]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/m88k-tdep.c
This commit was generated by cvs2svn to track changes on a CVS vendor
[thirdparty/binutils-gdb.git] / gdb / m88k-tdep.c
1 /* Target-machine dependent code for Motorola 88000 series, for GDB.
2 Copyright 1988, 1990, 1991, 1994, 1995 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "symtab.h"
27 #include "setjmp.h"
28 #include "value.h"
29
30 /* Size of an instruction */
31 #define BYTES_PER_88K_INSN 4
32
33 void frame_find_saved_regs ();
34
35 /* Is this target an m88110? Otherwise assume m88100. This has
36 relevance for the ways in which we screw with instruction pointers. */
37
38 int target_is_m88110 = 0;
39
40 /* The m88k kernel aligns all instructions on 4-byte boundaries. The
41 kernel also uses the least significant two bits for its own hocus
42 pocus. When gdb receives an address from the kernel, it needs to
43 preserve those right-most two bits, but gdb also needs to be careful
44 to realize that those two bits are not really a part of the address
45 of an instruction. Shrug. */
46
47 CORE_ADDR
48 m88k_addr_bits_remove (addr)
49 CORE_ADDR addr;
50 {
51 return ((addr) & ~3);
52 }
53
54
55 /* Given a GDB frame, determine the address of the calling function's frame.
56 This will be used to create a new GDB frame struct, and then
57 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
58
59 For us, the frame address is its stack pointer value, so we look up
60 the function prologue to determine the caller's sp value, and return it. */
61
62 CORE_ADDR
63 frame_chain (thisframe)
64 struct frame_info *thisframe;
65 {
66
67 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
68 /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
69 the ADDRESS, of SP_REGNUM. It also depends on the cache of
70 frame_find_saved_regs results. */
71 if (thisframe->fsr->regs[SP_REGNUM])
72 return thisframe->fsr->regs[SP_REGNUM];
73 else
74 return thisframe->frame; /* Leaf fn -- next frame up has same SP. */
75 }
76
77 int
78 frameless_function_invocation (frame)
79 struct frame_info *frame;
80 {
81
82 frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
83 /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
84 the ADDRESS, of SP_REGNUM. It also depends on the cache of
85 frame_find_saved_regs results. */
86 if (frame->fsr->regs[SP_REGNUM])
87 return 0; /* Frameful -- return addr saved somewhere */
88 else
89 return 1; /* Frameless -- no saved return address */
90 }
91
92 void
93 init_extra_frame_info (fromleaf, frame)
94 int fromleaf;
95 struct frame_info *frame;
96 {
97 frame->fsr = 0; /* Not yet allocated */
98 frame->args_pointer = 0; /* Unknown */
99 frame->locals_pointer = 0; /* Unknown */
100 }
101 \f
102 /* Examine an m88k function prologue, recording the addresses at which
103 registers are saved explicitly by the prologue code, and returning
104 the address of the first instruction after the prologue (but not
105 after the instruction at address LIMIT, as explained below).
106
107 LIMIT places an upper bound on addresses of the instructions to be
108 examined. If the prologue code scan reaches LIMIT, the scan is
109 aborted and LIMIT is returned. This is used, when examining the
110 prologue for the current frame, to keep examine_prologue () from
111 claiming that a given register has been saved when in fact the
112 instruction that saves it has not yet been executed. LIMIT is used
113 at other times to stop the scan when we hit code after the true
114 function prologue (e.g. for the first source line) which might
115 otherwise be mistaken for function prologue.
116
117 The format of the function prologue matched by this routine is
118 derived from examination of the source to gcc 1.95, particularly
119 the routine output_prologue () in config/out-m88k.c.
120
121 subu r31,r31,n # stack pointer update
122
123 (st rn,r31,offset)? # save incoming regs
124 (st.d rn,r31,offset)?
125
126 (addu r30,r31,n)? # frame pointer update
127
128 (pic sequence)? # PIC code prologue
129
130 (or rn,rm,0)? # Move parameters to other regs
131 */
132
133 /* Macros for extracting fields from instructions. */
134
135 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
136 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
137 #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
138 #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
139 #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
140 #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
141
142 /*
143 * prologue_insn_tbl is a table of instructions which may comprise a
144 * function prologue. Associated with each table entry (corresponding
145 * to a single instruction or group of instructions), is an action.
146 * This action is used by examine_prologue (below) to determine
147 * the state of certain machine registers and where the stack frame lives.
148 */
149
150 enum prologue_insn_action
151 {
152 PIA_SKIP, /* don't care what the instruction does */
153 PIA_NOTE_ST, /* note register stored and where */
154 PIA_NOTE_STD, /* note pair of registers stored and where */
155 PIA_NOTE_SP_ADJUSTMENT, /* note stack pointer adjustment */
156 PIA_NOTE_FP_ASSIGNMENT, /* note frame pointer assignment */
157 PIA_NOTE_PROLOGUE_END, /* no more prologue */
158 };
159
160 struct prologue_insns
161 {
162 unsigned long insn;
163 unsigned long mask;
164 enum prologue_insn_action action;
165 };
166
167 struct prologue_insns prologue_insn_tbl[] =
168 {
169 /* Various register move instructions */
170 {0x58000000, 0xf800ffff, PIA_SKIP}, /* or/or.u with immed of 0 */
171 {0xf4005800, 0xfc1fffe0, PIA_SKIP}, /* or rd, r0, rs */
172 {0xf4005800, 0xfc00ffff, PIA_SKIP}, /* or rd, rs, r0 */
173
174 /* Stack pointer setup: "subu sp, sp, n" where n is a multiple of 8 */
175 {0x67ff0000, 0xffff0007, PIA_NOTE_SP_ADJUSTMENT},
176
177 /* Frame pointer assignment: "addu r30, r31, n" */
178 {0x63df0000, 0xffff0000, PIA_NOTE_FP_ASSIGNMENT},
179
180 /* Store to stack instructions; either "st rx, sp, n" or "st.d rx, sp, n" */
181 {0x241f0000, 0xfc1f0000, PIA_NOTE_ST}, /* st rx, sp, n */
182 {0x201f0000, 0xfc1f0000, PIA_NOTE_STD}, /* st.d rs, sp, n */
183
184 /* Instructions needed for setting up r25 for pic code. */
185 {0x5f200000, 0xffff0000, PIA_SKIP}, /* or.u r25, r0, offset_high */
186 {0xcc000002, 0xffffffff, PIA_SKIP}, /* bsr.n Lab */
187 {0x5b390000, 0xffff0000, PIA_SKIP}, /* or r25, r25, offset_low */
188 {0xf7396001, 0xffffffff, PIA_SKIP}, /* Lab: addu r25, r25, r1 */
189
190 /* Various branch or jump instructions which have a delay slot -- these
191 do not form part of the prologue, but the instruction in the delay
192 slot might be a store instruction which should be noted. */
193 {0xc4000000, 0xe4000000, PIA_NOTE_PROLOGUE_END},
194 /* br.n, bsr.n, bb0.n, or bb1.n */
195 {0xec000000, 0xfc000000, PIA_NOTE_PROLOGUE_END}, /* bcnd.n */
196 {0xf400c400, 0xfffff7e0, PIA_NOTE_PROLOGUE_END} /* jmp.n or jsr.n */
197
198 };
199
200
201 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
202 is not the address of a valid instruction, the address of the next
203 instruction beyond ADDR otherwise. *PWORD1 receives the first word
204 of the instruction. */
205
206 #define NEXT_PROLOGUE_INSN(addr, lim, pword1) \
207 (((addr) < (lim)) ? next_insn (addr, pword1) : 0)
208
209 /* Read the m88k instruction at 'memaddr' and return the address of
210 the next instruction after that, or 0 if 'memaddr' is not the
211 address of a valid instruction. The instruction
212 is stored at 'pword1'. */
213
214 CORE_ADDR
215 next_insn (memaddr, pword1)
216 unsigned long *pword1;
217 CORE_ADDR memaddr;
218 {
219 *pword1 = read_memory_integer (memaddr, BYTES_PER_88K_INSN);
220 return memaddr + BYTES_PER_88K_INSN;
221 }
222
223 /* Read a register from frames called by us (or from the hardware regs). */
224
225 static int
226 read_next_frame_reg (frame, regno)
227 struct frame_info *frame;
228 int regno;
229 {
230 for (; frame; frame = frame->next)
231 {
232 if (regno == SP_REGNUM)
233 return FRAME_FP (frame);
234 else if (frame->fsr->regs[regno])
235 return read_memory_integer (frame->fsr->regs[regno], 4);
236 }
237 return read_register (regno);
238 }
239
240 /* Examine the prologue of a function. `ip' points to the first instruction.
241 `limit' is the limit of the prologue (e.g. the addr of the first
242 linenumber, or perhaps the program counter if we're stepping through).
243 `frame_sp' is the stack pointer value in use in this frame.
244 `fsr' is a pointer to a frame_saved_regs structure into which we put
245 info about the registers saved by this frame.
246 `fi' is a struct frame_info pointer; we fill in various fields in it
247 to reflect the offsets of the arg pointer and the locals pointer. */
248
249 static CORE_ADDR
250 examine_prologue (ip, limit, frame_sp, fsr, fi)
251 register CORE_ADDR ip;
252 register CORE_ADDR limit;
253 CORE_ADDR frame_sp;
254 struct frame_saved_regs *fsr;
255 struct frame_info *fi;
256 {
257 register CORE_ADDR next_ip;
258 register int src;
259 unsigned int insn;
260 int size, offset;
261 char must_adjust[32]; /* If set, must adjust offsets in fsr */
262 int sp_offset = -1; /* -1 means not set (valid must be mult of 8) */
263 int fp_offset = -1; /* -1 means not set */
264 CORE_ADDR frame_fp;
265 CORE_ADDR prologue_end = 0;
266
267 memset (must_adjust, '\0', sizeof (must_adjust));
268 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
269
270 while (next_ip)
271 {
272 struct prologue_insns *pip;
273
274 for (pip = prologue_insn_tbl; (insn & pip->mask) != pip->insn;)
275 if (++pip >= prologue_insn_tbl + sizeof prologue_insn_tbl)
276 goto end_of_prologue_found; /* not a prologue insn */
277
278 switch (pip->action)
279 {
280 case PIA_NOTE_ST:
281 case PIA_NOTE_STD:
282 if (sp_offset != -1)
283 {
284 src = ST_SRC (insn);
285 offset = ST_OFFSET (insn);
286 must_adjust[src] = 1;
287 fsr->regs[src++] = offset; /* Will be adjusted later */
288 if (pip->action == PIA_NOTE_STD && src < 32)
289 {
290 offset += 4;
291 must_adjust[src] = 1;
292 fsr->regs[src++] = offset;
293 }
294 }
295 else
296 goto end_of_prologue_found;
297 break;
298 case PIA_NOTE_SP_ADJUSTMENT:
299 if (sp_offset == -1)
300 sp_offset = -SUBU_OFFSET (insn);
301 else
302 goto end_of_prologue_found;
303 break;
304 case PIA_NOTE_FP_ASSIGNMENT:
305 if (fp_offset == -1)
306 fp_offset = ADDU_OFFSET (insn);
307 else
308 goto end_of_prologue_found;
309 break;
310 case PIA_NOTE_PROLOGUE_END:
311 if (!prologue_end)
312 prologue_end = ip;
313 break;
314 case PIA_SKIP:
315 default:
316 /* Do nothing */
317 break;
318 }
319
320 ip = next_ip;
321 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
322 }
323
324 end_of_prologue_found:
325
326 if (prologue_end)
327 ip = prologue_end;
328
329 /* We're done with the prologue. If we don't care about the stack
330 frame itself, just return. (Note that fsr->regs has been trashed,
331 but the one caller who calls with fi==0 passes a dummy there.) */
332
333 if (fi == 0)
334 return ip;
335
336 /*
337 OK, now we have:
338
339 sp_offset original (before any alloca calls) displacement of SP
340 (will be negative).
341
342 fp_offset displacement from original SP to the FP for this frame
343 or -1.
344
345 fsr->regs[0..31] displacement from original SP to the stack
346 location where reg[0..31] is stored.
347
348 must_adjust[0..31] set if corresponding offset was set.
349
350 If alloca has been called between the function prologue and the current
351 IP, then the current SP (frame_sp) will not be the original SP as set by
352 the function prologue. If the current SP is not the original SP, then the
353 compiler will have allocated an FP for this frame, fp_offset will be set,
354 and we can use it to calculate the original SP.
355
356 Then, we figure out where the arguments and locals are, and relocate the
357 offsets in fsr->regs to absolute addresses. */
358
359 if (fp_offset != -1)
360 {
361 /* We have a frame pointer, so get it, and base our calc's on it. */
362 frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, ACTUAL_FP_REGNUM);
363 frame_sp = frame_fp - fp_offset;
364 }
365 else
366 {
367 /* We have no frame pointer, therefore frame_sp is still the same value
368 as set by prologue. But where is the frame itself? */
369 if (must_adjust[SRP_REGNUM])
370 {
371 /* Function header saved SRP (r1), the return address. Frame starts
372 4 bytes down from where it was saved. */
373 frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
374 fi->locals_pointer = frame_fp;
375 }
376 else
377 {
378 /* Function header didn't save SRP (r1), so we are in a leaf fn or
379 are otherwise confused. */
380 frame_fp = -1;
381 }
382 }
383
384 /* The locals are relative to the FP (whether it exists as an allocated
385 register, or just as an assumed offset from the SP) */
386 fi->locals_pointer = frame_fp;
387
388 /* The arguments are just above the SP as it was before we adjusted it
389 on entry. */
390 fi->args_pointer = frame_sp - sp_offset;
391
392 /* Now that we know the SP value used by the prologue, we know where
393 it saved all the registers. */
394 for (src = 0; src < 32; src++)
395 if (must_adjust[src])
396 fsr->regs[src] += frame_sp;
397
398 /* The saved value of the SP is always known. */
399 /* (we hope...) */
400 if (fsr->regs[SP_REGNUM] != 0
401 && fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
402 fprintf_unfiltered (gdb_stderr, "Bad saved SP value %x != %x, offset %x!\n",
403 fsr->regs[SP_REGNUM],
404 frame_sp - sp_offset, sp_offset);
405
406 fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
407
408 return (ip);
409 }
410
411 /* Given an ip value corresponding to the start of a function,
412 return the ip of the first instruction after the function
413 prologue. */
414
415 CORE_ADDR
416 m88k_skip_prologue (ip)
417 CORE_ADDR (ip);
418 {
419 struct frame_saved_regs saved_regs_dummy;
420 struct symtab_and_line sal;
421 CORE_ADDR limit;
422
423 sal = find_pc_line (ip, 0);
424 limit = (sal.end) ? sal.end : 0xffffffff;
425
426 return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy,
427 (struct frame_info *) 0));
428 }
429
430 /* Put here the code to store, into a struct frame_saved_regs,
431 the addresses of the saved registers of frame described by FRAME_INFO.
432 This includes special registers such as pc and fp saved in special
433 ways in the stack frame. sp is even more special:
434 the address we return for it IS the sp for the next frame.
435
436 We cache the result of doing this in the frame_obstack, since it is
437 fairly expensive. */
438
439 void
440 frame_find_saved_regs (fi, fsr)
441 struct frame_info *fi;
442 struct frame_saved_regs *fsr;
443 {
444 register struct frame_saved_regs *cache_fsr;
445 CORE_ADDR ip;
446 struct symtab_and_line sal;
447 CORE_ADDR limit;
448
449 if (!fi->fsr)
450 {
451 cache_fsr = (struct frame_saved_regs *)
452 frame_obstack_alloc (sizeof (struct frame_saved_regs));
453 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
454 fi->fsr = cache_fsr;
455
456 /* Find the start and end of the function prologue. If the PC
457 is in the function prologue, we only consider the part that
458 has executed already. In the case where the PC is not in
459 the function prologue, we set limit to two instructions beyond
460 where the prologue ends in case if any of the prologue instructions
461 were moved into a delay slot of a branch instruction. */
462
463 ip = get_pc_function_start (fi->pc);
464 sal = find_pc_line (ip, 0);
465 limit = (sal.end && sal.end < fi->pc) ? sal.end + 2 * BYTES_PER_88K_INSN
466 : fi->pc;
467
468 /* This will fill in fields in *fi as well as in cache_fsr. */
469 #ifdef SIGTRAMP_FRAME_FIXUP
470 if (fi->signal_handler_caller)
471 SIGTRAMP_FRAME_FIXUP (fi->frame);
472 #endif
473 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
474 #ifdef SIGTRAMP_SP_FIXUP
475 if (fi->signal_handler_caller && fi->fsr->regs[SP_REGNUM])
476 SIGTRAMP_SP_FIXUP (fi->fsr->regs[SP_REGNUM]);
477 #endif
478 }
479
480 if (fsr)
481 *fsr = *fi->fsr;
482 }
483
484 /* Return the address of the locals block for the frame
485 described by FI. Returns 0 if the address is unknown.
486 NOTE! Frame locals are referred to by negative offsets from the
487 argument pointer, so this is the same as frame_args_address(). */
488
489 CORE_ADDR
490 frame_locals_address (fi)
491 struct frame_info *fi;
492 {
493 struct frame_saved_regs fsr;
494
495 if (fi->args_pointer) /* Cached value is likely there. */
496 return fi->args_pointer;
497
498 /* Nope, generate it. */
499
500 get_frame_saved_regs (fi, &fsr);
501
502 return fi->args_pointer;
503 }
504
505 /* Return the address of the argument block for the frame
506 described by FI. Returns 0 if the address is unknown. */
507
508 CORE_ADDR
509 frame_args_address (fi)
510 struct frame_info *fi;
511 {
512 struct frame_saved_regs fsr;
513
514 if (fi->args_pointer) /* Cached value is likely there. */
515 return fi->args_pointer;
516
517 /* Nope, generate it. */
518
519 get_frame_saved_regs (fi, &fsr);
520
521 return fi->args_pointer;
522 }
523
524 /* Return the saved PC from this frame.
525
526 If the frame has a memory copy of SRP_REGNUM, use that. If not,
527 just use the register SRP_REGNUM itself. */
528
529 CORE_ADDR
530 frame_saved_pc (frame)
531 struct frame_info *frame;
532 {
533 return read_next_frame_reg (frame, SRP_REGNUM);
534 }
535
536
537 #define DUMMY_FRAME_SIZE 192
538
539 static void
540 write_word (sp, word)
541 CORE_ADDR sp;
542 ULONGEST word;
543 {
544 register int len = REGISTER_SIZE;
545 char buffer[MAX_REGISTER_RAW_SIZE];
546
547 store_unsigned_integer (buffer, len, word);
548 write_memory (sp, buffer, len);
549 }
550
551 void
552 m88k_push_dummy_frame ()
553 {
554 register CORE_ADDR sp = read_register (SP_REGNUM);
555 register int rn;
556 int offset;
557
558 sp -= DUMMY_FRAME_SIZE; /* allocate a bunch of space */
559
560 for (rn = 0, offset = 0; rn <= SP_REGNUM; rn++, offset += 4)
561 write_word (sp + offset, read_register (rn));
562
563 write_word (sp + offset, read_register (SXIP_REGNUM));
564 offset += 4;
565
566 write_word (sp + offset, read_register (SNIP_REGNUM));
567 offset += 4;
568
569 write_word (sp + offset, read_register (SFIP_REGNUM));
570 offset += 4;
571
572 write_word (sp + offset, read_register (PSR_REGNUM));
573 offset += 4;
574
575 write_word (sp + offset, read_register (FPSR_REGNUM));
576 offset += 4;
577
578 write_word (sp + offset, read_register (FPCR_REGNUM));
579 offset += 4;
580
581 write_register (SP_REGNUM, sp);
582 write_register (ACTUAL_FP_REGNUM, sp);
583 }
584
585 void
586 pop_frame ()
587 {
588 register struct frame_info *frame = get_current_frame ();
589 register CORE_ADDR fp;
590 register int regnum;
591 struct frame_saved_regs fsr;
592
593 fp = FRAME_FP (frame);
594 get_frame_saved_regs (frame, &fsr);
595
596 if (PC_IN_CALL_DUMMY (read_pc (), read_register (SP_REGNUM), FRAME_FP (fi)))
597 {
598 /* FIXME: I think get_frame_saved_regs should be handling this so
599 that we can deal with the saved registers properly (e.g. frame
600 1 is a call dummy, the user types "frame 2" and then "print $ps"). */
601 register CORE_ADDR sp = read_register (ACTUAL_FP_REGNUM);
602 int offset;
603
604 for (regnum = 0, offset = 0; regnum <= SP_REGNUM; regnum++, offset += 4)
605 (void) write_register (regnum, read_memory_integer (sp + offset, 4));
606
607 write_register (SXIP_REGNUM, read_memory_integer (sp + offset, 4));
608 offset += 4;
609
610 write_register (SNIP_REGNUM, read_memory_integer (sp + offset, 4));
611 offset += 4;
612
613 write_register (SFIP_REGNUM, read_memory_integer (sp + offset, 4));
614 offset += 4;
615
616 write_register (PSR_REGNUM, read_memory_integer (sp + offset, 4));
617 offset += 4;
618
619 write_register (FPSR_REGNUM, read_memory_integer (sp + offset, 4));
620 offset += 4;
621
622 write_register (FPCR_REGNUM, read_memory_integer (sp + offset, 4));
623 offset += 4;
624
625 }
626 else
627 {
628 for (regnum = FP_REGNUM; regnum > 0; regnum--)
629 if (fsr.regs[regnum])
630 write_register (regnum,
631 read_memory_integer (fsr.regs[regnum], 4));
632 write_pc (frame_saved_pc (frame));
633 }
634 reinit_frame_cache ();
635 }
636
637 void
638 _initialize_m88k_tdep ()
639 {
640 tm_print_insn = print_insn_m88k;
641 }