]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/minsyms.c
Update copyright year range in all GDB files
[thirdparty/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2018 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
23
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
28
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
32
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
37
38
39 #include "defs.h"
40 #include <ctype.h>
41 #include "symtab.h"
42 #include "bfd.h"
43 #include "filenames.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "demangle.h"
47 #include "value.h"
48 #include "cp-abi.h"
49 #include "target.h"
50 #include "cp-support.h"
51 #include "language.h"
52 #include "cli/cli-utils.h"
53 #include "symbol.h"
54 #include <algorithm>
55 #include "safe-ctype.h"
56
57 /* See minsyms.h. */
58
59 bool
60 msymbol_is_function (struct objfile *objfile, minimal_symbol *minsym,
61 CORE_ADDR *func_address_p)
62 {
63 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
64
65 switch (minsym->type)
66 {
67 case mst_slot_got_plt:
68 case mst_data:
69 case mst_bss:
70 case mst_abs:
71 case mst_file_data:
72 case mst_file_bss:
73 {
74 struct gdbarch *gdbarch = get_objfile_arch (objfile);
75 CORE_ADDR pc = gdbarch_convert_from_func_ptr_addr (gdbarch, msym_addr,
76 &current_target);
77 if (pc != msym_addr)
78 {
79 if (func_address_p != NULL)
80 *func_address_p = pc;
81 return true;
82 }
83 return false;
84 }
85 default:
86 if (func_address_p != NULL)
87 *func_address_p = msym_addr;
88 return true;
89 }
90 }
91
92 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
93 At the end, copy them all into one newly allocated location on an objfile's
94 per-BFD storage obstack. */
95
96 #define BUNCH_SIZE 127
97
98 struct msym_bunch
99 {
100 struct msym_bunch *next;
101 struct minimal_symbol contents[BUNCH_SIZE];
102 };
103
104 /* See minsyms.h. */
105
106 unsigned int
107 msymbol_hash_iw (const char *string)
108 {
109 unsigned int hash = 0;
110
111 while (*string && *string != '(')
112 {
113 string = skip_spaces (string);
114 if (*string && *string != '(')
115 {
116 hash = SYMBOL_HASH_NEXT (hash, *string);
117 ++string;
118 }
119 }
120 return hash;
121 }
122
123 /* See minsyms.h. */
124
125 unsigned int
126 msymbol_hash (const char *string)
127 {
128 unsigned int hash = 0;
129
130 for (; *string; ++string)
131 hash = SYMBOL_HASH_NEXT (hash, *string);
132 return hash;
133 }
134
135 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
136 static void
137 add_minsym_to_hash_table (struct minimal_symbol *sym,
138 struct minimal_symbol **table)
139 {
140 if (sym->hash_next == NULL)
141 {
142 unsigned int hash
143 = msymbol_hash (MSYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
144
145 sym->hash_next = table[hash];
146 table[hash] = sym;
147 }
148 }
149
150 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
151 TABLE. */
152 static void
153 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
154 struct objfile *objfile)
155 {
156 if (sym->demangled_hash_next == NULL)
157 {
158 unsigned int hash = search_name_hash (MSYMBOL_LANGUAGE (sym),
159 MSYMBOL_SEARCH_NAME (sym));
160
161 auto &vec = objfile->per_bfd->demangled_hash_languages;
162 auto it = std::lower_bound (vec.begin (), vec.end (),
163 MSYMBOL_LANGUAGE (sym));
164 if (it == vec.end () || *it != MSYMBOL_LANGUAGE (sym))
165 vec.insert (it, MSYMBOL_LANGUAGE (sym));
166
167 struct minimal_symbol **table
168 = objfile->per_bfd->msymbol_demangled_hash;
169 unsigned int hash_index = hash % MINIMAL_SYMBOL_HASH_SIZE;
170 sym->demangled_hash_next = table[hash_index];
171 table[hash_index] = sym;
172 }
173 }
174
175 /* Worker object for lookup_minimal_symbol. Stores temporary results
176 while walking the symbol tables. */
177
178 struct found_minimal_symbols
179 {
180 /* External symbols are best. */
181 bound_minimal_symbol external_symbol {};
182
183 /* File-local symbols are next best. */
184 bound_minimal_symbol file_symbol {};
185
186 /* Symbols for shared library trampolines are next best. */
187 bound_minimal_symbol trampoline_symbol {};
188
189 /* Called when a symbol name matches. Check if the minsym is a
190 better type than what we had already found, and record it in one
191 of the members fields if so. Returns true if we collected the
192 real symbol, in which case we can stop searching. */
193 bool maybe_collect (const char *sfile, objfile *objf,
194 minimal_symbol *msymbol);
195 };
196
197 /* See declaration above. */
198
199 bool
200 found_minimal_symbols::maybe_collect (const char *sfile,
201 struct objfile *objfile,
202 minimal_symbol *msymbol)
203 {
204 switch (MSYMBOL_TYPE (msymbol))
205 {
206 case mst_file_text:
207 case mst_file_data:
208 case mst_file_bss:
209 if (sfile == NULL
210 || filename_cmp (msymbol->filename, sfile) == 0)
211 {
212 file_symbol.minsym = msymbol;
213 file_symbol.objfile = objfile;
214 }
215 break;
216
217 case mst_solib_trampoline:
218
219 /* If a trampoline symbol is found, we prefer to keep
220 looking for the *real* symbol. If the actual symbol
221 is not found, then we'll use the trampoline
222 entry. */
223 if (trampoline_symbol.minsym == NULL)
224 {
225 trampoline_symbol.minsym = msymbol;
226 trampoline_symbol.objfile = objfile;
227 }
228 break;
229
230 case mst_unknown:
231 default:
232 external_symbol.minsym = msymbol;
233 external_symbol.objfile = objfile;
234 /* We have the real symbol. No use looking further. */
235 return true;
236 }
237
238 /* Keep looking. */
239 return false;
240 }
241
242 /* Walk the mangled name hash table, and pass each symbol whose name
243 matches LOOKUP_NAME according to NAMECMP to FOUND. */
244
245 static void
246 lookup_minimal_symbol_mangled (const char *lookup_name,
247 const char *sfile,
248 struct objfile *objfile,
249 struct minimal_symbol **table,
250 unsigned int hash,
251 int (*namecmp) (const char *, const char *),
252 found_minimal_symbols &found)
253 {
254 for (minimal_symbol *msymbol = table[hash];
255 msymbol != NULL;
256 msymbol = msymbol->hash_next)
257 {
258 const char *symbol_name = MSYMBOL_LINKAGE_NAME (msymbol);
259
260 if (namecmp (symbol_name, lookup_name) == 0
261 && found.maybe_collect (sfile, objfile, msymbol))
262 return;
263 }
264 }
265
266 /* Walk the demangled name hash table, and pass each symbol whose name
267 matches LOOKUP_NAME according to MATCHER to FOUND. */
268
269 static void
270 lookup_minimal_symbol_demangled (const lookup_name_info &lookup_name,
271 const char *sfile,
272 struct objfile *objfile,
273 struct minimal_symbol **table,
274 unsigned int hash,
275 symbol_name_matcher_ftype *matcher,
276 found_minimal_symbols &found)
277 {
278 for (minimal_symbol *msymbol = table[hash];
279 msymbol != NULL;
280 msymbol = msymbol->demangled_hash_next)
281 {
282 const char *symbol_name = MSYMBOL_SEARCH_NAME (msymbol);
283
284 if (matcher (symbol_name, lookup_name, NULL)
285 && found.maybe_collect (sfile, objfile, msymbol))
286 return;
287 }
288 }
289
290 /* Look through all the current minimal symbol tables and find the
291 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
292 the search to that objfile. If SFILE is non-NULL, the only file-scope
293 symbols considered will be from that source file (global symbols are
294 still preferred). Returns a pointer to the minimal symbol that
295 matches, or NULL if no match is found.
296
297 Note: One instance where there may be duplicate minimal symbols with
298 the same name is when the symbol tables for a shared library and the
299 symbol tables for an executable contain global symbols with the same
300 names (the dynamic linker deals with the duplication).
301
302 It's also possible to have minimal symbols with different mangled
303 names, but identical demangled names. For example, the GNU C++ v3
304 ABI requires the generation of two (or perhaps three) copies of
305 constructor functions --- "in-charge", "not-in-charge", and
306 "allocate" copies; destructors may be duplicated as well.
307 Obviously, there must be distinct mangled names for each of these,
308 but the demangled names are all the same: S::S or S::~S. */
309
310 struct bound_minimal_symbol
311 lookup_minimal_symbol (const char *name, const char *sfile,
312 struct objfile *objf)
313 {
314 struct objfile *objfile;
315 found_minimal_symbols found;
316
317 unsigned int mangled_hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
318
319 auto *mangled_cmp
320 = (case_sensitivity == case_sensitive_on
321 ? strcmp
322 : strcasecmp);
323
324 if (sfile != NULL)
325 sfile = lbasename (sfile);
326
327 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
328
329 for (objfile = object_files;
330 objfile != NULL && found.external_symbol.minsym == NULL;
331 objfile = objfile->next)
332 {
333 if (objf == NULL || objf == objfile
334 || objf == objfile->separate_debug_objfile_backlink)
335 {
336 if (symbol_lookup_debug)
337 {
338 fprintf_unfiltered (gdb_stdlog,
339 "lookup_minimal_symbol (%s, %s, %s)\n",
340 name, sfile != NULL ? sfile : "NULL",
341 objfile_debug_name (objfile));
342 }
343
344 /* Do two passes: the first over the ordinary hash table,
345 and the second over the demangled hash table. */
346 lookup_minimal_symbol_mangled (name, sfile, objfile,
347 objfile->per_bfd->msymbol_hash,
348 mangled_hash, mangled_cmp, found);
349
350 /* If not found, try the demangled hash table. */
351 if (found.external_symbol.minsym == NULL)
352 {
353 /* Once for each language in the demangled hash names
354 table (usually just zero or one languages). */
355 for (auto lang : objfile->per_bfd->demangled_hash_languages)
356 {
357 unsigned int hash
358 = (lookup_name.search_name_hash (lang)
359 % MINIMAL_SYMBOL_HASH_SIZE);
360
361 symbol_name_matcher_ftype *match
362 = language_get_symbol_name_matcher (language_def (lang),
363 lookup_name);
364 struct minimal_symbol **msymbol_demangled_hash
365 = objfile->per_bfd->msymbol_demangled_hash;
366
367 lookup_minimal_symbol_demangled (lookup_name, sfile, objfile,
368 msymbol_demangled_hash,
369 hash, match, found);
370
371 if (found.external_symbol.minsym != NULL)
372 break;
373 }
374 }
375 }
376 }
377
378 /* External symbols are best. */
379 if (found.external_symbol.minsym != NULL)
380 {
381 if (symbol_lookup_debug)
382 {
383 minimal_symbol *minsym = found.external_symbol.minsym;
384
385 fprintf_unfiltered (gdb_stdlog,
386 "lookup_minimal_symbol (...) = %s (external)\n",
387 host_address_to_string (minsym));
388 }
389 return found.external_symbol;
390 }
391
392 /* File-local symbols are next best. */
393 if (found.file_symbol.minsym != NULL)
394 {
395 if (symbol_lookup_debug)
396 {
397 minimal_symbol *minsym = found.file_symbol.minsym;
398
399 fprintf_unfiltered (gdb_stdlog,
400 "lookup_minimal_symbol (...) = %s (file-local)\n",
401 host_address_to_string (minsym));
402 }
403 return found.file_symbol;
404 }
405
406 /* Symbols for shared library trampolines are next best. */
407 if (found.trampoline_symbol.minsym != NULL)
408 {
409 if (symbol_lookup_debug)
410 {
411 minimal_symbol *minsym = found.trampoline_symbol.minsym;
412
413 fprintf_unfiltered (gdb_stdlog,
414 "lookup_minimal_symbol (...) = %s (trampoline)\n",
415 host_address_to_string (minsym));
416 }
417
418 return found.trampoline_symbol;
419 }
420
421 /* Not found. */
422 if (symbol_lookup_debug)
423 fprintf_unfiltered (gdb_stdlog, "lookup_minimal_symbol (...) = NULL\n");
424 return {};
425 }
426
427 /* See minsyms.h. */
428
429 struct bound_minimal_symbol
430 lookup_bound_minimal_symbol (const char *name)
431 {
432 return lookup_minimal_symbol (name, NULL, NULL);
433 }
434
435 /* See common/symbol.h. */
436
437 int
438 find_minimal_symbol_address (const char *name, CORE_ADDR *addr,
439 struct objfile *objfile)
440 {
441 struct bound_minimal_symbol sym
442 = lookup_minimal_symbol (name, NULL, objfile);
443
444 if (sym.minsym != NULL)
445 *addr = BMSYMBOL_VALUE_ADDRESS (sym);
446
447 return sym.minsym == NULL;
448 }
449
450 /* See minsyms.h. */
451
452 void
453 iterate_over_minimal_symbols (struct objfile *objf,
454 const lookup_name_info &lookup_name,
455 void (*callback) (struct minimal_symbol *,
456 void *),
457 void *user_data)
458 {
459
460 /* The first pass is over the ordinary hash table. */
461 {
462 const char *name = lookup_name.name ().c_str ();
463 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
464 auto *mangled_cmp
465 = (case_sensitivity == case_sensitive_on
466 ? strcmp
467 : strcasecmp);
468
469 for (minimal_symbol *iter = objf->per_bfd->msymbol_hash[hash];
470 iter != NULL;
471 iter = iter->hash_next)
472 {
473 if (mangled_cmp (MSYMBOL_LINKAGE_NAME (iter), name) == 0)
474 (*callback) (iter, user_data);
475 }
476 }
477
478 /* The second pass is over the demangled table. Once for each
479 language in the demangled hash names table (usually just zero or
480 one). */
481 for (auto lang : objf->per_bfd->demangled_hash_languages)
482 {
483 const language_defn *lang_def = language_def (lang);
484 symbol_name_matcher_ftype *name_match
485 = language_get_symbol_name_matcher (lang_def, lookup_name);
486
487 unsigned int hash
488 = lookup_name.search_name_hash (lang) % MINIMAL_SYMBOL_HASH_SIZE;
489 for (minimal_symbol *iter = objf->per_bfd->msymbol_demangled_hash[hash];
490 iter != NULL;
491 iter = iter->demangled_hash_next)
492 if (name_match (MSYMBOL_SEARCH_NAME (iter), lookup_name, NULL))
493 (*callback) (iter, user_data);
494 }
495 }
496
497 /* See minsyms.h. */
498
499 struct bound_minimal_symbol
500 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
501 {
502 struct objfile *objfile;
503 struct minimal_symbol *msymbol;
504 struct bound_minimal_symbol found_symbol = { NULL, NULL };
505 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
506
507 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
508
509 for (objfile = object_files;
510 objfile != NULL && found_symbol.minsym == NULL;
511 objfile = objfile->next)
512 {
513 if (objf == NULL || objf == objfile
514 || objf == objfile->separate_debug_objfile_backlink)
515 {
516 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
517 msymbol != NULL && found_symbol.minsym == NULL;
518 msymbol = msymbol->hash_next)
519 {
520 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
521 (MSYMBOL_TYPE (msymbol) == mst_text
522 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
523 || MSYMBOL_TYPE (msymbol) == mst_file_text))
524 {
525 switch (MSYMBOL_TYPE (msymbol))
526 {
527 case mst_file_text:
528 found_file_symbol.minsym = msymbol;
529 found_file_symbol.objfile = objfile;
530 break;
531 default:
532 found_symbol.minsym = msymbol;
533 found_symbol.objfile = objfile;
534 break;
535 }
536 }
537 }
538 }
539 }
540 /* External symbols are best. */
541 if (found_symbol.minsym)
542 return found_symbol;
543
544 /* File-local symbols are next best. */
545 return found_file_symbol;
546 }
547
548 /* See minsyms.h. */
549
550 struct minimal_symbol *
551 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
552 struct objfile *objf)
553 {
554 struct objfile *objfile;
555 struct minimal_symbol *msymbol;
556
557 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
558
559 for (objfile = object_files;
560 objfile != NULL;
561 objfile = objfile->next)
562 {
563 if (objf == NULL || objf == objfile
564 || objf == objfile->separate_debug_objfile_backlink)
565 {
566 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
567 msymbol != NULL;
568 msymbol = msymbol->hash_next)
569 {
570 if (MSYMBOL_VALUE_ADDRESS (objfile, msymbol) == pc
571 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0)
572 return msymbol;
573 }
574 }
575 }
576
577 return NULL;
578 }
579
580 /* See minsyms.h. */
581
582 struct bound_minimal_symbol
583 lookup_minimal_symbol_solib_trampoline (const char *name,
584 struct objfile *objf)
585 {
586 struct objfile *objfile;
587 struct minimal_symbol *msymbol;
588 struct bound_minimal_symbol found_symbol = { NULL, NULL };
589
590 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
591
592 for (objfile = object_files;
593 objfile != NULL;
594 objfile = objfile->next)
595 {
596 if (objf == NULL || objf == objfile
597 || objf == objfile->separate_debug_objfile_backlink)
598 {
599 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
600 msymbol != NULL;
601 msymbol = msymbol->hash_next)
602 {
603 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
604 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
605 {
606 found_symbol.objfile = objfile;
607 found_symbol.minsym = msymbol;
608 return found_symbol;
609 }
610 }
611 }
612 }
613
614 return found_symbol;
615 }
616
617 /* A helper function that makes *PC section-relative. This searches
618 the sections of OBJFILE and if *PC is in a section, it subtracts
619 the section offset and returns true. Otherwise it returns
620 false. */
621
622 static int
623 frob_address (struct objfile *objfile, CORE_ADDR *pc)
624 {
625 struct obj_section *iter;
626
627 ALL_OBJFILE_OSECTIONS (objfile, iter)
628 {
629 if (*pc >= obj_section_addr (iter) && *pc < obj_section_endaddr (iter))
630 {
631 *pc -= obj_section_offset (iter);
632 return 1;
633 }
634 }
635
636 return 0;
637 }
638
639 /* Search through the minimal symbol table for each objfile and find
640 the symbol whose address is the largest address that is still less
641 than or equal to PC, and matches SECTION (which is not NULL).
642 Returns a pointer to the minimal symbol if such a symbol is found,
643 or NULL if PC is not in a suitable range.
644 Note that we need to look through ALL the minimal symbol tables
645 before deciding on the symbol that comes closest to the specified PC.
646 This is because objfiles can overlap, for example objfile A has .text
647 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
648 .data at 0x40048.
649
650 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
651 there are text and trampoline symbols at the same address.
652 Otherwise prefer mst_text symbols. */
653
654 static struct bound_minimal_symbol
655 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc_in,
656 struct obj_section *section,
657 int want_trampoline)
658 {
659 int lo;
660 int hi;
661 int newobj;
662 struct objfile *objfile;
663 struct minimal_symbol *msymbol;
664 struct minimal_symbol *best_symbol = NULL;
665 struct objfile *best_objfile = NULL;
666 struct bound_minimal_symbol result;
667 enum minimal_symbol_type want_type, other_type;
668
669 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
670 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
671
672 /* We can not require the symbol found to be in section, because
673 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
674 symbol - but find_pc_section won't return an absolute section and
675 hence the code below would skip over absolute symbols. We can
676 still take advantage of the call to find_pc_section, though - the
677 object file still must match. In case we have separate debug
678 files, search both the file and its separate debug file. There's
679 no telling which one will have the minimal symbols. */
680
681 gdb_assert (section != NULL);
682
683 for (objfile = section->objfile;
684 objfile != NULL;
685 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
686 {
687 CORE_ADDR pc = pc_in;
688
689 /* If this objfile has a minimal symbol table, go search it using
690 a binary search. Note that a minimal symbol table always consists
691 of at least two symbols, a "real" symbol and the terminating
692 "null symbol". If there are no real symbols, then there is no
693 minimal symbol table at all. */
694
695 if (objfile->per_bfd->minimal_symbol_count > 0)
696 {
697 int best_zero_sized = -1;
698
699 msymbol = objfile->per_bfd->msymbols;
700 lo = 0;
701 hi = objfile->per_bfd->minimal_symbol_count - 1;
702
703 /* This code assumes that the minimal symbols are sorted by
704 ascending address values. If the pc value is greater than or
705 equal to the first symbol's address, then some symbol in this
706 minimal symbol table is a suitable candidate for being the
707 "best" symbol. This includes the last real symbol, for cases
708 where the pc value is larger than any address in this vector.
709
710 By iterating until the address associated with the current
711 hi index (the endpoint of the test interval) is less than
712 or equal to the desired pc value, we accomplish two things:
713 (1) the case where the pc value is larger than any minimal
714 symbol address is trivially solved, (2) the address associated
715 with the hi index is always the one we want when the interation
716 terminates. In essence, we are iterating the test interval
717 down until the pc value is pushed out of it from the high end.
718
719 Warning: this code is trickier than it would appear at first. */
720
721 if (frob_address (objfile, &pc)
722 && pc >= MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[lo]))
723 {
724 while (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]) > pc)
725 {
726 /* pc is still strictly less than highest address. */
727 /* Note "new" will always be >= lo. */
728 newobj = (lo + hi) / 2;
729 if ((MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[newobj]) >= pc)
730 || (lo == newobj))
731 {
732 hi = newobj;
733 }
734 else
735 {
736 lo = newobj;
737 }
738 }
739
740 /* If we have multiple symbols at the same address, we want
741 hi to point to the last one. That way we can find the
742 right symbol if it has an index greater than hi. */
743 while (hi < objfile->per_bfd->minimal_symbol_count - 1
744 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
745 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi + 1])))
746 hi++;
747
748 /* Skip various undesirable symbols. */
749 while (hi >= 0)
750 {
751 /* Skip any absolute symbols. This is apparently
752 what adb and dbx do, and is needed for the CM-5.
753 There are two known possible problems: (1) on
754 ELF, apparently end, edata, etc. are absolute.
755 Not sure ignoring them here is a big deal, but if
756 we want to use them, the fix would go in
757 elfread.c. (2) I think shared library entry
758 points on the NeXT are absolute. If we want
759 special handling for this it probably should be
760 triggered by a special mst_abs_or_lib or some
761 such. */
762
763 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
764 {
765 hi--;
766 continue;
767 }
768
769 /* If SECTION was specified, skip any symbol from
770 wrong section. */
771 if (section
772 /* Some types of debug info, such as COFF,
773 don't fill the bfd_section member, so don't
774 throw away symbols on those platforms. */
775 && MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]) != NULL
776 && (!matching_obj_sections
777 (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]),
778 section)))
779 {
780 hi--;
781 continue;
782 }
783
784 /* If we are looking for a trampoline and this is a
785 text symbol, or the other way around, check the
786 preceding symbol too. If they are otherwise
787 identical prefer that one. */
788 if (hi > 0
789 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
790 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
791 && (MSYMBOL_SIZE (&msymbol[hi])
792 == MSYMBOL_SIZE (&msymbol[hi - 1]))
793 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
794 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1]))
795 && (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi])
796 == MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi - 1])))
797 {
798 hi--;
799 continue;
800 }
801
802 /* If the minimal symbol has a zero size, save it
803 but keep scanning backwards looking for one with
804 a non-zero size. A zero size may mean that the
805 symbol isn't an object or function (e.g. a
806 label), or it may just mean that the size was not
807 specified. */
808 if (MSYMBOL_SIZE (&msymbol[hi]) == 0)
809 {
810 if (best_zero_sized == -1)
811 best_zero_sized = hi;
812 hi--;
813 continue;
814 }
815
816 /* If we are past the end of the current symbol, try
817 the previous symbol if it has a larger overlapping
818 size. This happens on i686-pc-linux-gnu with glibc;
819 the nocancel variants of system calls are inside
820 the cancellable variants, but both have sizes. */
821 if (hi > 0
822 && MSYMBOL_SIZE (&msymbol[hi]) != 0
823 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
824 + MSYMBOL_SIZE (&msymbol[hi]))
825 && pc < (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1])
826 + MSYMBOL_SIZE (&msymbol[hi - 1])))
827 {
828 hi--;
829 continue;
830 }
831
832 /* Otherwise, this symbol must be as good as we're going
833 to get. */
834 break;
835 }
836
837 /* If HI has a zero size, and best_zero_sized is set,
838 then we had two or more zero-sized symbols; prefer
839 the first one we found (which may have a higher
840 address). Also, if we ran off the end, be sure
841 to back up. */
842 if (best_zero_sized != -1
843 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
844 hi = best_zero_sized;
845
846 /* If the minimal symbol has a non-zero size, and this
847 PC appears to be outside the symbol's contents, then
848 refuse to use this symbol. If we found a zero-sized
849 symbol with an address greater than this symbol's,
850 use that instead. We assume that if symbols have
851 specified sizes, they do not overlap. */
852
853 if (hi >= 0
854 && MSYMBOL_SIZE (&msymbol[hi]) != 0
855 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
856 + MSYMBOL_SIZE (&msymbol[hi])))
857 {
858 if (best_zero_sized != -1)
859 hi = best_zero_sized;
860 else
861 /* Go on to the next object file. */
862 continue;
863 }
864
865 /* The minimal symbol indexed by hi now is the best one in this
866 objfile's minimal symbol table. See if it is the best one
867 overall. */
868
869 if (hi >= 0
870 && ((best_symbol == NULL) ||
871 (MSYMBOL_VALUE_RAW_ADDRESS (best_symbol) <
872 MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]))))
873 {
874 best_symbol = &msymbol[hi];
875 best_objfile = objfile;
876 }
877 }
878 }
879 }
880
881 result.minsym = best_symbol;
882 result.objfile = best_objfile;
883 return result;
884 }
885
886 struct bound_minimal_symbol
887 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
888 {
889 if (section == NULL)
890 {
891 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
892 force the section but that (well unless you're doing overlay
893 debugging) always returns NULL making the call somewhat useless. */
894 section = find_pc_section (pc);
895 if (section == NULL)
896 {
897 struct bound_minimal_symbol result;
898
899 memset (&result, 0, sizeof (result));
900 return result;
901 }
902 }
903 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
904 }
905
906 /* See minsyms.h. */
907
908 struct bound_minimal_symbol
909 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
910 {
911 struct obj_section *section = find_pc_section (pc);
912
913 if (section == NULL)
914 {
915 struct bound_minimal_symbol result;
916
917 memset (&result, 0, sizeof (result));
918 return result;
919 }
920 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
921 }
922
923 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
924
925 int
926 in_gnu_ifunc_stub (CORE_ADDR pc)
927 {
928 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (pc);
929
930 return msymbol.minsym && MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc;
931 }
932
933 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
934
935 static CORE_ADDR
936 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
937 {
938 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
939 "the ELF support compiled in."),
940 paddress (gdbarch, pc));
941 }
942
943 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
944
945 static int
946 stub_gnu_ifunc_resolve_name (const char *function_name,
947 CORE_ADDR *function_address_p)
948 {
949 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
950 "the ELF support compiled in."),
951 function_name);
952 }
953
954 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
955
956 static void
957 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
958 {
959 internal_error (__FILE__, __LINE__,
960 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
961 }
962
963 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
964
965 static void
966 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
967 {
968 internal_error (__FILE__, __LINE__,
969 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
970 }
971
972 /* See elf_gnu_ifunc_fns for its real implementation. */
973
974 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
975 {
976 stub_gnu_ifunc_resolve_addr,
977 stub_gnu_ifunc_resolve_name,
978 stub_gnu_ifunc_resolver_stop,
979 stub_gnu_ifunc_resolver_return_stop,
980 };
981
982 /* A placeholder for &elf_gnu_ifunc_fns. */
983
984 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
985
986 /* See minsyms.h. */
987
988 struct bound_minimal_symbol
989 lookup_minimal_symbol_and_objfile (const char *name)
990 {
991 struct bound_minimal_symbol result;
992 struct objfile *objfile;
993 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
994
995 ALL_OBJFILES (objfile)
996 {
997 struct minimal_symbol *msym;
998
999 for (msym = objfile->per_bfd->msymbol_hash[hash];
1000 msym != NULL;
1001 msym = msym->hash_next)
1002 {
1003 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
1004 {
1005 result.minsym = msym;
1006 result.objfile = objfile;
1007 return result;
1008 }
1009 }
1010 }
1011
1012 memset (&result, 0, sizeof (result));
1013 return result;
1014 }
1015 \f
1016
1017 /* Return leading symbol character for a BFD. If BFD is NULL,
1018 return the leading symbol character from the main objfile. */
1019
1020 static int
1021 get_symbol_leading_char (bfd *abfd)
1022 {
1023 if (abfd != NULL)
1024 return bfd_get_symbol_leading_char (abfd);
1025 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
1026 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
1027 return 0;
1028 }
1029
1030 /* See minsyms.h. */
1031
1032 minimal_symbol_reader::minimal_symbol_reader (struct objfile *obj)
1033 : m_objfile (obj),
1034 m_msym_bunch (NULL),
1035 /* Note that presetting m_msym_bunch_index to BUNCH_SIZE causes the
1036 first call to save a minimal symbol to allocate the memory for
1037 the first bunch. */
1038 m_msym_bunch_index (BUNCH_SIZE),
1039 m_msym_count (0)
1040 {
1041 }
1042
1043 /* Discard the currently collected minimal symbols, if any. If we wish
1044 to save them for later use, we must have already copied them somewhere
1045 else before calling this function.
1046
1047 FIXME: We could allocate the minimal symbol bunches on their own
1048 obstack and then simply blow the obstack away when we are done with
1049 it. Is it worth the extra trouble though? */
1050
1051 minimal_symbol_reader::~minimal_symbol_reader ()
1052 {
1053 struct msym_bunch *next;
1054
1055 while (m_msym_bunch != NULL)
1056 {
1057 next = m_msym_bunch->next;
1058 xfree (m_msym_bunch);
1059 m_msym_bunch = next;
1060 }
1061 }
1062
1063 /* See minsyms.h. */
1064
1065 void
1066 minimal_symbol_reader::record (const char *name, CORE_ADDR address,
1067 enum minimal_symbol_type ms_type)
1068 {
1069 int section;
1070
1071 switch (ms_type)
1072 {
1073 case mst_text:
1074 case mst_text_gnu_ifunc:
1075 case mst_file_text:
1076 case mst_solib_trampoline:
1077 section = SECT_OFF_TEXT (m_objfile);
1078 break;
1079 case mst_data:
1080 case mst_file_data:
1081 section = SECT_OFF_DATA (m_objfile);
1082 break;
1083 case mst_bss:
1084 case mst_file_bss:
1085 section = SECT_OFF_BSS (m_objfile);
1086 break;
1087 default:
1088 section = -1;
1089 }
1090
1091 record_with_info (name, address, ms_type, section);
1092 }
1093
1094 /* See minsyms.h. */
1095
1096 struct minimal_symbol *
1097 minimal_symbol_reader::record_full (const char *name, int name_len,
1098 bool copy_name, CORE_ADDR address,
1099 enum minimal_symbol_type ms_type,
1100 int section)
1101 {
1102 struct msym_bunch *newobj;
1103 struct minimal_symbol *msymbol;
1104
1105 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
1106 the minimal symbols, because if there is also another symbol
1107 at the same address (e.g. the first function of the file),
1108 lookup_minimal_symbol_by_pc would have no way of getting the
1109 right one. */
1110 if (ms_type == mst_file_text && name[0] == 'g'
1111 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
1112 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
1113 return (NULL);
1114
1115 /* It's safe to strip the leading char here once, since the name
1116 is also stored stripped in the minimal symbol table. */
1117 if (name[0] == get_symbol_leading_char (m_objfile->obfd))
1118 {
1119 ++name;
1120 --name_len;
1121 }
1122
1123 if (ms_type == mst_file_text && startswith (name, "__gnu_compiled"))
1124 return (NULL);
1125
1126 if (m_msym_bunch_index == BUNCH_SIZE)
1127 {
1128 newobj = XCNEW (struct msym_bunch);
1129 m_msym_bunch_index = 0;
1130 newobj->next = m_msym_bunch;
1131 m_msym_bunch = newobj;
1132 }
1133 msymbol = &m_msym_bunch->contents[m_msym_bunch_index];
1134 MSYMBOL_SET_LANGUAGE (msymbol, language_auto,
1135 &m_objfile->per_bfd->storage_obstack);
1136 MSYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, m_objfile);
1137
1138 SET_MSYMBOL_VALUE_ADDRESS (msymbol, address);
1139 MSYMBOL_SECTION (msymbol) = section;
1140
1141 MSYMBOL_TYPE (msymbol) = ms_type;
1142 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
1143 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
1144 /* Do not use the SET_MSYMBOL_SIZE macro to initialize the size,
1145 as it would also set the has_size flag. */
1146 msymbol->size = 0;
1147
1148 /* The hash pointers must be cleared! If they're not,
1149 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
1150 msymbol->hash_next = NULL;
1151 msymbol->demangled_hash_next = NULL;
1152
1153 /* If we already read minimal symbols for this objfile, then don't
1154 ever allocate a new one. */
1155 if (!m_objfile->per_bfd->minsyms_read)
1156 {
1157 m_msym_bunch_index++;
1158 m_objfile->per_bfd->n_minsyms++;
1159 }
1160 m_msym_count++;
1161 return msymbol;
1162 }
1163
1164 /* Compare two minimal symbols by address and return a signed result based
1165 on unsigned comparisons, so that we sort into unsigned numeric order.
1166 Within groups with the same address, sort by name. */
1167
1168 static int
1169 compare_minimal_symbols (const void *fn1p, const void *fn2p)
1170 {
1171 const struct minimal_symbol *fn1;
1172 const struct minimal_symbol *fn2;
1173
1174 fn1 = (const struct minimal_symbol *) fn1p;
1175 fn2 = (const struct minimal_symbol *) fn2p;
1176
1177 if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) < MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1178 {
1179 return (-1); /* addr 1 is less than addr 2. */
1180 }
1181 else if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) > MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1182 {
1183 return (1); /* addr 1 is greater than addr 2. */
1184 }
1185 else
1186 /* addrs are equal: sort by name */
1187 {
1188 const char *name1 = MSYMBOL_LINKAGE_NAME (fn1);
1189 const char *name2 = MSYMBOL_LINKAGE_NAME (fn2);
1190
1191 if (name1 && name2) /* both have names */
1192 return strcmp (name1, name2);
1193 else if (name2)
1194 return 1; /* fn1 has no name, so it is "less". */
1195 else if (name1) /* fn2 has no name, so it is "less". */
1196 return -1;
1197 else
1198 return (0); /* Neither has a name, so they're equal. */
1199 }
1200 }
1201
1202 /* Compact duplicate entries out of a minimal symbol table by walking
1203 through the table and compacting out entries with duplicate addresses
1204 and matching names. Return the number of entries remaining.
1205
1206 On entry, the table resides between msymbol[0] and msymbol[mcount].
1207 On exit, it resides between msymbol[0] and msymbol[result_count].
1208
1209 When files contain multiple sources of symbol information, it is
1210 possible for the minimal symbol table to contain many duplicate entries.
1211 As an example, SVR4 systems use ELF formatted object files, which
1212 usually contain at least two different types of symbol tables (a
1213 standard ELF one and a smaller dynamic linking table), as well as
1214 DWARF debugging information for files compiled with -g.
1215
1216 Without compacting, the minimal symbol table for gdb itself contains
1217 over a 1000 duplicates, about a third of the total table size. Aside
1218 from the potential trap of not noticing that two successive entries
1219 identify the same location, this duplication impacts the time required
1220 to linearly scan the table, which is done in a number of places. So we
1221 just do one linear scan here and toss out the duplicates.
1222
1223 Note that we are not concerned here about recovering the space that
1224 is potentially freed up, because the strings themselves are allocated
1225 on the storage_obstack, and will get automatically freed when the symbol
1226 table is freed. The caller can free up the unused minimal symbols at
1227 the end of the compacted region if their allocation strategy allows it.
1228
1229 Also note we only go up to the next to last entry within the loop
1230 and then copy the last entry explicitly after the loop terminates.
1231
1232 Since the different sources of information for each symbol may
1233 have different levels of "completeness", we may have duplicates
1234 that have one entry with type "mst_unknown" and the other with a
1235 known type. So if the one we are leaving alone has type mst_unknown,
1236 overwrite its type with the type from the one we are compacting out. */
1237
1238 static int
1239 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1240 struct objfile *objfile)
1241 {
1242 struct minimal_symbol *copyfrom;
1243 struct minimal_symbol *copyto;
1244
1245 if (mcount > 0)
1246 {
1247 copyfrom = copyto = msymbol;
1248 while (copyfrom < msymbol + mcount - 1)
1249 {
1250 if (MSYMBOL_VALUE_RAW_ADDRESS (copyfrom)
1251 == MSYMBOL_VALUE_RAW_ADDRESS ((copyfrom + 1))
1252 && MSYMBOL_SECTION (copyfrom) == MSYMBOL_SECTION (copyfrom + 1)
1253 && strcmp (MSYMBOL_LINKAGE_NAME (copyfrom),
1254 MSYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1255 {
1256 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1257 {
1258 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1259 }
1260 copyfrom++;
1261 }
1262 else
1263 *copyto++ = *copyfrom++;
1264 }
1265 *copyto++ = *copyfrom++;
1266 mcount = copyto - msymbol;
1267 }
1268 return (mcount);
1269 }
1270
1271 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1272 after compacting or sorting the table since the entries move around
1273 thus causing the internal minimal_symbol pointers to become jumbled. */
1274
1275 static void
1276 build_minimal_symbol_hash_tables (struct objfile *objfile)
1277 {
1278 int i;
1279 struct minimal_symbol *msym;
1280
1281 /* Clear the hash tables. */
1282 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1283 {
1284 objfile->per_bfd->msymbol_hash[i] = 0;
1285 objfile->per_bfd->msymbol_demangled_hash[i] = 0;
1286 }
1287
1288 /* Now, (re)insert the actual entries. */
1289 for ((i = objfile->per_bfd->minimal_symbol_count,
1290 msym = objfile->per_bfd->msymbols);
1291 i > 0;
1292 i--, msym++)
1293 {
1294 msym->hash_next = 0;
1295 add_minsym_to_hash_table (msym, objfile->per_bfd->msymbol_hash);
1296
1297 msym->demangled_hash_next = 0;
1298 if (MSYMBOL_SEARCH_NAME (msym) != MSYMBOL_LINKAGE_NAME (msym))
1299 add_minsym_to_demangled_hash_table (msym, objfile);
1300 }
1301 }
1302
1303 /* Add the minimal symbols in the existing bunches to the objfile's official
1304 minimal symbol table. In most cases there is no minimal symbol table yet
1305 for this objfile, and the existing bunches are used to create one. Once
1306 in a while (for shared libraries for example), we add symbols (e.g. common
1307 symbols) to an existing objfile.
1308
1309 Because of the way minimal symbols are collected, we generally have no way
1310 of knowing what source language applies to any particular minimal symbol.
1311 Specifically, we have no way of knowing if the minimal symbol comes from a
1312 C++ compilation unit or not. So for the sake of supporting cached
1313 demangled C++ names, we have no choice but to try and demangle each new one
1314 that comes in. If the demangling succeeds, then we assume it is a C++
1315 symbol and set the symbol's language and demangled name fields
1316 appropriately. Note that in order to avoid unnecessary demanglings, and
1317 allocating obstack space that subsequently can't be freed for the demangled
1318 names, we mark all newly added symbols with language_auto. After
1319 compaction of the minimal symbols, we go back and scan the entire minimal
1320 symbol table looking for these new symbols. For each new symbol we attempt
1321 to demangle it, and if successful, record it as a language_cplus symbol
1322 and cache the demangled form on the symbol obstack. Symbols which don't
1323 demangle are marked as language_unknown symbols, which inhibits future
1324 attempts to demangle them if we later add more minimal symbols. */
1325
1326 void
1327 minimal_symbol_reader::install ()
1328 {
1329 int bindex;
1330 int mcount;
1331 struct msym_bunch *bunch;
1332 struct minimal_symbol *msymbols;
1333 int alloc_count;
1334
1335 if (m_objfile->per_bfd->minsyms_read)
1336 return;
1337
1338 if (m_msym_count > 0)
1339 {
1340 if (symtab_create_debug)
1341 {
1342 fprintf_unfiltered (gdb_stdlog,
1343 "Installing %d minimal symbols of objfile %s.\n",
1344 m_msym_count, objfile_name (m_objfile));
1345 }
1346
1347 /* Allocate enough space in the obstack, into which we will gather the
1348 bunches of new and existing minimal symbols, sort them, and then
1349 compact out the duplicate entries. Once we have a final table,
1350 we will give back the excess space. */
1351
1352 alloc_count = m_msym_count + m_objfile->per_bfd->minimal_symbol_count + 1;
1353 obstack_blank (&m_objfile->per_bfd->storage_obstack,
1354 alloc_count * sizeof (struct minimal_symbol));
1355 msymbols = (struct minimal_symbol *)
1356 obstack_base (&m_objfile->per_bfd->storage_obstack);
1357
1358 /* Copy in the existing minimal symbols, if there are any. */
1359
1360 if (m_objfile->per_bfd->minimal_symbol_count)
1361 memcpy ((char *) msymbols, (char *) m_objfile->per_bfd->msymbols,
1362 m_objfile->per_bfd->minimal_symbol_count * sizeof (struct minimal_symbol));
1363
1364 /* Walk through the list of minimal symbol bunches, adding each symbol
1365 to the new contiguous array of symbols. Note that we start with the
1366 current, possibly partially filled bunch (thus we use the current
1367 msym_bunch_index for the first bunch we copy over), and thereafter
1368 each bunch is full. */
1369
1370 mcount = m_objfile->per_bfd->minimal_symbol_count;
1371
1372 for (bunch = m_msym_bunch; bunch != NULL; bunch = bunch->next)
1373 {
1374 for (bindex = 0; bindex < m_msym_bunch_index; bindex++, mcount++)
1375 msymbols[mcount] = bunch->contents[bindex];
1376 m_msym_bunch_index = BUNCH_SIZE;
1377 }
1378
1379 /* Sort the minimal symbols by address. */
1380
1381 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1382 compare_minimal_symbols);
1383
1384 /* Compact out any duplicates, and free up whatever space we are
1385 no longer using. */
1386
1387 mcount = compact_minimal_symbols (msymbols, mcount, m_objfile);
1388
1389 obstack_blank_fast (&m_objfile->per_bfd->storage_obstack,
1390 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1391 msymbols = (struct minimal_symbol *)
1392 obstack_finish (&m_objfile->per_bfd->storage_obstack);
1393
1394 /* We also terminate the minimal symbol table with a "null symbol",
1395 which is *not* included in the size of the table. This makes it
1396 easier to find the end of the table when we are handed a pointer
1397 to some symbol in the middle of it. Zero out the fields in the
1398 "null symbol" allocated at the end of the array. Note that the
1399 symbol count does *not* include this null symbol, which is why it
1400 is indexed by mcount and not mcount-1. */
1401
1402 memset (&msymbols[mcount], 0, sizeof (struct minimal_symbol));
1403
1404 /* Attach the minimal symbol table to the specified objfile.
1405 The strings themselves are also located in the storage_obstack
1406 of this objfile. */
1407
1408 m_objfile->per_bfd->minimal_symbol_count = mcount;
1409 m_objfile->per_bfd->msymbols = msymbols;
1410
1411 /* Now build the hash tables; we can't do this incrementally
1412 at an earlier point since we weren't finished with the obstack
1413 yet. (And if the msymbol obstack gets moved, all the internal
1414 pointers to other msymbols need to be adjusted.) */
1415 build_minimal_symbol_hash_tables (m_objfile);
1416 }
1417 }
1418
1419 /* See minsyms.h. */
1420
1421 void
1422 terminate_minimal_symbol_table (struct objfile *objfile)
1423 {
1424 if (! objfile->per_bfd->msymbols)
1425 objfile->per_bfd->msymbols
1426 = ((struct minimal_symbol *)
1427 obstack_alloc (&objfile->per_bfd->storage_obstack,
1428 sizeof (struct minimal_symbol)));
1429
1430 {
1431 struct minimal_symbol *m
1432 = &objfile->per_bfd->msymbols[objfile->per_bfd->minimal_symbol_count];
1433
1434 memset (m, 0, sizeof (*m));
1435 /* Don't rely on these enumeration values being 0's. */
1436 MSYMBOL_TYPE (m) = mst_unknown;
1437 MSYMBOL_SET_LANGUAGE (m, language_unknown,
1438 &objfile->per_bfd->storage_obstack);
1439 }
1440 }
1441
1442 /* Check if PC is in a shared library trampoline code stub.
1443 Return minimal symbol for the trampoline entry or NULL if PC is not
1444 in a trampoline code stub. */
1445
1446 static struct minimal_symbol *
1447 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1448 {
1449 struct obj_section *section = find_pc_section (pc);
1450 struct bound_minimal_symbol msymbol;
1451
1452 if (section == NULL)
1453 return NULL;
1454 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1455
1456 if (msymbol.minsym != NULL
1457 && MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
1458 return msymbol.minsym;
1459 return NULL;
1460 }
1461
1462 /* If PC is in a shared library trampoline code stub, return the
1463 address of the `real' function belonging to the stub.
1464 Return 0 if PC is not in a trampoline code stub or if the real
1465 function is not found in the minimal symbol table.
1466
1467 We may fail to find the right function if a function with the
1468 same name is defined in more than one shared library, but this
1469 is considered bad programming style. We could return 0 if we find
1470 a duplicate function in case this matters someday. */
1471
1472 CORE_ADDR
1473 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1474 {
1475 struct objfile *objfile;
1476 struct minimal_symbol *msymbol;
1477 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1478
1479 if (tsymbol != NULL)
1480 {
1481 ALL_MSYMBOLS (objfile, msymbol)
1482 {
1483 if ((MSYMBOL_TYPE (msymbol) == mst_text
1484 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc)
1485 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1486 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1487 return MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1488
1489 /* Also handle minimal symbols pointing to function descriptors. */
1490 if (MSYMBOL_TYPE (msymbol) == mst_data
1491 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1492 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1493 {
1494 CORE_ADDR func;
1495
1496 func = gdbarch_convert_from_func_ptr_addr
1497 (get_objfile_arch (objfile),
1498 MSYMBOL_VALUE_ADDRESS (objfile, msymbol),
1499 &current_target);
1500
1501 /* Ignore data symbols that are not function descriptors. */
1502 if (func != MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
1503 return func;
1504 }
1505 }
1506 }
1507 return 0;
1508 }
1509
1510 /* See minsyms.h. */
1511
1512 CORE_ADDR
1513 minimal_symbol_upper_bound (struct bound_minimal_symbol minsym)
1514 {
1515 int i;
1516 short section;
1517 struct obj_section *obj_section;
1518 CORE_ADDR result;
1519 struct minimal_symbol *msymbol;
1520
1521 gdb_assert (minsym.minsym != NULL);
1522
1523 /* If the minimal symbol has a size, use it. Otherwise use the
1524 lesser of the next minimal symbol in the same section, or the end
1525 of the section, as the end of the function. */
1526
1527 if (MSYMBOL_SIZE (minsym.minsym) != 0)
1528 return BMSYMBOL_VALUE_ADDRESS (minsym) + MSYMBOL_SIZE (minsym.minsym);
1529
1530 /* Step over other symbols at this same address, and symbols in
1531 other sections, to find the next symbol in this section with a
1532 different address. */
1533
1534 msymbol = minsym.minsym;
1535 section = MSYMBOL_SECTION (msymbol);
1536 for (i = 1; MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
1537 {
1538 if ((MSYMBOL_VALUE_RAW_ADDRESS (msymbol + i)
1539 != MSYMBOL_VALUE_RAW_ADDRESS (msymbol))
1540 && MSYMBOL_SECTION (msymbol + i) == section)
1541 break;
1542 }
1543
1544 obj_section = MSYMBOL_OBJ_SECTION (minsym.objfile, minsym.minsym);
1545 if (MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL
1546 && (MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i)
1547 < obj_section_endaddr (obj_section)))
1548 result = MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i);
1549 else
1550 /* We got the start address from the last msymbol in the objfile.
1551 So the end address is the end of the section. */
1552 result = obj_section_endaddr (obj_section);
1553
1554 return result;
1555 }