]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/m88k-tdep.c
57754672917929a60d4c851f302d8c21fb59c52e
[thirdparty/binutils-gdb.git] / gdb / m88k-tdep.c
1 /* Target-dependent code for the Motorola 88000 series.
2
3 Copyright (C) 2004-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "frame.h"
24 #include "frame-base.h"
25 #include "frame-unwind.h"
26 #include "gdbcore.h"
27 #include "gdbtypes.h"
28 #include "regcache.h"
29 #include "regset.h"
30 #include "symtab.h"
31 #include "trad-frame.h"
32 #include "value.h"
33
34 #include "m88k-tdep.h"
35
36 /* Fetch the instruction at PC. */
37
38 static unsigned long
39 m88k_fetch_instruction (CORE_ADDR pc, enum bfd_endian byte_order)
40 {
41 return read_memory_unsigned_integer (pc, 4, byte_order);
42 }
43
44 /* Register information. */
45
46 /* Return the name of register REGNUM. */
47
48 static const char *
49 m88k_register_name (struct gdbarch *gdbarch, int regnum)
50 {
51 static char *register_names[] =
52 {
53 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
54 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
55 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
56 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
57 "epsr", "fpsr", "fpcr", "sxip", "snip", "sfip"
58 };
59
60 if (regnum >= 0 && regnum < ARRAY_SIZE (register_names))
61 return register_names[regnum];
62
63 return NULL;
64 }
65
66 /* Return the GDB type object for the "standard" data type of data in
67 register REGNUM. */
68
69 static struct type *
70 m88k_register_type (struct gdbarch *gdbarch, int regnum)
71 {
72 /* SXIP, SNIP, SFIP and R1 contain code addresses. */
73 if ((regnum >= M88K_SXIP_REGNUM && regnum <= M88K_SFIP_REGNUM)
74 || regnum == M88K_R1_REGNUM)
75 return builtin_type (gdbarch)->builtin_func_ptr;
76
77 /* R30 and R31 typically contains data addresses. */
78 if (regnum == M88K_R30_REGNUM || regnum == M88K_R31_REGNUM)
79 return builtin_type (gdbarch)->builtin_data_ptr;
80
81 return builtin_type (gdbarch)->builtin_int32;
82 }
83 \f
84
85 static CORE_ADDR
86 m88k_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
87 {
88 /* All instructures are 4-byte aligned. The lower 2 bits of SXIP,
89 SNIP and SFIP are used for special purposes: bit 0 is the
90 exception bit and bit 1 is the valid bit. */
91 return addr & ~0x3;
92 }
93
94 /* Use the program counter to determine the contents and size of a
95 breakpoint instruction. Return a pointer to a string of bytes that
96 encode a breakpoint instruction, store the length of the string in
97 *LEN and optionally adjust *PC to point to the correct memory
98 location for inserting the breakpoint. */
99
100 static const gdb_byte *
101 m88k_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
102 {
103 /* tb 0,r0,511 */
104 static gdb_byte break_insn[] = { 0xf0, 0x00, 0xd1, 0xff };
105
106 *len = sizeof (break_insn);
107 return break_insn;
108 }
109
110 static CORE_ADDR
111 m88k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
112 {
113 CORE_ADDR pc;
114
115 pc = frame_unwind_register_unsigned (next_frame, M88K_SXIP_REGNUM);
116 return m88k_addr_bits_remove (gdbarch, pc);
117 }
118
119 static void
120 m88k_write_pc (struct regcache *regcache, CORE_ADDR pc)
121 {
122 /* According to the MC88100 RISC Microprocessor User's Manual,
123 section 6.4.3.1.2:
124
125 "... can be made to return to a particular instruction by placing
126 a valid instruction address in the SNIP and the next sequential
127 instruction address in the SFIP (with V bits set and E bits
128 clear). The rte resumes execution at the instruction pointed to
129 by the SNIP, then the SFIP."
130
131 The E bit is the least significant bit (bit 0). The V (valid)
132 bit is bit 1. This is why we logical or 2 into the values we are
133 writing below. It turns out that SXIP plays no role when
134 returning from an exception so nothing special has to be done
135 with it. We could even (presumably) give it a totally bogus
136 value. */
137
138 regcache_cooked_write_unsigned (regcache, M88K_SXIP_REGNUM, pc);
139 regcache_cooked_write_unsigned (regcache, M88K_SNIP_REGNUM, pc | 2);
140 regcache_cooked_write_unsigned (regcache, M88K_SFIP_REGNUM, (pc + 4) | 2);
141 }
142 \f
143
144 /* The functions on this page are intended to be used to classify
145 function arguments. */
146
147 /* Check whether TYPE is "Integral or Pointer". */
148
149 static int
150 m88k_integral_or_pointer_p (const struct type *type)
151 {
152 switch (TYPE_CODE (type))
153 {
154 case TYPE_CODE_INT:
155 case TYPE_CODE_BOOL:
156 case TYPE_CODE_CHAR:
157 case TYPE_CODE_ENUM:
158 case TYPE_CODE_RANGE:
159 {
160 /* We have byte, half-word, word and extended-word/doubleword
161 integral types. */
162 int len = TYPE_LENGTH (type);
163 return (len == 1 || len == 2 || len == 4 || len == 8);
164 }
165 return 1;
166 case TYPE_CODE_PTR:
167 case TYPE_CODE_REF:
168 {
169 /* Allow only 32-bit pointers. */
170 return (TYPE_LENGTH (type) == 4);
171 }
172 return 1;
173 default:
174 break;
175 }
176
177 return 0;
178 }
179
180 /* Check whether TYPE is "Floating". */
181
182 static int
183 m88k_floating_p (const struct type *type)
184 {
185 switch (TYPE_CODE (type))
186 {
187 case TYPE_CODE_FLT:
188 {
189 int len = TYPE_LENGTH (type);
190 return (len == 4 || len == 8);
191 }
192 default:
193 break;
194 }
195
196 return 0;
197 }
198
199 /* Check whether TYPE is "Structure or Union". */
200
201 static int
202 m88k_structure_or_union_p (const struct type *type)
203 {
204 switch (TYPE_CODE (type))
205 {
206 case TYPE_CODE_STRUCT:
207 case TYPE_CODE_UNION:
208 return 1;
209 default:
210 break;
211 }
212
213 return 0;
214 }
215
216 /* Check whether TYPE has 8-byte alignment. */
217
218 static int
219 m88k_8_byte_align_p (struct type *type)
220 {
221 if (m88k_structure_or_union_p (type))
222 {
223 int i;
224
225 for (i = 0; i < TYPE_NFIELDS (type); i++)
226 {
227 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
228
229 if (m88k_8_byte_align_p (subtype))
230 return 1;
231 }
232 }
233
234 if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
235 return (TYPE_LENGTH (type) == 8);
236
237 return 0;
238 }
239
240 /* Check whether TYPE can be passed in a register. */
241
242 static int
243 m88k_in_register_p (struct type *type)
244 {
245 if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
246 return 1;
247
248 if (m88k_structure_or_union_p (type) && TYPE_LENGTH (type) == 4)
249 return 1;
250
251 return 0;
252 }
253
254 static CORE_ADDR
255 m88k_store_arguments (struct regcache *regcache, int nargs,
256 struct value **args, CORE_ADDR sp)
257 {
258 struct gdbarch *gdbarch = get_regcache_arch (regcache);
259 int num_register_words = 0;
260 int num_stack_words = 0;
261 int i;
262
263 for (i = 0; i < nargs; i++)
264 {
265 struct type *type = value_type (args[i]);
266 int len = TYPE_LENGTH (type);
267
268 if (m88k_integral_or_pointer_p (type) && len < 4)
269 {
270 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
271 args[i]);
272 type = value_type (args[i]);
273 len = TYPE_LENGTH (type);
274 }
275
276 if (m88k_in_register_p (type))
277 {
278 int num_words = 0;
279
280 if (num_register_words % 2 == 1 && m88k_8_byte_align_p (type))
281 num_words++;
282
283 num_words += ((len + 3) / 4);
284 if (num_register_words + num_words <= 8)
285 {
286 num_register_words += num_words;
287 continue;
288 }
289
290 /* We've run out of available registers. Pass the argument
291 on the stack. */
292 }
293
294 if (num_stack_words % 2 == 1 && m88k_8_byte_align_p (type))
295 num_stack_words++;
296
297 num_stack_words += ((len + 3) / 4);
298 }
299
300 /* Allocate stack space. */
301 sp = align_down (sp - 32 - num_stack_words * 4, 16);
302 num_stack_words = num_register_words = 0;
303
304 for (i = 0; i < nargs; i++)
305 {
306 const bfd_byte *valbuf = value_contents (args[i]);
307 struct type *type = value_type (args[i]);
308 int len = TYPE_LENGTH (type);
309 int stack_word = num_stack_words;
310
311 if (m88k_in_register_p (type))
312 {
313 int register_word = num_register_words;
314
315 if (register_word % 2 == 1 && m88k_8_byte_align_p (type))
316 register_word++;
317
318 gdb_assert (len == 4 || len == 8);
319
320 if (register_word + len / 8 < 8)
321 {
322 int regnum = M88K_R2_REGNUM + register_word;
323
324 regcache_raw_write (regcache, regnum, valbuf);
325 if (len > 4)
326 regcache_raw_write (regcache, regnum + 1, valbuf + 4);
327
328 num_register_words = (register_word + len / 4);
329 continue;
330 }
331 }
332
333 if (stack_word % 2 == -1 && m88k_8_byte_align_p (type))
334 stack_word++;
335
336 write_memory (sp + stack_word * 4, valbuf, len);
337 num_stack_words = (stack_word + (len + 3) / 4);
338 }
339
340 return sp;
341 }
342
343 static CORE_ADDR
344 m88k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
345 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
346 struct value **args, CORE_ADDR sp, int struct_return,
347 CORE_ADDR struct_addr)
348 {
349 /* Set up the function arguments. */
350 sp = m88k_store_arguments (regcache, nargs, args, sp);
351 gdb_assert (sp % 16 == 0);
352
353 /* Store return value address. */
354 if (struct_return)
355 regcache_raw_write_unsigned (regcache, M88K_R12_REGNUM, struct_addr);
356
357 /* Store the stack pointer and return address in the appropriate
358 registers. */
359 regcache_raw_write_unsigned (regcache, M88K_R31_REGNUM, sp);
360 regcache_raw_write_unsigned (regcache, M88K_R1_REGNUM, bp_addr);
361
362 /* Return the stack pointer. */
363 return sp;
364 }
365
366 static struct frame_id
367 m88k_dummy_id (struct gdbarch *arch, struct frame_info *this_frame)
368 {
369 CORE_ADDR sp;
370
371 sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM);
372 return frame_id_build (sp, get_frame_pc (this_frame));
373 }
374 \f
375
376 /* Determine, for architecture GDBARCH, how a return value of TYPE
377 should be returned. If it is supposed to be returned in registers,
378 and READBUF is non-zero, read the appropriate value from REGCACHE,
379 and copy it into READBUF. If WRITEBUF is non-zero, write the value
380 from WRITEBUF into REGCACHE. */
381
382 static enum return_value_convention
383 m88k_return_value (struct gdbarch *gdbarch, struct value *function,
384 struct type *type, struct regcache *regcache,
385 gdb_byte *readbuf, const gdb_byte *writebuf)
386 {
387 int len = TYPE_LENGTH (type);
388 gdb_byte buf[8];
389
390 if (!m88k_integral_or_pointer_p (type) && !m88k_floating_p (type))
391 return RETURN_VALUE_STRUCT_CONVENTION;
392
393 if (readbuf)
394 {
395 /* Read the contents of R2 and (if necessary) R3. */
396 regcache_cooked_read (regcache, M88K_R2_REGNUM, buf);
397 if (len > 4)
398 {
399 regcache_cooked_read (regcache, M88K_R3_REGNUM, buf + 4);
400 gdb_assert (len == 8);
401 memcpy (readbuf, buf, len);
402 }
403 else
404 {
405 /* Just stripping off any unused bytes should preserve the
406 signed-ness just fine. */
407 memcpy (readbuf, buf + 4 - len, len);
408 }
409 }
410
411 if (writebuf)
412 {
413 /* Read the contents to R2 and (if necessary) R3. */
414 if (len > 4)
415 {
416 gdb_assert (len == 8);
417 memcpy (buf, writebuf, 8);
418 regcache_cooked_write (regcache, M88K_R3_REGNUM, buf + 4);
419 }
420 else
421 {
422 /* ??? Do we need to do any sign-extension here? */
423 memcpy (buf + 4 - len, writebuf, len);
424 }
425 regcache_cooked_write (regcache, M88K_R2_REGNUM, buf);
426 }
427
428 return RETURN_VALUE_REGISTER_CONVENTION;
429 }
430 \f
431 /* Default frame unwinder. */
432
433 struct m88k_frame_cache
434 {
435 /* Base address. */
436 CORE_ADDR base;
437 CORE_ADDR pc;
438
439 int sp_offset;
440 int fp_offset;
441
442 /* Table of saved registers. */
443 struct trad_frame_saved_reg *saved_regs;
444 };
445
446 /* Prologue analysis. */
447
448 /* Macros for extracting fields from instructions. */
449
450 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
451 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
452 #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
453 #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
454 #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
455 #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
456
457 /* Possible actions to be taken by the prologue analyzer for the
458 instructions it encounters. */
459
460 enum m88k_prologue_insn_action
461 {
462 M88K_PIA_SKIP, /* Ignore. */
463 M88K_PIA_NOTE_ST, /* Note register store. */
464 M88K_PIA_NOTE_STD, /* Note register pair store. */
465 M88K_PIA_NOTE_SP_ADJUSTMENT, /* Note stack pointer adjustment. */
466 M88K_PIA_NOTE_FP_ASSIGNMENT, /* Note frame pointer assignment. */
467 M88K_PIA_NOTE_BRANCH, /* Note branch. */
468 M88K_PIA_NOTE_PROLOGUE_END /* Note end of prologue. */
469 };
470
471 /* Table of instructions that may comprise a function prologue. */
472
473 struct m88k_prologue_insn
474 {
475 unsigned long insn;
476 unsigned long mask;
477 enum m88k_prologue_insn_action action;
478 };
479
480 struct m88k_prologue_insn m88k_prologue_insn_table[] =
481 {
482 /* Various register move instructions. */
483 { 0x58000000, 0xf800ffff, M88K_PIA_SKIP }, /* or/or.u with immed of 0 */
484 { 0xf4005800, 0xfc1fffe0, M88K_PIA_SKIP }, /* or rd,r0,rs */
485 { 0xf4005800, 0xfc00ffff, M88K_PIA_SKIP }, /* or rd,rs,r0 */
486
487 /* Various other instructions. */
488 { 0x58000000, 0xf8000000, M88K_PIA_SKIP }, /* or/or.u */
489
490 /* Stack pointer setup: "subu sp,sp,n" where n is a multiple of 8. */
491 { 0x67ff0000, 0xffff0007, M88K_PIA_NOTE_SP_ADJUSTMENT },
492
493 /* Frame pointer assignment: "addu r30,r31,n". */
494 { 0x63df0000, 0xffff0000, M88K_PIA_NOTE_FP_ASSIGNMENT },
495
496 /* Store to stack instructions; either "st rx,sp,n" or "st.d rx,sp,n". */
497 { 0x241f0000, 0xfc1f0000, M88K_PIA_NOTE_ST }, /* st rx,sp,n */
498 { 0x201f0000, 0xfc1f0000, M88K_PIA_NOTE_STD }, /* st.d rs,sp,n */
499
500 /* Instructions needed for setting up r25 for pic code. */
501 { 0x5f200000, 0xffff0000, M88K_PIA_SKIP }, /* or.u r25,r0,offset_high */
502 { 0xcc000002, 0xffffffff, M88K_PIA_SKIP }, /* bsr.n Lab */
503 { 0x5b390000, 0xffff0000, M88K_PIA_SKIP }, /* or r25,r25,offset_low */
504 { 0xf7396001, 0xffffffff, M88K_PIA_SKIP }, /* Lab: addu r25,r25,r1 */
505
506 /* Various branch or jump instructions which have a delay slot --
507 these do not form part of the prologue, but the instruction in
508 the delay slot might be a store instruction which should be
509 noted. */
510 { 0xc4000000, 0xe4000000, M88K_PIA_NOTE_BRANCH },
511 /* br.n, bsr.n, bb0.n, or bb1.n */
512 { 0xec000000, 0xfc000000, M88K_PIA_NOTE_BRANCH }, /* bcnd.n */
513 { 0xf400c400, 0xfffff7e0, M88K_PIA_NOTE_BRANCH }, /* jmp.n or jsr.n */
514
515 /* Catch all. Ends prologue analysis. */
516 { 0x00000000, 0x00000000, M88K_PIA_NOTE_PROLOGUE_END }
517 };
518
519 /* Do a full analysis of the function prologue at PC and update CACHE
520 accordingly. Bail out early if LIMIT is reached. Return the
521 address where the analysis stopped. If LIMIT points beyond the
522 function prologue, the return address should be the end of the
523 prologue. */
524
525 static CORE_ADDR
526 m88k_analyze_prologue (struct gdbarch *gdbarch,
527 CORE_ADDR pc, CORE_ADDR limit,
528 struct m88k_frame_cache *cache)
529 {
530 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
531 CORE_ADDR end = limit;
532
533 /* Provide a dummy cache if necessary. */
534 if (cache == NULL)
535 {
536 size_t sizeof_saved_regs =
537 (M88K_R31_REGNUM + 1) * sizeof (struct trad_frame_saved_reg);
538
539 cache = alloca (sizeof (struct m88k_frame_cache));
540 cache->saved_regs = alloca (sizeof_saved_regs);
541
542 /* We only initialize the members we care about. */
543 cache->saved_regs[M88K_R1_REGNUM].addr = -1;
544 cache->fp_offset = -1;
545 }
546
547 while (pc < limit)
548 {
549 struct m88k_prologue_insn *pi = m88k_prologue_insn_table;
550 unsigned long insn = m88k_fetch_instruction (pc, byte_order);
551
552 while ((insn & pi->mask) != pi->insn)
553 pi++;
554
555 switch (pi->action)
556 {
557 case M88K_PIA_SKIP:
558 /* If we have a frame pointer, and R1 has been saved,
559 consider this instruction as not being part of the
560 prologue. */
561 if (cache->fp_offset != -1
562 && cache->saved_regs[M88K_R1_REGNUM].addr != -1)
563 return min (pc, end);
564 break;
565
566 case M88K_PIA_NOTE_ST:
567 case M88K_PIA_NOTE_STD:
568 /* If no frame has been allocated, the stores aren't part of
569 the prologue. */
570 if (cache->sp_offset == 0)
571 return min (pc, end);
572
573 /* Record location of saved registers. */
574 {
575 int regnum = ST_SRC (insn) + M88K_R0_REGNUM;
576 ULONGEST offset = ST_OFFSET (insn);
577
578 cache->saved_regs[regnum].addr = offset;
579 if (pi->action == M88K_PIA_NOTE_STD && regnum < M88K_R31_REGNUM)
580 cache->saved_regs[regnum + 1].addr = offset + 4;
581 }
582 break;
583
584 case M88K_PIA_NOTE_SP_ADJUSTMENT:
585 /* A second stack pointer adjustment isn't part of the
586 prologue. */
587 if (cache->sp_offset != 0)
588 return min (pc, end);
589
590 /* Store stack pointer adjustment. */
591 cache->sp_offset = -SUBU_OFFSET (insn);
592 break;
593
594 case M88K_PIA_NOTE_FP_ASSIGNMENT:
595 /* A second frame pointer assignment isn't part of the
596 prologue. */
597 if (cache->fp_offset != -1)
598 return min (pc, end);
599
600 /* Record frame pointer assignment. */
601 cache->fp_offset = ADDU_OFFSET (insn);
602 break;
603
604 case M88K_PIA_NOTE_BRANCH:
605 /* The branch instruction isn't part of the prologue, but
606 the instruction in the delay slot might be. Limit the
607 prologue analysis to the delay slot and record the branch
608 instruction as the end of the prologue. */
609 limit = min (limit, pc + 2 * M88K_INSN_SIZE);
610 end = pc;
611 break;
612
613 case M88K_PIA_NOTE_PROLOGUE_END:
614 return min (pc, end);
615 }
616
617 pc += M88K_INSN_SIZE;
618 }
619
620 return end;
621 }
622
623 /* An upper limit to the size of the prologue. */
624 const int m88k_max_prologue_size = 128 * M88K_INSN_SIZE;
625
626 /* Return the address of first real instruction of the function
627 starting at PC. */
628
629 static CORE_ADDR
630 m88k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
631 {
632 struct symtab_and_line sal;
633 CORE_ADDR func_start, func_end;
634
635 /* This is the preferred method, find the end of the prologue by
636 using the debugging information. */
637 if (find_pc_partial_function (pc, NULL, &func_start, &func_end))
638 {
639 sal = find_pc_line (func_start, 0);
640
641 if (sal.end < func_end && pc <= sal.end)
642 return sal.end;
643 }
644
645 return m88k_analyze_prologue (gdbarch, pc, pc + m88k_max_prologue_size,
646 NULL);
647 }
648
649 static struct m88k_frame_cache *
650 m88k_frame_cache (struct frame_info *this_frame, void **this_cache)
651 {
652 struct gdbarch *gdbarch = get_frame_arch (this_frame);
653 struct m88k_frame_cache *cache;
654 CORE_ADDR frame_sp;
655
656 if (*this_cache)
657 return *this_cache;
658
659 cache = FRAME_OBSTACK_ZALLOC (struct m88k_frame_cache);
660 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
661 cache->fp_offset = -1;
662
663 cache->pc = get_frame_func (this_frame);
664 if (cache->pc != 0)
665 m88k_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
666 cache);
667
668 /* Calculate the stack pointer used in the prologue. */
669 if (cache->fp_offset != -1)
670 {
671 CORE_ADDR fp;
672
673 fp = get_frame_register_unsigned (this_frame, M88K_R30_REGNUM);
674 frame_sp = fp - cache->fp_offset;
675 }
676 else
677 {
678 /* If we know where the return address is saved, we can take a
679 solid guess at what the frame pointer should be. */
680 if (cache->saved_regs[M88K_R1_REGNUM].addr != -1)
681 cache->fp_offset = cache->saved_regs[M88K_R1_REGNUM].addr - 4;
682 frame_sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM);
683 }
684
685 /* Now that we know the stack pointer, adjust the location of the
686 saved registers. */
687 {
688 int regnum;
689
690 for (regnum = M88K_R0_REGNUM; regnum < M88K_R31_REGNUM; regnum ++)
691 if (cache->saved_regs[regnum].addr != -1)
692 cache->saved_regs[regnum].addr += frame_sp;
693 }
694
695 /* Calculate the frame's base. */
696 cache->base = frame_sp - cache->sp_offset;
697 trad_frame_set_value (cache->saved_regs, M88K_R31_REGNUM, cache->base);
698
699 /* Identify SXIP with the return address in R1. */
700 cache->saved_regs[M88K_SXIP_REGNUM] = cache->saved_regs[M88K_R1_REGNUM];
701
702 *this_cache = cache;
703 return cache;
704 }
705
706 static void
707 m88k_frame_this_id (struct frame_info *this_frame, void **this_cache,
708 struct frame_id *this_id)
709 {
710 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
711
712 /* This marks the outermost frame. */
713 if (cache->base == 0)
714 return;
715
716 (*this_id) = frame_id_build (cache->base, cache->pc);
717 }
718
719 static struct value *
720 m88k_frame_prev_register (struct frame_info *this_frame,
721 void **this_cache, int regnum)
722 {
723 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
724
725 if (regnum == M88K_SNIP_REGNUM || regnum == M88K_SFIP_REGNUM)
726 {
727 struct value *value;
728 CORE_ADDR pc;
729
730 value = trad_frame_get_prev_register (this_frame, cache->saved_regs,
731 M88K_SXIP_REGNUM);
732 pc = value_as_long (value);
733 release_value (value);
734 value_free (value);
735
736 if (regnum == M88K_SFIP_REGNUM)
737 pc += 4;
738
739 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
740 }
741
742 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
743 }
744
745 static const struct frame_unwind m88k_frame_unwind =
746 {
747 NORMAL_FRAME,
748 default_frame_unwind_stop_reason,
749 m88k_frame_this_id,
750 m88k_frame_prev_register,
751 NULL,
752 default_frame_sniffer
753 };
754 \f
755
756 static CORE_ADDR
757 m88k_frame_base_address (struct frame_info *this_frame, void **this_cache)
758 {
759 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
760
761 if (cache->fp_offset != -1)
762 return cache->base + cache->sp_offset + cache->fp_offset;
763
764 return 0;
765 }
766
767 static const struct frame_base m88k_frame_base =
768 {
769 &m88k_frame_unwind,
770 m88k_frame_base_address,
771 m88k_frame_base_address,
772 m88k_frame_base_address
773 };
774 \f
775
776 /* Core file support. */
777
778 /* Supply register REGNUM from the buffer specified by GREGS and LEN
779 in the general-purpose register set REGSET to register cache
780 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
781
782 static void
783 m88k_supply_gregset (const struct regset *regset,
784 struct regcache *regcache,
785 int regnum, const void *gregs, size_t len)
786 {
787 const gdb_byte *regs = gregs;
788 int i;
789
790 for (i = 0; i < M88K_NUM_REGS; i++)
791 {
792 if (regnum == i || regnum == -1)
793 regcache_raw_supply (regcache, i, regs + i * 4);
794 }
795 }
796
797 /* Motorola 88000 register set. */
798
799 static const struct regset m88k_gregset =
800 {
801 NULL,
802 m88k_supply_gregset
803 };
804
805 /* Iterate over supported core file register note sections. */
806
807 static void
808 m88k_iterate_over_regset_sections (struct gdbarch *gdbarch,
809 iterate_over_regset_sections_cb *cb,
810 void *cb_data,
811 const struct regcache *regcache)
812 {
813 cb (".reg", M88K_NUM_REGS * 4, &m88k_gregset, NULL, cb_data);
814 }
815 \f
816
817 static struct gdbarch *
818 m88k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
819 {
820 struct gdbarch *gdbarch;
821
822 /* If there is already a candidate, use it. */
823 arches = gdbarch_list_lookup_by_info (arches, &info);
824 if (arches != NULL)
825 return arches->gdbarch;
826
827 /* Allocate space for the new architecture. */
828 gdbarch = gdbarch_alloc (&info, NULL);
829
830 /* There is no real `long double'. */
831 set_gdbarch_long_double_bit (gdbarch, 64);
832 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
833
834 set_gdbarch_num_regs (gdbarch, M88K_NUM_REGS);
835 set_gdbarch_register_name (gdbarch, m88k_register_name);
836 set_gdbarch_register_type (gdbarch, m88k_register_type);
837
838 /* Register numbers of various important registers. */
839 set_gdbarch_sp_regnum (gdbarch, M88K_R31_REGNUM);
840 set_gdbarch_pc_regnum (gdbarch, M88K_SXIP_REGNUM);
841
842 /* Core file support. */
843 set_gdbarch_iterate_over_regset_sections
844 (gdbarch, m88k_iterate_over_regset_sections);
845
846 set_gdbarch_print_insn (gdbarch, print_insn_m88k);
847
848 set_gdbarch_skip_prologue (gdbarch, m88k_skip_prologue);
849
850 /* Stack grows downward. */
851 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
852
853 /* Call dummy code. */
854 set_gdbarch_push_dummy_call (gdbarch, m88k_push_dummy_call);
855 set_gdbarch_dummy_id (gdbarch, m88k_dummy_id);
856
857 /* Return value info. */
858 set_gdbarch_return_value (gdbarch, m88k_return_value);
859
860 set_gdbarch_addr_bits_remove (gdbarch, m88k_addr_bits_remove);
861 set_gdbarch_breakpoint_from_pc (gdbarch, m88k_breakpoint_from_pc);
862 set_gdbarch_unwind_pc (gdbarch, m88k_unwind_pc);
863 set_gdbarch_write_pc (gdbarch, m88k_write_pc);
864
865 frame_base_set_default (gdbarch, &m88k_frame_base);
866 frame_unwind_append_unwinder (gdbarch, &m88k_frame_unwind);
867
868 return gdbarch;
869 }
870 \f
871
872 /* Provide a prototype to silence -Wmissing-prototypes. */
873 void _initialize_m88k_tdep (void);
874
875 void
876 _initialize_m88k_tdep (void)
877 {
878 gdbarch_register (bfd_arch_m88k, m88k_gdbarch_init, NULL);
879 }