLD, &sigchld_action, NULL);
5176
5177 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5178 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5179 sigdelset (&suspend_mask, SIGCHLD);
5180
5181 sigemptyset (&blocked_mask);
5182 }
5183 \f
5184
5185 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5186 the GNU/Linux Threads library and therefore doesn't really belong
5187 here. */
5188
5189 /* Read variable NAME in the target and return its value if found.
5190 Otherwise return zero. It is assumed that the type of the variable
5191 is `int'. */
5192
5193 static int
5194 get_signo (const char *name)
5195 {
5196 struct bound_minimal_symbol ms;
5197 int signo;
5198
5199 ms = lookup_minimal_symbol (name, NULL, NULL);
5200 if (ms.minsym == NULL)
5201 return 0;
5202
5203 if (target_read_memory (BMSYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5204 sizeof (signo)) != 0)
5205 return 0;
5206
5207 return signo;
5208 }
5209
5210 /* Return the set of signals used by the threads library in *SET. */
5211
5212 void
5213 lin_thread_get_thread_signals (sigset_t *set)
5214 {
5215 struct sigaction action;
5216 int restart, cancel;
5217
5218 sigemptyset (&blocked_mask);
5219 sigemptyset (set);
5220
5221 restart = get_signo ("__pthread_sig_restart");
5222 cancel = get_signo ("__pthread_sig_cancel");
5223
5224 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5225 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5226 not provide any way for the debugger to query the signal numbers -
5227 fortunately they don't change! */
5228
5229 if (restart == 0)
5230 restart = __SIGRTMIN;
5231
5232 if (cancel == 0)
5233 cancel = __SIGRTMIN + 1;
5234
5235 sigaddset (set, restart);
5236 sigaddset (set, cancel);
5237
5238 /* The GNU/Linux Threads library makes terminating threads send a
5239 special "cancel" signal instead of SIGCHLD. Make sure we catch
5240 those (to prevent them from terminating GDB itself, which is
5241 likely to be their default action) and treat them the same way as
5242 SIGCHLD. */
5243
5244 action.sa_handler = sigchld_handler;
5245 sigemptyset (&action.sa_mask);
5246 action.sa_flags = SA_RESTART;
5247 sigaction (cancel, &action, NULL);
5248
5249 /* We block the "cancel" signal throughout this code ... */
5250 sigaddset (&blocked_mask, cancel);
5251 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5252
5253 /* ... except during a sigsuspend. */
5254 sigdelset (&suspend_mask, cancel);
5255 }