]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mi/mi-main.c
update copyright year range in GDB files
[thirdparty/binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2
3 Copyright (C) 2000-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Solutions (a Red Hat company).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "target.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "top.h"
28 #include "gdbthread.h"
29 #include "mi-cmds.h"
30 #include "mi-parse.h"
31 #include "mi-getopt.h"
32 #include "mi-console.h"
33 #include "ui-out.h"
34 #include "mi-out.h"
35 #include "interps.h"
36 #include "event-loop.h"
37 #include "event-top.h"
38 #include "gdbcore.h" /* For write_memory(). */
39 #include "value.h"
40 #include "regcache.h"
41 #include "gdb.h"
42 #include "frame.h"
43 #include "mi-main.h"
44 #include "mi-common.h"
45 #include "language.h"
46 #include "valprint.h"
47 #include "inferior.h"
48 #include "osdata.h"
49 #include "splay-tree.h"
50 #include "tracepoint.h"
51 #include "ctf.h"
52 #include "ada-lang.h"
53 #include "linespec.h"
54 #include "extension.h"
55 #include "gdbcmd.h"
56 #include "observer.h"
57
58 #include <ctype.h>
59 #include "run-time-clock.h"
60 #include <chrono>
61
62 enum
63 {
64 FROM_TTY = 0
65 };
66
67 int mi_debug_p;
68
69 /* This is used to pass the current command timestamp down to
70 continuation routines. */
71 static struct mi_timestamp *current_command_ts;
72
73 static int do_timings = 0;
74
75 char *current_token;
76 /* Few commands would like to know if options like --thread-group were
77 explicitly specified. This variable keeps the current parsed
78 command including all option, and make it possible. */
79 static struct mi_parse *current_context;
80
81 int running_result_record_printed = 1;
82
83 /* Flag indicating that the target has proceeded since the last
84 command was issued. */
85 int mi_proceeded;
86
87 extern void _initialize_mi_main (void);
88 static void mi_cmd_execute (struct mi_parse *parse);
89
90 static void mi_execute_cli_command (const char *cmd, int args_p,
91 const char *args);
92 static void mi_execute_async_cli_command (char *cli_command,
93 char **argv, int argc);
94 static int register_changed_p (int regnum, struct regcache *,
95 struct regcache *);
96 static void output_register (struct frame_info *, int regnum, int format,
97 int skip_unavailable);
98
99 /* Controls whether the frontend wants MI in async mode. */
100 static int mi_async = 0;
101
102 /* The set command writes to this variable. If the inferior is
103 executing, mi_async is *not* updated. */
104 static int mi_async_1 = 0;
105
106 static void
107 set_mi_async_command (char *args, int from_tty,
108 struct cmd_list_element *c)
109 {
110 if (have_live_inferiors ())
111 {
112 mi_async_1 = mi_async;
113 error (_("Cannot change this setting while the inferior is running."));
114 }
115
116 mi_async = mi_async_1;
117 }
118
119 static void
120 show_mi_async_command (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c,
122 const char *value)
123 {
124 fprintf_filtered (file,
125 _("Whether MI is in asynchronous mode is %s.\n"),
126 value);
127 }
128
129 /* A wrapper for target_can_async_p that takes the MI setting into
130 account. */
131
132 int
133 mi_async_p (void)
134 {
135 return mi_async && target_can_async_p ();
136 }
137
138 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
139 layer that calls libgdb. Any operation used in the below should be
140 formalized. */
141
142 static void timestamp (struct mi_timestamp *tv);
143
144 static void print_diff (struct ui_file *file, struct mi_timestamp *start,
145 struct mi_timestamp *end);
146
147 void
148 mi_cmd_gdb_exit (char *command, char **argv, int argc)
149 {
150 struct mi_interp *mi
151 = (struct mi_interp *) interp_data (current_interpreter ());
152
153 /* We have to print everything right here because we never return. */
154 if (current_token)
155 fputs_unfiltered (current_token, mi->raw_stdout);
156 fputs_unfiltered ("^exit\n", mi->raw_stdout);
157 mi_out_put (current_uiout, mi->raw_stdout);
158 gdb_flush (mi->raw_stdout);
159 /* FIXME: The function called is not yet a formal libgdb function. */
160 quit_force (NULL, FROM_TTY);
161 }
162
163 void
164 mi_cmd_exec_next (char *command, char **argv, int argc)
165 {
166 /* FIXME: Should call a libgdb function, not a cli wrapper. */
167 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
168 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
169 else
170 mi_execute_async_cli_command ("next", argv, argc);
171 }
172
173 void
174 mi_cmd_exec_next_instruction (char *command, char **argv, int argc)
175 {
176 /* FIXME: Should call a libgdb function, not a cli wrapper. */
177 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
178 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
179 else
180 mi_execute_async_cli_command ("nexti", argv, argc);
181 }
182
183 void
184 mi_cmd_exec_step (char *command, char **argv, int argc)
185 {
186 /* FIXME: Should call a libgdb function, not a cli wrapper. */
187 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
188 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
189 else
190 mi_execute_async_cli_command ("step", argv, argc);
191 }
192
193 void
194 mi_cmd_exec_step_instruction (char *command, char **argv, int argc)
195 {
196 /* FIXME: Should call a libgdb function, not a cli wrapper. */
197 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
198 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
199 else
200 mi_execute_async_cli_command ("stepi", argv, argc);
201 }
202
203 void
204 mi_cmd_exec_finish (char *command, char **argv, int argc)
205 {
206 /* FIXME: Should call a libgdb function, not a cli wrapper. */
207 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
208 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
209 else
210 mi_execute_async_cli_command ("finish", argv, argc);
211 }
212
213 void
214 mi_cmd_exec_return (char *command, char **argv, int argc)
215 {
216 /* This command doesn't really execute the target, it just pops the
217 specified number of frames. */
218 if (argc)
219 /* Call return_command with from_tty argument equal to 0 so as to
220 avoid being queried. */
221 return_command (*argv, 0);
222 else
223 /* Call return_command with from_tty argument equal to 0 so as to
224 avoid being queried. */
225 return_command (NULL, 0);
226
227 /* Because we have called return_command with from_tty = 0, we need
228 to print the frame here. */
229 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
230 }
231
232 void
233 mi_cmd_exec_jump (char *args, char **argv, int argc)
234 {
235 /* FIXME: Should call a libgdb function, not a cli wrapper. */
236 mi_execute_async_cli_command ("jump", argv, argc);
237 }
238
239 static void
240 proceed_thread (struct thread_info *thread, int pid)
241 {
242 if (!is_stopped (thread->ptid))
243 return;
244
245 if (pid != 0 && ptid_get_pid (thread->ptid) != pid)
246 return;
247
248 switch_to_thread (thread->ptid);
249 clear_proceed_status (0);
250 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
251 }
252
253 static int
254 proceed_thread_callback (struct thread_info *thread, void *arg)
255 {
256 int pid = *(int *)arg;
257
258 proceed_thread (thread, pid);
259 return 0;
260 }
261
262 static void
263 exec_continue (char **argv, int argc)
264 {
265 prepare_execution_command (&current_target, mi_async_p ());
266
267 if (non_stop)
268 {
269 /* In non-stop mode, 'resume' always resumes a single thread.
270 Therefore, to resume all threads of the current inferior, or
271 all threads in all inferiors, we need to iterate over
272 threads.
273
274 See comment on infcmd.c:proceed_thread_callback for rationale. */
275 if (current_context->all || current_context->thread_group != -1)
276 {
277 int pid = 0;
278 struct cleanup *back_to = make_cleanup_restore_current_thread ();
279
280 if (!current_context->all)
281 {
282 struct inferior *inf
283 = find_inferior_id (current_context->thread_group);
284
285 pid = inf->pid;
286 }
287 iterate_over_threads (proceed_thread_callback, &pid);
288 do_cleanups (back_to);
289 }
290 else
291 {
292 continue_1 (0);
293 }
294 }
295 else
296 {
297 scoped_restore save_multi = make_scoped_restore (&sched_multi);
298
299 if (current_context->all)
300 {
301 sched_multi = 1;
302 continue_1 (0);
303 }
304 else
305 {
306 /* In all-stop mode, -exec-continue traditionally resumed
307 either all threads, or one thread, depending on the
308 'scheduler-locking' variable. Let's continue to do the
309 same. */
310 continue_1 (1);
311 }
312 }
313 }
314
315 static void
316 exec_direction_forward (void *notused)
317 {
318 execution_direction = EXEC_FORWARD;
319 }
320
321 static void
322 exec_reverse_continue (char **argv, int argc)
323 {
324 enum exec_direction_kind dir = execution_direction;
325 struct cleanup *old_chain;
326
327 if (dir == EXEC_REVERSE)
328 error (_("Already in reverse mode."));
329
330 if (!target_can_execute_reverse)
331 error (_("Target %s does not support this command."), target_shortname);
332
333 old_chain = make_cleanup (exec_direction_forward, NULL);
334 execution_direction = EXEC_REVERSE;
335 exec_continue (argv, argc);
336 do_cleanups (old_chain);
337 }
338
339 void
340 mi_cmd_exec_continue (char *command, char **argv, int argc)
341 {
342 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
343 exec_reverse_continue (argv + 1, argc - 1);
344 else
345 exec_continue (argv, argc);
346 }
347
348 static int
349 interrupt_thread_callback (struct thread_info *thread, void *arg)
350 {
351 int pid = *(int *)arg;
352
353 if (!is_running (thread->ptid))
354 return 0;
355
356 if (ptid_get_pid (thread->ptid) != pid)
357 return 0;
358
359 target_stop (thread->ptid);
360 return 0;
361 }
362
363 /* Interrupt the execution of the target. Note how we must play
364 around with the token variables, in order to display the current
365 token in the result of the interrupt command, and the previous
366 execution token when the target finally stops. See comments in
367 mi_cmd_execute. */
368
369 void
370 mi_cmd_exec_interrupt (char *command, char **argv, int argc)
371 {
372 /* In all-stop mode, everything stops, so we don't need to try
373 anything specific. */
374 if (!non_stop)
375 {
376 interrupt_target_1 (0);
377 return;
378 }
379
380 if (current_context->all)
381 {
382 /* This will interrupt all threads in all inferiors. */
383 interrupt_target_1 (1);
384 }
385 else if (current_context->thread_group != -1)
386 {
387 struct inferior *inf = find_inferior_id (current_context->thread_group);
388
389 iterate_over_threads (interrupt_thread_callback, &inf->pid);
390 }
391 else
392 {
393 /* Interrupt just the current thread -- either explicitly
394 specified via --thread or whatever was current before
395 MI command was sent. */
396 interrupt_target_1 (0);
397 }
398 }
399
400 /* Callback for iterate_over_inferiors which starts the execution
401 of the given inferior.
402
403 ARG is a pointer to an integer whose value, if non-zero, indicates
404 that the program should be stopped when reaching the main subprogram
405 (similar to what the CLI "start" command does). */
406
407 static int
408 run_one_inferior (struct inferior *inf, void *arg)
409 {
410 int start_p = *(int *) arg;
411 const char *run_cmd = start_p ? "start" : "run";
412 struct target_ops *run_target = find_run_target ();
413 int async_p = mi_async && run_target->to_can_async_p (run_target);
414
415 if (inf->pid != 0)
416 {
417 if (inf->pid != ptid_get_pid (inferior_ptid))
418 {
419 struct thread_info *tp;
420
421 tp = any_thread_of_process (inf->pid);
422 if (!tp)
423 error (_("Inferior has no threads."));
424
425 switch_to_thread (tp->ptid);
426 }
427 }
428 else
429 {
430 set_current_inferior (inf);
431 switch_to_thread (null_ptid);
432 set_current_program_space (inf->pspace);
433 }
434 mi_execute_cli_command (run_cmd, async_p,
435 async_p ? "&" : NULL);
436 return 0;
437 }
438
439 void
440 mi_cmd_exec_run (char *command, char **argv, int argc)
441 {
442 int start_p = 0;
443
444 /* Parse the command options. */
445 enum opt
446 {
447 START_OPT,
448 };
449 static const struct mi_opt opts[] =
450 {
451 {"-start", START_OPT, 0},
452 {NULL, 0, 0},
453 };
454
455 int oind = 0;
456 char *oarg;
457
458 while (1)
459 {
460 int opt = mi_getopt ("-exec-run", argc, argv, opts, &oind, &oarg);
461
462 if (opt < 0)
463 break;
464 switch ((enum opt) opt)
465 {
466 case START_OPT:
467 start_p = 1;
468 break;
469 }
470 }
471
472 /* This command does not accept any argument. Make sure the user
473 did not provide any. */
474 if (oind != argc)
475 error (_("Invalid argument: %s"), argv[oind]);
476
477 if (current_context->all)
478 {
479 struct cleanup *back_to = save_current_space_and_thread ();
480
481 iterate_over_inferiors (run_one_inferior, &start_p);
482 do_cleanups (back_to);
483 }
484 else
485 {
486 const char *run_cmd = start_p ? "start" : "run";
487 struct target_ops *run_target = find_run_target ();
488 int async_p = mi_async && run_target->to_can_async_p (run_target);
489
490 mi_execute_cli_command (run_cmd, async_p,
491 async_p ? "&" : NULL);
492 }
493 }
494
495
496 static int
497 find_thread_of_process (struct thread_info *ti, void *p)
498 {
499 int pid = *(int *)p;
500
501 if (ptid_get_pid (ti->ptid) == pid && !is_exited (ti->ptid))
502 return 1;
503
504 return 0;
505 }
506
507 void
508 mi_cmd_target_detach (char *command, char **argv, int argc)
509 {
510 if (argc != 0 && argc != 1)
511 error (_("Usage: -target-detach [pid | thread-group]"));
512
513 if (argc == 1)
514 {
515 struct thread_info *tp;
516 char *end = argv[0];
517 int pid;
518
519 /* First see if we are dealing with a thread-group id. */
520 if (*argv[0] == 'i')
521 {
522 struct inferior *inf;
523 int id = strtoul (argv[0] + 1, &end, 0);
524
525 if (*end != '\0')
526 error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
527
528 inf = find_inferior_id (id);
529 if (!inf)
530 error (_("Non-existent thread-group id '%d'"), id);
531
532 pid = inf->pid;
533 }
534 else
535 {
536 /* We must be dealing with a pid. */
537 pid = strtol (argv[0], &end, 10);
538
539 if (*end != '\0')
540 error (_("Invalid identifier '%s'"), argv[0]);
541 }
542
543 /* Pick any thread in the desired process. Current
544 target_detach detaches from the parent of inferior_ptid. */
545 tp = iterate_over_threads (find_thread_of_process, &pid);
546 if (!tp)
547 error (_("Thread group is empty"));
548
549 switch_to_thread (tp->ptid);
550 }
551
552 detach_command (NULL, 0);
553 }
554
555 void
556 mi_cmd_thread_select (char *command, char **argv, int argc)
557 {
558 enum gdb_rc rc;
559 char *mi_error_message;
560 ptid_t previous_ptid = inferior_ptid;
561
562 if (argc != 1)
563 error (_("-thread-select: USAGE: threadnum."));
564
565 rc = gdb_thread_select (current_uiout, argv[0], &mi_error_message);
566
567 /* If thread switch did not succeed don't notify or print. */
568 if (rc == GDB_RC_FAIL)
569 {
570 make_cleanup (xfree, mi_error_message);
571 error ("%s", mi_error_message);
572 }
573
574 print_selected_thread_frame (current_uiout,
575 USER_SELECTED_THREAD | USER_SELECTED_FRAME);
576
577 /* Notify if the thread has effectively changed. */
578 if (!ptid_equal (inferior_ptid, previous_ptid))
579 {
580 observer_notify_user_selected_context_changed (USER_SELECTED_THREAD
581 | USER_SELECTED_FRAME);
582 }
583 }
584
585 void
586 mi_cmd_thread_list_ids (char *command, char **argv, int argc)
587 {
588 enum gdb_rc rc;
589 char *mi_error_message;
590
591 if (argc != 0)
592 error (_("-thread-list-ids: No arguments required."));
593
594 rc = gdb_list_thread_ids (current_uiout, &mi_error_message);
595
596 if (rc == GDB_RC_FAIL)
597 {
598 make_cleanup (xfree, mi_error_message);
599 error ("%s", mi_error_message);
600 }
601 }
602
603 void
604 mi_cmd_thread_info (char *command, char **argv, int argc)
605 {
606 if (argc != 0 && argc != 1)
607 error (_("Invalid MI command"));
608
609 print_thread_info (current_uiout, argv[0], -1);
610 }
611
612 struct collect_cores_data
613 {
614 int pid;
615
616 VEC (int) *cores;
617 };
618
619 static int
620 collect_cores (struct thread_info *ti, void *xdata)
621 {
622 struct collect_cores_data *data = (struct collect_cores_data *) xdata;
623
624 if (ptid_get_pid (ti->ptid) == data->pid)
625 {
626 int core = target_core_of_thread (ti->ptid);
627
628 if (core != -1)
629 VEC_safe_push (int, data->cores, core);
630 }
631
632 return 0;
633 }
634
635 static int *
636 unique (int *b, int *e)
637 {
638 int *d = b;
639
640 while (++b != e)
641 if (*d != *b)
642 *++d = *b;
643 return ++d;
644 }
645
646 struct print_one_inferior_data
647 {
648 int recurse;
649 VEC (int) *inferiors;
650 };
651
652 static int
653 print_one_inferior (struct inferior *inferior, void *xdata)
654 {
655 struct print_one_inferior_data *top_data
656 = (struct print_one_inferior_data *) xdata;
657 struct ui_out *uiout = current_uiout;
658
659 if (VEC_empty (int, top_data->inferiors)
660 || bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
661 VEC_length (int, top_data->inferiors), sizeof (int),
662 compare_positive_ints))
663 {
664 struct collect_cores_data data;
665 struct cleanup *back_to
666 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
667
668 uiout->field_fmt ("id", "i%d", inferior->num);
669 uiout->field_string ("type", "process");
670 if (inferior->has_exit_code)
671 uiout->field_string ("exit-code",
672 int_string (inferior->exit_code, 8, 0, 0, 1));
673 if (inferior->pid != 0)
674 uiout->field_int ("pid", inferior->pid);
675
676 if (inferior->pspace->pspace_exec_filename != NULL)
677 {
678 uiout->field_string ("executable",
679 inferior->pspace->pspace_exec_filename);
680 }
681
682 data.cores = 0;
683 if (inferior->pid != 0)
684 {
685 data.pid = inferior->pid;
686 iterate_over_threads (collect_cores, &data);
687 }
688
689 if (!VEC_empty (int, data.cores))
690 {
691 int *b, *e;
692 struct cleanup *back_to_2 =
693 make_cleanup_ui_out_list_begin_end (uiout, "cores");
694
695 qsort (VEC_address (int, data.cores),
696 VEC_length (int, data.cores), sizeof (int),
697 compare_positive_ints);
698
699 b = VEC_address (int, data.cores);
700 e = b + VEC_length (int, data.cores);
701 e = unique (b, e);
702
703 for (; b != e; ++b)
704 uiout->field_int (NULL, *b);
705
706 do_cleanups (back_to_2);
707 }
708
709 if (top_data->recurse)
710 print_thread_info (uiout, NULL, inferior->pid);
711
712 do_cleanups (back_to);
713 }
714
715 return 0;
716 }
717
718 /* Output a field named 'cores' with a list as the value. The
719 elements of the list are obtained by splitting 'cores' on
720 comma. */
721
722 static void
723 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
724 {
725 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
726 field_name);
727 char *cores = xstrdup (xcores);
728 char *p = cores;
729
730 make_cleanup (xfree, cores);
731
732 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
733 uiout->field_string (NULL, p);
734
735 do_cleanups (back_to);
736 }
737
738 static void
739 free_vector_of_ints (void *xvector)
740 {
741 VEC (int) **vector = (VEC (int) **) xvector;
742
743 VEC_free (int, *vector);
744 }
745
746 static void
747 do_nothing (splay_tree_key k)
748 {
749 }
750
751 static void
752 free_vector_of_osdata_items (splay_tree_value xvalue)
753 {
754 VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
755
756 /* We don't free the items itself, it will be done separately. */
757 VEC_free (osdata_item_s, value);
758 }
759
760 static int
761 splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
762 {
763 int a = xa;
764 int b = xb;
765
766 return a - b;
767 }
768
769 static void
770 free_splay_tree (void *xt)
771 {
772 splay_tree t = (splay_tree) xt;
773 splay_tree_delete (t);
774 }
775
776 static void
777 list_available_thread_groups (VEC (int) *ids, int recurse)
778 {
779 struct osdata *data;
780 struct osdata_item *item;
781 int ix_items;
782 struct ui_out *uiout = current_uiout;
783 struct cleanup *cleanup;
784
785 /* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
786 The vector contains information about all threads for the given pid.
787 This is assigned an initial value to avoid "may be used uninitialized"
788 warning from gcc. */
789 splay_tree tree = NULL;
790
791 /* get_osdata will throw if it cannot return data. */
792 data = get_osdata ("processes");
793 cleanup = make_cleanup_osdata_free (data);
794
795 if (recurse)
796 {
797 struct osdata *threads = get_osdata ("threads");
798
799 make_cleanup_osdata_free (threads);
800 tree = splay_tree_new (splay_tree_int_comparator,
801 do_nothing,
802 free_vector_of_osdata_items);
803 make_cleanup (free_splay_tree, tree);
804
805 for (ix_items = 0;
806 VEC_iterate (osdata_item_s, threads->items,
807 ix_items, item);
808 ix_items++)
809 {
810 const char *pid = get_osdata_column (item, "pid");
811 int pid_i = strtoul (pid, NULL, 0);
812 VEC (osdata_item_s) *vec = 0;
813
814 splay_tree_node n = splay_tree_lookup (tree, pid_i);
815 if (!n)
816 {
817 VEC_safe_push (osdata_item_s, vec, item);
818 splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
819 }
820 else
821 {
822 vec = (VEC (osdata_item_s) *) n->value;
823 VEC_safe_push (osdata_item_s, vec, item);
824 n->value = (splay_tree_value) vec;
825 }
826 }
827 }
828
829 make_cleanup_ui_out_list_begin_end (uiout, "groups");
830
831 for (ix_items = 0;
832 VEC_iterate (osdata_item_s, data->items,
833 ix_items, item);
834 ix_items++)
835 {
836 struct cleanup *back_to;
837
838 const char *pid = get_osdata_column (item, "pid");
839 const char *cmd = get_osdata_column (item, "command");
840 const char *user = get_osdata_column (item, "user");
841 const char *cores = get_osdata_column (item, "cores");
842
843 int pid_i = strtoul (pid, NULL, 0);
844
845 /* At present, the target will return all available processes
846 and if information about specific ones was required, we filter
847 undesired processes here. */
848 if (ids && bsearch (&pid_i, VEC_address (int, ids),
849 VEC_length (int, ids),
850 sizeof (int), compare_positive_ints) == NULL)
851 continue;
852
853
854 back_to = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
855
856 uiout->field_fmt ("id", "%s", pid);
857 uiout->field_string ("type", "process");
858 if (cmd)
859 uiout->field_string ("description", cmd);
860 if (user)
861 uiout->field_string ("user", user);
862 if (cores)
863 output_cores (uiout, "cores", cores);
864
865 if (recurse)
866 {
867 splay_tree_node n = splay_tree_lookup (tree, pid_i);
868 if (n)
869 {
870 VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
871 struct osdata_item *child;
872 int ix_child;
873
874 make_cleanup_ui_out_list_begin_end (uiout, "threads");
875
876 for (ix_child = 0;
877 VEC_iterate (osdata_item_s, children, ix_child, child);
878 ++ix_child)
879 {
880 struct cleanup *back_to_2 =
881 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
882 const char *tid = get_osdata_column (child, "tid");
883 const char *tcore = get_osdata_column (child, "core");
884
885 uiout->field_string ("id", tid);
886 if (tcore)
887 uiout->field_string ("core", tcore);
888
889 do_cleanups (back_to_2);
890 }
891 }
892 }
893
894 do_cleanups (back_to);
895 }
896
897 do_cleanups (cleanup);
898 }
899
900 void
901 mi_cmd_list_thread_groups (char *command, char **argv, int argc)
902 {
903 struct ui_out *uiout = current_uiout;
904 struct cleanup *back_to;
905 int available = 0;
906 int recurse = 0;
907 VEC (int) *ids = 0;
908
909 enum opt
910 {
911 AVAILABLE_OPT, RECURSE_OPT
912 };
913 static const struct mi_opt opts[] =
914 {
915 {"-available", AVAILABLE_OPT, 0},
916 {"-recurse", RECURSE_OPT, 1},
917 { 0, 0, 0 }
918 };
919
920 int oind = 0;
921 char *oarg;
922
923 while (1)
924 {
925 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
926 &oind, &oarg);
927
928 if (opt < 0)
929 break;
930 switch ((enum opt) opt)
931 {
932 case AVAILABLE_OPT:
933 available = 1;
934 break;
935 case RECURSE_OPT:
936 if (strcmp (oarg, "0") == 0)
937 ;
938 else if (strcmp (oarg, "1") == 0)
939 recurse = 1;
940 else
941 error (_("only '0' and '1' are valid values "
942 "for the '--recurse' option"));
943 break;
944 }
945 }
946
947 for (; oind < argc; ++oind)
948 {
949 char *end;
950 int inf;
951
952 if (*(argv[oind]) != 'i')
953 error (_("invalid syntax of group id '%s'"), argv[oind]);
954
955 inf = strtoul (argv[oind] + 1, &end, 0);
956
957 if (*end != '\0')
958 error (_("invalid syntax of group id '%s'"), argv[oind]);
959 VEC_safe_push (int, ids, inf);
960 }
961 if (VEC_length (int, ids) > 1)
962 qsort (VEC_address (int, ids),
963 VEC_length (int, ids),
964 sizeof (int), compare_positive_ints);
965
966 back_to = make_cleanup (free_vector_of_ints, &ids);
967
968 if (available)
969 {
970 list_available_thread_groups (ids, recurse);
971 }
972 else if (VEC_length (int, ids) == 1)
973 {
974 /* Local thread groups, single id. */
975 int id = *VEC_address (int, ids);
976 struct inferior *inf = find_inferior_id (id);
977
978 if (!inf)
979 error (_("Non-existent thread group id '%d'"), id);
980
981 print_thread_info (uiout, NULL, inf->pid);
982 }
983 else
984 {
985 struct print_one_inferior_data data;
986
987 data.recurse = recurse;
988 data.inferiors = ids;
989
990 /* Local thread groups. Either no explicit ids -- and we
991 print everything, or several explicit ids. In both cases,
992 we print more than one group, and have to use 'groups'
993 as the top-level element. */
994 make_cleanup_ui_out_list_begin_end (uiout, "groups");
995 update_thread_list ();
996 iterate_over_inferiors (print_one_inferior, &data);
997 }
998
999 do_cleanups (back_to);
1000 }
1001
1002 void
1003 mi_cmd_data_list_register_names (char *command, char **argv, int argc)
1004 {
1005 struct gdbarch *gdbarch;
1006 struct ui_out *uiout = current_uiout;
1007 int regnum, numregs;
1008 int i;
1009 struct cleanup *cleanup;
1010
1011 /* Note that the test for a valid register must include checking the
1012 gdbarch_register_name because gdbarch_num_regs may be allocated
1013 for the union of the register sets within a family of related
1014 processors. In this case, some entries of gdbarch_register_name
1015 will change depending upon the particular processor being
1016 debugged. */
1017
1018 gdbarch = get_current_arch ();
1019 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1020
1021 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");
1022
1023 if (argc == 0) /* No args, just do all the regs. */
1024 {
1025 for (regnum = 0;
1026 regnum < numregs;
1027 regnum++)
1028 {
1029 if (gdbarch_register_name (gdbarch, regnum) == NULL
1030 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1031 uiout->field_string (NULL, "");
1032 else
1033 uiout->field_string (NULL, gdbarch_register_name (gdbarch, regnum));
1034 }
1035 }
1036
1037 /* Else, list of register #s, just do listed regs. */
1038 for (i = 0; i < argc; i++)
1039 {
1040 regnum = atoi (argv[i]);
1041 if (regnum < 0 || regnum >= numregs)
1042 error (_("bad register number"));
1043
1044 if (gdbarch_register_name (gdbarch, regnum) == NULL
1045 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1046 uiout->field_string (NULL, "");
1047 else
1048 uiout->field_string (NULL, gdbarch_register_name (gdbarch, regnum));
1049 }
1050 do_cleanups (cleanup);
1051 }
1052
1053 void
1054 mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
1055 {
1056 static struct regcache *this_regs = NULL;
1057 struct ui_out *uiout = current_uiout;
1058 struct regcache *prev_regs;
1059 struct gdbarch *gdbarch;
1060 int regnum, numregs, changed;
1061 int i;
1062 struct cleanup *cleanup;
1063
1064 /* The last time we visited this function, the current frame's
1065 register contents were saved in THIS_REGS. Move THIS_REGS over
1066 to PREV_REGS, and refresh THIS_REGS with the now-current register
1067 contents. */
1068
1069 prev_regs = this_regs;
1070 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
1071 cleanup = make_cleanup_regcache_xfree (prev_regs);
1072
1073 /* Note that the test for a valid register must include checking the
1074 gdbarch_register_name because gdbarch_num_regs may be allocated
1075 for the union of the register sets within a family of related
1076 processors. In this case, some entries of gdbarch_register_name
1077 will change depending upon the particular processor being
1078 debugged. */
1079
1080 gdbarch = get_regcache_arch (this_regs);
1081 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1082
1083 make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
1084
1085 if (argc == 0)
1086 {
1087 /* No args, just do all the regs. */
1088 for (regnum = 0;
1089 regnum < numregs;
1090 regnum++)
1091 {
1092 if (gdbarch_register_name (gdbarch, regnum) == NULL
1093 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1094 continue;
1095 changed = register_changed_p (regnum, prev_regs, this_regs);
1096 if (changed < 0)
1097 error (_("-data-list-changed-registers: "
1098 "Unable to read register contents."));
1099 else if (changed)
1100 uiout->field_int (NULL, regnum);
1101 }
1102 }
1103
1104 /* Else, list of register #s, just do listed regs. */
1105 for (i = 0; i < argc; i++)
1106 {
1107 regnum = atoi (argv[i]);
1108
1109 if (regnum >= 0
1110 && regnum < numregs
1111 && gdbarch_register_name (gdbarch, regnum) != NULL
1112 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1113 {
1114 changed = register_changed_p (regnum, prev_regs, this_regs);
1115 if (changed < 0)
1116 error (_("-data-list-changed-registers: "
1117 "Unable to read register contents."));
1118 else if (changed)
1119 uiout->field_int (NULL, regnum);
1120 }
1121 else
1122 error (_("bad register number"));
1123 }
1124 do_cleanups (cleanup);
1125 }
1126
1127 static int
1128 register_changed_p (int regnum, struct regcache *prev_regs,
1129 struct regcache *this_regs)
1130 {
1131 struct gdbarch *gdbarch = get_regcache_arch (this_regs);
1132 gdb_byte prev_buffer[MAX_REGISTER_SIZE];
1133 gdb_byte this_buffer[MAX_REGISTER_SIZE];
1134 enum register_status prev_status;
1135 enum register_status this_status;
1136
1137 /* First time through or after gdbarch change consider all registers
1138 as changed. */
1139 if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch)
1140 return 1;
1141
1142 /* Get register contents and compare. */
1143 prev_status = regcache_cooked_read (prev_regs, regnum, prev_buffer);
1144 this_status = regcache_cooked_read (this_regs, regnum, this_buffer);
1145
1146 if (this_status != prev_status)
1147 return 1;
1148 else if (this_status == REG_VALID)
1149 return memcmp (prev_buffer, this_buffer,
1150 register_size (gdbarch, regnum)) != 0;
1151 else
1152 return 0;
1153 }
1154
1155 /* Return a list of register number and value pairs. The valid
1156 arguments expected are: a letter indicating the format in which to
1157 display the registers contents. This can be one of: x
1158 (hexadecimal), d (decimal), N (natural), t (binary), o (octal), r
1159 (raw). After the format argument there can be a sequence of
1160 numbers, indicating which registers to fetch the content of. If
1161 the format is the only argument, a list of all the registers with
1162 their values is returned. */
1163
1164 void
1165 mi_cmd_data_list_register_values (char *command, char **argv, int argc)
1166 {
1167 struct ui_out *uiout = current_uiout;
1168 struct frame_info *frame;
1169 struct gdbarch *gdbarch;
1170 int regnum, numregs, format;
1171 int i;
1172 struct cleanup *list_cleanup;
1173 int skip_unavailable = 0;
1174 int oind = 0;
1175 enum opt
1176 {
1177 SKIP_UNAVAILABLE,
1178 };
1179 static const struct mi_opt opts[] =
1180 {
1181 {"-skip-unavailable", SKIP_UNAVAILABLE, 0},
1182 { 0, 0, 0 }
1183 };
1184
1185 /* Note that the test for a valid register must include checking the
1186 gdbarch_register_name because gdbarch_num_regs may be allocated
1187 for the union of the register sets within a family of related
1188 processors. In this case, some entries of gdbarch_register_name
1189 will change depending upon the particular processor being
1190 debugged. */
1191
1192 while (1)
1193 {
1194 char *oarg;
1195 int opt = mi_getopt ("-data-list-register-values", argc, argv,
1196 opts, &oind, &oarg);
1197
1198 if (opt < 0)
1199 break;
1200 switch ((enum opt) opt)
1201 {
1202 case SKIP_UNAVAILABLE:
1203 skip_unavailable = 1;
1204 break;
1205 }
1206 }
1207
1208 if (argc - oind < 1)
1209 error (_("-data-list-register-values: Usage: "
1210 "-data-list-register-values [--skip-unavailable] <format>"
1211 " [<regnum1>...<regnumN>]"));
1212
1213 format = (int) argv[oind][0];
1214
1215 frame = get_selected_frame (NULL);
1216 gdbarch = get_frame_arch (frame);
1217 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1218
1219 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");
1220
1221 if (argc - oind == 1)
1222 {
1223 /* No args, beside the format: do all the regs. */
1224 for (regnum = 0;
1225 regnum < numregs;
1226 regnum++)
1227 {
1228 if (gdbarch_register_name (gdbarch, regnum) == NULL
1229 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1230 continue;
1231
1232 output_register (frame, regnum, format, skip_unavailable);
1233 }
1234 }
1235
1236 /* Else, list of register #s, just do listed regs. */
1237 for (i = 1 + oind; i < argc; i++)
1238 {
1239 regnum = atoi (argv[i]);
1240
1241 if (regnum >= 0
1242 && regnum < numregs
1243 && gdbarch_register_name (gdbarch, regnum) != NULL
1244 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1245 output_register (frame, regnum, format, skip_unavailable);
1246 else
1247 error (_("bad register number"));
1248 }
1249 do_cleanups (list_cleanup);
1250 }
1251
1252 /* Output one register REGNUM's contents in the desired FORMAT. If
1253 SKIP_UNAVAILABLE is true, skip the register if it is
1254 unavailable. */
1255
1256 static void
1257 output_register (struct frame_info *frame, int regnum, int format,
1258 int skip_unavailable)
1259 {
1260 struct ui_out *uiout = current_uiout;
1261 struct value *val = value_of_register (regnum, frame);
1262 struct cleanup *tuple_cleanup;
1263 struct value_print_options opts;
1264 struct ui_file *stb;
1265
1266 if (skip_unavailable && !value_entirely_available (val))
1267 return;
1268
1269 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1270 uiout->field_int ("number", regnum);
1271
1272 if (format == 'N')
1273 format = 0;
1274
1275 if (format == 'r')
1276 format = 'z';
1277
1278 stb = mem_fileopen ();
1279 make_cleanup_ui_file_delete (stb);
1280
1281 get_formatted_print_options (&opts, format);
1282 opts.deref_ref = 1;
1283 val_print (value_type (val),
1284 value_embedded_offset (val), 0,
1285 stb, 0, val, &opts, current_language);
1286 uiout->field_stream ("value", stb);
1287
1288 do_cleanups (tuple_cleanup);
1289 }
1290
1291 /* Write given values into registers. The registers and values are
1292 given as pairs. The corresponding MI command is
1293 -data-write-register-values <format>
1294 [<regnum1> <value1>...<regnumN> <valueN>] */
1295 void
1296 mi_cmd_data_write_register_values (char *command, char **argv, int argc)
1297 {
1298 struct regcache *regcache;
1299 struct gdbarch *gdbarch;
1300 int numregs, i;
1301
1302 /* Note that the test for a valid register must include checking the
1303 gdbarch_register_name because gdbarch_num_regs may be allocated
1304 for the union of the register sets within a family of related
1305 processors. In this case, some entries of gdbarch_register_name
1306 will change depending upon the particular processor being
1307 debugged. */
1308
1309 regcache = get_current_regcache ();
1310 gdbarch = get_regcache_arch (regcache);
1311 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1312
1313 if (argc == 0)
1314 error (_("-data-write-register-values: Usage: -data-write-register-"
1315 "values <format> [<regnum1> <value1>...<regnumN> <valueN>]"));
1316
1317 if (!target_has_registers)
1318 error (_("-data-write-register-values: No registers."));
1319
1320 if (!(argc - 1))
1321 error (_("-data-write-register-values: No regs and values specified."));
1322
1323 if ((argc - 1) % 2)
1324 error (_("-data-write-register-values: "
1325 "Regs and vals are not in pairs."));
1326
1327 for (i = 1; i < argc; i = i + 2)
1328 {
1329 int regnum = atoi (argv[i]);
1330
1331 if (regnum >= 0 && regnum < numregs
1332 && gdbarch_register_name (gdbarch, regnum)
1333 && *gdbarch_register_name (gdbarch, regnum))
1334 {
1335 LONGEST value;
1336
1337 /* Get the value as a number. */
1338 value = parse_and_eval_address (argv[i + 1]);
1339
1340 /* Write it down. */
1341 regcache_cooked_write_signed (regcache, regnum, value);
1342 }
1343 else
1344 error (_("bad register number"));
1345 }
1346 }
1347
1348 /* Evaluate the value of the argument. The argument is an
1349 expression. If the expression contains spaces it needs to be
1350 included in double quotes. */
1351
1352 void
1353 mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
1354 {
1355 struct cleanup *old_chain;
1356 struct value *val;
1357 struct ui_file *stb;
1358 struct value_print_options opts;
1359 struct ui_out *uiout = current_uiout;
1360
1361 stb = mem_fileopen ();
1362 old_chain = make_cleanup_ui_file_delete (stb);
1363
1364 if (argc != 1)
1365 error (_("-data-evaluate-expression: "
1366 "Usage: -data-evaluate-expression expression"));
1367
1368 expression_up expr = parse_expression (argv[0]);
1369
1370 val = evaluate_expression (expr.get ());
1371
1372 /* Print the result of the expression evaluation. */
1373 get_user_print_options (&opts);
1374 opts.deref_ref = 0;
1375 common_val_print (val, stb, 0, &opts, current_language);
1376
1377 uiout->field_stream ("value", stb);
1378
1379 do_cleanups (old_chain);
1380 }
1381
1382 /* This is the -data-read-memory command.
1383
1384 ADDR: start address of data to be dumped.
1385 WORD-FORMAT: a char indicating format for the ``word''. See
1386 the ``x'' command.
1387 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1388 NR_ROW: Number of rows.
1389 NR_COL: The number of colums (words per row).
1390 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1391 ASCHAR for unprintable characters.
1392
1393 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1394 displayes them. Returns:
1395
1396 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1397
1398 Returns:
1399 The number of bytes read is SIZE*ROW*COL. */
1400
1401 void
1402 mi_cmd_data_read_memory (char *command, char **argv, int argc)
1403 {
1404 struct gdbarch *gdbarch = get_current_arch ();
1405 struct ui_out *uiout = current_uiout;
1406 CORE_ADDR addr;
1407 long total_bytes, nr_cols, nr_rows;
1408 char word_format;
1409 struct type *word_type;
1410 long word_size;
1411 char word_asize;
1412 char aschar;
1413 int nr_bytes;
1414 long offset = 0;
1415 int oind = 0;
1416 char *oarg;
1417 enum opt
1418 {
1419 OFFSET_OPT
1420 };
1421 static const struct mi_opt opts[] =
1422 {
1423 {"o", OFFSET_OPT, 1},
1424 { 0, 0, 0 }
1425 };
1426
1427 while (1)
1428 {
1429 int opt = mi_getopt ("-data-read-memory", argc, argv, opts,
1430 &oind, &oarg);
1431
1432 if (opt < 0)
1433 break;
1434 switch ((enum opt) opt)
1435 {
1436 case OFFSET_OPT:
1437 offset = atol (oarg);
1438 break;
1439 }
1440 }
1441 argv += oind;
1442 argc -= oind;
1443
1444 if (argc < 5 || argc > 6)
1445 error (_("-data-read-memory: Usage: "
1446 "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR]."));
1447
1448 /* Extract all the arguments. */
1449
1450 /* Start address of the memory dump. */
1451 addr = parse_and_eval_address (argv[0]) + offset;
1452 /* The format character to use when displaying a memory word. See
1453 the ``x'' command. */
1454 word_format = argv[1][0];
1455 /* The size of the memory word. */
1456 word_size = atol (argv[2]);
1457 switch (word_size)
1458 {
1459 case 1:
1460 word_type = builtin_type (gdbarch)->builtin_int8;
1461 word_asize = 'b';
1462 break;
1463 case 2:
1464 word_type = builtin_type (gdbarch)->builtin_int16;
1465 word_asize = 'h';
1466 break;
1467 case 4:
1468 word_type = builtin_type (gdbarch)->builtin_int32;
1469 word_asize = 'w';
1470 break;
1471 case 8:
1472 word_type = builtin_type (gdbarch)->builtin_int64;
1473 word_asize = 'g';
1474 break;
1475 default:
1476 word_type = builtin_type (gdbarch)->builtin_int8;
1477 word_asize = 'b';
1478 }
1479 /* The number of rows. */
1480 nr_rows = atol (argv[3]);
1481 if (nr_rows <= 0)
1482 error (_("-data-read-memory: invalid number of rows."));
1483
1484 /* Number of bytes per row. */
1485 nr_cols = atol (argv[4]);
1486 if (nr_cols <= 0)
1487 error (_("-data-read-memory: invalid number of columns."));
1488
1489 /* The un-printable character when printing ascii. */
1490 if (argc == 6)
1491 aschar = *argv[5];
1492 else
1493 aschar = 0;
1494
1495 /* Create a buffer and read it in. */
1496 total_bytes = word_size * nr_rows * nr_cols;
1497
1498 std::unique_ptr<gdb_byte[]> mbuf (new gdb_byte[total_bytes]);
1499
1500 /* Dispatch memory reads to the topmost target, not the flattened
1501 current_target. */
1502 nr_bytes = target_read (current_target.beneath,
1503 TARGET_OBJECT_MEMORY, NULL, mbuf.get (),
1504 addr, total_bytes);
1505 if (nr_bytes <= 0)
1506 error (_("Unable to read memory."));
1507
1508 /* Output the header information. */
1509 uiout->field_core_addr ("addr", gdbarch, addr);
1510 uiout->field_int ("nr-bytes", nr_bytes);
1511 uiout->field_int ("total-bytes", total_bytes);
1512 uiout->field_core_addr ("next-row", gdbarch, addr + word_size * nr_cols);
1513 uiout->field_core_addr ("prev-row", gdbarch, addr - word_size * nr_cols);
1514 uiout->field_core_addr ("next-page", gdbarch, addr + total_bytes);
1515 uiout->field_core_addr ("prev-page", gdbarch, addr - total_bytes);
1516
1517 /* Build the result as a two dimentional table. */
1518 {
1519 struct ui_file *stream;
1520 struct cleanup *cleanup_stream;
1521 int row;
1522 int row_byte;
1523
1524 stream = mem_fileopen ();
1525 cleanup_stream = make_cleanup_ui_file_delete (stream);
1526
1527 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1528 for (row = 0, row_byte = 0;
1529 row < nr_rows;
1530 row++, row_byte += nr_cols * word_size)
1531 {
1532 int col;
1533 int col_byte;
1534 struct cleanup *cleanup_tuple;
1535 struct cleanup *cleanup_list_data;
1536 struct value_print_options opts;
1537
1538 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1539 uiout->field_core_addr ("addr", gdbarch, addr + row_byte);
1540 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
1541 row_byte); */
1542 cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
1543 get_formatted_print_options (&opts, word_format);
1544 for (col = 0, col_byte = row_byte;
1545 col < nr_cols;
1546 col++, col_byte += word_size)
1547 {
1548 if (col_byte + word_size > nr_bytes)
1549 {
1550 uiout->field_string (NULL, "N/A");
1551 }
1552 else
1553 {
1554 ui_file_rewind (stream);
1555 print_scalar_formatted (&mbuf[col_byte], word_type, &opts,
1556 word_asize, stream);
1557 uiout->field_stream (NULL, stream);
1558 }
1559 }
1560 do_cleanups (cleanup_list_data);
1561 if (aschar)
1562 {
1563 int byte;
1564
1565 ui_file_rewind (stream);
1566 for (byte = row_byte;
1567 byte < row_byte + word_size * nr_cols; byte++)
1568 {
1569 if (byte >= nr_bytes)
1570 fputc_unfiltered ('X', stream);
1571 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1572 fputc_unfiltered (aschar, stream);
1573 else
1574 fputc_unfiltered (mbuf[byte], stream);
1575 }
1576 uiout->field_stream ("ascii", stream);
1577 }
1578 do_cleanups (cleanup_tuple);
1579 }
1580 do_cleanups (cleanup_stream);
1581 }
1582 }
1583
1584 void
1585 mi_cmd_data_read_memory_bytes (char *command, char **argv, int argc)
1586 {
1587 struct gdbarch *gdbarch = get_current_arch ();
1588 struct ui_out *uiout = current_uiout;
1589 struct cleanup *cleanups;
1590 CORE_ADDR addr;
1591 LONGEST length;
1592 memory_read_result_s *read_result;
1593 int ix;
1594 VEC(memory_read_result_s) *result;
1595 long offset = 0;
1596 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
1597 int oind = 0;
1598 char *oarg;
1599 enum opt
1600 {
1601 OFFSET_OPT
1602 };
1603 static const struct mi_opt opts[] =
1604 {
1605 {"o", OFFSET_OPT, 1},
1606 { 0, 0, 0 }
1607 };
1608
1609 while (1)
1610 {
1611 int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts,
1612 &oind, &oarg);
1613 if (opt < 0)
1614 break;
1615 switch ((enum opt) opt)
1616 {
1617 case OFFSET_OPT:
1618 offset = atol (oarg);
1619 break;
1620 }
1621 }
1622 argv += oind;
1623 argc -= oind;
1624
1625 if (argc != 2)
1626 error (_("Usage: [ -o OFFSET ] ADDR LENGTH."));
1627
1628 addr = parse_and_eval_address (argv[0]) + offset;
1629 length = atol (argv[1]);
1630
1631 result = read_memory_robust (current_target.beneath, addr, length);
1632
1633 cleanups = make_cleanup (free_memory_read_result_vector, &result);
1634
1635 if (VEC_length (memory_read_result_s, result) == 0)
1636 error (_("Unable to read memory."));
1637
1638 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1639 for (ix = 0;
1640 VEC_iterate (memory_read_result_s, result, ix, read_result);
1641 ++ix)
1642 {
1643 struct cleanup *t = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1644 char *data, *p;
1645 int i;
1646 int alloc_len;
1647
1648 uiout->field_core_addr ("begin", gdbarch, read_result->begin);
1649 uiout->field_core_addr ("offset", gdbarch, read_result->begin - addr);
1650 uiout->field_core_addr ("end", gdbarch, read_result->end);
1651
1652 alloc_len = (read_result->end - read_result->begin) * 2 * unit_size + 1;
1653 data = (char *) xmalloc (alloc_len);
1654
1655 for (i = 0, p = data;
1656 i < ((read_result->end - read_result->begin) * unit_size);
1657 ++i, p += 2)
1658 {
1659 sprintf (p, "%02x", read_result->data[i]);
1660 }
1661 uiout->field_string ("contents", data);
1662 xfree (data);
1663 do_cleanups (t);
1664 }
1665 do_cleanups (cleanups);
1666 }
1667
1668 /* Implementation of the -data-write_memory command.
1669
1670 COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The
1671 offset from the beginning of the memory grid row where the cell to
1672 be written is.
1673 ADDR: start address of the row in the memory grid where the memory
1674 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1675 the location to write to.
1676 FORMAT: a char indicating format for the ``word''. See
1677 the ``x'' command.
1678 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1679 VALUE: value to be written into the memory address.
1680
1681 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1682
1683 Prints nothing. */
1684
1685 void
1686 mi_cmd_data_write_memory (char *command, char **argv, int argc)
1687 {
1688 struct gdbarch *gdbarch = get_current_arch ();
1689 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1690 CORE_ADDR addr;
1691 long word_size;
1692 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1693 enough when using a compiler other than GCC. */
1694 LONGEST value;
1695 gdb_byte *buffer;
1696 struct cleanup *old_chain;
1697 long offset = 0;
1698 int oind = 0;
1699 char *oarg;
1700 enum opt
1701 {
1702 OFFSET_OPT
1703 };
1704 static const struct mi_opt opts[] =
1705 {
1706 {"o", OFFSET_OPT, 1},
1707 { 0, 0, 0 }
1708 };
1709
1710 while (1)
1711 {
1712 int opt = mi_getopt ("-data-write-memory", argc, argv, opts,
1713 &oind, &oarg);
1714
1715 if (opt < 0)
1716 break;
1717 switch ((enum opt) opt)
1718 {
1719 case OFFSET_OPT:
1720 offset = atol (oarg);
1721 break;
1722 }
1723 }
1724 argv += oind;
1725 argc -= oind;
1726
1727 if (argc != 4)
1728 error (_("-data-write-memory: Usage: "
1729 "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE."));
1730
1731 /* Extract all the arguments. */
1732 /* Start address of the memory dump. */
1733 addr = parse_and_eval_address (argv[0]);
1734 /* The size of the memory word. */
1735 word_size = atol (argv[2]);
1736
1737 /* Calculate the real address of the write destination. */
1738 addr += (offset * word_size);
1739
1740 /* Get the value as a number. */
1741 value = parse_and_eval_address (argv[3]);
1742 /* Get the value into an array. */
1743 buffer = (gdb_byte *) xmalloc (word_size);
1744 old_chain = make_cleanup (xfree, buffer);
1745 store_signed_integer (buffer, word_size, byte_order, value);
1746 /* Write it down to memory. */
1747 write_memory_with_notification (addr, buffer, word_size);
1748 /* Free the buffer. */
1749 do_cleanups (old_chain);
1750 }
1751
1752 /* Implementation of the -data-write-memory-bytes command.
1753
1754 ADDR: start address
1755 DATA: string of bytes to write at that address
1756 COUNT: number of bytes to be filled (decimal integer). */
1757
1758 void
1759 mi_cmd_data_write_memory_bytes (char *command, char **argv, int argc)
1760 {
1761 CORE_ADDR addr;
1762 char *cdata;
1763 gdb_byte *data;
1764 gdb_byte *databuf;
1765 size_t len_hex, len_bytes, len_units, i, steps, remaining_units;
1766 long int count_units;
1767 struct cleanup *back_to;
1768 int unit_size;
1769
1770 if (argc != 2 && argc != 3)
1771 error (_("Usage: ADDR DATA [COUNT]."));
1772
1773 addr = parse_and_eval_address (argv[0]);
1774 cdata = argv[1];
1775 len_hex = strlen (cdata);
1776 unit_size = gdbarch_addressable_memory_unit_size (get_current_arch ());
1777
1778 if (len_hex % (unit_size * 2) != 0)
1779 error (_("Hex-encoded '%s' must represent an integral number of "
1780 "addressable memory units."),
1781 cdata);
1782
1783 len_bytes = len_hex / 2;
1784 len_units = len_bytes / unit_size;
1785
1786 if (argc == 3)
1787 count_units = strtoul (argv[2], NULL, 10);
1788 else
1789 count_units = len_units;
1790
1791 databuf = XNEWVEC (gdb_byte, len_bytes);
1792 back_to = make_cleanup (xfree, databuf);
1793
1794 for (i = 0; i < len_bytes; ++i)
1795 {
1796 int x;
1797 if (sscanf (cdata + i * 2, "%02x", &x) != 1)
1798 error (_("Invalid argument"));
1799 databuf[i] = (gdb_byte) x;
1800 }
1801
1802 if (len_units < count_units)
1803 {
1804 /* Pattern is made of less units than count:
1805 repeat pattern to fill memory. */
1806 data = (gdb_byte *) xmalloc (count_units * unit_size);
1807 make_cleanup (xfree, data);
1808
1809 /* Number of times the pattern is entirely repeated. */
1810 steps = count_units / len_units;
1811 /* Number of remaining addressable memory units. */
1812 remaining_units = count_units % len_units;
1813 for (i = 0; i < steps; i++)
1814 memcpy (data + i * len_bytes, databuf, len_bytes);
1815
1816 if (remaining_units > 0)
1817 memcpy (data + steps * len_bytes, databuf,
1818 remaining_units * unit_size);
1819 }
1820 else
1821 {
1822 /* Pattern is longer than or equal to count:
1823 just copy count addressable memory units. */
1824 data = databuf;
1825 }
1826
1827 write_memory_with_notification (addr, data, count_units);
1828
1829 do_cleanups (back_to);
1830 }
1831
1832 void
1833 mi_cmd_enable_timings (char *command, char **argv, int argc)
1834 {
1835 if (argc == 0)
1836 do_timings = 1;
1837 else if (argc == 1)
1838 {
1839 if (strcmp (argv[0], "yes") == 0)
1840 do_timings = 1;
1841 else if (strcmp (argv[0], "no") == 0)
1842 do_timings = 0;
1843 else
1844 goto usage_error;
1845 }
1846 else
1847 goto usage_error;
1848
1849 return;
1850
1851 usage_error:
1852 error (_("-enable-timings: Usage: %s {yes|no}"), command);
1853 }
1854
1855 void
1856 mi_cmd_list_features (char *command, char **argv, int argc)
1857 {
1858 if (argc == 0)
1859 {
1860 struct cleanup *cleanup = NULL;
1861 struct ui_out *uiout = current_uiout;
1862
1863 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1864 uiout->field_string (NULL, "frozen-varobjs");
1865 uiout->field_string (NULL, "pending-breakpoints");
1866 uiout->field_string (NULL, "thread-info");
1867 uiout->field_string (NULL, "data-read-memory-bytes");
1868 uiout->field_string (NULL, "breakpoint-notifications");
1869 uiout->field_string (NULL, "ada-task-info");
1870 uiout->field_string (NULL, "language-option");
1871 uiout->field_string (NULL, "info-gdb-mi-command");
1872 uiout->field_string (NULL, "undefined-command-error-code");
1873 uiout->field_string (NULL, "exec-run-start-option");
1874
1875 if (ext_lang_initialized_p (get_ext_lang_defn (EXT_LANG_PYTHON)))
1876 uiout->field_string (NULL, "python");
1877
1878 do_cleanups (cleanup);
1879 return;
1880 }
1881
1882 error (_("-list-features should be passed no arguments"));
1883 }
1884
1885 void
1886 mi_cmd_list_target_features (char *command, char **argv, int argc)
1887 {
1888 if (argc == 0)
1889 {
1890 struct cleanup *cleanup = NULL;
1891 struct ui_out *uiout = current_uiout;
1892
1893 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1894 if (mi_async_p ())
1895 uiout->field_string (NULL, "async");
1896 if (target_can_execute_reverse)
1897 uiout->field_string (NULL, "reverse");
1898 do_cleanups (cleanup);
1899 return;
1900 }
1901
1902 error (_("-list-target-features should be passed no arguments"));
1903 }
1904
1905 void
1906 mi_cmd_add_inferior (char *command, char **argv, int argc)
1907 {
1908 struct inferior *inf;
1909
1910 if (argc != 0)
1911 error (_("-add-inferior should be passed no arguments"));
1912
1913 inf = add_inferior_with_spaces ();
1914
1915 current_uiout->field_fmt ("inferior", "i%d", inf->num);
1916 }
1917
1918 /* Callback used to find the first inferior other than the current
1919 one. */
1920
1921 static int
1922 get_other_inferior (struct inferior *inf, void *arg)
1923 {
1924 if (inf == current_inferior ())
1925 return 0;
1926
1927 return 1;
1928 }
1929
1930 void
1931 mi_cmd_remove_inferior (char *command, char **argv, int argc)
1932 {
1933 int id;
1934 struct inferior *inf;
1935
1936 if (argc != 1)
1937 error (_("-remove-inferior should be passed a single argument"));
1938
1939 if (sscanf (argv[0], "i%d", &id) != 1)
1940 error (_("the thread group id is syntactically invalid"));
1941
1942 inf = find_inferior_id (id);
1943 if (!inf)
1944 error (_("the specified thread group does not exist"));
1945
1946 if (inf->pid != 0)
1947 error (_("cannot remove an active inferior"));
1948
1949 if (inf == current_inferior ())
1950 {
1951 struct thread_info *tp = 0;
1952 struct inferior *new_inferior
1953 = iterate_over_inferiors (get_other_inferior, NULL);
1954
1955 if (new_inferior == NULL)
1956 error (_("Cannot remove last inferior"));
1957
1958 set_current_inferior (new_inferior);
1959 if (new_inferior->pid != 0)
1960 tp = any_thread_of_process (new_inferior->pid);
1961 switch_to_thread (tp ? tp->ptid : null_ptid);
1962 set_current_program_space (new_inferior->pspace);
1963 }
1964
1965 delete_inferior (inf);
1966 }
1967
1968 \f
1969
1970 /* Execute a command within a safe environment.
1971 Return <0 for error; >=0 for ok.
1972
1973 args->action will tell mi_execute_command what action
1974 to perfrom after the given command has executed (display/suppress
1975 prompt, display error). */
1976
1977 static void
1978 captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context)
1979 {
1980 struct mi_interp *mi = (struct mi_interp *) interp_data (command_interp ());
1981 struct cleanup *cleanup;
1982
1983 if (do_timings)
1984 current_command_ts = context->cmd_start;
1985
1986 current_token = xstrdup (context->token);
1987 cleanup = make_cleanup (free_current_contents, &current_token);
1988
1989 running_result_record_printed = 0;
1990 mi_proceeded = 0;
1991 switch (context->op)
1992 {
1993 case MI_COMMAND:
1994 /* A MI command was read from the input stream. */
1995 if (mi_debug_p)
1996 /* FIXME: gdb_???? */
1997 fprintf_unfiltered (mi->raw_stdout,
1998 " token=`%s' command=`%s' args=`%s'\n",
1999 context->token, context->command, context->args);
2000
2001 mi_cmd_execute (context);
2002
2003 /* Print the result if there were no errors.
2004
2005 Remember that on the way out of executing a command, you have
2006 to directly use the mi_interp's uiout, since the command
2007 could have reset the interpreter, in which case the current
2008 uiout will most likely crash in the mi_out_* routines. */
2009 if (!running_result_record_printed)
2010 {
2011 fputs_unfiltered (context->token, mi->raw_stdout);
2012 /* There's no particularly good reason why target-connect results
2013 in not ^done. Should kill ^connected for MI3. */
2014 fputs_unfiltered (strcmp (context->command, "target-select") == 0
2015 ? "^connected" : "^done", mi->raw_stdout);
2016 mi_out_put (uiout, mi->raw_stdout);
2017 mi_out_rewind (uiout);
2018 mi_print_timing_maybe (mi->raw_stdout);
2019 fputs_unfiltered ("\n", mi->raw_stdout);
2020 }
2021 else
2022 /* The command does not want anything to be printed. In that
2023 case, the command probably should not have written anything
2024 to uiout, but in case it has written something, discard it. */
2025 mi_out_rewind (uiout);
2026 break;
2027
2028 case CLI_COMMAND:
2029 {
2030 char *argv[2];
2031
2032 /* A CLI command was read from the input stream. */
2033 /* This "feature" will be removed as soon as we have a
2034 complete set of mi commands. */
2035 /* Echo the command on the console. */
2036 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
2037 /* Call the "console" interpreter. */
2038 argv[0] = INTERP_CONSOLE;
2039 argv[1] = context->command;
2040 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
2041
2042 /* If we changed interpreters, DON'T print out anything. */
2043 if (current_interp_named_p (INTERP_MI)
2044 || current_interp_named_p (INTERP_MI1)
2045 || current_interp_named_p (INTERP_MI2)
2046 || current_interp_named_p (INTERP_MI3))
2047 {
2048 if (!running_result_record_printed)
2049 {
2050 fputs_unfiltered (context->token, mi->raw_stdout);
2051 fputs_unfiltered ("^done", mi->raw_stdout);
2052 mi_out_put (uiout, mi->raw_stdout);
2053 mi_out_rewind (uiout);
2054 mi_print_timing_maybe (mi->raw_stdout);
2055 fputs_unfiltered ("\n", mi->raw_stdout);
2056 }
2057 else
2058 mi_out_rewind (uiout);
2059 }
2060 break;
2061 }
2062 }
2063
2064 do_cleanups (cleanup);
2065 }
2066
2067 /* Print a gdb exception to the MI output stream. */
2068
2069 static void
2070 mi_print_exception (const char *token, struct gdb_exception exception)
2071 {
2072 struct mi_interp *mi
2073 = (struct mi_interp *) interp_data (current_interpreter ());
2074
2075 fputs_unfiltered (token, mi->raw_stdout);
2076 fputs_unfiltered ("^error,msg=\"", mi->raw_stdout);
2077 if (exception.message == NULL)
2078 fputs_unfiltered ("unknown error", mi->raw_stdout);
2079 else
2080 fputstr_unfiltered (exception.message, '"', mi->raw_stdout);
2081 fputs_unfiltered ("\"", mi->raw_stdout);
2082
2083 switch (exception.error)
2084 {
2085 case UNDEFINED_COMMAND_ERROR:
2086 fputs_unfiltered (",code=\"undefined-command\"", mi->raw_stdout);
2087 break;
2088 }
2089
2090 fputs_unfiltered ("\n", mi->raw_stdout);
2091 }
2092
2093 /* Determine whether the parsed command already notifies the
2094 user_selected_context_changed observer. */
2095
2096 static int
2097 command_notifies_uscc_observer (struct mi_parse *command)
2098 {
2099 if (command->op == CLI_COMMAND)
2100 {
2101 /* CLI commands "thread" and "inferior" already send it. */
2102 return (strncmp (command->command, "thread ", 7) == 0
2103 || strncmp (command->command, "inferior ", 9) == 0);
2104 }
2105 else /* MI_COMMAND */
2106 {
2107 if (strcmp (command->command, "interpreter-exec") == 0
2108 && command->argc > 1)
2109 {
2110 /* "thread" and "inferior" again, but through -interpreter-exec. */
2111 return (strncmp (command->argv[1], "thread ", 7) == 0
2112 || strncmp (command->argv[1], "inferior ", 9) == 0);
2113 }
2114
2115 else
2116 /* -thread-select already sends it. */
2117 return strcmp (command->command, "thread-select") == 0;
2118 }
2119 }
2120
2121 void
2122 mi_execute_command (const char *cmd, int from_tty)
2123 {
2124 char *token;
2125 struct mi_parse *command = NULL;
2126
2127 /* This is to handle EOF (^D). We just quit gdb. */
2128 /* FIXME: we should call some API function here. */
2129 if (cmd == 0)
2130 quit_force (NULL, from_tty);
2131
2132 target_log_command (cmd);
2133
2134 TRY
2135 {
2136 command = mi_parse (cmd, &token);
2137 }
2138 CATCH (exception, RETURN_MASK_ALL)
2139 {
2140 mi_print_exception (token, exception);
2141 xfree (token);
2142 }
2143 END_CATCH
2144
2145 if (command != NULL)
2146 {
2147 ptid_t previous_ptid = inferior_ptid;
2148 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
2149
2150 command->token = token;
2151
2152 if (command->cmd != NULL && command->cmd->suppress_notification != NULL)
2153 {
2154 make_cleanup_restore_integer (command->cmd->suppress_notification);
2155 *command->cmd->suppress_notification = 1;
2156 }
2157
2158 if (do_timings)
2159 {
2160 command->cmd_start = new mi_timestamp ();
2161 timestamp (command->cmd_start);
2162 }
2163
2164 TRY
2165 {
2166 captured_mi_execute_command (current_uiout, command);
2167 }
2168 CATCH (result, RETURN_MASK_ALL)
2169 {
2170 /* Like in start_event_loop, enable input and force display
2171 of the prompt. Otherwise, any command that calls
2172 async_disable_stdin, and then throws, will leave input
2173 disabled. */
2174 async_enable_stdin ();
2175 current_ui->prompt_state = PROMPT_NEEDED;
2176
2177 /* The command execution failed and error() was called
2178 somewhere. */
2179 mi_print_exception (command->token, result);
2180 mi_out_rewind (current_uiout);
2181 }
2182 END_CATCH
2183
2184 bpstat_do_actions ();
2185
2186 if (/* The notifications are only output when the top-level
2187 interpreter (specified on the command line) is MI. */
2188 interp_ui_out (top_level_interpreter ())->is_mi_like_p ()
2189 /* Don't try report anything if there are no threads --
2190 the program is dead. */
2191 && thread_count () != 0
2192 /* If the command already reports the thread change, no need to do it
2193 again. */
2194 && !command_notifies_uscc_observer (command))
2195 {
2196 struct mi_interp *mi
2197 = (struct mi_interp *) top_level_interpreter_data ();
2198 int report_change = 0;
2199
2200 if (command->thread == -1)
2201 {
2202 report_change = (!ptid_equal (previous_ptid, null_ptid)
2203 && !ptid_equal (inferior_ptid, previous_ptid)
2204 && !ptid_equal (inferior_ptid, null_ptid));
2205 }
2206 else if (!ptid_equal (inferior_ptid, null_ptid))
2207 {
2208 struct thread_info *ti = inferior_thread ();
2209
2210 report_change = (ti->global_num != command->thread);
2211 }
2212
2213 if (report_change)
2214 {
2215 observer_notify_user_selected_context_changed
2216 (USER_SELECTED_THREAD | USER_SELECTED_FRAME);
2217 }
2218 }
2219
2220 mi_parse_free (command);
2221
2222 do_cleanups (cleanup);
2223 }
2224 }
2225
2226 static void
2227 mi_cmd_execute (struct mi_parse *parse)
2228 {
2229 struct cleanup *cleanup;
2230
2231 cleanup = prepare_execute_command ();
2232
2233 if (parse->all && parse->thread_group != -1)
2234 error (_("Cannot specify --thread-group together with --all"));
2235
2236 if (parse->all && parse->thread != -1)
2237 error (_("Cannot specify --thread together with --all"));
2238
2239 if (parse->thread_group != -1 && parse->thread != -1)
2240 error (_("Cannot specify --thread together with --thread-group"));
2241
2242 if (parse->frame != -1 && parse->thread == -1)
2243 error (_("Cannot specify --frame without --thread"));
2244
2245 if (parse->thread_group != -1)
2246 {
2247 struct inferior *inf = find_inferior_id (parse->thread_group);
2248 struct thread_info *tp = 0;
2249
2250 if (!inf)
2251 error (_("Invalid thread group for the --thread-group option"));
2252
2253 set_current_inferior (inf);
2254 /* This behaviour means that if --thread-group option identifies
2255 an inferior with multiple threads, then a random one will be
2256 picked. This is not a problem -- frontend should always
2257 provide --thread if it wishes to operate on a specific
2258 thread. */
2259 if (inf->pid != 0)
2260 tp = any_live_thread_of_process (inf->pid);
2261 switch_to_thread (tp ? tp->ptid : null_ptid);
2262 set_current_program_space (inf->pspace);
2263 }
2264
2265 if (parse->thread != -1)
2266 {
2267 struct thread_info *tp = find_thread_global_id (parse->thread);
2268
2269 if (!tp)
2270 error (_("Invalid thread id: %d"), parse->thread);
2271
2272 if (is_exited (tp->ptid))
2273 error (_("Thread id: %d has terminated"), parse->thread);
2274
2275 switch_to_thread (tp->ptid);
2276 }
2277
2278 if (parse->frame != -1)
2279 {
2280 struct frame_info *fid;
2281 int frame = parse->frame;
2282
2283 fid = find_relative_frame (get_current_frame (), &frame);
2284 if (frame == 0)
2285 /* find_relative_frame was successful */
2286 select_frame (fid);
2287 else
2288 error (_("Invalid frame id: %d"), frame);
2289 }
2290
2291 if (parse->language != language_unknown)
2292 {
2293 make_cleanup_restore_current_language ();
2294 set_language (parse->language);
2295 }
2296
2297 current_context = parse;
2298
2299 if (parse->cmd->argv_func != NULL)
2300 {
2301 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
2302 }
2303 else if (parse->cmd->cli.cmd != 0)
2304 {
2305 /* FIXME: DELETE THIS. */
2306 /* The operation is still implemented by a cli command. */
2307 /* Must be a synchronous one. */
2308 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
2309 parse->args);
2310 }
2311 else
2312 {
2313 /* FIXME: DELETE THIS. */
2314 struct ui_file *stb;
2315
2316 stb = mem_fileopen ();
2317
2318 fputs_unfiltered ("Undefined mi command: ", stb);
2319 fputstr_unfiltered (parse->command, '"', stb);
2320 fputs_unfiltered (" (missing implementation)", stb);
2321
2322 make_cleanup_ui_file_delete (stb);
2323 error_stream (stb);
2324 }
2325 do_cleanups (cleanup);
2326 }
2327
2328 /* FIXME: This is just a hack so we can get some extra commands going.
2329 We don't want to channel things through the CLI, but call libgdb directly.
2330 Use only for synchronous commands. */
2331
2332 void
2333 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
2334 {
2335 if (cmd != 0)
2336 {
2337 struct cleanup *old_cleanups;
2338 char *run;
2339
2340 if (args_p)
2341 run = xstrprintf ("%s %s", cmd, args);
2342 else
2343 run = xstrdup (cmd);
2344 if (mi_debug_p)
2345 /* FIXME: gdb_???? */
2346 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
2347 cmd, run);
2348 old_cleanups = make_cleanup (xfree, run);
2349 execute_command (run, 0 /* from_tty */ );
2350 do_cleanups (old_cleanups);
2351 return;
2352 }
2353 }
2354
2355 void
2356 mi_execute_async_cli_command (char *cli_command, char **argv, int argc)
2357 {
2358 struct cleanup *old_cleanups;
2359 char *run;
2360
2361 if (mi_async_p ())
2362 run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
2363 else
2364 run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
2365 old_cleanups = make_cleanup (xfree, run);
2366
2367 execute_command (run, 0 /* from_tty */ );
2368
2369 /* Do this before doing any printing. It would appear that some
2370 print code leaves garbage around in the buffer. */
2371 do_cleanups (old_cleanups);
2372 }
2373
2374 void
2375 mi_load_progress (const char *section_name,
2376 unsigned long sent_so_far,
2377 unsigned long total_section,
2378 unsigned long total_sent,
2379 unsigned long grand_total)
2380 {
2381 using namespace std::chrono;
2382 static steady_clock::time_point last_update;
2383 static char *previous_sect_name = NULL;
2384 int new_section;
2385 struct ui_out *saved_uiout;
2386 struct ui_out *uiout;
2387 struct mi_interp *mi
2388 = (struct mi_interp *) interp_data (current_interpreter ());
2389
2390 /* This function is called through deprecated_show_load_progress
2391 which means uiout may not be correct. Fix it for the duration
2392 of this function. */
2393 saved_uiout = current_uiout;
2394
2395 if (current_interp_named_p (INTERP_MI)
2396 || current_interp_named_p (INTERP_MI2))
2397 current_uiout = mi_out_new (2);
2398 else if (current_interp_named_p (INTERP_MI1))
2399 current_uiout = mi_out_new (1);
2400 else if (current_interp_named_p (INTERP_MI3))
2401 current_uiout = mi_out_new (3);
2402 else
2403 return;
2404
2405 uiout = current_uiout;
2406
2407 new_section = (previous_sect_name ?
2408 strcmp (previous_sect_name, section_name) : 1);
2409 if (new_section)
2410 {
2411 struct cleanup *cleanup_tuple;
2412
2413 xfree (previous_sect_name);
2414 previous_sect_name = xstrdup (section_name);
2415
2416 if (current_token)
2417 fputs_unfiltered (current_token, mi->raw_stdout);
2418 fputs_unfiltered ("+download", mi->raw_stdout);
2419 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2420 uiout->field_string ("section", section_name);
2421 uiout->field_int ("section-size", total_section);
2422 uiout->field_int ("total-size", grand_total);
2423 do_cleanups (cleanup_tuple);
2424 mi_out_put (uiout, mi->raw_stdout);
2425 fputs_unfiltered ("\n", mi->raw_stdout);
2426 gdb_flush (mi->raw_stdout);
2427 }
2428
2429 steady_clock::time_point time_now = steady_clock::now ();
2430 if (time_now - last_update > milliseconds (500))
2431 {
2432 struct cleanup *cleanup_tuple;
2433
2434 last_update = time_now;
2435 if (current_token)
2436 fputs_unfiltered (current_token, mi->raw_stdout);
2437 fputs_unfiltered ("+download", mi->raw_stdout);
2438 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2439 uiout->field_string ("section", section_name);
2440 uiout->field_int ("section-sent", sent_so_far);
2441 uiout->field_int ("section-size", total_section);
2442 uiout->field_int ("total-sent", total_sent);
2443 uiout->field_int ("total-size", grand_total);
2444 do_cleanups (cleanup_tuple);
2445 mi_out_put (uiout, mi->raw_stdout);
2446 fputs_unfiltered ("\n", mi->raw_stdout);
2447 gdb_flush (mi->raw_stdout);
2448 }
2449
2450 xfree (uiout);
2451 current_uiout = saved_uiout;
2452 }
2453
2454 static void
2455 timestamp (struct mi_timestamp *tv)
2456 {
2457 using namespace std::chrono;
2458
2459 tv->wallclock = steady_clock::now ();
2460 run_time_clock::now (tv->utime, tv->stime);
2461 }
2462
2463 static void
2464 print_diff_now (struct ui_file *file, struct mi_timestamp *start)
2465 {
2466 struct mi_timestamp now;
2467
2468 timestamp (&now);
2469 print_diff (file, start, &now);
2470 }
2471
2472 void
2473 mi_print_timing_maybe (struct ui_file *file)
2474 {
2475 /* If the command is -enable-timing then do_timings may be true
2476 whilst current_command_ts is not initialized. */
2477 if (do_timings && current_command_ts)
2478 print_diff_now (file, current_command_ts);
2479 }
2480
2481 static void
2482 print_diff (struct ui_file *file, struct mi_timestamp *start,
2483 struct mi_timestamp *end)
2484 {
2485 using namespace std::chrono;
2486
2487 duration<double> wallclock = end->wallclock - start->wallclock;
2488 duration<double> utime = end->utime - start->utime;
2489 duration<double> stime = end->stime - start->stime;
2490
2491 fprintf_unfiltered
2492 (file,
2493 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2494 wallclock.count (), utime.count (), stime.count ());
2495 }
2496
2497 void
2498 mi_cmd_trace_define_variable (char *command, char **argv, int argc)
2499 {
2500 LONGEST initval = 0;
2501 struct trace_state_variable *tsv;
2502 char *name = 0;
2503
2504 if (argc != 1 && argc != 2)
2505 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2506
2507 name = argv[0];
2508 if (*name++ != '$')
2509 error (_("Name of trace variable should start with '$'"));
2510
2511 validate_trace_state_variable_name (name);
2512
2513 tsv = find_trace_state_variable (name);
2514 if (!tsv)
2515 tsv = create_trace_state_variable (name);
2516
2517 if (argc == 2)
2518 initval = value_as_long (parse_and_eval (argv[1]));
2519
2520 tsv->initial_value = initval;
2521 }
2522
2523 void
2524 mi_cmd_trace_list_variables (char *command, char **argv, int argc)
2525 {
2526 if (argc != 0)
2527 error (_("-trace-list-variables: no arguments allowed"));
2528
2529 tvariables_info_1 ();
2530 }
2531
2532 void
2533 mi_cmd_trace_find (char *command, char **argv, int argc)
2534 {
2535 char *mode;
2536
2537 if (argc == 0)
2538 error (_("trace selection mode is required"));
2539
2540 mode = argv[0];
2541
2542 if (strcmp (mode, "none") == 0)
2543 {
2544 tfind_1 (tfind_number, -1, 0, 0, 0);
2545 return;
2546 }
2547
2548 check_trace_running (current_trace_status ());
2549
2550 if (strcmp (mode, "frame-number") == 0)
2551 {
2552 if (argc != 2)
2553 error (_("frame number is required"));
2554 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2555 }
2556 else if (strcmp (mode, "tracepoint-number") == 0)
2557 {
2558 if (argc != 2)
2559 error (_("tracepoint number is required"));
2560 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2561 }
2562 else if (strcmp (mode, "pc") == 0)
2563 {
2564 if (argc != 2)
2565 error (_("PC is required"));
2566 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2567 }
2568 else if (strcmp (mode, "pc-inside-range") == 0)
2569 {
2570 if (argc != 3)
2571 error (_("Start and end PC are required"));
2572 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2573 parse_and_eval_address (argv[2]), 0);
2574 }
2575 else if (strcmp (mode, "pc-outside-range") == 0)
2576 {
2577 if (argc != 3)
2578 error (_("Start and end PC are required"));
2579 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2580 parse_and_eval_address (argv[2]), 0);
2581 }
2582 else if (strcmp (mode, "line") == 0)
2583 {
2584 struct symtabs_and_lines sals;
2585 struct symtab_and_line sal;
2586 static CORE_ADDR start_pc, end_pc;
2587 struct cleanup *back_to;
2588
2589 if (argc != 2)
2590 error (_("Line is required"));
2591
2592 sals = decode_line_with_current_source (argv[1],
2593 DECODE_LINE_FUNFIRSTLINE);
2594 back_to = make_cleanup (xfree, sals.sals);
2595
2596 sal = sals.sals[0];
2597
2598 if (sal.symtab == 0)
2599 error (_("Could not find the specified line"));
2600
2601 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2602 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2603 else
2604 error (_("Could not find the specified line"));
2605
2606 do_cleanups (back_to);
2607 }
2608 else
2609 error (_("Invalid mode '%s'"), mode);
2610
2611 if (has_stack_frames () || get_traceframe_number () >= 0)
2612 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
2613 }
2614
2615 void
2616 mi_cmd_trace_save (char *command, char **argv, int argc)
2617 {
2618 int target_saves = 0;
2619 int generate_ctf = 0;
2620 char *filename;
2621 int oind = 0;
2622 char *oarg;
2623
2624 enum opt
2625 {
2626 TARGET_SAVE_OPT, CTF_OPT
2627 };
2628 static const struct mi_opt opts[] =
2629 {
2630 {"r", TARGET_SAVE_OPT, 0},
2631 {"ctf", CTF_OPT, 0},
2632 { 0, 0, 0 }
2633 };
2634
2635 while (1)
2636 {
2637 int opt = mi_getopt ("-trace-save", argc, argv, opts,
2638 &oind, &oarg);
2639
2640 if (opt < 0)
2641 break;
2642 switch ((enum opt) opt)
2643 {
2644 case TARGET_SAVE_OPT:
2645 target_saves = 1;
2646 break;
2647 case CTF_OPT:
2648 generate_ctf = 1;
2649 break;
2650 }
2651 }
2652
2653 if (argc - oind != 1)
2654 error (_("Exactly one argument required "
2655 "(file in which to save trace data)"));
2656
2657 filename = argv[oind];
2658
2659 if (generate_ctf)
2660 trace_save_ctf (filename, target_saves);
2661 else
2662 trace_save_tfile (filename, target_saves);
2663 }
2664
2665 void
2666 mi_cmd_trace_start (char *command, char **argv, int argc)
2667 {
2668 start_tracing (NULL);
2669 }
2670
2671 void
2672 mi_cmd_trace_status (char *command, char **argv, int argc)
2673 {
2674 trace_status_mi (0);
2675 }
2676
2677 void
2678 mi_cmd_trace_stop (char *command, char **argv, int argc)
2679 {
2680 stop_tracing (NULL);
2681 trace_status_mi (1);
2682 }
2683
2684 /* Implement the "-ada-task-info" command. */
2685
2686 void
2687 mi_cmd_ada_task_info (char *command, char **argv, int argc)
2688 {
2689 if (argc != 0 && argc != 1)
2690 error (_("Invalid MI command"));
2691
2692 print_ada_task_info (current_uiout, argv[0], current_inferior ());
2693 }
2694
2695 /* Print EXPRESSION according to VALUES. */
2696
2697 static void
2698 print_variable_or_computed (const char *expression, enum print_values values)
2699 {
2700 struct cleanup *old_chain;
2701 struct value *val;
2702 struct ui_file *stb;
2703 struct type *type;
2704 struct ui_out *uiout = current_uiout;
2705
2706 stb = mem_fileopen ();
2707 old_chain = make_cleanup_ui_file_delete (stb);
2708
2709 expression_up expr = parse_expression (expression);
2710
2711 if (values == PRINT_SIMPLE_VALUES)
2712 val = evaluate_type (expr.get ());
2713 else
2714 val = evaluate_expression (expr.get ());
2715
2716 if (values != PRINT_NO_VALUES)
2717 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2718 uiout->field_string ("name", expression);
2719
2720 switch (values)
2721 {
2722 case PRINT_SIMPLE_VALUES:
2723 type = check_typedef (value_type (val));
2724 type_print (value_type (val), "", stb, -1);
2725 uiout->field_stream ("type", stb);
2726 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2727 && TYPE_CODE (type) != TYPE_CODE_STRUCT
2728 && TYPE_CODE (type) != TYPE_CODE_UNION)
2729 {
2730 struct value_print_options opts;
2731
2732 get_no_prettyformat_print_options (&opts);
2733 opts.deref_ref = 1;
2734 common_val_print (val, stb, 0, &opts, current_language);
2735 uiout->field_stream ("value", stb);
2736 }
2737 break;
2738 case PRINT_ALL_VALUES:
2739 {
2740 struct value_print_options opts;
2741
2742 get_no_prettyformat_print_options (&opts);
2743 opts.deref_ref = 1;
2744 common_val_print (val, stb, 0, &opts, current_language);
2745 uiout->field_stream ("value", stb);
2746 }
2747 break;
2748 }
2749
2750 do_cleanups (old_chain);
2751 }
2752
2753 /* Implement the "-trace-frame-collected" command. */
2754
2755 void
2756 mi_cmd_trace_frame_collected (char *command, char **argv, int argc)
2757 {
2758 struct cleanup *old_chain;
2759 struct bp_location *tloc;
2760 int stepping_frame;
2761 struct collection_list *clist;
2762 struct collection_list tracepoint_list, stepping_list;
2763 struct traceframe_info *tinfo;
2764 int oind = 0;
2765 enum print_values var_print_values = PRINT_ALL_VALUES;
2766 enum print_values comp_print_values = PRINT_ALL_VALUES;
2767 int registers_format = 'x';
2768 int memory_contents = 0;
2769 struct ui_out *uiout = current_uiout;
2770 enum opt
2771 {
2772 VAR_PRINT_VALUES,
2773 COMP_PRINT_VALUES,
2774 REGISTERS_FORMAT,
2775 MEMORY_CONTENTS,
2776 };
2777 static const struct mi_opt opts[] =
2778 {
2779 {"-var-print-values", VAR_PRINT_VALUES, 1},
2780 {"-comp-print-values", COMP_PRINT_VALUES, 1},
2781 {"-registers-format", REGISTERS_FORMAT, 1},
2782 {"-memory-contents", MEMORY_CONTENTS, 0},
2783 { 0, 0, 0 }
2784 };
2785
2786 while (1)
2787 {
2788 char *oarg;
2789 int opt = mi_getopt ("-trace-frame-collected", argc, argv, opts,
2790 &oind, &oarg);
2791 if (opt < 0)
2792 break;
2793 switch ((enum opt) opt)
2794 {
2795 case VAR_PRINT_VALUES:
2796 var_print_values = mi_parse_print_values (oarg);
2797 break;
2798 case COMP_PRINT_VALUES:
2799 comp_print_values = mi_parse_print_values (oarg);
2800 break;
2801 case REGISTERS_FORMAT:
2802 registers_format = oarg[0];
2803 case MEMORY_CONTENTS:
2804 memory_contents = 1;
2805 break;
2806 }
2807 }
2808
2809 if (oind != argc)
2810 error (_("Usage: -trace-frame-collected "
2811 "[--var-print-values PRINT_VALUES] "
2812 "[--comp-print-values PRINT_VALUES] "
2813 "[--registers-format FORMAT]"
2814 "[--memory-contents]"));
2815
2816 /* This throws an error is not inspecting a trace frame. */
2817 tloc = get_traceframe_location (&stepping_frame);
2818
2819 /* This command only makes sense for the current frame, not the
2820 selected frame. */
2821 old_chain = make_cleanup_restore_current_thread ();
2822 select_frame (get_current_frame ());
2823
2824 encode_actions (tloc, &tracepoint_list, &stepping_list);
2825
2826 if (stepping_frame)
2827 clist = &stepping_list;
2828 else
2829 clist = &tracepoint_list;
2830
2831 tinfo = get_traceframe_info ();
2832
2833 /* Explicitly wholly collected variables. */
2834 {
2835 struct cleanup *list_cleanup;
2836 int i;
2837
2838 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout,
2839 "explicit-variables");
2840
2841 const std::vector<std::string> &wholly_collected
2842 = clist->wholly_collected ();
2843 for (size_t i = 0; i < wholly_collected.size (); i++)
2844 {
2845 const std::string &str = wholly_collected[i];
2846 print_variable_or_computed (str.c_str (), var_print_values);
2847 }
2848
2849 do_cleanups (list_cleanup);
2850 }
2851
2852 /* Computed expressions. */
2853 {
2854 struct cleanup *list_cleanup;
2855 char *p;
2856 int i;
2857
2858 list_cleanup
2859 = make_cleanup_ui_out_list_begin_end (uiout,
2860 "computed-expressions");
2861
2862 const std::vector<std::string> &computed = clist->computed ();
2863 for (size_t i = 0; i < computed.size (); i++)
2864 {
2865 const std::string &str = computed[i];
2866 print_variable_or_computed (str.c_str (), comp_print_values);
2867 }
2868
2869 do_cleanups (list_cleanup);
2870 }
2871
2872 /* Registers. Given pseudo-registers, and that some architectures
2873 (like MIPS) actually hide the raw registers, we don't go through
2874 the trace frame info, but instead consult the register cache for
2875 register availability. */
2876 {
2877 struct cleanup *list_cleanup;
2878 struct frame_info *frame;
2879 struct gdbarch *gdbarch;
2880 int regnum;
2881 int numregs;
2882
2883 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "registers");
2884
2885 frame = get_selected_frame (NULL);
2886 gdbarch = get_frame_arch (frame);
2887 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
2888
2889 for (regnum = 0; regnum < numregs; regnum++)
2890 {
2891 if (gdbarch_register_name (gdbarch, regnum) == NULL
2892 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2893 continue;
2894
2895 output_register (frame, regnum, registers_format, 1);
2896 }
2897
2898 do_cleanups (list_cleanup);
2899 }
2900
2901 /* Trace state variables. */
2902 {
2903 struct cleanup *list_cleanup;
2904 int tvar;
2905 char *tsvname;
2906 int i;
2907
2908 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "tvars");
2909
2910 tsvname = NULL;
2911 make_cleanup (free_current_contents, &tsvname);
2912
2913 for (i = 0; VEC_iterate (int, tinfo->tvars, i, tvar); i++)
2914 {
2915 struct cleanup *cleanup_child;
2916 struct trace_state_variable *tsv;
2917
2918 tsv = find_trace_state_variable_by_number (tvar);
2919
2920 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2921
2922 if (tsv != NULL)
2923 {
2924 tsvname = (char *) xrealloc (tsvname, strlen (tsv->name) + 2);
2925 tsvname[0] = '$';
2926 strcpy (tsvname + 1, tsv->name);
2927 uiout->field_string ("name", tsvname);
2928
2929 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2930 &tsv->value);
2931 uiout->field_int ("current", tsv->value);
2932 }
2933 else
2934 {
2935 uiout->field_skip ("name");
2936 uiout->field_skip ("current");
2937 }
2938
2939 do_cleanups (cleanup_child);
2940 }
2941
2942 do_cleanups (list_cleanup);
2943 }
2944
2945 /* Memory. */
2946 {
2947 struct cleanup *list_cleanup;
2948 VEC(mem_range_s) *available_memory = NULL;
2949 struct mem_range *r;
2950 int i;
2951
2952 traceframe_available_memory (&available_memory, 0, ULONGEST_MAX);
2953 make_cleanup (VEC_cleanup(mem_range_s), &available_memory);
2954
2955 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "memory");
2956
2957 for (i = 0; VEC_iterate (mem_range_s, available_memory, i, r); i++)
2958 {
2959 struct cleanup *cleanup_child;
2960 gdb_byte *data;
2961 struct gdbarch *gdbarch = target_gdbarch ();
2962
2963 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2964
2965 uiout->field_core_addr ("address", gdbarch, r->start);
2966 uiout->field_int ("length", r->length);
2967
2968 data = (gdb_byte *) xmalloc (r->length);
2969 make_cleanup (xfree, data);
2970
2971 if (memory_contents)
2972 {
2973 if (target_read_memory (r->start, data, r->length) == 0)
2974 {
2975 int m;
2976 char *data_str, *p;
2977
2978 data_str = (char *) xmalloc (r->length * 2 + 1);
2979 make_cleanup (xfree, data_str);
2980
2981 for (m = 0, p = data_str; m < r->length; ++m, p += 2)
2982 sprintf (p, "%02x", data[m]);
2983 uiout->field_string ("contents", data_str);
2984 }
2985 else
2986 uiout->field_skip ("contents");
2987 }
2988 do_cleanups (cleanup_child);
2989 }
2990
2991 do_cleanups (list_cleanup);
2992 }
2993
2994 do_cleanups (old_chain);
2995 }
2996
2997 void
2998 _initialize_mi_main (void)
2999 {
3000 struct cmd_list_element *c;
3001
3002 add_setshow_boolean_cmd ("mi-async", class_run,
3003 &mi_async_1, _("\
3004 Set whether MI asynchronous mode is enabled."), _("\
3005 Show whether MI asynchronous mode is enabled."), _("\
3006 Tells GDB whether MI should be in asynchronous mode."),
3007 set_mi_async_command,
3008 show_mi_async_command,
3009 &setlist,
3010 &showlist);
3011
3012 /* Alias old "target-async" to "mi-async". */
3013 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &setlist);
3014 deprecate_cmd (c, "set mi-async");
3015 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &showlist);
3016 deprecate_cmd (c, "show mi-async");
3017 }