]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/linux-tdep.c
61ea13c6a856923c9bb23c96a364f6eb9d911613
[thirdparty/binutils-gdb.git] / gdb / linux-tdep.c
1 /* Target-dependent code for GNU/Linux, architecture independent.
2
3 Copyright (C) 2009-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observer.h"
36 #include "objfiles.h"
37 #include "infcall.h"
38 #include "gdbcmd.h"
39 #include "gdb_regex.h"
40 #include "common/enum-flags.h"
41 #include "common/gdb_optional.h"
42
43 #include <ctype.h>
44
45 /* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
51 enum filter_flag
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
61 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
62
63 /* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66 struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
91 /* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
94 static int use_coredump_filter = 1;
95
96 /* This enum represents the signals' numbers on a generic architecture
97 running the Linux kernel. The definition of "generic" comes from
98 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
99 tree, which is the "de facto" implementation of signal numbers to
100 be used by new architecture ports.
101
102 For those architectures which have differences between the generic
103 standard (e.g., Alpha), we define the different signals (and *only*
104 those) in the specific target-dependent file (e.g.,
105 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
106 tdep file for more information.
107
108 ARM deserves a special mention here. On the file
109 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
110 (and ARM-only) signal, which is SIGSWI, with the same number as
111 SIGRTMIN. This signal is used only for a very specific target,
112 called ArthurOS (from RISCOS). Therefore, we do not handle it on
113 the ARM-tdep file, and we can safely use the generic signal handler
114 here for ARM targets.
115
116 As stated above, this enum is derived from
117 <include/uapi/asm-generic/signal.h>, from the Linux kernel
118 tree. */
119
120 enum
121 {
122 LINUX_SIGHUP = 1,
123 LINUX_SIGINT = 2,
124 LINUX_SIGQUIT = 3,
125 LINUX_SIGILL = 4,
126 LINUX_SIGTRAP = 5,
127 LINUX_SIGABRT = 6,
128 LINUX_SIGIOT = 6,
129 LINUX_SIGBUS = 7,
130 LINUX_SIGFPE = 8,
131 LINUX_SIGKILL = 9,
132 LINUX_SIGUSR1 = 10,
133 LINUX_SIGSEGV = 11,
134 LINUX_SIGUSR2 = 12,
135 LINUX_SIGPIPE = 13,
136 LINUX_SIGALRM = 14,
137 LINUX_SIGTERM = 15,
138 LINUX_SIGSTKFLT = 16,
139 LINUX_SIGCHLD = 17,
140 LINUX_SIGCONT = 18,
141 LINUX_SIGSTOP = 19,
142 LINUX_SIGTSTP = 20,
143 LINUX_SIGTTIN = 21,
144 LINUX_SIGTTOU = 22,
145 LINUX_SIGURG = 23,
146 LINUX_SIGXCPU = 24,
147 LINUX_SIGXFSZ = 25,
148 LINUX_SIGVTALRM = 26,
149 LINUX_SIGPROF = 27,
150 LINUX_SIGWINCH = 28,
151 LINUX_SIGIO = 29,
152 LINUX_SIGPOLL = LINUX_SIGIO,
153 LINUX_SIGPWR = 30,
154 LINUX_SIGSYS = 31,
155 LINUX_SIGUNUSED = 31,
156
157 LINUX_SIGRTMIN = 32,
158 LINUX_SIGRTMAX = 64,
159 };
160
161 static struct gdbarch_data *linux_gdbarch_data_handle;
162
163 struct linux_gdbarch_data
164 {
165 struct type *siginfo_type;
166 };
167
168 static void *
169 init_linux_gdbarch_data (struct gdbarch *gdbarch)
170 {
171 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
172 }
173
174 static struct linux_gdbarch_data *
175 get_linux_gdbarch_data (struct gdbarch *gdbarch)
176 {
177 return ((struct linux_gdbarch_data *)
178 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
179 }
180
181 /* Per-inferior data key. */
182 static const struct inferior_data *linux_inferior_data;
183
184 /* Linux-specific cached data. This is used by GDB for caching
185 purposes for each inferior. This helps reduce the overhead of
186 transfering data from a remote target to the local host. */
187 struct linux_info
188 {
189 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
190 if VSYSCALL_RANGE_P is positive. This is cached because getting
191 at this info requires an auxv lookup (which is itself cached),
192 and looking through the inferior's mappings (which change
193 throughout execution and therefore cannot be cached). */
194 struct mem_range vsyscall_range;
195
196 /* Zero if we haven't tried looking up the vsyscall's range before
197 yet. Positive if we tried looking it up, and found it. Negative
198 if we tried looking it up but failed. */
199 int vsyscall_range_p;
200 };
201
202 /* Frees whatever allocated space there is to be freed and sets INF's
203 linux cache data pointer to NULL. */
204
205 static void
206 invalidate_linux_cache_inf (struct inferior *inf)
207 {
208 struct linux_info *info;
209
210 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
211 if (info != NULL)
212 {
213 xfree (info);
214 set_inferior_data (inf, linux_inferior_data, NULL);
215 }
216 }
217
218 /* Handles the cleanup of the linux cache for inferior INF. ARG is
219 ignored. Callback for the inferior_appeared and inferior_exit
220 events. */
221
222 static void
223 linux_inferior_data_cleanup (struct inferior *inf, void *arg)
224 {
225 invalidate_linux_cache_inf (inf);
226 }
227
228 /* Fetch the linux cache info for INF. This function always returns a
229 valid INFO pointer. */
230
231 static struct linux_info *
232 get_linux_inferior_data (void)
233 {
234 struct linux_info *info;
235 struct inferior *inf = current_inferior ();
236
237 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
238 if (info == NULL)
239 {
240 info = XCNEW (struct linux_info);
241 set_inferior_data (inf, linux_inferior_data, info);
242 }
243
244 return info;
245 }
246
247 /* See linux-tdep.h. */
248
249 struct type *
250 linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
251 linux_siginfo_extra_fields extra_fields)
252 {
253 struct linux_gdbarch_data *linux_gdbarch_data;
254 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
255 struct type *uid_type, *pid_type;
256 struct type *sigval_type, *clock_type;
257 struct type *siginfo_type, *sifields_type;
258 struct type *type;
259
260 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
261 if (linux_gdbarch_data->siginfo_type != NULL)
262 return linux_gdbarch_data->siginfo_type;
263
264 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
265 0, "int");
266 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
267 1, "unsigned int");
268 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
269 0, "long");
270 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
271 0, "short");
272 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
273
274 /* sival_t */
275 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
276 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
277 append_composite_type_field (sigval_type, "sival_int", int_type);
278 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
279
280 /* __pid_t */
281 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
282 TYPE_LENGTH (int_type), "__pid_t");
283 TYPE_TARGET_TYPE (pid_type) = int_type;
284 TYPE_TARGET_STUB (pid_type) = 1;
285
286 /* __uid_t */
287 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
288 TYPE_LENGTH (uint_type), "__uid_t");
289 TYPE_TARGET_TYPE (uid_type) = uint_type;
290 TYPE_TARGET_STUB (uid_type) = 1;
291
292 /* __clock_t */
293 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
294 TYPE_LENGTH (long_type), "__clock_t");
295 TYPE_TARGET_TYPE (clock_type) = long_type;
296 TYPE_TARGET_STUB (clock_type) = 1;
297
298 /* _sifields */
299 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
300
301 {
302 const int si_max_size = 128;
303 int si_pad_size;
304 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
305
306 /* _pad */
307 if (gdbarch_ptr_bit (gdbarch) == 64)
308 si_pad_size = (si_max_size / size_of_int) - 4;
309 else
310 si_pad_size = (si_max_size / size_of_int) - 3;
311 append_composite_type_field (sifields_type, "_pad",
312 init_vector_type (int_type, si_pad_size));
313 }
314
315 /* _kill */
316 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
317 append_composite_type_field (type, "si_pid", pid_type);
318 append_composite_type_field (type, "si_uid", uid_type);
319 append_composite_type_field (sifields_type, "_kill", type);
320
321 /* _timer */
322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
323 append_composite_type_field (type, "si_tid", int_type);
324 append_composite_type_field (type, "si_overrun", int_type);
325 append_composite_type_field (type, "si_sigval", sigval_type);
326 append_composite_type_field (sifields_type, "_timer", type);
327
328 /* _rt */
329 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
330 append_composite_type_field (type, "si_pid", pid_type);
331 append_composite_type_field (type, "si_uid", uid_type);
332 append_composite_type_field (type, "si_sigval", sigval_type);
333 append_composite_type_field (sifields_type, "_rt", type);
334
335 /* _sigchld */
336 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
337 append_composite_type_field (type, "si_pid", pid_type);
338 append_composite_type_field (type, "si_uid", uid_type);
339 append_composite_type_field (type, "si_status", int_type);
340 append_composite_type_field (type, "si_utime", clock_type);
341 append_composite_type_field (type, "si_stime", clock_type);
342 append_composite_type_field (sifields_type, "_sigchld", type);
343
344 /* _sigfault */
345 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
346 append_composite_type_field (type, "si_addr", void_ptr_type);
347
348 /* Additional bound fields for _sigfault in case they were requested. */
349 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
350 {
351 struct type *sigfault_bnd_fields;
352
353 append_composite_type_field (type, "_addr_lsb", short_type);
354 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
355 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
356 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
357 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
358 }
359 append_composite_type_field (sifields_type, "_sigfault", type);
360
361 /* _sigpoll */
362 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
363 append_composite_type_field (type, "si_band", long_type);
364 append_composite_type_field (type, "si_fd", int_type);
365 append_composite_type_field (sifields_type, "_sigpoll", type);
366
367 /* struct siginfo */
368 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
369 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
370 append_composite_type_field (siginfo_type, "si_signo", int_type);
371 append_composite_type_field (siginfo_type, "si_errno", int_type);
372 append_composite_type_field (siginfo_type, "si_code", int_type);
373 append_composite_type_field_aligned (siginfo_type,
374 "_sifields", sifields_type,
375 TYPE_LENGTH (long_type));
376
377 linux_gdbarch_data->siginfo_type = siginfo_type;
378
379 return siginfo_type;
380 }
381
382 /* This function is suitable for architectures that don't
383 extend/override the standard siginfo structure. */
384
385 static struct type *
386 linux_get_siginfo_type (struct gdbarch *gdbarch)
387 {
388 return linux_get_siginfo_type_with_fields (gdbarch, 0);
389 }
390
391 /* Return true if the target is running on uClinux instead of normal
392 Linux kernel. */
393
394 int
395 linux_is_uclinux (void)
396 {
397 CORE_ADDR dummy;
398
399 return (target_auxv_search (&current_target, AT_NULL, &dummy) > 0
400 && target_auxv_search (&current_target, AT_PAGESZ, &dummy) == 0);
401 }
402
403 static int
404 linux_has_shared_address_space (struct gdbarch *gdbarch)
405 {
406 return linux_is_uclinux ();
407 }
408
409 /* This is how we want PTIDs from core files to be printed. */
410
411 static const char *
412 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
413 {
414 static char buf[80];
415
416 if (ptid_get_lwp (ptid) != 0)
417 {
418 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
419 return buf;
420 }
421
422 return normal_pid_to_str (ptid);
423 }
424
425 /* Service function for corefiles and info proc. */
426
427 static void
428 read_mapping (const char *line,
429 ULONGEST *addr, ULONGEST *endaddr,
430 const char **permissions, size_t *permissions_len,
431 ULONGEST *offset,
432 const char **device, size_t *device_len,
433 ULONGEST *inode,
434 const char **filename)
435 {
436 const char *p = line;
437
438 *addr = strtoulst (p, &p, 16);
439 if (*p == '-')
440 p++;
441 *endaddr = strtoulst (p, &p, 16);
442
443 p = skip_spaces_const (p);
444 *permissions = p;
445 while (*p && !isspace (*p))
446 p++;
447 *permissions_len = p - *permissions;
448
449 *offset = strtoulst (p, &p, 16);
450
451 p = skip_spaces_const (p);
452 *device = p;
453 while (*p && !isspace (*p))
454 p++;
455 *device_len = p - *device;
456
457 *inode = strtoulst (p, &p, 10);
458
459 p = skip_spaces_const (p);
460 *filename = p;
461 }
462
463 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
464
465 This function was based on the documentation found on
466 <Documentation/filesystems/proc.txt>, on the Linux kernel.
467
468 Linux kernels before commit
469 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
470 field on smaps. */
471
472 static void
473 decode_vmflags (char *p, struct smaps_vmflags *v)
474 {
475 char *saveptr = NULL;
476 const char *s;
477
478 v->initialized_p = 1;
479 p = skip_to_space (p);
480 p = skip_spaces (p);
481
482 for (s = strtok_r (p, " ", &saveptr);
483 s != NULL;
484 s = strtok_r (NULL, " ", &saveptr))
485 {
486 if (strcmp (s, "io") == 0)
487 v->io_page = 1;
488 else if (strcmp (s, "ht") == 0)
489 v->uses_huge_tlb = 1;
490 else if (strcmp (s, "dd") == 0)
491 v->exclude_coredump = 1;
492 else if (strcmp (s, "sh") == 0)
493 v->shared_mapping = 1;
494 }
495 }
496
497 /* Regexes used by mapping_is_anonymous_p. Put in a structure because
498 they're initialized lazily. */
499
500 struct mapping_regexes
501 {
502 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
503 string in the end). We know for sure, based on the Linux kernel
504 code, that memory mappings whose associated filename is
505 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
506 compiled_regex dev_zero
507 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
508 _("Could not compile regex to match /dev/zero filename")};
509
510 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
511 string in the end). These filenames refer to shared memory
512 (shmem), and memory mappings associated with them are
513 MAP_ANONYMOUS as well. */
514 compiled_regex shmem_file
515 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
516 _("Could not compile regex to match shmem filenames")};
517
518 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
519 0' code, which is responsible to decide if it is dealing with a
520 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
521 FILE_DELETED matches, it does not necessarily mean that we are
522 dealing with an anonymous shared mapping. However, there is no
523 easy way to detect this currently, so this is the best
524 approximation we have.
525
526 As a result, GDB will dump readonly pages of deleted executables
527 when using the default value of coredump_filter (0x33), while the
528 Linux kernel will not dump those pages. But we can live with
529 that. */
530 compiled_regex file_deleted
531 {" (deleted)$", REG_NOSUB,
532 _("Could not compile regex to match '<file> (deleted)'")};
533 };
534
535 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
536
537 FILENAME is the name of the file present in the first line of the
538 memory mapping, in the "/proc/PID/smaps" output. For example, if
539 the first line is:
540
541 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
542
543 Then FILENAME will be "/path/to/file". */
544
545 static int
546 mapping_is_anonymous_p (const char *filename)
547 {
548 static gdb::optional<mapping_regexes> regexes;
549 static int init_regex_p = 0;
550
551 if (!init_regex_p)
552 {
553 /* Let's be pessimistic and assume there will be an error while
554 compiling the regex'es. */
555 init_regex_p = -1;
556
557 regexes.emplace ();
558
559 /* If we reached this point, then everything succeeded. */
560 init_regex_p = 1;
561 }
562
563 if (init_regex_p == -1)
564 {
565 const char deleted[] = " (deleted)";
566 size_t del_len = sizeof (deleted) - 1;
567 size_t filename_len = strlen (filename);
568
569 /* There was an error while compiling the regex'es above. In
570 order to try to give some reliable information to the caller,
571 we just try to find the string " (deleted)" in the filename.
572 If we managed to find it, then we assume the mapping is
573 anonymous. */
574 return (filename_len >= del_len
575 && strcmp (filename + filename_len - del_len, deleted) == 0);
576 }
577
578 if (*filename == '\0'
579 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
580 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
581 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
582 return 1;
583
584 return 0;
585 }
586
587 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
588 MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or
589 greater than 0 if it should.
590
591 In a nutshell, this is the logic that we follow in order to decide
592 if a mapping should be dumped or not.
593
594 - If the mapping is associated to a file whose name ends with
595 " (deleted)", or if the file is "/dev/zero", or if it is
596 "/SYSV%08x" (shared memory), or if there is no file associated
597 with it, or if the AnonHugePages: or the Anonymous: fields in the
598 /proc/PID/smaps have contents, then GDB considers this mapping to
599 be anonymous. Otherwise, GDB considers this mapping to be a
600 file-backed mapping (because there will be a file associated with
601 it).
602
603 It is worth mentioning that, from all those checks described
604 above, the most fragile is the one to see if the file name ends
605 with " (deleted)". This does not necessarily mean that the
606 mapping is anonymous, because the deleted file associated with
607 the mapping may have been a hard link to another file, for
608 example. The Linux kernel checks to see if "i_nlink == 0", but
609 GDB cannot easily (and normally) do this check (iff running as
610 root, it could find the mapping in /proc/PID/map_files/ and
611 determine whether there still are other hard links to the
612 inode/file). Therefore, we made a compromise here, and we assume
613 that if the file name ends with " (deleted)", then the mapping is
614 indeed anonymous. FWIW, this is something the Linux kernel could
615 do better: expose this information in a more direct way.
616
617 - If we see the flag "sh" in the "VmFlags:" field (in
618 /proc/PID/smaps), then certainly the memory mapping is shared
619 (VM_SHARED). If we have access to the VmFlags, and we don't see
620 the "sh" there, then certainly the mapping is private. However,
621 Linux kernels before commit
622 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
623 "VmFlags:" field; in that case, we use another heuristic: if we
624 see 'p' in the permission flags, then we assume that the mapping
625 is private, even though the presence of the 's' flag there would
626 mean VM_MAYSHARE, which means the mapping could still be private.
627 This should work OK enough, however. */
628
629 static int
630 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
631 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
632 const char *filename)
633 {
634 /* Initially, we trust in what we received from our caller. This
635 value may not be very precise (i.e., it was probably gathered
636 from the permission line in the /proc/PID/smaps list, which
637 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
638 what we have until we take a look at the "VmFlags:" field
639 (assuming that the version of the Linux kernel being used
640 supports it, of course). */
641 int private_p = maybe_private_p;
642
643 /* We always dump vDSO and vsyscall mappings, because it's likely that
644 there'll be no file to read the contents from at core load time.
645 The kernel does the same. */
646 if (strcmp ("[vdso]", filename) == 0
647 || strcmp ("[vsyscall]", filename) == 0)
648 return 1;
649
650 if (v->initialized_p)
651 {
652 /* We never dump I/O mappings. */
653 if (v->io_page)
654 return 0;
655
656 /* Check if we should exclude this mapping. */
657 if (v->exclude_coredump)
658 return 0;
659
660 /* Update our notion of whether this mapping is shared or
661 private based on a trustworthy value. */
662 private_p = !v->shared_mapping;
663
664 /* HugeTLB checking. */
665 if (v->uses_huge_tlb)
666 {
667 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
668 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
669 return 1;
670
671 return 0;
672 }
673 }
674
675 if (private_p)
676 {
677 if (mapping_anon_p && mapping_file_p)
678 {
679 /* This is a special situation. It can happen when we see a
680 mapping that is file-backed, but that contains anonymous
681 pages. */
682 return ((filterflags & COREFILTER_ANON_PRIVATE) != 0
683 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
684 }
685 else if (mapping_anon_p)
686 return (filterflags & COREFILTER_ANON_PRIVATE) != 0;
687 else
688 return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
689 }
690 else
691 {
692 if (mapping_anon_p && mapping_file_p)
693 {
694 /* This is a special situation. It can happen when we see a
695 mapping that is file-backed, but that contains anonymous
696 pages. */
697 return ((filterflags & COREFILTER_ANON_SHARED) != 0
698 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
699 }
700 else if (mapping_anon_p)
701 return (filterflags & COREFILTER_ANON_SHARED) != 0;
702 else
703 return (filterflags & COREFILTER_MAPPED_SHARED) != 0;
704 }
705 }
706
707 /* Implement the "info proc" command. */
708
709 static void
710 linux_info_proc (struct gdbarch *gdbarch, const char *args,
711 enum info_proc_what what)
712 {
713 /* A long is used for pid instead of an int to avoid a loss of precision
714 compiler warning from the output of strtoul. */
715 long pid;
716 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
717 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
718 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
719 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
720 int status_f = (what == IP_STATUS || what == IP_ALL);
721 int stat_f = (what == IP_STAT || what == IP_ALL);
722 char filename[100];
723 char *data;
724 int target_errno;
725
726 if (args && isdigit (args[0]))
727 {
728 char *tem;
729
730 pid = strtoul (args, &tem, 10);
731 args = tem;
732 }
733 else
734 {
735 if (!target_has_execution)
736 error (_("No current process: you must name one."));
737 if (current_inferior ()->fake_pid_p)
738 error (_("Can't determine the current process's PID: you must name one."));
739
740 pid = current_inferior ()->pid;
741 }
742
743 args = skip_spaces_const (args);
744 if (args && args[0])
745 error (_("Too many parameters: %s"), args);
746
747 printf_filtered (_("process %ld\n"), pid);
748 if (cmdline_f)
749 {
750 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
751 data = target_fileio_read_stralloc (NULL, filename);
752 if (data)
753 {
754 struct cleanup *cleanup = make_cleanup (xfree, data);
755 printf_filtered ("cmdline = '%s'\n", data);
756 do_cleanups (cleanup);
757 }
758 else
759 warning (_("unable to open /proc file '%s'"), filename);
760 }
761 if (cwd_f)
762 {
763 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
764 data = target_fileio_readlink (NULL, filename, &target_errno);
765 if (data)
766 {
767 struct cleanup *cleanup = make_cleanup (xfree, data);
768 printf_filtered ("cwd = '%s'\n", data);
769 do_cleanups (cleanup);
770 }
771 else
772 warning (_("unable to read link '%s'"), filename);
773 }
774 if (exe_f)
775 {
776 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
777 data = target_fileio_readlink (NULL, filename, &target_errno);
778 if (data)
779 {
780 struct cleanup *cleanup = make_cleanup (xfree, data);
781 printf_filtered ("exe = '%s'\n", data);
782 do_cleanups (cleanup);
783 }
784 else
785 warning (_("unable to read link '%s'"), filename);
786 }
787 if (mappings_f)
788 {
789 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
790 data = target_fileio_read_stralloc (NULL, filename);
791 if (data)
792 {
793 struct cleanup *cleanup = make_cleanup (xfree, data);
794 char *line;
795
796 printf_filtered (_("Mapped address spaces:\n\n"));
797 if (gdbarch_addr_bit (gdbarch) == 32)
798 {
799 printf_filtered ("\t%10s %10s %10s %10s %s\n",
800 "Start Addr",
801 " End Addr",
802 " Size", " Offset", "objfile");
803 }
804 else
805 {
806 printf_filtered (" %18s %18s %10s %10s %s\n",
807 "Start Addr",
808 " End Addr",
809 " Size", " Offset", "objfile");
810 }
811
812 for (line = strtok (data, "\n"); line; line = strtok (NULL, "\n"))
813 {
814 ULONGEST addr, endaddr, offset, inode;
815 const char *permissions, *device, *filename;
816 size_t permissions_len, device_len;
817
818 read_mapping (line, &addr, &endaddr,
819 &permissions, &permissions_len,
820 &offset, &device, &device_len,
821 &inode, &filename);
822
823 if (gdbarch_addr_bit (gdbarch) == 32)
824 {
825 printf_filtered ("\t%10s %10s %10s %10s %s\n",
826 paddress (gdbarch, addr),
827 paddress (gdbarch, endaddr),
828 hex_string (endaddr - addr),
829 hex_string (offset),
830 *filename? filename : "");
831 }
832 else
833 {
834 printf_filtered (" %18s %18s %10s %10s %s\n",
835 paddress (gdbarch, addr),
836 paddress (gdbarch, endaddr),
837 hex_string (endaddr - addr),
838 hex_string (offset),
839 *filename? filename : "");
840 }
841 }
842
843 do_cleanups (cleanup);
844 }
845 else
846 warning (_("unable to open /proc file '%s'"), filename);
847 }
848 if (status_f)
849 {
850 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
851 data = target_fileio_read_stralloc (NULL, filename);
852 if (data)
853 {
854 struct cleanup *cleanup = make_cleanup (xfree, data);
855 puts_filtered (data);
856 do_cleanups (cleanup);
857 }
858 else
859 warning (_("unable to open /proc file '%s'"), filename);
860 }
861 if (stat_f)
862 {
863 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
864 data = target_fileio_read_stralloc (NULL, filename);
865 if (data)
866 {
867 struct cleanup *cleanup = make_cleanup (xfree, data);
868 const char *p = data;
869
870 printf_filtered (_("Process: %s\n"),
871 pulongest (strtoulst (p, &p, 10)));
872
873 p = skip_spaces_const (p);
874 if (*p == '(')
875 {
876 /* ps command also relies on no trailing fields
877 ever contain ')'. */
878 const char *ep = strrchr (p, ')');
879 if (ep != NULL)
880 {
881 printf_filtered ("Exec file: %.*s\n",
882 (int) (ep - p - 1), p + 1);
883 p = ep + 1;
884 }
885 }
886
887 p = skip_spaces_const (p);
888 if (*p)
889 printf_filtered (_("State: %c\n"), *p++);
890
891 if (*p)
892 printf_filtered (_("Parent process: %s\n"),
893 pulongest (strtoulst (p, &p, 10)));
894 if (*p)
895 printf_filtered (_("Process group: %s\n"),
896 pulongest (strtoulst (p, &p, 10)));
897 if (*p)
898 printf_filtered (_("Session id: %s\n"),
899 pulongest (strtoulst (p, &p, 10)));
900 if (*p)
901 printf_filtered (_("TTY: %s\n"),
902 pulongest (strtoulst (p, &p, 10)));
903 if (*p)
904 printf_filtered (_("TTY owner process group: %s\n"),
905 pulongest (strtoulst (p, &p, 10)));
906
907 if (*p)
908 printf_filtered (_("Flags: %s\n"),
909 hex_string (strtoulst (p, &p, 10)));
910 if (*p)
911 printf_filtered (_("Minor faults (no memory page): %s\n"),
912 pulongest (strtoulst (p, &p, 10)));
913 if (*p)
914 printf_filtered (_("Minor faults, children: %s\n"),
915 pulongest (strtoulst (p, &p, 10)));
916 if (*p)
917 printf_filtered (_("Major faults (memory page faults): %s\n"),
918 pulongest (strtoulst (p, &p, 10)));
919 if (*p)
920 printf_filtered (_("Major faults, children: %s\n"),
921 pulongest (strtoulst (p, &p, 10)));
922 if (*p)
923 printf_filtered (_("utime: %s\n"),
924 pulongest (strtoulst (p, &p, 10)));
925 if (*p)
926 printf_filtered (_("stime: %s\n"),
927 pulongest (strtoulst (p, &p, 10)));
928 if (*p)
929 printf_filtered (_("utime, children: %s\n"),
930 pulongest (strtoulst (p, &p, 10)));
931 if (*p)
932 printf_filtered (_("stime, children: %s\n"),
933 pulongest (strtoulst (p, &p, 10)));
934 if (*p)
935 printf_filtered (_("jiffies remaining in current "
936 "time slice: %s\n"),
937 pulongest (strtoulst (p, &p, 10)));
938 if (*p)
939 printf_filtered (_("'nice' value: %s\n"),
940 pulongest (strtoulst (p, &p, 10)));
941 if (*p)
942 printf_filtered (_("jiffies until next timeout: %s\n"),
943 pulongest (strtoulst (p, &p, 10)));
944 if (*p)
945 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
946 pulongest (strtoulst (p, &p, 10)));
947 if (*p)
948 printf_filtered (_("start time (jiffies since "
949 "system boot): %s\n"),
950 pulongest (strtoulst (p, &p, 10)));
951 if (*p)
952 printf_filtered (_("Virtual memory size: %s\n"),
953 pulongest (strtoulst (p, &p, 10)));
954 if (*p)
955 printf_filtered (_("Resident set size: %s\n"),
956 pulongest (strtoulst (p, &p, 10)));
957 if (*p)
958 printf_filtered (_("rlim: %s\n"),
959 pulongest (strtoulst (p, &p, 10)));
960 if (*p)
961 printf_filtered (_("Start of text: %s\n"),
962 hex_string (strtoulst (p, &p, 10)));
963 if (*p)
964 printf_filtered (_("End of text: %s\n"),
965 hex_string (strtoulst (p, &p, 10)));
966 if (*p)
967 printf_filtered (_("Start of stack: %s\n"),
968 hex_string (strtoulst (p, &p, 10)));
969 #if 0 /* Don't know how architecture-dependent the rest is...
970 Anyway the signal bitmap info is available from "status". */
971 if (*p)
972 printf_filtered (_("Kernel stack pointer: %s\n"),
973 hex_string (strtoulst (p, &p, 10)));
974 if (*p)
975 printf_filtered (_("Kernel instr pointer: %s\n"),
976 hex_string (strtoulst (p, &p, 10)));
977 if (*p)
978 printf_filtered (_("Pending signals bitmap: %s\n"),
979 hex_string (strtoulst (p, &p, 10)));
980 if (*p)
981 printf_filtered (_("Blocked signals bitmap: %s\n"),
982 hex_string (strtoulst (p, &p, 10)));
983 if (*p)
984 printf_filtered (_("Ignored signals bitmap: %s\n"),
985 hex_string (strtoulst (p, &p, 10)));
986 if (*p)
987 printf_filtered (_("Catched signals bitmap: %s\n"),
988 hex_string (strtoulst (p, &p, 10)));
989 if (*p)
990 printf_filtered (_("wchan (system call): %s\n"),
991 hex_string (strtoulst (p, &p, 10)));
992 #endif
993 do_cleanups (cleanup);
994 }
995 else
996 warning (_("unable to open /proc file '%s'"), filename);
997 }
998 }
999
1000 /* Implement "info proc mappings" for a corefile. */
1001
1002 static void
1003 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
1004 {
1005 asection *section;
1006 ULONGEST count, page_size;
1007 unsigned char *descdata, *filenames, *descend, *contents;
1008 size_t note_size;
1009 unsigned int addr_size_bits, addr_size;
1010 struct cleanup *cleanup;
1011 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1012 /* We assume this for reading 64-bit core files. */
1013 gdb_static_assert (sizeof (ULONGEST) >= 8);
1014
1015 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1016 if (section == NULL)
1017 {
1018 warning (_("unable to find mappings in core file"));
1019 return;
1020 }
1021
1022 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1023 addr_size = addr_size_bits / 8;
1024 note_size = bfd_get_section_size (section);
1025
1026 if (note_size < 2 * addr_size)
1027 error (_("malformed core note - too short for header"));
1028
1029 contents = (unsigned char *) xmalloc (note_size);
1030 cleanup = make_cleanup (xfree, contents);
1031 if (!bfd_get_section_contents (core_bfd, section, contents, 0, note_size))
1032 error (_("could not get core note contents"));
1033
1034 descdata = contents;
1035 descend = descdata + note_size;
1036
1037 if (descdata[note_size - 1] != '\0')
1038 error (_("malformed note - does not end with \\0"));
1039
1040 count = bfd_get (addr_size_bits, core_bfd, descdata);
1041 descdata += addr_size;
1042
1043 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1044 descdata += addr_size;
1045
1046 if (note_size < 2 * addr_size + count * 3 * addr_size)
1047 error (_("malformed note - too short for supplied file count"));
1048
1049 printf_filtered (_("Mapped address spaces:\n\n"));
1050 if (gdbarch_addr_bit (gdbarch) == 32)
1051 {
1052 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1053 "Start Addr",
1054 " End Addr",
1055 " Size", " Offset", "objfile");
1056 }
1057 else
1058 {
1059 printf_filtered (" %18s %18s %10s %10s %s\n",
1060 "Start Addr",
1061 " End Addr",
1062 " Size", " Offset", "objfile");
1063 }
1064
1065 filenames = descdata + count * 3 * addr_size;
1066 while (--count > 0)
1067 {
1068 ULONGEST start, end, file_ofs;
1069
1070 if (filenames == descend)
1071 error (_("malformed note - filenames end too early"));
1072
1073 start = bfd_get (addr_size_bits, core_bfd, descdata);
1074 descdata += addr_size;
1075 end = bfd_get (addr_size_bits, core_bfd, descdata);
1076 descdata += addr_size;
1077 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1078 descdata += addr_size;
1079
1080 file_ofs *= page_size;
1081
1082 if (gdbarch_addr_bit (gdbarch) == 32)
1083 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1084 paddress (gdbarch, start),
1085 paddress (gdbarch, end),
1086 hex_string (end - start),
1087 hex_string (file_ofs),
1088 filenames);
1089 else
1090 printf_filtered (" %18s %18s %10s %10s %s\n",
1091 paddress (gdbarch, start),
1092 paddress (gdbarch, end),
1093 hex_string (end - start),
1094 hex_string (file_ofs),
1095 filenames);
1096
1097 filenames += 1 + strlen ((char *) filenames);
1098 }
1099
1100 do_cleanups (cleanup);
1101 }
1102
1103 /* Implement "info proc" for a corefile. */
1104
1105 static void
1106 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1107 enum info_proc_what what)
1108 {
1109 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1110 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1111
1112 if (exe_f)
1113 {
1114 const char *exe;
1115
1116 exe = bfd_core_file_failing_command (core_bfd);
1117 if (exe != NULL)
1118 printf_filtered ("exe = '%s'\n", exe);
1119 else
1120 warning (_("unable to find command name in core file"));
1121 }
1122
1123 if (mappings_f)
1124 linux_core_info_proc_mappings (gdbarch, args);
1125
1126 if (!exe_f && !mappings_f)
1127 error (_("unable to handle request"));
1128 }
1129
1130 /* Read siginfo data from the core, if possible. Returns -1 on
1131 failure. Otherwise, returns the number of bytes read. READBUF,
1132 OFFSET, and LEN are all as specified by the to_xfer_partial
1133 interface. */
1134
1135 static LONGEST
1136 linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1137 ULONGEST offset, ULONGEST len)
1138 {
1139 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1140 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1141 if (section == NULL)
1142 return -1;
1143
1144 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1145 return -1;
1146
1147 return len;
1148 }
1149
1150 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1151 ULONGEST offset, ULONGEST inode,
1152 int read, int write,
1153 int exec, int modified,
1154 const char *filename,
1155 void *data);
1156
1157 /* List memory regions in the inferior for a corefile. */
1158
1159 static int
1160 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1161 linux_find_memory_region_ftype *func,
1162 void *obfd)
1163 {
1164 char mapsfilename[100];
1165 char coredumpfilter_name[100];
1166 char *data, *coredumpfilterdata;
1167 pid_t pid;
1168 /* Default dump behavior of coredump_filter (0x33), according to
1169 Documentation/filesystems/proc.txt from the Linux kernel
1170 tree. */
1171 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1172 | COREFILTER_ANON_SHARED
1173 | COREFILTER_ELF_HEADERS
1174 | COREFILTER_HUGETLB_PRIVATE);
1175
1176 /* We need to know the real target PID to access /proc. */
1177 if (current_inferior ()->fake_pid_p)
1178 return 1;
1179
1180 pid = current_inferior ()->pid;
1181
1182 if (use_coredump_filter)
1183 {
1184 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1185 "/proc/%d/coredump_filter", pid);
1186 coredumpfilterdata = target_fileio_read_stralloc (NULL,
1187 coredumpfilter_name);
1188 if (coredumpfilterdata != NULL)
1189 {
1190 unsigned int flags;
1191
1192 sscanf (coredumpfilterdata, "%x", &flags);
1193 filterflags = (enum filter_flag) flags;
1194 xfree (coredumpfilterdata);
1195 }
1196 }
1197
1198 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1199 data = target_fileio_read_stralloc (NULL, mapsfilename);
1200 if (data == NULL)
1201 {
1202 /* Older Linux kernels did not support /proc/PID/smaps. */
1203 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1204 data = target_fileio_read_stralloc (NULL, mapsfilename);
1205 }
1206
1207 if (data != NULL)
1208 {
1209 struct cleanup *cleanup = make_cleanup (xfree, data);
1210 char *line, *t;
1211
1212 line = strtok_r (data, "\n", &t);
1213 while (line != NULL)
1214 {
1215 ULONGEST addr, endaddr, offset, inode;
1216 const char *permissions, *device, *filename;
1217 struct smaps_vmflags v;
1218 size_t permissions_len, device_len;
1219 int read, write, exec, priv;
1220 int has_anonymous = 0;
1221 int should_dump_p = 0;
1222 int mapping_anon_p;
1223 int mapping_file_p;
1224
1225 memset (&v, 0, sizeof (v));
1226 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1227 &offset, &device, &device_len, &inode, &filename);
1228 mapping_anon_p = mapping_is_anonymous_p (filename);
1229 /* If the mapping is not anonymous, then we can consider it
1230 to be file-backed. These two states (anonymous or
1231 file-backed) seem to be exclusive, but they can actually
1232 coexist. For example, if a file-backed mapping has
1233 "Anonymous:" pages (see more below), then the Linux
1234 kernel will dump this mapping when the user specified
1235 that she only wants anonymous mappings in the corefile
1236 (*even* when she explicitly disabled the dumping of
1237 file-backed mappings). */
1238 mapping_file_p = !mapping_anon_p;
1239
1240 /* Decode permissions. */
1241 read = (memchr (permissions, 'r', permissions_len) != 0);
1242 write = (memchr (permissions, 'w', permissions_len) != 0);
1243 exec = (memchr (permissions, 'x', permissions_len) != 0);
1244 /* 'private' here actually means VM_MAYSHARE, and not
1245 VM_SHARED. In order to know if a mapping is really
1246 private or not, we must check the flag "sh" in the
1247 VmFlags field. This is done by decode_vmflags. However,
1248 if we are using a Linux kernel released before the commit
1249 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1250 not have the VmFlags there. In this case, there is
1251 really no way to know if we are dealing with VM_SHARED,
1252 so we just assume that VM_MAYSHARE is enough. */
1253 priv = memchr (permissions, 'p', permissions_len) != 0;
1254
1255 /* Try to detect if region should be dumped by parsing smaps
1256 counters. */
1257 for (line = strtok_r (NULL, "\n", &t);
1258 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1259 line = strtok_r (NULL, "\n", &t))
1260 {
1261 char keyword[64 + 1];
1262
1263 if (sscanf (line, "%64s", keyword) != 1)
1264 {
1265 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1266 break;
1267 }
1268
1269 if (strcmp (keyword, "Anonymous:") == 0)
1270 {
1271 /* Older Linux kernels did not support the
1272 "Anonymous:" counter. Check it here. */
1273 has_anonymous = 1;
1274 }
1275 else if (strcmp (keyword, "VmFlags:") == 0)
1276 decode_vmflags (line, &v);
1277
1278 if (strcmp (keyword, "AnonHugePages:") == 0
1279 || strcmp (keyword, "Anonymous:") == 0)
1280 {
1281 unsigned long number;
1282
1283 if (sscanf (line, "%*s%lu", &number) != 1)
1284 {
1285 warning (_("Error parsing {s,}maps file '%s' number"),
1286 mapsfilename);
1287 break;
1288 }
1289 if (number > 0)
1290 {
1291 /* Even if we are dealing with a file-backed
1292 mapping, if it contains anonymous pages we
1293 consider it to be *also* an anonymous
1294 mapping, because this is what the Linux
1295 kernel does:
1296
1297 // Dump segments that have been written to.
1298 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1299 goto whole;
1300
1301 Note that if the mapping is already marked as
1302 file-backed (i.e., mapping_file_p is
1303 non-zero), then this is a special case, and
1304 this mapping will be dumped either when the
1305 user wants to dump file-backed *or* anonymous
1306 mappings. */
1307 mapping_anon_p = 1;
1308 }
1309 }
1310 }
1311
1312 if (has_anonymous)
1313 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1314 mapping_anon_p, mapping_file_p,
1315 filename);
1316 else
1317 {
1318 /* Older Linux kernels did not support the "Anonymous:" counter.
1319 If it is missing, we can't be sure - dump all the pages. */
1320 should_dump_p = 1;
1321 }
1322
1323 /* Invoke the callback function to create the corefile segment. */
1324 if (should_dump_p)
1325 func (addr, endaddr - addr, offset, inode,
1326 read, write, exec, 1, /* MODIFIED is true because we
1327 want to dump the mapping. */
1328 filename, obfd);
1329 }
1330
1331 do_cleanups (cleanup);
1332 return 0;
1333 }
1334
1335 return 1;
1336 }
1337
1338 /* A structure for passing information through
1339 linux_find_memory_regions_full. */
1340
1341 struct linux_find_memory_regions_data
1342 {
1343 /* The original callback. */
1344
1345 find_memory_region_ftype func;
1346
1347 /* The original datum. */
1348
1349 void *obfd;
1350 };
1351
1352 /* A callback for linux_find_memory_regions that converts between the
1353 "full"-style callback and find_memory_region_ftype. */
1354
1355 static int
1356 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1357 ULONGEST offset, ULONGEST inode,
1358 int read, int write, int exec, int modified,
1359 const char *filename, void *arg)
1360 {
1361 struct linux_find_memory_regions_data *data
1362 = (struct linux_find_memory_regions_data *) arg;
1363
1364 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1365 }
1366
1367 /* A variant of linux_find_memory_regions_full that is suitable as the
1368 gdbarch find_memory_regions method. */
1369
1370 static int
1371 linux_find_memory_regions (struct gdbarch *gdbarch,
1372 find_memory_region_ftype func, void *obfd)
1373 {
1374 struct linux_find_memory_regions_data data;
1375
1376 data.func = func;
1377 data.obfd = obfd;
1378
1379 return linux_find_memory_regions_full (gdbarch,
1380 linux_find_memory_regions_thunk,
1381 &data);
1382 }
1383
1384 /* Determine which signal stopped execution. */
1385
1386 static int
1387 find_signalled_thread (struct thread_info *info, void *data)
1388 {
1389 if (info->suspend.stop_signal != GDB_SIGNAL_0
1390 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
1391 return 1;
1392
1393 return 0;
1394 }
1395
1396 /* Generate corefile notes for SPU contexts. */
1397
1398 static char *
1399 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1400 {
1401 static const char *spu_files[] =
1402 {
1403 "object-id",
1404 "mem",
1405 "regs",
1406 "fpcr",
1407 "lslr",
1408 "decr",
1409 "decr_status",
1410 "signal1",
1411 "signal1_type",
1412 "signal2",
1413 "signal2_type",
1414 "event_mask",
1415 "event_status",
1416 "mbox_info",
1417 "ibox_info",
1418 "wbox_info",
1419 "dma_info",
1420 "proxydma_info",
1421 };
1422
1423 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1424 gdb_byte *spu_ids;
1425 LONGEST i, j, size;
1426
1427 /* Determine list of SPU ids. */
1428 size = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1429 NULL, &spu_ids);
1430
1431 /* Generate corefile notes for each SPU file. */
1432 for (i = 0; i < size; i += 4)
1433 {
1434 int fd = extract_unsigned_integer (spu_ids + i, 4, byte_order);
1435
1436 for (j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
1437 {
1438 char annex[32], note_name[32];
1439 gdb_byte *spu_data;
1440 LONGEST spu_len;
1441
1442 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
1443 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1444 annex, &spu_data);
1445 if (spu_len > 0)
1446 {
1447 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1448 note_data = elfcore_write_note (obfd, note_data, note_size,
1449 note_name, NT_SPU,
1450 spu_data, spu_len);
1451 xfree (spu_data);
1452
1453 if (!note_data)
1454 {
1455 xfree (spu_ids);
1456 return NULL;
1457 }
1458 }
1459 }
1460 }
1461
1462 if (size > 0)
1463 xfree (spu_ids);
1464
1465 return note_data;
1466 }
1467
1468 /* This is used to pass information from
1469 linux_make_mappings_corefile_notes through
1470 linux_find_memory_regions_full. */
1471
1472 struct linux_make_mappings_data
1473 {
1474 /* Number of files mapped. */
1475 ULONGEST file_count;
1476
1477 /* The obstack for the main part of the data. */
1478 struct obstack *data_obstack;
1479
1480 /* The filename obstack. */
1481 struct obstack *filename_obstack;
1482
1483 /* The architecture's "long" type. */
1484 struct type *long_type;
1485 };
1486
1487 static linux_find_memory_region_ftype linux_make_mappings_callback;
1488
1489 /* A callback for linux_find_memory_regions_full that updates the
1490 mappings data for linux_make_mappings_corefile_notes. */
1491
1492 static int
1493 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1494 ULONGEST offset, ULONGEST inode,
1495 int read, int write, int exec, int modified,
1496 const char *filename, void *data)
1497 {
1498 struct linux_make_mappings_data *map_data
1499 = (struct linux_make_mappings_data *) data;
1500 gdb_byte buf[sizeof (ULONGEST)];
1501
1502 if (*filename == '\0' || inode == 0)
1503 return 0;
1504
1505 ++map_data->file_count;
1506
1507 pack_long (buf, map_data->long_type, vaddr);
1508 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1509 pack_long (buf, map_data->long_type, vaddr + size);
1510 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1511 pack_long (buf, map_data->long_type, offset);
1512 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1513
1514 obstack_grow_str0 (map_data->filename_obstack, filename);
1515
1516 return 0;
1517 }
1518
1519 /* Write the file mapping data to the core file, if possible. OBFD is
1520 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1521 is a pointer to the note size. Returns the new NOTE_DATA and
1522 updates NOTE_SIZE. */
1523
1524 static char *
1525 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1526 char *note_data, int *note_size)
1527 {
1528 struct cleanup *cleanup;
1529 struct linux_make_mappings_data mapping_data;
1530 struct type *long_type
1531 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1532 gdb_byte buf[sizeof (ULONGEST)];
1533
1534 auto_obstack data_obstack, filename_obstack;
1535
1536 mapping_data.file_count = 0;
1537 mapping_data.data_obstack = &data_obstack;
1538 mapping_data.filename_obstack = &filename_obstack;
1539 mapping_data.long_type = long_type;
1540
1541 /* Reserve space for the count. */
1542 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1543 /* We always write the page size as 1 since we have no good way to
1544 determine the correct value. */
1545 pack_long (buf, long_type, 1);
1546 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1547
1548 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1549 &mapping_data);
1550
1551 if (mapping_data.file_count != 0)
1552 {
1553 /* Write the count to the obstack. */
1554 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1555 long_type, mapping_data.file_count);
1556
1557 /* Copy the filenames to the data obstack. */
1558 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1559 obstack_object_size (&filename_obstack));
1560
1561 note_data = elfcore_write_note (obfd, note_data, note_size,
1562 "CORE", NT_FILE,
1563 obstack_base (&data_obstack),
1564 obstack_object_size (&data_obstack));
1565 }
1566
1567 return note_data;
1568 }
1569
1570 /* Structure for passing information from
1571 linux_collect_thread_registers via an iterator to
1572 linux_collect_regset_section_cb. */
1573
1574 struct linux_collect_regset_section_cb_data
1575 {
1576 struct gdbarch *gdbarch;
1577 const struct regcache *regcache;
1578 bfd *obfd;
1579 char *note_data;
1580 int *note_size;
1581 unsigned long lwp;
1582 enum gdb_signal stop_signal;
1583 int abort_iteration;
1584 };
1585
1586 /* Callback for iterate_over_regset_sections that records a single
1587 regset in the corefile note section. */
1588
1589 static void
1590 linux_collect_regset_section_cb (const char *sect_name, int size,
1591 const struct regset *regset,
1592 const char *human_name, void *cb_data)
1593 {
1594 char *buf;
1595 struct linux_collect_regset_section_cb_data *data
1596 = (struct linux_collect_regset_section_cb_data *) cb_data;
1597
1598 if (data->abort_iteration)
1599 return;
1600
1601 gdb_assert (regset && regset->collect_regset);
1602
1603 buf = (char *) xmalloc (size);
1604 regset->collect_regset (regset, data->regcache, -1, buf, size);
1605
1606 /* PRSTATUS still needs to be treated specially. */
1607 if (strcmp (sect_name, ".reg") == 0)
1608 data->note_data = (char *) elfcore_write_prstatus
1609 (data->obfd, data->note_data, data->note_size, data->lwp,
1610 gdb_signal_to_host (data->stop_signal), buf);
1611 else
1612 data->note_data = (char *) elfcore_write_register_note
1613 (data->obfd, data->note_data, data->note_size,
1614 sect_name, buf, size);
1615 xfree (buf);
1616
1617 if (data->note_data == NULL)
1618 data->abort_iteration = 1;
1619 }
1620
1621 /* Records the thread's register state for the corefile note
1622 section. */
1623
1624 static char *
1625 linux_collect_thread_registers (const struct regcache *regcache,
1626 ptid_t ptid, bfd *obfd,
1627 char *note_data, int *note_size,
1628 enum gdb_signal stop_signal)
1629 {
1630 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1631 struct linux_collect_regset_section_cb_data data;
1632
1633 data.gdbarch = gdbarch;
1634 data.regcache = regcache;
1635 data.obfd = obfd;
1636 data.note_data = note_data;
1637 data.note_size = note_size;
1638 data.stop_signal = stop_signal;
1639 data.abort_iteration = 0;
1640
1641 /* For remote targets the LWP may not be available, so use the TID. */
1642 data.lwp = ptid_get_lwp (ptid);
1643 if (!data.lwp)
1644 data.lwp = ptid_get_tid (ptid);
1645
1646 gdbarch_iterate_over_regset_sections (gdbarch,
1647 linux_collect_regset_section_cb,
1648 &data, regcache);
1649 return data.note_data;
1650 }
1651
1652 /* Fetch the siginfo data for the specified thread, if it exists. If
1653 there is no data, or we could not read it, return NULL. Otherwise,
1654 return a newly malloc'd buffer holding the data and fill in *SIZE
1655 with the size of the data. The caller is responsible for freeing
1656 the data. */
1657
1658 static gdb_byte *
1659 linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch,
1660 LONGEST *size)
1661 {
1662 struct type *siginfo_type;
1663 gdb_byte *buf;
1664 LONGEST bytes_read;
1665 struct cleanup *cleanups;
1666
1667 if (!gdbarch_get_siginfo_type_p (gdbarch))
1668 return NULL;
1669
1670 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1671 inferior_ptid = thread->ptid;
1672
1673 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1674
1675 buf = (gdb_byte *) xmalloc (TYPE_LENGTH (siginfo_type));
1676 cleanups = make_cleanup (xfree, buf);
1677
1678 bytes_read = target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
1679 buf, 0, TYPE_LENGTH (siginfo_type));
1680 if (bytes_read == TYPE_LENGTH (siginfo_type))
1681 {
1682 discard_cleanups (cleanups);
1683 *size = bytes_read;
1684 }
1685 else
1686 {
1687 do_cleanups (cleanups);
1688 buf = NULL;
1689 }
1690
1691 return buf;
1692 }
1693
1694 struct linux_corefile_thread_data
1695 {
1696 struct gdbarch *gdbarch;
1697 bfd *obfd;
1698 char *note_data;
1699 int *note_size;
1700 enum gdb_signal stop_signal;
1701 };
1702
1703 /* Records the thread's register state for the corefile note
1704 section. */
1705
1706 static void
1707 linux_corefile_thread (struct thread_info *info,
1708 struct linux_corefile_thread_data *args)
1709 {
1710 struct cleanup *old_chain;
1711 struct regcache *regcache;
1712 gdb_byte *siginfo_data;
1713 LONGEST siginfo_size = 0;
1714
1715 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1716
1717 target_fetch_registers (regcache, -1);
1718 siginfo_data = linux_get_siginfo_data (info, args->gdbarch, &siginfo_size);
1719
1720 old_chain = make_cleanup (xfree, siginfo_data);
1721
1722 args->note_data = linux_collect_thread_registers
1723 (regcache, info->ptid, args->obfd, args->note_data,
1724 args->note_size, args->stop_signal);
1725
1726 /* Don't return anything if we got no register information above,
1727 such a core file is useless. */
1728 if (args->note_data != NULL)
1729 if (siginfo_data != NULL)
1730 args->note_data = elfcore_write_note (args->obfd,
1731 args->note_data,
1732 args->note_size,
1733 "CORE", NT_SIGINFO,
1734 siginfo_data, siginfo_size);
1735
1736 do_cleanups (old_chain);
1737 }
1738
1739 /* Fill the PRPSINFO structure with information about the process being
1740 debugged. Returns 1 in case of success, 0 for failures. Please note that
1741 even if the structure cannot be entirely filled (e.g., GDB was unable to
1742 gather information about the process UID/GID), this function will still
1743 return 1 since some information was already recorded. It will only return
1744 0 iff nothing can be gathered. */
1745
1746 static int
1747 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1748 {
1749 /* The filename which we will use to obtain some info about the process.
1750 We will basically use this to store the `/proc/PID/FILENAME' file. */
1751 char filename[100];
1752 /* The full name of the program which generated the corefile. */
1753 char *fname;
1754 /* The basename of the executable. */
1755 const char *basename;
1756 /* The arguments of the program. */
1757 char *psargs;
1758 char *infargs;
1759 /* The contents of `/proc/PID/stat' and `/proc/PID/status' files. */
1760 char *proc_stat, *proc_status;
1761 /* Temporary buffer. */
1762 char *tmpstr;
1763 /* The valid states of a process, according to the Linux kernel. */
1764 const char valid_states[] = "RSDTZW";
1765 /* The program state. */
1766 const char *prog_state;
1767 /* The state of the process. */
1768 char pr_sname;
1769 /* The PID of the program which generated the corefile. */
1770 pid_t pid;
1771 /* Process flags. */
1772 unsigned int pr_flag;
1773 /* Process nice value. */
1774 long pr_nice;
1775 /* The number of fields read by `sscanf'. */
1776 int n_fields = 0;
1777 /* Cleanups. */
1778 struct cleanup *c;
1779
1780 gdb_assert (p != NULL);
1781
1782 /* Obtaining PID and filename. */
1783 pid = ptid_get_pid (inferior_ptid);
1784 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1785 fname = target_fileio_read_stralloc (NULL, filename);
1786
1787 if (fname == NULL || *fname == '\0')
1788 {
1789 /* No program name was read, so we won't be able to retrieve more
1790 information about the process. */
1791 xfree (fname);
1792 return 0;
1793 }
1794
1795 c = make_cleanup (xfree, fname);
1796 memset (p, 0, sizeof (*p));
1797
1798 /* Defining the PID. */
1799 p->pr_pid = pid;
1800
1801 /* Copying the program name. Only the basename matters. */
1802 basename = lbasename (fname);
1803 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1804 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1805
1806 infargs = get_inferior_args ();
1807
1808 psargs = xstrdup (fname);
1809 if (infargs != NULL)
1810 psargs = reconcat (psargs, psargs, " ", infargs, (char *) NULL);
1811
1812 make_cleanup (xfree, psargs);
1813
1814 strncpy (p->pr_psargs, psargs, sizeof (p->pr_psargs));
1815 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1816
1817 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1818 proc_stat = target_fileio_read_stralloc (NULL, filename);
1819 make_cleanup (xfree, proc_stat);
1820
1821 if (proc_stat == NULL || *proc_stat == '\0')
1822 {
1823 /* Despite being unable to read more information about the
1824 process, we return 1 here because at least we have its
1825 command line, PID and arguments. */
1826 do_cleanups (c);
1827 return 1;
1828 }
1829
1830 /* Ok, we have the stats. It's time to do a little parsing of the
1831 contents of the buffer, so that we end up reading what we want.
1832
1833 The following parsing mechanism is strongly based on the
1834 information generated by the `fs/proc/array.c' file, present in
1835 the Linux kernel tree. More details about how the information is
1836 displayed can be obtained by seeing the manpage of proc(5),
1837 specifically under the entry of `/proc/[pid]/stat'. */
1838
1839 /* Getting rid of the PID, since we already have it. */
1840 while (isdigit (*proc_stat))
1841 ++proc_stat;
1842
1843 proc_stat = skip_spaces (proc_stat);
1844
1845 /* ps command also relies on no trailing fields ever contain ')'. */
1846 proc_stat = strrchr (proc_stat, ')');
1847 if (proc_stat == NULL)
1848 {
1849 do_cleanups (c);
1850 return 1;
1851 }
1852 proc_stat++;
1853
1854 proc_stat = skip_spaces (proc_stat);
1855
1856 n_fields = sscanf (proc_stat,
1857 "%c" /* Process state. */
1858 "%d%d%d" /* Parent PID, group ID, session ID. */
1859 "%*d%*d" /* tty_nr, tpgid (not used). */
1860 "%u" /* Flags. */
1861 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1862 cmajflt (not used). */
1863 "%*s%*s%*s%*s" /* utime, stime, cutime,
1864 cstime (not used). */
1865 "%*s" /* Priority (not used). */
1866 "%ld", /* Nice. */
1867 &pr_sname,
1868 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1869 &pr_flag,
1870 &pr_nice);
1871
1872 if (n_fields != 6)
1873 {
1874 /* Again, we couldn't read the complementary information about
1875 the process state. However, we already have minimal
1876 information, so we just return 1 here. */
1877 do_cleanups (c);
1878 return 1;
1879 }
1880
1881 /* Filling the structure fields. */
1882 prog_state = strchr (valid_states, pr_sname);
1883 if (prog_state != NULL)
1884 p->pr_state = prog_state - valid_states;
1885 else
1886 {
1887 /* Zero means "Running". */
1888 p->pr_state = 0;
1889 }
1890
1891 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1892 p->pr_zomb = p->pr_sname == 'Z';
1893 p->pr_nice = pr_nice;
1894 p->pr_flag = pr_flag;
1895
1896 /* Finally, obtaining the UID and GID. For that, we read and parse the
1897 contents of the `/proc/PID/status' file. */
1898 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1899 proc_status = target_fileio_read_stralloc (NULL, filename);
1900 make_cleanup (xfree, proc_status);
1901
1902 if (proc_status == NULL || *proc_status == '\0')
1903 {
1904 /* Returning 1 since we already have a bunch of information. */
1905 do_cleanups (c);
1906 return 1;
1907 }
1908
1909 /* Extracting the UID. */
1910 tmpstr = strstr (proc_status, "Uid:");
1911 if (tmpstr != NULL)
1912 {
1913 /* Advancing the pointer to the beginning of the UID. */
1914 tmpstr += sizeof ("Uid:");
1915 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1916 ++tmpstr;
1917
1918 if (isdigit (*tmpstr))
1919 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1920 }
1921
1922 /* Extracting the GID. */
1923 tmpstr = strstr (proc_status, "Gid:");
1924 if (tmpstr != NULL)
1925 {
1926 /* Advancing the pointer to the beginning of the GID. */
1927 tmpstr += sizeof ("Gid:");
1928 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1929 ++tmpstr;
1930
1931 if (isdigit (*tmpstr))
1932 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1933 }
1934
1935 do_cleanups (c);
1936
1937 return 1;
1938 }
1939
1940 /* Build the note section for a corefile, and return it in a malloc
1941 buffer. */
1942
1943 static char *
1944 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1945 {
1946 struct linux_corefile_thread_data thread_args;
1947 struct elf_internal_linux_prpsinfo prpsinfo;
1948 char *note_data = NULL;
1949 gdb_byte *auxv;
1950 int auxv_len;
1951 struct thread_info *curr_thr, *signalled_thr, *thr;
1952
1953 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1954 return NULL;
1955
1956 if (linux_fill_prpsinfo (&prpsinfo))
1957 {
1958 if (gdbarch_elfcore_write_linux_prpsinfo_p (gdbarch))
1959 {
1960 note_data = gdbarch_elfcore_write_linux_prpsinfo (gdbarch, obfd,
1961 note_data, note_size,
1962 &prpsinfo);
1963 }
1964 else
1965 {
1966 if (gdbarch_ptr_bit (gdbarch) == 64)
1967 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1968 note_data, note_size,
1969 &prpsinfo);
1970 else
1971 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1972 note_data, note_size,
1973 &prpsinfo);
1974 }
1975 }
1976
1977 /* Thread register information. */
1978 TRY
1979 {
1980 update_thread_list ();
1981 }
1982 CATCH (e, RETURN_MASK_ERROR)
1983 {
1984 exception_print (gdb_stderr, e);
1985 }
1986 END_CATCH
1987
1988 /* Like the kernel, prefer dumping the signalled thread first.
1989 "First thread" is what tools use to infer the signalled thread.
1990 In case there's more than one signalled thread, prefer the
1991 current thread, if it is signalled. */
1992 curr_thr = inferior_thread ();
1993 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1994 signalled_thr = curr_thr;
1995 else
1996 {
1997 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1998 if (signalled_thr == NULL)
1999 signalled_thr = curr_thr;
2000 }
2001
2002 thread_args.gdbarch = gdbarch;
2003 thread_args.obfd = obfd;
2004 thread_args.note_data = note_data;
2005 thread_args.note_size = note_size;
2006 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
2007
2008 linux_corefile_thread (signalled_thr, &thread_args);
2009 ALL_NON_EXITED_THREADS (thr)
2010 {
2011 if (thr == signalled_thr)
2012 continue;
2013 if (ptid_get_pid (thr->ptid) != ptid_get_pid (inferior_ptid))
2014 continue;
2015
2016 linux_corefile_thread (thr, &thread_args);
2017 }
2018
2019 note_data = thread_args.note_data;
2020 if (!note_data)
2021 return NULL;
2022
2023 /* Auxillary vector. */
2024 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
2025 NULL, &auxv);
2026 if (auxv_len > 0)
2027 {
2028 note_data = elfcore_write_note (obfd, note_data, note_size,
2029 "CORE", NT_AUXV, auxv, auxv_len);
2030 xfree (auxv);
2031
2032 if (!note_data)
2033 return NULL;
2034 }
2035
2036 /* SPU information. */
2037 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
2038 if (!note_data)
2039 return NULL;
2040
2041 /* File mappings. */
2042 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
2043 note_data, note_size);
2044
2045 return note_data;
2046 }
2047
2048 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2049 gdbarch.h. This function is not static because it is exported to
2050 other -tdep files. */
2051
2052 enum gdb_signal
2053 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2054 {
2055 switch (signal)
2056 {
2057 case 0:
2058 return GDB_SIGNAL_0;
2059
2060 case LINUX_SIGHUP:
2061 return GDB_SIGNAL_HUP;
2062
2063 case LINUX_SIGINT:
2064 return GDB_SIGNAL_INT;
2065
2066 case LINUX_SIGQUIT:
2067 return GDB_SIGNAL_QUIT;
2068
2069 case LINUX_SIGILL:
2070 return GDB_SIGNAL_ILL;
2071
2072 case LINUX_SIGTRAP:
2073 return GDB_SIGNAL_TRAP;
2074
2075 case LINUX_SIGABRT:
2076 return GDB_SIGNAL_ABRT;
2077
2078 case LINUX_SIGBUS:
2079 return GDB_SIGNAL_BUS;
2080
2081 case LINUX_SIGFPE:
2082 return GDB_SIGNAL_FPE;
2083
2084 case LINUX_SIGKILL:
2085 return GDB_SIGNAL_KILL;
2086
2087 case LINUX_SIGUSR1:
2088 return GDB_SIGNAL_USR1;
2089
2090 case LINUX_SIGSEGV:
2091 return GDB_SIGNAL_SEGV;
2092
2093 case LINUX_SIGUSR2:
2094 return GDB_SIGNAL_USR2;
2095
2096 case LINUX_SIGPIPE:
2097 return GDB_SIGNAL_PIPE;
2098
2099 case LINUX_SIGALRM:
2100 return GDB_SIGNAL_ALRM;
2101
2102 case LINUX_SIGTERM:
2103 return GDB_SIGNAL_TERM;
2104
2105 case LINUX_SIGCHLD:
2106 return GDB_SIGNAL_CHLD;
2107
2108 case LINUX_SIGCONT:
2109 return GDB_SIGNAL_CONT;
2110
2111 case LINUX_SIGSTOP:
2112 return GDB_SIGNAL_STOP;
2113
2114 case LINUX_SIGTSTP:
2115 return GDB_SIGNAL_TSTP;
2116
2117 case LINUX_SIGTTIN:
2118 return GDB_SIGNAL_TTIN;
2119
2120 case LINUX_SIGTTOU:
2121 return GDB_SIGNAL_TTOU;
2122
2123 case LINUX_SIGURG:
2124 return GDB_SIGNAL_URG;
2125
2126 case LINUX_SIGXCPU:
2127 return GDB_SIGNAL_XCPU;
2128
2129 case LINUX_SIGXFSZ:
2130 return GDB_SIGNAL_XFSZ;
2131
2132 case LINUX_SIGVTALRM:
2133 return GDB_SIGNAL_VTALRM;
2134
2135 case LINUX_SIGPROF:
2136 return GDB_SIGNAL_PROF;
2137
2138 case LINUX_SIGWINCH:
2139 return GDB_SIGNAL_WINCH;
2140
2141 /* No way to differentiate between SIGIO and SIGPOLL.
2142 Therefore, we just handle the first one. */
2143 case LINUX_SIGIO:
2144 return GDB_SIGNAL_IO;
2145
2146 case LINUX_SIGPWR:
2147 return GDB_SIGNAL_PWR;
2148
2149 case LINUX_SIGSYS:
2150 return GDB_SIGNAL_SYS;
2151
2152 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2153 therefore we have to handle them here. */
2154 case LINUX_SIGRTMIN:
2155 return GDB_SIGNAL_REALTIME_32;
2156
2157 case LINUX_SIGRTMAX:
2158 return GDB_SIGNAL_REALTIME_64;
2159 }
2160
2161 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2162 {
2163 int offset = signal - LINUX_SIGRTMIN + 1;
2164
2165 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2166 }
2167
2168 return GDB_SIGNAL_UNKNOWN;
2169 }
2170
2171 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2172 gdbarch.h. This function is not static because it is exported to
2173 other -tdep files. */
2174
2175 int
2176 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2177 enum gdb_signal signal)
2178 {
2179 switch (signal)
2180 {
2181 case GDB_SIGNAL_0:
2182 return 0;
2183
2184 case GDB_SIGNAL_HUP:
2185 return LINUX_SIGHUP;
2186
2187 case GDB_SIGNAL_INT:
2188 return LINUX_SIGINT;
2189
2190 case GDB_SIGNAL_QUIT:
2191 return LINUX_SIGQUIT;
2192
2193 case GDB_SIGNAL_ILL:
2194 return LINUX_SIGILL;
2195
2196 case GDB_SIGNAL_TRAP:
2197 return LINUX_SIGTRAP;
2198
2199 case GDB_SIGNAL_ABRT:
2200 return LINUX_SIGABRT;
2201
2202 case GDB_SIGNAL_FPE:
2203 return LINUX_SIGFPE;
2204
2205 case GDB_SIGNAL_KILL:
2206 return LINUX_SIGKILL;
2207
2208 case GDB_SIGNAL_BUS:
2209 return LINUX_SIGBUS;
2210
2211 case GDB_SIGNAL_SEGV:
2212 return LINUX_SIGSEGV;
2213
2214 case GDB_SIGNAL_SYS:
2215 return LINUX_SIGSYS;
2216
2217 case GDB_SIGNAL_PIPE:
2218 return LINUX_SIGPIPE;
2219
2220 case GDB_SIGNAL_ALRM:
2221 return LINUX_SIGALRM;
2222
2223 case GDB_SIGNAL_TERM:
2224 return LINUX_SIGTERM;
2225
2226 case GDB_SIGNAL_URG:
2227 return LINUX_SIGURG;
2228
2229 case GDB_SIGNAL_STOP:
2230 return LINUX_SIGSTOP;
2231
2232 case GDB_SIGNAL_TSTP:
2233 return LINUX_SIGTSTP;
2234
2235 case GDB_SIGNAL_CONT:
2236 return LINUX_SIGCONT;
2237
2238 case GDB_SIGNAL_CHLD:
2239 return LINUX_SIGCHLD;
2240
2241 case GDB_SIGNAL_TTIN:
2242 return LINUX_SIGTTIN;
2243
2244 case GDB_SIGNAL_TTOU:
2245 return LINUX_SIGTTOU;
2246
2247 case GDB_SIGNAL_IO:
2248 return LINUX_SIGIO;
2249
2250 case GDB_SIGNAL_XCPU:
2251 return LINUX_SIGXCPU;
2252
2253 case GDB_SIGNAL_XFSZ:
2254 return LINUX_SIGXFSZ;
2255
2256 case GDB_SIGNAL_VTALRM:
2257 return LINUX_SIGVTALRM;
2258
2259 case GDB_SIGNAL_PROF:
2260 return LINUX_SIGPROF;
2261
2262 case GDB_SIGNAL_WINCH:
2263 return LINUX_SIGWINCH;
2264
2265 case GDB_SIGNAL_USR1:
2266 return LINUX_SIGUSR1;
2267
2268 case GDB_SIGNAL_USR2:
2269 return LINUX_SIGUSR2;
2270
2271 case GDB_SIGNAL_PWR:
2272 return LINUX_SIGPWR;
2273
2274 case GDB_SIGNAL_POLL:
2275 return LINUX_SIGPOLL;
2276
2277 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2278 therefore we have to handle it here. */
2279 case GDB_SIGNAL_REALTIME_32:
2280 return LINUX_SIGRTMIN;
2281
2282 /* Same comment applies to _64. */
2283 case GDB_SIGNAL_REALTIME_64:
2284 return LINUX_SIGRTMAX;
2285 }
2286
2287 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2288 if (signal >= GDB_SIGNAL_REALTIME_33
2289 && signal <= GDB_SIGNAL_REALTIME_63)
2290 {
2291 int offset = signal - GDB_SIGNAL_REALTIME_33;
2292
2293 return LINUX_SIGRTMIN + 1 + offset;
2294 }
2295
2296 return -1;
2297 }
2298
2299 /* Helper for linux_vsyscall_range that does the real work of finding
2300 the vsyscall's address range. */
2301
2302 static int
2303 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2304 {
2305 char filename[100];
2306 long pid;
2307 char *data;
2308
2309 if (target_auxv_search (&current_target, AT_SYSINFO_EHDR, &range->start) <= 0)
2310 return 0;
2311
2312 /* It doesn't make sense to access the host's /proc when debugging a
2313 core file. Instead, look for the PT_LOAD segment that matches
2314 the vDSO. */
2315 if (!target_has_execution)
2316 {
2317 Elf_Internal_Phdr *phdrs;
2318 long phdrs_size;
2319 int num_phdrs, i;
2320
2321 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2322 if (phdrs_size == -1)
2323 return 0;
2324
2325 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
2326 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs);
2327 if (num_phdrs == -1)
2328 return 0;
2329
2330 for (i = 0; i < num_phdrs; i++)
2331 if (phdrs[i].p_type == PT_LOAD
2332 && phdrs[i].p_vaddr == range->start)
2333 {
2334 range->length = phdrs[i].p_memsz;
2335 return 1;
2336 }
2337
2338 return 0;
2339 }
2340
2341 /* We need to know the real target PID to access /proc. */
2342 if (current_inferior ()->fake_pid_p)
2343 return 0;
2344
2345 pid = current_inferior ()->pid;
2346
2347 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2348 reading /proc/PID/maps (2). The later identifies thread stacks
2349 in the output, which requires scanning every thread in the thread
2350 group to check whether a VMA is actually a thread's stack. With
2351 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2352 a few thousand threads, (1) takes a few miliseconds, while (2)
2353 takes several seconds. Also note that "smaps", what we read for
2354 determining core dump mappings, is even slower than "maps". */
2355 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
2356 data = target_fileio_read_stralloc (NULL, filename);
2357 if (data != NULL)
2358 {
2359 struct cleanup *cleanup = make_cleanup (xfree, data);
2360 char *line;
2361 char *saveptr = NULL;
2362
2363 for (line = strtok_r (data, "\n", &saveptr);
2364 line != NULL;
2365 line = strtok_r (NULL, "\n", &saveptr))
2366 {
2367 ULONGEST addr, endaddr;
2368 const char *p = line;
2369
2370 addr = strtoulst (p, &p, 16);
2371 if (addr == range->start)
2372 {
2373 if (*p == '-')
2374 p++;
2375 endaddr = strtoulst (p, &p, 16);
2376 range->length = endaddr - addr;
2377 do_cleanups (cleanup);
2378 return 1;
2379 }
2380 }
2381
2382 do_cleanups (cleanup);
2383 }
2384 else
2385 warning (_("unable to open /proc file '%s'"), filename);
2386
2387 return 0;
2388 }
2389
2390 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2391 caching, and defers the real work to linux_vsyscall_range_raw. */
2392
2393 static int
2394 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2395 {
2396 struct linux_info *info = get_linux_inferior_data ();
2397
2398 if (info->vsyscall_range_p == 0)
2399 {
2400 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2401 info->vsyscall_range_p = 1;
2402 else
2403 info->vsyscall_range_p = -1;
2404 }
2405
2406 if (info->vsyscall_range_p < 0)
2407 return 0;
2408
2409 *range = info->vsyscall_range;
2410 return 1;
2411 }
2412
2413 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2414 definitions would be dependent on compilation host. */
2415 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2416 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2417
2418 /* See gdbarch.sh 'infcall_mmap'. */
2419
2420 static CORE_ADDR
2421 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2422 {
2423 struct objfile *objf;
2424 /* Do there still exist any Linux systems without "mmap64"?
2425 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2426 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2427 struct value *addr_val;
2428 struct gdbarch *gdbarch = get_objfile_arch (objf);
2429 CORE_ADDR retval;
2430 enum
2431 {
2432 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2433 };
2434 struct value *arg[ARG_LAST];
2435
2436 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2437 0);
2438 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2439 arg[ARG_LENGTH] = value_from_ulongest
2440 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2441 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2442 | GDB_MMAP_PROT_EXEC))
2443 == 0);
2444 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2445 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2446 GDB_MMAP_MAP_PRIVATE
2447 | GDB_MMAP_MAP_ANONYMOUS);
2448 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2449 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2450 0);
2451 addr_val = call_function_by_hand (mmap_val, NULL, ARG_LAST, arg);
2452 retval = value_as_address (addr_val);
2453 if (retval == (CORE_ADDR) -1)
2454 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2455 pulongest (size));
2456 return retval;
2457 }
2458
2459 /* See gdbarch.sh 'infcall_munmap'. */
2460
2461 static void
2462 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2463 {
2464 struct objfile *objf;
2465 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2466 struct value *retval_val;
2467 struct gdbarch *gdbarch = get_objfile_arch (objf);
2468 LONGEST retval;
2469 enum
2470 {
2471 ARG_ADDR, ARG_LENGTH, ARG_LAST
2472 };
2473 struct value *arg[ARG_LAST];
2474
2475 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2476 addr);
2477 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2478 arg[ARG_LENGTH] = value_from_ulongest
2479 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2480 retval_val = call_function_by_hand (munmap_val, NULL, ARG_LAST, arg);
2481 retval = value_as_long (retval_val);
2482 if (retval != 0)
2483 warning (_("Failed inferior munmap call at %s for %s bytes, "
2484 "errno is changed."),
2485 hex_string (addr), pulongest (size));
2486 }
2487
2488 /* See linux-tdep.h. */
2489
2490 CORE_ADDR
2491 linux_displaced_step_location (struct gdbarch *gdbarch)
2492 {
2493 CORE_ADDR addr;
2494 int bp_len;
2495
2496 /* Determine entry point from target auxiliary vector. This avoids
2497 the need for symbols. Also, when debugging a stand-alone SPU
2498 executable, entry_point_address () will point to an SPU
2499 local-store address and is thus not usable as displaced stepping
2500 location. The auxiliary vector gets us the PowerPC-side entry
2501 point address instead. */
2502 if (target_auxv_search (&current_target, AT_ENTRY, &addr) <= 0)
2503 throw_error (NOT_SUPPORTED_ERROR,
2504 _("Cannot find AT_ENTRY auxiliary vector entry."));
2505
2506 /* Make certain that the address points at real code, and not a
2507 function descriptor. */
2508 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2509 &current_target);
2510
2511 /* Inferior calls also use the entry point as a breakpoint location.
2512 We don't want displaced stepping to interfere with those
2513 breakpoints, so leave space. */
2514 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2515 addr += bp_len * 2;
2516
2517 return addr;
2518 }
2519
2520 /* Display whether the gcore command is using the
2521 /proc/PID/coredump_filter file. */
2522
2523 static void
2524 show_use_coredump_filter (struct ui_file *file, int from_tty,
2525 struct cmd_list_element *c, const char *value)
2526 {
2527 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2528 " corefiles is %s.\n"), value);
2529 }
2530
2531 /* To be called from the various GDB_OSABI_LINUX handlers for the
2532 various GNU/Linux architectures and machine types. */
2533
2534 void
2535 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2536 {
2537 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2538 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2539 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2540 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
2541 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2542 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2543 set_gdbarch_has_shared_address_space (gdbarch,
2544 linux_has_shared_address_space);
2545 set_gdbarch_gdb_signal_from_target (gdbarch,
2546 linux_gdb_signal_from_target);
2547 set_gdbarch_gdb_signal_to_target (gdbarch,
2548 linux_gdb_signal_to_target);
2549 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2550 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2551 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2552 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2553 }
2554
2555 void
2556 _initialize_linux_tdep (void)
2557 {
2558 linux_gdbarch_data_handle =
2559 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2560
2561 /* Set a cache per-inferior. */
2562 linux_inferior_data
2563 = register_inferior_data_with_cleanup (NULL, linux_inferior_data_cleanup);
2564 /* Observers used to invalidate the cache when needed. */
2565 observer_attach_inferior_exit (invalidate_linux_cache_inf);
2566 observer_attach_inferior_appeared (invalidate_linux_cache_inf);
2567
2568 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2569 &use_coredump_filter, _("\
2570 Set whether gcore should consider /proc/PID/coredump_filter."),
2571 _("\
2572 Show whether gcore should consider /proc/PID/coredump_filter."),
2573 _("\
2574 Use this command to set whether gcore should consider the contents\n\
2575 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2576 about this file, refer to the manpage of core(5)."),
2577 NULL, show_use_coredump_filter,
2578 &setlist, &showlist);
2579 }