]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/m68k-tdep.c
Fix buffer overrun parsing a corrupt tekhex binary.
[thirdparty/binutils-gdb.git] / gdb / m68k-tdep.c
1 /* Target-dependent code for the Motorola 68000 series.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "dwarf2-frame.h"
22 #include "frame.h"
23 #include "frame-base.h"
24 #include "frame-unwind.h"
25 #include "gdbtypes.h"
26 #include "symtab.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "arch-utils.h"
32 #include "osabi.h"
33 #include "dis-asm.h"
34 #include "target-descriptions.h"
35
36 #include "m68k-tdep.h"
37 \f
38
39 #define P_LINKL_FP 0x480e
40 #define P_LINKW_FP 0x4e56
41 #define P_PEA_FP 0x4856
42 #define P_MOVEAL_SP_FP 0x2c4f
43 #define P_ADDAW_SP 0xdefc
44 #define P_ADDAL_SP 0xdffc
45 #define P_SUBQW_SP 0x514f
46 #define P_SUBQL_SP 0x518f
47 #define P_LEA_SP_SP 0x4fef
48 #define P_LEA_PC_A5 0x4bfb0170
49 #define P_FMOVEMX_SP 0xf227
50 #define P_MOVEL_SP 0x2f00
51 #define P_MOVEML_SP 0x48e7
52
53 /* Offset from SP to first arg on stack at first instruction of a function. */
54 #define SP_ARG0 (1 * 4)
55
56 #if !defined (BPT_VECTOR)
57 #define BPT_VECTOR 0xf
58 #endif
59
60 constexpr gdb_byte m68k_break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
61
62 typedef BP_MANIPULATION (m68k_break_insn) m68k_breakpoint;
63 \f
64
65 /* Construct types for ISA-specific registers. */
66 static struct type *
67 m68k_ps_type (struct gdbarch *gdbarch)
68 {
69 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
70
71 if (!tdep->m68k_ps_type)
72 {
73 struct type *type;
74
75 type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 4);
76 append_flags_type_flag (type, 0, "C");
77 append_flags_type_flag (type, 1, "V");
78 append_flags_type_flag (type, 2, "Z");
79 append_flags_type_flag (type, 3, "N");
80 append_flags_type_flag (type, 4, "X");
81 append_flags_type_flag (type, 8, "I0");
82 append_flags_type_flag (type, 9, "I1");
83 append_flags_type_flag (type, 10, "I2");
84 append_flags_type_flag (type, 12, "M");
85 append_flags_type_flag (type, 13, "S");
86 append_flags_type_flag (type, 14, "T0");
87 append_flags_type_flag (type, 15, "T1");
88
89 tdep->m68k_ps_type = type;
90 }
91
92 return tdep->m68k_ps_type;
93 }
94
95 static struct type *
96 m68881_ext_type (struct gdbarch *gdbarch)
97 {
98 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
99
100 if (!tdep->m68881_ext_type)
101 tdep->m68881_ext_type
102 = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
103 floatformats_m68881_ext);
104
105 return tdep->m68881_ext_type;
106 }
107
108 /* Return the GDB type object for the "standard" data type of data in
109 register N. This should be int for D0-D7, SR, FPCONTROL and
110 FPSTATUS, long double for FP0-FP7, and void pointer for all others
111 (A0-A7, PC, FPIADDR). Note, for registers which contain
112 addresses return pointer to void, not pointer to char, because we
113 don't want to attempt to print the string after printing the
114 address. */
115
116 static struct type *
117 m68k_register_type (struct gdbarch *gdbarch, int regnum)
118 {
119 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
120
121 if (tdep->fpregs_present)
122 {
123 if (regnum >= gdbarch_fp0_regnum (gdbarch)
124 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
125 {
126 if (tdep->flavour == m68k_coldfire_flavour)
127 return builtin_type (gdbarch)->builtin_double;
128 else
129 return m68881_ext_type (gdbarch);
130 }
131
132 if (regnum == M68K_FPI_REGNUM)
133 return builtin_type (gdbarch)->builtin_func_ptr;
134
135 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
136 return builtin_type (gdbarch)->builtin_int32;
137 }
138 else
139 {
140 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
141 return builtin_type (gdbarch)->builtin_int0;
142 }
143
144 if (regnum == gdbarch_pc_regnum (gdbarch))
145 return builtin_type (gdbarch)->builtin_func_ptr;
146
147 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
148 return builtin_type (gdbarch)->builtin_data_ptr;
149
150 if (regnum == M68K_PS_REGNUM)
151 return m68k_ps_type (gdbarch);
152
153 return builtin_type (gdbarch)->builtin_int32;
154 }
155
156 static const char *m68k_register_names[] = {
157 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
158 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
159 "ps", "pc",
160 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
161 "fpcontrol", "fpstatus", "fpiaddr"
162 };
163
164 /* Function: m68k_register_name
165 Returns the name of the standard m68k register regnum. */
166
167 static const char *
168 m68k_register_name (struct gdbarch *gdbarch, int regnum)
169 {
170 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
171 internal_error (__FILE__, __LINE__,
172 _("m68k_register_name: illegal register number %d"),
173 regnum);
174 else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
175 && gdbarch_tdep (gdbarch)->fpregs_present == 0)
176 return "";
177 else
178 return m68k_register_names[regnum];
179 }
180 \f
181 /* Return nonzero if a value of type TYPE stored in register REGNUM
182 needs any special handling. */
183
184 static int
185 m68k_convert_register_p (struct gdbarch *gdbarch,
186 int regnum, struct type *type)
187 {
188 if (!gdbarch_tdep (gdbarch)->fpregs_present)
189 return 0;
190 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
191 /* We only support floating-point values. */
192 && TYPE_CODE (type) == TYPE_CODE_FLT
193 && type != register_type (gdbarch, M68K_FP0_REGNUM));
194 }
195
196 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
197 return its contents in TO. */
198
199 static int
200 m68k_register_to_value (struct frame_info *frame, int regnum,
201 struct type *type, gdb_byte *to,
202 int *optimizedp, int *unavailablep)
203 {
204 struct gdbarch *gdbarch = get_frame_arch (frame);
205 gdb_byte from[M68K_MAX_REGISTER_SIZE];
206 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
207
208 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
209
210 /* Convert to TYPE. */
211 if (!get_frame_register_bytes (frame, regnum, 0,
212 register_size (gdbarch, regnum),
213 from, optimizedp, unavailablep))
214 return 0;
215
216 convert_typed_floating (from, fpreg_type, to, type);
217 *optimizedp = *unavailablep = 0;
218 return 1;
219 }
220
221 /* Write the contents FROM of a value of type TYPE into register
222 REGNUM in frame FRAME. */
223
224 static void
225 m68k_value_to_register (struct frame_info *frame, int regnum,
226 struct type *type, const gdb_byte *from)
227 {
228 gdb_byte to[M68K_MAX_REGISTER_SIZE];
229 struct type *fpreg_type = register_type (get_frame_arch (frame),
230 M68K_FP0_REGNUM);
231
232 /* We only support floating-point values. */
233 if (TYPE_CODE (type) != TYPE_CODE_FLT)
234 {
235 warning (_("Cannot convert non-floating-point type "
236 "to floating-point register value."));
237 return;
238 }
239
240 /* Convert from TYPE. */
241 convert_typed_floating (from, type, to, fpreg_type);
242 put_frame_register (frame, regnum, to);
243 }
244
245 \f
246 /* There is a fair number of calling conventions that are in somewhat
247 wide use. The 68000/08/10 don't support an FPU, not even as a
248 coprocessor. All function return values are stored in %d0/%d1.
249 Structures are returned in a static buffer, a pointer to which is
250 returned in %d0. This means that functions returning a structure
251 are not re-entrant. To avoid this problem some systems use a
252 convention where the caller passes a pointer to a buffer in %a1
253 where the return values is to be stored. This convention is the
254 default, and is implemented in the function m68k_return_value.
255
256 The 68020/030/040/060 do support an FPU, either as a coprocessor
257 (68881/2) or built-in (68040/68060). That's why System V release 4
258 (SVR4) instroduces a new calling convention specified by the SVR4
259 psABI. Integer values are returned in %d0/%d1, pointer return
260 values in %a0 and floating values in %fp0. When calling functions
261 returning a structure the caller should pass a pointer to a buffer
262 for the return value in %a0. This convention is implemented in the
263 function m68k_svr4_return_value, and by appropriately setting the
264 struct_value_regnum member of `struct gdbarch_tdep'.
265
266 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
267 for passing the structure return value buffer.
268
269 GCC can also generate code where small structures are returned in
270 %d0/%d1 instead of in memory by using -freg-struct-return. This is
271 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
272 embedded systems. This convention is implemented by setting the
273 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
274
275 /* Read a function return value of TYPE from REGCACHE, and copy that
276 into VALBUF. */
277
278 static void
279 m68k_extract_return_value (struct type *type, struct regcache *regcache,
280 gdb_byte *valbuf)
281 {
282 int len = TYPE_LENGTH (type);
283 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
284
285 if (len <= 4)
286 {
287 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
288 memcpy (valbuf, buf + (4 - len), len);
289 }
290 else if (len <= 8)
291 {
292 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
293 memcpy (valbuf, buf + (8 - len), len - 4);
294 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
295 }
296 else
297 internal_error (__FILE__, __LINE__,
298 _("Cannot extract return value of %d bytes long."), len);
299 }
300
301 static void
302 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
303 gdb_byte *valbuf)
304 {
305 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
306 struct gdbarch *gdbarch = get_regcache_arch (regcache);
307 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
308
309 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
310 {
311 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
312 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
313 convert_typed_floating (buf, fpreg_type, valbuf, type);
314 }
315 else if (TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_LENGTH (type) == 4)
316 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
317 else
318 m68k_extract_return_value (type, regcache, valbuf);
319 }
320
321 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
322
323 static void
324 m68k_store_return_value (struct type *type, struct regcache *regcache,
325 const gdb_byte *valbuf)
326 {
327 int len = TYPE_LENGTH (type);
328
329 if (len <= 4)
330 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
331 else if (len <= 8)
332 {
333 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
334 len - 4, valbuf);
335 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
336 }
337 else
338 internal_error (__FILE__, __LINE__,
339 _("Cannot store return value of %d bytes long."), len);
340 }
341
342 static void
343 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
344 const gdb_byte *valbuf)
345 {
346 struct gdbarch *gdbarch = get_regcache_arch (regcache);
347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
348
349 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
350 {
351 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
352 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
353 convert_typed_floating (valbuf, type, buf, fpreg_type);
354 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
355 }
356 else if (TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_LENGTH (type) == 4)
357 {
358 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
359 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
360 }
361 else
362 m68k_store_return_value (type, regcache, valbuf);
363 }
364
365 /* Return non-zero if TYPE, which is assumed to be a structure, union or
366 complex type, should be returned in registers for architecture
367 GDBARCH. */
368
369 static int
370 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
371 {
372 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
373 enum type_code code = TYPE_CODE (type);
374 int len = TYPE_LENGTH (type);
375
376 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
377 || code == TYPE_CODE_COMPLEX);
378
379 if (tdep->struct_return == pcc_struct_return)
380 return 0;
381
382 return (len == 1 || len == 2 || len == 4 || len == 8);
383 }
384
385 /* Determine, for architecture GDBARCH, how a return value of TYPE
386 should be returned. If it is supposed to be returned in registers,
387 and READBUF is non-zero, read the appropriate value from REGCACHE,
388 and copy it into READBUF. If WRITEBUF is non-zero, write the value
389 from WRITEBUF into REGCACHE. */
390
391 static enum return_value_convention
392 m68k_return_value (struct gdbarch *gdbarch, struct value *function,
393 struct type *type, struct regcache *regcache,
394 gdb_byte *readbuf, const gdb_byte *writebuf)
395 {
396 enum type_code code = TYPE_CODE (type);
397
398 /* GCC returns a `long double' in memory too. */
399 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
400 || code == TYPE_CODE_COMPLEX)
401 && !m68k_reg_struct_return_p (gdbarch, type))
402 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
403 {
404 /* The default on m68k is to return structures in static memory.
405 Consequently a function must return the address where we can
406 find the return value. */
407
408 if (readbuf)
409 {
410 ULONGEST addr;
411
412 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
413 read_memory (addr, readbuf, TYPE_LENGTH (type));
414 }
415
416 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
417 }
418
419 if (readbuf)
420 m68k_extract_return_value (type, regcache, readbuf);
421 if (writebuf)
422 m68k_store_return_value (type, regcache, writebuf);
423
424 return RETURN_VALUE_REGISTER_CONVENTION;
425 }
426
427 static enum return_value_convention
428 m68k_svr4_return_value (struct gdbarch *gdbarch, struct value *function,
429 struct type *type, struct regcache *regcache,
430 gdb_byte *readbuf, const gdb_byte *writebuf)
431 {
432 enum type_code code = TYPE_CODE (type);
433
434 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
435 || code == TYPE_CODE_COMPLEX)
436 && !m68k_reg_struct_return_p (gdbarch, type))
437 {
438 /* The System V ABI says that:
439
440 "A function returning a structure or union also sets %a0 to
441 the value it finds in %a0. Thus when the caller receives
442 control again, the address of the returned object resides in
443 register %a0."
444
445 So the ABI guarantees that we can always find the return
446 value just after the function has returned. */
447
448 if (readbuf)
449 {
450 ULONGEST addr;
451
452 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
453 read_memory (addr, readbuf, TYPE_LENGTH (type));
454 }
455
456 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
457 }
458
459 /* This special case is for structures consisting of a single
460 `float' or `double' member. These structures are returned in
461 %fp0. For these structures, we call ourselves recursively,
462 changing TYPE into the type of the first member of the structure.
463 Since that should work for all structures that have only one
464 member, we don't bother to check the member's type here. */
465 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
466 {
467 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
468 return m68k_svr4_return_value (gdbarch, function, type, regcache,
469 readbuf, writebuf);
470 }
471
472 if (readbuf)
473 m68k_svr4_extract_return_value (type, regcache, readbuf);
474 if (writebuf)
475 m68k_svr4_store_return_value (type, regcache, writebuf);
476
477 return RETURN_VALUE_REGISTER_CONVENTION;
478 }
479 \f
480
481 /* Always align the frame to a 4-byte boundary. This is required on
482 coldfire and harmless on the rest. */
483
484 static CORE_ADDR
485 m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
486 {
487 /* Align the stack to four bytes. */
488 return sp & ~3;
489 }
490
491 static CORE_ADDR
492 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
493 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
494 struct value **args, CORE_ADDR sp, int struct_return,
495 CORE_ADDR struct_addr)
496 {
497 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
498 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
499 gdb_byte buf[4];
500 int i;
501
502 /* Push arguments in reverse order. */
503 for (i = nargs - 1; i >= 0; i--)
504 {
505 struct type *value_type = value_enclosing_type (args[i]);
506 int len = TYPE_LENGTH (value_type);
507 int container_len = (len + 3) & ~3;
508 int offset;
509
510 /* Non-scalars bigger than 4 bytes are left aligned, others are
511 right aligned. */
512 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
513 || TYPE_CODE (value_type) == TYPE_CODE_UNION
514 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
515 && len > 4)
516 offset = 0;
517 else
518 offset = container_len - len;
519 sp -= container_len;
520 write_memory (sp + offset, value_contents_all (args[i]), len);
521 }
522
523 /* Store struct value address. */
524 if (struct_return)
525 {
526 store_unsigned_integer (buf, 4, byte_order, struct_addr);
527 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
528 }
529
530 /* Store return address. */
531 sp -= 4;
532 store_unsigned_integer (buf, 4, byte_order, bp_addr);
533 write_memory (sp, buf, 4);
534
535 /* Finally, update the stack pointer... */
536 store_unsigned_integer (buf, 4, byte_order, sp);
537 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
538
539 /* ...and fake a frame pointer. */
540 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
541
542 /* DWARF2/GCC uses the stack address *before* the function call as a
543 frame's CFA. */
544 return sp + 8;
545 }
546
547 /* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
548
549 static int
550 m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
551 {
552 if (num < 8)
553 /* d0..7 */
554 return (num - 0) + M68K_D0_REGNUM;
555 else if (num < 16)
556 /* a0..7 */
557 return (num - 8) + M68K_A0_REGNUM;
558 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
559 /* fp0..7 */
560 return (num - 16) + M68K_FP0_REGNUM;
561 else if (num == 25)
562 /* pc */
563 return M68K_PC_REGNUM;
564 else
565 return -1;
566 }
567
568 \f
569 struct m68k_frame_cache
570 {
571 /* Base address. */
572 CORE_ADDR base;
573 CORE_ADDR sp_offset;
574 CORE_ADDR pc;
575
576 /* Saved registers. */
577 CORE_ADDR saved_regs[M68K_NUM_REGS];
578 CORE_ADDR saved_sp;
579
580 /* Stack space reserved for local variables. */
581 long locals;
582 };
583
584 /* Allocate and initialize a frame cache. */
585
586 static struct m68k_frame_cache *
587 m68k_alloc_frame_cache (void)
588 {
589 struct m68k_frame_cache *cache;
590 int i;
591
592 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
593
594 /* Base address. */
595 cache->base = 0;
596 cache->sp_offset = -4;
597 cache->pc = 0;
598
599 /* Saved registers. We initialize these to -1 since zero is a valid
600 offset (that's where %fp is supposed to be stored). */
601 for (i = 0; i < M68K_NUM_REGS; i++)
602 cache->saved_regs[i] = -1;
603
604 /* Frameless until proven otherwise. */
605 cache->locals = -1;
606
607 return cache;
608 }
609
610 /* Check whether PC points at a code that sets up a new stack frame.
611 If so, it updates CACHE and returns the address of the first
612 instruction after the sequence that sets removes the "hidden"
613 argument from the stack or CURRENT_PC, whichever is smaller.
614 Otherwise, return PC. */
615
616 static CORE_ADDR
617 m68k_analyze_frame_setup (struct gdbarch *gdbarch,
618 CORE_ADDR pc, CORE_ADDR current_pc,
619 struct m68k_frame_cache *cache)
620 {
621 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
622 int op;
623
624 if (pc >= current_pc)
625 return current_pc;
626
627 op = read_memory_unsigned_integer (pc, 2, byte_order);
628
629 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
630 {
631 cache->saved_regs[M68K_FP_REGNUM] = 0;
632 cache->sp_offset += 4;
633 if (op == P_LINKW_FP)
634 {
635 /* link.w %fp, #-N */
636 /* link.w %fp, #0; adda.l #-N, %sp */
637 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
638
639 if (pc + 4 < current_pc && cache->locals == 0)
640 {
641 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
642 if (op == P_ADDAL_SP)
643 {
644 cache->locals = read_memory_integer (pc + 6, 4, byte_order);
645 return pc + 10;
646 }
647 }
648
649 return pc + 4;
650 }
651 else if (op == P_LINKL_FP)
652 {
653 /* link.l %fp, #-N */
654 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
655 return pc + 6;
656 }
657 else
658 {
659 /* pea (%fp); movea.l %sp, %fp */
660 cache->locals = 0;
661
662 if (pc + 2 < current_pc)
663 {
664 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
665
666 if (op == P_MOVEAL_SP_FP)
667 {
668 /* move.l %sp, %fp */
669 return pc + 4;
670 }
671 }
672
673 return pc + 2;
674 }
675 }
676 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
677 {
678 /* subq.[wl] #N,%sp */
679 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
680 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
681 if (pc + 2 < current_pc)
682 {
683 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
684 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
685 {
686 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
687 return pc + 4;
688 }
689 }
690 return pc + 2;
691 }
692 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
693 {
694 /* adda.w #-N,%sp */
695 /* lea (-N,%sp),%sp */
696 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
697 return pc + 4;
698 }
699 else if (op == P_ADDAL_SP)
700 {
701 /* adda.l #-N,%sp */
702 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
703 return pc + 6;
704 }
705
706 return pc;
707 }
708
709 /* Check whether PC points at code that saves registers on the stack.
710 If so, it updates CACHE and returns the address of the first
711 instruction after the register saves or CURRENT_PC, whichever is
712 smaller. Otherwise, return PC. */
713
714 static CORE_ADDR
715 m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
716 CORE_ADDR current_pc,
717 struct m68k_frame_cache *cache)
718 {
719 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
720
721 if (cache->locals >= 0)
722 {
723 CORE_ADDR offset;
724 int op;
725 int i, mask, regno;
726
727 offset = -4 - cache->locals;
728 while (pc < current_pc)
729 {
730 op = read_memory_unsigned_integer (pc, 2, byte_order);
731 if (op == P_FMOVEMX_SP
732 && gdbarch_tdep (gdbarch)->fpregs_present)
733 {
734 /* fmovem.x REGS,-(%sp) */
735 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
736 if ((op & 0xff00) == 0xe000)
737 {
738 mask = op & 0xff;
739 for (i = 0; i < 16; i++, mask >>= 1)
740 {
741 if (mask & 1)
742 {
743 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
744 offset -= 12;
745 }
746 }
747 pc += 4;
748 }
749 else
750 break;
751 }
752 else if ((op & 0177760) == P_MOVEL_SP)
753 {
754 /* move.l %R,-(%sp) */
755 regno = op & 017;
756 cache->saved_regs[regno] = offset;
757 offset -= 4;
758 pc += 2;
759 }
760 else if (op == P_MOVEML_SP)
761 {
762 /* movem.l REGS,-(%sp) */
763 mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
764 for (i = 0; i < 16; i++, mask >>= 1)
765 {
766 if (mask & 1)
767 {
768 cache->saved_regs[15 - i] = offset;
769 offset -= 4;
770 }
771 }
772 pc += 4;
773 }
774 else
775 break;
776 }
777 }
778
779 return pc;
780 }
781
782
783 /* Do a full analysis of the prologue at PC and update CACHE
784 accordingly. Bail out early if CURRENT_PC is reached. Return the
785 address where the analysis stopped.
786
787 We handle all cases that can be generated by gcc.
788
789 For allocating a stack frame:
790
791 link.w %a6,#-N
792 link.l %a6,#-N
793 pea (%fp); move.l %sp,%fp
794 link.w %a6,#0; add.l #-N,%sp
795 subq.l #N,%sp
796 subq.w #N,%sp
797 subq.w #8,%sp; subq.w #N-8,%sp
798 add.w #-N,%sp
799 lea (-N,%sp),%sp
800 add.l #-N,%sp
801
802 For saving registers:
803
804 fmovem.x REGS,-(%sp)
805 move.l R1,-(%sp)
806 move.l R1,-(%sp); move.l R2,-(%sp)
807 movem.l REGS,-(%sp)
808
809 For setting up the PIC register:
810
811 lea (%pc,N),%a5
812
813 */
814
815 static CORE_ADDR
816 m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
817 CORE_ADDR current_pc, struct m68k_frame_cache *cache)
818 {
819 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
820 unsigned int op;
821
822 pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
823 pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
824 if (pc >= current_pc)
825 return current_pc;
826
827 /* Check for GOT setup. */
828 op = read_memory_unsigned_integer (pc, 4, byte_order);
829 if (op == P_LEA_PC_A5)
830 {
831 /* lea (%pc,N),%a5 */
832 return pc + 8;
833 }
834
835 return pc;
836 }
837
838 /* Return PC of first real instruction. */
839
840 static CORE_ADDR
841 m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
842 {
843 struct m68k_frame_cache cache;
844 CORE_ADDR pc;
845
846 cache.locals = -1;
847 pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
848 if (cache.locals < 0)
849 return start_pc;
850 return pc;
851 }
852
853 static CORE_ADDR
854 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
855 {
856 gdb_byte buf[8];
857
858 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
859 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
860 }
861 \f
862 /* Normal frames. */
863
864 static struct m68k_frame_cache *
865 m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
866 {
867 struct gdbarch *gdbarch = get_frame_arch (this_frame);
868 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
869 struct m68k_frame_cache *cache;
870 gdb_byte buf[4];
871 int i;
872
873 if (*this_cache)
874 return (struct m68k_frame_cache *) *this_cache;
875
876 cache = m68k_alloc_frame_cache ();
877 *this_cache = cache;
878
879 /* In principle, for normal frames, %fp holds the frame pointer,
880 which holds the base address for the current stack frame.
881 However, for functions that don't need it, the frame pointer is
882 optional. For these "frameless" functions the frame pointer is
883 actually the frame pointer of the calling frame. Signal
884 trampolines are just a special case of a "frameless" function.
885 They (usually) share their frame pointer with the frame that was
886 in progress when the signal occurred. */
887
888 get_frame_register (this_frame, M68K_FP_REGNUM, buf);
889 cache->base = extract_unsigned_integer (buf, 4, byte_order);
890 if (cache->base == 0)
891 return cache;
892
893 /* For normal frames, %pc is stored at 4(%fp). */
894 cache->saved_regs[M68K_PC_REGNUM] = 4;
895
896 cache->pc = get_frame_func (this_frame);
897 if (cache->pc != 0)
898 m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
899 get_frame_pc (this_frame), cache);
900
901 if (cache->locals < 0)
902 {
903 /* We didn't find a valid frame, which means that CACHE->base
904 currently holds the frame pointer for our calling frame. If
905 we're at the start of a function, or somewhere half-way its
906 prologue, the function's frame probably hasn't been fully
907 setup yet. Try to reconstruct the base address for the stack
908 frame by looking at the stack pointer. For truly "frameless"
909 functions this might work too. */
910
911 get_frame_register (this_frame, M68K_SP_REGNUM, buf);
912 cache->base = extract_unsigned_integer (buf, 4, byte_order)
913 + cache->sp_offset;
914 }
915
916 /* Now that we have the base address for the stack frame we can
917 calculate the value of %sp in the calling frame. */
918 cache->saved_sp = cache->base + 8;
919
920 /* Adjust all the saved registers such that they contain addresses
921 instead of offsets. */
922 for (i = 0; i < M68K_NUM_REGS; i++)
923 if (cache->saved_regs[i] != -1)
924 cache->saved_regs[i] += cache->base;
925
926 return cache;
927 }
928
929 static void
930 m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
931 struct frame_id *this_id)
932 {
933 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
934
935 /* This marks the outermost frame. */
936 if (cache->base == 0)
937 return;
938
939 /* See the end of m68k_push_dummy_call. */
940 *this_id = frame_id_build (cache->base + 8, cache->pc);
941 }
942
943 static struct value *
944 m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
945 int regnum)
946 {
947 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
948
949 gdb_assert (regnum >= 0);
950
951 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
952 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
953
954 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
955 return frame_unwind_got_memory (this_frame, regnum,
956 cache->saved_regs[regnum]);
957
958 return frame_unwind_got_register (this_frame, regnum, regnum);
959 }
960
961 static const struct frame_unwind m68k_frame_unwind =
962 {
963 NORMAL_FRAME,
964 default_frame_unwind_stop_reason,
965 m68k_frame_this_id,
966 m68k_frame_prev_register,
967 NULL,
968 default_frame_sniffer
969 };
970 \f
971 static CORE_ADDR
972 m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
973 {
974 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
975
976 return cache->base;
977 }
978
979 static const struct frame_base m68k_frame_base =
980 {
981 &m68k_frame_unwind,
982 m68k_frame_base_address,
983 m68k_frame_base_address,
984 m68k_frame_base_address
985 };
986
987 static struct frame_id
988 m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
989 {
990 CORE_ADDR fp;
991
992 fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
993
994 /* See the end of m68k_push_dummy_call. */
995 return frame_id_build (fp + 8, get_frame_pc (this_frame));
996 }
997 \f
998
999 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1000 We expect the first arg to be a pointer to the jmp_buf structure from which
1001 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1002 This routine returns true on success. */
1003
1004 static int
1005 m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1006 {
1007 gdb_byte *buf;
1008 CORE_ADDR sp, jb_addr;
1009 struct gdbarch *gdbarch = get_frame_arch (frame);
1010 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1011 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1012
1013 if (tdep->jb_pc < 0)
1014 {
1015 internal_error (__FILE__, __LINE__,
1016 _("m68k_get_longjmp_target: not implemented"));
1017 return 0;
1018 }
1019
1020 buf = (gdb_byte *) alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
1021 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
1022
1023 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
1024 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
1025 return 0;
1026
1027 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1028 / TARGET_CHAR_BIT, byte_order);
1029
1030 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1031 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
1032 byte_order)
1033 return 0;
1034
1035 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1036 / TARGET_CHAR_BIT, byte_order);
1037 return 1;
1038 }
1039 \f
1040
1041 /* This is the implementation of gdbarch method
1042 return_in_first_hidden_param_p. */
1043
1044 static int
1045 m68k_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1046 struct type *type)
1047 {
1048 return 0;
1049 }
1050
1051 /* System V Release 4 (SVR4). */
1052
1053 void
1054 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1055 {
1056 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1057
1058 /* SVR4 uses a different calling convention. */
1059 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1060
1061 /* SVR4 uses %a0 instead of %a1. */
1062 tdep->struct_value_regnum = M68K_A0_REGNUM;
1063 }
1064 \f
1065
1066 /* Function: m68k_gdbarch_init
1067 Initializer function for the m68k gdbarch vector.
1068 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1069
1070 static struct gdbarch *
1071 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1072 {
1073 struct gdbarch_tdep *tdep = NULL;
1074 struct gdbarch *gdbarch;
1075 struct gdbarch_list *best_arch;
1076 struct tdesc_arch_data *tdesc_data = NULL;
1077 int i;
1078 enum m68k_flavour flavour = m68k_no_flavour;
1079 int has_fp = 1;
1080 const struct floatformat **long_double_format = floatformats_m68881_ext;
1081
1082 /* Check any target description for validity. */
1083 if (tdesc_has_registers (info.target_desc))
1084 {
1085 const struct tdesc_feature *feature;
1086 int valid_p;
1087
1088 feature = tdesc_find_feature (info.target_desc,
1089 "org.gnu.gdb.m68k.core");
1090
1091 if (feature == NULL)
1092 {
1093 feature = tdesc_find_feature (info.target_desc,
1094 "org.gnu.gdb.coldfire.core");
1095 if (feature != NULL)
1096 flavour = m68k_coldfire_flavour;
1097 }
1098
1099 if (feature == NULL)
1100 {
1101 feature = tdesc_find_feature (info.target_desc,
1102 "org.gnu.gdb.fido.core");
1103 if (feature != NULL)
1104 flavour = m68k_fido_flavour;
1105 }
1106
1107 if (feature == NULL)
1108 return NULL;
1109
1110 tdesc_data = tdesc_data_alloc ();
1111
1112 valid_p = 1;
1113 for (i = 0; i <= M68K_PC_REGNUM; i++)
1114 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1115 m68k_register_names[i]);
1116
1117 if (!valid_p)
1118 {
1119 tdesc_data_cleanup (tdesc_data);
1120 return NULL;
1121 }
1122
1123 feature = tdesc_find_feature (info.target_desc,
1124 "org.gnu.gdb.coldfire.fp");
1125 if (feature != NULL)
1126 {
1127 valid_p = 1;
1128 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1129 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1130 m68k_register_names[i]);
1131 if (!valid_p)
1132 {
1133 tdesc_data_cleanup (tdesc_data);
1134 return NULL;
1135 }
1136 }
1137 else
1138 has_fp = 0;
1139 }
1140
1141 /* The mechanism for returning floating values from function
1142 and the type of long double depend on whether we're
1143 on ColdFire or standard m68k. */
1144
1145 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
1146 {
1147 const bfd_arch_info_type *coldfire_arch =
1148 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1149
1150 if (coldfire_arch
1151 && ((*info.bfd_arch_info->compatible)
1152 (info.bfd_arch_info, coldfire_arch)))
1153 flavour = m68k_coldfire_flavour;
1154 }
1155
1156 /* If there is already a candidate, use it. */
1157 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1158 best_arch != NULL;
1159 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1160 {
1161 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1162 continue;
1163
1164 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1165 continue;
1166
1167 break;
1168 }
1169
1170 if (best_arch != NULL)
1171 {
1172 if (tdesc_data != NULL)
1173 tdesc_data_cleanup (tdesc_data);
1174 return best_arch->gdbarch;
1175 }
1176
1177 tdep = XCNEW (struct gdbarch_tdep);
1178 gdbarch = gdbarch_alloc (&info, tdep);
1179 tdep->fpregs_present = has_fp;
1180 tdep->flavour = flavour;
1181
1182 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1183 long_double_format = floatformats_ieee_double;
1184 set_gdbarch_long_double_format (gdbarch, long_double_format);
1185 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
1186
1187 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1188 set_gdbarch_breakpoint_kind_from_pc (gdbarch, m68k_breakpoint::kind_from_pc);
1189 set_gdbarch_sw_breakpoint_from_kind (gdbarch, m68k_breakpoint::bp_from_kind);
1190
1191 /* Stack grows down. */
1192 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1193 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
1194
1195 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1196 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1197 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1198
1199 set_gdbarch_frame_args_skip (gdbarch, 8);
1200 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1201
1202 set_gdbarch_register_type (gdbarch, m68k_register_type);
1203 set_gdbarch_register_name (gdbarch, m68k_register_name);
1204 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
1205 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1206 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1207 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1208 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1209 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1210 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1211
1212 if (has_fp)
1213 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1214
1215 /* Try to figure out if the arch uses floating registers to return
1216 floating point values from functions. */
1217 if (has_fp)
1218 {
1219 /* On ColdFire, floating point values are returned in D0. */
1220 if (flavour == m68k_coldfire_flavour)
1221 tdep->float_return = 0;
1222 else
1223 tdep->float_return = 1;
1224 }
1225 else
1226 {
1227 /* No floating registers, so can't use them for returning values. */
1228 tdep->float_return = 0;
1229 }
1230
1231 /* Function call & return. */
1232 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1233 set_gdbarch_return_value (gdbarch, m68k_return_value);
1234 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1235 m68k_return_in_first_hidden_param_p);
1236
1237 #if defined JB_PC && defined JB_ELEMENT_SIZE
1238 tdep->jb_pc = JB_PC;
1239 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1240 #else
1241 tdep->jb_pc = -1;
1242 #endif
1243 tdep->struct_value_regnum = M68K_A1_REGNUM;
1244 tdep->struct_return = reg_struct_return;
1245
1246 /* Frame unwinder. */
1247 set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
1248 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1249
1250 /* Hook in the DWARF CFI frame unwinder. */
1251 dwarf2_append_unwinders (gdbarch);
1252
1253 frame_base_set_default (gdbarch, &m68k_frame_base);
1254
1255 /* Hook in ABI-specific overrides, if they have been registered. */
1256 gdbarch_init_osabi (info, gdbarch);
1257
1258 /* Now we have tuned the configuration, set a few final things,
1259 based on what the OS ABI has told us. */
1260
1261 if (tdep->jb_pc >= 0)
1262 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1263
1264 frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
1265
1266 if (tdesc_data)
1267 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
1268
1269 return gdbarch;
1270 }
1271
1272
1273 static void
1274 m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1275 {
1276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1277
1278 if (tdep == NULL)
1279 return;
1280 }
1281
1282 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1283
1284 void
1285 _initialize_m68k_tdep (void)
1286 {
1287 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1288 }