]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/lynx-nat.c
8122cf4a1f28d718e5f642454861f6c6b2281d9b
[thirdparty/binutils-gdb.git] / gdb / lynx-nat.c
1 /* Native-dependent code for LynxOS.
2 Copyright 1993, 1994 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "target.h"
24
25 #include <sys/ptrace.h>
26 #include <sys/wait.h>
27 #include <sys/fpp.h>
28
29 static unsigned long registers_addr PARAMS ((int pid));
30
31 #define X(ENTRY)(offsetof(struct econtext, ENTRY))
32
33 #ifdef I386
34 /* Mappings from tm-i386v.h */
35
36 static int regmap[] =
37 {
38 X(eax),
39 X(ecx),
40 X(edx),
41 X(ebx),
42 X(esp), /* sp */
43 X(ebp), /* fp */
44 X(esi),
45 X(edi),
46 X(eip), /* pc */
47 X(flags), /* ps */
48 X(cs),
49 X(ss),
50 X(ds),
51 X(es),
52 X(ecode), /* Lynx doesn't give us either fs or gs, so */
53 X(fault), /* we just substitute these two in the hopes
54 that they are useful. */
55 };
56 #endif /* I386 */
57
58 #ifdef M68K
59 /* Mappings from tm-m68k.h */
60
61 static int regmap[] =
62 {
63 X(regs[0]), /* d0 */
64 X(regs[1]), /* d1 */
65 X(regs[2]), /* d2 */
66 X(regs[3]), /* d3 */
67 X(regs[4]), /* d4 */
68 X(regs[5]), /* d5 */
69 X(regs[6]), /* d6 */
70 X(regs[7]), /* d7 */
71 X(regs[8]), /* a0 */
72 X(regs[9]), /* a1 */
73 X(regs[10]), /* a2 */
74 X(regs[11]), /* a3 */
75 X(regs[12]), /* a4 */
76 X(regs[13]), /* a5 */
77 X(regs[14]), /* fp */
78 offsetof (st_t, usp) - offsetof (st_t, ec), /* sp */
79 X(status), /* ps */
80 X(pc),
81
82 X(fregs[0*3]), /* fp0 */
83 X(fregs[1*3]), /* fp1 */
84 X(fregs[2*3]), /* fp2 */
85 X(fregs[3*3]), /* fp3 */
86 X(fregs[4*3]), /* fp4 */
87 X(fregs[5*3]), /* fp5 */
88 X(fregs[6*3]), /* fp6 */
89 X(fregs[7*3]), /* fp7 */
90
91 X(fcregs[0]), /* fpcontrol */
92 X(fcregs[1]), /* fpstatus */
93 X(fcregs[2]), /* fpiaddr */
94 X(ssw), /* fpcode */
95 X(fault), /* fpflags */
96 };
97 #endif /* M68K */
98
99 #ifdef SPARC
100 /* Mappings from tm-sparc.h */
101
102 #define FX(ENTRY)(offsetof(struct fcontext, ENTRY))
103
104 static int regmap[] =
105 {
106 -1, /* g0 */
107 X(g1),
108 X(g2),
109 X(g3),
110 X(g4),
111 -1, /* g5->g7 aren't saved by Lynx */
112 -1,
113 -1,
114
115 X(o[0]),
116 X(o[1]),
117 X(o[2]),
118 X(o[3]),
119 X(o[4]),
120 X(o[5]),
121 X(o[6]), /* sp */
122 X(o[7]), /* ra */
123
124 -1,-1,-1,-1,-1,-1,-1,-1, /* l0 -> l7 */
125
126 -1,-1,-1,-1,-1,-1,-1,-1, /* i0 -> i7 */
127
128 FX(f.fregs[0]), /* f0 */
129 FX(f.fregs[1]),
130 FX(f.fregs[2]),
131 FX(f.fregs[3]),
132 FX(f.fregs[4]),
133 FX(f.fregs[5]),
134 FX(f.fregs[6]),
135 FX(f.fregs[7]),
136 FX(f.fregs[8]),
137 FX(f.fregs[9]),
138 FX(f.fregs[10]),
139 FX(f.fregs[11]),
140 FX(f.fregs[12]),
141 FX(f.fregs[13]),
142 FX(f.fregs[14]),
143 FX(f.fregs[15]),
144 FX(f.fregs[16]),
145 FX(f.fregs[17]),
146 FX(f.fregs[18]),
147 FX(f.fregs[19]),
148 FX(f.fregs[20]),
149 FX(f.fregs[21]),
150 FX(f.fregs[22]),
151 FX(f.fregs[23]),
152 FX(f.fregs[24]),
153 FX(f.fregs[25]),
154 FX(f.fregs[26]),
155 FX(f.fregs[27]),
156 FX(f.fregs[28]),
157 FX(f.fregs[29]),
158 FX(f.fregs[30]),
159 FX(f.fregs[31]),
160
161 X(y),
162 X(psr),
163 X(wim),
164 X(tbr),
165 X(pc),
166 X(npc),
167 FX(fsr), /* fpsr */
168 -1, /* cpsr */
169 };
170 #endif /* SPARC */
171
172 #ifdef rs6000
173
174 static int regmap[] =
175 {
176 X(iregs[0]), /* r0 */
177 X(iregs[1]),
178 X(iregs[2]),
179 X(iregs[3]),
180 X(iregs[4]),
181 X(iregs[5]),
182 X(iregs[6]),
183 X(iregs[7]),
184 X(iregs[8]),
185 X(iregs[9]),
186 X(iregs[10]),
187 X(iregs[11]),
188 X(iregs[12]),
189 X(iregs[13]),
190 X(iregs[14]),
191 X(iregs[15]),
192 X(iregs[16]),
193 X(iregs[17]),
194 X(iregs[18]),
195 X(iregs[19]),
196 X(iregs[20]),
197 X(iregs[21]),
198 X(iregs[22]),
199 X(iregs[23]),
200 X(iregs[24]),
201 X(iregs[25]),
202 X(iregs[26]),
203 X(iregs[27]),
204 X(iregs[28]),
205 X(iregs[29]),
206 X(iregs[30]),
207 X(iregs[31]),
208
209 X(fregs[0]), /* f0 */
210 X(fregs[1]),
211 X(fregs[2]),
212 X(fregs[3]),
213 X(fregs[4]),
214 X(fregs[5]),
215 X(fregs[6]),
216 X(fregs[7]),
217 X(fregs[8]),
218 X(fregs[9]),
219 X(fregs[10]),
220 X(fregs[11]),
221 X(fregs[12]),
222 X(fregs[13]),
223 X(fregs[14]),
224 X(fregs[15]),
225 X(fregs[16]),
226 X(fregs[17]),
227 X(fregs[18]),
228 X(fregs[19]),
229 X(fregs[20]),
230 X(fregs[21]),
231 X(fregs[22]),
232 X(fregs[23]),
233 X(fregs[24]),
234 X(fregs[25]),
235 X(fregs[26]),
236 X(fregs[27]),
237 X(fregs[28]),
238 X(fregs[29]),
239 X(fregs[30]),
240 X(fregs[31]),
241
242 X(srr0), /* IAR (PC) */
243 X(srr1), /* MSR (PS) */
244 X(cr), /* CR */
245 X(lr), /* LR */
246 X(ctr), /* CTR */
247 X(xer), /* XER */
248 X(mq) /* MQ */
249 };
250
251 #endif /* rs6000 */
252
253 #ifdef SPARC
254
255 /* This routine handles some oddball cases for Sparc registers and LynxOS.
256 In partucular, it causes refs to G0, g5->7, and all fp regs to return zero.
257 It also handles knows where to find the I & L regs on the stack. */
258
259 void
260 fetch_inferior_registers (regno)
261 int regno;
262 {
263 int whatregs = 0;
264
265 #define WHATREGS_FLOAT 1
266 #define WHATREGS_GEN 2
267 #define WHATREGS_STACK 4
268
269 if (regno == -1)
270 whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
271 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
272 whatregs = WHATREGS_STACK;
273 else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
274 whatregs = WHATREGS_FLOAT;
275 else
276 whatregs = WHATREGS_GEN;
277
278 if (whatregs & WHATREGS_GEN)
279 {
280 struct econtext ec; /* general regs */
281 char buf[MAX_REGISTER_RAW_SIZE];
282 int retval;
283 int i;
284
285 errno = 0;
286 retval = ptrace (PTRACE_GETREGS, inferior_pid, (PTRACE_ARG3_TYPE) &ec,
287 0);
288 if (errno)
289 perror_with_name ("ptrace(PTRACE_GETREGS)");
290
291 memset (buf, 0, REGISTER_RAW_SIZE (G0_REGNUM));
292 supply_register (G0_REGNUM, buf);
293 supply_register (TBR_REGNUM, (char *)&ec.tbr);
294
295 memcpy (&registers[REGISTER_BYTE (G1_REGNUM)], &ec.g1,
296 4 * REGISTER_RAW_SIZE (G1_REGNUM));
297 for (i = G1_REGNUM; i <= G1_REGNUM + 3; i++)
298 register_valid[i] = 1;
299
300 supply_register (PS_REGNUM, (char *)&ec.psr);
301 supply_register (Y_REGNUM, (char *)&ec.y);
302 supply_register (PC_REGNUM, (char *)&ec.pc);
303 supply_register (NPC_REGNUM, (char *)&ec.npc);
304 supply_register (WIM_REGNUM, (char *)&ec.wim);
305
306 memcpy (&registers[REGISTER_BYTE (O0_REGNUM)], ec.o,
307 8 * REGISTER_RAW_SIZE (O0_REGNUM));
308 for (i = O0_REGNUM; i <= O0_REGNUM + 7; i++)
309 register_valid[i] = 1;
310 }
311
312 if (whatregs & WHATREGS_STACK)
313 {
314 CORE_ADDR sp;
315 int i;
316
317 sp = read_register (SP_REGNUM);
318
319 target_xfer_memory (sp + FRAME_SAVED_I0,
320 &registers[REGISTER_BYTE(I0_REGNUM)],
321 8 * REGISTER_RAW_SIZE (I0_REGNUM), 0);
322 for (i = I0_REGNUM; i <= I7_REGNUM; i++)
323 register_valid[i] = 1;
324
325 target_xfer_memory (sp + FRAME_SAVED_L0,
326 &registers[REGISTER_BYTE(L0_REGNUM)],
327 8 * REGISTER_RAW_SIZE (L0_REGNUM), 0);
328 for (i = L0_REGNUM; i <= L0_REGNUM + 7; i++)
329 register_valid[i] = 1;
330 }
331
332 if (whatregs & WHATREGS_FLOAT)
333 {
334 struct fcontext fc; /* fp regs */
335 int retval;
336 int i;
337
338 errno = 0;
339 retval = ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) &fc,
340 0);
341 if (errno)
342 perror_with_name ("ptrace(PTRACE_GETFPREGS)");
343
344 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], fc.f.fregs,
345 32 * REGISTER_RAW_SIZE (FP0_REGNUM));
346 for (i = FP0_REGNUM; i <= FP0_REGNUM + 31; i++)
347 register_valid[i] = 1;
348
349 supply_register (FPS_REGNUM, (char *)&fc.fsr);
350 }
351 }
352
353 /* This routine handles storing of the I & L regs for the Sparc. The trick
354 here is that they actually live on the stack. The really tricky part is
355 that when changing the stack pointer, the I & L regs must be written to
356 where the new SP points, otherwise the regs will be incorrect when the
357 process is started up again. We assume that the I & L regs are valid at
358 this point. */
359
360 void
361 store_inferior_registers (regno)
362 int regno;
363 {
364 int whatregs = 0;
365
366 if (regno == -1)
367 whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
368 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
369 whatregs = WHATREGS_STACK;
370 else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
371 whatregs = WHATREGS_FLOAT;
372 else if (regno == SP_REGNUM)
373 whatregs = WHATREGS_STACK | WHATREGS_GEN;
374 else
375 whatregs = WHATREGS_GEN;
376
377 if (whatregs & WHATREGS_GEN)
378 {
379 struct econtext ec; /* general regs */
380 int retval;
381
382 ec.tbr = read_register (TBR_REGNUM);
383 memcpy (&ec.g1, &registers[REGISTER_BYTE (G1_REGNUM)],
384 4 * REGISTER_RAW_SIZE (G1_REGNUM));
385
386 ec.psr = read_register (PS_REGNUM);
387 ec.y = read_register (Y_REGNUM);
388 ec.pc = read_register (PC_REGNUM);
389 ec.npc = read_register (NPC_REGNUM);
390 ec.wim = read_register (WIM_REGNUM);
391
392 memcpy (ec.o, &registers[REGISTER_BYTE (O0_REGNUM)],
393 8 * REGISTER_RAW_SIZE (O0_REGNUM));
394
395 errno = 0;
396 retval = ptrace (PTRACE_SETREGS, inferior_pid, (PTRACE_ARG3_TYPE) &ec,
397 0);
398 if (errno)
399 perror_with_name ("ptrace(PTRACE_SETREGS)");
400 }
401
402 if (whatregs & WHATREGS_STACK)
403 {
404 int regoffset;
405 CORE_ADDR sp;
406
407 sp = read_register (SP_REGNUM);
408
409 if (regno == -1 || regno == SP_REGNUM)
410 {
411 if (!register_valid[L0_REGNUM+5])
412 abort();
413 target_xfer_memory (sp + FRAME_SAVED_I0,
414 &registers[REGISTER_BYTE (I0_REGNUM)],
415 8 * REGISTER_RAW_SIZE (I0_REGNUM), 1);
416
417 target_xfer_memory (sp + FRAME_SAVED_L0,
418 &registers[REGISTER_BYTE (L0_REGNUM)],
419 8 * REGISTER_RAW_SIZE (L0_REGNUM), 1);
420 }
421 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
422 {
423 if (!register_valid[regno])
424 abort();
425 if (regno >= L0_REGNUM && regno <= L0_REGNUM + 7)
426 regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM)
427 + FRAME_SAVED_L0;
428 else
429 regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (I0_REGNUM)
430 + FRAME_SAVED_I0;
431 target_xfer_memory (sp + regoffset, &registers[REGISTER_BYTE (regno)],
432 REGISTER_RAW_SIZE (regno), 1);
433 }
434 }
435
436 if (whatregs & WHATREGS_FLOAT)
437 {
438 struct fcontext fc; /* fp regs */
439 int retval;
440
441 /* We read fcontext first so that we can get good values for fq_t... */
442 errno = 0;
443 retval = ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) &fc,
444 0);
445 if (errno)
446 perror_with_name ("ptrace(PTRACE_GETFPREGS)");
447
448 memcpy (fc.f.fregs, &registers[REGISTER_BYTE (FP0_REGNUM)],
449 32 * REGISTER_RAW_SIZE (FP0_REGNUM));
450
451 fc.fsr = read_register (FPS_REGNUM);
452
453 errno = 0;
454 retval = ptrace (PTRACE_SETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) &fc,
455 0);
456 if (errno)
457 perror_with_name ("ptrace(PTRACE_SETFPREGS)");
458 }
459 }
460 #endif /* SPARC */
461
462 #if defined (I386) || defined (M68K) || defined (rs6000)
463
464 /* Return the offset relative to the start of the per-thread data to the
465 saved context block. */
466
467 static unsigned long
468 registers_addr(pid)
469 int pid;
470 {
471 CORE_ADDR stblock;
472 int ecpoff = offsetof(st_t, ecp);
473 CORE_ADDR ecp;
474
475 errno = 0;
476 stblock = (CORE_ADDR) ptrace (PTRACE_THREADUSER, pid, (PTRACE_ARG3_TYPE)0,
477 0);
478 if (errno)
479 perror_with_name ("ptrace(PTRACE_THREADUSER)");
480
481 ecp = (CORE_ADDR) ptrace (PTRACE_PEEKTHREAD, pid, (PTRACE_ARG3_TYPE)ecpoff,
482 0);
483 if (errno)
484 perror_with_name ("ptrace(PTRACE_PEEKTHREAD)");
485
486 return ecp - stblock;
487 }
488
489 /* Fetch one or more registers from the inferior. REGNO == -1 to get
490 them all. We actually fetch more than requested, when convenient,
491 marking them as valid so we won't fetch them again. */
492
493 void
494 fetch_inferior_registers (regno)
495 int regno;
496 {
497 int reglo, reghi;
498 int i;
499 unsigned long ecp;
500
501 if (regno == -1)
502 {
503 reglo = 0;
504 reghi = NUM_REGS - 1;
505 }
506 else
507 reglo = reghi = regno;
508
509 ecp = registers_addr (inferior_pid);
510
511 for (regno = reglo; regno <= reghi; regno++)
512 {
513 char buf[MAX_REGISTER_RAW_SIZE];
514 int ptrace_fun = PTRACE_PEEKTHREAD;
515
516 #ifdef M68K
517 ptrace_fun = regno == SP_REGNUM ? PTRACE_PEEKUSP : PTRACE_PEEKTHREAD;
518 #endif
519
520 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
521 {
522 unsigned int reg;
523
524 errno = 0;
525 reg = ptrace (ptrace_fun, inferior_pid,
526 (PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), 0);
527 if (errno)
528 perror_with_name ("ptrace(PTRACE_PEEKUSP)");
529
530 *(int *)&buf[i] = reg;
531 }
532 supply_register (regno, buf);
533 }
534 }
535
536 /* Store our register values back into the inferior.
537 If REGNO is -1, do this for all registers.
538 Otherwise, REGNO specifies which register (so we can save time). */
539
540 /* Registers we shouldn't try to store. */
541 #if !defined (CANNOT_STORE_REGISTER)
542 #define CANNOT_STORE_REGISTER(regno) 0
543 #endif
544
545 void
546 store_inferior_registers (regno)
547 int regno;
548 {
549 int reglo, reghi;
550 int i;
551 unsigned long ecp;
552
553 if (regno == -1)
554 {
555 reglo = 0;
556 reghi = NUM_REGS - 1;
557 }
558 else
559 reglo = reghi = regno;
560
561 ecp = registers_addr (inferior_pid);
562
563 for (regno = reglo; regno <= reghi; regno++)
564 {
565 int ptrace_fun = PTRACE_POKEUSER;
566
567 if (CANNOT_STORE_REGISTER (regno))
568 continue;
569
570 #ifdef M68K
571 ptrace_fun = regno == SP_REGNUM ? PTRACE_POKEUSP : PTRACE_POKEUSER;
572 #endif
573
574 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
575 {
576 unsigned int reg;
577
578 reg = *(unsigned int *)&registers[REGISTER_BYTE (regno) + i];
579
580 errno = 0;
581 ptrace (ptrace_fun, inferior_pid,
582 (PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), reg);
583 if (errno)
584 perror_with_name ("ptrace(PTRACE_POKEUSP)");
585 }
586 }
587 }
588 #endif /* defined (I386) || defined (M68K) || defined (rs6000) */
589
590 /* Wait for child to do something. Return pid of child, or -1 in case
591 of error; store status through argument pointer OURSTATUS. */
592
593 int
594 child_wait (pid, ourstatus)
595 int pid;
596 struct target_waitstatus *ourstatus;
597 {
598 int save_errno;
599 int thread;
600 union wait status;
601
602 while (1)
603 {
604 int sig;
605
606 set_sigint_trap(); /* Causes SIGINT to be passed on to the
607 attached process. */
608 pid = wait (&status);
609
610 save_errno = errno;
611
612 clear_sigint_trap();
613
614 if (pid == -1)
615 {
616 if (save_errno == EINTR)
617 continue;
618 fprintf_unfiltered (gdb_stderr, "Child process unexpectedly missing: %s.\n",
619 safe_strerror (save_errno));
620 /* Claim it exited with unknown signal. */
621 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
622 ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
623 return -1;
624 }
625
626 if (pid != PIDGET (inferior_pid)) /* Some other process?!? */
627 continue;
628
629 thread = status.w_tid; /* Get thread id from status */
630
631 /* Initial thread value can only be acquired via wait, so we have to
632 resort to this hack. */
633
634 if (TIDGET (inferior_pid) == 0 && thread != 0)
635 {
636 inferior_pid = BUILDPID (inferior_pid, thread);
637 add_thread (inferior_pid);
638 }
639
640 pid = BUILDPID (pid, thread);
641
642 /* We've become a single threaded process again. */
643 if (thread == 0)
644 inferior_pid = pid;
645
646 /* Check for thread creation. */
647 if (WIFSTOPPED(status)
648 && WSTOPSIG(status) == SIGTRAP
649 && !in_thread_list (pid))
650 {
651 int realsig;
652
653 realsig = ptrace (PTRACE_GETTRACESIG, pid, (PTRACE_ARG3_TYPE)0, 0);
654
655 if (realsig == SIGNEWTHREAD)
656 {
657 /* It's a new thread notification. Nothing to do here since
658 the machine independent code in wait_for_inferior will
659 add the thread to the thread list and restart the thread
660 when pid != inferior_pid and pid is not in the thread
661 list. We don't even want to much with realsig -- the
662 code in wait_for_inferior expects SIGTRAP. */
663 ;
664 }
665 else
666 error ("Signal for unknown thread was not SIGNEWTHREAD");
667 }
668
669 /* Check for thread termination. */
670 else if (WIFSTOPPED(status)
671 && WSTOPSIG(status) == SIGTRAP
672 && in_thread_list (pid))
673 {
674 int realsig;
675
676 realsig = ptrace (PTRACE_GETTRACESIG, pid, (PTRACE_ARG3_TYPE)0, 0);
677
678 if (realsig == SIGTHREADEXIT)
679 {
680 ptrace (PTRACE_CONT, PIDGET (pid), (PTRACE_ARG3_TYPE)0, 0);
681 continue;
682 }
683 }
684
685 #ifdef SPARC
686 /* SPARC Lynx uses an byte reversed wait status; we must use the
687 host macros to access it. These lines just a copy of
688 store_waitstatus. We can't use CHILD_SPECIAL_WAITSTATUS
689 because target.c can't include the Lynx <sys/wait.h>. */
690 if (WIFEXITED (status))
691 {
692 ourstatus->kind = TARGET_WAITKIND_EXITED;
693 ourstatus->value.integer = WEXITSTATUS (status);
694 }
695 else if (!WIFSTOPPED (status))
696 {
697 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
698 ourstatus->value.sig =
699 target_signal_from_host (WTERMSIG (status));
700 }
701 else
702 {
703 ourstatus->kind = TARGET_WAITKIND_STOPPED;
704 ourstatus->value.sig =
705 target_signal_from_host (WSTOPSIG (status));
706 }
707 #else
708 store_waitstatus (ourstatus, status.w_status);
709 #endif
710
711 return pid;
712 }
713 }
714
715 /* Return nonzero if the given thread is still alive. */
716 int
717 child_thread_alive (pid)
718 int pid;
719 {
720 /* Arggh. Apparently pthread_kill only works for threads within
721 the process that calls pthread_kill.
722
723 We want to avoid the lynx signal extensions as they simply don't
724 map well to the generic gdb interface we want to keep.
725
726 All we want to do is determine if a particular thread is alive;
727 it appears as if we can just make a harmless thread specific
728 ptrace call to do that. */
729 return (ptrace (PTRACE_THREADUSER, pid, 0, 0) != -1);
730 }
731
732 /* Resume execution of the inferior process.
733 If STEP is nonzero, single-step it.
734 If SIGNAL is nonzero, give it that signal. */
735
736 void
737 child_resume (pid, step, signal)
738 int pid;
739 int step;
740 enum target_signal signal;
741 {
742 int func;
743
744 errno = 0;
745
746 /* If pid == -1, then we want to step/continue all threads, else
747 we only want to step/continue a single thread. */
748 if (pid == -1)
749 {
750 pid = inferior_pid;
751 func = step ? PTRACE_SINGLESTEP : PTRACE_CONT;
752 }
753 else
754 func = step ? PTRACE_SINGLESTEP_ONE : PTRACE_CONT_ONE;
755
756
757 /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
758 it was. (If GDB wanted it to start some other way, we have already
759 written a new PC value to the child.)
760
761 If this system does not support PT_STEP, a higher level function will
762 have called single_step() to transmute the step request into a
763 continue request (by setting breakpoints on all possible successor
764 instructions), so we don't have to worry about that here. */
765
766 ptrace (func, pid, (PTRACE_ARG3_TYPE) 1, target_signal_to_host (signal));
767
768 if (errno)
769 perror_with_name ("ptrace");
770 }
771
772 /* Convert a Lynx process ID to a string. Returns the string in a static
773 buffer. */
774
775 char *
776 lynx_pid_to_str (pid)
777 int pid;
778 {
779 static char buf[40];
780
781 sprintf (buf, "process %d thread %d", PIDGET (pid), TIDGET (pid));
782
783 return buf;
784 }
785
786 /* Extract the register values out of the core file and store
787 them where `read_register' will find them.
788
789 CORE_REG_SECT points to the register values themselves, read into memory.
790 CORE_REG_SIZE is the size of that area.
791 WHICH says which set of registers we are handling (0 = int, 2 = float
792 on machines where they are discontiguous).
793 REG_ADDR is the offset from u.u_ar0 to the register values relative to
794 core_reg_sect. This is used with old-fashioned core files to
795 locate the registers in a large upage-plus-stack ".reg" section.
796 Original upage address X is at location core_reg_sect+x+reg_addr.
797 */
798
799 void
800 fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
801 char *core_reg_sect;
802 unsigned core_reg_size;
803 int which;
804 unsigned reg_addr;
805 {
806 struct st_entry s;
807 unsigned int regno;
808
809 for (regno = 0; regno < NUM_REGS; regno++)
810 if (regmap[regno] != -1)
811 supply_register (regno, core_reg_sect + offsetof (st_t, ec)
812 + regmap[regno]);
813
814 #ifdef SPARC
815 /* Fetching this register causes all of the I & L regs to be read from the
816 stack and validated. */
817
818 fetch_inferior_registers (I0_REGNUM);
819 #endif
820 }