]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/m88k-tdep.c
* gdbarch.sh (read_pc): Add REGCACHE argument. Remove PTID argument.
[thirdparty/binutils-gdb.git] / gdb / m88k-tdep.c
1 /* Target-dependent code for the Motorola 88000 series.
2
3 Copyright (C) 2004, 2005, 2007 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "dis-asm.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "symtab.h"
33 #include "trad-frame.h"
34 #include "value.h"
35
36 #include "gdb_assert.h"
37 #include "gdb_string.h"
38
39 #include "m88k-tdep.h"
40
41 /* Fetch the instruction at PC. */
42
43 static unsigned long
44 m88k_fetch_instruction (CORE_ADDR pc)
45 {
46 return read_memory_unsigned_integer (pc, 4);
47 }
48
49 /* Register information. */
50
51 /* Return the name of register REGNUM. */
52
53 static const char *
54 m88k_register_name (int regnum)
55 {
56 static char *register_names[] =
57 {
58 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
59 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
60 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
61 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
62 "epsr", "fpsr", "fpcr", "sxip", "snip", "sfip"
63 };
64
65 if (regnum >= 0 && regnum < ARRAY_SIZE (register_names))
66 return register_names[regnum];
67
68 return NULL;
69 }
70
71 /* Return the GDB type object for the "standard" data type of data in
72 register REGNUM. */
73
74 static struct type *
75 m88k_register_type (struct gdbarch *gdbarch, int regnum)
76 {
77 /* SXIP, SNIP, SFIP and R1 contain code addresses. */
78 if ((regnum >= M88K_SXIP_REGNUM && regnum <= M88K_SFIP_REGNUM)
79 || regnum == M88K_R1_REGNUM)
80 return builtin_type_void_func_ptr;
81
82 /* R30 and R31 typically contains data addresses. */
83 if (regnum == M88K_R30_REGNUM || regnum == M88K_R31_REGNUM)
84 return builtin_type_void_data_ptr;
85
86 return builtin_type_int32;
87 }
88 \f
89
90 static CORE_ADDR
91 m88k_addr_bits_remove (CORE_ADDR addr)
92 {
93 /* All instructures are 4-byte aligned. The lower 2 bits of SXIP,
94 SNIP and SFIP are used for special purposes: bit 0 is the
95 exception bit and bit 1 is the valid bit. */
96 return addr & ~0x3;
97 }
98
99 /* Use the program counter to determine the contents and size of a
100 breakpoint instruction. Return a pointer to a string of bytes that
101 encode a breakpoint instruction, store the length of the string in
102 *LEN and optionally adjust *PC to point to the correct memory
103 location for inserting the breakpoint. */
104
105 static const gdb_byte *
106 m88k_breakpoint_from_pc (CORE_ADDR *pc, int *len)
107 {
108 /* tb 0,r0,511 */
109 static gdb_byte break_insn[] = { 0xf0, 0x00, 0xd1, 0xff };
110
111 *len = sizeof (break_insn);
112 return break_insn;
113 }
114
115 static CORE_ADDR
116 m88k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
117 {
118 CORE_ADDR pc;
119
120 pc = frame_unwind_register_unsigned (next_frame, M88K_SXIP_REGNUM);
121 return m88k_addr_bits_remove (pc);
122 }
123
124 static void
125 m88k_write_pc (struct regcache *regcache, CORE_ADDR pc)
126 {
127 /* According to the MC88100 RISC Microprocessor User's Manual,
128 section 6.4.3.1.2:
129
130 "... can be made to return to a particular instruction by placing
131 a valid instruction address in the SNIP and the next sequential
132 instruction address in the SFIP (with V bits set and E bits
133 clear). The rte resumes execution at the instruction pointed to
134 by the SNIP, then the SFIP."
135
136 The E bit is the least significant bit (bit 0). The V (valid)
137 bit is bit 1. This is why we logical or 2 into the values we are
138 writing below. It turns out that SXIP plays no role when
139 returning from an exception so nothing special has to be done
140 with it. We could even (presumably) give it a totally bogus
141 value. */
142
143 regcache_cooked_write_unsigned (regcache, M88K_SXIP_REGNUM, pc);
144 regcache_cooked_write_unsigned (regcache, M88K_SNIP_REGNUM, pc | 2);
145 regcache_cooked_write_unsigned (regcache, M88K_SFIP_REGNUM, (pc + 4) | 2);
146 }
147 \f
148
149 /* The functions on this page are intended to be used to classify
150 function arguments. */
151
152 /* Check whether TYPE is "Integral or Pointer". */
153
154 static int
155 m88k_integral_or_pointer_p (const struct type *type)
156 {
157 switch (TYPE_CODE (type))
158 {
159 case TYPE_CODE_INT:
160 case TYPE_CODE_BOOL:
161 case TYPE_CODE_CHAR:
162 case TYPE_CODE_ENUM:
163 case TYPE_CODE_RANGE:
164 {
165 /* We have byte, half-word, word and extended-word/doubleword
166 integral types. */
167 int len = TYPE_LENGTH (type);
168 return (len == 1 || len == 2 || len == 4 || len == 8);
169 }
170 return 1;
171 case TYPE_CODE_PTR:
172 case TYPE_CODE_REF:
173 {
174 /* Allow only 32-bit pointers. */
175 return (TYPE_LENGTH (type) == 4);
176 }
177 return 1;
178 default:
179 break;
180 }
181
182 return 0;
183 }
184
185 /* Check whether TYPE is "Floating". */
186
187 static int
188 m88k_floating_p (const struct type *type)
189 {
190 switch (TYPE_CODE (type))
191 {
192 case TYPE_CODE_FLT:
193 {
194 int len = TYPE_LENGTH (type);
195 return (len == 4 || len == 8);
196 }
197 default:
198 break;
199 }
200
201 return 0;
202 }
203
204 /* Check whether TYPE is "Structure or Union". */
205
206 static int
207 m88k_structure_or_union_p (const struct type *type)
208 {
209 switch (TYPE_CODE (type))
210 {
211 case TYPE_CODE_STRUCT:
212 case TYPE_CODE_UNION:
213 return 1;
214 default:
215 break;
216 }
217
218 return 0;
219 }
220
221 /* Check whether TYPE has 8-byte alignment. */
222
223 static int
224 m88k_8_byte_align_p (struct type *type)
225 {
226 if (m88k_structure_or_union_p (type))
227 {
228 int i;
229
230 for (i = 0; i < TYPE_NFIELDS (type); i++)
231 {
232 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
233
234 if (m88k_8_byte_align_p (subtype))
235 return 1;
236 }
237 }
238
239 if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
240 return (TYPE_LENGTH (type) == 8);
241
242 return 0;
243 }
244
245 /* Check whether TYPE can be passed in a register. */
246
247 static int
248 m88k_in_register_p (struct type *type)
249 {
250 if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
251 return 1;
252
253 if (m88k_structure_or_union_p (type) && TYPE_LENGTH (type) == 4)
254 return 1;
255
256 return 0;
257 }
258
259 static CORE_ADDR
260 m88k_store_arguments (struct regcache *regcache, int nargs,
261 struct value **args, CORE_ADDR sp)
262 {
263 int num_register_words = 0;
264 int num_stack_words = 0;
265 int i;
266
267 for (i = 0; i < nargs; i++)
268 {
269 struct type *type = value_type (args[i]);
270 int len = TYPE_LENGTH (type);
271
272 if (m88k_integral_or_pointer_p (type) && len < 4)
273 {
274 args[i] = value_cast (builtin_type_int32, args[i]);
275 type = value_type (args[i]);
276 len = TYPE_LENGTH (type);
277 }
278
279 if (m88k_in_register_p (type))
280 {
281 int num_words = 0;
282
283 if (num_register_words % 2 == 1 && m88k_8_byte_align_p (type))
284 num_words++;
285
286 num_words += ((len + 3) / 4);
287 if (num_register_words + num_words <= 8)
288 {
289 num_register_words += num_words;
290 continue;
291 }
292
293 /* We've run out of available registers. Pass the argument
294 on the stack. */
295 }
296
297 if (num_stack_words % 2 == 1 && m88k_8_byte_align_p (type))
298 num_stack_words++;
299
300 num_stack_words += ((len + 3) / 4);
301 }
302
303 /* Allocate stack space. */
304 sp = align_down (sp - 32 - num_stack_words * 4, 16);
305 num_stack_words = num_register_words = 0;
306
307 for (i = 0; i < nargs; i++)
308 {
309 const bfd_byte *valbuf = value_contents (args[i]);
310 struct type *type = value_type (args[i]);
311 int len = TYPE_LENGTH (type);
312 int stack_word = num_stack_words;
313
314 if (m88k_in_register_p (type))
315 {
316 int register_word = num_register_words;
317
318 if (register_word % 2 == 1 && m88k_8_byte_align_p (type))
319 register_word++;
320
321 gdb_assert (len == 4 || len == 8);
322
323 if (register_word + len / 8 < 8)
324 {
325 int regnum = M88K_R2_REGNUM + register_word;
326
327 regcache_raw_write (regcache, regnum, valbuf);
328 if (len > 4)
329 regcache_raw_write (regcache, regnum + 1, valbuf + 4);
330
331 num_register_words = (register_word + len / 4);
332 continue;
333 }
334 }
335
336 if (stack_word % 2 == -1 && m88k_8_byte_align_p (type))
337 stack_word++;
338
339 write_memory (sp + stack_word * 4, valbuf, len);
340 num_stack_words = (stack_word + (len + 3) / 4);
341 }
342
343 return sp;
344 }
345
346 static CORE_ADDR
347 m88k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
348 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
349 struct value **args, CORE_ADDR sp, int struct_return,
350 CORE_ADDR struct_addr)
351 {
352 /* Set up the function arguments. */
353 sp = m88k_store_arguments (regcache, nargs, args, sp);
354 gdb_assert (sp % 16 == 0);
355
356 /* Store return value address. */
357 if (struct_return)
358 regcache_raw_write_unsigned (regcache, M88K_R12_REGNUM, struct_addr);
359
360 /* Store the stack pointer and return address in the appropriate
361 registers. */
362 regcache_raw_write_unsigned (regcache, M88K_R31_REGNUM, sp);
363 regcache_raw_write_unsigned (regcache, M88K_R1_REGNUM, bp_addr);
364
365 /* Return the stack pointer. */
366 return sp;
367 }
368
369 static struct frame_id
370 m88k_unwind_dummy_id (struct gdbarch *arch, struct frame_info *next_frame)
371 {
372 CORE_ADDR sp;
373
374 sp = frame_unwind_register_unsigned (next_frame, M88K_R31_REGNUM);
375 return frame_id_build (sp, frame_pc_unwind (next_frame));
376 }
377 \f
378
379 /* Determine, for architecture GDBARCH, how a return value of TYPE
380 should be returned. If it is supposed to be returned in registers,
381 and READBUF is non-zero, read the appropriate value from REGCACHE,
382 and copy it into READBUF. If WRITEBUF is non-zero, write the value
383 from WRITEBUF into REGCACHE. */
384
385 static enum return_value_convention
386 m88k_return_value (struct gdbarch *gdbarch, struct type *type,
387 struct regcache *regcache, gdb_byte *readbuf,
388 const gdb_byte *writebuf)
389 {
390 int len = TYPE_LENGTH (type);
391 gdb_byte buf[8];
392
393 if (!m88k_integral_or_pointer_p (type) && !m88k_floating_p (type))
394 return RETURN_VALUE_STRUCT_CONVENTION;
395
396 if (readbuf)
397 {
398 /* Read the contents of R2 and (if necessary) R3. */
399 regcache_cooked_read (regcache, M88K_R2_REGNUM, buf);
400 if (len > 4)
401 {
402 regcache_cooked_read (regcache, M88K_R3_REGNUM, buf + 4);
403 gdb_assert (len == 8);
404 memcpy (readbuf, buf, len);
405 }
406 else
407 {
408 /* Just stripping off any unused bytes should preserve the
409 signed-ness just fine. */
410 memcpy (readbuf, buf + 4 - len, len);
411 }
412 }
413
414 if (writebuf)
415 {
416 /* Read the contents to R2 and (if necessary) R3. */
417 if (len > 4)
418 {
419 gdb_assert (len == 8);
420 memcpy (buf, writebuf, 8);
421 regcache_cooked_write (regcache, M88K_R3_REGNUM, buf + 4);
422 }
423 else
424 {
425 /* ??? Do we need to do any sign-extension here? */
426 memcpy (buf + 4 - len, writebuf, len);
427 }
428 regcache_cooked_write (regcache, M88K_R2_REGNUM, buf);
429 }
430
431 return RETURN_VALUE_REGISTER_CONVENTION;
432 }
433 \f
434 /* Default frame unwinder. */
435
436 struct m88k_frame_cache
437 {
438 /* Base address. */
439 CORE_ADDR base;
440 CORE_ADDR pc;
441
442 int sp_offset;
443 int fp_offset;
444
445 /* Table of saved registers. */
446 struct trad_frame_saved_reg *saved_regs;
447 };
448
449 /* Prologue analysis. */
450
451 /* Macros for extracting fields from instructions. */
452
453 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
454 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
455 #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
456 #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
457 #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
458 #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
459
460 /* Possible actions to be taken by the prologue analyzer for the
461 instructions it encounters. */
462
463 enum m88k_prologue_insn_action
464 {
465 M88K_PIA_SKIP, /* Ignore. */
466 M88K_PIA_NOTE_ST, /* Note register store. */
467 M88K_PIA_NOTE_STD, /* Note register pair store. */
468 M88K_PIA_NOTE_SP_ADJUSTMENT, /* Note stack pointer adjustment. */
469 M88K_PIA_NOTE_FP_ASSIGNMENT, /* Note frame pointer assignment. */
470 M88K_PIA_NOTE_BRANCH, /* Note branch. */
471 M88K_PIA_NOTE_PROLOGUE_END /* Note end of prologue. */
472 };
473
474 /* Table of instructions that may comprise a function prologue. */
475
476 struct m88k_prologue_insn
477 {
478 unsigned long insn;
479 unsigned long mask;
480 enum m88k_prologue_insn_action action;
481 };
482
483 struct m88k_prologue_insn m88k_prologue_insn_table[] =
484 {
485 /* Various register move instructions. */
486 { 0x58000000, 0xf800ffff, M88K_PIA_SKIP }, /* or/or.u with immed of 0 */
487 { 0xf4005800, 0xfc1fffe0, M88K_PIA_SKIP }, /* or rd,r0,rs */
488 { 0xf4005800, 0xfc00ffff, M88K_PIA_SKIP }, /* or rd,rs,r0 */
489
490 /* Various other instructions. */
491 { 0x58000000, 0xf8000000, M88K_PIA_SKIP }, /* or/or.u */
492
493 /* Stack pointer setup: "subu sp,sp,n" where n is a multiple of 8. */
494 { 0x67ff0000, 0xffff0007, M88K_PIA_NOTE_SP_ADJUSTMENT },
495
496 /* Frame pointer assignment: "addu r30,r31,n". */
497 { 0x63df0000, 0xffff0000, M88K_PIA_NOTE_FP_ASSIGNMENT },
498
499 /* Store to stack instructions; either "st rx,sp,n" or "st.d rx,sp,n". */
500 { 0x241f0000, 0xfc1f0000, M88K_PIA_NOTE_ST }, /* st rx,sp,n */
501 { 0x201f0000, 0xfc1f0000, M88K_PIA_NOTE_STD }, /* st.d rs,sp,n */
502
503 /* Instructions needed for setting up r25 for pic code. */
504 { 0x5f200000, 0xffff0000, M88K_PIA_SKIP }, /* or.u r25,r0,offset_high */
505 { 0xcc000002, 0xffffffff, M88K_PIA_SKIP }, /* bsr.n Lab */
506 { 0x5b390000, 0xffff0000, M88K_PIA_SKIP }, /* or r25,r25,offset_low */
507 { 0xf7396001, 0xffffffff, M88K_PIA_SKIP }, /* Lab: addu r25,r25,r1 */
508
509 /* Various branch or jump instructions which have a delay slot --
510 these do not form part of the prologue, but the instruction in
511 the delay slot might be a store instruction which should be
512 noted. */
513 { 0xc4000000, 0xe4000000, M88K_PIA_NOTE_BRANCH },
514 /* br.n, bsr.n, bb0.n, or bb1.n */
515 { 0xec000000, 0xfc000000, M88K_PIA_NOTE_BRANCH }, /* bcnd.n */
516 { 0xf400c400, 0xfffff7e0, M88K_PIA_NOTE_BRANCH }, /* jmp.n or jsr.n */
517
518 /* Catch all. Ends prologue analysis. */
519 { 0x00000000, 0x00000000, M88K_PIA_NOTE_PROLOGUE_END }
520 };
521
522 /* Do a full analysis of the function prologue at PC and update CACHE
523 accordingly. Bail out early if LIMIT is reached. Return the
524 address where the analysis stopped. If LIMIT points beyond the
525 function prologue, the return address should be the end of the
526 prologue. */
527
528 static CORE_ADDR
529 m88k_analyze_prologue (CORE_ADDR pc, CORE_ADDR limit,
530 struct m88k_frame_cache *cache)
531 {
532 CORE_ADDR end = limit;
533
534 /* Provide a dummy cache if necessary. */
535 if (cache == NULL)
536 {
537 size_t sizeof_saved_regs =
538 (M88K_R31_REGNUM + 1) * sizeof (struct trad_frame_saved_reg);
539
540 cache = alloca (sizeof (struct m88k_frame_cache));
541 cache->saved_regs = alloca (sizeof_saved_regs);
542
543 /* We only initialize the members we care about. */
544 cache->saved_regs[M88K_R1_REGNUM].addr = -1;
545 cache->fp_offset = -1;
546 }
547
548 while (pc < limit)
549 {
550 struct m88k_prologue_insn *pi = m88k_prologue_insn_table;
551 unsigned long insn = m88k_fetch_instruction (pc);
552
553 while ((insn & pi->mask) != pi->insn)
554 pi++;
555
556 switch (pi->action)
557 {
558 case M88K_PIA_SKIP:
559 /* If we have a frame pointer, and R1 has been saved,
560 consider this instruction as not being part of the
561 prologue. */
562 if (cache->fp_offset != -1
563 && cache->saved_regs[M88K_R1_REGNUM].addr != -1)
564 return min (pc, end);
565 break;
566
567 case M88K_PIA_NOTE_ST:
568 case M88K_PIA_NOTE_STD:
569 /* If no frame has been allocated, the stores aren't part of
570 the prologue. */
571 if (cache->sp_offset == 0)
572 return min (pc, end);
573
574 /* Record location of saved registers. */
575 {
576 int regnum = ST_SRC (insn) + M88K_R0_REGNUM;
577 ULONGEST offset = ST_OFFSET (insn);
578
579 cache->saved_regs[regnum].addr = offset;
580 if (pi->action == M88K_PIA_NOTE_STD && regnum < M88K_R31_REGNUM)
581 cache->saved_regs[regnum + 1].addr = offset + 4;
582 }
583 break;
584
585 case M88K_PIA_NOTE_SP_ADJUSTMENT:
586 /* A second stack pointer adjustment isn't part of the
587 prologue. */
588 if (cache->sp_offset != 0)
589 return min (pc, end);
590
591 /* Store stack pointer adjustment. */
592 cache->sp_offset = -SUBU_OFFSET (insn);
593 break;
594
595 case M88K_PIA_NOTE_FP_ASSIGNMENT:
596 /* A second frame pointer assignment isn't part of the
597 prologue. */
598 if (cache->fp_offset != -1)
599 return min (pc, end);
600
601 /* Record frame pointer assignment. */
602 cache->fp_offset = ADDU_OFFSET (insn);
603 break;
604
605 case M88K_PIA_NOTE_BRANCH:
606 /* The branch instruction isn't part of the prologue, but
607 the instruction in the delay slot might be. Limit the
608 prologue analysis to the delay slot and record the branch
609 instruction as the end of the prologue. */
610 limit = min (limit, pc + 2 * M88K_INSN_SIZE);
611 end = pc;
612 break;
613
614 case M88K_PIA_NOTE_PROLOGUE_END:
615 return min (pc, end);
616 }
617
618 pc += M88K_INSN_SIZE;
619 }
620
621 return end;
622 }
623
624 /* An upper limit to the size of the prologue. */
625 const int m88k_max_prologue_size = 128 * M88K_INSN_SIZE;
626
627 /* Return the address of first real instruction of the function
628 starting at PC. */
629
630 static CORE_ADDR
631 m88k_skip_prologue (CORE_ADDR pc)
632 {
633 struct symtab_and_line sal;
634 CORE_ADDR func_start, func_end;
635
636 /* This is the preferred method, find the end of the prologue by
637 using the debugging information. */
638 if (find_pc_partial_function (pc, NULL, &func_start, &func_end))
639 {
640 sal = find_pc_line (func_start, 0);
641
642 if (sal.end < func_end && pc <= sal.end)
643 return sal.end;
644 }
645
646 return m88k_analyze_prologue (pc, pc + m88k_max_prologue_size, NULL);
647 }
648
649 struct m88k_frame_cache *
650 m88k_frame_cache (struct frame_info *next_frame, void **this_cache)
651 {
652 struct m88k_frame_cache *cache;
653 CORE_ADDR frame_sp;
654
655 if (*this_cache)
656 return *this_cache;
657
658 cache = FRAME_OBSTACK_ZALLOC (struct m88k_frame_cache);
659 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
660 cache->fp_offset = -1;
661
662 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
663 if (cache->pc != 0)
664 m88k_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
665
666 /* Calculate the stack pointer used in the prologue. */
667 if (cache->fp_offset != -1)
668 {
669 CORE_ADDR fp;
670
671 fp = frame_unwind_register_unsigned (next_frame, M88K_R30_REGNUM);
672 frame_sp = fp - cache->fp_offset;
673 }
674 else
675 {
676 /* If we know where the return address is saved, we can take a
677 solid guess at what the frame pointer should be. */
678 if (cache->saved_regs[M88K_R1_REGNUM].addr != -1)
679 cache->fp_offset = cache->saved_regs[M88K_R1_REGNUM].addr - 4;
680 frame_sp = frame_unwind_register_unsigned (next_frame, M88K_R31_REGNUM);
681 }
682
683 /* Now that we know the stack pointer, adjust the location of the
684 saved registers. */
685 {
686 int regnum;
687
688 for (regnum = M88K_R0_REGNUM; regnum < M88K_R31_REGNUM; regnum ++)
689 if (cache->saved_regs[regnum].addr != -1)
690 cache->saved_regs[regnum].addr += frame_sp;
691 }
692
693 /* Calculate the frame's base. */
694 cache->base = frame_sp - cache->sp_offset;
695 trad_frame_set_value (cache->saved_regs, M88K_R31_REGNUM, cache->base);
696
697 /* Identify SXIP with the return address in R1. */
698 cache->saved_regs[M88K_SXIP_REGNUM] = cache->saved_regs[M88K_R1_REGNUM];
699
700 *this_cache = cache;
701 return cache;
702 }
703
704 static void
705 m88k_frame_this_id (struct frame_info *next_frame, void **this_cache,
706 struct frame_id *this_id)
707 {
708 struct m88k_frame_cache *cache = m88k_frame_cache (next_frame, this_cache);
709
710 /* This marks the outermost frame. */
711 if (cache->base == 0)
712 return;
713
714 (*this_id) = frame_id_build (cache->base, cache->pc);
715 }
716
717 static void
718 m88k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
719 int regnum, int *optimizedp,
720 enum lval_type *lvalp, CORE_ADDR *addrp,
721 int *realnump, gdb_byte *valuep)
722 {
723 struct m88k_frame_cache *cache = m88k_frame_cache (next_frame, this_cache);
724
725 if (regnum == M88K_SNIP_REGNUM || regnum == M88K_SFIP_REGNUM)
726 {
727 if (valuep)
728 {
729 CORE_ADDR pc;
730
731 trad_frame_get_prev_register (next_frame, cache->saved_regs,
732 M88K_SXIP_REGNUM, optimizedp,
733 lvalp, addrp, realnump, valuep);
734
735 pc = extract_unsigned_integer (valuep, 4);
736 if (regnum == M88K_SFIP_REGNUM)
737 pc += 4;
738 store_unsigned_integer (valuep, 4, pc + 4);
739 }
740
741 /* It's a computed value. */
742 *optimizedp = 0;
743 *lvalp = not_lval;
744 *addrp = 0;
745 *realnump = -1;
746 return;
747 }
748
749 trad_frame_get_prev_register (next_frame, cache->saved_regs, regnum,
750 optimizedp, lvalp, addrp, realnump, valuep);
751 }
752
753 static const struct frame_unwind m88k_frame_unwind =
754 {
755 NORMAL_FRAME,
756 m88k_frame_this_id,
757 m88k_frame_prev_register
758 };
759
760 static const struct frame_unwind *
761 m88k_frame_sniffer (struct frame_info *next_frame)
762 {
763 return &m88k_frame_unwind;
764 }
765 \f
766
767 static CORE_ADDR
768 m88k_frame_base_address (struct frame_info *next_frame, void **this_cache)
769 {
770 struct m88k_frame_cache *cache = m88k_frame_cache (next_frame, this_cache);
771
772 if (cache->fp_offset != -1)
773 return cache->base + cache->sp_offset + cache->fp_offset;
774
775 return 0;
776 }
777
778 static const struct frame_base m88k_frame_base =
779 {
780 &m88k_frame_unwind,
781 m88k_frame_base_address,
782 m88k_frame_base_address,
783 m88k_frame_base_address
784 };
785 \f
786
787 /* Core file support. */
788
789 /* Supply register REGNUM from the buffer specified by GREGS and LEN
790 in the general-purpose register set REGSET to register cache
791 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
792
793 static void
794 m88k_supply_gregset (const struct regset *regset,
795 struct regcache *regcache,
796 int regnum, const void *gregs, size_t len)
797 {
798 const gdb_byte *regs = gregs;
799 int i;
800
801 for (i = 0; i < M88K_NUM_REGS; i++)
802 {
803 if (regnum == i || regnum == -1)
804 regcache_raw_supply (regcache, i, regs + i * 4);
805 }
806 }
807
808 /* Motorola 88000 register set. */
809
810 static struct regset m88k_gregset =
811 {
812 NULL,
813 m88k_supply_gregset
814 };
815
816 /* Return the appropriate register set for the core section identified
817 by SECT_NAME and SECT_SIZE. */
818
819 static const struct regset *
820 m88k_regset_from_core_section (struct gdbarch *gdbarch,
821 const char *sect_name, size_t sect_size)
822 {
823 if (strcmp (sect_name, ".reg") == 0 && sect_size >= M88K_NUM_REGS * 4)
824 return &m88k_gregset;
825
826 return NULL;
827 }
828 \f
829
830 static struct gdbarch *
831 m88k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
832 {
833 struct gdbarch *gdbarch;
834
835 /* If there is already a candidate, use it. */
836 arches = gdbarch_list_lookup_by_info (arches, &info);
837 if (arches != NULL)
838 return arches->gdbarch;
839
840 /* Allocate space for the new architecture. */
841 gdbarch = gdbarch_alloc (&info, NULL);
842
843 /* There is no real `long double'. */
844 set_gdbarch_long_double_bit (gdbarch, 64);
845 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
846
847 set_gdbarch_num_regs (gdbarch, M88K_NUM_REGS);
848 set_gdbarch_register_name (gdbarch, m88k_register_name);
849 set_gdbarch_register_type (gdbarch, m88k_register_type);
850
851 /* Register numbers of various important registers. */
852 set_gdbarch_sp_regnum (gdbarch, M88K_R31_REGNUM);
853 set_gdbarch_pc_regnum (gdbarch, M88K_SXIP_REGNUM);
854
855 /* Core file support. */
856 set_gdbarch_regset_from_core_section
857 (gdbarch, m88k_regset_from_core_section);
858
859 set_gdbarch_print_insn (gdbarch, print_insn_m88k);
860
861 set_gdbarch_skip_prologue (gdbarch, m88k_skip_prologue);
862
863 /* Stack grows downward. */
864 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
865
866 /* Call dummy code. */
867 set_gdbarch_push_dummy_call (gdbarch, m88k_push_dummy_call);
868 set_gdbarch_unwind_dummy_id (gdbarch, m88k_unwind_dummy_id);
869
870 /* Return value info */
871 set_gdbarch_return_value (gdbarch, m88k_return_value);
872
873 set_gdbarch_addr_bits_remove (gdbarch, m88k_addr_bits_remove);
874 set_gdbarch_breakpoint_from_pc (gdbarch, m88k_breakpoint_from_pc);
875 set_gdbarch_unwind_pc (gdbarch, m88k_unwind_pc);
876 set_gdbarch_write_pc (gdbarch, m88k_write_pc);
877
878 frame_base_set_default (gdbarch, &m88k_frame_base);
879 frame_unwind_append_sniffer (gdbarch, m88k_frame_sniffer);
880
881 return gdbarch;
882 }
883 \f
884
885 /* Provide a prototype to silence -Wmissing-prototypes. */
886 void _initialize_m88k_tdep (void);
887
888 void
889 _initialize_m88k_tdep (void)
890 {
891 gdbarch_register (bfd_arch_m88k, m88k_gdbarch_init, NULL);
892 }