]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/m68hc11-tdep.c
2003-10-31 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2 Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Stephane Carrez, stcarrez@nerim.fr
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "dwarf2-frame.h"
27 #include "trad-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "gdb_string.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41
42 #include "target.h"
43 #include "opcode/m68hc11.h"
44 #include "elf/m68hc11.h"
45 #include "elf-bfd.h"
46
47 /* Macros for setting and testing a bit in a minimal symbol.
48 For 68HC11/68HC12 we have two flags that tell which return
49 type the function is using. This is used for prologue and frame
50 analysis to compute correct stack frame layout.
51
52 The MSB of the minimal symbol's "info" field is used for this purpose.
53 This field is already being used to store the symbol size, so the
54 assumption is that the symbol size cannot exceed 2^30.
55
56 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
57 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
58 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
59 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol.
60 MSYMBOL_SIZE Returns the size of the minimal symbol,
61 i.e. the "info" field with the "special" bit
62 masked out. */
63
64 #define MSYMBOL_SET_RTC(msym) \
65 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
66 | 0x80000000)
67
68 #define MSYMBOL_SET_RTI(msym) \
69 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
70 | 0x40000000)
71
72 #define MSYMBOL_IS_RTC(msym) \
73 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
74
75 #define MSYMBOL_IS_RTI(msym) \
76 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
77
78 #define MSYMBOL_SIZE(msym) \
79 ((long) MSYMBOL_INFO (msym) & 0x3fffffff)
80
81 enum insn_return_kind {
82 RETURN_RTS,
83 RETURN_RTC,
84 RETURN_RTI
85 };
86
87
88 /* Register numbers of various important registers.
89 Note that some of these values are "real" register numbers,
90 and correspond to the general registers of the machine,
91 and some are "phony" register numbers which are too large
92 to be actual register numbers as far as the user is concerned
93 but do serve to get the desired values when passed to read_register. */
94
95 #define HARD_X_REGNUM 0
96 #define HARD_D_REGNUM 1
97 #define HARD_Y_REGNUM 2
98 #define HARD_SP_REGNUM 3
99 #define HARD_PC_REGNUM 4
100
101 #define HARD_A_REGNUM 5
102 #define HARD_B_REGNUM 6
103 #define HARD_CCR_REGNUM 7
104
105 /* 68HC12 page number register.
106 Note: to keep a compatibility with gcc register naming, we must
107 not have to rename FP and other soft registers. The page register
108 is a real hard register and must therefore be counted by NUM_REGS.
109 For this it has the same number as Z register (which is not used). */
110 #define HARD_PAGE_REGNUM 8
111 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
112
113 /* Z is replaced by X or Y by gcc during machine reorg.
114 ??? There is no way to get it and even know whether
115 it's in X or Y or in ZS. */
116 #define SOFT_Z_REGNUM 8
117
118 /* Soft registers. These registers are special. There are treated
119 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
120 They are physically located in memory. */
121 #define SOFT_FP_REGNUM 9
122 #define SOFT_TMP_REGNUM 10
123 #define SOFT_ZS_REGNUM 11
124 #define SOFT_XY_REGNUM 12
125 #define SOFT_UNUSED_REGNUM 13
126 #define SOFT_D1_REGNUM 14
127 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
128 #define M68HC11_MAX_SOFT_REGS 32
129
130 #define M68HC11_NUM_REGS (8)
131 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
132 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
133
134 #define M68HC11_REG_SIZE (2)
135
136 #define M68HC12_NUM_REGS (9)
137 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
138 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
139
140 struct insn_sequence;
141 struct gdbarch_tdep
142 {
143 /* Stack pointer correction value. For 68hc11, the stack pointer points
144 to the next push location. An offset of 1 must be applied to obtain
145 the address where the last value is saved. For 68hc12, the stack
146 pointer points to the last value pushed. No offset is necessary. */
147 int stack_correction;
148
149 /* Description of instructions in the prologue. */
150 struct insn_sequence *prologue;
151
152 /* True if the page memory bank register is available
153 and must be used. */
154 int use_page_register;
155
156 /* ELF flags for ABI. */
157 int elf_flags;
158 };
159
160 #define M6811_TDEP gdbarch_tdep (current_gdbarch)
161 #define STACK_CORRECTION (M6811_TDEP->stack_correction)
162 #define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
163
164 struct m68hc11_unwind_cache
165 {
166 /* The previous frame's inner most stack address. Used as this
167 frame ID's stack_addr. */
168 CORE_ADDR prev_sp;
169 /* The frame's base, optionally used by the high-level debug info. */
170 CORE_ADDR base;
171 CORE_ADDR pc;
172 int size;
173 int prologue_type;
174 CORE_ADDR return_pc;
175 CORE_ADDR sp_offset;
176 int frameless;
177 enum insn_return_kind return_kind;
178
179 /* Table indicating the location of each and every register. */
180 struct trad_frame_saved_reg *saved_regs;
181 };
182
183 /* Table of registers for 68HC11. This includes the hard registers
184 and the soft registers used by GCC. */
185 static char *
186 m68hc11_register_names[] =
187 {
188 "x", "d", "y", "sp", "pc", "a", "b",
189 "ccr", "page", "frame","tmp", "zs", "xy", 0,
190 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
191 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
192 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
193 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
194 "d29", "d30", "d31", "d32"
195 };
196
197 struct m68hc11_soft_reg
198 {
199 const char *name;
200 CORE_ADDR addr;
201 };
202
203 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
204
205 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
206
207 static int soft_min_addr;
208 static int soft_max_addr;
209 static int soft_reg_initialized = 0;
210
211 /* Look in the symbol table for the address of a pseudo register
212 in memory. If we don't find it, pretend the register is not used
213 and not available. */
214 static void
215 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
216 {
217 struct minimal_symbol *msymbol;
218
219 msymbol = lookup_minimal_symbol (name, NULL, NULL);
220 if (msymbol)
221 {
222 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
223 reg->name = xstrdup (name);
224
225 /* Keep track of the address range for soft registers. */
226 if (reg->addr < (CORE_ADDR) soft_min_addr)
227 soft_min_addr = reg->addr;
228 if (reg->addr > (CORE_ADDR) soft_max_addr)
229 soft_max_addr = reg->addr;
230 }
231 else
232 {
233 reg->name = 0;
234 reg->addr = 0;
235 }
236 }
237
238 /* Initialize the table of soft register addresses according
239 to the symbol table. */
240 static void
241 m68hc11_initialize_register_info (void)
242 {
243 int i;
244
245 if (soft_reg_initialized)
246 return;
247
248 soft_min_addr = INT_MAX;
249 soft_max_addr = 0;
250 for (i = 0; i < M68HC11_ALL_REGS; i++)
251 {
252 soft_regs[i].name = 0;
253 }
254
255 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
256 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
257 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
258 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
259 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
260
261 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
262 {
263 char buf[10];
264
265 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
266 m68hc11_get_register_info (&soft_regs[i], buf);
267 }
268
269 if (soft_regs[SOFT_FP_REGNUM].name == 0)
270 {
271 warning ("No frame soft register found in the symbol table.\n");
272 warning ("Stack backtrace will not work.\n");
273 }
274 soft_reg_initialized = 1;
275 }
276
277 /* Given an address in memory, return the soft register number if
278 that address corresponds to a soft register. Returns -1 if not. */
279 static int
280 m68hc11_which_soft_register (CORE_ADDR addr)
281 {
282 int i;
283
284 if (addr < soft_min_addr || addr > soft_max_addr)
285 return -1;
286
287 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
288 {
289 if (soft_regs[i].name && soft_regs[i].addr == addr)
290 return i;
291 }
292 return -1;
293 }
294
295 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
296 pseudo registers. They are located in memory. Translate the register
297 fetch into a memory read. */
298 static void
299 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
300 struct regcache *regcache,
301 int regno, void *buf)
302 {
303 /* The PC is a pseudo reg only for 68HC12 with the memory bank
304 addressing mode. */
305 if (regno == M68HC12_HARD_PC_REGNUM)
306 {
307 ULONGEST pc;
308 const int regsize = TYPE_LENGTH (builtin_type_uint32);
309
310 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
311 if (pc >= 0x8000 && pc < 0xc000)
312 {
313 ULONGEST page;
314
315 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
316 pc -= 0x8000;
317 pc += (page << 14);
318 pc += 0x1000000;
319 }
320 store_unsigned_integer (buf, regsize, pc);
321 return;
322 }
323
324 m68hc11_initialize_register_info ();
325
326 /* Fetch a soft register: translate into a memory read. */
327 if (soft_regs[regno].name)
328 {
329 target_read_memory (soft_regs[regno].addr, buf, 2);
330 }
331 else
332 {
333 memset (buf, 0, 2);
334 }
335 }
336
337 /* Store a pseudo register. Translate the register store
338 into a memory write. */
339 static void
340 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
341 struct regcache *regcache,
342 int regno, const void *buf)
343 {
344 /* The PC is a pseudo reg only for 68HC12 with the memory bank
345 addressing mode. */
346 if (regno == M68HC12_HARD_PC_REGNUM)
347 {
348 const int regsize = TYPE_LENGTH (builtin_type_uint32);
349 char *tmp = alloca (regsize);
350 CORE_ADDR pc;
351
352 memcpy (tmp, buf, regsize);
353 pc = extract_unsigned_integer (tmp, regsize);
354 if (pc >= 0x1000000)
355 {
356 pc -= 0x1000000;
357 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
358 (pc >> 14) & 0x0ff);
359 pc &= 0x03fff;
360 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
361 pc + 0x8000);
362 }
363 else
364 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
365 return;
366 }
367
368 m68hc11_initialize_register_info ();
369
370 /* Store a soft register: translate into a memory write. */
371 if (soft_regs[regno].name)
372 {
373 const int regsize = 2;
374 char *tmp = alloca (regsize);
375 memcpy (tmp, buf, regsize);
376 target_write_memory (soft_regs[regno].addr, tmp, regsize);
377 }
378 }
379
380 static const char *
381 m68hc11_register_name (int reg_nr)
382 {
383 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
384 return "pc";
385 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
386 return "ppc";
387
388 if (reg_nr < 0)
389 return NULL;
390 if (reg_nr >= M68HC11_ALL_REGS)
391 return NULL;
392
393 /* If we don't know the address of a soft register, pretend it
394 does not exist. */
395 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
396 return NULL;
397 return m68hc11_register_names[reg_nr];
398 }
399
400 static const unsigned char *
401 m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
402 {
403 static unsigned char breakpoint[] = {0x0};
404
405 *lenptr = sizeof (breakpoint);
406 return breakpoint;
407 }
408
409 \f
410 /* 68HC11 & 68HC12 prologue analysis.
411
412 */
413 #define MAX_CODES 12
414
415 /* 68HC11 opcodes. */
416 #undef M6811_OP_PAGE2
417 #define M6811_OP_PAGE2 (0x18)
418 #define M6811_OP_LDX (0xde)
419 #define M6811_OP_LDX_EXT (0xfe)
420 #define M6811_OP_PSHX (0x3c)
421 #define M6811_OP_STS (0x9f)
422 #define M6811_OP_STS_EXT (0xbf)
423 #define M6811_OP_TSX (0x30)
424 #define M6811_OP_XGDX (0x8f)
425 #define M6811_OP_ADDD (0xc3)
426 #define M6811_OP_TXS (0x35)
427 #define M6811_OP_DES (0x34)
428
429 /* 68HC12 opcodes. */
430 #define M6812_OP_PAGE2 (0x18)
431 #define M6812_OP_MOVW (0x01)
432 #define M6812_PB_PSHW (0xae)
433 #define M6812_OP_STS (0x5f)
434 #define M6812_OP_STS_EXT (0x7f)
435 #define M6812_OP_LEAS (0x1b)
436 #define M6812_OP_PSHX (0x34)
437 #define M6812_OP_PSHY (0x35)
438
439 /* Operand extraction. */
440 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
441 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
442 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
443 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
444
445 /* Identification of the sequence. */
446 enum m6811_seq_type
447 {
448 P_LAST = 0,
449 P_SAVE_REG, /* Save a register on the stack. */
450 P_SET_FRAME, /* Setup the frame pointer. */
451 P_LOCAL_1, /* Allocate 1 byte for locals. */
452 P_LOCAL_2, /* Allocate 2 bytes for locals. */
453 P_LOCAL_N /* Allocate N bytes for locals. */
454 };
455
456 struct insn_sequence {
457 enum m6811_seq_type type;
458 unsigned length;
459 unsigned short code[MAX_CODES];
460 };
461
462 /* Sequence of instructions in the 68HC11 function prologue. */
463 static struct insn_sequence m6811_prologue[] = {
464 /* Sequences to save a soft-register. */
465 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
466 M6811_OP_PSHX } },
467 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
468 M6811_OP_PAGE2, M6811_OP_PSHX } },
469 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
470 M6811_OP_PSHX } },
471 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
472 M6811_OP_PAGE2, M6811_OP_PSHX } },
473
474 /* Sequences to allocate local variables. */
475 { P_LOCAL_N, 7, { M6811_OP_TSX,
476 M6811_OP_XGDX,
477 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
478 M6811_OP_XGDX,
479 M6811_OP_TXS } },
480 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
481 M6811_OP_PAGE2, M6811_OP_XGDX,
482 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
483 M6811_OP_PAGE2, M6811_OP_XGDX,
484 M6811_OP_PAGE2, M6811_OP_TXS } },
485 { P_LOCAL_1, 1, { M6811_OP_DES } },
486 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
487 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
488
489 /* Initialize the frame pointer. */
490 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
491 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
492 { P_LAST, 0, { 0 } }
493 };
494
495
496 /* Sequence of instructions in the 68HC12 function prologue. */
497 static struct insn_sequence m6812_prologue[] = {
498 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
499 OP_IMM_HIGH, OP_IMM_LOW } },
500 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
501 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
502 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
503 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
504 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
505 { P_LAST, 0 }
506 };
507
508
509 /* Analyze the sequence of instructions starting at the given address.
510 Returns a pointer to the sequence when it is recognized and
511 the optional value (constant/address) associated with it. */
512 static struct insn_sequence *
513 m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
514 CORE_ADDR *val)
515 {
516 unsigned char buffer[MAX_CODES];
517 unsigned bufsize;
518 unsigned j;
519 CORE_ADDR cur_val;
520 short v = 0;
521
522 bufsize = 0;
523 for (; seq->type != P_LAST; seq++)
524 {
525 cur_val = 0;
526 for (j = 0; j < seq->length; j++)
527 {
528 if (bufsize < j + 1)
529 {
530 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
531 1);
532 bufsize++;
533 }
534 /* Continue while we match the opcode. */
535 if (seq->code[j] == buffer[j])
536 continue;
537
538 if ((seq->code[j] & 0xf00) == 0)
539 break;
540
541 /* Extract a sequence parameter (address or constant). */
542 switch (seq->code[j])
543 {
544 case OP_DIRECT:
545 cur_val = (CORE_ADDR) buffer[j];
546 break;
547
548 case OP_IMM_HIGH:
549 cur_val = cur_val & 0x0ff;
550 cur_val |= (buffer[j] << 8);
551 break;
552
553 case OP_IMM_LOW:
554 cur_val &= 0x0ff00;
555 cur_val |= buffer[j];
556 break;
557
558 case OP_PBYTE:
559 if ((buffer[j] & 0xE0) == 0x80)
560 {
561 v = buffer[j] & 0x1f;
562 if (v & 0x10)
563 v |= 0xfff0;
564 }
565 else if ((buffer[j] & 0xfe) == 0xf0)
566 {
567 v = read_memory_unsigned_integer (pc + j + 1, 1);
568 if (buffer[j] & 1)
569 v |= 0xff00;
570 }
571 else if (buffer[j] == 0xf2)
572 {
573 v = read_memory_unsigned_integer (pc + j + 1, 2);
574 }
575 cur_val = v;
576 break;
577 }
578 }
579
580 /* We have a full match. */
581 if (j == seq->length)
582 {
583 *val = cur_val;
584 return seq;
585 }
586 }
587 return 0;
588 }
589
590 /* Return the instruction that the function at the PC is using. */
591 static enum insn_return_kind
592 m68hc11_get_return_insn (CORE_ADDR pc)
593 {
594 struct minimal_symbol *sym;
595
596 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
597 function is stored by elfread.c in the high bit of the info field.
598 Use this to decide which instruction the function uses to return. */
599 sym = lookup_minimal_symbol_by_pc (pc);
600 if (sym == 0)
601 return RETURN_RTS;
602
603 if (MSYMBOL_IS_RTC (sym))
604 return RETURN_RTC;
605 else if (MSYMBOL_IS_RTI (sym))
606 return RETURN_RTI;
607 else
608 return RETURN_RTS;
609 }
610
611 /* Analyze the function prologue to find some information
612 about the function:
613 - the PC of the first line (for m68hc11_skip_prologue)
614 - the offset of the previous frame saved address (from current frame)
615 - the soft registers which are pushed. */
616 static CORE_ADDR
617 m68hc11_scan_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
618 struct m68hc11_unwind_cache *info)
619 {
620 LONGEST save_addr;
621 CORE_ADDR func_end;
622 int size;
623 int found_frame_point;
624 int saved_reg;
625 int done = 0;
626 struct insn_sequence *seq_table;
627
628 info->size = 0;
629 info->sp_offset = 0;
630 if (pc >= current_pc)
631 return current_pc;
632
633 size = 0;
634
635 m68hc11_initialize_register_info ();
636 if (pc == 0)
637 {
638 info->size = 0;
639 return pc;
640 }
641
642 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
643
644 /* The 68hc11 stack is as follows:
645
646
647 | |
648 +-----------+
649 | |
650 | args |
651 | |
652 +-----------+
653 | PC-return |
654 +-----------+
655 | Old frame |
656 +-----------+
657 | |
658 | Locals |
659 | |
660 +-----------+ <--- current frame
661 | |
662
663 With most processors (like 68K) the previous frame can be computed
664 easily because it is always at a fixed offset (see link/unlink).
665 That is, locals are accessed with negative offsets, arguments are
666 accessed with positive ones. Since 68hc11 only supports offsets
667 in the range [0..255], the frame is defined at the bottom of
668 locals (see picture).
669
670 The purpose of the analysis made here is to find out the size
671 of locals in this function. An alternative to this is to use
672 DWARF2 info. This would be better but I don't know how to
673 access dwarf2 debug from this function.
674
675 Walk from the function entry point to the point where we save
676 the frame. While walking instructions, compute the size of bytes
677 which are pushed. This gives us the index to access the previous
678 frame.
679
680 We limit the search to 128 bytes so that the algorithm is bounded
681 in case of random and wrong code. We also stop and abort if
682 we find an instruction which is not supposed to appear in the
683 prologue (as generated by gcc 2.95, 2.96).
684 */
685 func_end = pc + 128;
686 found_frame_point = 0;
687 info->size = 0;
688 save_addr = 0;
689 while (!done && pc + 2 < func_end)
690 {
691 struct insn_sequence *seq;
692 CORE_ADDR val;
693
694 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
695 if (seq == 0)
696 break;
697
698 /* If we are within the instruction group, we can't advance the
699 pc nor the stack offset. Otherwise the caller's stack computed
700 from the current stack can be wrong. */
701 if (pc + seq->length > current_pc)
702 break;
703
704 pc = pc + seq->length;
705 if (seq->type == P_SAVE_REG)
706 {
707 if (found_frame_point)
708 {
709 saved_reg = m68hc11_which_soft_register (val);
710 if (saved_reg < 0)
711 break;
712
713 save_addr -= 2;
714 info->saved_regs[saved_reg].addr = save_addr;
715 }
716 else
717 {
718 size += 2;
719 }
720 }
721 else if (seq->type == P_SET_FRAME)
722 {
723 found_frame_point = 1;
724 info->size = size;
725 }
726 else if (seq->type == P_LOCAL_1)
727 {
728 size += 1;
729 }
730 else if (seq->type == P_LOCAL_2)
731 {
732 size += 2;
733 }
734 else if (seq->type == P_LOCAL_N)
735 {
736 /* Stack pointer is decremented for the allocation. */
737 if (val & 0x8000)
738 size -= (int) (val) | 0xffff0000;
739 else
740 size -= val;
741 }
742 }
743 if (found_frame_point == 0)
744 info->sp_offset = size;
745 else
746 info->sp_offset = -1;
747 return pc;
748 }
749
750 static CORE_ADDR
751 m68hc11_skip_prologue (CORE_ADDR pc)
752 {
753 CORE_ADDR func_addr, func_end;
754 struct symtab_and_line sal;
755 struct m68hc11_unwind_cache tmp_cache = { 0 };
756
757 /* If we have line debugging information, then the end of the
758 prologue should be the first assembly instruction of the
759 first source line. */
760 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
761 {
762 sal = find_pc_line (func_addr, 0);
763 if (sal.end && sal.end < func_end)
764 return sal.end;
765 }
766
767 pc = m68hc11_scan_prologue (pc, (CORE_ADDR) -1, &tmp_cache);
768 return pc;
769 }
770
771 static CORE_ADDR
772 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
773 {
774 ULONGEST pc;
775
776 frame_unwind_unsigned_register (next_frame, gdbarch_pc_regnum (gdbarch),
777 &pc);
778 return pc;
779 }
780
781 /* Put here the code to store, into fi->saved_regs, the addresses of
782 the saved registers of frame described by FRAME_INFO. This
783 includes special registers such as pc and fp saved in special ways
784 in the stack frame. sp is even more special: the address we return
785 for it IS the sp for the next frame. */
786
787 struct m68hc11_unwind_cache *
788 m68hc11_frame_unwind_cache (struct frame_info *next_frame,
789 void **this_prologue_cache)
790 {
791 ULONGEST prev_sp;
792 ULONGEST this_base;
793 struct m68hc11_unwind_cache *info;
794 CORE_ADDR current_pc;
795 int i;
796
797 if ((*this_prologue_cache))
798 return (*this_prologue_cache);
799
800 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
801 (*this_prologue_cache) = info;
802 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
803
804 info->pc = frame_func_unwind (next_frame);
805
806 info->size = 0;
807 info->return_kind = m68hc11_get_return_insn (info->pc);
808
809 /* The SP was moved to the FP. This indicates that a new frame
810 was created. Get THIS frame's FP value by unwinding it from
811 the next frame. */
812 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &this_base);
813 if (this_base == 0)
814 {
815 info->base = 0;
816 return info;
817 }
818
819 current_pc = frame_pc_unwind (next_frame);
820 if (info->pc != 0)
821 m68hc11_scan_prologue (info->pc, current_pc, info);
822
823 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
824
825 if (info->sp_offset != (CORE_ADDR) -1)
826 {
827 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
828 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &this_base);
829 prev_sp = this_base + info->sp_offset + 2;
830 this_base += STACK_CORRECTION;
831 }
832 else
833 {
834 /* The FP points at the last saved register. Adjust the FP back
835 to before the first saved register giving the SP. */
836 prev_sp = this_base + info->size + 2;
837
838 this_base += STACK_CORRECTION;
839 if (soft_regs[SOFT_FP_REGNUM].name)
840 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
841 }
842
843 if (info->return_kind == RETURN_RTC)
844 {
845 prev_sp += 1;
846 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
847 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
848 }
849 else if (info->return_kind == RETURN_RTI)
850 {
851 prev_sp += 7;
852 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
853 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
854 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
855 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
856 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
857 }
858
859 /* Add 1 here to adjust for the post-decrement nature of the push
860 instruction.*/
861 info->prev_sp = prev_sp;
862
863 info->base = this_base;
864
865 /* Adjust all the saved registers so that they contain addresses and not
866 offsets. */
867 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS - 1; i++)
868 if (trad_frame_addr_p (info->saved_regs, i))
869 {
870 info->saved_regs[i].addr += this_base;
871 }
872
873 /* The previous frame's SP needed to be computed. Save the computed
874 value. */
875 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
876
877 return info;
878 }
879
880 /* Given a GDB frame, determine the address of the calling function's
881 frame. This will be used to create a new GDB frame struct. */
882
883 static void
884 m68hc11_frame_this_id (struct frame_info *next_frame,
885 void **this_prologue_cache,
886 struct frame_id *this_id)
887 {
888 struct m68hc11_unwind_cache *info
889 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
890 CORE_ADDR base;
891 CORE_ADDR func;
892 struct frame_id id;
893
894 /* The FUNC is easy. */
895 func = frame_func_unwind (next_frame);
896
897 /* Hopefully the prologue analysis either correctly determined the
898 frame's base (which is the SP from the previous frame), or set
899 that base to "NULL". */
900 base = info->prev_sp;
901 if (base == 0)
902 return;
903
904 id = frame_id_build (base, func);
905 #if 0
906 /* Check that we're not going round in circles with the same frame
907 ID (but avoid applying the test to sentinel frames which do go
908 round in circles). Can't use frame_id_eq() as that doesn't yet
909 compare the frame's PC value. */
910 if (frame_relative_level (next_frame) >= 0
911 && get_frame_type (next_frame) != DUMMY_FRAME
912 && frame_id_eq (get_frame_id (next_frame), id))
913 return;
914 #endif
915 (*this_id) = id;
916 }
917
918 static void
919 m68hc11_frame_prev_register (struct frame_info *next_frame,
920 void **this_prologue_cache,
921 int regnum, int *optimizedp,
922 enum lval_type *lvalp, CORE_ADDR *addrp,
923 int *realnump, void *bufferp)
924 {
925 struct m68hc11_unwind_cache *info
926 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
927
928 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
929 optimizedp, lvalp, addrp, realnump, bufferp);
930
931 if (regnum == HARD_PC_REGNUM)
932 {
933 /* Take into account the 68HC12 specific call (PC + page). */
934 if (info->return_kind == RETURN_RTC
935 && *addrp >= 0x08000 && *addrp < 0x0c000
936 && USE_PAGE_REGISTER)
937 {
938 int page_optimized;
939
940 CORE_ADDR page;
941
942 trad_frame_prev_register (next_frame, info->saved_regs,
943 HARD_PAGE_REGNUM, &page_optimized,
944 0, &page, 0, 0);
945 *addrp -= 0x08000;
946 *addrp += ((page & 0x0ff) << 14);
947 *addrp += 0x1000000;
948 }
949 }
950 }
951
952 static const struct frame_unwind m68hc11_frame_unwind = {
953 NORMAL_FRAME,
954 m68hc11_frame_this_id,
955 m68hc11_frame_prev_register
956 };
957
958 const struct frame_unwind *
959 m68hc11_frame_sniffer (struct frame_info *next_frame)
960 {
961 return &m68hc11_frame_unwind;
962 }
963
964 static CORE_ADDR
965 m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
966 {
967 struct m68hc11_unwind_cache *info
968 = m68hc11_frame_unwind_cache (next_frame, this_cache);
969
970 return info->base;
971 }
972
973 static CORE_ADDR
974 m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
975 {
976 CORE_ADDR addr;
977 struct m68hc11_unwind_cache *info
978 = m68hc11_frame_unwind_cache (next_frame, this_cache);
979
980 addr = info->base + info->size;
981 if (info->return_kind == RETURN_RTC)
982 addr += 1;
983 else if (info->return_kind == RETURN_RTI)
984 addr += 7;
985
986 return addr;
987 }
988
989 static const struct frame_base m68hc11_frame_base = {
990 &m68hc11_frame_unwind,
991 m68hc11_frame_base_address,
992 m68hc11_frame_base_address,
993 m68hc11_frame_args_address
994 };
995
996 static CORE_ADDR
997 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
998 {
999 ULONGEST sp;
1000 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &sp);
1001 return sp;
1002 }
1003
1004 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1005 dummy frame. The frame ID's base needs to match the TOS value
1006 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1007 breakpoint. */
1008
1009 static struct frame_id
1010 m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1011 {
1012 ULONGEST tos;
1013 CORE_ADDR pc = frame_pc_unwind (next_frame);
1014
1015 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &tos);
1016 tos += 2;
1017 return frame_id_build (tos, pc);
1018 }
1019
1020 \f
1021 /* Get and print the register from the given frame. */
1022 static void
1023 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1024 struct frame_info *frame, int regno)
1025 {
1026 LONGEST rval;
1027
1028 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1029 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1030 rval = get_frame_register_unsigned (frame, regno);
1031 else
1032 rval = get_frame_register_signed (frame, regno);
1033
1034 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1035 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1036 {
1037 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1038 if (regno != HARD_CCR_REGNUM)
1039 print_longest (file, 'd', 1, rval);
1040 }
1041 else
1042 {
1043 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1044 {
1045 ULONGEST page;
1046
1047 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1048 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1049 (unsigned) rval);
1050 }
1051 else
1052 {
1053 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1054 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1055 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1056 print_longest (file, 'd', 1, rval);
1057 }
1058 }
1059
1060 if (regno == HARD_CCR_REGNUM)
1061 {
1062 /* CCR register */
1063 int C, Z, N, V;
1064 unsigned char l = rval & 0xff;
1065
1066 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1067 l & M6811_S_BIT ? 'S' : '-',
1068 l & M6811_X_BIT ? 'X' : '-',
1069 l & M6811_H_BIT ? 'H' : '-',
1070 l & M6811_I_BIT ? 'I' : '-',
1071 l & M6811_N_BIT ? 'N' : '-',
1072 l & M6811_Z_BIT ? 'Z' : '-',
1073 l & M6811_V_BIT ? 'V' : '-',
1074 l & M6811_C_BIT ? 'C' : '-');
1075 N = (l & M6811_N_BIT) != 0;
1076 Z = (l & M6811_Z_BIT) != 0;
1077 V = (l & M6811_V_BIT) != 0;
1078 C = (l & M6811_C_BIT) != 0;
1079
1080 /* Print flags following the h8300 */
1081 if ((C | Z) == 0)
1082 fprintf_filtered (file, "u> ");
1083 else if ((C | Z) == 1)
1084 fprintf_filtered (file, "u<= ");
1085 else if (C == 0)
1086 fprintf_filtered (file, "u< ");
1087
1088 if (Z == 0)
1089 fprintf_filtered (file, "!= ");
1090 else
1091 fprintf_filtered (file, "== ");
1092
1093 if ((N ^ V) == 0)
1094 fprintf_filtered (file, ">= ");
1095 else
1096 fprintf_filtered (file, "< ");
1097
1098 if ((Z | (N ^ V)) == 0)
1099 fprintf_filtered (file, "> ");
1100 else
1101 fprintf_filtered (file, "<= ");
1102 }
1103 }
1104
1105 /* Same as 'info reg' but prints the registers in a different way. */
1106 static void
1107 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1108 struct frame_info *frame, int regno, int cpregs)
1109 {
1110 if (regno >= 0)
1111 {
1112 const char *name = gdbarch_register_name (gdbarch, regno);
1113
1114 if (!name || !*name)
1115 return;
1116
1117 fprintf_filtered (file, "%-10s ", name);
1118 m68hc11_print_register (gdbarch, file, frame, regno);
1119 fprintf_filtered (file, "\n");
1120 }
1121 else
1122 {
1123 int i, nr;
1124
1125 fprintf_filtered (file, "PC=");
1126 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1127
1128 fprintf_filtered (file, " SP=");
1129 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1130
1131 fprintf_filtered (file, " FP=");
1132 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1133
1134 fprintf_filtered (file, "\nCCR=");
1135 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1136
1137 fprintf_filtered (file, "\nD=");
1138 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1139
1140 fprintf_filtered (file, " X=");
1141 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1142
1143 fprintf_filtered (file, " Y=");
1144 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1145
1146 if (gdbarch_tdep (gdbarch)->use_page_register)
1147 {
1148 fprintf_filtered (file, "\nPage=");
1149 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1150 }
1151 fprintf_filtered (file, "\n");
1152
1153 nr = 0;
1154 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1155 {
1156 /* Skip registers which are not defined in the symbol table. */
1157 if (soft_regs[i].name == 0)
1158 continue;
1159
1160 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1161 m68hc11_print_register (gdbarch, file, frame, i);
1162 nr++;
1163 if ((nr % 8) == 7)
1164 fprintf_filtered (file, "\n");
1165 else
1166 fprintf_filtered (file, " ");
1167 }
1168 if (nr && (nr % 8) != 7)
1169 fprintf_filtered (file, "\n");
1170 }
1171 }
1172
1173 /* Same as 'info reg' but prints the registers in a different way. */
1174 static void
1175 show_regs (char *args, int from_tty)
1176 {
1177 m68hc11_print_registers_info (current_gdbarch, gdb_stdout,
1178 get_current_frame (), -1, 1);
1179 }
1180
1181 static CORE_ADDR
1182 m68hc11_stack_align (CORE_ADDR addr)
1183 {
1184 return ((addr + 1) & -2);
1185 }
1186
1187 static CORE_ADDR
1188 m68hc11_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1189 struct regcache *regcache, CORE_ADDR bp_addr,
1190 int nargs, struct value **args, CORE_ADDR sp,
1191 int struct_return, CORE_ADDR struct_addr)
1192 {
1193 int argnum;
1194 int first_stack_argnum;
1195 struct type *type;
1196 char *val;
1197 int len;
1198 char buf[2];
1199
1200 first_stack_argnum = 0;
1201 if (struct_return)
1202 {
1203 /* The struct is allocated on the stack and gdb used the stack
1204 pointer for the address of that struct. We must apply the
1205 stack offset on the address. */
1206 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM,
1207 struct_addr + STACK_CORRECTION);
1208 }
1209 else if (nargs > 0)
1210 {
1211 type = VALUE_TYPE (args[0]);
1212 len = TYPE_LENGTH (type);
1213
1214 /* First argument is passed in D and X registers. */
1215 if (len <= 4)
1216 {
1217 ULONGEST v;
1218
1219 v = extract_unsigned_integer (VALUE_CONTENTS (args[0]), len);
1220 first_stack_argnum = 1;
1221
1222 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1223 if (len > 2)
1224 {
1225 v >>= 16;
1226 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1227 }
1228 }
1229 }
1230
1231 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1232 {
1233 type = VALUE_TYPE (args[argnum]);
1234 len = TYPE_LENGTH (type);
1235
1236 if (len & 1)
1237 {
1238 static char zero = 0;
1239
1240 sp--;
1241 write_memory (sp, &zero, 1);
1242 }
1243 val = (char*) VALUE_CONTENTS (args[argnum]);
1244 sp -= len;
1245 write_memory (sp, val, len);
1246 }
1247
1248 /* Store return address. */
1249 sp -= 2;
1250 store_unsigned_integer (buf, 2, bp_addr);
1251 write_memory (sp, buf, 2);
1252
1253 /* Finally, update the stack pointer... */
1254 sp -= STACK_CORRECTION;
1255 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1256
1257 /* ...and fake a frame pointer. */
1258 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1259
1260 /* DWARF2/GCC uses the stack address *before* the function call as a
1261 frame's CFA. */
1262 return sp + 2;
1263 }
1264
1265
1266 /* Return the GDB type object for the "standard" data type
1267 of data in register N. */
1268
1269 static struct type *
1270 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1271 {
1272 switch (reg_nr)
1273 {
1274 case HARD_PAGE_REGNUM:
1275 case HARD_A_REGNUM:
1276 case HARD_B_REGNUM:
1277 case HARD_CCR_REGNUM:
1278 return builtin_type_uint8;
1279
1280 case M68HC12_HARD_PC_REGNUM:
1281 return builtin_type_uint32;
1282
1283 default:
1284 return builtin_type_uint16;
1285 }
1286 }
1287
1288 static void
1289 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1290 const void *valbuf)
1291 {
1292 int len;
1293
1294 len = TYPE_LENGTH (type);
1295
1296 /* First argument is passed in D and X registers. */
1297 if (len <= 2)
1298 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1299 else if (len <= 4)
1300 {
1301 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1302 len - 2, valbuf);
1303 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
1304 }
1305 else
1306 error ("return of value > 4 is not supported.");
1307 }
1308
1309
1310 /* Given a return value in `regcache' with a type `type',
1311 extract and copy its value into `valbuf'. */
1312
1313 static void
1314 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1315 void *valbuf)
1316 {
1317 int len = TYPE_LENGTH (type);
1318 char buf[M68HC11_REG_SIZE];
1319
1320 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1321 switch (len)
1322 {
1323 case 1:
1324 memcpy (valbuf, buf + 1, 1);
1325 break;
1326
1327 case 2:
1328 memcpy (valbuf, buf, 2);
1329 break;
1330
1331 case 3:
1332 memcpy ((char*) valbuf + 1, buf, 2);
1333 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1334 memcpy (valbuf, buf + 1, 1);
1335 break;
1336
1337 case 4:
1338 memcpy ((char*) valbuf + 2, buf, 2);
1339 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1340 memcpy (valbuf, buf, 2);
1341 break;
1342
1343 default:
1344 error ("bad size for return value");
1345 }
1346 }
1347
1348 /* Should call_function allocate stack space for a struct return? */
1349 static int
1350 m68hc11_use_struct_convention (int gcc_p, struct type *type)
1351 {
1352 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
1353 || TYPE_CODE (type) == TYPE_CODE_UNION
1354 || TYPE_LENGTH (type) > 4);
1355 }
1356
1357 static int
1358 m68hc11_return_value_on_stack (struct type *type)
1359 {
1360 return TYPE_LENGTH (type) > 4;
1361 }
1362
1363 /* Extract from an array REGBUF containing the (raw) register state
1364 the address in which a function should return its structure value,
1365 as a CORE_ADDR (or an expression that can be used as one). */
1366 static CORE_ADDR
1367 m68hc11_extract_struct_value_address (struct regcache *regcache)
1368 {
1369 char buf[M68HC11_REG_SIZE];
1370
1371 regcache_cooked_read (regcache, HARD_D_REGNUM, buf);
1372 return extract_unsigned_integer (buf, M68HC11_REG_SIZE);
1373 }
1374
1375 /* Test whether the ELF symbol corresponds to a function using rtc or
1376 rti to return. */
1377
1378 static void
1379 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1380 {
1381 unsigned char flags;
1382
1383 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1384 if (flags & STO_M68HC12_FAR)
1385 MSYMBOL_SET_RTC (msym);
1386 if (flags & STO_M68HC12_INTERRUPT)
1387 MSYMBOL_SET_RTI (msym);
1388 }
1389
1390 static int
1391 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1392 {
1393 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1394 return print_insn_m68hc11 (memaddr, info);
1395 else
1396 return print_insn_m68hc12 (memaddr, info);
1397 }
1398
1399 \f
1400
1401 /* 68HC11/68HC12 register groups.
1402 Identify real hard registers and soft registers used by gcc. */
1403
1404 static struct reggroup *m68hc11_soft_reggroup;
1405 static struct reggroup *m68hc11_hard_reggroup;
1406
1407 static void
1408 m68hc11_init_reggroups (void)
1409 {
1410 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1411 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1412 }
1413
1414 static void
1415 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1416 {
1417 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1418 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1419 reggroup_add (gdbarch, general_reggroup);
1420 reggroup_add (gdbarch, float_reggroup);
1421 reggroup_add (gdbarch, all_reggroup);
1422 reggroup_add (gdbarch, save_reggroup);
1423 reggroup_add (gdbarch, restore_reggroup);
1424 reggroup_add (gdbarch, vector_reggroup);
1425 reggroup_add (gdbarch, system_reggroup);
1426 }
1427
1428 static int
1429 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1430 struct reggroup *group)
1431 {
1432 /* We must save the real hard register as well as gcc
1433 soft registers including the frame pointer. */
1434 if (group == save_reggroup || group == restore_reggroup)
1435 {
1436 return (regnum <= gdbarch_num_regs (gdbarch)
1437 || ((regnum == SOFT_FP_REGNUM
1438 || regnum == SOFT_TMP_REGNUM
1439 || regnum == SOFT_ZS_REGNUM
1440 || regnum == SOFT_XY_REGNUM)
1441 && m68hc11_register_name (regnum)));
1442 }
1443
1444 /* Group to identify gcc soft registers (d1..dN). */
1445 if (group == m68hc11_soft_reggroup)
1446 {
1447 return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
1448 }
1449
1450 if (group == m68hc11_hard_reggroup)
1451 {
1452 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1453 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1454 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1455 }
1456 return default_register_reggroup_p (gdbarch, regnum, group);
1457 }
1458
1459 static struct gdbarch *
1460 m68hc11_gdbarch_init (struct gdbarch_info info,
1461 struct gdbarch_list *arches)
1462 {
1463 struct gdbarch *gdbarch;
1464 struct gdbarch_tdep *tdep;
1465 int elf_flags;
1466
1467 soft_reg_initialized = 0;
1468
1469 /* Extract the elf_flags if available. */
1470 if (info.abfd != NULL
1471 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1472 elf_flags = elf_elfheader (info.abfd)->e_flags;
1473 else
1474 elf_flags = 0;
1475
1476 /* try to find a pre-existing architecture */
1477 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1478 arches != NULL;
1479 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1480 {
1481 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1482 continue;
1483
1484 return arches->gdbarch;
1485 }
1486
1487 /* Need a new architecture. Fill in a target specific vector. */
1488 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1489 gdbarch = gdbarch_alloc (&info, tdep);
1490 tdep->elf_flags = elf_flags;
1491
1492 switch (info.bfd_arch_info->arch)
1493 {
1494 case bfd_arch_m68hc11:
1495 tdep->stack_correction = 1;
1496 tdep->use_page_register = 0;
1497 tdep->prologue = m6811_prologue;
1498 set_gdbarch_addr_bit (gdbarch, 16);
1499 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1500 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1501 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1502 break;
1503
1504 case bfd_arch_m68hc12:
1505 tdep->stack_correction = 0;
1506 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1507 tdep->prologue = m6812_prologue;
1508 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1509 set_gdbarch_num_pseudo_regs (gdbarch,
1510 elf_flags & E_M68HC12_BANKS
1511 ? M68HC12_NUM_PSEUDO_REGS
1512 : M68HC11_NUM_PSEUDO_REGS);
1513 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1514 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1515 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1516 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1517 break;
1518
1519 default:
1520 break;
1521 }
1522
1523 /* Initially set everything according to the ABI.
1524 Use 16-bit integers since it will be the case for most
1525 programs. The size of these types should normally be set
1526 according to the dwarf2 debug information. */
1527 set_gdbarch_short_bit (gdbarch, 16);
1528 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1529 set_gdbarch_float_bit (gdbarch, 32);
1530 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1531 set_gdbarch_long_double_bit (gdbarch, 64);
1532 set_gdbarch_long_bit (gdbarch, 32);
1533 set_gdbarch_ptr_bit (gdbarch, 16);
1534 set_gdbarch_long_long_bit (gdbarch, 64);
1535
1536 /* Characters are unsigned. */
1537 set_gdbarch_char_signed (gdbarch, 0);
1538
1539 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1540 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1541
1542 /* Set register info. */
1543 set_gdbarch_fp0_regnum (gdbarch, -1);
1544 set_gdbarch_frame_args_skip (gdbarch, 0);
1545
1546 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1547
1548 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1549 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1550 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1551 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1552 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1553
1554 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1555
1556 set_gdbarch_extract_return_value (gdbarch, m68hc11_extract_return_value);
1557 set_gdbarch_return_value_on_stack (gdbarch, m68hc11_return_value_on_stack);
1558
1559 set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
1560 set_gdbarch_extract_struct_value_address (gdbarch, m68hc11_extract_struct_value_address);
1561
1562 set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
1563 set_gdbarch_extract_struct_value_address (gdbarch, m68hc11_extract_struct_value_address);
1564 set_gdbarch_use_struct_convention (gdbarch, m68hc11_use_struct_convention);
1565 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1566 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1567 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1568 set_gdbarch_function_start_offset (gdbarch, 0);
1569 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1570 set_gdbarch_deprecated_stack_align (gdbarch, m68hc11_stack_align);
1571 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1572
1573 m68hc11_add_reggroups (gdbarch);
1574 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1575 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1576
1577 /* Hook in the DWARF CFI frame unwinder. */
1578 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1579
1580 frame_unwind_append_sniffer (gdbarch, m68hc11_frame_sniffer);
1581 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1582
1583 /* Methods for saving / extracting a dummy frame's ID. The ID's
1584 stack address must match the SP value returned by
1585 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1586 set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
1587
1588 /* Return the unwound PC value. */
1589 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1590
1591 /* Minsymbol frobbing. */
1592 set_gdbarch_elf_make_msymbol_special (gdbarch,
1593 m68hc11_elf_make_msymbol_special);
1594
1595 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1596
1597 return gdbarch;
1598 }
1599
1600 extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1601
1602 void
1603 _initialize_m68hc11_tdep (void)
1604 {
1605 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1606 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1607 m68hc11_init_reggroups ();
1608
1609 deprecate_cmd (add_com ("regs", class_vars, show_regs,
1610 "Print all registers"),
1611 "info registers");
1612 }
1613