]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/m68hc11-tdep.c
* alpha-tdep.c (alpha_heuristic_proc_start)
[thirdparty/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
4 Free Software Foundation, Inc.
5
6 Contributed by Stephane Carrez, stcarrez@nerim.fr
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "dwarf2-frame.h"
29 #include "trad-frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdb_string.h"
35 #include "value.h"
36 #include "inferior.h"
37 #include "dis-asm.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "reggroups.h"
43
44 #include "target.h"
45 #include "opcode/m68hc11.h"
46 #include "elf/m68hc11.h"
47 #include "elf-bfd.h"
48
49 /* Macros for setting and testing a bit in a minimal symbol.
50 For 68HC11/68HC12 we have two flags that tell which return
51 type the function is using. This is used for prologue and frame
52 analysis to compute correct stack frame layout.
53
54 The MSB of the minimal symbol's "info" field is used for this purpose.
55
56 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
57 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
58 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
59 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
60
61 #define MSYMBOL_SET_RTC(msym) \
62 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
63 | 0x80000000)
64
65 #define MSYMBOL_SET_RTI(msym) \
66 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
67 | 0x40000000)
68
69 #define MSYMBOL_IS_RTC(msym) \
70 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
71
72 #define MSYMBOL_IS_RTI(msym) \
73 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
74
75 enum insn_return_kind {
76 RETURN_RTS,
77 RETURN_RTC,
78 RETURN_RTI
79 };
80
81
82 /* Register numbers of various important registers. */
83
84 #define HARD_X_REGNUM 0
85 #define HARD_D_REGNUM 1
86 #define HARD_Y_REGNUM 2
87 #define HARD_SP_REGNUM 3
88 #define HARD_PC_REGNUM 4
89
90 #define HARD_A_REGNUM 5
91 #define HARD_B_REGNUM 6
92 #define HARD_CCR_REGNUM 7
93
94 /* 68HC12 page number register.
95 Note: to keep a compatibility with gcc register naming, we must
96 not have to rename FP and other soft registers. The page register
97 is a real hard register and must therefore be counted by gdbarch_num_regs.
98 For this it has the same number as Z register (which is not used). */
99 #define HARD_PAGE_REGNUM 8
100 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
101
102 /* Z is replaced by X or Y by gcc during machine reorg.
103 ??? There is no way to get it and even know whether
104 it's in X or Y or in ZS. */
105 #define SOFT_Z_REGNUM 8
106
107 /* Soft registers. These registers are special. There are treated
108 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
109 They are physically located in memory. */
110 #define SOFT_FP_REGNUM 9
111 #define SOFT_TMP_REGNUM 10
112 #define SOFT_ZS_REGNUM 11
113 #define SOFT_XY_REGNUM 12
114 #define SOFT_UNUSED_REGNUM 13
115 #define SOFT_D1_REGNUM 14
116 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
117 #define M68HC11_MAX_SOFT_REGS 32
118
119 #define M68HC11_NUM_REGS (8)
120 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
121 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
122
123 #define M68HC11_REG_SIZE (2)
124
125 #define M68HC12_NUM_REGS (9)
126 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
127 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
128
129 struct insn_sequence;
130 struct gdbarch_tdep
131 {
132 /* Stack pointer correction value. For 68hc11, the stack pointer points
133 to the next push location. An offset of 1 must be applied to obtain
134 the address where the last value is saved. For 68hc12, the stack
135 pointer points to the last value pushed. No offset is necessary. */
136 int stack_correction;
137
138 /* Description of instructions in the prologue. */
139 struct insn_sequence *prologue;
140
141 /* True if the page memory bank register is available
142 and must be used. */
143 int use_page_register;
144
145 /* ELF flags for ABI. */
146 int elf_flags;
147 };
148
149 #define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
150 #define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
151
152 struct m68hc11_unwind_cache
153 {
154 /* The previous frame's inner most stack address. Used as this
155 frame ID's stack_addr. */
156 CORE_ADDR prev_sp;
157 /* The frame's base, optionally used by the high-level debug info. */
158 CORE_ADDR base;
159 CORE_ADDR pc;
160 int size;
161 int prologue_type;
162 CORE_ADDR return_pc;
163 CORE_ADDR sp_offset;
164 int frameless;
165 enum insn_return_kind return_kind;
166
167 /* Table indicating the location of each and every register. */
168 struct trad_frame_saved_reg *saved_regs;
169 };
170
171 /* Table of registers for 68HC11. This includes the hard registers
172 and the soft registers used by GCC. */
173 static char *
174 m68hc11_register_names[] =
175 {
176 "x", "d", "y", "sp", "pc", "a", "b",
177 "ccr", "page", "frame","tmp", "zs", "xy", 0,
178 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
179 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
180 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
181 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
182 "d29", "d30", "d31", "d32"
183 };
184
185 struct m68hc11_soft_reg
186 {
187 const char *name;
188 CORE_ADDR addr;
189 };
190
191 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
192
193 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
194
195 static int soft_min_addr;
196 static int soft_max_addr;
197 static int soft_reg_initialized = 0;
198
199 /* Look in the symbol table for the address of a pseudo register
200 in memory. If we don't find it, pretend the register is not used
201 and not available. */
202 static void
203 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
204 {
205 struct minimal_symbol *msymbol;
206
207 msymbol = lookup_minimal_symbol (name, NULL, NULL);
208 if (msymbol)
209 {
210 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
211 reg->name = xstrdup (name);
212
213 /* Keep track of the address range for soft registers. */
214 if (reg->addr < (CORE_ADDR) soft_min_addr)
215 soft_min_addr = reg->addr;
216 if (reg->addr > (CORE_ADDR) soft_max_addr)
217 soft_max_addr = reg->addr;
218 }
219 else
220 {
221 reg->name = 0;
222 reg->addr = 0;
223 }
224 }
225
226 /* Initialize the table of soft register addresses according
227 to the symbol table. */
228 static void
229 m68hc11_initialize_register_info (void)
230 {
231 int i;
232
233 if (soft_reg_initialized)
234 return;
235
236 soft_min_addr = INT_MAX;
237 soft_max_addr = 0;
238 for (i = 0; i < M68HC11_ALL_REGS; i++)
239 {
240 soft_regs[i].name = 0;
241 }
242
243 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
244 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
245 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
246 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
247 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
248
249 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
250 {
251 char buf[10];
252
253 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
254 m68hc11_get_register_info (&soft_regs[i], buf);
255 }
256
257 if (soft_regs[SOFT_FP_REGNUM].name == 0)
258 warning (_("No frame soft register found in the symbol table.\n"
259 "Stack backtrace will not work."));
260 soft_reg_initialized = 1;
261 }
262
263 /* Given an address in memory, return the soft register number if
264 that address corresponds to a soft register. Returns -1 if not. */
265 static int
266 m68hc11_which_soft_register (CORE_ADDR addr)
267 {
268 int i;
269
270 if (addr < soft_min_addr || addr > soft_max_addr)
271 return -1;
272
273 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
274 {
275 if (soft_regs[i].name && soft_regs[i].addr == addr)
276 return i;
277 }
278 return -1;
279 }
280
281 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
282 pseudo registers. They are located in memory. Translate the register
283 fetch into a memory read. */
284 static void
285 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
286 struct regcache *regcache,
287 int regno, gdb_byte *buf)
288 {
289 /* The PC is a pseudo reg only for 68HC12 with the memory bank
290 addressing mode. */
291 if (regno == M68HC12_HARD_PC_REGNUM)
292 {
293 ULONGEST pc;
294 const int regsize = TYPE_LENGTH (builtin_type_uint32);
295
296 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
297 if (pc >= 0x8000 && pc < 0xc000)
298 {
299 ULONGEST page;
300
301 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
302 pc -= 0x8000;
303 pc += (page << 14);
304 pc += 0x1000000;
305 }
306 store_unsigned_integer (buf, regsize, pc);
307 return;
308 }
309
310 m68hc11_initialize_register_info ();
311
312 /* Fetch a soft register: translate into a memory read. */
313 if (soft_regs[regno].name)
314 {
315 target_read_memory (soft_regs[regno].addr, buf, 2);
316 }
317 else
318 {
319 memset (buf, 0, 2);
320 }
321 }
322
323 /* Store a pseudo register. Translate the register store
324 into a memory write. */
325 static void
326 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
327 struct regcache *regcache,
328 int regno, const gdb_byte *buf)
329 {
330 /* The PC is a pseudo reg only for 68HC12 with the memory bank
331 addressing mode. */
332 if (regno == M68HC12_HARD_PC_REGNUM)
333 {
334 const int regsize = TYPE_LENGTH (builtin_type_uint32);
335 char *tmp = alloca (regsize);
336 CORE_ADDR pc;
337
338 memcpy (tmp, buf, regsize);
339 pc = extract_unsigned_integer (tmp, regsize);
340 if (pc >= 0x1000000)
341 {
342 pc -= 0x1000000;
343 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
344 (pc >> 14) & 0x0ff);
345 pc &= 0x03fff;
346 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
347 pc + 0x8000);
348 }
349 else
350 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
351 return;
352 }
353
354 m68hc11_initialize_register_info ();
355
356 /* Store a soft register: translate into a memory write. */
357 if (soft_regs[regno].name)
358 {
359 const int regsize = 2;
360 char *tmp = alloca (regsize);
361 memcpy (tmp, buf, regsize);
362 target_write_memory (soft_regs[regno].addr, tmp, regsize);
363 }
364 }
365
366 static const char *
367 m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
368 {
369 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
370 return "pc";
371 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
372 return "ppc";
373
374 if (reg_nr < 0)
375 return NULL;
376 if (reg_nr >= M68HC11_ALL_REGS)
377 return NULL;
378
379 m68hc11_initialize_register_info ();
380
381 /* If we don't know the address of a soft register, pretend it
382 does not exist. */
383 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
384 return NULL;
385 return m68hc11_register_names[reg_nr];
386 }
387
388 static const unsigned char *
389 m68hc11_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
390 int *lenptr)
391 {
392 static unsigned char breakpoint[] = {0x0};
393
394 *lenptr = sizeof (breakpoint);
395 return breakpoint;
396 }
397
398 \f
399 /* 68HC11 & 68HC12 prologue analysis.
400
401 */
402 #define MAX_CODES 12
403
404 /* 68HC11 opcodes. */
405 #undef M6811_OP_PAGE2
406 #define M6811_OP_PAGE2 (0x18)
407 #define M6811_OP_LDX (0xde)
408 #define M6811_OP_LDX_EXT (0xfe)
409 #define M6811_OP_PSHX (0x3c)
410 #define M6811_OP_STS (0x9f)
411 #define M6811_OP_STS_EXT (0xbf)
412 #define M6811_OP_TSX (0x30)
413 #define M6811_OP_XGDX (0x8f)
414 #define M6811_OP_ADDD (0xc3)
415 #define M6811_OP_TXS (0x35)
416 #define M6811_OP_DES (0x34)
417
418 /* 68HC12 opcodes. */
419 #define M6812_OP_PAGE2 (0x18)
420 #define M6812_OP_MOVW (0x01)
421 #define M6812_PB_PSHW (0xae)
422 #define M6812_OP_STS (0x5f)
423 #define M6812_OP_STS_EXT (0x7f)
424 #define M6812_OP_LEAS (0x1b)
425 #define M6812_OP_PSHX (0x34)
426 #define M6812_OP_PSHY (0x35)
427
428 /* Operand extraction. */
429 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
430 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
431 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
432 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
433
434 /* Identification of the sequence. */
435 enum m6811_seq_type
436 {
437 P_LAST = 0,
438 P_SAVE_REG, /* Save a register on the stack. */
439 P_SET_FRAME, /* Setup the frame pointer. */
440 P_LOCAL_1, /* Allocate 1 byte for locals. */
441 P_LOCAL_2, /* Allocate 2 bytes for locals. */
442 P_LOCAL_N /* Allocate N bytes for locals. */
443 };
444
445 struct insn_sequence {
446 enum m6811_seq_type type;
447 unsigned length;
448 unsigned short code[MAX_CODES];
449 };
450
451 /* Sequence of instructions in the 68HC11 function prologue. */
452 static struct insn_sequence m6811_prologue[] = {
453 /* Sequences to save a soft-register. */
454 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
455 M6811_OP_PSHX } },
456 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
457 M6811_OP_PAGE2, M6811_OP_PSHX } },
458 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
459 M6811_OP_PSHX } },
460 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
461 M6811_OP_PAGE2, M6811_OP_PSHX } },
462
463 /* Sequences to allocate local variables. */
464 { P_LOCAL_N, 7, { M6811_OP_TSX,
465 M6811_OP_XGDX,
466 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
467 M6811_OP_XGDX,
468 M6811_OP_TXS } },
469 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
470 M6811_OP_PAGE2, M6811_OP_XGDX,
471 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
472 M6811_OP_PAGE2, M6811_OP_XGDX,
473 M6811_OP_PAGE2, M6811_OP_TXS } },
474 { P_LOCAL_1, 1, { M6811_OP_DES } },
475 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
476 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
477
478 /* Initialize the frame pointer. */
479 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
480 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
481 { P_LAST, 0, { 0 } }
482 };
483
484
485 /* Sequence of instructions in the 68HC12 function prologue. */
486 static struct insn_sequence m6812_prologue[] = {
487 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
488 OP_IMM_HIGH, OP_IMM_LOW } },
489 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
490 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
491 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
492 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
493 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
494 { P_LAST, 0 }
495 };
496
497
498 /* Analyze the sequence of instructions starting at the given address.
499 Returns a pointer to the sequence when it is recognized and
500 the optional value (constant/address) associated with it. */
501 static struct insn_sequence *
502 m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
503 CORE_ADDR *val)
504 {
505 unsigned char buffer[MAX_CODES];
506 unsigned bufsize;
507 unsigned j;
508 CORE_ADDR cur_val;
509 short v = 0;
510
511 bufsize = 0;
512 for (; seq->type != P_LAST; seq++)
513 {
514 cur_val = 0;
515 for (j = 0; j < seq->length; j++)
516 {
517 if (bufsize < j + 1)
518 {
519 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
520 1);
521 bufsize++;
522 }
523 /* Continue while we match the opcode. */
524 if (seq->code[j] == buffer[j])
525 continue;
526
527 if ((seq->code[j] & 0xf00) == 0)
528 break;
529
530 /* Extract a sequence parameter (address or constant). */
531 switch (seq->code[j])
532 {
533 case OP_DIRECT:
534 cur_val = (CORE_ADDR) buffer[j];
535 break;
536
537 case OP_IMM_HIGH:
538 cur_val = cur_val & 0x0ff;
539 cur_val |= (buffer[j] << 8);
540 break;
541
542 case OP_IMM_LOW:
543 cur_val &= 0x0ff00;
544 cur_val |= buffer[j];
545 break;
546
547 case OP_PBYTE:
548 if ((buffer[j] & 0xE0) == 0x80)
549 {
550 v = buffer[j] & 0x1f;
551 if (v & 0x10)
552 v |= 0xfff0;
553 }
554 else if ((buffer[j] & 0xfe) == 0xf0)
555 {
556 v = read_memory_unsigned_integer (pc + j + 1, 1);
557 if (buffer[j] & 1)
558 v |= 0xff00;
559 }
560 else if (buffer[j] == 0xf2)
561 {
562 v = read_memory_unsigned_integer (pc + j + 1, 2);
563 }
564 cur_val = v;
565 break;
566 }
567 }
568
569 /* We have a full match. */
570 if (j == seq->length)
571 {
572 *val = cur_val;
573 return seq;
574 }
575 }
576 return 0;
577 }
578
579 /* Return the instruction that the function at the PC is using. */
580 static enum insn_return_kind
581 m68hc11_get_return_insn (CORE_ADDR pc)
582 {
583 struct minimal_symbol *sym;
584
585 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
586 function is stored by elfread.c in the high bit of the info field.
587 Use this to decide which instruction the function uses to return. */
588 sym = lookup_minimal_symbol_by_pc (pc);
589 if (sym == 0)
590 return RETURN_RTS;
591
592 if (MSYMBOL_IS_RTC (sym))
593 return RETURN_RTC;
594 else if (MSYMBOL_IS_RTI (sym))
595 return RETURN_RTI;
596 else
597 return RETURN_RTS;
598 }
599
600 /* Analyze the function prologue to find some information
601 about the function:
602 - the PC of the first line (for m68hc11_skip_prologue)
603 - the offset of the previous frame saved address (from current frame)
604 - the soft registers which are pushed. */
605 static CORE_ADDR
606 m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
607 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
608 {
609 LONGEST save_addr;
610 CORE_ADDR func_end;
611 int size;
612 int found_frame_point;
613 int saved_reg;
614 int done = 0;
615 struct insn_sequence *seq_table;
616
617 info->size = 0;
618 info->sp_offset = 0;
619 if (pc >= current_pc)
620 return current_pc;
621
622 size = 0;
623
624 m68hc11_initialize_register_info ();
625 if (pc == 0)
626 {
627 info->size = 0;
628 return pc;
629 }
630
631 seq_table = gdbarch_tdep (gdbarch)->prologue;
632
633 /* The 68hc11 stack is as follows:
634
635
636 | |
637 +-----------+
638 | |
639 | args |
640 | |
641 +-----------+
642 | PC-return |
643 +-----------+
644 | Old frame |
645 +-----------+
646 | |
647 | Locals |
648 | |
649 +-----------+ <--- current frame
650 | |
651
652 With most processors (like 68K) the previous frame can be computed
653 easily because it is always at a fixed offset (see link/unlink).
654 That is, locals are accessed with negative offsets, arguments are
655 accessed with positive ones. Since 68hc11 only supports offsets
656 in the range [0..255], the frame is defined at the bottom of
657 locals (see picture).
658
659 The purpose of the analysis made here is to find out the size
660 of locals in this function. An alternative to this is to use
661 DWARF2 info. This would be better but I don't know how to
662 access dwarf2 debug from this function.
663
664 Walk from the function entry point to the point where we save
665 the frame. While walking instructions, compute the size of bytes
666 which are pushed. This gives us the index to access the previous
667 frame.
668
669 We limit the search to 128 bytes so that the algorithm is bounded
670 in case of random and wrong code. We also stop and abort if
671 we find an instruction which is not supposed to appear in the
672 prologue (as generated by gcc 2.95, 2.96).
673 */
674 func_end = pc + 128;
675 found_frame_point = 0;
676 info->size = 0;
677 save_addr = 0;
678 while (!done && pc + 2 < func_end)
679 {
680 struct insn_sequence *seq;
681 CORE_ADDR val;
682
683 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
684 if (seq == 0)
685 break;
686
687 /* If we are within the instruction group, we can't advance the
688 pc nor the stack offset. Otherwise the caller's stack computed
689 from the current stack can be wrong. */
690 if (pc + seq->length > current_pc)
691 break;
692
693 pc = pc + seq->length;
694 if (seq->type == P_SAVE_REG)
695 {
696 if (found_frame_point)
697 {
698 saved_reg = m68hc11_which_soft_register (val);
699 if (saved_reg < 0)
700 break;
701
702 save_addr -= 2;
703 if (info->saved_regs)
704 info->saved_regs[saved_reg].addr = save_addr;
705 }
706 else
707 {
708 size += 2;
709 }
710 }
711 else if (seq->type == P_SET_FRAME)
712 {
713 found_frame_point = 1;
714 info->size = size;
715 }
716 else if (seq->type == P_LOCAL_1)
717 {
718 size += 1;
719 }
720 else if (seq->type == P_LOCAL_2)
721 {
722 size += 2;
723 }
724 else if (seq->type == P_LOCAL_N)
725 {
726 /* Stack pointer is decremented for the allocation. */
727 if (val & 0x8000)
728 size -= (int) (val) | 0xffff0000;
729 else
730 size -= val;
731 }
732 }
733 if (found_frame_point == 0)
734 info->sp_offset = size;
735 else
736 info->sp_offset = -1;
737 return pc;
738 }
739
740 static CORE_ADDR
741 m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
742 {
743 CORE_ADDR func_addr, func_end;
744 struct symtab_and_line sal;
745 struct m68hc11_unwind_cache tmp_cache = { 0 };
746
747 /* If we have line debugging information, then the end of the
748 prologue should be the first assembly instruction of the
749 first source line. */
750 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
751 {
752 sal = find_pc_line (func_addr, 0);
753 if (sal.end && sal.end < func_end)
754 return sal.end;
755 }
756
757 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
758 return pc;
759 }
760
761 static CORE_ADDR
762 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
763 {
764 ULONGEST pc;
765
766 pc = frame_unwind_register_unsigned (next_frame, gdbarch_pc_regnum (gdbarch));
767 return pc;
768 }
769
770 /* Put here the code to store, into fi->saved_regs, the addresses of
771 the saved registers of frame described by FRAME_INFO. This
772 includes special registers such as pc and fp saved in special ways
773 in the stack frame. sp is even more special: the address we return
774 for it IS the sp for the next frame. */
775
776 struct m68hc11_unwind_cache *
777 m68hc11_frame_unwind_cache (struct frame_info *next_frame,
778 void **this_prologue_cache)
779 {
780 struct gdbarch *gdbarch = get_frame_arch (next_frame);
781 ULONGEST prev_sp;
782 ULONGEST this_base;
783 struct m68hc11_unwind_cache *info;
784 CORE_ADDR current_pc;
785 int i;
786
787 if ((*this_prologue_cache))
788 return (*this_prologue_cache);
789
790 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
791 (*this_prologue_cache) = info;
792 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
793
794 info->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
795
796 info->size = 0;
797 info->return_kind = m68hc11_get_return_insn (info->pc);
798
799 /* The SP was moved to the FP. This indicates that a new frame
800 was created. Get THIS frame's FP value by unwinding it from
801 the next frame. */
802 this_base = frame_unwind_register_unsigned (next_frame, SOFT_FP_REGNUM);
803 if (this_base == 0)
804 {
805 info->base = 0;
806 return info;
807 }
808
809 current_pc = frame_pc_unwind (next_frame);
810 if (info->pc != 0)
811 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
812
813 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
814
815 if (info->sp_offset != (CORE_ADDR) -1)
816 {
817 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
818 this_base = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
819 prev_sp = this_base + info->sp_offset + 2;
820 this_base += STACK_CORRECTION (gdbarch);
821 }
822 else
823 {
824 /* The FP points at the last saved register. Adjust the FP back
825 to before the first saved register giving the SP. */
826 prev_sp = this_base + info->size + 2;
827
828 this_base += STACK_CORRECTION (gdbarch);
829 if (soft_regs[SOFT_FP_REGNUM].name)
830 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
831 }
832
833 if (info->return_kind == RETURN_RTC)
834 {
835 prev_sp += 1;
836 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
837 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
838 }
839 else if (info->return_kind == RETURN_RTI)
840 {
841 prev_sp += 7;
842 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
843 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
844 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
845 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
846 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
847 }
848
849 /* Add 1 here to adjust for the post-decrement nature of the push
850 instruction.*/
851 info->prev_sp = prev_sp;
852
853 info->base = this_base;
854
855 /* Adjust all the saved registers so that they contain addresses and not
856 offsets. */
857 for (i = 0;
858 i < gdbarch_num_regs (gdbarch)
859 + gdbarch_num_pseudo_regs (gdbarch) - 1;
860 i++)
861 if (trad_frame_addr_p (info->saved_regs, i))
862 {
863 info->saved_regs[i].addr += this_base;
864 }
865
866 /* The previous frame's SP needed to be computed. Save the computed
867 value. */
868 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
869
870 return info;
871 }
872
873 /* Given a GDB frame, determine the address of the calling function's
874 frame. This will be used to create a new GDB frame struct. */
875
876 static void
877 m68hc11_frame_this_id (struct frame_info *next_frame,
878 void **this_prologue_cache,
879 struct frame_id *this_id)
880 {
881 struct m68hc11_unwind_cache *info
882 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
883 CORE_ADDR base;
884 CORE_ADDR func;
885 struct frame_id id;
886
887 /* The FUNC is easy. */
888 func = frame_func_unwind (next_frame, NORMAL_FRAME);
889
890 /* Hopefully the prologue analysis either correctly determined the
891 frame's base (which is the SP from the previous frame), or set
892 that base to "NULL". */
893 base = info->prev_sp;
894 if (base == 0)
895 return;
896
897 id = frame_id_build (base, func);
898 (*this_id) = id;
899 }
900
901 static void
902 m68hc11_frame_prev_register (struct frame_info *next_frame,
903 void **this_prologue_cache,
904 int regnum, int *optimizedp,
905 enum lval_type *lvalp, CORE_ADDR *addrp,
906 int *realnump, gdb_byte *bufferp)
907 {
908 struct m68hc11_unwind_cache *info
909 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
910
911 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
912 optimizedp, lvalp, addrp, realnump, bufferp);
913
914 if (regnum == HARD_PC_REGNUM)
915 {
916 /* Take into account the 68HC12 specific call (PC + page). */
917 if (info->return_kind == RETURN_RTC
918 && *addrp >= 0x08000 && *addrp < 0x0c000
919 && USE_PAGE_REGISTER (get_frame_arch (next_frame)))
920 {
921 int page_optimized;
922
923 CORE_ADDR page;
924
925 trad_frame_get_prev_register (next_frame, info->saved_regs,
926 HARD_PAGE_REGNUM, &page_optimized,
927 0, &page, 0, 0);
928 *addrp -= 0x08000;
929 *addrp += ((page & 0x0ff) << 14);
930 *addrp += 0x1000000;
931 }
932 }
933 }
934
935 static const struct frame_unwind m68hc11_frame_unwind = {
936 NORMAL_FRAME,
937 m68hc11_frame_this_id,
938 m68hc11_frame_prev_register
939 };
940
941 const struct frame_unwind *
942 m68hc11_frame_sniffer (struct frame_info *next_frame)
943 {
944 return &m68hc11_frame_unwind;
945 }
946
947 static CORE_ADDR
948 m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
949 {
950 struct m68hc11_unwind_cache *info
951 = m68hc11_frame_unwind_cache (next_frame, this_cache);
952
953 return info->base;
954 }
955
956 static CORE_ADDR
957 m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
958 {
959 CORE_ADDR addr;
960 struct m68hc11_unwind_cache *info
961 = m68hc11_frame_unwind_cache (next_frame, this_cache);
962
963 addr = info->base + info->size;
964 if (info->return_kind == RETURN_RTC)
965 addr += 1;
966 else if (info->return_kind == RETURN_RTI)
967 addr += 7;
968
969 return addr;
970 }
971
972 static const struct frame_base m68hc11_frame_base = {
973 &m68hc11_frame_unwind,
974 m68hc11_frame_base_address,
975 m68hc11_frame_base_address,
976 m68hc11_frame_args_address
977 };
978
979 static CORE_ADDR
980 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
981 {
982 ULONGEST sp;
983 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
984 return sp;
985 }
986
987 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
988 dummy frame. The frame ID's base needs to match the TOS value
989 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
990 breakpoint. */
991
992 static struct frame_id
993 m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
994 {
995 ULONGEST tos;
996 CORE_ADDR pc = frame_pc_unwind (next_frame);
997
998 tos = frame_unwind_register_unsigned (next_frame, SOFT_FP_REGNUM);
999 tos += 2;
1000 return frame_id_build (tos, pc);
1001 }
1002
1003 \f
1004 /* Get and print the register from the given frame. */
1005 static void
1006 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1007 struct frame_info *frame, int regno)
1008 {
1009 LONGEST rval;
1010
1011 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1012 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1013 rval = get_frame_register_unsigned (frame, regno);
1014 else
1015 rval = get_frame_register_signed (frame, regno);
1016
1017 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1018 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1019 {
1020 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1021 if (regno != HARD_CCR_REGNUM)
1022 print_longest (file, 'd', 1, rval);
1023 }
1024 else
1025 {
1026 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1027 {
1028 ULONGEST page;
1029
1030 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1031 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1032 (unsigned) rval);
1033 }
1034 else
1035 {
1036 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1037 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1038 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1039 print_longest (file, 'd', 1, rval);
1040 }
1041 }
1042
1043 if (regno == HARD_CCR_REGNUM)
1044 {
1045 /* CCR register */
1046 int C, Z, N, V;
1047 unsigned char l = rval & 0xff;
1048
1049 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1050 l & M6811_S_BIT ? 'S' : '-',
1051 l & M6811_X_BIT ? 'X' : '-',
1052 l & M6811_H_BIT ? 'H' : '-',
1053 l & M6811_I_BIT ? 'I' : '-',
1054 l & M6811_N_BIT ? 'N' : '-',
1055 l & M6811_Z_BIT ? 'Z' : '-',
1056 l & M6811_V_BIT ? 'V' : '-',
1057 l & M6811_C_BIT ? 'C' : '-');
1058 N = (l & M6811_N_BIT) != 0;
1059 Z = (l & M6811_Z_BIT) != 0;
1060 V = (l & M6811_V_BIT) != 0;
1061 C = (l & M6811_C_BIT) != 0;
1062
1063 /* Print flags following the h8300 */
1064 if ((C | Z) == 0)
1065 fprintf_filtered (file, "u> ");
1066 else if ((C | Z) == 1)
1067 fprintf_filtered (file, "u<= ");
1068 else if (C == 0)
1069 fprintf_filtered (file, "u< ");
1070
1071 if (Z == 0)
1072 fprintf_filtered (file, "!= ");
1073 else
1074 fprintf_filtered (file, "== ");
1075
1076 if ((N ^ V) == 0)
1077 fprintf_filtered (file, ">= ");
1078 else
1079 fprintf_filtered (file, "< ");
1080
1081 if ((Z | (N ^ V)) == 0)
1082 fprintf_filtered (file, "> ");
1083 else
1084 fprintf_filtered (file, "<= ");
1085 }
1086 }
1087
1088 /* Same as 'info reg' but prints the registers in a different way. */
1089 static void
1090 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1091 struct frame_info *frame, int regno, int cpregs)
1092 {
1093 if (regno >= 0)
1094 {
1095 const char *name = gdbarch_register_name (gdbarch, regno);
1096
1097 if (!name || !*name)
1098 return;
1099
1100 fprintf_filtered (file, "%-10s ", name);
1101 m68hc11_print_register (gdbarch, file, frame, regno);
1102 fprintf_filtered (file, "\n");
1103 }
1104 else
1105 {
1106 int i, nr;
1107
1108 fprintf_filtered (file, "PC=");
1109 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1110
1111 fprintf_filtered (file, " SP=");
1112 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1113
1114 fprintf_filtered (file, " FP=");
1115 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1116
1117 fprintf_filtered (file, "\nCCR=");
1118 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1119
1120 fprintf_filtered (file, "\nD=");
1121 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1122
1123 fprintf_filtered (file, " X=");
1124 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1125
1126 fprintf_filtered (file, " Y=");
1127 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1128
1129 if (gdbarch_tdep (gdbarch)->use_page_register)
1130 {
1131 fprintf_filtered (file, "\nPage=");
1132 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1133 }
1134 fprintf_filtered (file, "\n");
1135
1136 nr = 0;
1137 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1138 {
1139 /* Skip registers which are not defined in the symbol table. */
1140 if (soft_regs[i].name == 0)
1141 continue;
1142
1143 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1144 m68hc11_print_register (gdbarch, file, frame, i);
1145 nr++;
1146 if ((nr % 8) == 7)
1147 fprintf_filtered (file, "\n");
1148 else
1149 fprintf_filtered (file, " ");
1150 }
1151 if (nr && (nr % 8) != 7)
1152 fprintf_filtered (file, "\n");
1153 }
1154 }
1155
1156 static CORE_ADDR
1157 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1158 struct regcache *regcache, CORE_ADDR bp_addr,
1159 int nargs, struct value **args, CORE_ADDR sp,
1160 int struct_return, CORE_ADDR struct_addr)
1161 {
1162 int argnum;
1163 int first_stack_argnum;
1164 struct type *type;
1165 char *val;
1166 int len;
1167 char buf[2];
1168
1169 first_stack_argnum = 0;
1170 if (struct_return)
1171 {
1172 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1173 }
1174 else if (nargs > 0)
1175 {
1176 type = value_type (args[0]);
1177 len = TYPE_LENGTH (type);
1178
1179 /* First argument is passed in D and X registers. */
1180 if (len <= 4)
1181 {
1182 ULONGEST v;
1183
1184 v = extract_unsigned_integer (value_contents (args[0]), len);
1185 first_stack_argnum = 1;
1186
1187 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1188 if (len > 2)
1189 {
1190 v >>= 16;
1191 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1192 }
1193 }
1194 }
1195
1196 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1197 {
1198 type = value_type (args[argnum]);
1199 len = TYPE_LENGTH (type);
1200
1201 if (len & 1)
1202 {
1203 static char zero = 0;
1204
1205 sp--;
1206 write_memory (sp, &zero, 1);
1207 }
1208 val = (char*) value_contents (args[argnum]);
1209 sp -= len;
1210 write_memory (sp, val, len);
1211 }
1212
1213 /* Store return address. */
1214 sp -= 2;
1215 store_unsigned_integer (buf, 2, bp_addr);
1216 write_memory (sp, buf, 2);
1217
1218 /* Finally, update the stack pointer... */
1219 sp -= STACK_CORRECTION (gdbarch);
1220 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1221
1222 /* ...and fake a frame pointer. */
1223 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1224
1225 /* DWARF2/GCC uses the stack address *before* the function call as a
1226 frame's CFA. */
1227 return sp + 2;
1228 }
1229
1230
1231 /* Return the GDB type object for the "standard" data type
1232 of data in register N. */
1233
1234 static struct type *
1235 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1236 {
1237 switch (reg_nr)
1238 {
1239 case HARD_PAGE_REGNUM:
1240 case HARD_A_REGNUM:
1241 case HARD_B_REGNUM:
1242 case HARD_CCR_REGNUM:
1243 return builtin_type_uint8;
1244
1245 case M68HC12_HARD_PC_REGNUM:
1246 return builtin_type_uint32;
1247
1248 default:
1249 return builtin_type_uint16;
1250 }
1251 }
1252
1253 static void
1254 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1255 const void *valbuf)
1256 {
1257 int len;
1258
1259 len = TYPE_LENGTH (type);
1260
1261 /* First argument is passed in D and X registers. */
1262 if (len <= 2)
1263 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1264 else if (len <= 4)
1265 {
1266 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1267 len - 2, valbuf);
1268 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
1269 }
1270 else
1271 error (_("return of value > 4 is not supported."));
1272 }
1273
1274
1275 /* Given a return value in `regcache' with a type `type',
1276 extract and copy its value into `valbuf'. */
1277
1278 static void
1279 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1280 void *valbuf)
1281 {
1282 int len = TYPE_LENGTH (type);
1283 char buf[M68HC11_REG_SIZE];
1284
1285 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1286 switch (len)
1287 {
1288 case 1:
1289 memcpy (valbuf, buf + 1, 1);
1290 break;
1291
1292 case 2:
1293 memcpy (valbuf, buf, 2);
1294 break;
1295
1296 case 3:
1297 memcpy ((char*) valbuf + 1, buf, 2);
1298 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1299 memcpy (valbuf, buf + 1, 1);
1300 break;
1301
1302 case 4:
1303 memcpy ((char*) valbuf + 2, buf, 2);
1304 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1305 memcpy (valbuf, buf, 2);
1306 break;
1307
1308 default:
1309 error (_("bad size for return value"));
1310 }
1311 }
1312
1313 enum return_value_convention
1314 m68hc11_return_value (struct gdbarch *gdbarch, struct type *valtype,
1315 struct regcache *regcache, gdb_byte *readbuf,
1316 const gdb_byte *writebuf)
1317 {
1318 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1319 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1320 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1321 || TYPE_LENGTH (valtype) > 4)
1322 return RETURN_VALUE_STRUCT_CONVENTION;
1323 else
1324 {
1325 if (readbuf != NULL)
1326 m68hc11_extract_return_value (valtype, regcache, readbuf);
1327 if (writebuf != NULL)
1328 m68hc11_store_return_value (valtype, regcache, writebuf);
1329 return RETURN_VALUE_REGISTER_CONVENTION;
1330 }
1331 }
1332
1333 /* Test whether the ELF symbol corresponds to a function using rtc or
1334 rti to return. */
1335
1336 static void
1337 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1338 {
1339 unsigned char flags;
1340
1341 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1342 if (flags & STO_M68HC12_FAR)
1343 MSYMBOL_SET_RTC (msym);
1344 if (flags & STO_M68HC12_INTERRUPT)
1345 MSYMBOL_SET_RTI (msym);
1346 }
1347
1348 static int
1349 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1350 {
1351 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_m68hc11)
1352 return print_insn_m68hc11 (memaddr, info);
1353 else
1354 return print_insn_m68hc12 (memaddr, info);
1355 }
1356
1357 \f
1358
1359 /* 68HC11/68HC12 register groups.
1360 Identify real hard registers and soft registers used by gcc. */
1361
1362 static struct reggroup *m68hc11_soft_reggroup;
1363 static struct reggroup *m68hc11_hard_reggroup;
1364
1365 static void
1366 m68hc11_init_reggroups (void)
1367 {
1368 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1369 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1370 }
1371
1372 static void
1373 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1374 {
1375 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1376 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1377 reggroup_add (gdbarch, general_reggroup);
1378 reggroup_add (gdbarch, float_reggroup);
1379 reggroup_add (gdbarch, all_reggroup);
1380 reggroup_add (gdbarch, save_reggroup);
1381 reggroup_add (gdbarch, restore_reggroup);
1382 reggroup_add (gdbarch, vector_reggroup);
1383 reggroup_add (gdbarch, system_reggroup);
1384 }
1385
1386 static int
1387 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1388 struct reggroup *group)
1389 {
1390 /* We must save the real hard register as well as gcc
1391 soft registers including the frame pointer. */
1392 if (group == save_reggroup || group == restore_reggroup)
1393 {
1394 return (regnum <= gdbarch_num_regs (gdbarch)
1395 || ((regnum == SOFT_FP_REGNUM
1396 || regnum == SOFT_TMP_REGNUM
1397 || regnum == SOFT_ZS_REGNUM
1398 || regnum == SOFT_XY_REGNUM)
1399 && m68hc11_register_name (gdbarch, regnum)));
1400 }
1401
1402 /* Group to identify gcc soft registers (d1..dN). */
1403 if (group == m68hc11_soft_reggroup)
1404 {
1405 return regnum >= SOFT_D1_REGNUM
1406 && m68hc11_register_name (gdbarch, regnum);
1407 }
1408
1409 if (group == m68hc11_hard_reggroup)
1410 {
1411 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1412 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1413 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1414 }
1415 return default_register_reggroup_p (gdbarch, regnum, group);
1416 }
1417
1418 static struct gdbarch *
1419 m68hc11_gdbarch_init (struct gdbarch_info info,
1420 struct gdbarch_list *arches)
1421 {
1422 struct gdbarch *gdbarch;
1423 struct gdbarch_tdep *tdep;
1424 int elf_flags;
1425
1426 soft_reg_initialized = 0;
1427
1428 /* Extract the elf_flags if available. */
1429 if (info.abfd != NULL
1430 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1431 elf_flags = elf_elfheader (info.abfd)->e_flags;
1432 else
1433 elf_flags = 0;
1434
1435 /* try to find a pre-existing architecture */
1436 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1437 arches != NULL;
1438 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1439 {
1440 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1441 continue;
1442
1443 return arches->gdbarch;
1444 }
1445
1446 /* Need a new architecture. Fill in a target specific vector. */
1447 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1448 gdbarch = gdbarch_alloc (&info, tdep);
1449 tdep->elf_flags = elf_flags;
1450
1451 switch (info.bfd_arch_info->arch)
1452 {
1453 case bfd_arch_m68hc11:
1454 tdep->stack_correction = 1;
1455 tdep->use_page_register = 0;
1456 tdep->prologue = m6811_prologue;
1457 set_gdbarch_addr_bit (gdbarch, 16);
1458 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1459 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1460 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1461 break;
1462
1463 case bfd_arch_m68hc12:
1464 tdep->stack_correction = 0;
1465 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1466 tdep->prologue = m6812_prologue;
1467 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1468 set_gdbarch_num_pseudo_regs (gdbarch,
1469 elf_flags & E_M68HC12_BANKS
1470 ? M68HC12_NUM_PSEUDO_REGS
1471 : M68HC11_NUM_PSEUDO_REGS);
1472 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1473 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1474 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1475 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1476 break;
1477
1478 default:
1479 break;
1480 }
1481
1482 /* Initially set everything according to the ABI.
1483 Use 16-bit integers since it will be the case for most
1484 programs. The size of these types should normally be set
1485 according to the dwarf2 debug information. */
1486 set_gdbarch_short_bit (gdbarch, 16);
1487 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1488 set_gdbarch_float_bit (gdbarch, 32);
1489 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1490 set_gdbarch_long_double_bit (gdbarch, 64);
1491 set_gdbarch_long_bit (gdbarch, 32);
1492 set_gdbarch_ptr_bit (gdbarch, 16);
1493 set_gdbarch_long_long_bit (gdbarch, 64);
1494
1495 /* Characters are unsigned. */
1496 set_gdbarch_char_signed (gdbarch, 0);
1497
1498 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1499 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1500
1501 /* Set register info. */
1502 set_gdbarch_fp0_regnum (gdbarch, -1);
1503
1504 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1505 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1506 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1507 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1508 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1509
1510 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1511
1512 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1513 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1514 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1515 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1516 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1517
1518 m68hc11_add_reggroups (gdbarch);
1519 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1520 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1521
1522 /* Hook in the DWARF CFI frame unwinder. */
1523 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1524
1525 frame_unwind_append_sniffer (gdbarch, m68hc11_frame_sniffer);
1526 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1527
1528 /* Methods for saving / extracting a dummy frame's ID. The ID's
1529 stack address must match the SP value returned by
1530 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1531 set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
1532
1533 /* Return the unwound PC value. */
1534 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1535
1536 /* Minsymbol frobbing. */
1537 set_gdbarch_elf_make_msymbol_special (gdbarch,
1538 m68hc11_elf_make_msymbol_special);
1539
1540 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1541
1542 return gdbarch;
1543 }
1544
1545 extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1546
1547 void
1548 _initialize_m68hc11_tdep (void)
1549 {
1550 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1551 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1552 m68hc11_init_reggroups ();
1553 }
1554