]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/m68k-tdep.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / m68k-tdep.c
1 /* Target-dependent code for the Motorola 68000 series.
2
3 Copyright (C) 1990-1996, 1999-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "dwarf2-frame.h"
22 #include "frame.h"
23 #include "frame-base.h"
24 #include "frame-unwind.h"
25 #include "gdbtypes.h"
26 #include "symtab.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "gdb_string.h"
30 #include "gdb_assert.h"
31 #include "inferior.h"
32 #include "regcache.h"
33 #include "arch-utils.h"
34 #include "osabi.h"
35 #include "dis-asm.h"
36 #include "target-descriptions.h"
37
38 #include "m68k-tdep.h"
39 \f
40
41 #define P_LINKL_FP 0x480e
42 #define P_LINKW_FP 0x4e56
43 #define P_PEA_FP 0x4856
44 #define P_MOVEAL_SP_FP 0x2c4f
45 #define P_ADDAW_SP 0xdefc
46 #define P_ADDAL_SP 0xdffc
47 #define P_SUBQW_SP 0x514f
48 #define P_SUBQL_SP 0x518f
49 #define P_LEA_SP_SP 0x4fef
50 #define P_LEA_PC_A5 0x4bfb0170
51 #define P_FMOVEMX_SP 0xf227
52 #define P_MOVEL_SP 0x2f00
53 #define P_MOVEML_SP 0x48e7
54
55 /* Offset from SP to first arg on stack at first instruction of a function. */
56 #define SP_ARG0 (1 * 4)
57
58 #if !defined (BPT_VECTOR)
59 #define BPT_VECTOR 0xf
60 #endif
61
62 static const gdb_byte *
63 m68k_local_breakpoint_from_pc (struct gdbarch *gdbarch,
64 CORE_ADDR *pcptr, int *lenptr)
65 {
66 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
67 *lenptr = sizeof (break_insn);
68 return break_insn;
69 }
70 \f
71
72 /* Construct types for ISA-specific registers. */
73 static struct type *
74 m68k_ps_type (struct gdbarch *gdbarch)
75 {
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77
78 if (!tdep->m68k_ps_type)
79 {
80 struct type *type;
81
82 type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 4);
83 append_flags_type_flag (type, 0, "C");
84 append_flags_type_flag (type, 1, "V");
85 append_flags_type_flag (type, 2, "Z");
86 append_flags_type_flag (type, 3, "N");
87 append_flags_type_flag (type, 4, "X");
88 append_flags_type_flag (type, 8, "I0");
89 append_flags_type_flag (type, 9, "I1");
90 append_flags_type_flag (type, 10, "I2");
91 append_flags_type_flag (type, 12, "M");
92 append_flags_type_flag (type, 13, "S");
93 append_flags_type_flag (type, 14, "T0");
94 append_flags_type_flag (type, 15, "T1");
95
96 tdep->m68k_ps_type = type;
97 }
98
99 return tdep->m68k_ps_type;
100 }
101
102 static struct type *
103 m68881_ext_type (struct gdbarch *gdbarch)
104 {
105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
106
107 if (!tdep->m68881_ext_type)
108 tdep->m68881_ext_type
109 = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
110 floatformats_m68881_ext);
111
112 return tdep->m68881_ext_type;
113 }
114
115 /* Return the GDB type object for the "standard" data type of data in
116 register N. This should be int for D0-D7, SR, FPCONTROL and
117 FPSTATUS, long double for FP0-FP7, and void pointer for all others
118 (A0-A7, PC, FPIADDR). Note, for registers which contain
119 addresses return pointer to void, not pointer to char, because we
120 don't want to attempt to print the string after printing the
121 address. */
122
123 static struct type *
124 m68k_register_type (struct gdbarch *gdbarch, int regnum)
125 {
126 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
127
128 if (tdep->fpregs_present)
129 {
130 if (regnum >= gdbarch_fp0_regnum (gdbarch)
131 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
132 {
133 if (tdep->flavour == m68k_coldfire_flavour)
134 return builtin_type (gdbarch)->builtin_double;
135 else
136 return m68881_ext_type (gdbarch);
137 }
138
139 if (regnum == M68K_FPI_REGNUM)
140 return builtin_type (gdbarch)->builtin_func_ptr;
141
142 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
143 return builtin_type (gdbarch)->builtin_int32;
144 }
145 else
146 {
147 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
148 return builtin_type (gdbarch)->builtin_int0;
149 }
150
151 if (regnum == gdbarch_pc_regnum (gdbarch))
152 return builtin_type (gdbarch)->builtin_func_ptr;
153
154 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
155 return builtin_type (gdbarch)->builtin_data_ptr;
156
157 if (regnum == M68K_PS_REGNUM)
158 return m68k_ps_type (gdbarch);
159
160 return builtin_type (gdbarch)->builtin_int32;
161 }
162
163 static const char *m68k_register_names[] = {
164 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
165 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
166 "ps", "pc",
167 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
168 "fpcontrol", "fpstatus", "fpiaddr"
169 };
170
171 /* Function: m68k_register_name
172 Returns the name of the standard m68k register regnum. */
173
174 static const char *
175 m68k_register_name (struct gdbarch *gdbarch, int regnum)
176 {
177 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
178 internal_error (__FILE__, __LINE__,
179 _("m68k_register_name: illegal register number %d"),
180 regnum);
181 else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
182 && gdbarch_tdep (gdbarch)->fpregs_present == 0)
183 return "";
184 else
185 return m68k_register_names[regnum];
186 }
187 \f
188 /* Return nonzero if a value of type TYPE stored in register REGNUM
189 needs any special handling. */
190
191 static int
192 m68k_convert_register_p (struct gdbarch *gdbarch,
193 int regnum, struct type *type)
194 {
195 if (!gdbarch_tdep (gdbarch)->fpregs_present)
196 return 0;
197 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
198 && type != register_type (gdbarch, M68K_FP0_REGNUM));
199 }
200
201 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
202 return its contents in TO. */
203
204 static int
205 m68k_register_to_value (struct frame_info *frame, int regnum,
206 struct type *type, gdb_byte *to,
207 int *optimizedp, int *unavailablep)
208 {
209 gdb_byte from[M68K_MAX_REGISTER_SIZE];
210 struct type *fpreg_type = register_type (get_frame_arch (frame),
211 M68K_FP0_REGNUM);
212
213 /* We only support floating-point values. */
214 if (TYPE_CODE (type) != TYPE_CODE_FLT)
215 {
216 warning (_("Cannot convert floating-point register value "
217 "to non-floating-point type."));
218 *optimizedp = *unavailablep = 0;
219 return 0;
220 }
221
222 /* Convert to TYPE. */
223
224 /* Convert to TYPE. */
225 if (!get_frame_register_bytes (frame, regnum, 0, TYPE_LENGTH (type),
226 from, optimizedp, unavailablep))
227 return 0;
228
229 convert_typed_floating (from, fpreg_type, to, type);
230 *optimizedp = *unavailablep = 0;
231 return 1;
232 }
233
234 /* Write the contents FROM of a value of type TYPE into register
235 REGNUM in frame FRAME. */
236
237 static void
238 m68k_value_to_register (struct frame_info *frame, int regnum,
239 struct type *type, const gdb_byte *from)
240 {
241 gdb_byte to[M68K_MAX_REGISTER_SIZE];
242 struct type *fpreg_type = register_type (get_frame_arch (frame),
243 M68K_FP0_REGNUM);
244
245 /* We only support floating-point values. */
246 if (TYPE_CODE (type) != TYPE_CODE_FLT)
247 {
248 warning (_("Cannot convert non-floating-point type "
249 "to floating-point register value."));
250 return;
251 }
252
253 /* Convert from TYPE. */
254 convert_typed_floating (from, type, to, fpreg_type);
255 put_frame_register (frame, regnum, to);
256 }
257
258 \f
259 /* There is a fair number of calling conventions that are in somewhat
260 wide use. The 68000/08/10 don't support an FPU, not even as a
261 coprocessor. All function return values are stored in %d0/%d1.
262 Structures are returned in a static buffer, a pointer to which is
263 returned in %d0. This means that functions returning a structure
264 are not re-entrant. To avoid this problem some systems use a
265 convention where the caller passes a pointer to a buffer in %a1
266 where the return values is to be stored. This convention is the
267 default, and is implemented in the function m68k_return_value.
268
269 The 68020/030/040/060 do support an FPU, either as a coprocessor
270 (68881/2) or built-in (68040/68060). That's why System V release 4
271 (SVR4) instroduces a new calling convention specified by the SVR4
272 psABI. Integer values are returned in %d0/%d1, pointer return
273 values in %a0 and floating values in %fp0. When calling functions
274 returning a structure the caller should pass a pointer to a buffer
275 for the return value in %a0. This convention is implemented in the
276 function m68k_svr4_return_value, and by appropriately setting the
277 struct_value_regnum member of `struct gdbarch_tdep'.
278
279 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
280 for passing the structure return value buffer.
281
282 GCC can also generate code where small structures are returned in
283 %d0/%d1 instead of in memory by using -freg-struct-return. This is
284 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
285 embedded systems. This convention is implemented by setting the
286 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
287
288 /* Read a function return value of TYPE from REGCACHE, and copy that
289 into VALBUF. */
290
291 static void
292 m68k_extract_return_value (struct type *type, struct regcache *regcache,
293 gdb_byte *valbuf)
294 {
295 int len = TYPE_LENGTH (type);
296 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
297
298 if (len <= 4)
299 {
300 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
301 memcpy (valbuf, buf + (4 - len), len);
302 }
303 else if (len <= 8)
304 {
305 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
306 memcpy (valbuf, buf + (8 - len), len - 4);
307 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
308 }
309 else
310 internal_error (__FILE__, __LINE__,
311 _("Cannot extract return value of %d bytes long."), len);
312 }
313
314 static void
315 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
316 gdb_byte *valbuf)
317 {
318 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
319 struct gdbarch *gdbarch = get_regcache_arch (regcache);
320 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
321
322 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
323 {
324 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
325 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
326 convert_typed_floating (buf, fpreg_type, valbuf, type);
327 }
328 else if (TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_LENGTH (type) == 4)
329 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
330 else
331 m68k_extract_return_value (type, regcache, valbuf);
332 }
333
334 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
335
336 static void
337 m68k_store_return_value (struct type *type, struct regcache *regcache,
338 const gdb_byte *valbuf)
339 {
340 int len = TYPE_LENGTH (type);
341
342 if (len <= 4)
343 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
344 else if (len <= 8)
345 {
346 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
347 len - 4, valbuf);
348 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
349 }
350 else
351 internal_error (__FILE__, __LINE__,
352 _("Cannot store return value of %d bytes long."), len);
353 }
354
355 static void
356 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
357 const gdb_byte *valbuf)
358 {
359 struct gdbarch *gdbarch = get_regcache_arch (regcache);
360 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
361
362 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
363 {
364 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
365 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
366 convert_typed_floating (valbuf, type, buf, fpreg_type);
367 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
368 }
369 else if (TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_LENGTH (type) == 4)
370 {
371 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
372 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
373 }
374 else
375 m68k_store_return_value (type, regcache, valbuf);
376 }
377
378 /* Return non-zero if TYPE, which is assumed to be a structure, union or
379 complex type, should be returned in registers for architecture
380 GDBARCH. */
381
382 static int
383 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
384 {
385 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386 enum type_code code = TYPE_CODE (type);
387 int len = TYPE_LENGTH (type);
388
389 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
390 || code == TYPE_CODE_COMPLEX);
391
392 if (tdep->struct_return == pcc_struct_return)
393 return 0;
394
395 return (len == 1 || len == 2 || len == 4 || len == 8);
396 }
397
398 /* Determine, for architecture GDBARCH, how a return value of TYPE
399 should be returned. If it is supposed to be returned in registers,
400 and READBUF is non-zero, read the appropriate value from REGCACHE,
401 and copy it into READBUF. If WRITEBUF is non-zero, write the value
402 from WRITEBUF into REGCACHE. */
403
404 static enum return_value_convention
405 m68k_return_value (struct gdbarch *gdbarch, struct value *function,
406 struct type *type, struct regcache *regcache,
407 gdb_byte *readbuf, const gdb_byte *writebuf)
408 {
409 enum type_code code = TYPE_CODE (type);
410
411 /* GCC returns a `long double' in memory too. */
412 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
413 || code == TYPE_CODE_COMPLEX)
414 && !m68k_reg_struct_return_p (gdbarch, type))
415 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
416 {
417 /* The default on m68k is to return structures in static memory.
418 Consequently a function must return the address where we can
419 find the return value. */
420
421 if (readbuf)
422 {
423 ULONGEST addr;
424
425 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
426 read_memory (addr, readbuf, TYPE_LENGTH (type));
427 }
428
429 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
430 }
431
432 if (readbuf)
433 m68k_extract_return_value (type, regcache, readbuf);
434 if (writebuf)
435 m68k_store_return_value (type, regcache, writebuf);
436
437 return RETURN_VALUE_REGISTER_CONVENTION;
438 }
439
440 static enum return_value_convention
441 m68k_svr4_return_value (struct gdbarch *gdbarch, struct value *function,
442 struct type *type, struct regcache *regcache,
443 gdb_byte *readbuf, const gdb_byte *writebuf)
444 {
445 enum type_code code = TYPE_CODE (type);
446
447 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
448 || code == TYPE_CODE_COMPLEX)
449 && !m68k_reg_struct_return_p (gdbarch, type))
450 {
451 /* The System V ABI says that:
452
453 "A function returning a structure or union also sets %a0 to
454 the value it finds in %a0. Thus when the caller receives
455 control again, the address of the returned object resides in
456 register %a0."
457
458 So the ABI guarantees that we can always find the return
459 value just after the function has returned. */
460
461 if (readbuf)
462 {
463 ULONGEST addr;
464
465 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
466 read_memory (addr, readbuf, TYPE_LENGTH (type));
467 }
468
469 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
470 }
471
472 /* This special case is for structures consisting of a single
473 `float' or `double' member. These structures are returned in
474 %fp0. For these structures, we call ourselves recursively,
475 changing TYPE into the type of the first member of the structure.
476 Since that should work for all structures that have only one
477 member, we don't bother to check the member's type here. */
478 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
479 {
480 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
481 return m68k_svr4_return_value (gdbarch, function, type, regcache,
482 readbuf, writebuf);
483 }
484
485 if (readbuf)
486 m68k_svr4_extract_return_value (type, regcache, readbuf);
487 if (writebuf)
488 m68k_svr4_store_return_value (type, regcache, writebuf);
489
490 return RETURN_VALUE_REGISTER_CONVENTION;
491 }
492 \f
493
494 /* Always align the frame to a 4-byte boundary. This is required on
495 coldfire and harmless on the rest. */
496
497 static CORE_ADDR
498 m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
499 {
500 /* Align the stack to four bytes. */
501 return sp & ~3;
502 }
503
504 static CORE_ADDR
505 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
506 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
507 struct value **args, CORE_ADDR sp, int struct_return,
508 CORE_ADDR struct_addr)
509 {
510 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
511 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
512 gdb_byte buf[4];
513 int i;
514
515 /* Push arguments in reverse order. */
516 for (i = nargs - 1; i >= 0; i--)
517 {
518 struct type *value_type = value_enclosing_type (args[i]);
519 int len = TYPE_LENGTH (value_type);
520 int container_len = (len + 3) & ~3;
521 int offset;
522
523 /* Non-scalars bigger than 4 bytes are left aligned, others are
524 right aligned. */
525 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
526 || TYPE_CODE (value_type) == TYPE_CODE_UNION
527 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
528 && len > 4)
529 offset = 0;
530 else
531 offset = container_len - len;
532 sp -= container_len;
533 write_memory (sp + offset, value_contents_all (args[i]), len);
534 }
535
536 /* Store struct value address. */
537 if (struct_return)
538 {
539 store_unsigned_integer (buf, 4, byte_order, struct_addr);
540 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
541 }
542
543 /* Store return address. */
544 sp -= 4;
545 store_unsigned_integer (buf, 4, byte_order, bp_addr);
546 write_memory (sp, buf, 4);
547
548 /* Finally, update the stack pointer... */
549 store_unsigned_integer (buf, 4, byte_order, sp);
550 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
551
552 /* ...and fake a frame pointer. */
553 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
554
555 /* DWARF2/GCC uses the stack address *before* the function call as a
556 frame's CFA. */
557 return sp + 8;
558 }
559
560 /* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
561
562 static int
563 m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
564 {
565 if (num < 8)
566 /* d0..7 */
567 return (num - 0) + M68K_D0_REGNUM;
568 else if (num < 16)
569 /* a0..7 */
570 return (num - 8) + M68K_A0_REGNUM;
571 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
572 /* fp0..7 */
573 return (num - 16) + M68K_FP0_REGNUM;
574 else if (num == 25)
575 /* pc */
576 return M68K_PC_REGNUM;
577 else
578 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
579 }
580
581 \f
582 struct m68k_frame_cache
583 {
584 /* Base address. */
585 CORE_ADDR base;
586 CORE_ADDR sp_offset;
587 CORE_ADDR pc;
588
589 /* Saved registers. */
590 CORE_ADDR saved_regs[M68K_NUM_REGS];
591 CORE_ADDR saved_sp;
592
593 /* Stack space reserved for local variables. */
594 long locals;
595 };
596
597 /* Allocate and initialize a frame cache. */
598
599 static struct m68k_frame_cache *
600 m68k_alloc_frame_cache (void)
601 {
602 struct m68k_frame_cache *cache;
603 int i;
604
605 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
606
607 /* Base address. */
608 cache->base = 0;
609 cache->sp_offset = -4;
610 cache->pc = 0;
611
612 /* Saved registers. We initialize these to -1 since zero is a valid
613 offset (that's where %fp is supposed to be stored). */
614 for (i = 0; i < M68K_NUM_REGS; i++)
615 cache->saved_regs[i] = -1;
616
617 /* Frameless until proven otherwise. */
618 cache->locals = -1;
619
620 return cache;
621 }
622
623 /* Check whether PC points at a code that sets up a new stack frame.
624 If so, it updates CACHE and returns the address of the first
625 instruction after the sequence that sets removes the "hidden"
626 argument from the stack or CURRENT_PC, whichever is smaller.
627 Otherwise, return PC. */
628
629 static CORE_ADDR
630 m68k_analyze_frame_setup (struct gdbarch *gdbarch,
631 CORE_ADDR pc, CORE_ADDR current_pc,
632 struct m68k_frame_cache *cache)
633 {
634 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
635 int op;
636
637 if (pc >= current_pc)
638 return current_pc;
639
640 op = read_memory_unsigned_integer (pc, 2, byte_order);
641
642 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
643 {
644 cache->saved_regs[M68K_FP_REGNUM] = 0;
645 cache->sp_offset += 4;
646 if (op == P_LINKW_FP)
647 {
648 /* link.w %fp, #-N */
649 /* link.w %fp, #0; adda.l #-N, %sp */
650 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
651
652 if (pc + 4 < current_pc && cache->locals == 0)
653 {
654 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
655 if (op == P_ADDAL_SP)
656 {
657 cache->locals = read_memory_integer (pc + 6, 4, byte_order);
658 return pc + 10;
659 }
660 }
661
662 return pc + 4;
663 }
664 else if (op == P_LINKL_FP)
665 {
666 /* link.l %fp, #-N */
667 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
668 return pc + 6;
669 }
670 else
671 {
672 /* pea (%fp); movea.l %sp, %fp */
673 cache->locals = 0;
674
675 if (pc + 2 < current_pc)
676 {
677 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
678
679 if (op == P_MOVEAL_SP_FP)
680 {
681 /* move.l %sp, %fp */
682 return pc + 4;
683 }
684 }
685
686 return pc + 2;
687 }
688 }
689 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
690 {
691 /* subq.[wl] #N,%sp */
692 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
693 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
694 if (pc + 2 < current_pc)
695 {
696 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
697 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
698 {
699 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
700 return pc + 4;
701 }
702 }
703 return pc + 2;
704 }
705 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
706 {
707 /* adda.w #-N,%sp */
708 /* lea (-N,%sp),%sp */
709 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
710 return pc + 4;
711 }
712 else if (op == P_ADDAL_SP)
713 {
714 /* adda.l #-N,%sp */
715 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
716 return pc + 6;
717 }
718
719 return pc;
720 }
721
722 /* Check whether PC points at code that saves registers on the stack.
723 If so, it updates CACHE and returns the address of the first
724 instruction after the register saves or CURRENT_PC, whichever is
725 smaller. Otherwise, return PC. */
726
727 static CORE_ADDR
728 m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
729 CORE_ADDR current_pc,
730 struct m68k_frame_cache *cache)
731 {
732 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
733
734 if (cache->locals >= 0)
735 {
736 CORE_ADDR offset;
737 int op;
738 int i, mask, regno;
739
740 offset = -4 - cache->locals;
741 while (pc < current_pc)
742 {
743 op = read_memory_unsigned_integer (pc, 2, byte_order);
744 if (op == P_FMOVEMX_SP
745 && gdbarch_tdep (gdbarch)->fpregs_present)
746 {
747 /* fmovem.x REGS,-(%sp) */
748 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
749 if ((op & 0xff00) == 0xe000)
750 {
751 mask = op & 0xff;
752 for (i = 0; i < 16; i++, mask >>= 1)
753 {
754 if (mask & 1)
755 {
756 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
757 offset -= 12;
758 }
759 }
760 pc += 4;
761 }
762 else
763 break;
764 }
765 else if ((op & 0177760) == P_MOVEL_SP)
766 {
767 /* move.l %R,-(%sp) */
768 regno = op & 017;
769 cache->saved_regs[regno] = offset;
770 offset -= 4;
771 pc += 2;
772 }
773 else if (op == P_MOVEML_SP)
774 {
775 /* movem.l REGS,-(%sp) */
776 mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
777 for (i = 0; i < 16; i++, mask >>= 1)
778 {
779 if (mask & 1)
780 {
781 cache->saved_regs[15 - i] = offset;
782 offset -= 4;
783 }
784 }
785 pc += 4;
786 }
787 else
788 break;
789 }
790 }
791
792 return pc;
793 }
794
795
796 /* Do a full analysis of the prologue at PC and update CACHE
797 accordingly. Bail out early if CURRENT_PC is reached. Return the
798 address where the analysis stopped.
799
800 We handle all cases that can be generated by gcc.
801
802 For allocating a stack frame:
803
804 link.w %a6,#-N
805 link.l %a6,#-N
806 pea (%fp); move.l %sp,%fp
807 link.w %a6,#0; add.l #-N,%sp
808 subq.l #N,%sp
809 subq.w #N,%sp
810 subq.w #8,%sp; subq.w #N-8,%sp
811 add.w #-N,%sp
812 lea (-N,%sp),%sp
813 add.l #-N,%sp
814
815 For saving registers:
816
817 fmovem.x REGS,-(%sp)
818 move.l R1,-(%sp)
819 move.l R1,-(%sp); move.l R2,-(%sp)
820 movem.l REGS,-(%sp)
821
822 For setting up the PIC register:
823
824 lea (%pc,N),%a5
825
826 */
827
828 static CORE_ADDR
829 m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
830 CORE_ADDR current_pc, struct m68k_frame_cache *cache)
831 {
832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
833 unsigned int op;
834
835 pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
836 pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
837 if (pc >= current_pc)
838 return current_pc;
839
840 /* Check for GOT setup. */
841 op = read_memory_unsigned_integer (pc, 4, byte_order);
842 if (op == P_LEA_PC_A5)
843 {
844 /* lea (%pc,N),%a5 */
845 return pc + 8;
846 }
847
848 return pc;
849 }
850
851 /* Return PC of first real instruction. */
852
853 static CORE_ADDR
854 m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
855 {
856 struct m68k_frame_cache cache;
857 CORE_ADDR pc;
858
859 cache.locals = -1;
860 pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
861 if (cache.locals < 0)
862 return start_pc;
863 return pc;
864 }
865
866 static CORE_ADDR
867 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
868 {
869 gdb_byte buf[8];
870
871 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
872 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
873 }
874 \f
875 /* Normal frames. */
876
877 static struct m68k_frame_cache *
878 m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
879 {
880 struct gdbarch *gdbarch = get_frame_arch (this_frame);
881 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
882 struct m68k_frame_cache *cache;
883 gdb_byte buf[4];
884 int i;
885
886 if (*this_cache)
887 return *this_cache;
888
889 cache = m68k_alloc_frame_cache ();
890 *this_cache = cache;
891
892 /* In principle, for normal frames, %fp holds the frame pointer,
893 which holds the base address for the current stack frame.
894 However, for functions that don't need it, the frame pointer is
895 optional. For these "frameless" functions the frame pointer is
896 actually the frame pointer of the calling frame. Signal
897 trampolines are just a special case of a "frameless" function.
898 They (usually) share their frame pointer with the frame that was
899 in progress when the signal occurred. */
900
901 get_frame_register (this_frame, M68K_FP_REGNUM, buf);
902 cache->base = extract_unsigned_integer (buf, 4, byte_order);
903 if (cache->base == 0)
904 return cache;
905
906 /* For normal frames, %pc is stored at 4(%fp). */
907 cache->saved_regs[M68K_PC_REGNUM] = 4;
908
909 cache->pc = get_frame_func (this_frame);
910 if (cache->pc != 0)
911 m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
912 get_frame_pc (this_frame), cache);
913
914 if (cache->locals < 0)
915 {
916 /* We didn't find a valid frame, which means that CACHE->base
917 currently holds the frame pointer for our calling frame. If
918 we're at the start of a function, or somewhere half-way its
919 prologue, the function's frame probably hasn't been fully
920 setup yet. Try to reconstruct the base address for the stack
921 frame by looking at the stack pointer. For truly "frameless"
922 functions this might work too. */
923
924 get_frame_register (this_frame, M68K_SP_REGNUM, buf);
925 cache->base = extract_unsigned_integer (buf, 4, byte_order)
926 + cache->sp_offset;
927 }
928
929 /* Now that we have the base address for the stack frame we can
930 calculate the value of %sp in the calling frame. */
931 cache->saved_sp = cache->base + 8;
932
933 /* Adjust all the saved registers such that they contain addresses
934 instead of offsets. */
935 for (i = 0; i < M68K_NUM_REGS; i++)
936 if (cache->saved_regs[i] != -1)
937 cache->saved_regs[i] += cache->base;
938
939 return cache;
940 }
941
942 static void
943 m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
944 struct frame_id *this_id)
945 {
946 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
947
948 /* This marks the outermost frame. */
949 if (cache->base == 0)
950 return;
951
952 /* See the end of m68k_push_dummy_call. */
953 *this_id = frame_id_build (cache->base + 8, cache->pc);
954 }
955
956 static struct value *
957 m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
958 int regnum)
959 {
960 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
961
962 gdb_assert (regnum >= 0);
963
964 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
965 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
966
967 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
968 return frame_unwind_got_memory (this_frame, regnum,
969 cache->saved_regs[regnum]);
970
971 return frame_unwind_got_register (this_frame, regnum, regnum);
972 }
973
974 static const struct frame_unwind m68k_frame_unwind =
975 {
976 NORMAL_FRAME,
977 default_frame_unwind_stop_reason,
978 m68k_frame_this_id,
979 m68k_frame_prev_register,
980 NULL,
981 default_frame_sniffer
982 };
983 \f
984 static CORE_ADDR
985 m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
986 {
987 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
988
989 return cache->base;
990 }
991
992 static const struct frame_base m68k_frame_base =
993 {
994 &m68k_frame_unwind,
995 m68k_frame_base_address,
996 m68k_frame_base_address,
997 m68k_frame_base_address
998 };
999
1000 static struct frame_id
1001 m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1002 {
1003 CORE_ADDR fp;
1004
1005 fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
1006
1007 /* See the end of m68k_push_dummy_call. */
1008 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1009 }
1010 \f
1011
1012 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1013 We expect the first arg to be a pointer to the jmp_buf structure from which
1014 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1015 This routine returns true on success. */
1016
1017 static int
1018 m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1019 {
1020 gdb_byte *buf;
1021 CORE_ADDR sp, jb_addr;
1022 struct gdbarch *gdbarch = get_frame_arch (frame);
1023 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1024 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1025
1026 if (tdep->jb_pc < 0)
1027 {
1028 internal_error (__FILE__, __LINE__,
1029 _("m68k_get_longjmp_target: not implemented"));
1030 return 0;
1031 }
1032
1033 buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
1034 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
1035
1036 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
1037 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
1038 return 0;
1039
1040 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1041 / TARGET_CHAR_BIT, byte_order);
1042
1043 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1044 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
1045 byte_order)
1046 return 0;
1047
1048 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1049 / TARGET_CHAR_BIT, byte_order);
1050 return 1;
1051 }
1052 \f
1053
1054 /* This is the implementation of gdbarch method
1055 return_in_first_hidden_param_p. */
1056
1057 static int
1058 m68k_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1059 struct type *type)
1060 {
1061 return 0;
1062 }
1063
1064 /* System V Release 4 (SVR4). */
1065
1066 void
1067 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1068 {
1069 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1070
1071 /* SVR4 uses a different calling convention. */
1072 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1073
1074 /* SVR4 uses %a0 instead of %a1. */
1075 tdep->struct_value_regnum = M68K_A0_REGNUM;
1076 }
1077 \f
1078
1079 /* Function: m68k_gdbarch_init
1080 Initializer function for the m68k gdbarch vector.
1081 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1082
1083 static struct gdbarch *
1084 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1085 {
1086 struct gdbarch_tdep *tdep = NULL;
1087 struct gdbarch *gdbarch;
1088 struct gdbarch_list *best_arch;
1089 struct tdesc_arch_data *tdesc_data = NULL;
1090 int i;
1091 enum m68k_flavour flavour = m68k_no_flavour;
1092 int has_fp = 1;
1093 const struct floatformat **long_double_format = floatformats_m68881_ext;
1094
1095 /* Check any target description for validity. */
1096 if (tdesc_has_registers (info.target_desc))
1097 {
1098 const struct tdesc_feature *feature;
1099 int valid_p;
1100
1101 feature = tdesc_find_feature (info.target_desc,
1102 "org.gnu.gdb.m68k.core");
1103
1104 if (feature == NULL)
1105 {
1106 feature = tdesc_find_feature (info.target_desc,
1107 "org.gnu.gdb.coldfire.core");
1108 if (feature != NULL)
1109 flavour = m68k_coldfire_flavour;
1110 }
1111
1112 if (feature == NULL)
1113 {
1114 feature = tdesc_find_feature (info.target_desc,
1115 "org.gnu.gdb.fido.core");
1116 if (feature != NULL)
1117 flavour = m68k_fido_flavour;
1118 }
1119
1120 if (feature == NULL)
1121 return NULL;
1122
1123 tdesc_data = tdesc_data_alloc ();
1124
1125 valid_p = 1;
1126 for (i = 0; i <= M68K_PC_REGNUM; i++)
1127 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1128 m68k_register_names[i]);
1129
1130 if (!valid_p)
1131 {
1132 tdesc_data_cleanup (tdesc_data);
1133 return NULL;
1134 }
1135
1136 feature = tdesc_find_feature (info.target_desc,
1137 "org.gnu.gdb.coldfire.fp");
1138 if (feature != NULL)
1139 {
1140 valid_p = 1;
1141 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1142 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1143 m68k_register_names[i]);
1144 if (!valid_p)
1145 {
1146 tdesc_data_cleanup (tdesc_data);
1147 return NULL;
1148 }
1149 }
1150 else
1151 has_fp = 0;
1152 }
1153
1154 /* The mechanism for returning floating values from function
1155 and the type of long double depend on whether we're
1156 on ColdFire or standard m68k. */
1157
1158 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
1159 {
1160 const bfd_arch_info_type *coldfire_arch =
1161 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1162
1163 if (coldfire_arch
1164 && ((*info.bfd_arch_info->compatible)
1165 (info.bfd_arch_info, coldfire_arch)))
1166 flavour = m68k_coldfire_flavour;
1167 }
1168
1169 /* If there is already a candidate, use it. */
1170 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1171 best_arch != NULL;
1172 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1173 {
1174 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1175 continue;
1176
1177 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1178 continue;
1179
1180 break;
1181 }
1182
1183 if (best_arch != NULL)
1184 {
1185 if (tdesc_data != NULL)
1186 tdesc_data_cleanup (tdesc_data);
1187 return best_arch->gdbarch;
1188 }
1189
1190 tdep = xzalloc (sizeof (struct gdbarch_tdep));
1191 gdbarch = gdbarch_alloc (&info, tdep);
1192 tdep->fpregs_present = has_fp;
1193 tdep->flavour = flavour;
1194
1195 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1196 long_double_format = floatformats_ieee_double;
1197 set_gdbarch_long_double_format (gdbarch, long_double_format);
1198 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
1199
1200 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1201 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
1202
1203 /* Stack grows down. */
1204 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1205 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
1206
1207 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1208 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1209 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1210
1211 set_gdbarch_frame_args_skip (gdbarch, 8);
1212 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1213
1214 set_gdbarch_register_type (gdbarch, m68k_register_type);
1215 set_gdbarch_register_name (gdbarch, m68k_register_name);
1216 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
1217 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1218 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1219 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1220 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1221 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1222 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1223
1224 if (has_fp)
1225 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1226
1227 /* Try to figure out if the arch uses floating registers to return
1228 floating point values from functions. */
1229 if (has_fp)
1230 {
1231 /* On ColdFire, floating point values are returned in D0. */
1232 if (flavour == m68k_coldfire_flavour)
1233 tdep->float_return = 0;
1234 else
1235 tdep->float_return = 1;
1236 }
1237 else
1238 {
1239 /* No floating registers, so can't use them for returning values. */
1240 tdep->float_return = 0;
1241 }
1242
1243 /* Function call & return. */
1244 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1245 set_gdbarch_return_value (gdbarch, m68k_return_value);
1246 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1247 m68k_return_in_first_hidden_param_p);
1248
1249
1250 /* Disassembler. */
1251 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1252
1253 #if defined JB_PC && defined JB_ELEMENT_SIZE
1254 tdep->jb_pc = JB_PC;
1255 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1256 #else
1257 tdep->jb_pc = -1;
1258 #endif
1259 tdep->struct_value_regnum = M68K_A1_REGNUM;
1260 tdep->struct_return = reg_struct_return;
1261
1262 /* Frame unwinder. */
1263 set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
1264 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1265
1266 /* Hook in the DWARF CFI frame unwinder. */
1267 dwarf2_append_unwinders (gdbarch);
1268
1269 frame_base_set_default (gdbarch, &m68k_frame_base);
1270
1271 /* Hook in ABI-specific overrides, if they have been registered. */
1272 gdbarch_init_osabi (info, gdbarch);
1273
1274 /* Now we have tuned the configuration, set a few final things,
1275 based on what the OS ABI has told us. */
1276
1277 if (tdep->jb_pc >= 0)
1278 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1279
1280 frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
1281
1282 if (tdesc_data)
1283 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
1284
1285 return gdbarch;
1286 }
1287
1288
1289 static void
1290 m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1291 {
1292 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1293
1294 if (tdep == NULL)
1295 return;
1296 }
1297
1298 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1299
1300 void
1301 _initialize_m68k_tdep (void)
1302 {
1303 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1304 }