]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/m32c-tdep.c
Skip gdb.server/ tests if lack of XML support
[thirdparty/binutils-gdb.git] / gdb / m32c-tdep.c
1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 2004-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "elf-bfd.h"
22 #include "elf/m32c.h"
23 #include "gdb/sim-m32c.h"
24 #include "dis-asm.h"
25 #include "gdbtypes.h"
26 #include "regcache.h"
27 #include "arch-utils.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "dwarf2-frame.h"
31 #include "dwarf2expr.h"
32 #include "symtab.h"
33 #include "gdbcore.h"
34 #include "value.h"
35 #include "reggroups.h"
36 #include "prologue-value.h"
37 #include "target.h"
38 #include "objfiles.h"
39
40 \f
41 /* The m32c tdep structure. */
42
43 static struct reggroup *m32c_dma_reggroup;
44
45 struct m32c_reg;
46
47 /* The type of a function that moves the value of REG between CACHE or
48 BUF --- in either direction. */
49 typedef enum register_status (m32c_write_reg_t) (struct m32c_reg *reg,
50 struct regcache *cache,
51 const gdb_byte *buf);
52
53 typedef enum register_status (m32c_read_reg_t) (struct m32c_reg *reg,
54 struct regcache *cache,
55 gdb_byte *buf);
56
57 struct m32c_reg
58 {
59 /* The name of this register. */
60 const char *name;
61
62 /* Its type. */
63 struct type *type;
64
65 /* The architecture this register belongs to. */
66 struct gdbarch *arch;
67
68 /* Its GDB register number. */
69 int num;
70
71 /* Its sim register number. */
72 int sim_num;
73
74 /* Its DWARF register number, or -1 if it doesn't have one. */
75 int dwarf_num;
76
77 /* Register group memberships. */
78 unsigned int general_p : 1;
79 unsigned int dma_p : 1;
80 unsigned int system_p : 1;
81 unsigned int save_restore_p : 1;
82
83 /* Functions to read its value from a regcache, and write its value
84 to a regcache. */
85 m32c_read_reg_t *read;
86 m32c_write_reg_t *write;
87
88 /* Data for READ and WRITE functions. The exact meaning depends on
89 the specific functions selected; see the comments for those
90 functions. */
91 struct m32c_reg *rx, *ry;
92 int n;
93 };
94
95
96 /* An overestimate of the number of raw and pseudoregisters we will
97 have. The exact answer depends on the variant of the architecture
98 at hand, but we can use this to declare statically allocated
99 arrays, and bump it up when needed. */
100 #define M32C_MAX_NUM_REGS (75)
101
102 /* The largest assigned DWARF register number. */
103 #define M32C_MAX_DWARF_REGNUM (40)
104
105
106 struct gdbarch_tdep
107 {
108 /* All the registers for this variant, indexed by GDB register
109 number, and the number of registers present. */
110 struct m32c_reg regs[M32C_MAX_NUM_REGS];
111
112 /* The number of valid registers. */
113 int num_regs;
114
115 /* Interesting registers. These are pointers into REGS. */
116 struct m32c_reg *pc, *flg;
117 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
118 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
119 struct m32c_reg *sb, *fb, *sp;
120
121 /* A table indexed by DWARF register numbers, pointing into
122 REGS. */
123 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
124
125 /* Types for this architecture. We can't use the builtin_type_foo
126 types, because they're not initialized when building a gdbarch
127 structure. */
128 struct type *voyd, *ptr_voyd, *func_voyd;
129 struct type *uint8, *uint16;
130 struct type *int8, *int16, *int32, *int64;
131
132 /* The types for data address and code address registers. */
133 struct type *data_addr_reg_type, *code_addr_reg_type;
134
135 /* The number of bytes a return address pushed by a 'jsr' instruction
136 occupies on the stack. */
137 int ret_addr_bytes;
138
139 /* The number of bytes an address register occupies on the stack
140 when saved by an 'enter' or 'pushm' instruction. */
141 int push_addr_bytes;
142 };
143
144 \f
145 /* Types. */
146
147 static void
148 make_types (struct gdbarch *arch)
149 {
150 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
151 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
152 int data_addr_reg_bits, code_addr_reg_bits;
153 char type_name[50];
154
155 #if 0
156 /* This is used to clip CORE_ADDR values, so this value is
157 appropriate both on the m32c, where pointers are 32 bits long,
158 and on the m16c, where pointers are sixteen bits long, but there
159 may be code above the 64k boundary. */
160 set_gdbarch_addr_bit (arch, 24);
161 #else
162 /* GCC uses 32 bits for addrs in the dwarf info, even though
163 only 16/24 bits are used. Setting addr_bit to 24 causes
164 errors in reading the dwarf addresses. */
165 set_gdbarch_addr_bit (arch, 32);
166 #endif
167
168 set_gdbarch_int_bit (arch, 16);
169 switch (mach)
170 {
171 case bfd_mach_m16c:
172 data_addr_reg_bits = 16;
173 code_addr_reg_bits = 24;
174 set_gdbarch_ptr_bit (arch, 16);
175 tdep->ret_addr_bytes = 3;
176 tdep->push_addr_bytes = 2;
177 break;
178
179 case bfd_mach_m32c:
180 data_addr_reg_bits = 24;
181 code_addr_reg_bits = 24;
182 set_gdbarch_ptr_bit (arch, 32);
183 tdep->ret_addr_bytes = 4;
184 tdep->push_addr_bytes = 4;
185 break;
186
187 default:
188 gdb_assert_not_reached ("unexpected mach");
189 }
190
191 /* The builtin_type_mumble variables are sometimes uninitialized when
192 this is called, so we avoid using them. */
193 tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
194 tdep->ptr_voyd
195 = arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT,
196 NULL);
197 TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
198 TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
199 tdep->func_voyd = lookup_function_type (tdep->voyd);
200
201 xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
202 gdbarch_bfd_arch_info (arch)->printable_name);
203 tdep->data_addr_reg_type
204 = arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits / TARGET_CHAR_BIT,
205 xstrdup (type_name));
206 TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
207 TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;
208
209 xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
210 gdbarch_bfd_arch_info (arch)->printable_name);
211 tdep->code_addr_reg_type
212 = arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits / TARGET_CHAR_BIT,
213 xstrdup (type_name));
214 TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
215 TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;
216
217 tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
218 tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
219 tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
220 tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
221 tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
222 tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
223 }
224
225
226 \f
227 /* Register set. */
228
229 static const char *
230 m32c_register_name (struct gdbarch *gdbarch, int num)
231 {
232 return gdbarch_tdep (gdbarch)->regs[num].name;
233 }
234
235
236 static struct type *
237 m32c_register_type (struct gdbarch *arch, int reg_nr)
238 {
239 return gdbarch_tdep (arch)->regs[reg_nr].type;
240 }
241
242
243 static int
244 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
245 {
246 return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
247 }
248
249
250 static int
251 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
252 {
253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
254 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
255 && tdep->dwarf_regs[reg_nr])
256 return tdep->dwarf_regs[reg_nr]->num;
257 else
258 /* The DWARF CFI code expects to see -1 for invalid register
259 numbers. */
260 return -1;
261 }
262
263
264 static int
265 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
266 struct reggroup *group)
267 {
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269 struct m32c_reg *reg = &tdep->regs[regnum];
270
271 /* The anonymous raw registers aren't in any groups. */
272 if (! reg->name)
273 return 0;
274
275 if (group == all_reggroup)
276 return 1;
277
278 if (group == general_reggroup
279 && reg->general_p)
280 return 1;
281
282 if (group == m32c_dma_reggroup
283 && reg->dma_p)
284 return 1;
285
286 if (group == system_reggroup
287 && reg->system_p)
288 return 1;
289
290 /* Since the m32c DWARF register numbers refer to cooked registers, not
291 raw registers, and frame_pop depends on the save and restore groups
292 containing registers the DWARF CFI will actually mention, our save
293 and restore groups are cooked registers, not raw registers. (This is
294 why we can't use the default reggroup function.) */
295 if ((group == save_reggroup
296 || group == restore_reggroup)
297 && reg->save_restore_p)
298 return 1;
299
300 return 0;
301 }
302
303
304 /* Register move functions. We declare them here using
305 m32c_{read,write}_reg_t to check the types. */
306 static m32c_read_reg_t m32c_raw_read;
307 static m32c_read_reg_t m32c_banked_read;
308 static m32c_read_reg_t m32c_sb_read;
309 static m32c_read_reg_t m32c_part_read;
310 static m32c_read_reg_t m32c_cat_read;
311 static m32c_read_reg_t m32c_r3r2r1r0_read;
312
313 static m32c_write_reg_t m32c_raw_write;
314 static m32c_write_reg_t m32c_banked_write;
315 static m32c_write_reg_t m32c_sb_write;
316 static m32c_write_reg_t m32c_part_write;
317 static m32c_write_reg_t m32c_cat_write;
318 static m32c_write_reg_t m32c_r3r2r1r0_write;
319
320 /* Copy the value of the raw register REG from CACHE to BUF. */
321 static enum register_status
322 m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
323 {
324 return regcache_raw_read (cache, reg->num, buf);
325 }
326
327
328 /* Copy the value of the raw register REG from BUF to CACHE. */
329 static enum register_status
330 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache,
331 const gdb_byte *buf)
332 {
333 regcache_raw_write (cache, reg->num, buf);
334
335 return REG_VALID;
336 }
337
338
339 /* Return the value of the 'flg' register in CACHE. */
340 static int
341 m32c_read_flg (struct regcache *cache)
342 {
343 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
344 ULONGEST flg;
345 regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
346 return flg & 0xffff;
347 }
348
349
350 /* Evaluate the real register number of a banked register. */
351 static struct m32c_reg *
352 m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
353 {
354 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
355 }
356
357
358 /* Move the value of a banked register from CACHE to BUF.
359 If the value of the 'flg' register in CACHE has any of the bits
360 masked in REG->n set, then read REG->ry. Otherwise, read
361 REG->rx. */
362 static enum register_status
363 m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
364 {
365 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
366 return regcache_raw_read (cache, bank_reg->num, buf);
367 }
368
369
370 /* Move the value of a banked register from BUF to CACHE.
371 If the value of the 'flg' register in CACHE has any of the bits
372 masked in REG->n set, then write REG->ry. Otherwise, write
373 REG->rx. */
374 static enum register_status
375 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache,
376 const gdb_byte *buf)
377 {
378 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
379 regcache_raw_write (cache, bank_reg->num, buf);
380
381 return REG_VALID;
382 }
383
384
385 /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
386 banked register; on bfd_mach_m16c, it's not. */
387 static enum register_status
388 m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
389 {
390 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
391 return m32c_raw_read (reg->rx, cache, buf);
392 else
393 return m32c_banked_read (reg, cache, buf);
394 }
395
396
397 /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
398 banked register; on bfd_mach_m16c, it's not. */
399 static enum register_status
400 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, const gdb_byte *buf)
401 {
402 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
403 m32c_raw_write (reg->rx, cache, buf);
404 else
405 m32c_banked_write (reg, cache, buf);
406
407 return REG_VALID;
408 }
409
410
411 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
412 and *LEN_P to the offset and length, in bytes, of the part REG
413 occupies in its underlying register. The offset is from the
414 lower-addressed end, regardless of the architecture's endianness.
415 (The M32C family is always little-endian, but let's keep those
416 assumptions out of here.) */
417 static void
418 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
419 {
420 /* The length of the containing register, of which REG is one part. */
421 int containing_len = TYPE_LENGTH (reg->rx->type);
422
423 /* The length of one "element" in our imaginary array. */
424 int elt_len = TYPE_LENGTH (reg->type);
425
426 /* The offset of REG's "element" from the least significant end of
427 the containing register. */
428 int elt_offset = reg->n * elt_len;
429
430 /* If we extend off the end, trim the length of the element. */
431 if (elt_offset + elt_len > containing_len)
432 {
433 elt_len = containing_len - elt_offset;
434 /* We shouldn't be declaring partial registers that go off the
435 end of their containing registers. */
436 gdb_assert (elt_len > 0);
437 }
438
439 /* Flip the offset around if we're big-endian. */
440 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
441 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
442
443 *offset_p = elt_offset;
444 *len_p = elt_len;
445 }
446
447
448 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
449 to BUF. Treating the value of the register REG->rx as an array of
450 REG->type values, where higher indices refer to more significant
451 bits, read the value of the REG->n'th element. */
452 static enum register_status
453 m32c_part_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
454 {
455 int offset, len;
456
457 memset (buf, 0, TYPE_LENGTH (reg->type));
458 m32c_find_part (reg, &offset, &len);
459 return regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
460 }
461
462
463 /* Move the value of a banked register from BUF to CACHE.
464 Treating the value of the register REG->rx as an array of REG->type
465 values, where higher indices refer to more significant bits, write
466 the value of the REG->n'th element. */
467 static enum register_status
468 m32c_part_write (struct m32c_reg *reg, struct regcache *cache,
469 const gdb_byte *buf)
470 {
471 int offset, len;
472
473 m32c_find_part (reg, &offset, &len);
474 regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
475
476 return REG_VALID;
477 }
478
479
480 /* Move the value of REG from CACHE to BUF. REG's value is the
481 concatenation of the values of the registers REG->rx and REG->ry,
482 with REG->rx contributing the more significant bits. */
483 static enum register_status
484 m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
485 {
486 int high_bytes = TYPE_LENGTH (reg->rx->type);
487 int low_bytes = TYPE_LENGTH (reg->ry->type);
488 enum register_status status;
489
490 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
491
492 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
493 {
494 status = regcache_cooked_read (cache, reg->rx->num, buf);
495 if (status == REG_VALID)
496 status = regcache_cooked_read (cache, reg->ry->num, buf + high_bytes);
497 }
498 else
499 {
500 status = regcache_cooked_read (cache, reg->rx->num, buf + low_bytes);
501 if (status == REG_VALID)
502 status = regcache_cooked_read (cache, reg->ry->num, buf);
503 }
504
505 return status;
506 }
507
508
509 /* Move the value of REG from CACHE to BUF. REG's value is the
510 concatenation of the values of the registers REG->rx and REG->ry,
511 with REG->rx contributing the more significant bits. */
512 static enum register_status
513 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache,
514 const gdb_byte *buf)
515 {
516 int high_bytes = TYPE_LENGTH (reg->rx->type);
517 int low_bytes = TYPE_LENGTH (reg->ry->type);
518
519 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
520
521 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
522 {
523 regcache_cooked_write (cache, reg->rx->num, buf);
524 regcache_cooked_write (cache, reg->ry->num, buf + high_bytes);
525 }
526 else
527 {
528 regcache_cooked_write (cache, reg->rx->num, buf + low_bytes);
529 regcache_cooked_write (cache, reg->ry->num, buf);
530 }
531
532 return REG_VALID;
533 }
534
535
536 /* Copy the value of the raw register REG from CACHE to BUF. REG is
537 the concatenation (from most significant to least) of r3, r2, r1,
538 and r0. */
539 static enum register_status
540 m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
541 {
542 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
543 int len = TYPE_LENGTH (tdep->r0->type);
544 enum register_status status;
545
546 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
547 {
548 status = regcache_cooked_read (cache, tdep->r0->num, buf + len * 3);
549 if (status == REG_VALID)
550 status = regcache_cooked_read (cache, tdep->r1->num, buf + len * 2);
551 if (status == REG_VALID)
552 status = regcache_cooked_read (cache, tdep->r2->num, buf + len * 1);
553 if (status == REG_VALID)
554 status = regcache_cooked_read (cache, tdep->r3->num, buf);
555 }
556 else
557 {
558 status = regcache_cooked_read (cache, tdep->r0->num, buf);
559 if (status == REG_VALID)
560 status = regcache_cooked_read (cache, tdep->r1->num, buf + len * 1);
561 if (status == REG_VALID)
562 status = regcache_cooked_read (cache, tdep->r2->num, buf + len * 2);
563 if (status == REG_VALID)
564 status = regcache_cooked_read (cache, tdep->r3->num, buf + len * 3);
565 }
566
567 return status;
568 }
569
570
571 /* Copy the value of the raw register REG from BUF to CACHE. REG is
572 the concatenation (from most significant to least) of r3, r2, r1,
573 and r0. */
574 static enum register_status
575 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache,
576 const gdb_byte *buf)
577 {
578 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
579 int len = TYPE_LENGTH (tdep->r0->type);
580
581 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
582 {
583 regcache_cooked_write (cache, tdep->r0->num, buf + len * 3);
584 regcache_cooked_write (cache, tdep->r1->num, buf + len * 2);
585 regcache_cooked_write (cache, tdep->r2->num, buf + len * 1);
586 regcache_cooked_write (cache, tdep->r3->num, buf);
587 }
588 else
589 {
590 regcache_cooked_write (cache, tdep->r0->num, buf);
591 regcache_cooked_write (cache, tdep->r1->num, buf + len * 1);
592 regcache_cooked_write (cache, tdep->r2->num, buf + len * 2);
593 regcache_cooked_write (cache, tdep->r3->num, buf + len * 3);
594 }
595
596 return REG_VALID;
597 }
598
599
600 static enum register_status
601 m32c_pseudo_register_read (struct gdbarch *arch,
602 struct regcache *cache,
603 int cookednum,
604 gdb_byte *buf)
605 {
606 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
607 struct m32c_reg *reg;
608
609 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
610 gdb_assert (arch == get_regcache_arch (cache));
611 gdb_assert (arch == tdep->regs[cookednum].arch);
612 reg = &tdep->regs[cookednum];
613
614 return reg->read (reg, cache, buf);
615 }
616
617
618 static void
619 m32c_pseudo_register_write (struct gdbarch *arch,
620 struct regcache *cache,
621 int cookednum,
622 const gdb_byte *buf)
623 {
624 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
625 struct m32c_reg *reg;
626
627 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
628 gdb_assert (arch == get_regcache_arch (cache));
629 gdb_assert (arch == tdep->regs[cookednum].arch);
630 reg = &tdep->regs[cookednum];
631
632 reg->write (reg, cache, buf);
633 }
634
635
636 /* Add a register with the given fields to the end of ARCH's table.
637 Return a pointer to the newly added register. */
638 static struct m32c_reg *
639 add_reg (struct gdbarch *arch,
640 const char *name,
641 struct type *type,
642 int sim_num,
643 m32c_read_reg_t *read,
644 m32c_write_reg_t *write,
645 struct m32c_reg *rx,
646 struct m32c_reg *ry,
647 int n)
648 {
649 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
650 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
651
652 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
653
654 r->name = name;
655 r->type = type;
656 r->arch = arch;
657 r->num = tdep->num_regs;
658 r->sim_num = sim_num;
659 r->dwarf_num = -1;
660 r->general_p = 0;
661 r->dma_p = 0;
662 r->system_p = 0;
663 r->save_restore_p = 0;
664 r->read = read;
665 r->write = write;
666 r->rx = rx;
667 r->ry = ry;
668 r->n = n;
669
670 tdep->num_regs++;
671
672 return r;
673 }
674
675
676 /* Record NUM as REG's DWARF register number. */
677 static void
678 set_dwarf_regnum (struct m32c_reg *reg, int num)
679 {
680 gdb_assert (num < M32C_MAX_NUM_REGS);
681
682 /* Update the reg->DWARF mapping. Only count the first number
683 assigned to this register. */
684 if (reg->dwarf_num == -1)
685 reg->dwarf_num = num;
686
687 /* Update the DWARF->reg mapping. */
688 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
689 }
690
691
692 /* Mark REG as a general-purpose register, and return it. */
693 static struct m32c_reg *
694 mark_general (struct m32c_reg *reg)
695 {
696 reg->general_p = 1;
697 return reg;
698 }
699
700
701 /* Mark REG as a DMA register, and return it. */
702 static struct m32c_reg *
703 mark_dma (struct m32c_reg *reg)
704 {
705 reg->dma_p = 1;
706 return reg;
707 }
708
709
710 /* Mark REG as a SYSTEM register, and return it. */
711 static struct m32c_reg *
712 mark_system (struct m32c_reg *reg)
713 {
714 reg->system_p = 1;
715 return reg;
716 }
717
718
719 /* Mark REG as a save-restore register, and return it. */
720 static struct m32c_reg *
721 mark_save_restore (struct m32c_reg *reg)
722 {
723 reg->save_restore_p = 1;
724 return reg;
725 }
726
727
728 #define FLAGBIT_B 0x0010
729 #define FLAGBIT_U 0x0080
730
731 /* Handy macros for declaring registers. These all evaluate to
732 pointers to the register declared. Macros that define two
733 registers evaluate to a pointer to the first. */
734
735 /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
736 #define R(name, type, sim_num) \
737 (add_reg (arch, (name), (type), (sim_num), \
738 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
739
740 /* The simulator register number for a raw register named NAME. */
741 #define SIM(name) (m32c_sim_reg_ ## name)
742
743 /* A raw unsigned 16-bit data register named NAME.
744 NAME should be an identifier, not a string. */
745 #define R16U(name) \
746 (R(#name, tdep->uint16, SIM (name)))
747
748 /* A raw data address register named NAME.
749 NAME should be an identifier, not a string. */
750 #define RA(name) \
751 (R(#name, tdep->data_addr_reg_type, SIM (name)))
752
753 /* A raw code address register named NAME. NAME should
754 be an identifier, not a string. */
755 #define RC(name) \
756 (R(#name, tdep->code_addr_reg_type, SIM (name)))
757
758 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
759 NAME should be an identifier, not a string. */
760 #define RP(name, type) \
761 (R(#name "0", (type), SIM (name ## 0)), \
762 R(#name "1", (type), SIM (name ## 1)) - 1)
763
764 /* A raw banked general-purpose data register named NAME.
765 NAME should be an identifier, not a string. */
766 #define RBD(name) \
767 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
768 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
769
770 /* A raw banked data address register named NAME.
771 NAME should be an identifier, not a string. */
772 #define RBA(name) \
773 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
774 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
775
776 /* A cooked register named NAME referring to a raw banked register
777 from the bank selected by the current value of FLG. RAW_PAIR
778 should be a pointer to the first register in the banked pair.
779 NAME must be an identifier, not a string. */
780 #define CB(name, raw_pair) \
781 (add_reg (arch, #name, (raw_pair)->type, 0, \
782 m32c_banked_read, m32c_banked_write, \
783 (raw_pair), (raw_pair + 1), FLAGBIT_B))
784
785 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
786 access the top and bottom halves of the register pointed to by
787 NAME. NAME should be an identifier. */
788 #define CHL(name, type) \
789 (add_reg (arch, #name "h", (type), 0, \
790 m32c_part_read, m32c_part_write, name, NULL, 1), \
791 add_reg (arch, #name "l", (type), 0, \
792 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
793
794 /* A register constructed by concatenating the two registers HIGH and
795 LOW, whose name is HIGHLOW and whose type is TYPE. */
796 #define CCAT(high, low, type) \
797 (add_reg (arch, #high #low, (type), 0, \
798 m32c_cat_read, m32c_cat_write, (high), (low), 0))
799
800 /* Abbreviations for marking register group membership. */
801 #define G(reg) (mark_general (reg))
802 #define S(reg) (mark_system (reg))
803 #define DMA(reg) (mark_dma (reg))
804
805
806 /* Construct the register set for ARCH. */
807 static void
808 make_regs (struct gdbarch *arch)
809 {
810 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
811 int mach = gdbarch_bfd_arch_info (arch)->mach;
812 int num_raw_regs;
813 int num_cooked_regs;
814
815 struct m32c_reg *r0;
816 struct m32c_reg *r1;
817 struct m32c_reg *r2;
818 struct m32c_reg *r3;
819 struct m32c_reg *a0;
820 struct m32c_reg *a1;
821 struct m32c_reg *fb;
822 struct m32c_reg *sb;
823 struct m32c_reg *sp;
824 struct m32c_reg *r0hl;
825 struct m32c_reg *r1hl;
826 struct m32c_reg *r2r0;
827 struct m32c_reg *r3r1;
828 struct m32c_reg *r3r1r2r0;
829 struct m32c_reg *r3r2r1r0;
830 struct m32c_reg *a1a0;
831
832 struct m32c_reg *raw_r0_pair = RBD (r0);
833 struct m32c_reg *raw_r1_pair = RBD (r1);
834 struct m32c_reg *raw_r2_pair = RBD (r2);
835 struct m32c_reg *raw_r3_pair = RBD (r3);
836 struct m32c_reg *raw_a0_pair = RBA (a0);
837 struct m32c_reg *raw_a1_pair = RBA (a1);
838 struct m32c_reg *raw_fb_pair = RBA (fb);
839
840 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
841 We always declare both raw registers, and deal with the distinction
842 in the pseudoregister. */
843 struct m32c_reg *raw_sb_pair = RBA (sb);
844
845 struct m32c_reg *usp = S (RA (usp));
846 struct m32c_reg *isp = S (RA (isp));
847 struct m32c_reg *intb = S (RC (intb));
848 struct m32c_reg *pc = G (RC (pc));
849 struct m32c_reg *flg = G (R16U (flg));
850
851 if (mach == bfd_mach_m32c)
852 {
853 struct m32c_reg *svf = S (R16U (svf));
854 struct m32c_reg *svp = S (RC (svp));
855 struct m32c_reg *vct = S (RC (vct));
856
857 struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
858 struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
859 struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
860 struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
861 struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
862 struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
863 }
864
865 num_raw_regs = tdep->num_regs;
866
867 r0 = G (CB (r0, raw_r0_pair));
868 r1 = G (CB (r1, raw_r1_pair));
869 r2 = G (CB (r2, raw_r2_pair));
870 r3 = G (CB (r3, raw_r3_pair));
871 a0 = G (CB (a0, raw_a0_pair));
872 a1 = G (CB (a1, raw_a1_pair));
873 fb = G (CB (fb, raw_fb_pair));
874
875 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
876 Specify custom read/write functions that do the right thing. */
877 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
878 m32c_sb_read, m32c_sb_write,
879 raw_sb_pair, raw_sb_pair + 1, 0));
880
881 /* The current sp is either usp or isp, depending on the value of
882 the FLG register's U bit. */
883 sp = G (add_reg (arch, "sp", usp->type, 0,
884 m32c_banked_read, m32c_banked_write,
885 isp, usp, FLAGBIT_U));
886
887 r0hl = CHL (r0, tdep->int8);
888 r1hl = CHL (r1, tdep->int8);
889 CHL (r2, tdep->int8);
890 CHL (r3, tdep->int8);
891 CHL (intb, tdep->int16);
892
893 r2r0 = CCAT (r2, r0, tdep->int32);
894 r3r1 = CCAT (r3, r1, tdep->int32);
895 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
896
897 r3r2r1r0
898 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
899 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
900
901 if (mach == bfd_mach_m16c)
902 a1a0 = CCAT (a1, a0, tdep->int32);
903 else
904 a1a0 = NULL;
905
906 num_cooked_regs = tdep->num_regs - num_raw_regs;
907
908 tdep->pc = pc;
909 tdep->flg = flg;
910 tdep->r0 = r0;
911 tdep->r1 = r1;
912 tdep->r2 = r2;
913 tdep->r3 = r3;
914 tdep->r2r0 = r2r0;
915 tdep->r3r2r1r0 = r3r2r1r0;
916 tdep->r3r1r2r0 = r3r1r2r0;
917 tdep->a0 = a0;
918 tdep->a1 = a1;
919 tdep->sb = sb;
920 tdep->fb = fb;
921 tdep->sp = sp;
922
923 /* Set up the DWARF register table. */
924 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
925 set_dwarf_regnum (r0hl + 1, 0x01);
926 set_dwarf_regnum (r0hl + 0, 0x02);
927 set_dwarf_regnum (r1hl + 1, 0x03);
928 set_dwarf_regnum (r1hl + 0, 0x04);
929 set_dwarf_regnum (r0, 0x05);
930 set_dwarf_regnum (r1, 0x06);
931 set_dwarf_regnum (r2, 0x07);
932 set_dwarf_regnum (r3, 0x08);
933 set_dwarf_regnum (a0, 0x09);
934 set_dwarf_regnum (a1, 0x0a);
935 set_dwarf_regnum (fb, 0x0b);
936 set_dwarf_regnum (sp, 0x0c);
937 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
938 set_dwarf_regnum (sb, 0x13);
939 set_dwarf_regnum (r2r0, 0x15);
940 set_dwarf_regnum (r3r1, 0x16);
941 if (a1a0)
942 set_dwarf_regnum (a1a0, 0x17);
943
944 /* Enumerate the save/restore register group.
945
946 The regcache_save and regcache_restore functions apply their read
947 function to each register in this group.
948
949 Since frame_pop supplies frame_unwind_register as its read
950 function, the registers meaningful to the Dwarf unwinder need to
951 be in this group.
952
953 On the other hand, when we make inferior calls, save_inferior_status
954 and restore_inferior_status use them to preserve the current register
955 values across the inferior call. For this, you'd kind of like to
956 preserve all the raw registers, to protect the interrupted code from
957 any sort of bank switching the callee might have done. But we handle
958 those cases so badly anyway --- for example, it matters whether we
959 restore FLG before or after we restore the general-purpose registers,
960 but there's no way to express that --- that it isn't worth worrying
961 about.
962
963 We omit control registers like inthl: if you call a function that
964 changes those, it's probably because you wanted that change to be
965 visible to the interrupted code. */
966 mark_save_restore (r0);
967 mark_save_restore (r1);
968 mark_save_restore (r2);
969 mark_save_restore (r3);
970 mark_save_restore (a0);
971 mark_save_restore (a1);
972 mark_save_restore (sb);
973 mark_save_restore (fb);
974 mark_save_restore (sp);
975 mark_save_restore (pc);
976 mark_save_restore (flg);
977
978 set_gdbarch_num_regs (arch, num_raw_regs);
979 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
980 set_gdbarch_pc_regnum (arch, pc->num);
981 set_gdbarch_sp_regnum (arch, sp->num);
982 set_gdbarch_register_name (arch, m32c_register_name);
983 set_gdbarch_register_type (arch, m32c_register_type);
984 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
985 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
986 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
987 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
988 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
989 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
990
991 reggroup_add (arch, general_reggroup);
992 reggroup_add (arch, all_reggroup);
993 reggroup_add (arch, save_reggroup);
994 reggroup_add (arch, restore_reggroup);
995 reggroup_add (arch, system_reggroup);
996 reggroup_add (arch, m32c_dma_reggroup);
997 }
998
999
1000 \f
1001 /* Breakpoints. */
1002
1003 static const unsigned char *
1004 m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
1005 {
1006 static unsigned char break_insn[] = { 0x00 }; /* brk */
1007
1008 *len = sizeof (break_insn);
1009 return break_insn;
1010 }
1011
1012
1013 \f
1014 /* Prologue analysis. */
1015
1016 enum m32c_prologue_kind
1017 {
1018 /* This function uses a frame pointer. */
1019 prologue_with_frame_ptr,
1020
1021 /* This function has no frame pointer. */
1022 prologue_sans_frame_ptr,
1023
1024 /* This function sets up the stack, so its frame is the first
1025 frame on the stack. */
1026 prologue_first_frame
1027 };
1028
1029 struct m32c_prologue
1030 {
1031 /* For consistency with the DWARF 2 .debug_frame info generated by
1032 GCC, a frame's CFA is the address immediately after the saved
1033 return address. */
1034
1035 /* The architecture for which we generated this prologue info. */
1036 struct gdbarch *arch;
1037
1038 enum m32c_prologue_kind kind;
1039
1040 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1041 CFA to where the frame pointer points. This is always zero or
1042 negative. */
1043 LONGEST frame_ptr_offset;
1044
1045 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1046 the stack pointer --- always zero or negative.
1047
1048 Calling this a "size" is a bit misleading, but given that the
1049 stack grows downwards, using offsets for everything keeps one
1050 from going completely sign-crazy: you never change anything's
1051 sign for an ADD instruction; always change the second operand's
1052 sign for a SUB instruction; and everything takes care of
1053 itself.
1054
1055 Functions that use alloca don't have a constant frame size. But
1056 they always have frame pointers, so we must use that to find the
1057 CFA (and perhaps to unwind the stack pointer). */
1058 LONGEST frame_size;
1059
1060 /* The address of the first instruction at which the frame has been
1061 set up and the arguments are where the debug info says they are
1062 --- as best as we can tell. */
1063 CORE_ADDR prologue_end;
1064
1065 /* reg_offset[R] is the offset from the CFA at which register R is
1066 saved, or 1 if register R has not been saved. (Real values are
1067 always zero or negative.) */
1068 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1069 };
1070
1071
1072 /* The longest I've seen, anyway. */
1073 #define M32C_MAX_INSN_LEN (9)
1074
1075 /* Processor state, for the prologue analyzer. */
1076 struct m32c_pv_state
1077 {
1078 struct gdbarch *arch;
1079 pv_t r0, r1, r2, r3;
1080 pv_t a0, a1;
1081 pv_t sb, fb, sp;
1082 pv_t pc;
1083 struct pv_area *stack;
1084
1085 /* Bytes from the current PC, the address they were read from,
1086 and the address of the next unconsumed byte. */
1087 gdb_byte insn[M32C_MAX_INSN_LEN];
1088 CORE_ADDR scan_pc, next_addr;
1089 };
1090
1091
1092 /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1093 all went well, or non-zero if simulating the action would trash our
1094 state. */
1095 static int
1096 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1097 {
1098 if (pv_area_store_would_trash (state->stack, state->sp))
1099 return 1;
1100
1101 state->sp = pv_add_constant (state->sp, -size);
1102 pv_area_store (state->stack, state->sp, size, value);
1103
1104 return 0;
1105 }
1106
1107
1108 enum srcdest_kind
1109 {
1110 srcdest_reg,
1111 srcdest_partial_reg,
1112 srcdest_mem
1113 };
1114
1115 /* A source or destination location for an m16c or m32c
1116 instruction. */
1117 struct srcdest
1118 {
1119 /* If srcdest_reg, the location is a register pointed to by REG.
1120 If srcdest_partial_reg, the location is part of a register pointed
1121 to by REG. We don't try to handle this too well.
1122 If srcdest_mem, the location is memory whose address is ADDR. */
1123 enum srcdest_kind kind;
1124 pv_t *reg, addr;
1125 };
1126
1127
1128 /* Return the SIZE-byte value at LOC in STATE. */
1129 static pv_t
1130 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1131 {
1132 if (loc.kind == srcdest_mem)
1133 return pv_area_fetch (state->stack, loc.addr, size);
1134 else if (loc.kind == srcdest_partial_reg)
1135 return pv_unknown ();
1136 else
1137 return *loc.reg;
1138 }
1139
1140
1141 /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1142 all went well, or non-zero if simulating the store would trash our
1143 state. */
1144 static int
1145 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1146 pv_t value, int size)
1147 {
1148 if (loc.kind == srcdest_mem)
1149 {
1150 if (pv_area_store_would_trash (state->stack, loc.addr))
1151 return 1;
1152 pv_area_store (state->stack, loc.addr, size, value);
1153 }
1154 else if (loc.kind == srcdest_partial_reg)
1155 *loc.reg = pv_unknown ();
1156 else
1157 *loc.reg = value;
1158
1159 return 0;
1160 }
1161
1162
1163 static int
1164 m32c_sign_ext (int v, int bits)
1165 {
1166 int mask = 1 << (bits - 1);
1167 return (v ^ mask) - mask;
1168 }
1169
1170 static unsigned int
1171 m32c_next_byte (struct m32c_pv_state *st)
1172 {
1173 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1174 return st->insn[st->next_addr++ - st->scan_pc];
1175 }
1176
1177 static int
1178 m32c_udisp8 (struct m32c_pv_state *st)
1179 {
1180 return m32c_next_byte (st);
1181 }
1182
1183
1184 static int
1185 m32c_sdisp8 (struct m32c_pv_state *st)
1186 {
1187 return m32c_sign_ext (m32c_next_byte (st), 8);
1188 }
1189
1190
1191 static int
1192 m32c_udisp16 (struct m32c_pv_state *st)
1193 {
1194 int low = m32c_next_byte (st);
1195 int high = m32c_next_byte (st);
1196
1197 return low + (high << 8);
1198 }
1199
1200
1201 static int
1202 m32c_sdisp16 (struct m32c_pv_state *st)
1203 {
1204 int low = m32c_next_byte (st);
1205 int high = m32c_next_byte (st);
1206
1207 return m32c_sign_ext (low + (high << 8), 16);
1208 }
1209
1210
1211 static int
1212 m32c_udisp24 (struct m32c_pv_state *st)
1213 {
1214 int low = m32c_next_byte (st);
1215 int mid = m32c_next_byte (st);
1216 int high = m32c_next_byte (st);
1217
1218 return low + (mid << 8) + (high << 16);
1219 }
1220
1221
1222 /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1223 static int
1224 m32c_get_src23 (unsigned char *i)
1225 {
1226 return (((i[0] & 0x70) >> 2)
1227 | ((i[1] & 0x30) >> 4));
1228 }
1229
1230
1231 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1232 static int
1233 m32c_get_dest23 (unsigned char *i)
1234 {
1235 return (((i[0] & 0x0e) << 1)
1236 | ((i[1] & 0xc0) >> 6));
1237 }
1238
1239
1240 static struct srcdest
1241 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1242 int code, int size)
1243 {
1244 struct srcdest sd;
1245
1246 if (code < 6)
1247 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1248 else
1249 sd.kind = srcdest_mem;
1250
1251 sd.addr = pv_unknown ();
1252 sd.reg = 0;
1253
1254 switch (code)
1255 {
1256 case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1257 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1258 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1259 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1260
1261 case 0x4: sd.reg = &st->a0; break;
1262 case 0x5: sd.reg = &st->a1; break;
1263
1264 case 0x6: sd.addr = st->a0; break;
1265 case 0x7: sd.addr = st->a1; break;
1266
1267 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1268 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1269 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1270 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1271
1272 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1273 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1274 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1275 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1276
1277 default:
1278 gdb_assert_not_reached ("unexpected srcdest4");
1279 }
1280
1281 return sd;
1282 }
1283
1284
1285 static struct srcdest
1286 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1287 {
1288 struct srcdest sd;
1289
1290 sd.addr = pv_unknown ();
1291 sd.reg = 0;
1292
1293 switch (code)
1294 {
1295 case 0x12:
1296 case 0x13:
1297 case 0x10:
1298 case 0x11:
1299 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1300 break;
1301
1302 case 0x02:
1303 case 0x03:
1304 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1305 break;
1306
1307 default:
1308 sd.kind = srcdest_mem;
1309 break;
1310
1311 }
1312
1313 switch (code)
1314 {
1315 case 0x12: sd.reg = &st->r0; break;
1316 case 0x13: sd.reg = &st->r1; break;
1317 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1318 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1319 case 0x02: sd.reg = &st->a0; break;
1320 case 0x03: sd.reg = &st->a1; break;
1321
1322 case 0x00: sd.addr = st->a0; break;
1323 case 0x01: sd.addr = st->a1; break;
1324 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1325 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1326 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1327 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1328 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1329 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1330 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1331 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1332 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1333 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1334 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1335 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1336 default:
1337 gdb_assert_not_reached ("unexpected sd23");
1338 }
1339
1340 if (ind)
1341 {
1342 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1343 sd.kind = srcdest_mem;
1344 }
1345
1346 return sd;
1347 }
1348
1349
1350 /* The r16c and r32c machines have instructions with similar
1351 semantics, but completely different machine language encodings. So
1352 we break out the semantics into their own functions, and leave
1353 machine-specific decoding in m32c_analyze_prologue.
1354
1355 The following functions all expect their arguments already decoded,
1356 and they all return zero if analysis should continue past this
1357 instruction, or non-zero if analysis should stop. */
1358
1359
1360 /* Simulate an 'enter SIZE' instruction in STATE. */
1361 static int
1362 m32c_pv_enter (struct m32c_pv_state *state, int size)
1363 {
1364 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1365
1366 /* If simulating this store would require us to forget
1367 everything we know about the stack frame in the name of
1368 accuracy, it would be better to just quit now. */
1369 if (pv_area_store_would_trash (state->stack, state->sp))
1370 return 1;
1371
1372 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1373 return 1;
1374 state->fb = state->sp;
1375 state->sp = pv_add_constant (state->sp, -size);
1376
1377 return 0;
1378 }
1379
1380
1381 static int
1382 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1383 int bit, int src, int size)
1384 {
1385 if (bit & src)
1386 {
1387 if (m32c_pv_push (state, reg, size))
1388 return 1;
1389 }
1390
1391 return 0;
1392 }
1393
1394
1395 /* Simulate a 'pushm SRC' instruction in STATE. */
1396 static int
1397 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1398 {
1399 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1400
1401 /* The bits in SRC indicating which registers to save are:
1402 r0 r1 r2 r3 a0 a1 sb fb */
1403 return
1404 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1405 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1406 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1407 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1408 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1409 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1410 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1411 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1412 }
1413
1414 /* Return non-zero if VALUE is the first incoming argument register. */
1415
1416 static int
1417 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1418 {
1419 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1420 return (value.kind == pvk_register
1421 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1422 ? (value.reg == tdep->r1->num)
1423 : (value.reg == tdep->r0->num))
1424 && value.k == 0);
1425 }
1426
1427 /* Return non-zero if VALUE is an incoming argument register. */
1428
1429 static int
1430 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1431 {
1432 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1433 return (value.kind == pvk_register
1434 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1435 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1436 : (value.reg == tdep->r0->num))
1437 && value.k == 0);
1438 }
1439
1440 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1441 argument register to its stack slot in STATE. Such instructions
1442 should be included in the prologue, if possible.
1443
1444 The store is a spill if:
1445 - the value being stored is the original value of an argument register;
1446 - the value has not already been stored somewhere in STACK; and
1447 - LOC is a stack slot (e.g., a memory location whose address is
1448 relative to the original value of the SP). */
1449
1450 static int
1451 m32c_is_arg_spill (struct m32c_pv_state *st,
1452 struct srcdest loc,
1453 pv_t value)
1454 {
1455 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1456
1457 return (m32c_is_arg_reg (st, value)
1458 && loc.kind == srcdest_mem
1459 && pv_is_register (loc.addr, tdep->sp->num)
1460 && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1461 }
1462
1463 /* Return non-zero if a store of VALUE to LOC is probably
1464 copying the struct return address into an address register
1465 for immediate use. This is basically a "spill" into the
1466 address register, instead of onto the stack.
1467
1468 The prerequisites are:
1469 - value being stored is original value of the FIRST arg register;
1470 - value has not already been stored on stack; and
1471 - LOC is an address register (a0 or a1). */
1472
1473 static int
1474 m32c_is_struct_return (struct m32c_pv_state *st,
1475 struct srcdest loc,
1476 pv_t value)
1477 {
1478 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1479
1480 return (m32c_is_1st_arg_reg (st, value)
1481 && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1482 && loc.kind == srcdest_reg
1483 && (pv_is_register (*loc.reg, tdep->a0->num)
1484 || pv_is_register (*loc.reg, tdep->a1->num)));
1485 }
1486
1487 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1488 was a register save:
1489 - all the named registers should have their original values, and
1490 - the stack pointer should be at a constant offset from the
1491 original stack pointer. */
1492 static int
1493 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1494 {
1495 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1496 /* The bits in SRC indicating which registers to save are:
1497 r0 r1 r2 r3 a0 a1 sb fb */
1498 return
1499 (pv_is_register (st->sp, tdep->sp->num)
1500 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1501 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1502 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1503 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1504 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1505 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1506 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1507 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1508 }
1509
1510
1511 /* Function for finding saved registers in a 'struct pv_area'; we pass
1512 this to pv_area_scan.
1513
1514 If VALUE is a saved register, ADDR says it was saved at a constant
1515 offset from the frame base, and SIZE indicates that the whole
1516 register was saved, record its offset in RESULT_UNTYPED. */
1517 static void
1518 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1519 {
1520 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1521 struct gdbarch *arch = prologue->arch;
1522 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1523
1524 /* Is this the unchanged value of some register being saved on the
1525 stack? */
1526 if (value.kind == pvk_register
1527 && value.k == 0
1528 && pv_is_register (addr, tdep->sp->num))
1529 {
1530 /* Some registers require special handling: they're saved as a
1531 larger value than the register itself. */
1532 CORE_ADDR saved_size = register_size (arch, value.reg);
1533
1534 if (value.reg == tdep->pc->num)
1535 saved_size = tdep->ret_addr_bytes;
1536 else if (register_type (arch, value.reg)
1537 == tdep->data_addr_reg_type)
1538 saved_size = tdep->push_addr_bytes;
1539
1540 if (size == saved_size)
1541 {
1542 /* Find which end of the saved value corresponds to our
1543 register. */
1544 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1545 prologue->reg_offset[value.reg]
1546 = (addr.k + saved_size - register_size (arch, value.reg));
1547 else
1548 prologue->reg_offset[value.reg] = addr.k;
1549 }
1550 }
1551 }
1552
1553
1554 /* Analyze the function prologue for ARCH at START, going no further
1555 than LIMIT, and place a description of what we found in
1556 PROLOGUE. */
1557 static void
1558 m32c_analyze_prologue (struct gdbarch *arch,
1559 CORE_ADDR start, CORE_ADDR limit,
1560 struct m32c_prologue *prologue)
1561 {
1562 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1563 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1564 CORE_ADDR after_last_frame_related_insn;
1565 struct cleanup *back_to;
1566 struct m32c_pv_state st;
1567
1568 st.arch = arch;
1569 st.r0 = pv_register (tdep->r0->num, 0);
1570 st.r1 = pv_register (tdep->r1->num, 0);
1571 st.r2 = pv_register (tdep->r2->num, 0);
1572 st.r3 = pv_register (tdep->r3->num, 0);
1573 st.a0 = pv_register (tdep->a0->num, 0);
1574 st.a1 = pv_register (tdep->a1->num, 0);
1575 st.sb = pv_register (tdep->sb->num, 0);
1576 st.fb = pv_register (tdep->fb->num, 0);
1577 st.sp = pv_register (tdep->sp->num, 0);
1578 st.pc = pv_register (tdep->pc->num, 0);
1579 st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
1580 back_to = make_cleanup_free_pv_area (st.stack);
1581
1582 /* Record that the call instruction has saved the return address on
1583 the stack. */
1584 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1585
1586 memset (prologue, 0, sizeof (*prologue));
1587 prologue->arch = arch;
1588 {
1589 int i;
1590 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1591 prologue->reg_offset[i] = 1;
1592 }
1593
1594 st.scan_pc = after_last_frame_related_insn = start;
1595
1596 while (st.scan_pc < limit)
1597 {
1598 pv_t pre_insn_fb = st.fb;
1599 pv_t pre_insn_sp = st.sp;
1600
1601 /* In theory we could get in trouble by trying to read ahead
1602 here, when we only know we're expecting one byte. In
1603 practice I doubt anyone will care, and it makes the rest of
1604 the code easier. */
1605 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1606 /* If we can't fetch the instruction from memory, stop here
1607 and hope for the best. */
1608 break;
1609 st.next_addr = st.scan_pc;
1610
1611 /* The assembly instructions are written as they appear in the
1612 section of the processor manuals that describe the
1613 instruction encodings.
1614
1615 When a single assembly language instruction has several
1616 different machine-language encodings, the manual
1617 distinguishes them by a number in parens, before the
1618 mnemonic. Those numbers are included, as well.
1619
1620 The srcdest decoding instructions have the same names as the
1621 analogous functions in the simulator. */
1622 if (mach == bfd_mach_m16c)
1623 {
1624 /* (1) ENTER #imm8 */
1625 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1626 {
1627 if (m32c_pv_enter (&st, st.insn[2]))
1628 break;
1629 st.next_addr += 3;
1630 }
1631 /* (1) PUSHM src */
1632 else if (st.insn[0] == 0xec)
1633 {
1634 int src = st.insn[1];
1635 if (m32c_pv_pushm (&st, src))
1636 break;
1637 st.next_addr += 2;
1638
1639 if (m32c_pushm_is_reg_save (&st, src))
1640 after_last_frame_related_insn = st.next_addr;
1641 }
1642
1643 /* (6) MOV.size:G src, dest */
1644 else if ((st.insn[0] & 0xfe) == 0x72)
1645 {
1646 int size = (st.insn[0] & 0x01) ? 2 : 1;
1647 struct srcdest src;
1648 struct srcdest dest;
1649 pv_t src_value;
1650 st.next_addr += 2;
1651
1652 src
1653 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1654 dest
1655 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1656 src_value = m32c_srcdest_fetch (&st, src, size);
1657
1658 if (m32c_is_arg_spill (&st, dest, src_value))
1659 after_last_frame_related_insn = st.next_addr;
1660 else if (m32c_is_struct_return (&st, dest, src_value))
1661 after_last_frame_related_insn = st.next_addr;
1662
1663 if (m32c_srcdest_store (&st, dest, src_value, size))
1664 break;
1665 }
1666
1667 /* (1) LDC #IMM16, sp */
1668 else if (st.insn[0] == 0xeb
1669 && st.insn[1] == 0x50)
1670 {
1671 st.next_addr += 2;
1672 st.sp = pv_constant (m32c_udisp16 (&st));
1673 }
1674
1675 else
1676 /* We've hit some instruction we don't know how to simulate.
1677 Strictly speaking, we should set every value we're
1678 tracking to "unknown". But we'll be optimistic, assume
1679 that we have enough information already, and stop
1680 analysis here. */
1681 break;
1682 }
1683 else
1684 {
1685 int src_indirect = 0;
1686 int dest_indirect = 0;
1687 int i = 0;
1688
1689 gdb_assert (mach == bfd_mach_m32c);
1690
1691 /* Check for prefix bytes indicating indirect addressing. */
1692 if (st.insn[0] == 0x41)
1693 {
1694 src_indirect = 1;
1695 i++;
1696 }
1697 else if (st.insn[0] == 0x09)
1698 {
1699 dest_indirect = 1;
1700 i++;
1701 }
1702 else if (st.insn[0] == 0x49)
1703 {
1704 src_indirect = dest_indirect = 1;
1705 i++;
1706 }
1707
1708 /* (1) ENTER #imm8 */
1709 if (st.insn[i] == 0xec)
1710 {
1711 if (m32c_pv_enter (&st, st.insn[i + 1]))
1712 break;
1713 st.next_addr += 2;
1714 }
1715
1716 /* (1) PUSHM src */
1717 else if (st.insn[i] == 0x8f)
1718 {
1719 int src = st.insn[i + 1];
1720 if (m32c_pv_pushm (&st, src))
1721 break;
1722 st.next_addr += 2;
1723
1724 if (m32c_pushm_is_reg_save (&st, src))
1725 after_last_frame_related_insn = st.next_addr;
1726 }
1727
1728 /* (7) MOV.size:G src, dest */
1729 else if ((st.insn[i] & 0x80) == 0x80
1730 && (st.insn[i + 1] & 0x0f) == 0x0b
1731 && m32c_get_src23 (&st.insn[i]) < 20
1732 && m32c_get_dest23 (&st.insn[i]) < 20)
1733 {
1734 struct srcdest src;
1735 struct srcdest dest;
1736 pv_t src_value;
1737 int bw = st.insn[i] & 0x01;
1738 int size = bw ? 2 : 1;
1739 st.next_addr += 2;
1740
1741 src
1742 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1743 size, src_indirect);
1744 dest
1745 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1746 size, dest_indirect);
1747 src_value = m32c_srcdest_fetch (&st, src, size);
1748
1749 if (m32c_is_arg_spill (&st, dest, src_value))
1750 after_last_frame_related_insn = st.next_addr;
1751
1752 if (m32c_srcdest_store (&st, dest, src_value, size))
1753 break;
1754 }
1755 /* (2) LDC #IMM24, sp */
1756 else if (st.insn[i] == 0xd5
1757 && st.insn[i + 1] == 0x29)
1758 {
1759 st.next_addr += 2;
1760 st.sp = pv_constant (m32c_udisp24 (&st));
1761 }
1762 else
1763 /* We've hit some instruction we don't know how to simulate.
1764 Strictly speaking, we should set every value we're
1765 tracking to "unknown". But we'll be optimistic, assume
1766 that we have enough information already, and stop
1767 analysis here. */
1768 break;
1769 }
1770
1771 /* If this instruction changed the FB or decreased the SP (i.e.,
1772 allocated more stack space), then this may be a good place to
1773 declare the prologue finished. However, there are some
1774 exceptions:
1775
1776 - If the instruction just changed the FB back to its original
1777 value, then that's probably a restore instruction. The
1778 prologue should definitely end before that.
1779
1780 - If the instruction increased the value of the SP (that is,
1781 shrunk the frame), then it's probably part of a frame
1782 teardown sequence, and the prologue should end before
1783 that. */
1784
1785 if (! pv_is_identical (st.fb, pre_insn_fb))
1786 {
1787 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1788 after_last_frame_related_insn = st.next_addr;
1789 }
1790 else if (! pv_is_identical (st.sp, pre_insn_sp))
1791 {
1792 /* The comparison of the constants looks odd, there, because
1793 .k is unsigned. All it really means is that the SP is
1794 lower than it was before the instruction. */
1795 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1796 && pv_is_register (st.sp, tdep->sp->num)
1797 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1798 after_last_frame_related_insn = st.next_addr;
1799 }
1800
1801 st.scan_pc = st.next_addr;
1802 }
1803
1804 /* Did we load a constant value into the stack pointer? */
1805 if (pv_is_constant (st.sp))
1806 prologue->kind = prologue_first_frame;
1807
1808 /* Alternatively, did we initialize the frame pointer? Remember
1809 that the CFA is the address after the return address. */
1810 if (pv_is_register (st.fb, tdep->sp->num))
1811 {
1812 prologue->kind = prologue_with_frame_ptr;
1813 prologue->frame_ptr_offset = st.fb.k;
1814 }
1815
1816 /* Is the frame size a known constant? Remember that frame_size is
1817 actually the offset from the CFA to the SP (i.e., a negative
1818 value). */
1819 else if (pv_is_register (st.sp, tdep->sp->num))
1820 {
1821 prologue->kind = prologue_sans_frame_ptr;
1822 prologue->frame_size = st.sp.k;
1823 }
1824
1825 /* We haven't been able to make sense of this function's frame. Treat
1826 it as the first frame. */
1827 else
1828 prologue->kind = prologue_first_frame;
1829
1830 /* Record where all the registers were saved. */
1831 pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1832
1833 prologue->prologue_end = after_last_frame_related_insn;
1834
1835 do_cleanups (back_to);
1836 }
1837
1838
1839 static CORE_ADDR
1840 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1841 {
1842 const char *name;
1843 CORE_ADDR func_addr, func_end, sal_end;
1844 struct m32c_prologue p;
1845
1846 /* Try to find the extent of the function that contains IP. */
1847 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1848 return ip;
1849
1850 /* Find end by prologue analysis. */
1851 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1852 /* Find end by line info. */
1853 sal_end = skip_prologue_using_sal (gdbarch, ip);
1854 /* Return whichever is lower. */
1855 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1856 return sal_end;
1857 else
1858 return p.prologue_end;
1859 }
1860
1861
1862 \f
1863 /* Stack unwinding. */
1864
1865 static struct m32c_prologue *
1866 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1867 void **this_prologue_cache)
1868 {
1869 if (! *this_prologue_cache)
1870 {
1871 CORE_ADDR func_start = get_frame_func (this_frame);
1872 CORE_ADDR stop_addr = get_frame_pc (this_frame);
1873
1874 /* If we couldn't find any function containing the PC, then
1875 just initialize the prologue cache, but don't do anything. */
1876 if (! func_start)
1877 stop_addr = func_start;
1878
1879 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1880 m32c_analyze_prologue (get_frame_arch (this_frame),
1881 func_start, stop_addr,
1882 (struct m32c_prologue *) *this_prologue_cache);
1883 }
1884
1885 return (struct m32c_prologue *) *this_prologue_cache;
1886 }
1887
1888
1889 static CORE_ADDR
1890 m32c_frame_base (struct frame_info *this_frame,
1891 void **this_prologue_cache)
1892 {
1893 struct m32c_prologue *p
1894 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1895 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1896
1897 /* In functions that use alloca, the distance between the stack
1898 pointer and the frame base varies dynamically, so we can't use
1899 the SP plus static information like prologue analysis to find the
1900 frame base. However, such functions must have a frame pointer,
1901 to be able to restore the SP on exit. So whenever we do have a
1902 frame pointer, use that to find the base. */
1903 switch (p->kind)
1904 {
1905 case prologue_with_frame_ptr:
1906 {
1907 CORE_ADDR fb
1908 = get_frame_register_unsigned (this_frame, tdep->fb->num);
1909 return fb - p->frame_ptr_offset;
1910 }
1911
1912 case prologue_sans_frame_ptr:
1913 {
1914 CORE_ADDR sp
1915 = get_frame_register_unsigned (this_frame, tdep->sp->num);
1916 return sp - p->frame_size;
1917 }
1918
1919 case prologue_first_frame:
1920 return 0;
1921
1922 default:
1923 gdb_assert_not_reached ("unexpected prologue kind");
1924 }
1925 }
1926
1927
1928 static void
1929 m32c_this_id (struct frame_info *this_frame,
1930 void **this_prologue_cache,
1931 struct frame_id *this_id)
1932 {
1933 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1934
1935 if (base)
1936 *this_id = frame_id_build (base, get_frame_func (this_frame));
1937 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1938 }
1939
1940
1941 static struct value *
1942 m32c_prev_register (struct frame_info *this_frame,
1943 void **this_prologue_cache, int regnum)
1944 {
1945 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1946 struct m32c_prologue *p
1947 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1948 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1949
1950 if (regnum == tdep->sp->num)
1951 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1952
1953 /* If prologue analysis says we saved this register somewhere,
1954 return a description of the stack slot holding it. */
1955 if (p->reg_offset[regnum] != 1)
1956 return frame_unwind_got_memory (this_frame, regnum,
1957 frame_base + p->reg_offset[regnum]);
1958
1959 /* Otherwise, presume we haven't changed the value of this
1960 register, and get it from the next frame. */
1961 return frame_unwind_got_register (this_frame, regnum, regnum);
1962 }
1963
1964
1965 static const struct frame_unwind m32c_unwind = {
1966 NORMAL_FRAME,
1967 default_frame_unwind_stop_reason,
1968 m32c_this_id,
1969 m32c_prev_register,
1970 NULL,
1971 default_frame_sniffer
1972 };
1973
1974
1975 static CORE_ADDR
1976 m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1977 {
1978 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1979 return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1980 }
1981
1982
1983 static CORE_ADDR
1984 m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1985 {
1986 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1987 return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1988 }
1989
1990 \f
1991 /* Inferior calls. */
1992
1993 /* The calling conventions, according to GCC:
1994
1995 r8c, m16c
1996 ---------
1997 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1998 HImode), (2) is named, and (3) is an integer or pointer type (no
1999 structs, floats, etc). Otherwise, it's passed on the stack.
2000
2001 Second arg may be passed in r2, same restrictions (but not QImode),
2002 even if the first arg is passed on the stack.
2003
2004 Third and further args are passed on the stack. No padding is
2005 used, stack "alignment" is 8 bits.
2006
2007 m32cm, m32c
2008 -----------
2009
2010 First arg may be passed in r0l or r0, same restrictions as above.
2011
2012 Second and further args are passed on the stack. Padding is used
2013 after QImode parameters (i.e. lower-addressed byte is the value,
2014 higher-addressed byte is the padding), stack "alignment" is 16
2015 bits. */
2016
2017
2018 /* Return true if TYPE is a type that can be passed in registers. (We
2019 ignore the size, and pay attention only to the type code;
2020 acceptable sizes depends on which register is being considered to
2021 hold it.) */
2022 static int
2023 m32c_reg_arg_type (struct type *type)
2024 {
2025 enum type_code code = TYPE_CODE (type);
2026
2027 return (code == TYPE_CODE_INT
2028 || code == TYPE_CODE_ENUM
2029 || code == TYPE_CODE_PTR
2030 || code == TYPE_CODE_REF
2031 || code == TYPE_CODE_BOOL
2032 || code == TYPE_CODE_CHAR);
2033 }
2034
2035
2036 static CORE_ADDR
2037 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2038 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2039 struct value **args, CORE_ADDR sp, int struct_return,
2040 CORE_ADDR struct_addr)
2041 {
2042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2043 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2044 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2045 CORE_ADDR cfa;
2046 int i;
2047
2048 /* The number of arguments given in this function's prototype, or
2049 zero if it has a non-prototyped function type. The m32c ABI
2050 passes arguments mentioned in the prototype differently from
2051 those in the ellipsis of a varargs function, or from those passed
2052 to a non-prototyped function. */
2053 int num_prototyped_args = 0;
2054
2055 {
2056 struct type *func_type = value_type (function);
2057
2058 /* Dereference function pointer types. */
2059 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2060 func_type = TYPE_TARGET_TYPE (func_type);
2061
2062 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2063 TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2064
2065 #if 0
2066 /* The ABI description in gcc/config/m32c/m32c.abi says that
2067 we need to handle prototyped and non-prototyped functions
2068 separately, but the code in GCC doesn't actually do so. */
2069 if (TYPE_PROTOTYPED (func_type))
2070 #endif
2071 num_prototyped_args = TYPE_NFIELDS (func_type);
2072 }
2073
2074 /* First, if the function returns an aggregate by value, push a
2075 pointer to a buffer for it. This doesn't affect the way
2076 subsequent arguments are allocated to registers. */
2077 if (struct_return)
2078 {
2079 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2080 sp -= ptr_len;
2081 write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2082 }
2083
2084 /* Push the arguments. */
2085 for (i = nargs - 1; i >= 0; i--)
2086 {
2087 struct value *arg = args[i];
2088 const gdb_byte *arg_bits = value_contents (arg);
2089 struct type *arg_type = value_type (arg);
2090 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2091
2092 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2093 if (i == 0
2094 && arg_size <= 2
2095 && i < num_prototyped_args
2096 && m32c_reg_arg_type (arg_type))
2097 {
2098 /* Extract and re-store as an integer as a terse way to make
2099 sure it ends up in the least significant end of r1. (GDB
2100 should avoid assuming endianness, even on uni-endian
2101 processors.) */
2102 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2103 byte_order);
2104 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2105 regcache_cooked_write_unsigned (regcache, reg->num, u);
2106 }
2107
2108 /* Can it go in r2? */
2109 else if (mach == bfd_mach_m16c
2110 && i == 1
2111 && arg_size == 2
2112 && i < num_prototyped_args
2113 && m32c_reg_arg_type (arg_type))
2114 regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2115
2116 /* Everything else goes on the stack. */
2117 else
2118 {
2119 sp -= arg_size;
2120
2121 /* Align the stack. */
2122 if (mach == bfd_mach_m32c)
2123 sp &= ~1;
2124
2125 write_memory (sp, arg_bits, arg_size);
2126 }
2127 }
2128
2129 /* This is the CFA we use to identify the dummy frame. */
2130 cfa = sp;
2131
2132 /* Push the return address. */
2133 sp -= tdep->ret_addr_bytes;
2134 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2135 bp_addr);
2136
2137 /* Update the stack pointer. */
2138 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2139
2140 /* We need to borrow an odd trick from the i386 target here.
2141
2142 The value we return from this function gets used as the stack
2143 address (the CFA) for the dummy frame's ID. The obvious thing is
2144 to return the new TOS. However, that points at the return
2145 address, saved on the stack, which is inconsistent with the CFA's
2146 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2147 .debug_frame info uses the address immediately after the saved
2148 return address. So you end up with a dummy frame whose CFA
2149 points at the return address, but the frame for the function
2150 being called has a CFA pointing after the return address: the
2151 younger CFA is *greater than* the older CFA. The sanity checks
2152 in frame.c don't like that.
2153
2154 So we try to be consistent with the CFA's used by DWARF 2.
2155 Having a dummy frame and a real frame with the *same* CFA is
2156 tolerable. */
2157 return cfa;
2158 }
2159
2160
2161 static struct frame_id
2162 m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2163 {
2164 /* This needs to return a frame ID whose PC is the return address
2165 passed to m32c_push_dummy_call, and whose stack_addr is the SP
2166 m32c_push_dummy_call returned.
2167
2168 m32c_unwind_sp gives us the CFA, which is the value the SP had
2169 before the return address was pushed. */
2170 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2171 CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2172 return frame_id_build (sp, get_frame_pc (this_frame));
2173 }
2174
2175
2176 \f
2177 /* Return values. */
2178
2179 /* Return value conventions, according to GCC:
2180
2181 r8c, m16c
2182 ---------
2183
2184 QImode in r0l
2185 HImode in r0
2186 SImode in r2r0
2187 near pointer in r0
2188 far pointer in r2r0
2189
2190 Aggregate values (regardless of size) are returned by pushing a
2191 pointer to a temporary area on the stack after the args are pushed.
2192 The function fills in this area with the value. Note that this
2193 pointer on the stack does not affect how register arguments, if any,
2194 are configured.
2195
2196 m32cm, m32c
2197 -----------
2198 Same. */
2199
2200 /* Return non-zero if values of type TYPE are returned by storing them
2201 in a buffer whose address is passed on the stack, ahead of the
2202 other arguments. */
2203 static int
2204 m32c_return_by_passed_buf (struct type *type)
2205 {
2206 enum type_code code = TYPE_CODE (type);
2207
2208 return (code == TYPE_CODE_STRUCT
2209 || code == TYPE_CODE_UNION);
2210 }
2211
2212 static enum return_value_convention
2213 m32c_return_value (struct gdbarch *gdbarch,
2214 struct value *function,
2215 struct type *valtype,
2216 struct regcache *regcache,
2217 gdb_byte *readbuf,
2218 const gdb_byte *writebuf)
2219 {
2220 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2221 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2222 enum return_value_convention conv;
2223 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2224
2225 if (m32c_return_by_passed_buf (valtype))
2226 conv = RETURN_VALUE_STRUCT_CONVENTION;
2227 else
2228 conv = RETURN_VALUE_REGISTER_CONVENTION;
2229
2230 if (readbuf)
2231 {
2232 /* We should never be called to find values being returned by
2233 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2234 unless we made the call ourselves. */
2235 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2236
2237 gdb_assert (valtype_len <= 8);
2238
2239 /* Anything that fits in r0 is returned there. */
2240 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2241 {
2242 ULONGEST u;
2243 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2244 store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2245 }
2246 else
2247 {
2248 /* Everything else is passed in mem0, using as many bytes as
2249 needed. This is not what the Renesas tools do, but it's
2250 what GCC does at the moment. */
2251 struct bound_minimal_symbol mem0
2252 = lookup_minimal_symbol ("mem0", NULL, NULL);
2253
2254 if (! mem0.minsym)
2255 error (_("The return value is stored in memory at 'mem0', "
2256 "but GDB cannot find\n"
2257 "its address."));
2258 read_memory (BMSYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2259 }
2260 }
2261
2262 if (writebuf)
2263 {
2264 /* We should never be called to store values to be returned
2265 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2266 finding the buffer, unless we made the call ourselves. */
2267 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2268
2269 gdb_assert (valtype_len <= 8);
2270
2271 /* Anything that fits in r0 is returned there. */
2272 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2273 {
2274 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2275 byte_order);
2276 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2277 }
2278 else
2279 {
2280 /* Everything else is passed in mem0, using as many bytes as
2281 needed. This is not what the Renesas tools do, but it's
2282 what GCC does at the moment. */
2283 struct bound_minimal_symbol mem0
2284 = lookup_minimal_symbol ("mem0", NULL, NULL);
2285
2286 if (! mem0.minsym)
2287 error (_("The return value is stored in memory at 'mem0', "
2288 "but GDB cannot find\n"
2289 " its address."));
2290 write_memory (BMSYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
2291 }
2292 }
2293
2294 return conv;
2295 }
2296
2297
2298 \f
2299 /* Trampolines. */
2300
2301 /* The m16c and m32c use a trampoline function for indirect function
2302 calls. An indirect call looks like this:
2303
2304 ... push arguments ...
2305 ... push target function address ...
2306 jsr.a m32c_jsri16
2307
2308 The code for m32c_jsri16 looks like this:
2309
2310 m32c_jsri16:
2311
2312 # Save return address.
2313 pop.w m32c_jsri_ret
2314 pop.b m32c_jsri_ret+2
2315
2316 # Store target function address.
2317 pop.w m32c_jsri_addr
2318
2319 # Re-push return address.
2320 push.b m32c_jsri_ret+2
2321 push.w m32c_jsri_ret
2322
2323 # Call the target function.
2324 jmpi.a m32c_jsri_addr
2325
2326 Without further information, GDB will treat calls to m32c_jsri16
2327 like calls to any other function. Since m32c_jsri16 doesn't have
2328 debugging information, that normally means that GDB sets a step-
2329 resume breakpoint and lets the program continue --- which is not
2330 what the user wanted. (Giving the trampoline debugging info
2331 doesn't help: the user expects the program to stop in the function
2332 their program is calling, not in some trampoline code they've never
2333 seen before.)
2334
2335 The gdbarch_skip_trampoline_code method tells GDB how to step
2336 through such trampoline functions transparently to the user. When
2337 given the address of a trampoline function's first instruction,
2338 gdbarch_skip_trampoline_code should return the address of the first
2339 instruction of the function really being called. If GDB decides it
2340 wants to step into that function, it will set a breakpoint there
2341 and silently continue to it.
2342
2343 We recognize the trampoline by name, and extract the target address
2344 directly from the stack. This isn't great, but recognizing by its
2345 code sequence seems more fragile. */
2346
2347 static CORE_ADDR
2348 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2349 {
2350 struct gdbarch *gdbarch = get_frame_arch (frame);
2351 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2352 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2353
2354 /* It would be nicer to simply look up the addresses of known
2355 trampolines once, and then compare stop_pc with them. However,
2356 we'd need to ensure that that cached address got invalidated when
2357 someone loaded a new executable, and I'm not quite sure of the
2358 best way to do that. find_pc_partial_function does do some
2359 caching, so we'll see how this goes. */
2360 const char *name;
2361 CORE_ADDR start, end;
2362
2363 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2364 {
2365 /* Are we stopped at the beginning of the trampoline function? */
2366 if (strcmp (name, "m32c_jsri16") == 0
2367 && stop_pc == start)
2368 {
2369 /* Get the stack pointer. The return address is at the top,
2370 and the target function's address is just below that. We
2371 know it's a two-byte address, since the trampoline is
2372 m32c_jsri*16*. */
2373 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2374 CORE_ADDR target
2375 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2376 2, byte_order);
2377
2378 /* What we have now is the address of a jump instruction.
2379 What we need is the destination of that jump.
2380 The opcode is 1 byte, and the destination is the next 3 bytes. */
2381
2382 target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2383 return target;
2384 }
2385 }
2386
2387 return 0;
2388 }
2389
2390
2391 /* Address/pointer conversions. */
2392
2393 /* On the m16c, there is a 24-bit address space, but only a very few
2394 instructions can generate addresses larger than 0xffff: jumps,
2395 jumps to subroutines, and the lde/std (load/store extended)
2396 instructions.
2397
2398 Since GCC can only support one size of pointer, we can't have
2399 distinct 'near' and 'far' pointer types; we have to pick one size
2400 for everything. If we wanted to use 24-bit pointers, then GCC
2401 would have to use lde and ste for all memory references, which
2402 would be terrible for performance and code size. So the GNU
2403 toolchain uses 16-bit pointers for everything, and gives up the
2404 ability to have pointers point outside the first 64k of memory.
2405
2406 However, as a special hack, we let the linker place functions at
2407 addresses above 0xffff, as long as it also places a trampoline in
2408 the low 64k for every function whose address is taken. Each
2409 trampoline consists of a single jmp.a instruction that jumps to the
2410 function's real entry point. Pointers to functions can be 16 bits
2411 long, even though the functions themselves are at higher addresses:
2412 the pointers refer to the trampolines, not the functions.
2413
2414 This complicates things for GDB, however: given the address of a
2415 function (from debug info or linker symbols, say) which could be
2416 anywhere in the 24-bit address space, how can we find an
2417 appropriate 16-bit value to use as a pointer to it?
2418
2419 If the linker has not generated a trampoline for the function,
2420 we're out of luck. Well, I guess we could malloc some space and
2421 write a jmp.a instruction to it, but I'm not going to get into that
2422 at the moment.
2423
2424 If the linker has generated a trampoline for the function, then it
2425 also emitted a symbol for the trampoline: if the function's linker
2426 symbol is named NAME, then the function's trampoline's linker
2427 symbol is named NAME.plt.
2428
2429 So, given a code address:
2430 - We try to find a linker symbol at that address.
2431 - If we find such a symbol named NAME, we look for a linker symbol
2432 named NAME.plt.
2433 - If we find such a symbol, we assume it is a trampoline, and use
2434 its address as the pointer value.
2435
2436 And, given a function pointer:
2437 - We try to find a linker symbol at that address named NAME.plt.
2438 - If we find such a symbol, we look for a linker symbol named NAME.
2439 - If we find that, we provide that as the function's address.
2440 - If any of the above steps fail, we return the original address
2441 unchanged; it might really be a function in the low 64k.
2442
2443 See? You *knew* there was a reason you wanted to be a computer
2444 programmer! :) */
2445
2446 static void
2447 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2448 struct type *type, gdb_byte *buf, CORE_ADDR addr)
2449 {
2450 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2451 enum type_code target_code;
2452 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2453 TYPE_CODE (type) == TYPE_CODE_REF);
2454
2455 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2456
2457 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2458 {
2459 const char *func_name;
2460 char *tramp_name;
2461 struct bound_minimal_symbol tramp_msym;
2462
2463 /* Try to find a linker symbol at this address. */
2464 struct bound_minimal_symbol func_msym
2465 = lookup_minimal_symbol_by_pc (addr);
2466
2467 if (! func_msym.minsym)
2468 error (_("Cannot convert code address %s to function pointer:\n"
2469 "couldn't find a symbol at that address, to find trampoline."),
2470 paddress (gdbarch, addr));
2471
2472 func_name = MSYMBOL_LINKAGE_NAME (func_msym.minsym);
2473 tramp_name = (char *) xmalloc (strlen (func_name) + 5);
2474 strcpy (tramp_name, func_name);
2475 strcat (tramp_name, ".plt");
2476
2477 /* Try to find a linker symbol for the trampoline. */
2478 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2479
2480 /* We've either got another copy of the name now, or don't need
2481 the name any more. */
2482 xfree (tramp_name);
2483
2484 if (! tramp_msym.minsym)
2485 {
2486 CORE_ADDR ptrval;
2487
2488 /* No PLT entry found. Mask off the upper bits of the address
2489 to make a pointer. As noted in the warning to the user
2490 below, this value might be useful if converted back into
2491 an address by GDB, but will otherwise, almost certainly,
2492 be garbage.
2493
2494 Using this masked result does seem to be useful
2495 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2496 PASSes. These results appear to be correct as well.
2497
2498 We print a warning here so that the user can make a
2499 determination about whether the result is useful or not. */
2500 ptrval = addr & 0xffff;
2501
2502 warning (_("Cannot convert code address %s to function pointer:\n"
2503 "couldn't find trampoline named '%s.plt'.\n"
2504 "Returning pointer value %s instead; this may produce\n"
2505 "a useful result if converted back into an address by GDB,\n"
2506 "but will most likely not be useful otherwise.\n"),
2507 paddress (gdbarch, addr), func_name,
2508 paddress (gdbarch, ptrval));
2509
2510 addr = ptrval;
2511
2512 }
2513 else
2514 {
2515 /* The trampoline's address is our pointer. */
2516 addr = BMSYMBOL_VALUE_ADDRESS (tramp_msym);
2517 }
2518 }
2519
2520 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
2521 }
2522
2523
2524 static CORE_ADDR
2525 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2526 struct type *type, const gdb_byte *buf)
2527 {
2528 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2529 CORE_ADDR ptr;
2530 enum type_code target_code;
2531
2532 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2533 TYPE_CODE (type) == TYPE_CODE_REF);
2534
2535 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
2536
2537 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2538
2539 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2540 {
2541 /* See if there is a minimal symbol at that address whose name is
2542 "NAME.plt". */
2543 struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2544
2545 if (ptr_msym.minsym)
2546 {
2547 const char *ptr_msym_name = MSYMBOL_LINKAGE_NAME (ptr_msym.minsym);
2548 int len = strlen (ptr_msym_name);
2549
2550 if (len > 4
2551 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2552 {
2553 struct bound_minimal_symbol func_msym;
2554 /* We have a .plt symbol; try to find the symbol for the
2555 corresponding function.
2556
2557 Since the trampoline contains a jump instruction, we
2558 could also just extract the jump's target address. I
2559 don't see much advantage one way or the other. */
2560 char *func_name = (char *) xmalloc (len - 4 + 1);
2561 memcpy (func_name, ptr_msym_name, len - 4);
2562 func_name[len - 4] = '\0';
2563 func_msym
2564 = lookup_minimal_symbol (func_name, NULL, NULL);
2565
2566 /* If we do have such a symbol, return its value as the
2567 function's true address. */
2568 if (func_msym.minsym)
2569 ptr = BMSYMBOL_VALUE_ADDRESS (func_msym);
2570 }
2571 }
2572 else
2573 {
2574 int aspace;
2575
2576 for (aspace = 1; aspace <= 15; aspace++)
2577 {
2578 ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2579
2580 if (ptr_msym.minsym)
2581 ptr |= aspace << 16;
2582 }
2583 }
2584 }
2585
2586 return ptr;
2587 }
2588
2589 static void
2590 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2591 int *frame_regnum,
2592 LONGEST *frame_offset)
2593 {
2594 const char *name;
2595 CORE_ADDR func_addr, func_end;
2596 struct m32c_prologue p;
2597
2598 struct regcache *regcache = get_current_regcache ();
2599 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2600
2601 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2602 internal_error (__FILE__, __LINE__,
2603 _("No virtual frame pointer available"));
2604
2605 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2606 switch (p.kind)
2607 {
2608 case prologue_with_frame_ptr:
2609 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2610 *frame_offset = p.frame_ptr_offset;
2611 break;
2612 case prologue_sans_frame_ptr:
2613 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2614 *frame_offset = p.frame_size;
2615 break;
2616 default:
2617 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2618 *frame_offset = 0;
2619 break;
2620 }
2621 /* Sanity check */
2622 if (*frame_regnum > gdbarch_num_regs (gdbarch))
2623 internal_error (__FILE__, __LINE__,
2624 _("No virtual frame pointer available"));
2625 }
2626
2627 \f
2628 /* Initialization. */
2629
2630 static struct gdbarch *
2631 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2632 {
2633 struct gdbarch *arch;
2634 struct gdbarch_tdep *tdep;
2635 unsigned long mach = info.bfd_arch_info->mach;
2636
2637 /* Find a candidate among the list of architectures we've created
2638 already. */
2639 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2640 arches != NULL;
2641 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2642 return arches->gdbarch;
2643
2644 tdep = XCNEW (struct gdbarch_tdep);
2645 arch = gdbarch_alloc (&info, tdep);
2646
2647 /* Essential types. */
2648 make_types (arch);
2649
2650 /* Address/pointer conversions. */
2651 if (mach == bfd_mach_m16c)
2652 {
2653 set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2654 set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2655 }
2656
2657 /* Register set. */
2658 make_regs (arch);
2659
2660 /* Disassembly. */
2661 set_gdbarch_print_insn (arch, print_insn_m32c);
2662
2663 /* Breakpoints. */
2664 set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2665
2666 /* Prologue analysis and unwinding. */
2667 set_gdbarch_inner_than (arch, core_addr_lessthan);
2668 set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2669 set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2670 set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2671 #if 0
2672 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2673 They may be in the dwarf2 cfi code in GDB, or they may be in
2674 the debug info emitted by the upstream toolchain. I don't
2675 know which, but I do know that the prologue analyzer works better.
2676 MVS 04/13/06 */
2677 dwarf2_append_sniffers (arch);
2678 #endif
2679 frame_unwind_append_unwinder (arch, &m32c_unwind);
2680
2681 /* Inferior calls. */
2682 set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2683 set_gdbarch_return_value (arch, m32c_return_value);
2684 set_gdbarch_dummy_id (arch, m32c_dummy_id);
2685
2686 /* Trampolines. */
2687 set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2688
2689 set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2690
2691 /* m32c function boundary addresses are not necessarily even.
2692 Therefore, the `vbit', which indicates a pointer to a virtual
2693 member function, is stored in the delta field, rather than as
2694 the low bit of a function pointer address.
2695
2696 In order to verify this, see the definition of
2697 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2698 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2699 set_gdbarch_vbit_in_delta (arch, 1);
2700
2701 return arch;
2702 }
2703
2704 /* Provide a prototype to silence -Wmissing-prototypes. */
2705 extern initialize_file_ftype _initialize_m32c_tdep;
2706
2707 void
2708 _initialize_m32c_tdep (void)
2709 {
2710 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2711
2712 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2713 }