]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/m88k-tdep.c
* valops.c (call_function_by_hand, push_word), defs.h (push_word),
[thirdparty/binutils-gdb.git] / gdb / m88k-tdep.c
1 /* Target-machine dependent code for Motorola 88000 series, for GDB.
2 Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "value.h"
24 #include "gdbcore.h"
25
26 #include "symtab.h"
27 #include "setjmp.h"
28 #include "value.h"
29 #include "ieee-float.h" /* for ext_format & friends */
30
31 /* Size of an instruction */
32 #define BYTES_PER_88K_INSN 4
33
34 void frame_find_saved_regs ();
35
36 /* is this target an m88110? Otherwise assume m88100. This has
37 relevance for the ways in which we screw with instruction pointers. */
38 int target_is_m88110 = 0;
39
40 /* FIXME: this is really just a guess based on m88110 being big
41 endian. */
42 const struct ext_format ext_format_m88110 = {
43 /* tot sbyte smask expbyte manbyte */
44 10, 0, 0x80, 0,1, 4,8 /* m88110 */
45 };
46
47 /* Given a GDB frame, determine the address of the calling function's frame.
48 This will be used to create a new GDB frame struct, and then
49 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
50
51 For us, the frame address is its stack pointer value, so we look up
52 the function prologue to determine the caller's sp value, and return it. */
53
54 FRAME_ADDR
55 frame_chain (thisframe)
56 FRAME thisframe;
57 {
58
59 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
60 /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
61 the ADDRESS, of SP_REGNUM. It also depends on the cache of
62 frame_find_saved_regs results. */
63 if (thisframe->fsr->regs[SP_REGNUM])
64 return thisframe->fsr->regs[SP_REGNUM];
65 else
66 return thisframe->frame; /* Leaf fn -- next frame up has same SP. */
67 }
68
69 int
70 frameless_function_invocation (frame)
71 FRAME frame;
72 {
73
74 frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
75 /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
76 the ADDRESS, of SP_REGNUM. It also depends on the cache of
77 frame_find_saved_regs results. */
78 if (frame->fsr->regs[SP_REGNUM])
79 return 0; /* Frameful -- return addr saved somewhere */
80 else
81 return 1; /* Frameless -- no saved return address */
82 }
83
84 void
85 init_extra_frame_info (fromleaf, fi)
86 int fromleaf;
87 struct frame_info *fi;
88 {
89 fi->fsr = 0; /* Not yet allocated */
90 fi->args_pointer = 0; /* Unknown */
91 fi->locals_pointer = 0; /* Unknown */
92 }
93 \f
94 /* Examine an m88k function prologue, recording the addresses at which
95 registers are saved explicitly by the prologue code, and returning
96 the address of the first instruction after the prologue (but not
97 after the instruction at address LIMIT, as explained below).
98
99 LIMIT places an upper bound on addresses of the instructions to be
100 examined. If the prologue code scan reaches LIMIT, the scan is
101 aborted and LIMIT is returned. This is used, when examining the
102 prologue for the current frame, to keep examine_prologue () from
103 claiming that a given register has been saved when in fact the
104 instruction that saves it has not yet been executed. LIMIT is used
105 at other times to stop the scan when we hit code after the true
106 function prologue (e.g. for the first source line) which might
107 otherwise be mistaken for function prologue.
108
109 The format of the function prologue matched by this routine is
110 derived from examination of the source to gcc 1.95, particularly
111 the routine output_prologue () in config/out-m88k.c.
112
113 subu r31,r31,n # stack pointer update
114
115 (st rn,r31,offset)? # save incoming regs
116 (st.d rn,r31,offset)?
117
118 (addu r30,r31,n)? # frame pointer update
119
120 (pic sequence)? # PIC code prologue
121
122 (or rn,rm,0)? # Move parameters to other regs
123 */
124
125 /* Macros for extracting fields from instructions. */
126
127 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
128 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
129
130 /* Prologue code that handles position-independent-code setup. */
131
132 struct pic_prologue_code {
133 unsigned long insn, mask;
134 };
135
136 static struct pic_prologue_code pic_prologue_code [] = {
137 /* FIXME -- until this is translated to hex, we won't match it... */
138 { 0xffffffff, 0 },
139 /* or r10,r1,0 (if not saved) */
140 /* bsr.n LabN */
141 /* or.u r25,r0,const */
142 /*LabN: or r25,r25,const2 */
143 /* addu r25,r25,1 */
144 /* or r1,r10,0 (if not saved) */
145 };
146
147 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
148 is not the address of a valid instruction, the address of the next
149 instruction beyond ADDR otherwise. *PWORD1 receives the first word
150 of the instruction. PWORD2 is ignored -- a remnant of the original
151 i960 version. */
152
153 #define NEXT_PROLOGUE_INSN(addr, lim, pword1) \
154 (((addr) < (lim)) ? next_insn (addr, pword1) : 0)
155
156 /* Read the m88k instruction at 'memaddr' and return the address of
157 the next instruction after that, or 0 if 'memaddr' is not the
158 address of a valid instruction. The instruction
159 is stored at 'pword1'. */
160
161 CORE_ADDR
162 next_insn (memaddr, pword1)
163 unsigned long *pword1;
164 CORE_ADDR memaddr;
165 {
166 *pword1 = read_memory_integer (memaddr, BYTES_PER_88K_INSN);
167 return memaddr + BYTES_PER_88K_INSN;
168 }
169
170 /* Read a register from frames called by us (or from the hardware regs). */
171
172 static int
173 read_next_frame_reg(fi, regno)
174 FRAME fi;
175 int regno;
176 {
177 for (; fi; fi = fi->next) {
178 if (regno == SP_REGNUM) return fi->frame;
179 else if (fi->fsr->regs[regno])
180 return read_memory_integer(fi->fsr->regs[regno], 4);
181 }
182 return read_register(regno);
183 }
184
185 /* Examine the prologue of a function. `ip' points to the first instruction.
186 `limit' is the limit of the prologue (e.g. the addr of the first
187 linenumber, or perhaps the program counter if we're stepping through).
188 `frame_sp' is the stack pointer value in use in this frame.
189 `fsr' is a pointer to a frame_saved_regs structure into which we put
190 info about the registers saved by this frame.
191 `fi' is a struct frame_info pointer; we fill in various fields in it
192 to reflect the offsets of the arg pointer and the locals pointer. */
193
194 static CORE_ADDR
195 examine_prologue (ip, limit, frame_sp, fsr, fi)
196 register CORE_ADDR ip;
197 register CORE_ADDR limit;
198 FRAME_ADDR frame_sp;
199 struct frame_saved_regs *fsr;
200 struct frame_info *fi;
201 {
202 register CORE_ADDR next_ip;
203 register int src;
204 register struct pic_prologue_code *pcode;
205 unsigned int insn;
206 int size, offset;
207 char must_adjust[32]; /* If set, must adjust offsets in fsr */
208 int sp_offset = -1; /* -1 means not set (valid must be mult of 8) */
209 int fp_offset = -1; /* -1 means not set */
210 CORE_ADDR frame_fp;
211
212 memset (must_adjust, '\0', sizeof (must_adjust));
213 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
214
215 /* Accept move of incoming registers to other registers, using
216 "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
217 We don't have to worry about walking into the first lines of code,
218 since the first line number will stop us (assuming we have symbols).
219 What we have actually seen is "or r10,r0,r12". */
220
221 #define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
222 #define OR_MOVE_MASK 0xF800FFFF
223 #define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
224 #define OR_REG_MOVE1_MASK 0xFC1FFFE0
225 #define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
226 #define OR_REG_MOVE2_MASK 0xFC00FFFF
227 while (next_ip &&
228 ((insn & OR_MOVE_MASK) == OR_MOVE_INSN ||
229 (insn & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
230 (insn & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
231 )
232 )
233 {
234 /* We don't care what moves to where. The result of the moves
235 has already been reflected in what the compiler tells us is the
236 location of these parameters. */
237 ip = next_ip;
238 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
239 }
240
241 /* Accept an optional "subu sp,sp,n" to set up the stack pointer. */
242
243 #define SUBU_SP_INSN 0x67ff0000
244 #define SUBU_SP_MASK 0xffff0007 /* Note offset must be mult. of 8 */
245 #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
246 if (next_ip &&
247 ((insn & SUBU_SP_MASK) == SUBU_SP_INSN)) /* subu r31, r31, N */
248 {
249 sp_offset = -SUBU_OFFSET (insn);
250 ip = next_ip;
251 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
252 }
253
254 /* The function must start with a stack-pointer adjustment, or
255 we don't know WHAT'S going on... */
256 if (sp_offset == -1)
257 return ip;
258
259 /* Accept zero or more instances of "st rx,sp,n" or "st.d rx,sp,n".
260 This may cause us to mistake the copying of a register
261 parameter to the frame for the saving of a callee-saved
262 register, but that can't be helped, since with the
263 "-fcall-saved" flag, any register can be made callee-saved.
264 This probably doesn't matter, since the ``saved'' caller's values of
265 non-callee-saved registers are not relevant anyway. */
266
267 #define STD_STACK_INSN 0x201f0000
268 #define STD_STACK_MASK 0xfc1f0000
269 #define ST_STACK_INSN 0x241f0000
270 #define ST_STACK_MASK 0xfc1f0000
271 #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
272 #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
273
274 while (next_ip)
275 {
276 if ((insn & ST_STACK_MASK) == ST_STACK_INSN)
277 size = 1;
278 else if ((insn & STD_STACK_MASK) == STD_STACK_INSN)
279 size = 2;
280 else
281 break;
282
283 src = ST_SRC (insn);
284 offset = ST_OFFSET (insn);
285 while (size--)
286 {
287 must_adjust[src] = 1;
288 fsr->regs[src++] = offset; /* Will be adjusted later */
289 offset += 4;
290 }
291 ip = next_ip;
292 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
293 }
294
295 /* Accept an optional "addu r30,r31,n" to set up the frame pointer. */
296
297 #define ADDU_FP_INSN 0x63df0000
298 #define ADDU_FP_MASK 0xffff0000
299 #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
300 if (next_ip &&
301 ((insn & ADDU_FP_MASK) == ADDU_FP_INSN)) /* addu r30, r31, N */
302 {
303 fp_offset = ADDU_OFFSET (insn);
304 ip = next_ip;
305 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
306 }
307
308 /* Accept the PIC prologue code if present. */
309
310 pcode = pic_prologue_code;
311 size = sizeof (pic_prologue_code) / sizeof (*pic_prologue_code);
312 /* If return addr is saved, we don't use first or last insn of PICstuff. */
313 if (fsr->regs[SRP_REGNUM]) {
314 pcode++;
315 size-=2;
316 }
317
318 while (size-- && next_ip && (pcode->insn == (pcode->mask & insn)))
319 {
320 pcode++;
321 ip = next_ip;
322 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
323 }
324
325 /* Accept moves of parameter registers to other registers, using
326 "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
327 We don't have to worry about walking into the first lines of code,
328 since the first line number will stop us (assuming we have symbols).
329 What gcc actually seems to produce is "or rd,r0,rs". */
330
331 #define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
332 #define OR_MOVE_MASK 0xF800FFFF
333 #define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
334 #define OR_REG_MOVE1_MASK 0xFC1FFFE0
335 #define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
336 #define OR_REG_MOVE2_MASK 0xFC00FFFF
337 while (next_ip &&
338 ((insn & OR_MOVE_MASK) == OR_MOVE_INSN ||
339 (insn & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
340 (insn & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
341 )
342 )
343 {
344 /* We don't care what moves to where. The result of the moves
345 has already been reflected in what the compiler tells us is the
346 location of these parameters. */
347 ip = next_ip;
348 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
349 }
350
351 /* We're done with the prologue. If we don't care about the stack
352 frame itself, just return. (Note that fsr->regs has been trashed,
353 but the one caller who calls with fi==0 passes a dummy there.) */
354
355 if (fi == 0)
356 return ip;
357
358 /*
359 OK, now we have:
360
361 sp_offset original (before any alloca calls) displacement of SP
362 (will be negative).
363
364 fp_offset displacement from original SP to the FP for this frame
365 or -1.
366
367 fsr->regs[0..31] displacement from original SP to the stack
368 location where reg[0..31] is stored.
369
370 must_adjust[0..31] set if corresponding offset was set.
371
372 If alloca has been called between the function prologue and the current
373 IP, then the current SP (frame_sp) will not be the original SP as set by
374 the function prologue. If the current SP is not the original SP, then the
375 compiler will have allocated an FP for this frame, fp_offset will be set,
376 and we can use it to calculate the original SP.
377
378 Then, we figure out where the arguments and locals are, and relocate the
379 offsets in fsr->regs to absolute addresses. */
380
381 if (fp_offset != -1) {
382 /* We have a frame pointer, so get it, and base our calc's on it. */
383 frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, ACTUAL_FP_REGNUM);
384 frame_sp = frame_fp - fp_offset;
385 } else {
386 /* We have no frame pointer, therefore frame_sp is still the same value
387 as set by prologue. But where is the frame itself? */
388 if (must_adjust[SRP_REGNUM]) {
389 /* Function header saved SRP (r1), the return address. Frame starts
390 4 bytes down from where it was saved. */
391 frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
392 fi->locals_pointer = frame_fp;
393 } else {
394 /* Function header didn't save SRP (r1), so we are in a leaf fn or
395 are otherwise confused. */
396 frame_fp = -1;
397 }
398 }
399
400 /* The locals are relative to the FP (whether it exists as an allocated
401 register, or just as an assumed offset from the SP) */
402 fi->locals_pointer = frame_fp;
403
404 /* The arguments are just above the SP as it was before we adjusted it
405 on entry. */
406 fi->args_pointer = frame_sp - sp_offset;
407
408 /* Now that we know the SP value used by the prologue, we know where
409 it saved all the registers. */
410 for (src = 0; src < 32; src++)
411 if (must_adjust[src])
412 fsr->regs[src] += frame_sp;
413
414 /* The saved value of the SP is always known. */
415 /* (we hope...) */
416 if (fsr->regs[SP_REGNUM] != 0
417 && fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
418 fprintf_unfiltered(gdb_stderr, "Bad saved SP value %x != %x, offset %x!\n",
419 fsr->regs[SP_REGNUM],
420 frame_sp - sp_offset, sp_offset);
421
422 fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
423
424 return (ip);
425 }
426
427 /* Given an ip value corresponding to the start of a function,
428 return the ip of the first instruction after the function
429 prologue. */
430
431 CORE_ADDR
432 skip_prologue (ip)
433 CORE_ADDR (ip);
434 {
435 struct frame_saved_regs saved_regs_dummy;
436 struct symtab_and_line sal;
437 CORE_ADDR limit;
438
439 sal = find_pc_line (ip, 0);
440 limit = (sal.end) ? sal.end : 0xffffffff;
441
442 return (examine_prologue (ip, limit, (FRAME_ADDR) 0, &saved_regs_dummy,
443 (struct frame_info *)0 ));
444 }
445
446 /* Put here the code to store, into a struct frame_saved_regs,
447 the addresses of the saved registers of frame described by FRAME_INFO.
448 This includes special registers such as pc and fp saved in special
449 ways in the stack frame. sp is even more special:
450 the address we return for it IS the sp for the next frame.
451
452 We cache the result of doing this in the frame_cache_obstack, since
453 it is fairly expensive. */
454
455 void
456 frame_find_saved_regs (fi, fsr)
457 struct frame_info *fi;
458 struct frame_saved_regs *fsr;
459 {
460 register struct frame_saved_regs *cache_fsr;
461 extern struct obstack frame_cache_obstack;
462 CORE_ADDR ip;
463 struct symtab_and_line sal;
464 CORE_ADDR limit;
465
466 if (!fi->fsr)
467 {
468 cache_fsr = (struct frame_saved_regs *)
469 obstack_alloc (&frame_cache_obstack,
470 sizeof (struct frame_saved_regs));
471 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
472 fi->fsr = cache_fsr;
473
474 /* Find the start and end of the function prologue. If the PC
475 is in the function prologue, we only consider the part that
476 has executed already. */
477
478 ip = get_pc_function_start (fi->pc);
479 sal = find_pc_line (ip, 0);
480 limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
481
482 /* This will fill in fields in *fi as well as in cache_fsr. */
483 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
484 }
485
486 if (fsr)
487 *fsr = *fi->fsr;
488 }
489
490 /* Return the address of the locals block for the frame
491 described by FI. Returns 0 if the address is unknown.
492 NOTE! Frame locals are referred to by negative offsets from the
493 argument pointer, so this is the same as frame_args_address(). */
494
495 CORE_ADDR
496 frame_locals_address (fi)
497 struct frame_info *fi;
498 {
499 struct frame_saved_regs fsr;
500
501 if (fi->args_pointer) /* Cached value is likely there. */
502 return fi->args_pointer;
503
504 /* Nope, generate it. */
505
506 get_frame_saved_regs (fi, &fsr);
507
508 return fi->args_pointer;
509 }
510
511 /* Return the address of the argument block for the frame
512 described by FI. Returns 0 if the address is unknown. */
513
514 CORE_ADDR
515 frame_args_address (fi)
516 struct frame_info *fi;
517 {
518 struct frame_saved_regs fsr;
519
520 if (fi->args_pointer) /* Cached value is likely there. */
521 return fi->args_pointer;
522
523 /* Nope, generate it. */
524
525 get_frame_saved_regs (fi, &fsr);
526
527 return fi->args_pointer;
528 }
529
530 /* Return the saved PC from this frame.
531
532 If the frame has a memory copy of SRP_REGNUM, use that. If not,
533 just use the register SRP_REGNUM itself. */
534
535 CORE_ADDR
536 frame_saved_pc (frame)
537 FRAME frame;
538 {
539 return read_next_frame_reg(frame, SRP_REGNUM);
540 }
541
542 #if 0
543 /* I believe this is all obsolete call dummy stuff. */
544 static int
545 pushed_size (prev_words, v)
546 int prev_words;
547 struct value *v;
548 {
549 switch (TYPE_CODE (VALUE_TYPE (v)))
550 {
551 case TYPE_CODE_VOID: /* Void type (values zero length) */
552
553 return 0; /* That was easy! */
554
555 case TYPE_CODE_PTR: /* Pointer type */
556 case TYPE_CODE_ENUM: /* Enumeration type */
557 case TYPE_CODE_INT: /* Integer type */
558 case TYPE_CODE_REF: /* C++ Reference types */
559 case TYPE_CODE_ARRAY: /* Array type, lower & upper bounds */
560
561 return 1;
562
563 case TYPE_CODE_FLT: /* Floating type */
564
565 if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
566 return 1;
567 else
568 /* Assume that it must be a double. */
569 if (prev_words & 1) /* at an odd-word boundary */
570 return 3; /* round to 8-byte boundary */
571 else
572 return 2;
573
574 case TYPE_CODE_STRUCT: /* C struct or Pascal record */
575 case TYPE_CODE_UNION: /* C union or Pascal variant part */
576
577 return (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
578
579 case TYPE_CODE_FUNC: /* Function type */
580 case TYPE_CODE_SET: /* Pascal sets */
581 case TYPE_CODE_RANGE: /* Range (integers within bounds) */
582 case TYPE_CODE_STRING: /* String type */
583 case TYPE_CODE_MEMBER: /* Member type */
584 case TYPE_CODE_METHOD: /* Method type */
585 /* Don't know how to pass these yet. */
586
587 case TYPE_CODE_UNDEF: /* Not used; catches errors */
588 default:
589 abort ();
590 }
591 }
592
593 static void
594 store_parm_word (address, val)
595 CORE_ADDR address;
596 int val;
597 {
598 write_memory (address, (char *)&val, 4);
599 }
600
601 static int
602 store_parm (prev_words, left_parm_addr, v)
603 unsigned int prev_words;
604 CORE_ADDR left_parm_addr;
605 struct value *v;
606 {
607 CORE_ADDR start = left_parm_addr + (prev_words * 4);
608 int *val_addr = (int *)VALUE_CONTENTS(v);
609
610 switch (TYPE_CODE (VALUE_TYPE (v)))
611 {
612 case TYPE_CODE_VOID: /* Void type (values zero length) */
613
614 return 0;
615
616 case TYPE_CODE_PTR: /* Pointer type */
617 case TYPE_CODE_ENUM: /* Enumeration type */
618 case TYPE_CODE_INT: /* Integer type */
619 case TYPE_CODE_ARRAY: /* Array type, lower & upper bounds */
620 case TYPE_CODE_REF: /* C++ Reference types */
621
622 store_parm_word (start, *val_addr);
623 return 1;
624
625 case TYPE_CODE_FLT: /* Floating type */
626
627 if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
628 {
629 store_parm_word (start, *val_addr);
630 return 1;
631 }
632 else
633 {
634 store_parm_word (start + ((prev_words & 1) * 4), val_addr[0]);
635 store_parm_word (start + ((prev_words & 1) * 4) + 4, val_addr[1]);
636 return 2 + (prev_words & 1);
637 }
638
639 case TYPE_CODE_STRUCT: /* C struct or Pascal record */
640 case TYPE_CODE_UNION: /* C union or Pascal variant part */
641
642 {
643 unsigned int words = (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
644 unsigned int word;
645
646 for (word = 0; word < words; word++)
647 store_parm_word (start + (word * 4), val_addr[word]);
648 return words;
649 }
650
651 default:
652 abort ();
653 }
654 }
655
656 /* This routine sets up all of the parameter values needed to make a pseudo
657 call. The name "push_parameters" is a misnomer on some archs,
658 because (on the m88k) most parameters generally end up being passed in
659 registers rather than on the stack. In this routine however, we do
660 end up storing *all* parameter values onto the stack (even if we will
661 realize later that some of these stores were unnecessary). */
662
663 #define FIRST_PARM_REGNUM 2
664
665 void
666 push_parameters (return_type, struct_conv, nargs, args)
667 struct type *return_type;
668 int struct_conv;
669 int nargs;
670 value *args;
671 {
672 int parm_num;
673 unsigned int p_words = 0;
674 CORE_ADDR left_parm_addr;
675
676 /* Start out by creating a space for the return value (if need be). We
677 only need to do this if the return value is a struct or union. If we
678 do make a space for a struct or union return value, then we must also
679 arrange for the base address of that space to go into r12, which is the
680 standard place to pass the address of the return value area to the
681 callee. Note that only structs and unions are returned in this fashion.
682 Ints, enums, pointers, and floats are returned into r2. Doubles are
683 returned into the register pair {r2,r3}. Note also that the space
684 reserved for a struct or union return value only has to be word aligned
685 (not double-word) but it is double-word aligned here anyway (just in
686 case that becomes important someday). */
687
688 switch (TYPE_CODE (return_type))
689 {
690 case TYPE_CODE_STRUCT:
691 case TYPE_CODE_UNION:
692 {
693 int return_bytes = ((TYPE_LENGTH (return_type) + 7) / 8) * 8;
694 CORE_ADDR rv_addr;
695
696 rv_addr = read_register (SP_REGNUM) - return_bytes;
697
698 write_register (SP_REGNUM, rv_addr); /* push space onto the stack */
699 write_register (SRA_REGNUM, rv_addr);/* set return value register */
700 break;
701 }
702 default: break;
703 }
704
705 /* Here we make a pre-pass on the whole parameter list to figure out exactly
706 how many words worth of stuff we are going to pass. */
707
708 for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
709 p_words += pushed_size (p_words, value_arg_coerce (args[parm_num]));
710
711 /* Now, check to see if we have to round up the number of parameter words
712 to get up to the next 8-bytes boundary. This may be necessary because
713 of the software convention to always keep the stack aligned on an 8-byte
714 boundary. */
715
716 if (p_words & 1)
717 p_words++; /* round to 8-byte boundary */
718
719 /* Now figure out the absolute address of the leftmost parameter, and update
720 the stack pointer to point at that address. */
721
722 left_parm_addr = read_register (SP_REGNUM) - (p_words * 4);
723 write_register (SP_REGNUM, left_parm_addr);
724
725 /* Now we can go through all of the parameters (in left-to-right order)
726 and write them to their parameter stack slots. Note that we are not
727 really "pushing" the parameter values. The stack space for these values
728 was already allocated above. Now we are just filling it up. */
729
730 for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
731 p_words +=
732 store_parm (p_words, left_parm_addr, value_arg_coerce (args[parm_num]));
733
734 /* Now that we are all done storing the parameter values into the stack, we
735 must go back and load up the parameter registers with the values from the
736 corresponding stack slots. Note that in the two cases of (a) gaps in the
737 parameter word sequence causes by (otherwise) misaligned doubles, and (b)
738 slots correcponding to structs or unions, the work we do here in loading
739 some parameter registers may be unnecessary, but who cares? */
740
741 for (p_words = 0; p_words < 8; p_words++)
742 {
743 write_register (FIRST_PARM_REGNUM + p_words,
744 read_memory_integer (left_parm_addr + (p_words * 4), 4));
745 }
746 }
747
748 void
749 collect_returned_value (rval, value_type, struct_return, nargs, args)
750 value *rval;
751 struct type *value_type;
752 int struct_return;
753 int nargs;
754 value *args;
755 {
756 char retbuf[REGISTER_BYTES];
757
758 memcpy (retbuf, registers, REGISTER_BYTES);
759 *rval = value_being_returned (value_type, retbuf, struct_return);
760 return;
761 }
762 #endif /* 0 */
763
764 /*start of lines added by kev*/
765
766 #define DUMMY_FRAME_SIZE 192
767
768 static void
769 write_word (sp, word)
770 CORE_ADDR sp;
771 unsigned LONGEST word;
772 {
773 register int len = REGISTER_SIZE;
774 char buffer[MAX_REGISTER_RAW_SIZE];
775
776 store_unsigned_integer (buffer, len, word);
777 write_memory (sp, buffer, len);
778 }
779
780 void
781 m88k_push_dummy_frame()
782 {
783 register CORE_ADDR sp = read_register (SP_REGNUM);
784 register int rn;
785 int offset;
786
787 sp -= DUMMY_FRAME_SIZE; /* allocate a bunch of space */
788
789 for (rn = 0, offset = 0; rn <= SP_REGNUM; rn++, offset+=4)
790 write_word (sp+offset, read_register(rn));
791
792 write_word (sp+offset, read_register (SXIP_REGNUM));
793 offset += 4;
794
795 write_word (sp+offset, read_register (SNIP_REGNUM));
796 offset += 4;
797
798 write_word (sp+offset, read_register (SFIP_REGNUM));
799 offset += 4;
800
801 write_word (sp+offset, read_register (PSR_REGNUM));
802 offset += 4;
803
804 write_word (sp+offset, read_register (FPSR_REGNUM));
805 offset += 4;
806
807 write_word (sp+offset, read_register (FPCR_REGNUM));
808 offset += 4;
809
810 write_register (SP_REGNUM, sp);
811 write_register (ACTUAL_FP_REGNUM, sp);
812 }
813
814 void
815 pop_frame ()
816 {
817 register FRAME frame = get_current_frame ();
818 register CORE_ADDR fp;
819 register int regnum;
820 struct frame_saved_regs fsr;
821 struct frame_info *fi;
822
823 fi = get_frame_info (frame);
824 fp = fi -> frame;
825 get_frame_saved_regs (fi, &fsr);
826
827 if (PC_IN_CALL_DUMMY (read_pc(), read_register(SP_REGNUM), FRAME_FP(fi)))
828 {
829 /* FIXME: I think get_frame_saved_regs should be handling this so
830 that we can deal with the saved registers properly (e.g. frame
831 1 is a call dummy, the user types "frame 2" and then "print $ps"). */
832 register CORE_ADDR sp = read_register (ACTUAL_FP_REGNUM);
833 int offset;
834
835 for (regnum = 0, offset = 0; regnum <= SP_REGNUM; regnum++, offset+=4)
836 (void) write_register (regnum, read_memory_integer (sp+offset, 4));
837
838 write_register (SXIP_REGNUM, read_memory_integer (sp+offset, 4));
839 offset += 4;
840
841 write_register (SNIP_REGNUM, read_memory_integer (sp+offset, 4));
842 offset += 4;
843
844 write_register (SFIP_REGNUM, read_memory_integer (sp+offset, 4));
845 offset += 4;
846
847 write_register (PSR_REGNUM, read_memory_integer (sp+offset, 4));
848 offset += 4;
849
850 write_register (FPSR_REGNUM, read_memory_integer (sp+offset, 4));
851 offset += 4;
852
853 write_register (FPCR_REGNUM, read_memory_integer (sp+offset, 4));
854 offset += 4;
855
856 }
857 else
858 {
859 for (regnum = FP_REGNUM ; regnum > 0 ; regnum--)
860 if (fsr.regs[regnum])
861 write_register (regnum,
862 read_memory_integer (fsr.regs[regnum], 4));
863 write_pc(frame_saved_pc(frame));
864 }
865 reinit_frame_cache ();
866 }