]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mep-tdep.c
LoongArch: Fix relaxation overflow caused by ld -z separate-code
[thirdparty/binutils-gdb.git] / gdb / mep-tdep.c
1 /* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
2
3 Copyright (C) 2001-2024 Free Software Foundation, Inc.
4
5 Contributed by Red Hat, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "extract-store-integer.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "cli/cli-cmds.h"
29 #include "gdbcore.h"
30 #include "value.h"
31 #include "inferior.h"
32 #include "dis-asm.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "language.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "remote.h"
39 #include "sim-regno.h"
40 #include "trad-frame.h"
41 #include "reggroups.h"
42 #include "elf-bfd.h"
43 #include "elf/mep.h"
44 #include "prologue-value.h"
45 #include "cgen/bitset.h"
46 #include "infcall.h"
47 #include "gdbarch.h"
48
49 /* Get the user's customized MeP coprocessor register names from
50 libopcodes. Make cgen names unique to prevent ODR conflicts with other
51 targets. */
52 #define GDB_CGEN_REMAP_PREFIX mep
53 #include "cgen-remap.h"
54 #include "opcodes/mep-desc.h"
55 #include "opcodes/mep-opc.h"
56
57 \f
58 /* The gdbarch_tdep structure. */
59
60 /* A quick recap for GDB hackers not familiar with the whole Toshiba
61 Media Processor story:
62
63 The MeP media engine is a configureable processor: users can design
64 their own coprocessors, implement custom instructions, adjust cache
65 sizes, select optional standard facilities like add-and-saturate
66 instructions, and so on. Then, they can build custom versions of
67 the GNU toolchain to support their customized chips. The
68 MeP-Integrator program (see utils/mep) takes a GNU toolchain source
69 tree, and a config file pointing to various files provided by the
70 user describing their customizations, and edits the source tree to
71 produce a compiler that can generate their custom instructions, an
72 assembler that can assemble them and recognize their custom
73 register names, and so on.
74
75 Furthermore, the user can actually specify several of these custom
76 configurations, called 'me_modules', and get a toolchain which can
77 produce code for any of them, given a compiler/assembler switch;
78 you say something like 'gcc -mconfig=mm_max' to generate code for
79 the me_module named 'mm_max'.
80
81 GDB, in particular, needs to:
82
83 - use the coprocessor control register names provided by the user
84 in their hardware description, in expressions, 'info register'
85 output, and disassembly,
86
87 - know the number, names, and types of the coprocessor's
88 general-purpose registers, adjust the 'info all-registers' output
89 accordingly, and print error messages if the user refers to one
90 that doesn't exist
91
92 - allow access to the control bus space only when the configuration
93 actually has a control bus, and recognize which regions of the
94 control bus space are actually populated,
95
96 - disassemble using the user's provided mnemonics for their custom
97 instructions, and
98
99 - recognize whether the $hi and $lo registers are present, and
100 allow access to them only when they are actually there.
101
102 There are three sources of information about what sort of me_module
103 we're actually dealing with:
104
105 - A MeP executable file indicates which me_module it was compiled
106 for, and libopcodes has tables describing each module. So, given
107 an executable file, we can find out about the processor it was
108 compiled for.
109
110 - There are SID command-line options to select a particular
111 me_module, overriding the one specified in the ELF file. SID
112 provides GDB with a fake read-only register, 'module', which
113 indicates which me_module GDB is communicating with an instance
114 of.
115
116 - There are SID command-line options to enable or disable certain
117 optional processor features, overriding the defaults for the
118 selected me_module. The MeP $OPT register indicates which
119 options are present on the current processor. */
120
121
122 struct mep_gdbarch_tdep : gdbarch_tdep_base
123 {
124 /* A CGEN cpu descriptor for this BFD architecture and machine.
125
126 Note: this is *not* customized for any particular me_module; the
127 MeP libopcodes machinery actually puts off module-specific
128 customization until the last minute. So this contains
129 information about all supported me_modules. */
130 CGEN_CPU_DESC cpu_desc = nullptr;
131
132 /* The me_module index from the ELF file we used to select this
133 architecture, or CONFIG_NONE if there was none.
134
135 Note that we should prefer to use the me_module number available
136 via the 'module' register, whenever we're actually talking to a
137 real target.
138
139 In the absence of live information, we'd like to get the
140 me_module number from the ELF file. But which ELF file: the
141 executable file, the core file, ... ? The answer is, "the last
142 ELF file we used to set the current architecture". Thus, we
143 create a separate instance of the gdbarch structure for each
144 me_module value mep_gdbarch_init sees, and store the me_module
145 value from the ELF file here. */
146 CONFIG_ATTR me_module {};
147 };
148
149
150 \f
151 /* Getting me_module information from the CGEN tables. */
152
153
154 /* Find an entry in the DESC's hardware table whose name begins with
155 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
156 intersect with GENERIC_ISA_MASK. If there is no matching entry,
157 return zero. */
158 static const CGEN_HW_ENTRY *
159 find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
160 const char *prefix,
161 CGEN_BITSET *copro_isa_mask,
162 CGEN_BITSET *generic_isa_mask)
163 {
164 int prefix_len = strlen (prefix);
165 int i;
166
167 for (i = 0; i < desc->hw_table.num_entries; i++)
168 {
169 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
170 if (strncmp (prefix, hw->name, prefix_len) == 0)
171 {
172 CGEN_BITSET *hw_isa_mask
173 = ((CGEN_BITSET *)
174 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
175
176 if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
177 && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
178 return hw;
179 }
180 }
181
182 return 0;
183 }
184
185
186 /* Find an entry in DESC's hardware table whose type is TYPE. Return
187 zero if there is none. */
188 static const CGEN_HW_ENTRY *
189 find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
190 {
191 int i;
192
193 for (i = 0; i < desc->hw_table.num_entries; i++)
194 {
195 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
196
197 if (hw->type == type)
198 return hw;
199 }
200
201 return 0;
202 }
203
204
205 /* Return the CGEN hardware table entry for the coprocessor register
206 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
207 no such register set, return zero. If ME_MODULE is the generic
208 me_module CONFIG_NONE, return the table entry for the register set
209 whose hardware type is GENERIC_TYPE. */
210 static const CGEN_HW_ENTRY *
211 me_module_register_set (CONFIG_ATTR me_module,
212 const char *prefix,
213 CGEN_HW_TYPE generic_type)
214 {
215 /* This is kind of tricky, because the hardware table is constructed
216 in a way that isn't very helpful. Perhaps we can fix that, but
217 here's how it works at the moment:
218
219 The configuration map, `mep_config_map', is indexed by me_module
220 number, and indicates which coprocessor and core ISAs that
221 me_module supports. The 'core_isa' mask includes all the core
222 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
223 The entry for the generic me_module, CONFIG_NONE, has an empty
224 'cop_isa', and its 'core_isa' selects only the standard MeP
225 instruction set.
226
227 The CGEN CPU descriptor's hardware table, desc->hw_table, has
228 entries for all the register sets, for all me_modules. Each
229 entry has a mask indicating which ISAs use that register set.
230 So, if an me_module supports some coprocessor ISA, we can find
231 applicable register sets by scanning the hardware table for
232 register sets whose masks include (at least some of) those ISAs.
233
234 Each hardware table entry also has a name, whose prefix says
235 whether it's a general-purpose ("h-cr") or control ("h-ccr")
236 coprocessor register set. It might be nicer to have an attribute
237 indicating what sort of register set it was, that we could use
238 instead of pattern-matching on the name.
239
240 When there is no hardware table entry whose mask includes a
241 particular coprocessor ISA and whose name starts with a given
242 prefix, then that means that that coprocessor doesn't have any
243 registers of that type. In such cases, this function must return
244 a null pointer.
245
246 Coprocessor register sets' masks may or may not include the core
247 ISA for the me_module they belong to. Those generated by a2cgen
248 do, but the sample me_module included in the unconfigured tree,
249 'ccfx', does not.
250
251 There are generic coprocessor register sets, intended only for
252 use with the generic me_module. Unfortunately, their masks
253 include *all* ISAs --- even those for coprocessors that don't
254 have such register sets. This makes detecting the case where a
255 coprocessor lacks a particular register set more complicated.
256
257 So, here's the approach we take:
258
259 - For CONFIG_NONE, we return the generic coprocessor register set.
260
261 - For any other me_module, we search for a register set whose
262 mask contains any of the me_module's coprocessor ISAs,
263 specifically excluding the generic coprocessor register sets. */
264
265 mep_gdbarch_tdep *tdep
266 = gdbarch_tdep<mep_gdbarch_tdep> (current_inferior ()->arch ());
267 CGEN_CPU_DESC desc = tdep->cpu_desc;
268 const CGEN_HW_ENTRY *hw;
269
270 if (me_module == CONFIG_NONE)
271 hw = find_hw_entry_by_type (desc, generic_type);
272 else
273 {
274 CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
275 CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
276 CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
277 CGEN_BITSET *cop_and_core;
278
279 /* The coprocessor ISAs include the ISA for the specific core which
280 has that coprocessor. */
281 cop_and_core = cgen_bitset_copy (cop);
282 cgen_bitset_union (cop, core, cop_and_core);
283 hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
284 }
285
286 return hw;
287 }
288
289
290 /* Given a hardware table entry HW representing a register set, return
291 a pointer to the keyword table with all the register names. If HW
292 is NULL, return NULL, to propagate the "no such register set" info
293 along. */
294 static CGEN_KEYWORD *
295 register_set_keyword_table (const CGEN_HW_ENTRY *hw)
296 {
297 if (! hw)
298 return NULL;
299
300 /* Check that HW is actually a keyword table. */
301 gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
302
303 /* The 'asm_data' field of a register set's hardware table entry
304 refers to a keyword table. */
305 return (CGEN_KEYWORD *) hw->asm_data;
306 }
307
308
309 /* Given a keyword table KEYWORD and a register number REGNUM, return
310 the name of the register, or "" if KEYWORD contains no register
311 whose number is REGNUM. */
312 static const char *
313 register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
314 {
315 const CGEN_KEYWORD_ENTRY *entry
316 = cgen_keyword_lookup_value (keyword_table, regnum);
317
318 if (entry)
319 {
320 char *name = entry->name;
321
322 /* The CGEN keyword entries for register names include the
323 leading $, which appears in MeP assembly as well as in GDB.
324 But we don't want to return that; GDB core code adds that
325 itself. */
326 if (name[0] == '$')
327 name++;
328
329 return name;
330 }
331 else
332 return "";
333 }
334
335
336 /* Masks for option bits in the OPT special-purpose register. */
337 enum {
338 MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
339 MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
340 MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
341 MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
342 MEP_OPT_CLP = 1 << 21, /* clip instruction option */
343 MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
344 MEP_OPT_AVE = 1 << 19, /* average instruction option */
345 MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
346 MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
347 MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
348 MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
349 MEP_OPT_COP = 1 << 4, /* coprocessor option */
350 MEP_OPT_DSP = 1 << 2, /* DSP option */
351 MEP_OPT_UCI = 1 << 1, /* UCI option */
352 MEP_OPT_DBG = 1 << 0, /* DBG function option */
353 };
354
355
356 /* Given the option_mask value for a particular entry in
357 mep_config_map, produce the value the processor's OPT register
358 would use to represent the same set of options. */
359 static unsigned int
360 opt_from_option_mask (unsigned int option_mask)
361 {
362 /* A table mapping OPT register bits onto CGEN config map option
363 bits. */
364 struct {
365 unsigned int opt_bit, option_mask_bit;
366 } bits[] = {
367 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
368 { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
369 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
370 { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
371 { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
372 { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
373 { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
374 { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
375 { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
376 { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
377 { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
378 { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
379 { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
380 };
381
382 int i;
383 unsigned int opt = 0;
384
385 for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
386 if (option_mask & bits[i].option_mask_bit)
387 opt |= bits[i].opt_bit;
388
389 return opt;
390 }
391
392
393 /* Return the value the $OPT register would use to represent the set
394 of options for ME_MODULE. */
395 static unsigned int
396 me_module_opt (CONFIG_ATTR me_module)
397 {
398 return opt_from_option_mask (mep_config_map[me_module].option_mask);
399 }
400
401
402 /* Return the width of ME_MODULE's coprocessor data bus, in bits.
403 This is either 32 or 64. */
404 static int
405 me_module_cop_data_bus_width (CONFIG_ATTR me_module)
406 {
407 if (mep_config_map[me_module].option_mask
408 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
409 return 64;
410 else
411 return 32;
412 }
413
414
415 /* Return true if ME_MODULE is big-endian, false otherwise. */
416 static int
417 me_module_big_endian (CONFIG_ATTR me_module)
418 {
419 return mep_config_map[me_module].big_endian;
420 }
421
422
423 /* Return the name of ME_MODULE, or NULL if it has no name. */
424 static const char *
425 me_module_name (CONFIG_ATTR me_module)
426 {
427 /* The default me_module has "" as its name, but it's easier for our
428 callers to test for NULL. */
429 if (! mep_config_map[me_module].name
430 || mep_config_map[me_module].name[0] == '\0')
431 return NULL;
432 else
433 return mep_config_map[me_module].name;
434 }
435 \f
436 /* Register set. */
437
438
439 /* The MeP spec defines the following registers:
440 16 general purpose registers (r0-r15)
441 32 control/special registers (csr0-csr31)
442 32 coprocessor general-purpose registers (c0 -- c31)
443 64 coprocessor control registers (ccr0 -- ccr63)
444
445 For the raw registers, we assign numbers here explicitly, instead
446 of letting the enum assign them for us; the numbers are a matter of
447 external protocol, and shouldn't shift around as things are edited.
448
449 We access the control/special registers via pseudoregisters, to
450 enforce read-only portions that some registers have.
451
452 We access the coprocessor general purpose and control registers via
453 pseudoregisters, to make sure they appear in the proper order in
454 the 'info all-registers' command (which uses the register number
455 ordering), and also to allow them to be renamed and resized
456 depending on the me_module in use.
457
458 The MeP allows coprocessor general-purpose registers to be either
459 32 or 64 bits long, depending on the configuration. Since we don't
460 want the format of the 'g' packet to vary from one core to another,
461 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
462 types of registers to change (see the implementation of
463 register_type), so we have four banks of pseudoregisters for the
464 coprocessor gprs --- 32-bit vs. 64-bit, and integer
465 vs. floating-point --- and we show or hide them depending on the
466 configuration. */
467 enum
468 {
469 MEP_FIRST_RAW_REGNUM = 0,
470
471 MEP_FIRST_GPR_REGNUM = 0,
472 MEP_R0_REGNUM = 0,
473 MEP_R1_REGNUM = 1,
474 MEP_R2_REGNUM = 2,
475 MEP_R3_REGNUM = 3,
476 MEP_R4_REGNUM = 4,
477 MEP_R5_REGNUM = 5,
478 MEP_R6_REGNUM = 6,
479 MEP_R7_REGNUM = 7,
480 MEP_R8_REGNUM = 8,
481 MEP_R9_REGNUM = 9,
482 MEP_R10_REGNUM = 10,
483 MEP_R11_REGNUM = 11,
484 MEP_R12_REGNUM = 12,
485 MEP_FP_REGNUM = MEP_R8_REGNUM,
486 MEP_R13_REGNUM = 13,
487 MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
488 MEP_R14_REGNUM = 14,
489 MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
490 MEP_R15_REGNUM = 15,
491 MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
492 MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
493
494 /* The raw control registers. These are the values as received via
495 the remote protocol, directly from the target; we only let user
496 code touch the via the pseudoregisters, which enforce read-only
497 bits. */
498 MEP_FIRST_RAW_CSR_REGNUM = 16,
499 MEP_RAW_PC_REGNUM = 16, /* Program counter */
500 MEP_RAW_LP_REGNUM = 17, /* Link pointer */
501 MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
502 MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
503 MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
504 MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
505 MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
506 MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
507 MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
508 MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
509 MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
510 MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
511 MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
512 MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
513 MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
514 MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
515 MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
516 MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
517 MEP_RAW_TMP_REGNUM = 34, /* Temporary */
518 MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
519 MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
520 MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
521 MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
522 MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
523 MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
524 MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
525 MEP_RAW_OPT_REGNUM = 42, /* Raw options */
526 MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
527 MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
528 MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
529 MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
530 MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
531 MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
532
533 /* The raw coprocessor general-purpose registers. These are all 64
534 bits wide. */
535 MEP_FIRST_RAW_CR_REGNUM = 48,
536 MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
537
538 MEP_FIRST_RAW_CCR_REGNUM = 80,
539 MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
540
541 /* The module number register. This is the index of the me_module
542 of which the current target is an instance. (This is not a real
543 MeP-specified register; it's provided by SID.) */
544 MEP_MODULE_REGNUM,
545
546 MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
547
548 MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
549
550 /* Pseudoregisters. See mep_pseudo_register_read and
551 mep_pseudo_register_write. */
552 MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
553
554 /* We have a pseudoregister for every control/special register, to
555 implement registers with read-only bits. */
556 MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
557 MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
558 MEP_LP_REGNUM, /* Link pointer */
559 MEP_SAR_REGNUM, /* shift amount */
560 MEP_CSR3_REGNUM, /* csr3: reserved */
561 MEP_RPB_REGNUM, /* repeat begin address */
562 MEP_RPE_REGNUM, /* Repeat end address */
563 MEP_RPC_REGNUM, /* Repeat count */
564 MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
565 MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
566 MEP_CSR9_REGNUM, /* csr3: reserved */
567 MEP_CSR10_REGNUM, /* csr3: reserved */
568 MEP_CSR11_REGNUM, /* csr3: reserved */
569 MEP_MB0_REGNUM, /* modulo begin address 0 */
570 MEP_ME0_REGNUM, /* modulo end address 0 */
571 MEP_MB1_REGNUM, /* modulo begin address 1 */
572 MEP_ME1_REGNUM, /* modulo end address 1 */
573 MEP_PSW_REGNUM, /* program status word */
574 MEP_ID_REGNUM, /* processor ID/revision */
575 MEP_TMP_REGNUM, /* Temporary */
576 MEP_EPC_REGNUM, /* Exception program counter */
577 MEP_EXC_REGNUM, /* exception cause */
578 MEP_CFG_REGNUM, /* processor configuration*/
579 MEP_CSR22_REGNUM, /* csr3: reserved */
580 MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
581 MEP_DBG_REGNUM, /* debug */
582 MEP_DEPC_REGNUM, /* Debug exception PC */
583 MEP_OPT_REGNUM, /* options */
584 MEP_RCFG_REGNUM, /* local ram config */
585 MEP_CCFG_REGNUM, /* cache config */
586 MEP_CSR29_REGNUM, /* csr3: reserved */
587 MEP_CSR30_REGNUM, /* csr3: reserved */
588 MEP_CSR31_REGNUM, /* csr3: reserved */
589 MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
590
591 /* The 32-bit integer view of the coprocessor GPR's. */
592 MEP_FIRST_CR32_REGNUM,
593 MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
594
595 /* The 32-bit floating-point view of the coprocessor GPR's. */
596 MEP_FIRST_FP_CR32_REGNUM,
597 MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
598
599 /* The 64-bit integer view of the coprocessor GPR's. */
600 MEP_FIRST_CR64_REGNUM,
601 MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
602
603 /* The 64-bit floating-point view of the coprocessor GPR's. */
604 MEP_FIRST_FP_CR64_REGNUM,
605 MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
606
607 MEP_FIRST_CCR_REGNUM,
608 MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
609
610 MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
611
612 MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
613
614 MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
615 };
616
617
618 #define IN_SET(set, n) \
619 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
620
621 #define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
622 #define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
623 #define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
624 #define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
625
626 #define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
627 #define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
628 #define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
629 #define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
630 #define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
631 #define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
632 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
633 #define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
634
635 #define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
636 #define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
637
638 #define NUM_REGS_IN_SET(set) \
639 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
640
641 #define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
642 #define MEP_PSW_SIZE (4) /* Size of the PSW register. */
643 #define MEP_LP_SIZE (4) /* Size of the LP register. */
644
645
646 /* Many of the control/special registers contain bits that cannot be
647 written to; some are entirely read-only. So we present them all as
648 pseudoregisters.
649
650 The following table describes the special properties of each CSR. */
651 struct mep_csr_register
652 {
653 /* The number of this CSR's raw register. */
654 int raw;
655
656 /* The number of this CSR's pseudoregister. */
657 int pseudo;
658
659 /* A mask of the bits that are writeable: if a bit is set here, then
660 it can be modified; if the bit is clear, then it cannot. */
661 LONGEST writeable_bits;
662 };
663
664
665 /* mep_csr_registers[i] describes the i'th CSR.
666 We just list the register numbers here explicitly to help catch
667 typos. */
668 #define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
669 static mep_csr_register mep_csr_registers[] = {
670 { CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
671 { CSR(LP), 0xffffffff },
672 { CSR(SAR), 0x0000003f },
673 { CSR(CSR3), 0xffffffff },
674 { CSR(RPB), 0xfffffffe },
675 { CSR(RPE), 0xffffffff },
676 { CSR(RPC), 0xffffffff },
677 { CSR(HI), 0xffffffff },
678 { CSR(LO), 0xffffffff },
679 { CSR(CSR9), 0xffffffff },
680 { CSR(CSR10), 0xffffffff },
681 { CSR(CSR11), 0xffffffff },
682 { CSR(MB0), 0x0000ffff },
683 { CSR(ME0), 0x0000ffff },
684 { CSR(MB1), 0x0000ffff },
685 { CSR(ME1), 0x0000ffff },
686 { CSR(PSW), 0x000003ff },
687 { CSR(ID), 0x00000000 },
688 { CSR(TMP), 0xffffffff },
689 { CSR(EPC), 0xffffffff },
690 { CSR(EXC), 0x000030f0 },
691 { CSR(CFG), 0x00c0001b },
692 { CSR(CSR22), 0xffffffff },
693 { CSR(NPC), 0xffffffff },
694 { CSR(DBG), 0x00000580 },
695 { CSR(DEPC), 0xffffffff },
696 { CSR(OPT), 0x00000000 },
697 { CSR(RCFG), 0x00000000 },
698 { CSR(CCFG), 0x00000000 },
699 { CSR(CSR29), 0xffffffff },
700 { CSR(CSR30), 0xffffffff },
701 { CSR(CSR31), 0xffffffff },
702 };
703
704
705 /* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
706 the number of the corresponding pseudoregister. Otherwise,
707 mep_raw_to_pseudo[R] == R. */
708 static int mep_raw_to_pseudo[MEP_NUM_REGS];
709
710 /* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
711 is the number of the underlying raw register. Otherwise
712 mep_pseudo_to_raw[R] == R. */
713 static int mep_pseudo_to_raw[MEP_NUM_REGS];
714
715 static void
716 mep_init_pseudoregister_maps (void)
717 {
718 int i;
719
720 /* Verify that mep_csr_registers covers all the CSRs, in order. */
721 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
722 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
723
724 /* Verify that the raw and pseudo ranges have matching sizes. */
725 gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
726 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
727 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
728 gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
729
730 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
731 {
732 struct mep_csr_register *r = &mep_csr_registers[i];
733
734 gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
735 gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
736 }
737
738 /* Set up the initial raw<->pseudo mappings. */
739 for (i = 0; i < MEP_NUM_REGS; i++)
740 {
741 mep_raw_to_pseudo[i] = i;
742 mep_pseudo_to_raw[i] = i;
743 }
744
745 /* Add the CSR raw<->pseudo mappings. */
746 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
747 {
748 struct mep_csr_register *r = &mep_csr_registers[i];
749
750 mep_raw_to_pseudo[r->raw] = r->pseudo;
751 mep_pseudo_to_raw[r->pseudo] = r->raw;
752 }
753
754 /* Add the CR raw<->pseudo mappings. */
755 for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
756 {
757 int raw = MEP_FIRST_RAW_CR_REGNUM + i;
758 int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
759 int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
760 int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
761 int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
762
763 /* Truly, the raw->pseudo mapping depends on the current module.
764 But we use the raw->pseudo mapping when we read the debugging
765 info; at that point, we don't know what module we'll actually
766 be running yet. So, we always supply the 64-bit register
767 numbers; GDB knows how to pick a smaller value out of a
768 larger register properly. */
769 mep_raw_to_pseudo[raw] = pseudo64;
770 mep_pseudo_to_raw[pseudo32] = raw;
771 mep_pseudo_to_raw[pseudofp32] = raw;
772 mep_pseudo_to_raw[pseudo64] = raw;
773 mep_pseudo_to_raw[pseudofp64] = raw;
774 }
775
776 /* Add the CCR raw<->pseudo mappings. */
777 for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
778 {
779 int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
780 int pseudo = MEP_FIRST_CCR_REGNUM + i;
781 mep_raw_to_pseudo[raw] = pseudo;
782 mep_pseudo_to_raw[pseudo] = raw;
783 }
784 }
785
786
787 static int
788 mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
789 {
790 /* The debug info uses the raw register numbers. */
791 if (debug_reg >= 0 && debug_reg < ARRAY_SIZE (mep_raw_to_pseudo))
792 return mep_raw_to_pseudo[debug_reg];
793 return -1;
794 }
795
796
797 /* Return the size, in bits, of the coprocessor pseudoregister
798 numbered PSEUDO. */
799 static int
800 mep_pseudo_cr_size (int pseudo)
801 {
802 if (IS_CR32_REGNUM (pseudo)
803 || IS_FP_CR32_REGNUM (pseudo))
804 return 32;
805 else if (IS_CR64_REGNUM (pseudo)
806 || IS_FP_CR64_REGNUM (pseudo))
807 return 64;
808 else
809 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
810 }
811
812
813 /* If the coprocessor pseudoregister numbered PSEUDO is a
814 floating-point register, return non-zero; if it is an integer
815 register, return zero. */
816 static int
817 mep_pseudo_cr_is_float (int pseudo)
818 {
819 return (IS_FP_CR32_REGNUM (pseudo)
820 || IS_FP_CR64_REGNUM (pseudo));
821 }
822
823
824 /* Given a coprocessor GPR pseudoregister number, return its index
825 within that register bank. */
826 static int
827 mep_pseudo_cr_index (int pseudo)
828 {
829 if (IS_CR32_REGNUM (pseudo))
830 return pseudo - MEP_FIRST_CR32_REGNUM;
831 else if (IS_FP_CR32_REGNUM (pseudo))
832 return pseudo - MEP_FIRST_FP_CR32_REGNUM;
833 else if (IS_CR64_REGNUM (pseudo))
834 return pseudo - MEP_FIRST_CR64_REGNUM;
835 else if (IS_FP_CR64_REGNUM (pseudo))
836 return pseudo - MEP_FIRST_FP_CR64_REGNUM;
837 else
838 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
839 }
840
841
842 /* Return the me_module index describing the current target.
843
844 If the current target has registers (e.g., simulator, remote
845 target), then this uses the value of the 'module' register, raw
846 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
847 from the ELF header's e_flags field of the current executable
848 file. */
849 static CONFIG_ATTR
850 current_me_module (void)
851 {
852 if (target_has_registers ())
853 {
854 ULONGEST regval;
855 regcache_cooked_read_unsigned (get_thread_regcache (inferior_thread ()),
856 MEP_MODULE_REGNUM, &regval);
857 return (CONFIG_ATTR) regval;
858 }
859 else
860 {
861 mep_gdbarch_tdep *tdep
862 = gdbarch_tdep<mep_gdbarch_tdep> (current_inferior ()->arch ());
863 return tdep->me_module;
864 }
865 }
866
867
868 /* Return the set of options for the current target, in the form that
869 the OPT register would use.
870
871 If the current target has registers (e.g., simulator, remote
872 target), then this is the actual value of the OPT register. If the
873 current target does not have registers (e.g., an executable file),
874 then use the 'module_opt' field we computed when we build the
875 gdbarch object for this module. */
876 static unsigned int
877 current_options (void)
878 {
879 if (target_has_registers ())
880 {
881 ULONGEST regval;
882 regcache_cooked_read_unsigned (get_thread_regcache (inferior_thread ()),
883 MEP_OPT_REGNUM, &regval);
884 return regval;
885 }
886 else
887 return me_module_opt (current_me_module ());
888 }
889
890
891 /* Return the width of the current me_module's coprocessor data bus,
892 in bits. This is either 32 or 64. */
893 static int
894 current_cop_data_bus_width (void)
895 {
896 return me_module_cop_data_bus_width (current_me_module ());
897 }
898
899
900 /* Return the keyword table of coprocessor general-purpose register
901 names appropriate for the me_module we're dealing with. */
902 static CGEN_KEYWORD *
903 current_cr_names (void)
904 {
905 const CGEN_HW_ENTRY *hw
906 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
907
908 return register_set_keyword_table (hw);
909 }
910
911
912 /* Return non-zero if the coprocessor general-purpose registers are
913 floating-point values, zero otherwise. */
914 static int
915 current_cr_is_float (void)
916 {
917 const CGEN_HW_ENTRY *hw
918 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
919
920 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
921 }
922
923
924 /* Return the keyword table of coprocessor control register names
925 appropriate for the me_module we're dealing with. */
926 static CGEN_KEYWORD *
927 current_ccr_names (void)
928 {
929 const CGEN_HW_ENTRY *hw
930 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
931
932 return register_set_keyword_table (hw);
933 }
934
935
936 static const char *
937 mep_register_name (struct gdbarch *gdbarch, int regnr)
938 {
939 /* General-purpose registers. */
940 static const char *gpr_names[] = {
941 "r0", "r1", "r2", "r3", /* 0 */
942 "r4", "r5", "r6", "r7", /* 4 */
943 "fp", "r9", "r10", "r11", /* 8 */
944 "r12", "tp", "gp", "sp" /* 12 */
945 };
946
947 /* Special-purpose registers. */
948 static const char *csr_names[] = {
949 "pc", "lp", "sar", "", /* 0 csr3: reserved */
950 "rpb", "rpe", "rpc", "hi", /* 4 */
951 "lo", "", "", "", /* 8 csr9-csr11: reserved */
952 "mb0", "me0", "mb1", "me1", /* 12 */
953
954 "psw", "id", "tmp", "epc", /* 16 */
955 "exc", "cfg", "", "npc", /* 20 csr22: reserved */
956 "dbg", "depc", "opt", "rcfg", /* 24 */
957 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */
958 };
959
960 if (IS_GPR_REGNUM (regnr))
961 return gpr_names[regnr - MEP_R0_REGNUM];
962 else if (IS_CSR_REGNUM (regnr))
963 {
964 /* The 'hi' and 'lo' registers are only present on processors
965 that have the 'MUL' or 'DIV' instructions enabled. */
966 if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
967 && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
968 return "";
969
970 return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
971 }
972 else if (IS_CR_REGNUM (regnr))
973 {
974 CGEN_KEYWORD *names;
975 int cr_size;
976 int cr_is_float;
977
978 /* Does this module have a coprocessor at all? */
979 if (! (current_options () & MEP_OPT_COP))
980 return "";
981
982 names = current_cr_names ();
983 if (! names)
984 /* This module's coprocessor has no general-purpose registers. */
985 return "";
986
987 cr_size = current_cop_data_bus_width ();
988 if (cr_size != mep_pseudo_cr_size (regnr))
989 /* This module's coprocessor's GPR's are of a different size. */
990 return "";
991
992 cr_is_float = current_cr_is_float ();
993 /* The extra ! operators ensure we get boolean equality, not
994 numeric equality. */
995 if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
996 /* This module's coprocessor's GPR's are of a different type. */
997 return "";
998
999 return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
1000 }
1001 else if (IS_CCR_REGNUM (regnr))
1002 {
1003 /* Does this module have a coprocessor at all? */
1004 if (! (current_options () & MEP_OPT_COP))
1005 return "";
1006
1007 {
1008 CGEN_KEYWORD *names = current_ccr_names ();
1009
1010 if (! names)
1011 /* This me_module's coprocessor has no control registers. */
1012 return "";
1013
1014 return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1015 }
1016 }
1017
1018 /* It might be nice to give the 'module' register a name, but that
1019 would affect the output of 'info all-registers', which would
1020 disturb the test suites. So we leave it invisible. */
1021 else
1022 return "";
1023 }
1024
1025
1026 /* Custom register groups for the MeP. */
1027 static const reggroup *mep_csr_reggroup; /* control/special */
1028 static const reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
1029 static const reggroup *mep_ccr_reggroup; /* coprocessor control */
1030
1031
1032 static int
1033 mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1034 const struct reggroup *group)
1035 {
1036 /* Filter reserved or unused register numbers. */
1037 {
1038 const char *name = mep_register_name (gdbarch, regnum);
1039
1040 if (! name || name[0] == '\0')
1041 return 0;
1042 }
1043
1044 /* We could separate the GPRs and the CSRs. Toshiba has approved of
1045 the existing behavior, so we'd want to run that by them. */
1046 if (group == general_reggroup)
1047 return (IS_GPR_REGNUM (regnum)
1048 || IS_CSR_REGNUM (regnum));
1049
1050 /* Everything is in the 'all' reggroup, except for the raw CSR's. */
1051 else if (group == all_reggroup)
1052 return (IS_GPR_REGNUM (regnum)
1053 || IS_CSR_REGNUM (regnum)
1054 || IS_CR_REGNUM (regnum)
1055 || IS_CCR_REGNUM (regnum));
1056
1057 /* All registers should be saved and restored, except for the raw
1058 CSR's.
1059
1060 This is probably right if the coprocessor is something like a
1061 floating-point unit, but would be wrong if the coprocessor is
1062 something that does I/O, where register accesses actually cause
1063 externally-visible actions. But I get the impression that the
1064 coprocessor isn't supposed to do things like that --- you'd use a
1065 hardware engine, perhaps. */
1066 else if (group == save_reggroup || group == restore_reggroup)
1067 return (IS_GPR_REGNUM (regnum)
1068 || IS_CSR_REGNUM (regnum)
1069 || IS_CR_REGNUM (regnum)
1070 || IS_CCR_REGNUM (regnum));
1071
1072 else if (group == mep_csr_reggroup)
1073 return IS_CSR_REGNUM (regnum);
1074 else if (group == mep_cr_reggroup)
1075 return IS_CR_REGNUM (regnum);
1076 else if (group == mep_ccr_reggroup)
1077 return IS_CCR_REGNUM (regnum);
1078 else
1079 return 0;
1080 }
1081
1082
1083 static struct type *
1084 mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1085 {
1086 /* Coprocessor general-purpose registers may be either 32 or 64 bits
1087 long. So for them, the raw registers are always 64 bits long (to
1088 keep the 'g' packet format fixed), and the pseudoregisters vary
1089 in length. */
1090 if (IS_RAW_CR_REGNUM (reg_nr))
1091 return builtin_type (gdbarch)->builtin_uint64;
1092
1093 /* Since GDB doesn't allow registers to change type, we have two
1094 banks of pseudoregisters for the coprocessor general-purpose
1095 registers: one that gives a 32-bit view, and one that gives a
1096 64-bit view. We hide or show one or the other depending on the
1097 current module. */
1098 if (IS_CR_REGNUM (reg_nr))
1099 {
1100 int size = mep_pseudo_cr_size (reg_nr);
1101 if (size == 32)
1102 {
1103 if (mep_pseudo_cr_is_float (reg_nr))
1104 return builtin_type (gdbarch)->builtin_float;
1105 else
1106 return builtin_type (gdbarch)->builtin_uint32;
1107 }
1108 else if (size == 64)
1109 {
1110 if (mep_pseudo_cr_is_float (reg_nr))
1111 return builtin_type (gdbarch)->builtin_double;
1112 else
1113 return builtin_type (gdbarch)->builtin_uint64;
1114 }
1115 else
1116 gdb_assert_not_reached ("unexpected cr size");
1117 }
1118
1119 /* All other registers are 32 bits long. */
1120 else
1121 return builtin_type (gdbarch)->builtin_uint32;
1122 }
1123
1124 static enum register_status
1125 mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1126 readable_regcache *regcache,
1127 int cookednum,
1128 gdb_byte *buf)
1129 {
1130 enum register_status status;
1131 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1132 /* Read the raw register into a 64-bit buffer, and then return the
1133 appropriate end of that buffer. */
1134 int rawnum = mep_pseudo_to_raw[cookednum];
1135 gdb_byte buf64[8];
1136
1137 gdb_assert (register_type (gdbarch, rawnum)->length () == sizeof (buf64));
1138 gdb_assert (register_type (gdbarch, cookednum)->length () == 4);
1139 status = regcache->raw_read (rawnum, buf64);
1140 if (status == REG_VALID)
1141 {
1142 /* Slow, but legible. */
1143 store_unsigned_integer (buf, 4, byte_order,
1144 extract_unsigned_integer (buf64, 8, byte_order));
1145 }
1146 return status;
1147 }
1148
1149
1150 static enum register_status
1151 mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1152 readable_regcache *regcache,
1153 int cookednum,
1154 gdb_byte *buf)
1155 {
1156 return regcache->raw_read (mep_pseudo_to_raw[cookednum], buf);
1157 }
1158
1159
1160 static enum register_status
1161 mep_pseudo_register_read (struct gdbarch *gdbarch,
1162 readable_regcache *regcache,
1163 int cookednum,
1164 gdb_byte *buf)
1165 {
1166 if (IS_CSR_REGNUM (cookednum)
1167 || IS_CCR_REGNUM (cookednum))
1168 return regcache->raw_read (mep_pseudo_to_raw[cookednum], buf);
1169 else if (IS_CR32_REGNUM (cookednum)
1170 || IS_FP_CR32_REGNUM (cookednum))
1171 return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1172 else if (IS_CR64_REGNUM (cookednum)
1173 || IS_FP_CR64_REGNUM (cookednum))
1174 return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1175 else
1176 gdb_assert_not_reached ("unexpected pseudo register");
1177 }
1178
1179
1180 static void
1181 mep_pseudo_csr_write (struct gdbarch *gdbarch,
1182 struct regcache *regcache,
1183 int cookednum,
1184 const gdb_byte *buf)
1185 {
1186 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1187 int size = register_size (gdbarch, cookednum);
1188 struct mep_csr_register *r
1189 = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1190
1191 if (r->writeable_bits == 0)
1192 /* A completely read-only register; avoid the read-modify-
1193 write cycle, and juts ignore the entire write. */
1194 ;
1195 else
1196 {
1197 /* A partially writeable register; do a read-modify-write cycle. */
1198 ULONGEST old_bits;
1199 ULONGEST new_bits;
1200 ULONGEST mixed_bits;
1201
1202 regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1203 new_bits = extract_unsigned_integer (buf, size, byte_order);
1204 mixed_bits = ((r->writeable_bits & new_bits)
1205 | (~r->writeable_bits & old_bits));
1206 regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1207 }
1208 }
1209
1210
1211 static void
1212 mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1213 struct regcache *regcache,
1214 int cookednum,
1215 const gdb_byte *buf)
1216 {
1217 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1218 /* Expand the 32-bit value into a 64-bit value, and write that to
1219 the pseudoregister. */
1220 int rawnum = mep_pseudo_to_raw[cookednum];
1221 gdb_byte buf64[8];
1222
1223 gdb_assert (register_type (gdbarch, rawnum)->length () == sizeof (buf64));
1224 gdb_assert (register_type (gdbarch, cookednum)->length () == 4);
1225 /* Slow, but legible. */
1226 store_unsigned_integer (buf64, 8, byte_order,
1227 extract_unsigned_integer (buf, 4, byte_order));
1228 regcache->raw_write (rawnum, buf64);
1229 }
1230
1231
1232 static void
1233 mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1234 struct regcache *regcache,
1235 int cookednum,
1236 const gdb_byte *buf)
1237 {
1238 regcache->raw_write (mep_pseudo_to_raw[cookednum], buf);
1239 }
1240
1241
1242 static void
1243 mep_pseudo_register_write (struct gdbarch *gdbarch,
1244 struct regcache *regcache,
1245 int cookednum,
1246 const gdb_byte *buf)
1247 {
1248 if (IS_CSR_REGNUM (cookednum))
1249 mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1250 else if (IS_CR32_REGNUM (cookednum)
1251 || IS_FP_CR32_REGNUM (cookednum))
1252 mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1253 else if (IS_CR64_REGNUM (cookednum)
1254 || IS_FP_CR64_REGNUM (cookednum))
1255 mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1256 else if (IS_CCR_REGNUM (cookednum))
1257 regcache->raw_write (mep_pseudo_to_raw[cookednum], buf);
1258 else
1259 gdb_assert_not_reached ("unexpected pseudo register");
1260 }
1261
1262
1263 \f
1264 /* Disassembly. */
1265
1266 static int
1267 mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1268 {
1269 struct obj_section * s = find_pc_section (pc);
1270
1271 info->arch = bfd_arch_mep;
1272 if (s)
1273 {
1274 /* The libopcodes disassembly code uses the section to find the
1275 BFD, the BFD to find the ELF header, the ELF header to find
1276 the me_module index, and the me_module index to select the
1277 right instructions to print. */
1278 info->section = s->the_bfd_section;
1279 }
1280
1281 return print_insn_mep (pc, info);
1282 }
1283
1284 \f
1285 /* Prologue analysis. */
1286
1287
1288 /* The MeP has two classes of instructions: "core" instructions, which
1289 are pretty normal RISC chip stuff, and "coprocessor" instructions,
1290 which are mostly concerned with moving data in and out of
1291 coprocessor registers, and branching on coprocessor condition
1292 codes. There's space in the instruction set for custom coprocessor
1293 instructions, too.
1294
1295 Instructions can be 16 or 32 bits long; the top two bits of the
1296 first byte indicate the length. The coprocessor instructions are
1297 mixed in with the core instructions, and there's no easy way to
1298 distinguish them; you have to completely decode them to tell one
1299 from the other.
1300
1301 The MeP also supports a "VLIW" operation mode, where instructions
1302 always occur in fixed-width bundles. The bundles are either 32
1303 bits or 64 bits long, depending on a fixed configuration flag. You
1304 decode the first part of the bundle as normal; if it's a core
1305 instruction, and there's any space left in the bundle, the
1306 remainder of the bundle is a coprocessor instruction, which will
1307 execute in parallel with the core instruction. If the first part
1308 of the bundle is a coprocessor instruction, it occupies the entire
1309 bundle.
1310
1311 So, here are all the cases:
1312
1313 - 32-bit VLIW mode:
1314 Every bundle is four bytes long, and naturally aligned, and can hold
1315 one or two instructions:
1316 - 16-bit core instruction; 16-bit coprocessor instruction
1317 These execute in parallel.
1318 - 32-bit core instruction
1319 - 32-bit coprocessor instruction
1320
1321 - 64-bit VLIW mode:
1322 Every bundle is eight bytes long, and naturally aligned, and can hold
1323 one or two instructions:
1324 - 16-bit core instruction; 48-bit (!) coprocessor instruction
1325 These execute in parallel.
1326 - 32-bit core instruction; 32-bit coprocessor instruction
1327 These execute in parallel.
1328 - 64-bit coprocessor instruction
1329
1330 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1331 instruction, so I don't really know what's up there; perhaps these
1332 are always the user-defined coprocessor instructions. */
1333
1334
1335 /* Return non-zero if PC is in a VLIW code section, zero
1336 otherwise. */
1337 static int
1338 mep_pc_in_vliw_section (CORE_ADDR pc)
1339 {
1340 struct obj_section *s = find_pc_section (pc);
1341 if (s)
1342 return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1343 return 0;
1344 }
1345
1346
1347 /* Set *INSN to the next core instruction at PC, and return the
1348 address of the next instruction.
1349
1350 The MeP instruction encoding is endian-dependent. 16- and 32-bit
1351 instructions are encoded as one or two two-byte parts, and each
1352 part is byte-swapped independently. Thus:
1353
1354 void
1355 foo (void)
1356 {
1357 asm ("movu $1, 0x123456");
1358 asm ("sb $1,0x5678($2)");
1359 asm ("clip $1, 19");
1360 }
1361
1362 compiles to this big-endian code:
1363
1364 0: d1 56 12 34 movu $1,0x123456
1365 4: c1 28 56 78 sb $1,22136($2)
1366 8: f1 01 10 98 clip $1,0x13
1367 c: 70 02 ret
1368
1369 and this little-endian code:
1370
1371 0: 56 d1 34 12 movu $1,0x123456
1372 4: 28 c1 78 56 sb $1,22136($2)
1373 8: 01 f1 98 10 clip $1,0x13
1374 c: 02 70 ret
1375
1376 Instructions are returned in *INSN in an endian-independent form: a
1377 given instruction always appears in *INSN the same way, regardless
1378 of whether the instruction stream is big-endian or little-endian.
1379
1380 *INSN's most significant 16 bits are the first (i.e., at lower
1381 addresses) 16 bit part of the instruction. Its least significant
1382 16 bits are the second (i.e., higher-addressed) 16 bit part of the
1383 instruction, or zero for a 16-bit instruction. Both 16-bit parts
1384 are fetched using the current endianness.
1385
1386 So, the *INSN values for the instruction sequence above would be
1387 the following, in either endianness:
1388
1389 0xd1561234 movu $1,0x123456
1390 0xc1285678 sb $1,22136($2)
1391 0xf1011098 clip $1,0x13
1392 0x70020000 ret
1393
1394 (In a sense, it would be more natural to return 16-bit instructions
1395 in the least significant 16 bits of *INSN, but that would be
1396 ambiguous. In order to tell whether you're looking at a 16- or a
1397 32-bit instruction, you have to consult the major opcode field ---
1398 the most significant four bits of the instruction's first 16-bit
1399 part. But if we put 16-bit instructions at the least significant
1400 end of *INSN, then you don't know where to find the major opcode
1401 field until you know if it's a 16- or a 32-bit instruction ---
1402 which is where we started.)
1403
1404 If PC points to a core / coprocessor bundle in a VLIW section, set
1405 *INSN to the core instruction, and return the address of the next
1406 bundle. This has the effect of skipping the bundled coprocessor
1407 instruction. That's okay, since coprocessor instructions aren't
1408 significant to prologue analysis --- for the time being,
1409 anyway. */
1410
1411 static CORE_ADDR
1412 mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, unsigned long *insn)
1413 {
1414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1415 int pc_in_vliw_section;
1416 int vliw_mode;
1417 int insn_len;
1418 gdb_byte buf[2];
1419
1420 *insn = 0;
1421
1422 /* Are we in a VLIW section? */
1423 pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1424 if (pc_in_vliw_section)
1425 {
1426 /* Yes, find out which bundle size. */
1427 vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1428
1429 /* If PC is in a VLIW section, but the current core doesn't say
1430 that it supports either VLIW mode, then we don't have enough
1431 information to parse the instruction stream it contains.
1432 Since the "undifferentiated" standard core doesn't have
1433 either VLIW mode bit set, this could happen.
1434
1435 But it shouldn't be an error to (say) set a breakpoint in a
1436 VLIW section, if you know you'll never reach it. (Perhaps
1437 you have a script that sets a bunch of standard breakpoints.)
1438
1439 So we'll just return zero here, and hope for the best. */
1440 if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1441 return 0;
1442
1443 /* If both VL32 and VL64 are set, that's bogus, too. */
1444 if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1445 return 0;
1446 }
1447 else
1448 vliw_mode = 0;
1449
1450 read_memory (pc, buf, sizeof (buf));
1451 *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;
1452
1453 /* The major opcode --- the top four bits of the first 16-bit
1454 part --- indicates whether this instruction is 16 or 32 bits
1455 long. All 32-bit instructions have a major opcode whose top
1456 two bits are 11; all the rest are 16-bit instructions. */
1457 if ((*insn & 0xc0000000) == 0xc0000000)
1458 {
1459 /* Fetch the second 16-bit part of the instruction. */
1460 read_memory (pc + 2, buf, sizeof (buf));
1461 *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
1462 }
1463
1464 /* If we're in VLIW code, then the VLIW width determines the address
1465 of the next instruction. */
1466 if (vliw_mode)
1467 {
1468 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1469 coprocessor half of a core / copro bundle. */
1470 if (vliw_mode == MEP_OPT_VL32)
1471 insn_len = 4;
1472
1473 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1474 coprocessor half of a core / copro bundle. */
1475 else if (vliw_mode == MEP_OPT_VL64)
1476 insn_len = 8;
1477
1478 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1479 else
1480 gdb_assert_not_reached ("unexpected vliw mode");
1481 }
1482
1483 /* Otherwise, the top two bits of the major opcode are (again) what
1484 we need to check. */
1485 else if ((*insn & 0xc0000000) == 0xc0000000)
1486 insn_len = 4;
1487 else
1488 insn_len = 2;
1489
1490 return pc + insn_len;
1491 }
1492
1493
1494 /* Sign-extend the LEN-bit value N. */
1495 #define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1496
1497 /* Return the LEN-bit field at POS from I. */
1498 #define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1499
1500 /* Like FIELD, but sign-extend the field's value. */
1501 #define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1502
1503
1504 /* Macros for decoding instructions.
1505
1506 Remember that 16-bit instructions are placed in bits 16..31 of i,
1507 not at the least significant end; this means that the major opcode
1508 field is always in the same place, regardless of the width of the
1509 instruction. As a reminder of this, we show the lower 16 bits of a
1510 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1511
1512 /* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1513 /* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1514 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1515
1516 /* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1517 #define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1518 /* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1519 #define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1520 /* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1521 #define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1522 #define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1523 #define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1524 #define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1525
1526 /* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1527 #define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1528 #define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1529 #define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1530
1531 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1532 #define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1533 #define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1534 #define SW_REG_BASE(i) (FIELD (i, 20, 4))
1535
1536 /* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1537 #define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1538 #define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1539 #define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1540
1541 /* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1542 #define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1543 #define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1544 #define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1545 #define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1546
1547 /* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1548 #define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1549 #define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1550 #define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1551
1552 /* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1553 #define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1554 #define ADD_TARGET(i) (FIELD (i, 24, 4))
1555 #define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1556
1557 /* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1558 imm5 = I||i[7:4] */
1559 #define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1560 #define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1561 #define LDC_TARGET(i) (FIELD (i, 24, 4))
1562
1563 /* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1564 #define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1565 #define LW_TARGET(i) (FIELD (i, 24, 4))
1566 #define LW_BASE(i) (FIELD (i, 20, 4))
1567 #define LW_OFFSET(i) (SFIELD (i, 0, 16))
1568
1569 /* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1570 #define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1571 #define MOV_TARGET(i) (FIELD (i, 24, 4))
1572 #define MOV_SOURCE(i) (FIELD (i, 20, 4))
1573
1574 /* BRA disp12.align2 1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1575 #define IS_BRA(i) (((i) & 0xf0010000) == 0xb0000000)
1576 #define BRA_DISP(i) (SFIELD (i, 17, 11) << 1)
1577
1578
1579 /* This structure holds the results of a prologue analysis. */
1580 struct mep_prologue
1581 {
1582 /* The architecture for which we generated this prologue info. */
1583 struct gdbarch *gdbarch;
1584
1585 /* The offset from the frame base to the stack pointer --- always
1586 zero or negative.
1587
1588 Calling this a "size" is a bit misleading, but given that the
1589 stack grows downwards, using offsets for everything keeps one
1590 from going completely sign-crazy: you never change anything's
1591 sign for an ADD instruction; always change the second operand's
1592 sign for a SUB instruction; and everything takes care of
1593 itself. */
1594 int frame_size;
1595
1596 /* Non-zero if this function has initialized the frame pointer from
1597 the stack pointer, zero otherwise. */
1598 int has_frame_ptr;
1599
1600 /* If has_frame_ptr is non-zero, this is the offset from the frame
1601 base to where the frame pointer points. This is always zero or
1602 negative. */
1603 int frame_ptr_offset;
1604
1605 /* The address of the first instruction at which the frame has been
1606 set up and the arguments are where the debug info says they are
1607 --- as best as we can tell. */
1608 CORE_ADDR prologue_end;
1609
1610 /* reg_offset[R] is the offset from the CFA at which register R is
1611 saved, or 1 if register R has not been saved. (Real values are
1612 always zero or negative.) */
1613 int reg_offset[MEP_NUM_REGS];
1614 };
1615
1616 /* Return non-zero if VALUE is an incoming argument register. */
1617
1618 static int
1619 is_arg_reg (pv_t value)
1620 {
1621 return (value.kind == pvk_register
1622 && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1623 && value.k == 0);
1624 }
1625
1626 /* Return non-zero if a store of REG's current value VALUE to ADDR is
1627 probably spilling an argument register to its stack slot in STACK.
1628 Such instructions should be included in the prologue, if possible.
1629
1630 The store is a spill if:
1631 - the value being stored is REG's original value;
1632 - the value has not already been stored somewhere in STACK; and
1633 - ADDR is a stack slot's address (e.g., relative to the original
1634 value of the SP). */
1635 static int
1636 is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
1637 struct pv_area *stack)
1638 {
1639 return (is_arg_reg (value)
1640 && pv_is_register (addr, MEP_SP_REGNUM)
1641 && ! stack->find_reg (gdbarch, value.reg, 0));
1642 }
1643
1644
1645 /* Function for finding saved registers in a 'struct pv_area'; we pass
1646 this to pv_area::scan.
1647
1648 If VALUE is a saved register, ADDR says it was saved at a constant
1649 offset from the frame base, and SIZE indicates that the whole
1650 register was saved, record its offset in RESULT_UNTYPED. */
1651 static void
1652 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1653 {
1654 struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1655
1656 if (value.kind == pvk_register
1657 && value.k == 0
1658 && pv_is_register (addr, MEP_SP_REGNUM)
1659 && size == register_size (result->gdbarch, value.reg))
1660 result->reg_offset[value.reg] = addr.k;
1661 }
1662
1663
1664 /* Analyze a prologue starting at START_PC, going no further than
1665 LIMIT_PC. Fill in RESULT as appropriate. */
1666 static void
1667 mep_analyze_prologue (struct gdbarch *gdbarch,
1668 CORE_ADDR start_pc, CORE_ADDR limit_pc,
1669 struct mep_prologue *result)
1670 {
1671 CORE_ADDR pc;
1672 unsigned long insn;
1673 pv_t reg[MEP_NUM_REGS];
1674 CORE_ADDR after_last_frame_setup_insn = start_pc;
1675
1676 memset (result, 0, sizeof (*result));
1677 result->gdbarch = gdbarch;
1678
1679 for (int rn = 0; rn < MEP_NUM_REGS; rn++)
1680 {
1681 reg[rn] = pv_register (rn, 0);
1682 result->reg_offset[rn] = 1;
1683 }
1684
1685 pv_area stack (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1686
1687 pc = start_pc;
1688 while (pc < limit_pc)
1689 {
1690 CORE_ADDR next_pc;
1691 pv_t pre_insn_fp, pre_insn_sp;
1692
1693 next_pc = mep_get_insn (gdbarch, pc, &insn);
1694
1695 /* A zero return from mep_get_insn means that either we weren't
1696 able to read the instruction from memory, or that we don't
1697 have enough information to be able to reliably decode it. So
1698 we'll store here and hope for the best. */
1699 if (! next_pc)
1700 break;
1701
1702 /* Note the current values of the SP and FP, so we can tell if
1703 this instruction changed them, below. */
1704 pre_insn_fp = reg[MEP_FP_REGNUM];
1705 pre_insn_sp = reg[MEP_SP_REGNUM];
1706
1707 if (IS_ADD (insn))
1708 {
1709 int rn = ADD_TARGET (insn);
1710 CORE_ADDR imm6 = ADD_OFFSET (insn);
1711
1712 reg[rn] = pv_add_constant (reg[rn], imm6);
1713 }
1714 else if (IS_ADD3_16 (insn))
1715 {
1716 int rn = ADD3_16_TARGET (insn);
1717 int imm7 = ADD3_16_OFFSET (insn);
1718
1719 reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1720 }
1721 else if (IS_ADD3_32 (insn))
1722 {
1723 int rn = ADD3_32_TARGET (insn);
1724 int rm = ADD3_32_SOURCE (insn);
1725 int imm16 = ADD3_32_OFFSET (insn);
1726
1727 reg[rn] = pv_add_constant (reg[rm], imm16);
1728 }
1729 else if (IS_SW_REG (insn))
1730 {
1731 int rn = SW_REG_SOURCE (insn);
1732 int rm = SW_REG_BASE (insn);
1733
1734 /* If simulating this store would require us to forget
1735 everything we know about the stack frame in the name of
1736 accuracy, it would be better to just quit now. */
1737 if (stack.store_would_trash (reg[rm]))
1738 break;
1739
1740 if (is_arg_spill (gdbarch, reg[rn], reg[rm], &stack))
1741 after_last_frame_setup_insn = next_pc;
1742
1743 stack.store (reg[rm], 4, reg[rn]);
1744 }
1745 else if (IS_SW_IMMD (insn))
1746 {
1747 int rn = SW_IMMD_SOURCE (insn);
1748 int offset = SW_IMMD_OFFSET (insn);
1749 pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1750
1751 /* If simulating this store would require us to forget
1752 everything we know about the stack frame in the name of
1753 accuracy, it would be better to just quit now. */
1754 if (stack.store_would_trash (addr))
1755 break;
1756
1757 if (is_arg_spill (gdbarch, reg[rn], addr, &stack))
1758 after_last_frame_setup_insn = next_pc;
1759
1760 stack.store (addr, 4, reg[rn]);
1761 }
1762 else if (IS_MOV (insn))
1763 {
1764 int rn = MOV_TARGET (insn);
1765 int rm = MOV_SOURCE (insn);
1766
1767 reg[rn] = reg[rm];
1768
1769 if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1770 after_last_frame_setup_insn = next_pc;
1771 }
1772 else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1773 {
1774 int rn = SWBH_32_SOURCE (insn);
1775 int rm = SWBH_32_BASE (insn);
1776 int disp = SWBH_32_OFFSET (insn);
1777 int size = (IS_SB (insn) ? 1
1778 : IS_SH (insn) ? 2
1779 : (gdb_assert (IS_SW (insn)), 4));
1780 pv_t addr = pv_add_constant (reg[rm], disp);
1781
1782 if (stack.store_would_trash (addr))
1783 break;
1784
1785 if (is_arg_spill (gdbarch, reg[rn], addr, &stack))
1786 after_last_frame_setup_insn = next_pc;
1787
1788 stack.store (addr, size, reg[rn]);
1789 }
1790 else if (IS_LDC (insn))
1791 {
1792 int rn = LDC_TARGET (insn);
1793 int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1794
1795 reg[rn] = reg[cr];
1796 }
1797 else if (IS_LW (insn))
1798 {
1799 int rn = LW_TARGET (insn);
1800 int rm = LW_BASE (insn);
1801 int offset = LW_OFFSET (insn);
1802 pv_t addr = pv_add_constant (reg[rm], offset);
1803
1804 reg[rn] = stack.fetch (addr, 4);
1805 }
1806 else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1807 {
1808 /* When a loop appears as the first statement of a function
1809 body, gcc 4.x will use a BRA instruction to branch to the
1810 loop condition checking code. This BRA instruction is
1811 marked as part of the prologue. We therefore set next_pc
1812 to this branch target and also stop the prologue scan.
1813 The instructions at and beyond the branch target should
1814 no longer be associated with the prologue.
1815
1816 Note that we only consider forward branches here. We
1817 presume that a forward branch is being used to skip over
1818 a loop body.
1819
1820 A backwards branch is covered by the default case below.
1821 If we were to encounter a backwards branch, that would
1822 most likely mean that we've scanned through a loop body.
1823 We definitely want to stop the prologue scan when this
1824 happens and that is precisely what is done by the default
1825 case below. */
1826 next_pc = pc + BRA_DISP (insn);
1827 after_last_frame_setup_insn = next_pc;
1828 break;
1829 }
1830 else
1831 /* We've hit some instruction we don't know how to simulate.
1832 Strictly speaking, we should set every value we're
1833 tracking to "unknown". But we'll be optimistic, assume
1834 that we have enough information already, and stop
1835 analysis here. */
1836 break;
1837
1838 /* If this instruction changed the FP or decreased the SP (i.e.,
1839 allocated more stack space), then this may be a good place to
1840 declare the prologue finished. However, there are some
1841 exceptions:
1842
1843 - If the instruction just changed the FP back to its original
1844 value, then that's probably a restore instruction. The
1845 prologue should definitely end before that.
1846
1847 - If the instruction increased the value of the SP (that is,
1848 shrunk the frame), then it's probably part of a frame
1849 teardown sequence, and the prologue should end before that. */
1850
1851 if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1852 {
1853 if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1854 after_last_frame_setup_insn = next_pc;
1855 }
1856 else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1857 {
1858 /* The comparison of constants looks odd, there, because .k
1859 is unsigned. All it really means is that the new value
1860 is lower than it was before the instruction. */
1861 if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1862 && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1863 && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1864 < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1865 after_last_frame_setup_insn = next_pc;
1866 }
1867
1868 pc = next_pc;
1869 }
1870
1871 /* Is the frame size (offset, really) a known constant? */
1872 if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1873 result->frame_size = reg[MEP_SP_REGNUM].k;
1874
1875 /* Was the frame pointer initialized? */
1876 if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1877 {
1878 result->has_frame_ptr = 1;
1879 result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1880 }
1881
1882 /* Record where all the registers were saved. */
1883 stack.scan (check_for_saved, (void *) result);
1884
1885 result->prologue_end = after_last_frame_setup_insn;
1886 }
1887
1888
1889 static CORE_ADDR
1890 mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1891 {
1892 const char *name;
1893 CORE_ADDR func_addr, func_end;
1894 struct mep_prologue p;
1895
1896 /* Try to find the extent of the function that contains PC. */
1897 if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1898 return pc;
1899
1900 mep_analyze_prologue (gdbarch, pc, func_end, &p);
1901 return p.prologue_end;
1902 }
1903
1904
1905 \f
1906 /* Breakpoints. */
1907 constexpr gdb_byte mep_break_insn[] = { 0x70, 0x32 };
1908
1909 typedef BP_MANIPULATION (mep_break_insn) mep_breakpoint;
1910
1911 \f
1912 /* Frames and frame unwinding. */
1913
1914
1915 static struct mep_prologue *
1916 mep_analyze_frame_prologue (const frame_info_ptr &this_frame,
1917 void **this_prologue_cache)
1918 {
1919 if (! *this_prologue_cache)
1920 {
1921 CORE_ADDR func_start, stop_addr;
1922
1923 *this_prologue_cache
1924 = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1925
1926 func_start = get_frame_func (this_frame);
1927 stop_addr = get_frame_pc (this_frame);
1928
1929 /* If we couldn't find any function containing the PC, then
1930 just initialize the prologue cache, but don't do anything. */
1931 if (! func_start)
1932 stop_addr = func_start;
1933
1934 mep_analyze_prologue (get_frame_arch (this_frame),
1935 func_start, stop_addr,
1936 (struct mep_prologue *) *this_prologue_cache);
1937 }
1938
1939 return (struct mep_prologue *) *this_prologue_cache;
1940 }
1941
1942
1943 /* Given the next frame and a prologue cache, return this frame's
1944 base. */
1945 static CORE_ADDR
1946 mep_frame_base (const frame_info_ptr &this_frame,
1947 void **this_prologue_cache)
1948 {
1949 struct mep_prologue *p
1950 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1951
1952 /* In functions that use alloca, the distance between the stack
1953 pointer and the frame base varies dynamically, so we can't use
1954 the SP plus static information like prologue analysis to find the
1955 frame base. However, such functions must have a frame pointer,
1956 to be able to restore the SP on exit. So whenever we do have a
1957 frame pointer, use that to find the base. */
1958 if (p->has_frame_ptr)
1959 {
1960 CORE_ADDR fp
1961 = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
1962 return fp - p->frame_ptr_offset;
1963 }
1964 else
1965 {
1966 CORE_ADDR sp
1967 = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
1968 return sp - p->frame_size;
1969 }
1970 }
1971
1972
1973 static void
1974 mep_frame_this_id (const frame_info_ptr &this_frame,
1975 void **this_prologue_cache,
1976 struct frame_id *this_id)
1977 {
1978 *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
1979 get_frame_func (this_frame));
1980 }
1981
1982
1983 static struct value *
1984 mep_frame_prev_register (const frame_info_ptr &this_frame,
1985 void **this_prologue_cache, int regnum)
1986 {
1987 struct mep_prologue *p
1988 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1989
1990 /* There are a number of complications in unwinding registers on the
1991 MeP, having to do with core functions calling VLIW functions and
1992 vice versa.
1993
1994 The least significant bit of the link register, LP.LTOM, is the
1995 VLIW mode toggle bit: it's set if a core function called a VLIW
1996 function, or vice versa, and clear when the caller and callee
1997 were both in the same mode.
1998
1999 So, if we're asked to unwind the PC, then we really want to
2000 unwind the LP and clear the least significant bit. (Real return
2001 addresses are always even.) And if we want to unwind the program
2002 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2003
2004 Tweaking the register values we return in this way means that the
2005 bits in BUFFERP[] are not the same as the bits you'd find at
2006 ADDRP in the inferior, so we make sure lvalp is not_lval when we
2007 do this. */
2008 if (regnum == MEP_PC_REGNUM)
2009 {
2010 struct value *value;
2011 CORE_ADDR lp;
2012 value = mep_frame_prev_register (this_frame, this_prologue_cache,
2013 MEP_LP_REGNUM);
2014 lp = value_as_long (value);
2015 release_value (value);
2016
2017 return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
2018 }
2019 else
2020 {
2021 CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
2022 struct value *value;
2023
2024 /* Our caller's SP is our frame base. */
2025 if (regnum == MEP_SP_REGNUM)
2026 return frame_unwind_got_constant (this_frame, regnum, frame_base);
2027
2028 /* If prologue analysis says we saved this register somewhere,
2029 return a description of the stack slot holding it. */
2030 if (p->reg_offset[regnum] != 1)
2031 value = frame_unwind_got_memory (this_frame, regnum,
2032 frame_base + p->reg_offset[regnum]);
2033
2034 /* Otherwise, presume we haven't changed the value of this
2035 register, and get it from the next frame. */
2036 else
2037 value = frame_unwind_got_register (this_frame, regnum, regnum);
2038
2039 /* If we need to toggle the operating mode, do so. */
2040 if (regnum == MEP_PSW_REGNUM)
2041 {
2042 CORE_ADDR psw, lp;
2043
2044 psw = value_as_long (value);
2045 release_value (value);
2046
2047 /* Get the LP's value, too. */
2048 value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
2049 lp = value_as_long (value);
2050 release_value (value);
2051
2052 /* If LP.LTOM is set, then toggle PSW.OM. */
2053 if (lp & 0x1)
2054 psw ^= 0x1000;
2055
2056 return frame_unwind_got_constant (this_frame, regnum, psw);
2057 }
2058
2059 return value;
2060 }
2061 }
2062
2063
2064 static const struct frame_unwind mep_frame_unwind = {
2065 "mep prologue",
2066 NORMAL_FRAME,
2067 default_frame_unwind_stop_reason,
2068 mep_frame_this_id,
2069 mep_frame_prev_register,
2070 NULL,
2071 default_frame_sniffer
2072 };
2073
2074 \f
2075 /* Return values. */
2076
2077
2078 static int
2079 mep_use_struct_convention (struct type *type)
2080 {
2081 return (type->length () > MEP_GPR_SIZE);
2082 }
2083
2084
2085 static void
2086 mep_extract_return_value (struct gdbarch *arch,
2087 struct type *type,
2088 struct regcache *regcache,
2089 gdb_byte *valbuf)
2090 {
2091 int byte_order = gdbarch_byte_order (arch);
2092
2093 /* Values that don't occupy a full register appear at the less
2094 significant end of the value. This is the offset to where the
2095 value starts. */
2096 int offset;
2097
2098 /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2099 pointed to by R0. */
2100 gdb_assert (type->length () <= MEP_GPR_SIZE);
2101
2102 if (byte_order == BFD_ENDIAN_BIG)
2103 offset = MEP_GPR_SIZE - type->length ();
2104 else
2105 offset = 0;
2106
2107 /* Return values that do fit in a single register are returned in R0. */
2108 regcache->cooked_read_part (MEP_R0_REGNUM, offset, type->length (),
2109 valbuf);
2110 }
2111
2112
2113 static void
2114 mep_store_return_value (struct gdbarch *arch,
2115 struct type *type,
2116 struct regcache *regcache,
2117 const gdb_byte *valbuf)
2118 {
2119 int byte_order = gdbarch_byte_order (arch);
2120
2121 /* Values that fit in a single register go in R0. */
2122 if (type->length () <= MEP_GPR_SIZE)
2123 {
2124 /* Values that don't occupy a full register appear at the least
2125 significant end of the value. This is the offset to where the
2126 value starts. */
2127 int offset;
2128
2129 if (byte_order == BFD_ENDIAN_BIG)
2130 offset = MEP_GPR_SIZE - type->length ();
2131 else
2132 offset = 0;
2133
2134 regcache->cooked_write_part (MEP_R0_REGNUM, offset, type->length (),
2135 valbuf);
2136 }
2137
2138 /* Return values larger than a single register are returned in
2139 memory, pointed to by R0. Unfortunately, we can't count on R0
2140 pointing to the return buffer, so we raise an error here. */
2141 else
2142 error (_("\
2143 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2144 calling conventions do not provide enough information to do this.\n\
2145 Try using the 'return' command with no argument."));
2146 }
2147
2148 static enum return_value_convention
2149 mep_return_value (struct gdbarch *gdbarch, struct value *function,
2150 struct type *type, struct regcache *regcache,
2151 gdb_byte *readbuf, const gdb_byte *writebuf)
2152 {
2153 if (mep_use_struct_convention (type))
2154 {
2155 if (readbuf)
2156 {
2157 ULONGEST addr;
2158 /* Although the address of the struct buffer gets passed in R1, it's
2159 returned in R0. Fetch R0's value and then read the memory
2160 at that address. */
2161 regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2162 read_memory (addr, readbuf, type->length ());
2163 }
2164 if (writebuf)
2165 {
2166 /* Return values larger than a single register are returned in
2167 memory, pointed to by R0. Unfortunately, we can't count on R0
2168 pointing to the return buffer, so we raise an error here. */
2169 error (_("\
2170 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2171 calling conventions do not provide enough information to do this.\n\
2172 Try using the 'return' command with no argument."));
2173 }
2174 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2175 }
2176
2177 if (readbuf)
2178 mep_extract_return_value (gdbarch, type, regcache, readbuf);
2179 if (writebuf)
2180 mep_store_return_value (gdbarch, type, regcache, writebuf);
2181
2182 return RETURN_VALUE_REGISTER_CONVENTION;
2183 }
2184
2185 \f
2186 /* Inferior calls. */
2187
2188
2189 static CORE_ADDR
2190 mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2191 {
2192 /* Require word alignment. */
2193 return sp & -4;
2194 }
2195
2196
2197 /* From "lang_spec2.txt":
2198
2199 4.2 Calling conventions
2200
2201 4.2.1 Core register conventions
2202
2203 - Parameters should be evaluated from left to right, and they
2204 should be held in $1,$2,$3,$4 in order. The fifth parameter or
2205 after should be held in the stack. If the size is larger than 4
2206 bytes in the first four parameters, the pointer should be held in
2207 the registers instead. If the size is larger than 4 bytes in the
2208 fifth parameter or after, the pointer should be held in the stack.
2209
2210 - Return value of a function should be held in register $0. If the
2211 size of return value is larger than 4 bytes, $1 should hold the
2212 pointer pointing memory that would hold the return value. In this
2213 case, the first parameter should be held in $2, the second one in
2214 $3, and the third one in $4, and the forth parameter or after
2215 should be held in the stack.
2216
2217 [This doesn't say so, but arguments shorter than four bytes are
2218 passed in the least significant end of a four-byte word when
2219 they're passed on the stack.] */
2220
2221
2222 /* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2223 large to fit in a register, save it on the stack, and place its
2224 address in COPY[i]. SP is the initial stack pointer; return the
2225 new stack pointer. */
2226 static CORE_ADDR
2227 push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2228 CORE_ADDR copy[])
2229 {
2230 int i;
2231
2232 for (i = 0; i < argc; i++)
2233 {
2234 unsigned arg_len = argv[i]->type ()->length ();
2235
2236 if (arg_len > MEP_GPR_SIZE)
2237 {
2238 /* Reserve space for the copy, and then round the SP down, to
2239 make sure it's all aligned properly. */
2240 sp = (sp - arg_len) & -4;
2241 write_memory (sp, argv[i]->contents ().data (), arg_len);
2242 copy[i] = sp;
2243 }
2244 }
2245
2246 return sp;
2247 }
2248
2249
2250 static CORE_ADDR
2251 mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2252 struct regcache *regcache, CORE_ADDR bp_addr,
2253 int argc, struct value **argv, CORE_ADDR sp,
2254 function_call_return_method return_method,
2255 CORE_ADDR struct_addr)
2256 {
2257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2258 CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2259 int i;
2260
2261 /* The number of the next register available to hold an argument. */
2262 int arg_reg;
2263
2264 /* The address of the next stack slot available to hold an argument. */
2265 CORE_ADDR arg_stack;
2266
2267 /* The address of the end of the stack area for arguments. This is
2268 just for error checking. */
2269 CORE_ADDR arg_stack_end;
2270
2271 sp = push_large_arguments (sp, argc, argv, copy);
2272
2273 /* Reserve space for the stack arguments, if any. */
2274 arg_stack_end = sp;
2275 if (argc + (struct_addr ? 1 : 0) > 4)
2276 sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2277
2278 arg_reg = MEP_R1_REGNUM;
2279 arg_stack = sp;
2280
2281 /* If we're returning a structure by value, push the pointer to the
2282 buffer as the first argument. */
2283 if (return_method == return_method_struct)
2284 {
2285 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2286 arg_reg++;
2287 }
2288
2289 for (i = 0; i < argc; i++)
2290 {
2291 ULONGEST value;
2292
2293 /* Arguments that fit in a GPR get expanded to fill the GPR. */
2294 if (argv[i]->type ()->length () <= MEP_GPR_SIZE)
2295 value = extract_unsigned_integer (argv[i]->contents ().data (),
2296 argv[i]->type ()->length (),
2297 byte_order);
2298
2299 /* Arguments too large to fit in a GPR get copied to the stack,
2300 and we pass a pointer to the copy. */
2301 else
2302 value = copy[i];
2303
2304 /* We use $1 -- $4 for passing arguments, then use the stack. */
2305 if (arg_reg <= MEP_R4_REGNUM)
2306 {
2307 regcache_cooked_write_unsigned (regcache, arg_reg, value);
2308 arg_reg++;
2309 }
2310 else
2311 {
2312 gdb_byte buf[MEP_GPR_SIZE];
2313 store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
2314 write_memory (arg_stack, buf, MEP_GPR_SIZE);
2315 arg_stack += MEP_GPR_SIZE;
2316 }
2317 }
2318
2319 gdb_assert (arg_stack <= arg_stack_end);
2320
2321 /* Set the return address. */
2322 regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2323
2324 /* Update the stack pointer. */
2325 regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2326
2327 return sp;
2328 }
2329
2330 \f
2331 /* Initialization. */
2332
2333
2334 static struct gdbarch *
2335 mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2336 {
2337 /* Which me_module are we building a gdbarch object for? */
2338 CONFIG_ATTR me_module;
2339
2340 /* If we have a BFD in hand, figure out which me_module it was built
2341 for. Otherwise, use the no-particular-me_module code. */
2342 if (info.abfd)
2343 {
2344 /* The way to get the me_module code depends on the object file
2345 format. At the moment, we only know how to handle ELF. */
2346 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2347 {
2348 int flag = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2349 me_module = (CONFIG_ATTR) flag;
2350 }
2351 else
2352 me_module = CONFIG_NONE;
2353 }
2354 else
2355 me_module = CONFIG_NONE;
2356
2357 /* If we're setting the architecture from a file, check the
2358 endianness of the file against that of the me_module. */
2359 if (info.abfd)
2360 {
2361 /* The negations on either side make the comparison treat all
2362 non-zero (true) values as equal. */
2363 if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2364 {
2365 const char *module_name = me_module_name (me_module);
2366 const char *module_endianness
2367 = me_module_big_endian (me_module) ? "big" : "little";
2368 const char *file_name = bfd_get_filename (info.abfd);
2369 const char *file_endianness
2370 = bfd_big_endian (info.abfd) ? "big" : "little";
2371
2372 gdb_putc ('\n', gdb_stderr);
2373 if (module_name)
2374 warning (_("the MeP module '%s' is %s-endian, but the executable\n"
2375 "%s is %s-endian."),
2376 module_name, module_endianness,
2377 file_name, file_endianness);
2378 else
2379 warning (_("the selected MeP module is %s-endian, but the "
2380 "executable\n"
2381 "%s is %s-endian."),
2382 module_endianness, file_name, file_endianness);
2383 }
2384 }
2385
2386 /* Find a candidate among the list of architectures we've created
2387 already. info->bfd_arch_info needs to match, but we also want
2388 the right me_module: the ELF header's e_flags field needs to
2389 match as well. */
2390 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2391 arches != NULL;
2392 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2393 {
2394 mep_gdbarch_tdep *tdep
2395 = gdbarch_tdep<mep_gdbarch_tdep> (arches->gdbarch);
2396
2397 if (tdep->me_module == me_module)
2398 return arches->gdbarch;
2399 }
2400
2401 gdbarch *gdbarch
2402 = gdbarch_alloc (&info, gdbarch_tdep_up (new mep_gdbarch_tdep));
2403 mep_gdbarch_tdep *tdep = gdbarch_tdep<mep_gdbarch_tdep> (gdbarch);
2404
2405 /* Get a CGEN CPU descriptor for this architecture. */
2406 {
2407 const char *mach_name = info.bfd_arch_info->printable_name;
2408 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2409 ? CGEN_ENDIAN_BIG
2410 : CGEN_ENDIAN_LITTLE);
2411
2412 tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2413 CGEN_CPU_OPEN_ENDIAN, endian,
2414 CGEN_CPU_OPEN_END);
2415 }
2416
2417 tdep->me_module = me_module;
2418
2419 /* Register set. */
2420 set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2421 set_gdbarch_pc_regnum (gdbarch, MEP_PC_REGNUM);
2422 set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2423 set_gdbarch_register_name (gdbarch, mep_register_name);
2424 set_gdbarch_register_type (gdbarch, mep_register_type);
2425 set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2426 set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2427 set_gdbarch_deprecated_pseudo_register_write (gdbarch,
2428 mep_pseudo_register_write);
2429 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2430 set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2431
2432 set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2433 reggroup_add (gdbarch, mep_csr_reggroup);
2434 reggroup_add (gdbarch, mep_cr_reggroup);
2435 reggroup_add (gdbarch, mep_ccr_reggroup);
2436
2437 /* Disassembly. */
2438 set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2439
2440 /* Breakpoints. */
2441 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mep_breakpoint::kind_from_pc);
2442 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mep_breakpoint::bp_from_kind);
2443 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2444 set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2445
2446 /* Frames and frame unwinding. */
2447 frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
2448 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2449 set_gdbarch_frame_args_skip (gdbarch, 0);
2450
2451 /* Return values. */
2452 set_gdbarch_return_value (gdbarch, mep_return_value);
2453
2454 /* Inferior function calls. */
2455 set_gdbarch_frame_align (gdbarch, mep_frame_align);
2456 set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2457
2458 return gdbarch;
2459 }
2460
2461 void _initialize_mep_tdep ();
2462 void
2463 _initialize_mep_tdep ()
2464 {
2465 mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2466 mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2467 mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2468
2469 gdbarch_register (bfd_arch_mep, mep_gdbarch_init);
2470
2471 mep_init_pseudoregister_maps ();
2472 }