]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/m88k-tdep.c
*** empty log message ***
[thirdparty/binutils-gdb.git] / gdb / m88k-tdep.c
1 /* Target-dependent code for the Motorola 88000 series.
2
3 Copyright (C) 2004, 2005, 2007 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "frame.h"
24 #include "frame-base.h"
25 #include "frame-unwind.h"
26 #include "gdbcore.h"
27 #include "gdbtypes.h"
28 #include "regcache.h"
29 #include "regset.h"
30 #include "symtab.h"
31 #include "trad-frame.h"
32 #include "value.h"
33
34 #include "gdb_assert.h"
35 #include "gdb_string.h"
36
37 #include "m88k-tdep.h"
38
39 /* Fetch the instruction at PC. */
40
41 static unsigned long
42 m88k_fetch_instruction (CORE_ADDR pc)
43 {
44 return read_memory_unsigned_integer (pc, 4);
45 }
46
47 /* Register information. */
48
49 /* Return the name of register REGNUM. */
50
51 static const char *
52 m88k_register_name (struct gdbarch *gdbarch, int regnum)
53 {
54 static char *register_names[] =
55 {
56 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
57 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
58 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
59 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
60 "epsr", "fpsr", "fpcr", "sxip", "snip", "sfip"
61 };
62
63 if (regnum >= 0 && regnum < ARRAY_SIZE (register_names))
64 return register_names[regnum];
65
66 return NULL;
67 }
68
69 /* Return the GDB type object for the "standard" data type of data in
70 register REGNUM. */
71
72 static struct type *
73 m88k_register_type (struct gdbarch *gdbarch, int regnum)
74 {
75 /* SXIP, SNIP, SFIP and R1 contain code addresses. */
76 if ((regnum >= M88K_SXIP_REGNUM && regnum <= M88K_SFIP_REGNUM)
77 || regnum == M88K_R1_REGNUM)
78 return builtin_type_void_func_ptr;
79
80 /* R30 and R31 typically contains data addresses. */
81 if (regnum == M88K_R30_REGNUM || regnum == M88K_R31_REGNUM)
82 return builtin_type_void_data_ptr;
83
84 return builtin_type_int32;
85 }
86 \f
87
88 static CORE_ADDR
89 m88k_addr_bits_remove (CORE_ADDR addr)
90 {
91 /* All instructures are 4-byte aligned. The lower 2 bits of SXIP,
92 SNIP and SFIP are used for special purposes: bit 0 is the
93 exception bit and bit 1 is the valid bit. */
94 return addr & ~0x3;
95 }
96
97 /* Use the program counter to determine the contents and size of a
98 breakpoint instruction. Return a pointer to a string of bytes that
99 encode a breakpoint instruction, store the length of the string in
100 *LEN and optionally adjust *PC to point to the correct memory
101 location for inserting the breakpoint. */
102
103 static const gdb_byte *
104 m88k_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
105 {
106 /* tb 0,r0,511 */
107 static gdb_byte break_insn[] = { 0xf0, 0x00, 0xd1, 0xff };
108
109 *len = sizeof (break_insn);
110 return break_insn;
111 }
112
113 static CORE_ADDR
114 m88k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
115 {
116 CORE_ADDR pc;
117
118 pc = frame_unwind_register_unsigned (next_frame, M88K_SXIP_REGNUM);
119 return m88k_addr_bits_remove (pc);
120 }
121
122 static void
123 m88k_write_pc (struct regcache *regcache, CORE_ADDR pc)
124 {
125 /* According to the MC88100 RISC Microprocessor User's Manual,
126 section 6.4.3.1.2:
127
128 "... can be made to return to a particular instruction by placing
129 a valid instruction address in the SNIP and the next sequential
130 instruction address in the SFIP (with V bits set and E bits
131 clear). The rte resumes execution at the instruction pointed to
132 by the SNIP, then the SFIP."
133
134 The E bit is the least significant bit (bit 0). The V (valid)
135 bit is bit 1. This is why we logical or 2 into the values we are
136 writing below. It turns out that SXIP plays no role when
137 returning from an exception so nothing special has to be done
138 with it. We could even (presumably) give it a totally bogus
139 value. */
140
141 regcache_cooked_write_unsigned (regcache, M88K_SXIP_REGNUM, pc);
142 regcache_cooked_write_unsigned (regcache, M88K_SNIP_REGNUM, pc | 2);
143 regcache_cooked_write_unsigned (regcache, M88K_SFIP_REGNUM, (pc + 4) | 2);
144 }
145 \f
146
147 /* The functions on this page are intended to be used to classify
148 function arguments. */
149
150 /* Check whether TYPE is "Integral or Pointer". */
151
152 static int
153 m88k_integral_or_pointer_p (const struct type *type)
154 {
155 switch (TYPE_CODE (type))
156 {
157 case TYPE_CODE_INT:
158 case TYPE_CODE_BOOL:
159 case TYPE_CODE_CHAR:
160 case TYPE_CODE_ENUM:
161 case TYPE_CODE_RANGE:
162 {
163 /* We have byte, half-word, word and extended-word/doubleword
164 integral types. */
165 int len = TYPE_LENGTH (type);
166 return (len == 1 || len == 2 || len == 4 || len == 8);
167 }
168 return 1;
169 case TYPE_CODE_PTR:
170 case TYPE_CODE_REF:
171 {
172 /* Allow only 32-bit pointers. */
173 return (TYPE_LENGTH (type) == 4);
174 }
175 return 1;
176 default:
177 break;
178 }
179
180 return 0;
181 }
182
183 /* Check whether TYPE is "Floating". */
184
185 static int
186 m88k_floating_p (const struct type *type)
187 {
188 switch (TYPE_CODE (type))
189 {
190 case TYPE_CODE_FLT:
191 {
192 int len = TYPE_LENGTH (type);
193 return (len == 4 || len == 8);
194 }
195 default:
196 break;
197 }
198
199 return 0;
200 }
201
202 /* Check whether TYPE is "Structure or Union". */
203
204 static int
205 m88k_structure_or_union_p (const struct type *type)
206 {
207 switch (TYPE_CODE (type))
208 {
209 case TYPE_CODE_STRUCT:
210 case TYPE_CODE_UNION:
211 return 1;
212 default:
213 break;
214 }
215
216 return 0;
217 }
218
219 /* Check whether TYPE has 8-byte alignment. */
220
221 static int
222 m88k_8_byte_align_p (struct type *type)
223 {
224 if (m88k_structure_or_union_p (type))
225 {
226 int i;
227
228 for (i = 0; i < TYPE_NFIELDS (type); i++)
229 {
230 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
231
232 if (m88k_8_byte_align_p (subtype))
233 return 1;
234 }
235 }
236
237 if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
238 return (TYPE_LENGTH (type) == 8);
239
240 return 0;
241 }
242
243 /* Check whether TYPE can be passed in a register. */
244
245 static int
246 m88k_in_register_p (struct type *type)
247 {
248 if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
249 return 1;
250
251 if (m88k_structure_or_union_p (type) && TYPE_LENGTH (type) == 4)
252 return 1;
253
254 return 0;
255 }
256
257 static CORE_ADDR
258 m88k_store_arguments (struct regcache *regcache, int nargs,
259 struct value **args, CORE_ADDR sp)
260 {
261 int num_register_words = 0;
262 int num_stack_words = 0;
263 int i;
264
265 for (i = 0; i < nargs; i++)
266 {
267 struct type *type = value_type (args[i]);
268 int len = TYPE_LENGTH (type);
269
270 if (m88k_integral_or_pointer_p (type) && len < 4)
271 {
272 args[i] = value_cast (builtin_type_int32, args[i]);
273 type = value_type (args[i]);
274 len = TYPE_LENGTH (type);
275 }
276
277 if (m88k_in_register_p (type))
278 {
279 int num_words = 0;
280
281 if (num_register_words % 2 == 1 && m88k_8_byte_align_p (type))
282 num_words++;
283
284 num_words += ((len + 3) / 4);
285 if (num_register_words + num_words <= 8)
286 {
287 num_register_words += num_words;
288 continue;
289 }
290
291 /* We've run out of available registers. Pass the argument
292 on the stack. */
293 }
294
295 if (num_stack_words % 2 == 1 && m88k_8_byte_align_p (type))
296 num_stack_words++;
297
298 num_stack_words += ((len + 3) / 4);
299 }
300
301 /* Allocate stack space. */
302 sp = align_down (sp - 32 - num_stack_words * 4, 16);
303 num_stack_words = num_register_words = 0;
304
305 for (i = 0; i < nargs; i++)
306 {
307 const bfd_byte *valbuf = value_contents (args[i]);
308 struct type *type = value_type (args[i]);
309 int len = TYPE_LENGTH (type);
310 int stack_word = num_stack_words;
311
312 if (m88k_in_register_p (type))
313 {
314 int register_word = num_register_words;
315
316 if (register_word % 2 == 1 && m88k_8_byte_align_p (type))
317 register_word++;
318
319 gdb_assert (len == 4 || len == 8);
320
321 if (register_word + len / 8 < 8)
322 {
323 int regnum = M88K_R2_REGNUM + register_word;
324
325 regcache_raw_write (regcache, regnum, valbuf);
326 if (len > 4)
327 regcache_raw_write (regcache, regnum + 1, valbuf + 4);
328
329 num_register_words = (register_word + len / 4);
330 continue;
331 }
332 }
333
334 if (stack_word % 2 == -1 && m88k_8_byte_align_p (type))
335 stack_word++;
336
337 write_memory (sp + stack_word * 4, valbuf, len);
338 num_stack_words = (stack_word + (len + 3) / 4);
339 }
340
341 return sp;
342 }
343
344 static CORE_ADDR
345 m88k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
346 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
347 struct value **args, CORE_ADDR sp, int struct_return,
348 CORE_ADDR struct_addr)
349 {
350 /* Set up the function arguments. */
351 sp = m88k_store_arguments (regcache, nargs, args, sp);
352 gdb_assert (sp % 16 == 0);
353
354 /* Store return value address. */
355 if (struct_return)
356 regcache_raw_write_unsigned (regcache, M88K_R12_REGNUM, struct_addr);
357
358 /* Store the stack pointer and return address in the appropriate
359 registers. */
360 regcache_raw_write_unsigned (regcache, M88K_R31_REGNUM, sp);
361 regcache_raw_write_unsigned (regcache, M88K_R1_REGNUM, bp_addr);
362
363 /* Return the stack pointer. */
364 return sp;
365 }
366
367 static struct frame_id
368 m88k_unwind_dummy_id (struct gdbarch *arch, struct frame_info *next_frame)
369 {
370 CORE_ADDR sp;
371
372 sp = frame_unwind_register_unsigned (next_frame, M88K_R31_REGNUM);
373 return frame_id_build (sp, frame_pc_unwind (next_frame));
374 }
375 \f
376
377 /* Determine, for architecture GDBARCH, how a return value of TYPE
378 should be returned. If it is supposed to be returned in registers,
379 and READBUF is non-zero, read the appropriate value from REGCACHE,
380 and copy it into READBUF. If WRITEBUF is non-zero, write the value
381 from WRITEBUF into REGCACHE. */
382
383 static enum return_value_convention
384 m88k_return_value (struct gdbarch *gdbarch, struct type *type,
385 struct regcache *regcache, gdb_byte *readbuf,
386 const gdb_byte *writebuf)
387 {
388 int len = TYPE_LENGTH (type);
389 gdb_byte buf[8];
390
391 if (!m88k_integral_or_pointer_p (type) && !m88k_floating_p (type))
392 return RETURN_VALUE_STRUCT_CONVENTION;
393
394 if (readbuf)
395 {
396 /* Read the contents of R2 and (if necessary) R3. */
397 regcache_cooked_read (regcache, M88K_R2_REGNUM, buf);
398 if (len > 4)
399 {
400 regcache_cooked_read (regcache, M88K_R3_REGNUM, buf + 4);
401 gdb_assert (len == 8);
402 memcpy (readbuf, buf, len);
403 }
404 else
405 {
406 /* Just stripping off any unused bytes should preserve the
407 signed-ness just fine. */
408 memcpy (readbuf, buf + 4 - len, len);
409 }
410 }
411
412 if (writebuf)
413 {
414 /* Read the contents to R2 and (if necessary) R3. */
415 if (len > 4)
416 {
417 gdb_assert (len == 8);
418 memcpy (buf, writebuf, 8);
419 regcache_cooked_write (regcache, M88K_R3_REGNUM, buf + 4);
420 }
421 else
422 {
423 /* ??? Do we need to do any sign-extension here? */
424 memcpy (buf + 4 - len, writebuf, len);
425 }
426 regcache_cooked_write (regcache, M88K_R2_REGNUM, buf);
427 }
428
429 return RETURN_VALUE_REGISTER_CONVENTION;
430 }
431 \f
432 /* Default frame unwinder. */
433
434 struct m88k_frame_cache
435 {
436 /* Base address. */
437 CORE_ADDR base;
438 CORE_ADDR pc;
439
440 int sp_offset;
441 int fp_offset;
442
443 /* Table of saved registers. */
444 struct trad_frame_saved_reg *saved_regs;
445 };
446
447 /* Prologue analysis. */
448
449 /* Macros for extracting fields from instructions. */
450
451 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
452 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
453 #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
454 #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
455 #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
456 #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
457
458 /* Possible actions to be taken by the prologue analyzer for the
459 instructions it encounters. */
460
461 enum m88k_prologue_insn_action
462 {
463 M88K_PIA_SKIP, /* Ignore. */
464 M88K_PIA_NOTE_ST, /* Note register store. */
465 M88K_PIA_NOTE_STD, /* Note register pair store. */
466 M88K_PIA_NOTE_SP_ADJUSTMENT, /* Note stack pointer adjustment. */
467 M88K_PIA_NOTE_FP_ASSIGNMENT, /* Note frame pointer assignment. */
468 M88K_PIA_NOTE_BRANCH, /* Note branch. */
469 M88K_PIA_NOTE_PROLOGUE_END /* Note end of prologue. */
470 };
471
472 /* Table of instructions that may comprise a function prologue. */
473
474 struct m88k_prologue_insn
475 {
476 unsigned long insn;
477 unsigned long mask;
478 enum m88k_prologue_insn_action action;
479 };
480
481 struct m88k_prologue_insn m88k_prologue_insn_table[] =
482 {
483 /* Various register move instructions. */
484 { 0x58000000, 0xf800ffff, M88K_PIA_SKIP }, /* or/or.u with immed of 0 */
485 { 0xf4005800, 0xfc1fffe0, M88K_PIA_SKIP }, /* or rd,r0,rs */
486 { 0xf4005800, 0xfc00ffff, M88K_PIA_SKIP }, /* or rd,rs,r0 */
487
488 /* Various other instructions. */
489 { 0x58000000, 0xf8000000, M88K_PIA_SKIP }, /* or/or.u */
490
491 /* Stack pointer setup: "subu sp,sp,n" where n is a multiple of 8. */
492 { 0x67ff0000, 0xffff0007, M88K_PIA_NOTE_SP_ADJUSTMENT },
493
494 /* Frame pointer assignment: "addu r30,r31,n". */
495 { 0x63df0000, 0xffff0000, M88K_PIA_NOTE_FP_ASSIGNMENT },
496
497 /* Store to stack instructions; either "st rx,sp,n" or "st.d rx,sp,n". */
498 { 0x241f0000, 0xfc1f0000, M88K_PIA_NOTE_ST }, /* st rx,sp,n */
499 { 0x201f0000, 0xfc1f0000, M88K_PIA_NOTE_STD }, /* st.d rs,sp,n */
500
501 /* Instructions needed for setting up r25 for pic code. */
502 { 0x5f200000, 0xffff0000, M88K_PIA_SKIP }, /* or.u r25,r0,offset_high */
503 { 0xcc000002, 0xffffffff, M88K_PIA_SKIP }, /* bsr.n Lab */
504 { 0x5b390000, 0xffff0000, M88K_PIA_SKIP }, /* or r25,r25,offset_low */
505 { 0xf7396001, 0xffffffff, M88K_PIA_SKIP }, /* Lab: addu r25,r25,r1 */
506
507 /* Various branch or jump instructions which have a delay slot --
508 these do not form part of the prologue, but the instruction in
509 the delay slot might be a store instruction which should be
510 noted. */
511 { 0xc4000000, 0xe4000000, M88K_PIA_NOTE_BRANCH },
512 /* br.n, bsr.n, bb0.n, or bb1.n */
513 { 0xec000000, 0xfc000000, M88K_PIA_NOTE_BRANCH }, /* bcnd.n */
514 { 0xf400c400, 0xfffff7e0, M88K_PIA_NOTE_BRANCH }, /* jmp.n or jsr.n */
515
516 /* Catch all. Ends prologue analysis. */
517 { 0x00000000, 0x00000000, M88K_PIA_NOTE_PROLOGUE_END }
518 };
519
520 /* Do a full analysis of the function prologue at PC and update CACHE
521 accordingly. Bail out early if LIMIT is reached. Return the
522 address where the analysis stopped. If LIMIT points beyond the
523 function prologue, the return address should be the end of the
524 prologue. */
525
526 static CORE_ADDR
527 m88k_analyze_prologue (CORE_ADDR pc, CORE_ADDR limit,
528 struct m88k_frame_cache *cache)
529 {
530 CORE_ADDR end = limit;
531
532 /* Provide a dummy cache if necessary. */
533 if (cache == NULL)
534 {
535 size_t sizeof_saved_regs =
536 (M88K_R31_REGNUM + 1) * sizeof (struct trad_frame_saved_reg);
537
538 cache = alloca (sizeof (struct m88k_frame_cache));
539 cache->saved_regs = alloca (sizeof_saved_regs);
540
541 /* We only initialize the members we care about. */
542 cache->saved_regs[M88K_R1_REGNUM].addr = -1;
543 cache->fp_offset = -1;
544 }
545
546 while (pc < limit)
547 {
548 struct m88k_prologue_insn *pi = m88k_prologue_insn_table;
549 unsigned long insn = m88k_fetch_instruction (pc);
550
551 while ((insn & pi->mask) != pi->insn)
552 pi++;
553
554 switch (pi->action)
555 {
556 case M88K_PIA_SKIP:
557 /* If we have a frame pointer, and R1 has been saved,
558 consider this instruction as not being part of the
559 prologue. */
560 if (cache->fp_offset != -1
561 && cache->saved_regs[M88K_R1_REGNUM].addr != -1)
562 return min (pc, end);
563 break;
564
565 case M88K_PIA_NOTE_ST:
566 case M88K_PIA_NOTE_STD:
567 /* If no frame has been allocated, the stores aren't part of
568 the prologue. */
569 if (cache->sp_offset == 0)
570 return min (pc, end);
571
572 /* Record location of saved registers. */
573 {
574 int regnum = ST_SRC (insn) + M88K_R0_REGNUM;
575 ULONGEST offset = ST_OFFSET (insn);
576
577 cache->saved_regs[regnum].addr = offset;
578 if (pi->action == M88K_PIA_NOTE_STD && regnum < M88K_R31_REGNUM)
579 cache->saved_regs[regnum + 1].addr = offset + 4;
580 }
581 break;
582
583 case M88K_PIA_NOTE_SP_ADJUSTMENT:
584 /* A second stack pointer adjustment isn't part of the
585 prologue. */
586 if (cache->sp_offset != 0)
587 return min (pc, end);
588
589 /* Store stack pointer adjustment. */
590 cache->sp_offset = -SUBU_OFFSET (insn);
591 break;
592
593 case M88K_PIA_NOTE_FP_ASSIGNMENT:
594 /* A second frame pointer assignment isn't part of the
595 prologue. */
596 if (cache->fp_offset != -1)
597 return min (pc, end);
598
599 /* Record frame pointer assignment. */
600 cache->fp_offset = ADDU_OFFSET (insn);
601 break;
602
603 case M88K_PIA_NOTE_BRANCH:
604 /* The branch instruction isn't part of the prologue, but
605 the instruction in the delay slot might be. Limit the
606 prologue analysis to the delay slot and record the branch
607 instruction as the end of the prologue. */
608 limit = min (limit, pc + 2 * M88K_INSN_SIZE);
609 end = pc;
610 break;
611
612 case M88K_PIA_NOTE_PROLOGUE_END:
613 return min (pc, end);
614 }
615
616 pc += M88K_INSN_SIZE;
617 }
618
619 return end;
620 }
621
622 /* An upper limit to the size of the prologue. */
623 const int m88k_max_prologue_size = 128 * M88K_INSN_SIZE;
624
625 /* Return the address of first real instruction of the function
626 starting at PC. */
627
628 static CORE_ADDR
629 m88k_skip_prologue (CORE_ADDR pc)
630 {
631 struct symtab_and_line sal;
632 CORE_ADDR func_start, func_end;
633
634 /* This is the preferred method, find the end of the prologue by
635 using the debugging information. */
636 if (find_pc_partial_function (pc, NULL, &func_start, &func_end))
637 {
638 sal = find_pc_line (func_start, 0);
639
640 if (sal.end < func_end && pc <= sal.end)
641 return sal.end;
642 }
643
644 return m88k_analyze_prologue (pc, pc + m88k_max_prologue_size, NULL);
645 }
646
647 struct m88k_frame_cache *
648 m88k_frame_cache (struct frame_info *next_frame, void **this_cache)
649 {
650 struct m88k_frame_cache *cache;
651 CORE_ADDR frame_sp;
652
653 if (*this_cache)
654 return *this_cache;
655
656 cache = FRAME_OBSTACK_ZALLOC (struct m88k_frame_cache);
657 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
658 cache->fp_offset = -1;
659
660 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
661 if (cache->pc != 0)
662 m88k_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
663
664 /* Calculate the stack pointer used in the prologue. */
665 if (cache->fp_offset != -1)
666 {
667 CORE_ADDR fp;
668
669 fp = frame_unwind_register_unsigned (next_frame, M88K_R30_REGNUM);
670 frame_sp = fp - cache->fp_offset;
671 }
672 else
673 {
674 /* If we know where the return address is saved, we can take a
675 solid guess at what the frame pointer should be. */
676 if (cache->saved_regs[M88K_R1_REGNUM].addr != -1)
677 cache->fp_offset = cache->saved_regs[M88K_R1_REGNUM].addr - 4;
678 frame_sp = frame_unwind_register_unsigned (next_frame, M88K_R31_REGNUM);
679 }
680
681 /* Now that we know the stack pointer, adjust the location of the
682 saved registers. */
683 {
684 int regnum;
685
686 for (regnum = M88K_R0_REGNUM; regnum < M88K_R31_REGNUM; regnum ++)
687 if (cache->saved_regs[regnum].addr != -1)
688 cache->saved_regs[regnum].addr += frame_sp;
689 }
690
691 /* Calculate the frame's base. */
692 cache->base = frame_sp - cache->sp_offset;
693 trad_frame_set_value (cache->saved_regs, M88K_R31_REGNUM, cache->base);
694
695 /* Identify SXIP with the return address in R1. */
696 cache->saved_regs[M88K_SXIP_REGNUM] = cache->saved_regs[M88K_R1_REGNUM];
697
698 *this_cache = cache;
699 return cache;
700 }
701
702 static void
703 m88k_frame_this_id (struct frame_info *next_frame, void **this_cache,
704 struct frame_id *this_id)
705 {
706 struct m88k_frame_cache *cache = m88k_frame_cache (next_frame, this_cache);
707
708 /* This marks the outermost frame. */
709 if (cache->base == 0)
710 return;
711
712 (*this_id) = frame_id_build (cache->base, cache->pc);
713 }
714
715 static void
716 m88k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
717 int regnum, int *optimizedp,
718 enum lval_type *lvalp, CORE_ADDR *addrp,
719 int *realnump, gdb_byte *valuep)
720 {
721 struct m88k_frame_cache *cache = m88k_frame_cache (next_frame, this_cache);
722
723 if (regnum == M88K_SNIP_REGNUM || regnum == M88K_SFIP_REGNUM)
724 {
725 if (valuep)
726 {
727 CORE_ADDR pc;
728
729 trad_frame_get_prev_register (next_frame, cache->saved_regs,
730 M88K_SXIP_REGNUM, optimizedp,
731 lvalp, addrp, realnump, valuep);
732
733 pc = extract_unsigned_integer (valuep, 4);
734 if (regnum == M88K_SFIP_REGNUM)
735 pc += 4;
736 store_unsigned_integer (valuep, 4, pc + 4);
737 }
738
739 /* It's a computed value. */
740 *optimizedp = 0;
741 *lvalp = not_lval;
742 *addrp = 0;
743 *realnump = -1;
744 return;
745 }
746
747 trad_frame_get_prev_register (next_frame, cache->saved_regs, regnum,
748 optimizedp, lvalp, addrp, realnump, valuep);
749 }
750
751 static const struct frame_unwind m88k_frame_unwind =
752 {
753 NORMAL_FRAME,
754 m88k_frame_this_id,
755 m88k_frame_prev_register
756 };
757
758 static const struct frame_unwind *
759 m88k_frame_sniffer (struct frame_info *next_frame)
760 {
761 return &m88k_frame_unwind;
762 }
763 \f
764
765 static CORE_ADDR
766 m88k_frame_base_address (struct frame_info *next_frame, void **this_cache)
767 {
768 struct m88k_frame_cache *cache = m88k_frame_cache (next_frame, this_cache);
769
770 if (cache->fp_offset != -1)
771 return cache->base + cache->sp_offset + cache->fp_offset;
772
773 return 0;
774 }
775
776 static const struct frame_base m88k_frame_base =
777 {
778 &m88k_frame_unwind,
779 m88k_frame_base_address,
780 m88k_frame_base_address,
781 m88k_frame_base_address
782 };
783 \f
784
785 /* Core file support. */
786
787 /* Supply register REGNUM from the buffer specified by GREGS and LEN
788 in the general-purpose register set REGSET to register cache
789 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
790
791 static void
792 m88k_supply_gregset (const struct regset *regset,
793 struct regcache *regcache,
794 int regnum, const void *gregs, size_t len)
795 {
796 const gdb_byte *regs = gregs;
797 int i;
798
799 for (i = 0; i < M88K_NUM_REGS; i++)
800 {
801 if (regnum == i || regnum == -1)
802 regcache_raw_supply (regcache, i, regs + i * 4);
803 }
804 }
805
806 /* Motorola 88000 register set. */
807
808 static struct regset m88k_gregset =
809 {
810 NULL,
811 m88k_supply_gregset
812 };
813
814 /* Return the appropriate register set for the core section identified
815 by SECT_NAME and SECT_SIZE. */
816
817 static const struct regset *
818 m88k_regset_from_core_section (struct gdbarch *gdbarch,
819 const char *sect_name, size_t sect_size)
820 {
821 if (strcmp (sect_name, ".reg") == 0 && sect_size >= M88K_NUM_REGS * 4)
822 return &m88k_gregset;
823
824 return NULL;
825 }
826 \f
827
828 static struct gdbarch *
829 m88k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
830 {
831 struct gdbarch *gdbarch;
832
833 /* If there is already a candidate, use it. */
834 arches = gdbarch_list_lookup_by_info (arches, &info);
835 if (arches != NULL)
836 return arches->gdbarch;
837
838 /* Allocate space for the new architecture. */
839 gdbarch = gdbarch_alloc (&info, NULL);
840
841 /* There is no real `long double'. */
842 set_gdbarch_long_double_bit (gdbarch, 64);
843 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
844
845 set_gdbarch_num_regs (gdbarch, M88K_NUM_REGS);
846 set_gdbarch_register_name (gdbarch, m88k_register_name);
847 set_gdbarch_register_type (gdbarch, m88k_register_type);
848
849 /* Register numbers of various important registers. */
850 set_gdbarch_sp_regnum (gdbarch, M88K_R31_REGNUM);
851 set_gdbarch_pc_regnum (gdbarch, M88K_SXIP_REGNUM);
852
853 /* Core file support. */
854 set_gdbarch_regset_from_core_section
855 (gdbarch, m88k_regset_from_core_section);
856
857 set_gdbarch_print_insn (gdbarch, print_insn_m88k);
858
859 set_gdbarch_skip_prologue (gdbarch, m88k_skip_prologue);
860
861 /* Stack grows downward. */
862 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
863
864 /* Call dummy code. */
865 set_gdbarch_push_dummy_call (gdbarch, m88k_push_dummy_call);
866 set_gdbarch_unwind_dummy_id (gdbarch, m88k_unwind_dummy_id);
867
868 /* Return value info */
869 set_gdbarch_return_value (gdbarch, m88k_return_value);
870
871 set_gdbarch_addr_bits_remove (gdbarch, m88k_addr_bits_remove);
872 set_gdbarch_breakpoint_from_pc (gdbarch, m88k_breakpoint_from_pc);
873 set_gdbarch_unwind_pc (gdbarch, m88k_unwind_pc);
874 set_gdbarch_write_pc (gdbarch, m88k_write_pc);
875
876 frame_base_set_default (gdbarch, &m88k_frame_base);
877 frame_unwind_append_sniffer (gdbarch, m88k_frame_sniffer);
878
879 return gdbarch;
880 }
881 \f
882
883 /* Provide a prototype to silence -Wmissing-prototypes. */
884 void _initialize_m88k_tdep (void);
885
886 void
887 _initialize_m88k_tdep (void)
888 {
889 gdbarch_register (bfd_arch_m88k, m88k_gdbarch_init, NULL);
890 }