]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/m32c-tdep.c
start change to progspace independence
[thirdparty/binutils-gdb.git] / gdb / m32c-tdep.c
1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 2004-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include <stdarg.h>
23
24 #include <string.h>
25 #include "gdb_assert.h"
26 #include "elf-bfd.h"
27 #include "elf/m32c.h"
28 #include "gdb/sim-m32c.h"
29 #include "dis-asm.h"
30 #include "gdbtypes.h"
31 #include "regcache.h"
32 #include "arch-utils.h"
33 #include "frame.h"
34 #include "frame-unwind.h"
35 #include "dwarf2-frame.h"
36 #include "dwarf2expr.h"
37 #include "symtab.h"
38 #include "gdbcore.h"
39 #include "value.h"
40 #include "reggroups.h"
41 #include "prologue-value.h"
42 #include "target.h"
43 #include "objfiles.h"
44
45 \f
46 /* The m32c tdep structure. */
47
48 static struct reggroup *m32c_dma_reggroup;
49
50 struct m32c_reg;
51
52 /* The type of a function that moves the value of REG between CACHE or
53 BUF --- in either direction. */
54 typedef enum register_status (m32c_move_reg_t) (struct m32c_reg *reg,
55 struct regcache *cache,
56 void *buf);
57
58 struct m32c_reg
59 {
60 /* The name of this register. */
61 const char *name;
62
63 /* Its type. */
64 struct type *type;
65
66 /* The architecture this register belongs to. */
67 struct gdbarch *arch;
68
69 /* Its GDB register number. */
70 int num;
71
72 /* Its sim register number. */
73 int sim_num;
74
75 /* Its DWARF register number, or -1 if it doesn't have one. */
76 int dwarf_num;
77
78 /* Register group memberships. */
79 unsigned int general_p : 1;
80 unsigned int dma_p : 1;
81 unsigned int system_p : 1;
82 unsigned int save_restore_p : 1;
83
84 /* Functions to read its value from a regcache, and write its value
85 to a regcache. */
86 m32c_move_reg_t *read, *write;
87
88 /* Data for READ and WRITE functions. The exact meaning depends on
89 the specific functions selected; see the comments for those
90 functions. */
91 struct m32c_reg *rx, *ry;
92 int n;
93 };
94
95
96 /* An overestimate of the number of raw and pseudoregisters we will
97 have. The exact answer depends on the variant of the architecture
98 at hand, but we can use this to declare statically allocated
99 arrays, and bump it up when needed. */
100 #define M32C_MAX_NUM_REGS (75)
101
102 /* The largest assigned DWARF register number. */
103 #define M32C_MAX_DWARF_REGNUM (40)
104
105
106 struct gdbarch_tdep
107 {
108 /* All the registers for this variant, indexed by GDB register
109 number, and the number of registers present. */
110 struct m32c_reg regs[M32C_MAX_NUM_REGS];
111
112 /* The number of valid registers. */
113 int num_regs;
114
115 /* Interesting registers. These are pointers into REGS. */
116 struct m32c_reg *pc, *flg;
117 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
118 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
119 struct m32c_reg *sb, *fb, *sp;
120
121 /* A table indexed by DWARF register numbers, pointing into
122 REGS. */
123 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
124
125 /* Types for this architecture. We can't use the builtin_type_foo
126 types, because they're not initialized when building a gdbarch
127 structure. */
128 struct type *voyd, *ptr_voyd, *func_voyd;
129 struct type *uint8, *uint16;
130 struct type *int8, *int16, *int32, *int64;
131
132 /* The types for data address and code address registers. */
133 struct type *data_addr_reg_type, *code_addr_reg_type;
134
135 /* The number of bytes a return address pushed by a 'jsr' instruction
136 occupies on the stack. */
137 int ret_addr_bytes;
138
139 /* The number of bytes an address register occupies on the stack
140 when saved by an 'enter' or 'pushm' instruction. */
141 int push_addr_bytes;
142 };
143
144 \f
145 /* Types. */
146
147 static void
148 make_types (struct gdbarch *arch)
149 {
150 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
151 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
152 int data_addr_reg_bits, code_addr_reg_bits;
153 char type_name[50];
154
155 #if 0
156 /* This is used to clip CORE_ADDR values, so this value is
157 appropriate both on the m32c, where pointers are 32 bits long,
158 and on the m16c, where pointers are sixteen bits long, but there
159 may be code above the 64k boundary. */
160 set_gdbarch_addr_bit (arch, 24);
161 #else
162 /* GCC uses 32 bits for addrs in the dwarf info, even though
163 only 16/24 bits are used. Setting addr_bit to 24 causes
164 errors in reading the dwarf addresses. */
165 set_gdbarch_addr_bit (arch, 32);
166 #endif
167
168 set_gdbarch_int_bit (arch, 16);
169 switch (mach)
170 {
171 case bfd_mach_m16c:
172 data_addr_reg_bits = 16;
173 code_addr_reg_bits = 24;
174 set_gdbarch_ptr_bit (arch, 16);
175 tdep->ret_addr_bytes = 3;
176 tdep->push_addr_bytes = 2;
177 break;
178
179 case bfd_mach_m32c:
180 data_addr_reg_bits = 24;
181 code_addr_reg_bits = 24;
182 set_gdbarch_ptr_bit (arch, 32);
183 tdep->ret_addr_bytes = 4;
184 tdep->push_addr_bytes = 4;
185 break;
186
187 default:
188 gdb_assert_not_reached ("unexpected mach");
189 }
190
191 /* The builtin_type_mumble variables are sometimes uninitialized when
192 this is called, so we avoid using them. */
193 tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
194 tdep->ptr_voyd
195 = arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT,
196 NULL);
197 TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
198 TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
199 tdep->func_voyd = lookup_function_type (tdep->voyd);
200
201 xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
202 gdbarch_bfd_arch_info (arch)->printable_name);
203 tdep->data_addr_reg_type
204 = arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits / TARGET_CHAR_BIT,
205 xstrdup (type_name));
206 TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
207 TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;
208
209 xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
210 gdbarch_bfd_arch_info (arch)->printable_name);
211 tdep->code_addr_reg_type
212 = arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits / TARGET_CHAR_BIT,
213 xstrdup (type_name));
214 TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
215 TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;
216
217 tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
218 tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
219 tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
220 tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
221 tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
222 tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
223 }
224
225
226 \f
227 /* Register set. */
228
229 static const char *
230 m32c_register_name (struct gdbarch *gdbarch, int num)
231 {
232 return gdbarch_tdep (gdbarch)->regs[num].name;
233 }
234
235
236 static struct type *
237 m32c_register_type (struct gdbarch *arch, int reg_nr)
238 {
239 return gdbarch_tdep (arch)->regs[reg_nr].type;
240 }
241
242
243 static int
244 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
245 {
246 return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
247 }
248
249
250 static int
251 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
252 {
253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
254 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
255 && tdep->dwarf_regs[reg_nr])
256 return tdep->dwarf_regs[reg_nr]->num;
257 else
258 /* The DWARF CFI code expects to see -1 for invalid register
259 numbers. */
260 return -1;
261 }
262
263
264 static int
265 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
266 struct reggroup *group)
267 {
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269 struct m32c_reg *reg = &tdep->regs[regnum];
270
271 /* The anonymous raw registers aren't in any groups. */
272 if (! reg->name)
273 return 0;
274
275 if (group == all_reggroup)
276 return 1;
277
278 if (group == general_reggroup
279 && reg->general_p)
280 return 1;
281
282 if (group == m32c_dma_reggroup
283 && reg->dma_p)
284 return 1;
285
286 if (group == system_reggroup
287 && reg->system_p)
288 return 1;
289
290 /* Since the m32c DWARF register numbers refer to cooked registers, not
291 raw registers, and frame_pop depends on the save and restore groups
292 containing registers the DWARF CFI will actually mention, our save
293 and restore groups are cooked registers, not raw registers. (This is
294 why we can't use the default reggroup function.) */
295 if ((group == save_reggroup
296 || group == restore_reggroup)
297 && reg->save_restore_p)
298 return 1;
299
300 return 0;
301 }
302
303
304 /* Register move functions. We declare them here using
305 m32c_move_reg_t to check the types. */
306 static m32c_move_reg_t m32c_raw_read, m32c_raw_write;
307 static m32c_move_reg_t m32c_banked_read, m32c_banked_write;
308 static m32c_move_reg_t m32c_sb_read, m32c_sb_write;
309 static m32c_move_reg_t m32c_part_read, m32c_part_write;
310 static m32c_move_reg_t m32c_cat_read, m32c_cat_write;
311 static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
312
313
314 /* Copy the value of the raw register REG from CACHE to BUF. */
315 static enum register_status
316 m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
317 {
318 return regcache_raw_read (cache, reg->num, buf);
319 }
320
321
322 /* Copy the value of the raw register REG from BUF to CACHE. */
323 static enum register_status
324 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
325 {
326 regcache_raw_write (cache, reg->num, (const void *) buf);
327
328 return REG_VALID;
329 }
330
331
332 /* Return the value of the 'flg' register in CACHE. */
333 static int
334 m32c_read_flg (struct regcache *cache)
335 {
336 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
337 ULONGEST flg;
338 regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
339 return flg & 0xffff;
340 }
341
342
343 /* Evaluate the real register number of a banked register. */
344 static struct m32c_reg *
345 m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
346 {
347 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
348 }
349
350
351 /* Move the value of a banked register from CACHE to BUF.
352 If the value of the 'flg' register in CACHE has any of the bits
353 masked in REG->n set, then read REG->ry. Otherwise, read
354 REG->rx. */
355 static enum register_status
356 m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
357 {
358 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
359 return regcache_raw_read (cache, bank_reg->num, buf);
360 }
361
362
363 /* Move the value of a banked register from BUF to CACHE.
364 If the value of the 'flg' register in CACHE has any of the bits
365 masked in REG->n set, then write REG->ry. Otherwise, write
366 REG->rx. */
367 static enum register_status
368 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
369 {
370 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
371 regcache_raw_write (cache, bank_reg->num, (const void *) buf);
372
373 return REG_VALID;
374 }
375
376
377 /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
378 banked register; on bfd_mach_m16c, it's not. */
379 static enum register_status
380 m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
381 {
382 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
383 return m32c_raw_read (reg->rx, cache, buf);
384 else
385 return m32c_banked_read (reg, cache, buf);
386 }
387
388
389 /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
390 banked register; on bfd_mach_m16c, it's not. */
391 static enum register_status
392 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
393 {
394 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
395 m32c_raw_write (reg->rx, cache, buf);
396 else
397 m32c_banked_write (reg, cache, buf);
398
399 return REG_VALID;
400 }
401
402
403 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
404 and *LEN_P to the offset and length, in bytes, of the part REG
405 occupies in its underlying register. The offset is from the
406 lower-addressed end, regardless of the architecture's endianness.
407 (The M32C family is always little-endian, but let's keep those
408 assumptions out of here.) */
409 static void
410 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
411 {
412 /* The length of the containing register, of which REG is one part. */
413 int containing_len = TYPE_LENGTH (reg->rx->type);
414
415 /* The length of one "element" in our imaginary array. */
416 int elt_len = TYPE_LENGTH (reg->type);
417
418 /* The offset of REG's "element" from the least significant end of
419 the containing register. */
420 int elt_offset = reg->n * elt_len;
421
422 /* If we extend off the end, trim the length of the element. */
423 if (elt_offset + elt_len > containing_len)
424 {
425 elt_len = containing_len - elt_offset;
426 /* We shouldn't be declaring partial registers that go off the
427 end of their containing registers. */
428 gdb_assert (elt_len > 0);
429 }
430
431 /* Flip the offset around if we're big-endian. */
432 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
433 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
434
435 *offset_p = elt_offset;
436 *len_p = elt_len;
437 }
438
439
440 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
441 to BUF. Treating the value of the register REG->rx as an array of
442 REG->type values, where higher indices refer to more significant
443 bits, read the value of the REG->n'th element. */
444 static enum register_status
445 m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
446 {
447 int offset, len;
448
449 memset (buf, 0, TYPE_LENGTH (reg->type));
450 m32c_find_part (reg, &offset, &len);
451 return regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
452 }
453
454
455 /* Move the value of a banked register from BUF to CACHE.
456 Treating the value of the register REG->rx as an array of REG->type
457 values, where higher indices refer to more significant bits, write
458 the value of the REG->n'th element. */
459 static enum register_status
460 m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
461 {
462 int offset, len;
463
464 m32c_find_part (reg, &offset, &len);
465 regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
466
467 return REG_VALID;
468 }
469
470
471 /* Move the value of REG from CACHE to BUF. REG's value is the
472 concatenation of the values of the registers REG->rx and REG->ry,
473 with REG->rx contributing the more significant bits. */
474 static enum register_status
475 m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
476 {
477 int high_bytes = TYPE_LENGTH (reg->rx->type);
478 int low_bytes = TYPE_LENGTH (reg->ry->type);
479 /* For address arithmetic. */
480 unsigned char *cbuf = buf;
481 enum register_status status;
482
483 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
484
485 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
486 {
487 status = regcache_cooked_read (cache, reg->rx->num, cbuf);
488 if (status == REG_VALID)
489 status = regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
490 }
491 else
492 {
493 status = regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
494 if (status == REG_VALID)
495 status = regcache_cooked_read (cache, reg->ry->num, cbuf);
496 }
497
498 return status;
499 }
500
501
502 /* Move the value of REG from CACHE to BUF. REG's value is the
503 concatenation of the values of the registers REG->rx and REG->ry,
504 with REG->rx contributing the more significant bits. */
505 static enum register_status
506 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
507 {
508 int high_bytes = TYPE_LENGTH (reg->rx->type);
509 int low_bytes = TYPE_LENGTH (reg->ry->type);
510 /* For address arithmetic. */
511 unsigned char *cbuf = buf;
512
513 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
514
515 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
516 {
517 regcache_cooked_write (cache, reg->rx->num, cbuf);
518 regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
519 }
520 else
521 {
522 regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
523 regcache_cooked_write (cache, reg->ry->num, cbuf);
524 }
525
526 return REG_VALID;
527 }
528
529
530 /* Copy the value of the raw register REG from CACHE to BUF. REG is
531 the concatenation (from most significant to least) of r3, r2, r1,
532 and r0. */
533 static enum register_status
534 m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
535 {
536 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
537 int len = TYPE_LENGTH (tdep->r0->type);
538 enum register_status status;
539
540 /* For address arithmetic. */
541 unsigned char *cbuf = buf;
542
543 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
544 {
545 status = regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
546 if (status == REG_VALID)
547 status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
548 if (status == REG_VALID)
549 status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
550 if (status == REG_VALID)
551 status = regcache_cooked_read (cache, tdep->r3->num, cbuf);
552 }
553 else
554 {
555 status = regcache_cooked_read (cache, tdep->r0->num, cbuf);
556 if (status == REG_VALID)
557 status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
558 if (status == REG_VALID)
559 status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
560 if (status == REG_VALID)
561 status = regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
562 }
563
564 return status;
565 }
566
567
568 /* Copy the value of the raw register REG from BUF to CACHE. REG is
569 the concatenation (from most significant to least) of r3, r2, r1,
570 and r0. */
571 static enum register_status
572 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
573 {
574 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
575 int len = TYPE_LENGTH (tdep->r0->type);
576
577 /* For address arithmetic. */
578 unsigned char *cbuf = buf;
579
580 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
581 {
582 regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
583 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
584 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
585 regcache_cooked_write (cache, tdep->r3->num, cbuf);
586 }
587 else
588 {
589 regcache_cooked_write (cache, tdep->r0->num, cbuf);
590 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
591 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
592 regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
593 }
594
595 return REG_VALID;
596 }
597
598
599 static enum register_status
600 m32c_pseudo_register_read (struct gdbarch *arch,
601 struct regcache *cache,
602 int cookednum,
603 gdb_byte *buf)
604 {
605 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
606 struct m32c_reg *reg;
607
608 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
609 gdb_assert (arch == get_regcache_arch (cache));
610 gdb_assert (arch == tdep->regs[cookednum].arch);
611 reg = &tdep->regs[cookednum];
612
613 return reg->read (reg, cache, buf);
614 }
615
616
617 static void
618 m32c_pseudo_register_write (struct gdbarch *arch,
619 struct regcache *cache,
620 int cookednum,
621 const gdb_byte *buf)
622 {
623 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
624 struct m32c_reg *reg;
625
626 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
627 gdb_assert (arch == get_regcache_arch (cache));
628 gdb_assert (arch == tdep->regs[cookednum].arch);
629 reg = &tdep->regs[cookednum];
630
631 reg->write (reg, cache, (void *) buf);
632 }
633
634
635 /* Add a register with the given fields to the end of ARCH's table.
636 Return a pointer to the newly added register. */
637 static struct m32c_reg *
638 add_reg (struct gdbarch *arch,
639 const char *name,
640 struct type *type,
641 int sim_num,
642 m32c_move_reg_t *read,
643 m32c_move_reg_t *write,
644 struct m32c_reg *rx,
645 struct m32c_reg *ry,
646 int n)
647 {
648 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
649 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
650
651 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
652
653 r->name = name;
654 r->type = type;
655 r->arch = arch;
656 r->num = tdep->num_regs;
657 r->sim_num = sim_num;
658 r->dwarf_num = -1;
659 r->general_p = 0;
660 r->dma_p = 0;
661 r->system_p = 0;
662 r->save_restore_p = 0;
663 r->read = read;
664 r->write = write;
665 r->rx = rx;
666 r->ry = ry;
667 r->n = n;
668
669 tdep->num_regs++;
670
671 return r;
672 }
673
674
675 /* Record NUM as REG's DWARF register number. */
676 static void
677 set_dwarf_regnum (struct m32c_reg *reg, int num)
678 {
679 gdb_assert (num < M32C_MAX_NUM_REGS);
680
681 /* Update the reg->DWARF mapping. Only count the first number
682 assigned to this register. */
683 if (reg->dwarf_num == -1)
684 reg->dwarf_num = num;
685
686 /* Update the DWARF->reg mapping. */
687 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
688 }
689
690
691 /* Mark REG as a general-purpose register, and return it. */
692 static struct m32c_reg *
693 mark_general (struct m32c_reg *reg)
694 {
695 reg->general_p = 1;
696 return reg;
697 }
698
699
700 /* Mark REG as a DMA register, and return it. */
701 static struct m32c_reg *
702 mark_dma (struct m32c_reg *reg)
703 {
704 reg->dma_p = 1;
705 return reg;
706 }
707
708
709 /* Mark REG as a SYSTEM register, and return it. */
710 static struct m32c_reg *
711 mark_system (struct m32c_reg *reg)
712 {
713 reg->system_p = 1;
714 return reg;
715 }
716
717
718 /* Mark REG as a save-restore register, and return it. */
719 static struct m32c_reg *
720 mark_save_restore (struct m32c_reg *reg)
721 {
722 reg->save_restore_p = 1;
723 return reg;
724 }
725
726
727 #define FLAGBIT_B 0x0010
728 #define FLAGBIT_U 0x0080
729
730 /* Handy macros for declaring registers. These all evaluate to
731 pointers to the register declared. Macros that define two
732 registers evaluate to a pointer to the first. */
733
734 /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
735 #define R(name, type, sim_num) \
736 (add_reg (arch, (name), (type), (sim_num), \
737 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
738
739 /* The simulator register number for a raw register named NAME. */
740 #define SIM(name) (m32c_sim_reg_ ## name)
741
742 /* A raw unsigned 16-bit data register named NAME.
743 NAME should be an identifier, not a string. */
744 #define R16U(name) \
745 (R(#name, tdep->uint16, SIM (name)))
746
747 /* A raw data address register named NAME.
748 NAME should be an identifier, not a string. */
749 #define RA(name) \
750 (R(#name, tdep->data_addr_reg_type, SIM (name)))
751
752 /* A raw code address register named NAME. NAME should
753 be an identifier, not a string. */
754 #define RC(name) \
755 (R(#name, tdep->code_addr_reg_type, SIM (name)))
756
757 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
758 NAME should be an identifier, not a string. */
759 #define RP(name, type) \
760 (R(#name "0", (type), SIM (name ## 0)), \
761 R(#name "1", (type), SIM (name ## 1)) - 1)
762
763 /* A raw banked general-purpose data register named NAME.
764 NAME should be an identifier, not a string. */
765 #define RBD(name) \
766 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
767 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
768
769 /* A raw banked data address register named NAME.
770 NAME should be an identifier, not a string. */
771 #define RBA(name) \
772 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
773 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
774
775 /* A cooked register named NAME referring to a raw banked register
776 from the bank selected by the current value of FLG. RAW_PAIR
777 should be a pointer to the first register in the banked pair.
778 NAME must be an identifier, not a string. */
779 #define CB(name, raw_pair) \
780 (add_reg (arch, #name, (raw_pair)->type, 0, \
781 m32c_banked_read, m32c_banked_write, \
782 (raw_pair), (raw_pair + 1), FLAGBIT_B))
783
784 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
785 access the top and bottom halves of the register pointed to by
786 NAME. NAME should be an identifier. */
787 #define CHL(name, type) \
788 (add_reg (arch, #name "h", (type), 0, \
789 m32c_part_read, m32c_part_write, name, NULL, 1), \
790 add_reg (arch, #name "l", (type), 0, \
791 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
792
793 /* A register constructed by concatenating the two registers HIGH and
794 LOW, whose name is HIGHLOW and whose type is TYPE. */
795 #define CCAT(high, low, type) \
796 (add_reg (arch, #high #low, (type), 0, \
797 m32c_cat_read, m32c_cat_write, (high), (low), 0))
798
799 /* Abbreviations for marking register group membership. */
800 #define G(reg) (mark_general (reg))
801 #define S(reg) (mark_system (reg))
802 #define DMA(reg) (mark_dma (reg))
803
804
805 /* Construct the register set for ARCH. */
806 static void
807 make_regs (struct gdbarch *arch)
808 {
809 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
810 int mach = gdbarch_bfd_arch_info (arch)->mach;
811 int num_raw_regs;
812 int num_cooked_regs;
813
814 struct m32c_reg *r0;
815 struct m32c_reg *r1;
816 struct m32c_reg *r2;
817 struct m32c_reg *r3;
818 struct m32c_reg *a0;
819 struct m32c_reg *a1;
820 struct m32c_reg *fb;
821 struct m32c_reg *sb;
822 struct m32c_reg *sp;
823 struct m32c_reg *r0hl;
824 struct m32c_reg *r1hl;
825 struct m32c_reg *r2hl;
826 struct m32c_reg *r3hl;
827 struct m32c_reg *intbhl;
828 struct m32c_reg *r2r0;
829 struct m32c_reg *r3r1;
830 struct m32c_reg *r3r1r2r0;
831 struct m32c_reg *r3r2r1r0;
832 struct m32c_reg *a1a0;
833
834 struct m32c_reg *raw_r0_pair = RBD (r0);
835 struct m32c_reg *raw_r1_pair = RBD (r1);
836 struct m32c_reg *raw_r2_pair = RBD (r2);
837 struct m32c_reg *raw_r3_pair = RBD (r3);
838 struct m32c_reg *raw_a0_pair = RBA (a0);
839 struct m32c_reg *raw_a1_pair = RBA (a1);
840 struct m32c_reg *raw_fb_pair = RBA (fb);
841
842 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
843 We always declare both raw registers, and deal with the distinction
844 in the pseudoregister. */
845 struct m32c_reg *raw_sb_pair = RBA (sb);
846
847 struct m32c_reg *usp = S (RA (usp));
848 struct m32c_reg *isp = S (RA (isp));
849 struct m32c_reg *intb = S (RC (intb));
850 struct m32c_reg *pc = G (RC (pc));
851 struct m32c_reg *flg = G (R16U (flg));
852
853 if (mach == bfd_mach_m32c)
854 {
855 struct m32c_reg *svf = S (R16U (svf));
856 struct m32c_reg *svp = S (RC (svp));
857 struct m32c_reg *vct = S (RC (vct));
858
859 struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
860 struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
861 struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
862 struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
863 struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
864 struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
865 }
866
867 num_raw_regs = tdep->num_regs;
868
869 r0 = G (CB (r0, raw_r0_pair));
870 r1 = G (CB (r1, raw_r1_pair));
871 r2 = G (CB (r2, raw_r2_pair));
872 r3 = G (CB (r3, raw_r3_pair));
873 a0 = G (CB (a0, raw_a0_pair));
874 a1 = G (CB (a1, raw_a1_pair));
875 fb = G (CB (fb, raw_fb_pair));
876
877 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
878 Specify custom read/write functions that do the right thing. */
879 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
880 m32c_sb_read, m32c_sb_write,
881 raw_sb_pair, raw_sb_pair + 1, 0));
882
883 /* The current sp is either usp or isp, depending on the value of
884 the FLG register's U bit. */
885 sp = G (add_reg (arch, "sp", usp->type, 0,
886 m32c_banked_read, m32c_banked_write,
887 isp, usp, FLAGBIT_U));
888
889 r0hl = CHL (r0, tdep->int8);
890 r1hl = CHL (r1, tdep->int8);
891 r2hl = CHL (r2, tdep->int8);
892 r3hl = CHL (r3, tdep->int8);
893 intbhl = CHL (intb, tdep->int16);
894
895 r2r0 = CCAT (r2, r0, tdep->int32);
896 r3r1 = CCAT (r3, r1, tdep->int32);
897 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
898
899 r3r2r1r0
900 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
901 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
902
903 if (mach == bfd_mach_m16c)
904 a1a0 = CCAT (a1, a0, tdep->int32);
905 else
906 a1a0 = NULL;
907
908 num_cooked_regs = tdep->num_regs - num_raw_regs;
909
910 tdep->pc = pc;
911 tdep->flg = flg;
912 tdep->r0 = r0;
913 tdep->r1 = r1;
914 tdep->r2 = r2;
915 tdep->r3 = r3;
916 tdep->r2r0 = r2r0;
917 tdep->r3r2r1r0 = r3r2r1r0;
918 tdep->r3r1r2r0 = r3r1r2r0;
919 tdep->a0 = a0;
920 tdep->a1 = a1;
921 tdep->sb = sb;
922 tdep->fb = fb;
923 tdep->sp = sp;
924
925 /* Set up the DWARF register table. */
926 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
927 set_dwarf_regnum (r0hl + 1, 0x01);
928 set_dwarf_regnum (r0hl + 0, 0x02);
929 set_dwarf_regnum (r1hl + 1, 0x03);
930 set_dwarf_regnum (r1hl + 0, 0x04);
931 set_dwarf_regnum (r0, 0x05);
932 set_dwarf_regnum (r1, 0x06);
933 set_dwarf_regnum (r2, 0x07);
934 set_dwarf_regnum (r3, 0x08);
935 set_dwarf_regnum (a0, 0x09);
936 set_dwarf_regnum (a1, 0x0a);
937 set_dwarf_regnum (fb, 0x0b);
938 set_dwarf_regnum (sp, 0x0c);
939 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
940 set_dwarf_regnum (sb, 0x13);
941 set_dwarf_regnum (r2r0, 0x15);
942 set_dwarf_regnum (r3r1, 0x16);
943 if (a1a0)
944 set_dwarf_regnum (a1a0, 0x17);
945
946 /* Enumerate the save/restore register group.
947
948 The regcache_save and regcache_restore functions apply their read
949 function to each register in this group.
950
951 Since frame_pop supplies frame_unwind_register as its read
952 function, the registers meaningful to the Dwarf unwinder need to
953 be in this group.
954
955 On the other hand, when we make inferior calls, save_inferior_status
956 and restore_inferior_status use them to preserve the current register
957 values across the inferior call. For this, you'd kind of like to
958 preserve all the raw registers, to protect the interrupted code from
959 any sort of bank switching the callee might have done. But we handle
960 those cases so badly anyway --- for example, it matters whether we
961 restore FLG before or after we restore the general-purpose registers,
962 but there's no way to express that --- that it isn't worth worrying
963 about.
964
965 We omit control registers like inthl: if you call a function that
966 changes those, it's probably because you wanted that change to be
967 visible to the interrupted code. */
968 mark_save_restore (r0);
969 mark_save_restore (r1);
970 mark_save_restore (r2);
971 mark_save_restore (r3);
972 mark_save_restore (a0);
973 mark_save_restore (a1);
974 mark_save_restore (sb);
975 mark_save_restore (fb);
976 mark_save_restore (sp);
977 mark_save_restore (pc);
978 mark_save_restore (flg);
979
980 set_gdbarch_num_regs (arch, num_raw_regs);
981 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
982 set_gdbarch_pc_regnum (arch, pc->num);
983 set_gdbarch_sp_regnum (arch, sp->num);
984 set_gdbarch_register_name (arch, m32c_register_name);
985 set_gdbarch_register_type (arch, m32c_register_type);
986 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
987 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
988 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
989 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
990 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
991 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
992
993 reggroup_add (arch, general_reggroup);
994 reggroup_add (arch, all_reggroup);
995 reggroup_add (arch, save_reggroup);
996 reggroup_add (arch, restore_reggroup);
997 reggroup_add (arch, system_reggroup);
998 reggroup_add (arch, m32c_dma_reggroup);
999 }
1000
1001
1002 \f
1003 /* Breakpoints. */
1004
1005 static const unsigned char *
1006 m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
1007 {
1008 static unsigned char break_insn[] = { 0x00 }; /* brk */
1009
1010 *len = sizeof (break_insn);
1011 return break_insn;
1012 }
1013
1014
1015 \f
1016 /* Prologue analysis. */
1017
1018 struct m32c_prologue
1019 {
1020 /* For consistency with the DWARF 2 .debug_frame info generated by
1021 GCC, a frame's CFA is the address immediately after the saved
1022 return address. */
1023
1024 /* The architecture for which we generated this prologue info. */
1025 struct gdbarch *arch;
1026
1027 enum {
1028 /* This function uses a frame pointer. */
1029 prologue_with_frame_ptr,
1030
1031 /* This function has no frame pointer. */
1032 prologue_sans_frame_ptr,
1033
1034 /* This function sets up the stack, so its frame is the first
1035 frame on the stack. */
1036 prologue_first_frame
1037
1038 } kind;
1039
1040 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1041 CFA to where the frame pointer points. This is always zero or
1042 negative. */
1043 LONGEST frame_ptr_offset;
1044
1045 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1046 the stack pointer --- always zero or negative.
1047
1048 Calling this a "size" is a bit misleading, but given that the
1049 stack grows downwards, using offsets for everything keeps one
1050 from going completely sign-crazy: you never change anything's
1051 sign for an ADD instruction; always change the second operand's
1052 sign for a SUB instruction; and everything takes care of
1053 itself.
1054
1055 Functions that use alloca don't have a constant frame size. But
1056 they always have frame pointers, so we must use that to find the
1057 CFA (and perhaps to unwind the stack pointer). */
1058 LONGEST frame_size;
1059
1060 /* The address of the first instruction at which the frame has been
1061 set up and the arguments are where the debug info says they are
1062 --- as best as we can tell. */
1063 CORE_ADDR prologue_end;
1064
1065 /* reg_offset[R] is the offset from the CFA at which register R is
1066 saved, or 1 if register R has not been saved. (Real values are
1067 always zero or negative.) */
1068 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1069 };
1070
1071
1072 /* The longest I've seen, anyway. */
1073 #define M32C_MAX_INSN_LEN (9)
1074
1075 /* Processor state, for the prologue analyzer. */
1076 struct m32c_pv_state
1077 {
1078 struct gdbarch *arch;
1079 pv_t r0, r1, r2, r3;
1080 pv_t a0, a1;
1081 pv_t sb, fb, sp;
1082 pv_t pc;
1083 struct pv_area *stack;
1084
1085 /* Bytes from the current PC, the address they were read from,
1086 and the address of the next unconsumed byte. */
1087 gdb_byte insn[M32C_MAX_INSN_LEN];
1088 CORE_ADDR scan_pc, next_addr;
1089 };
1090
1091
1092 /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1093 all went well, or non-zero if simulating the action would trash our
1094 state. */
1095 static int
1096 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1097 {
1098 if (pv_area_store_would_trash (state->stack, state->sp))
1099 return 1;
1100
1101 state->sp = pv_add_constant (state->sp, -size);
1102 pv_area_store (state->stack, state->sp, size, value);
1103
1104 return 0;
1105 }
1106
1107
1108 /* A source or destination location for an m16c or m32c
1109 instruction. */
1110 struct srcdest
1111 {
1112 /* If srcdest_reg, the location is a register pointed to by REG.
1113 If srcdest_partial_reg, the location is part of a register pointed
1114 to by REG. We don't try to handle this too well.
1115 If srcdest_mem, the location is memory whose address is ADDR. */
1116 enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
1117 pv_t *reg, addr;
1118 };
1119
1120
1121 /* Return the SIZE-byte value at LOC in STATE. */
1122 static pv_t
1123 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1124 {
1125 if (loc.kind == srcdest_mem)
1126 return pv_area_fetch (state->stack, loc.addr, size);
1127 else if (loc.kind == srcdest_partial_reg)
1128 return pv_unknown ();
1129 else
1130 return *loc.reg;
1131 }
1132
1133
1134 /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1135 all went well, or non-zero if simulating the store would trash our
1136 state. */
1137 static int
1138 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1139 pv_t value, int size)
1140 {
1141 if (loc.kind == srcdest_mem)
1142 {
1143 if (pv_area_store_would_trash (state->stack, loc.addr))
1144 return 1;
1145 pv_area_store (state->stack, loc.addr, size, value);
1146 }
1147 else if (loc.kind == srcdest_partial_reg)
1148 *loc.reg = pv_unknown ();
1149 else
1150 *loc.reg = value;
1151
1152 return 0;
1153 }
1154
1155
1156 static int
1157 m32c_sign_ext (int v, int bits)
1158 {
1159 int mask = 1 << (bits - 1);
1160 return (v ^ mask) - mask;
1161 }
1162
1163 static unsigned int
1164 m32c_next_byte (struct m32c_pv_state *st)
1165 {
1166 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1167 return st->insn[st->next_addr++ - st->scan_pc];
1168 }
1169
1170 static int
1171 m32c_udisp8 (struct m32c_pv_state *st)
1172 {
1173 return m32c_next_byte (st);
1174 }
1175
1176
1177 static int
1178 m32c_sdisp8 (struct m32c_pv_state *st)
1179 {
1180 return m32c_sign_ext (m32c_next_byte (st), 8);
1181 }
1182
1183
1184 static int
1185 m32c_udisp16 (struct m32c_pv_state *st)
1186 {
1187 int low = m32c_next_byte (st);
1188 int high = m32c_next_byte (st);
1189
1190 return low + (high << 8);
1191 }
1192
1193
1194 static int
1195 m32c_sdisp16 (struct m32c_pv_state *st)
1196 {
1197 int low = m32c_next_byte (st);
1198 int high = m32c_next_byte (st);
1199
1200 return m32c_sign_ext (low + (high << 8), 16);
1201 }
1202
1203
1204 static int
1205 m32c_udisp24 (struct m32c_pv_state *st)
1206 {
1207 int low = m32c_next_byte (st);
1208 int mid = m32c_next_byte (st);
1209 int high = m32c_next_byte (st);
1210
1211 return low + (mid << 8) + (high << 16);
1212 }
1213
1214
1215 /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1216 static int
1217 m32c_get_src23 (unsigned char *i)
1218 {
1219 return (((i[0] & 0x70) >> 2)
1220 | ((i[1] & 0x30) >> 4));
1221 }
1222
1223
1224 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1225 static int
1226 m32c_get_dest23 (unsigned char *i)
1227 {
1228 return (((i[0] & 0x0e) << 1)
1229 | ((i[1] & 0xc0) >> 6));
1230 }
1231
1232
1233 static struct srcdest
1234 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1235 int code, int size)
1236 {
1237 struct srcdest sd;
1238
1239 if (code < 6)
1240 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1241 else
1242 sd.kind = srcdest_mem;
1243
1244 sd.addr = pv_unknown ();
1245 sd.reg = 0;
1246
1247 switch (code)
1248 {
1249 case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1250 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1251 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1252 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1253
1254 case 0x4: sd.reg = &st->a0; break;
1255 case 0x5: sd.reg = &st->a1; break;
1256
1257 case 0x6: sd.addr = st->a0; break;
1258 case 0x7: sd.addr = st->a1; break;
1259
1260 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1261 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1262 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1263 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1264
1265 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1266 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1267 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1268 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1269
1270 default:
1271 gdb_assert_not_reached ("unexpected srcdest4");
1272 }
1273
1274 return sd;
1275 }
1276
1277
1278 static struct srcdest
1279 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1280 {
1281 struct srcdest sd;
1282
1283 sd.addr = pv_unknown ();
1284 sd.reg = 0;
1285
1286 switch (code)
1287 {
1288 case 0x12:
1289 case 0x13:
1290 case 0x10:
1291 case 0x11:
1292 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1293 break;
1294
1295 case 0x02:
1296 case 0x03:
1297 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1298 break;
1299
1300 default:
1301 sd.kind = srcdest_mem;
1302 break;
1303
1304 }
1305
1306 switch (code)
1307 {
1308 case 0x12: sd.reg = &st->r0; break;
1309 case 0x13: sd.reg = &st->r1; break;
1310 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1311 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1312 case 0x02: sd.reg = &st->a0; break;
1313 case 0x03: sd.reg = &st->a1; break;
1314
1315 case 0x00: sd.addr = st->a0; break;
1316 case 0x01: sd.addr = st->a1; break;
1317 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1318 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1319 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1320 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1321 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1322 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1323 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1324 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1325 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1326 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1327 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1328 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1329 default:
1330 gdb_assert_not_reached ("unexpected sd23");
1331 }
1332
1333 if (ind)
1334 {
1335 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1336 sd.kind = srcdest_mem;
1337 }
1338
1339 return sd;
1340 }
1341
1342
1343 /* The r16c and r32c machines have instructions with similar
1344 semantics, but completely different machine language encodings. So
1345 we break out the semantics into their own functions, and leave
1346 machine-specific decoding in m32c_analyze_prologue.
1347
1348 The following functions all expect their arguments already decoded,
1349 and they all return zero if analysis should continue past this
1350 instruction, or non-zero if analysis should stop. */
1351
1352
1353 /* Simulate an 'enter SIZE' instruction in STATE. */
1354 static int
1355 m32c_pv_enter (struct m32c_pv_state *state, int size)
1356 {
1357 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1358
1359 /* If simulating this store would require us to forget
1360 everything we know about the stack frame in the name of
1361 accuracy, it would be better to just quit now. */
1362 if (pv_area_store_would_trash (state->stack, state->sp))
1363 return 1;
1364
1365 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1366 return 1;
1367 state->fb = state->sp;
1368 state->sp = pv_add_constant (state->sp, -size);
1369
1370 return 0;
1371 }
1372
1373
1374 static int
1375 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1376 int bit, int src, int size)
1377 {
1378 if (bit & src)
1379 {
1380 if (m32c_pv_push (state, reg, size))
1381 return 1;
1382 }
1383
1384 return 0;
1385 }
1386
1387
1388 /* Simulate a 'pushm SRC' instruction in STATE. */
1389 static int
1390 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1391 {
1392 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1393
1394 /* The bits in SRC indicating which registers to save are:
1395 r0 r1 r2 r3 a0 a1 sb fb */
1396 return
1397 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1398 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1399 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1400 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1401 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1402 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1403 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1404 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1405 }
1406
1407 /* Return non-zero if VALUE is the first incoming argument register. */
1408
1409 static int
1410 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1411 {
1412 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1413 return (value.kind == pvk_register
1414 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1415 ? (value.reg == tdep->r1->num)
1416 : (value.reg == tdep->r0->num))
1417 && value.k == 0);
1418 }
1419
1420 /* Return non-zero if VALUE is an incoming argument register. */
1421
1422 static int
1423 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1424 {
1425 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1426 return (value.kind == pvk_register
1427 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1428 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1429 : (value.reg == tdep->r0->num))
1430 && value.k == 0);
1431 }
1432
1433 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1434 argument register to its stack slot in STATE. Such instructions
1435 should be included in the prologue, if possible.
1436
1437 The store is a spill if:
1438 - the value being stored is the original value of an argument register;
1439 - the value has not already been stored somewhere in STACK; and
1440 - LOC is a stack slot (e.g., a memory location whose address is
1441 relative to the original value of the SP). */
1442
1443 static int
1444 m32c_is_arg_spill (struct m32c_pv_state *st,
1445 struct srcdest loc,
1446 pv_t value)
1447 {
1448 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1449
1450 return (m32c_is_arg_reg (st, value)
1451 && loc.kind == srcdest_mem
1452 && pv_is_register (loc.addr, tdep->sp->num)
1453 && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1454 }
1455
1456 /* Return non-zero if a store of VALUE to LOC is probably
1457 copying the struct return address into an address register
1458 for immediate use. This is basically a "spill" into the
1459 address register, instead of onto the stack.
1460
1461 The prerequisites are:
1462 - value being stored is original value of the FIRST arg register;
1463 - value has not already been stored on stack; and
1464 - LOC is an address register (a0 or a1). */
1465
1466 static int
1467 m32c_is_struct_return (struct m32c_pv_state *st,
1468 struct srcdest loc,
1469 pv_t value)
1470 {
1471 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1472
1473 return (m32c_is_1st_arg_reg (st, value)
1474 && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1475 && loc.kind == srcdest_reg
1476 && (pv_is_register (*loc.reg, tdep->a0->num)
1477 || pv_is_register (*loc.reg, tdep->a1->num)));
1478 }
1479
1480 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1481 was a register save:
1482 - all the named registers should have their original values, and
1483 - the stack pointer should be at a constant offset from the
1484 original stack pointer. */
1485 static int
1486 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1487 {
1488 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1489 /* The bits in SRC indicating which registers to save are:
1490 r0 r1 r2 r3 a0 a1 sb fb */
1491 return
1492 (pv_is_register (st->sp, tdep->sp->num)
1493 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1494 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1495 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1496 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1497 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1498 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1499 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1500 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1501 }
1502
1503
1504 /* Function for finding saved registers in a 'struct pv_area'; we pass
1505 this to pv_area_scan.
1506
1507 If VALUE is a saved register, ADDR says it was saved at a constant
1508 offset from the frame base, and SIZE indicates that the whole
1509 register was saved, record its offset in RESULT_UNTYPED. */
1510 static void
1511 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1512 {
1513 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1514 struct gdbarch *arch = prologue->arch;
1515 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1516
1517 /* Is this the unchanged value of some register being saved on the
1518 stack? */
1519 if (value.kind == pvk_register
1520 && value.k == 0
1521 && pv_is_register (addr, tdep->sp->num))
1522 {
1523 /* Some registers require special handling: they're saved as a
1524 larger value than the register itself. */
1525 CORE_ADDR saved_size = register_size (arch, value.reg);
1526
1527 if (value.reg == tdep->pc->num)
1528 saved_size = tdep->ret_addr_bytes;
1529 else if (register_type (arch, value.reg)
1530 == tdep->data_addr_reg_type)
1531 saved_size = tdep->push_addr_bytes;
1532
1533 if (size == saved_size)
1534 {
1535 /* Find which end of the saved value corresponds to our
1536 register. */
1537 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1538 prologue->reg_offset[value.reg]
1539 = (addr.k + saved_size - register_size (arch, value.reg));
1540 else
1541 prologue->reg_offset[value.reg] = addr.k;
1542 }
1543 }
1544 }
1545
1546
1547 /* Analyze the function prologue for ARCH at START, going no further
1548 than LIMIT, and place a description of what we found in
1549 PROLOGUE. */
1550 static void
1551 m32c_analyze_prologue (struct gdbarch *arch,
1552 CORE_ADDR start, CORE_ADDR limit,
1553 struct m32c_prologue *prologue)
1554 {
1555 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1556 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1557 CORE_ADDR after_last_frame_related_insn;
1558 struct cleanup *back_to;
1559 struct m32c_pv_state st;
1560
1561 st.arch = arch;
1562 st.r0 = pv_register (tdep->r0->num, 0);
1563 st.r1 = pv_register (tdep->r1->num, 0);
1564 st.r2 = pv_register (tdep->r2->num, 0);
1565 st.r3 = pv_register (tdep->r3->num, 0);
1566 st.a0 = pv_register (tdep->a0->num, 0);
1567 st.a1 = pv_register (tdep->a1->num, 0);
1568 st.sb = pv_register (tdep->sb->num, 0);
1569 st.fb = pv_register (tdep->fb->num, 0);
1570 st.sp = pv_register (tdep->sp->num, 0);
1571 st.pc = pv_register (tdep->pc->num, 0);
1572 st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
1573 back_to = make_cleanup_free_pv_area (st.stack);
1574
1575 /* Record that the call instruction has saved the return address on
1576 the stack. */
1577 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1578
1579 memset (prologue, 0, sizeof (*prologue));
1580 prologue->arch = arch;
1581 {
1582 int i;
1583 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1584 prologue->reg_offset[i] = 1;
1585 }
1586
1587 st.scan_pc = after_last_frame_related_insn = start;
1588
1589 while (st.scan_pc < limit)
1590 {
1591 pv_t pre_insn_fb = st.fb;
1592 pv_t pre_insn_sp = st.sp;
1593
1594 /* In theory we could get in trouble by trying to read ahead
1595 here, when we only know we're expecting one byte. In
1596 practice I doubt anyone will care, and it makes the rest of
1597 the code easier. */
1598 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1599 /* If we can't fetch the instruction from memory, stop here
1600 and hope for the best. */
1601 break;
1602 st.next_addr = st.scan_pc;
1603
1604 /* The assembly instructions are written as they appear in the
1605 section of the processor manuals that describe the
1606 instruction encodings.
1607
1608 When a single assembly language instruction has several
1609 different machine-language encodings, the manual
1610 distinguishes them by a number in parens, before the
1611 mnemonic. Those numbers are included, as well.
1612
1613 The srcdest decoding instructions have the same names as the
1614 analogous functions in the simulator. */
1615 if (mach == bfd_mach_m16c)
1616 {
1617 /* (1) ENTER #imm8 */
1618 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1619 {
1620 if (m32c_pv_enter (&st, st.insn[2]))
1621 break;
1622 st.next_addr += 3;
1623 }
1624 /* (1) PUSHM src */
1625 else if (st.insn[0] == 0xec)
1626 {
1627 int src = st.insn[1];
1628 if (m32c_pv_pushm (&st, src))
1629 break;
1630 st.next_addr += 2;
1631
1632 if (m32c_pushm_is_reg_save (&st, src))
1633 after_last_frame_related_insn = st.next_addr;
1634 }
1635
1636 /* (6) MOV.size:G src, dest */
1637 else if ((st.insn[0] & 0xfe) == 0x72)
1638 {
1639 int size = (st.insn[0] & 0x01) ? 2 : 1;
1640 struct srcdest src;
1641 struct srcdest dest;
1642 pv_t src_value;
1643 st.next_addr += 2;
1644
1645 src
1646 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1647 dest
1648 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1649 src_value = m32c_srcdest_fetch (&st, src, size);
1650
1651 if (m32c_is_arg_spill (&st, dest, src_value))
1652 after_last_frame_related_insn = st.next_addr;
1653 else if (m32c_is_struct_return (&st, dest, src_value))
1654 after_last_frame_related_insn = st.next_addr;
1655
1656 if (m32c_srcdest_store (&st, dest, src_value, size))
1657 break;
1658 }
1659
1660 /* (1) LDC #IMM16, sp */
1661 else if (st.insn[0] == 0xeb
1662 && st.insn[1] == 0x50)
1663 {
1664 st.next_addr += 2;
1665 st.sp = pv_constant (m32c_udisp16 (&st));
1666 }
1667
1668 else
1669 /* We've hit some instruction we don't know how to simulate.
1670 Strictly speaking, we should set every value we're
1671 tracking to "unknown". But we'll be optimistic, assume
1672 that we have enough information already, and stop
1673 analysis here. */
1674 break;
1675 }
1676 else
1677 {
1678 int src_indirect = 0;
1679 int dest_indirect = 0;
1680 int i = 0;
1681
1682 gdb_assert (mach == bfd_mach_m32c);
1683
1684 /* Check for prefix bytes indicating indirect addressing. */
1685 if (st.insn[0] == 0x41)
1686 {
1687 src_indirect = 1;
1688 i++;
1689 }
1690 else if (st.insn[0] == 0x09)
1691 {
1692 dest_indirect = 1;
1693 i++;
1694 }
1695 else if (st.insn[0] == 0x49)
1696 {
1697 src_indirect = dest_indirect = 1;
1698 i++;
1699 }
1700
1701 /* (1) ENTER #imm8 */
1702 if (st.insn[i] == 0xec)
1703 {
1704 if (m32c_pv_enter (&st, st.insn[i + 1]))
1705 break;
1706 st.next_addr += 2;
1707 }
1708
1709 /* (1) PUSHM src */
1710 else if (st.insn[i] == 0x8f)
1711 {
1712 int src = st.insn[i + 1];
1713 if (m32c_pv_pushm (&st, src))
1714 break;
1715 st.next_addr += 2;
1716
1717 if (m32c_pushm_is_reg_save (&st, src))
1718 after_last_frame_related_insn = st.next_addr;
1719 }
1720
1721 /* (7) MOV.size:G src, dest */
1722 else if ((st.insn[i] & 0x80) == 0x80
1723 && (st.insn[i + 1] & 0x0f) == 0x0b
1724 && m32c_get_src23 (&st.insn[i]) < 20
1725 && m32c_get_dest23 (&st.insn[i]) < 20)
1726 {
1727 struct srcdest src;
1728 struct srcdest dest;
1729 pv_t src_value;
1730 int bw = st.insn[i] & 0x01;
1731 int size = bw ? 2 : 1;
1732 st.next_addr += 2;
1733
1734 src
1735 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1736 size, src_indirect);
1737 dest
1738 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1739 size, dest_indirect);
1740 src_value = m32c_srcdest_fetch (&st, src, size);
1741
1742 if (m32c_is_arg_spill (&st, dest, src_value))
1743 after_last_frame_related_insn = st.next_addr;
1744
1745 if (m32c_srcdest_store (&st, dest, src_value, size))
1746 break;
1747 }
1748 /* (2) LDC #IMM24, sp */
1749 else if (st.insn[i] == 0xd5
1750 && st.insn[i + 1] == 0x29)
1751 {
1752 st.next_addr += 2;
1753 st.sp = pv_constant (m32c_udisp24 (&st));
1754 }
1755 else
1756 /* We've hit some instruction we don't know how to simulate.
1757 Strictly speaking, we should set every value we're
1758 tracking to "unknown". But we'll be optimistic, assume
1759 that we have enough information already, and stop
1760 analysis here. */
1761 break;
1762 }
1763
1764 /* If this instruction changed the FB or decreased the SP (i.e.,
1765 allocated more stack space), then this may be a good place to
1766 declare the prologue finished. However, there are some
1767 exceptions:
1768
1769 - If the instruction just changed the FB back to its original
1770 value, then that's probably a restore instruction. The
1771 prologue should definitely end before that.
1772
1773 - If the instruction increased the value of the SP (that is,
1774 shrunk the frame), then it's probably part of a frame
1775 teardown sequence, and the prologue should end before
1776 that. */
1777
1778 if (! pv_is_identical (st.fb, pre_insn_fb))
1779 {
1780 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1781 after_last_frame_related_insn = st.next_addr;
1782 }
1783 else if (! pv_is_identical (st.sp, pre_insn_sp))
1784 {
1785 /* The comparison of the constants looks odd, there, because
1786 .k is unsigned. All it really means is that the SP is
1787 lower than it was before the instruction. */
1788 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1789 && pv_is_register (st.sp, tdep->sp->num)
1790 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1791 after_last_frame_related_insn = st.next_addr;
1792 }
1793
1794 st.scan_pc = st.next_addr;
1795 }
1796
1797 /* Did we load a constant value into the stack pointer? */
1798 if (pv_is_constant (st.sp))
1799 prologue->kind = prologue_first_frame;
1800
1801 /* Alternatively, did we initialize the frame pointer? Remember
1802 that the CFA is the address after the return address. */
1803 if (pv_is_register (st.fb, tdep->sp->num))
1804 {
1805 prologue->kind = prologue_with_frame_ptr;
1806 prologue->frame_ptr_offset = st.fb.k;
1807 }
1808
1809 /* Is the frame size a known constant? Remember that frame_size is
1810 actually the offset from the CFA to the SP (i.e., a negative
1811 value). */
1812 else if (pv_is_register (st.sp, tdep->sp->num))
1813 {
1814 prologue->kind = prologue_sans_frame_ptr;
1815 prologue->frame_size = st.sp.k;
1816 }
1817
1818 /* We haven't been able to make sense of this function's frame. Treat
1819 it as the first frame. */
1820 else
1821 prologue->kind = prologue_first_frame;
1822
1823 /* Record where all the registers were saved. */
1824 pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1825
1826 prologue->prologue_end = after_last_frame_related_insn;
1827
1828 do_cleanups (back_to);
1829 }
1830
1831
1832 static CORE_ADDR
1833 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1834 {
1835 const char *name;
1836 CORE_ADDR func_addr, func_end, sal_end;
1837 struct m32c_prologue p;
1838
1839 /* Try to find the extent of the function that contains IP. */
1840 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1841 return ip;
1842
1843 /* Find end by prologue analysis. */
1844 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1845 /* Find end by line info. */
1846 sal_end = skip_prologue_using_sal (gdbarch, ip);
1847 /* Return whichever is lower. */
1848 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1849 return sal_end;
1850 else
1851 return p.prologue_end;
1852 }
1853
1854
1855 \f
1856 /* Stack unwinding. */
1857
1858 static struct m32c_prologue *
1859 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1860 void **this_prologue_cache)
1861 {
1862 if (! *this_prologue_cache)
1863 {
1864 CORE_ADDR func_start = get_frame_func (this_frame);
1865 CORE_ADDR stop_addr = get_frame_pc (this_frame);
1866
1867 /* If we couldn't find any function containing the PC, then
1868 just initialize the prologue cache, but don't do anything. */
1869 if (! func_start)
1870 stop_addr = func_start;
1871
1872 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1873 m32c_analyze_prologue (get_frame_arch (this_frame),
1874 func_start, stop_addr, *this_prologue_cache);
1875 }
1876
1877 return *this_prologue_cache;
1878 }
1879
1880
1881 static CORE_ADDR
1882 m32c_frame_base (struct frame_info *this_frame,
1883 void **this_prologue_cache)
1884 {
1885 struct m32c_prologue *p
1886 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1887 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1888
1889 /* In functions that use alloca, the distance between the stack
1890 pointer and the frame base varies dynamically, so we can't use
1891 the SP plus static information like prologue analysis to find the
1892 frame base. However, such functions must have a frame pointer,
1893 to be able to restore the SP on exit. So whenever we do have a
1894 frame pointer, use that to find the base. */
1895 switch (p->kind)
1896 {
1897 case prologue_with_frame_ptr:
1898 {
1899 CORE_ADDR fb
1900 = get_frame_register_unsigned (this_frame, tdep->fb->num);
1901 return fb - p->frame_ptr_offset;
1902 }
1903
1904 case prologue_sans_frame_ptr:
1905 {
1906 CORE_ADDR sp
1907 = get_frame_register_unsigned (this_frame, tdep->sp->num);
1908 return sp - p->frame_size;
1909 }
1910
1911 case prologue_first_frame:
1912 return 0;
1913
1914 default:
1915 gdb_assert_not_reached ("unexpected prologue kind");
1916 }
1917 }
1918
1919
1920 static void
1921 m32c_this_id (struct frame_info *this_frame,
1922 void **this_prologue_cache,
1923 struct frame_id *this_id)
1924 {
1925 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1926
1927 if (base)
1928 *this_id = frame_id_build (base, get_frame_func (this_frame));
1929 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1930 }
1931
1932
1933 static struct value *
1934 m32c_prev_register (struct frame_info *this_frame,
1935 void **this_prologue_cache, int regnum)
1936 {
1937 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1938 struct m32c_prologue *p
1939 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1940 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1941 int reg_size = register_size (get_frame_arch (this_frame), regnum);
1942
1943 if (regnum == tdep->sp->num)
1944 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1945
1946 /* If prologue analysis says we saved this register somewhere,
1947 return a description of the stack slot holding it. */
1948 if (p->reg_offset[regnum] != 1)
1949 return frame_unwind_got_memory (this_frame, regnum,
1950 frame_base + p->reg_offset[regnum]);
1951
1952 /* Otherwise, presume we haven't changed the value of this
1953 register, and get it from the next frame. */
1954 return frame_unwind_got_register (this_frame, regnum, regnum);
1955 }
1956
1957
1958 static const struct frame_unwind m32c_unwind = {
1959 NORMAL_FRAME,
1960 default_frame_unwind_stop_reason,
1961 m32c_this_id,
1962 m32c_prev_register,
1963 NULL,
1964 default_frame_sniffer
1965 };
1966
1967
1968 static CORE_ADDR
1969 m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1970 {
1971 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1972 return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1973 }
1974
1975
1976 static CORE_ADDR
1977 m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1978 {
1979 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1980 return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1981 }
1982
1983 \f
1984 /* Inferior calls. */
1985
1986 /* The calling conventions, according to GCC:
1987
1988 r8c, m16c
1989 ---------
1990 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1991 HImode), (2) is named, and (3) is an integer or pointer type (no
1992 structs, floats, etc). Otherwise, it's passed on the stack.
1993
1994 Second arg may be passed in r2, same restrictions (but not QImode),
1995 even if the first arg is passed on the stack.
1996
1997 Third and further args are passed on the stack. No padding is
1998 used, stack "alignment" is 8 bits.
1999
2000 m32cm, m32c
2001 -----------
2002
2003 First arg may be passed in r0l or r0, same restrictions as above.
2004
2005 Second and further args are passed on the stack. Padding is used
2006 after QImode parameters (i.e. lower-addressed byte is the value,
2007 higher-addressed byte is the padding), stack "alignment" is 16
2008 bits. */
2009
2010
2011 /* Return true if TYPE is a type that can be passed in registers. (We
2012 ignore the size, and pay attention only to the type code;
2013 acceptable sizes depends on which register is being considered to
2014 hold it.) */
2015 static int
2016 m32c_reg_arg_type (struct type *type)
2017 {
2018 enum type_code code = TYPE_CODE (type);
2019
2020 return (code == TYPE_CODE_INT
2021 || code == TYPE_CODE_ENUM
2022 || code == TYPE_CODE_PTR
2023 || code == TYPE_CODE_REF
2024 || code == TYPE_CODE_BOOL
2025 || code == TYPE_CODE_CHAR);
2026 }
2027
2028
2029 static CORE_ADDR
2030 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2031 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2032 struct value **args, CORE_ADDR sp, int struct_return,
2033 CORE_ADDR struct_addr)
2034 {
2035 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2036 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2037 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2038 CORE_ADDR cfa;
2039 int i;
2040
2041 /* The number of arguments given in this function's prototype, or
2042 zero if it has a non-prototyped function type. The m32c ABI
2043 passes arguments mentioned in the prototype differently from
2044 those in the ellipsis of a varargs function, or from those passed
2045 to a non-prototyped function. */
2046 int num_prototyped_args = 0;
2047
2048 {
2049 struct type *func_type = value_type (function);
2050
2051 /* Dereference function pointer types. */
2052 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2053 func_type = TYPE_TARGET_TYPE (func_type);
2054
2055 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2056 TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2057
2058 #if 0
2059 /* The ABI description in gcc/config/m32c/m32c.abi says that
2060 we need to handle prototyped and non-prototyped functions
2061 separately, but the code in GCC doesn't actually do so. */
2062 if (TYPE_PROTOTYPED (func_type))
2063 #endif
2064 num_prototyped_args = TYPE_NFIELDS (func_type);
2065 }
2066
2067 /* First, if the function returns an aggregate by value, push a
2068 pointer to a buffer for it. This doesn't affect the way
2069 subsequent arguments are allocated to registers. */
2070 if (struct_return)
2071 {
2072 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2073 sp -= ptr_len;
2074 write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2075 }
2076
2077 /* Push the arguments. */
2078 for (i = nargs - 1; i >= 0; i--)
2079 {
2080 struct value *arg = args[i];
2081 const gdb_byte *arg_bits = value_contents (arg);
2082 struct type *arg_type = value_type (arg);
2083 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2084
2085 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2086 if (i == 0
2087 && arg_size <= 2
2088 && i < num_prototyped_args
2089 && m32c_reg_arg_type (arg_type))
2090 {
2091 /* Extract and re-store as an integer as a terse way to make
2092 sure it ends up in the least significant end of r1. (GDB
2093 should avoid assuming endianness, even on uni-endian
2094 processors.) */
2095 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2096 byte_order);
2097 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2098 regcache_cooked_write_unsigned (regcache, reg->num, u);
2099 }
2100
2101 /* Can it go in r2? */
2102 else if (mach == bfd_mach_m16c
2103 && i == 1
2104 && arg_size == 2
2105 && i < num_prototyped_args
2106 && m32c_reg_arg_type (arg_type))
2107 regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2108
2109 /* Everything else goes on the stack. */
2110 else
2111 {
2112 sp -= arg_size;
2113
2114 /* Align the stack. */
2115 if (mach == bfd_mach_m32c)
2116 sp &= ~1;
2117
2118 write_memory (sp, arg_bits, arg_size);
2119 }
2120 }
2121
2122 /* This is the CFA we use to identify the dummy frame. */
2123 cfa = sp;
2124
2125 /* Push the return address. */
2126 sp -= tdep->ret_addr_bytes;
2127 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2128 bp_addr);
2129
2130 /* Update the stack pointer. */
2131 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2132
2133 /* We need to borrow an odd trick from the i386 target here.
2134
2135 The value we return from this function gets used as the stack
2136 address (the CFA) for the dummy frame's ID. The obvious thing is
2137 to return the new TOS. However, that points at the return
2138 address, saved on the stack, which is inconsistent with the CFA's
2139 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2140 .debug_frame info uses the address immediately after the saved
2141 return address. So you end up with a dummy frame whose CFA
2142 points at the return address, but the frame for the function
2143 being called has a CFA pointing after the return address: the
2144 younger CFA is *greater than* the older CFA. The sanity checks
2145 in frame.c don't like that.
2146
2147 So we try to be consistent with the CFA's used by DWARF 2.
2148 Having a dummy frame and a real frame with the *same* CFA is
2149 tolerable. */
2150 return cfa;
2151 }
2152
2153
2154 static struct frame_id
2155 m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2156 {
2157 /* This needs to return a frame ID whose PC is the return address
2158 passed to m32c_push_dummy_call, and whose stack_addr is the SP
2159 m32c_push_dummy_call returned.
2160
2161 m32c_unwind_sp gives us the CFA, which is the value the SP had
2162 before the return address was pushed. */
2163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2164 CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2165 return frame_id_build (sp, get_frame_pc (this_frame));
2166 }
2167
2168
2169 \f
2170 /* Return values. */
2171
2172 /* Return value conventions, according to GCC:
2173
2174 r8c, m16c
2175 ---------
2176
2177 QImode in r0l
2178 HImode in r0
2179 SImode in r2r0
2180 near pointer in r0
2181 far pointer in r2r0
2182
2183 Aggregate values (regardless of size) are returned by pushing a
2184 pointer to a temporary area on the stack after the args are pushed.
2185 The function fills in this area with the value. Note that this
2186 pointer on the stack does not affect how register arguments, if any,
2187 are configured.
2188
2189 m32cm, m32c
2190 -----------
2191 Same. */
2192
2193 /* Return non-zero if values of type TYPE are returned by storing them
2194 in a buffer whose address is passed on the stack, ahead of the
2195 other arguments. */
2196 static int
2197 m32c_return_by_passed_buf (struct type *type)
2198 {
2199 enum type_code code = TYPE_CODE (type);
2200
2201 return (code == TYPE_CODE_STRUCT
2202 || code == TYPE_CODE_UNION);
2203 }
2204
2205 static enum return_value_convention
2206 m32c_return_value (struct gdbarch *gdbarch,
2207 struct value *function,
2208 struct type *valtype,
2209 struct regcache *regcache,
2210 gdb_byte *readbuf,
2211 const gdb_byte *writebuf)
2212 {
2213 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2214 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2215 enum return_value_convention conv;
2216 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2217
2218 if (m32c_return_by_passed_buf (valtype))
2219 conv = RETURN_VALUE_STRUCT_CONVENTION;
2220 else
2221 conv = RETURN_VALUE_REGISTER_CONVENTION;
2222
2223 if (readbuf)
2224 {
2225 /* We should never be called to find values being returned by
2226 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2227 unless we made the call ourselves. */
2228 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2229
2230 gdb_assert (valtype_len <= 8);
2231
2232 /* Anything that fits in r0 is returned there. */
2233 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2234 {
2235 ULONGEST u;
2236 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2237 store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2238 }
2239 else
2240 {
2241 /* Everything else is passed in mem0, using as many bytes as
2242 needed. This is not what the Renesas tools do, but it's
2243 what GCC does at the moment. */
2244 struct bound_minimal_symbol mem0
2245 = lookup_minimal_symbol ("mem0", NULL, NULL);
2246
2247 if (! mem0.minsym)
2248 error (_("The return value is stored in memory at 'mem0', "
2249 "but GDB cannot find\n"
2250 "its address."));
2251 read_memory (BMSYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2252 }
2253 }
2254
2255 if (writebuf)
2256 {
2257 /* We should never be called to store values to be returned
2258 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2259 finding the buffer, unless we made the call ourselves. */
2260 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2261
2262 gdb_assert (valtype_len <= 8);
2263
2264 /* Anything that fits in r0 is returned there. */
2265 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2266 {
2267 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2268 byte_order);
2269 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2270 }
2271 else
2272 {
2273 /* Everything else is passed in mem0, using as many bytes as
2274 needed. This is not what the Renesas tools do, but it's
2275 what GCC does at the moment. */
2276 struct bound_minimal_symbol mem0
2277 = lookup_minimal_symbol ("mem0", NULL, NULL);
2278
2279 if (! mem0.minsym)
2280 error (_("The return value is stored in memory at 'mem0', "
2281 "but GDB cannot find\n"
2282 " its address."));
2283 write_memory (BMSYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
2284 }
2285 }
2286
2287 return conv;
2288 }
2289
2290
2291 \f
2292 /* Trampolines. */
2293
2294 /* The m16c and m32c use a trampoline function for indirect function
2295 calls. An indirect call looks like this:
2296
2297 ... push arguments ...
2298 ... push target function address ...
2299 jsr.a m32c_jsri16
2300
2301 The code for m32c_jsri16 looks like this:
2302
2303 m32c_jsri16:
2304
2305 # Save return address.
2306 pop.w m32c_jsri_ret
2307 pop.b m32c_jsri_ret+2
2308
2309 # Store target function address.
2310 pop.w m32c_jsri_addr
2311
2312 # Re-push return address.
2313 push.b m32c_jsri_ret+2
2314 push.w m32c_jsri_ret
2315
2316 # Call the target function.
2317 jmpi.a m32c_jsri_addr
2318
2319 Without further information, GDB will treat calls to m32c_jsri16
2320 like calls to any other function. Since m32c_jsri16 doesn't have
2321 debugging information, that normally means that GDB sets a step-
2322 resume breakpoint and lets the program continue --- which is not
2323 what the user wanted. (Giving the trampoline debugging info
2324 doesn't help: the user expects the program to stop in the function
2325 their program is calling, not in some trampoline code they've never
2326 seen before.)
2327
2328 The gdbarch_skip_trampoline_code method tells GDB how to step
2329 through such trampoline functions transparently to the user. When
2330 given the address of a trampoline function's first instruction,
2331 gdbarch_skip_trampoline_code should return the address of the first
2332 instruction of the function really being called. If GDB decides it
2333 wants to step into that function, it will set a breakpoint there
2334 and silently continue to it.
2335
2336 We recognize the trampoline by name, and extract the target address
2337 directly from the stack. This isn't great, but recognizing by its
2338 code sequence seems more fragile. */
2339
2340 static CORE_ADDR
2341 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2342 {
2343 struct gdbarch *gdbarch = get_frame_arch (frame);
2344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2345 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2346
2347 /* It would be nicer to simply look up the addresses of known
2348 trampolines once, and then compare stop_pc with them. However,
2349 we'd need to ensure that that cached address got invalidated when
2350 someone loaded a new executable, and I'm not quite sure of the
2351 best way to do that. find_pc_partial_function does do some
2352 caching, so we'll see how this goes. */
2353 const char *name;
2354 CORE_ADDR start, end;
2355
2356 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2357 {
2358 /* Are we stopped at the beginning of the trampoline function? */
2359 if (strcmp (name, "m32c_jsri16") == 0
2360 && stop_pc == start)
2361 {
2362 /* Get the stack pointer. The return address is at the top,
2363 and the target function's address is just below that. We
2364 know it's a two-byte address, since the trampoline is
2365 m32c_jsri*16*. */
2366 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2367 CORE_ADDR target
2368 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2369 2, byte_order);
2370
2371 /* What we have now is the address of a jump instruction.
2372 What we need is the destination of that jump.
2373 The opcode is 1 byte, and the destination is the next 3 bytes. */
2374
2375 target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2376 return target;
2377 }
2378 }
2379
2380 return 0;
2381 }
2382
2383
2384 /* Address/pointer conversions. */
2385
2386 /* On the m16c, there is a 24-bit address space, but only a very few
2387 instructions can generate addresses larger than 0xffff: jumps,
2388 jumps to subroutines, and the lde/std (load/store extended)
2389 instructions.
2390
2391 Since GCC can only support one size of pointer, we can't have
2392 distinct 'near' and 'far' pointer types; we have to pick one size
2393 for everything. If we wanted to use 24-bit pointers, then GCC
2394 would have to use lde and ste for all memory references, which
2395 would be terrible for performance and code size. So the GNU
2396 toolchain uses 16-bit pointers for everything, and gives up the
2397 ability to have pointers point outside the first 64k of memory.
2398
2399 However, as a special hack, we let the linker place functions at
2400 addresses above 0xffff, as long as it also places a trampoline in
2401 the low 64k for every function whose address is taken. Each
2402 trampoline consists of a single jmp.a instruction that jumps to the
2403 function's real entry point. Pointers to functions can be 16 bits
2404 long, even though the functions themselves are at higher addresses:
2405 the pointers refer to the trampolines, not the functions.
2406
2407 This complicates things for GDB, however: given the address of a
2408 function (from debug info or linker symbols, say) which could be
2409 anywhere in the 24-bit address space, how can we find an
2410 appropriate 16-bit value to use as a pointer to it?
2411
2412 If the linker has not generated a trampoline for the function,
2413 we're out of luck. Well, I guess we could malloc some space and
2414 write a jmp.a instruction to it, but I'm not going to get into that
2415 at the moment.
2416
2417 If the linker has generated a trampoline for the function, then it
2418 also emitted a symbol for the trampoline: if the function's linker
2419 symbol is named NAME, then the function's trampoline's linker
2420 symbol is named NAME.plt.
2421
2422 So, given a code address:
2423 - We try to find a linker symbol at that address.
2424 - If we find such a symbol named NAME, we look for a linker symbol
2425 named NAME.plt.
2426 - If we find such a symbol, we assume it is a trampoline, and use
2427 its address as the pointer value.
2428
2429 And, given a function pointer:
2430 - We try to find a linker symbol at that address named NAME.plt.
2431 - If we find such a symbol, we look for a linker symbol named NAME.
2432 - If we find that, we provide that as the function's address.
2433 - If any of the above steps fail, we return the original address
2434 unchanged; it might really be a function in the low 64k.
2435
2436 See? You *knew* there was a reason you wanted to be a computer
2437 programmer! :) */
2438
2439 static void
2440 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2441 struct type *type, gdb_byte *buf, CORE_ADDR addr)
2442 {
2443 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2444 enum type_code target_code;
2445 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2446 TYPE_CODE (type) == TYPE_CODE_REF);
2447
2448 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2449
2450 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2451 {
2452 const char *func_name;
2453 char *tramp_name;
2454 struct bound_minimal_symbol tramp_msym;
2455
2456 /* Try to find a linker symbol at this address. */
2457 struct bound_minimal_symbol func_msym
2458 = lookup_minimal_symbol_by_pc (addr);
2459
2460 if (! func_msym.minsym)
2461 error (_("Cannot convert code address %s to function pointer:\n"
2462 "couldn't find a symbol at that address, to find trampoline."),
2463 paddress (gdbarch, addr));
2464
2465 func_name = MSYMBOL_LINKAGE_NAME (func_msym.minsym);
2466 tramp_name = xmalloc (strlen (func_name) + 5);
2467 strcpy (tramp_name, func_name);
2468 strcat (tramp_name, ".plt");
2469
2470 /* Try to find a linker symbol for the trampoline. */
2471 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2472
2473 /* We've either got another copy of the name now, or don't need
2474 the name any more. */
2475 xfree (tramp_name);
2476
2477 if (! tramp_msym.minsym)
2478 {
2479 CORE_ADDR ptrval;
2480
2481 /* No PLT entry found. Mask off the upper bits of the address
2482 to make a pointer. As noted in the warning to the user
2483 below, this value might be useful if converted back into
2484 an address by GDB, but will otherwise, almost certainly,
2485 be garbage.
2486
2487 Using this masked result does seem to be useful
2488 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2489 PASSes. These results appear to be correct as well.
2490
2491 We print a warning here so that the user can make a
2492 determination about whether the result is useful or not. */
2493 ptrval = addr & 0xffff;
2494
2495 warning (_("Cannot convert code address %s to function pointer:\n"
2496 "couldn't find trampoline named '%s.plt'.\n"
2497 "Returning pointer value %s instead; this may produce\n"
2498 "a useful result if converted back into an address by GDB,\n"
2499 "but will most likely not be useful otherwise.\n"),
2500 paddress (gdbarch, addr), func_name,
2501 paddress (gdbarch, ptrval));
2502
2503 addr = ptrval;
2504
2505 }
2506 else
2507 {
2508 /* The trampoline's address is our pointer. */
2509 addr = BMSYMBOL_VALUE_ADDRESS (tramp_msym);
2510 }
2511 }
2512
2513 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
2514 }
2515
2516
2517 static CORE_ADDR
2518 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2519 struct type *type, const gdb_byte *buf)
2520 {
2521 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2522 CORE_ADDR ptr;
2523 enum type_code target_code;
2524
2525 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2526 TYPE_CODE (type) == TYPE_CODE_REF);
2527
2528 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
2529
2530 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2531
2532 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2533 {
2534 /* See if there is a minimal symbol at that address whose name is
2535 "NAME.plt". */
2536 struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2537
2538 if (ptr_msym.minsym)
2539 {
2540 const char *ptr_msym_name = MSYMBOL_LINKAGE_NAME (ptr_msym.minsym);
2541 int len = strlen (ptr_msym_name);
2542
2543 if (len > 4
2544 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2545 {
2546 struct bound_minimal_symbol func_msym;
2547 /* We have a .plt symbol; try to find the symbol for the
2548 corresponding function.
2549
2550 Since the trampoline contains a jump instruction, we
2551 could also just extract the jump's target address. I
2552 don't see much advantage one way or the other. */
2553 char *func_name = xmalloc (len - 4 + 1);
2554 memcpy (func_name, ptr_msym_name, len - 4);
2555 func_name[len - 4] = '\0';
2556 func_msym
2557 = lookup_minimal_symbol (func_name, NULL, NULL);
2558
2559 /* If we do have such a symbol, return its value as the
2560 function's true address. */
2561 if (func_msym.minsym)
2562 ptr = BMSYMBOL_VALUE_ADDRESS (func_msym);
2563 }
2564 }
2565 else
2566 {
2567 int aspace;
2568
2569 for (aspace = 1; aspace <= 15; aspace++)
2570 {
2571 ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2572
2573 if (ptr_msym.minsym)
2574 ptr |= aspace << 16;
2575 }
2576 }
2577 }
2578
2579 return ptr;
2580 }
2581
2582 static void
2583 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2584 int *frame_regnum,
2585 LONGEST *frame_offset)
2586 {
2587 const char *name;
2588 CORE_ADDR func_addr, func_end;
2589 struct m32c_prologue p;
2590
2591 struct regcache *regcache = get_current_regcache ();
2592 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2593
2594 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2595 internal_error (__FILE__, __LINE__,
2596 _("No virtual frame pointer available"));
2597
2598 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2599 switch (p.kind)
2600 {
2601 case prologue_with_frame_ptr:
2602 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2603 *frame_offset = p.frame_ptr_offset;
2604 break;
2605 case prologue_sans_frame_ptr:
2606 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2607 *frame_offset = p.frame_size;
2608 break;
2609 default:
2610 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2611 *frame_offset = 0;
2612 break;
2613 }
2614 /* Sanity check */
2615 if (*frame_regnum > gdbarch_num_regs (gdbarch))
2616 internal_error (__FILE__, __LINE__,
2617 _("No virtual frame pointer available"));
2618 }
2619
2620 \f
2621 /* Initialization. */
2622
2623 static struct gdbarch *
2624 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2625 {
2626 struct gdbarch *arch;
2627 struct gdbarch_tdep *tdep;
2628 unsigned long mach = info.bfd_arch_info->mach;
2629
2630 /* Find a candidate among the list of architectures we've created
2631 already. */
2632 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2633 arches != NULL;
2634 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2635 return arches->gdbarch;
2636
2637 tdep = xcalloc (1, sizeof (*tdep));
2638 arch = gdbarch_alloc (&info, tdep);
2639
2640 /* Essential types. */
2641 make_types (arch);
2642
2643 /* Address/pointer conversions. */
2644 if (mach == bfd_mach_m16c)
2645 {
2646 set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2647 set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2648 }
2649
2650 /* Register set. */
2651 make_regs (arch);
2652
2653 /* Disassembly. */
2654 set_gdbarch_print_insn (arch, print_insn_m32c);
2655
2656 /* Breakpoints. */
2657 set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2658
2659 /* Prologue analysis and unwinding. */
2660 set_gdbarch_inner_than (arch, core_addr_lessthan);
2661 set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2662 set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2663 set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2664 #if 0
2665 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2666 They may be in the dwarf2 cfi code in GDB, or they may be in
2667 the debug info emitted by the upstream toolchain. I don't
2668 know which, but I do know that the prologue analyzer works better.
2669 MVS 04/13/06 */
2670 dwarf2_append_sniffers (arch);
2671 #endif
2672 frame_unwind_append_unwinder (arch, &m32c_unwind);
2673
2674 /* Inferior calls. */
2675 set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2676 set_gdbarch_return_value (arch, m32c_return_value);
2677 set_gdbarch_dummy_id (arch, m32c_dummy_id);
2678
2679 /* Trampolines. */
2680 set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2681
2682 set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2683
2684 /* m32c function boundary addresses are not necessarily even.
2685 Therefore, the `vbit', which indicates a pointer to a virtual
2686 member function, is stored in the delta field, rather than as
2687 the low bit of a function pointer address.
2688
2689 In order to verify this, see the definition of
2690 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2691 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2692 set_gdbarch_vbit_in_delta (arch, 1);
2693
2694 return arch;
2695 }
2696
2697 /* Provide a prototype to silence -Wmissing-prototypes. */
2698 extern initialize_file_ftype _initialize_m32c_tdep;
2699
2700 void
2701 _initialize_m32c_tdep (void)
2702 {
2703 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2704
2705 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2706 }