]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/minsyms.c
gdb: convert obj_section macros to methods
[thirdparty/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2021 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
23
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
28
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
32
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
37
38
39 #include "defs.h"
40 #include <ctype.h>
41 #include "symtab.h"
42 #include "bfd.h"
43 #include "filenames.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "demangle.h"
47 #include "value.h"
48 #include "cp-abi.h"
49 #include "target.h"
50 #include "cp-support.h"
51 #include "language.h"
52 #include "cli/cli-utils.h"
53 #include "gdbsupport/symbol.h"
54 #include <algorithm>
55 #include "safe-ctype.h"
56 #include "gdbsupport/parallel-for.h"
57 #include "inferior.h"
58
59 #if CXX_STD_THREAD
60 #include <mutex>
61 #endif
62
63 /* Return true if MINSYM is a cold clone symbol.
64 Recognize f.i. these symbols (mangled/demangled):
65 - _ZL3foov.cold
66 foo() [clone .cold]
67 - _ZL9do_rpo_vnP8functionP8edge_defP11bitmap_headbb.cold.138
68 do_rpo_vn(function*, edge_def*, bitmap_head*, bool, bool) \
69 [clone .cold.138]. */
70
71 static bool
72 msymbol_is_cold_clone (minimal_symbol *minsym)
73 {
74 const char *name = minsym->natural_name ();
75 size_t name_len = strlen (name);
76 if (name_len < 1)
77 return false;
78
79 const char *last = &name[name_len - 1];
80 if (*last != ']')
81 return false;
82
83 const char *suffix = " [clone .cold";
84 size_t suffix_len = strlen (suffix);
85 const char *found = strstr (name, suffix);
86 if (found == nullptr)
87 return false;
88
89 const char *start = &found[suffix_len];
90 if (*start == ']')
91 return true;
92
93 if (*start != '.')
94 return false;
95
96 const char *p;
97 for (p = start + 1; p <= last; ++p)
98 {
99 if (*p >= '0' && *p <= '9')
100 continue;
101 break;
102 }
103
104 if (p == last)
105 return true;
106
107 return false;
108 }
109
110 /* See minsyms.h. */
111
112 bool
113 msymbol_is_function (struct objfile *objfile, minimal_symbol *minsym,
114 CORE_ADDR *func_address_p)
115 {
116 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
117
118 switch (minsym->type)
119 {
120 case mst_slot_got_plt:
121 case mst_data:
122 case mst_bss:
123 case mst_abs:
124 case mst_file_data:
125 case mst_file_bss:
126 case mst_data_gnu_ifunc:
127 {
128 struct gdbarch *gdbarch = objfile->arch ();
129 CORE_ADDR pc = gdbarch_convert_from_func_ptr_addr
130 (gdbarch, msym_addr, current_inferior ()->top_target ());
131 if (pc != msym_addr)
132 {
133 if (func_address_p != NULL)
134 *func_address_p = pc;
135 return true;
136 }
137 return false;
138 }
139 case mst_file_text:
140 /* Ignore function symbol that is not a function entry. */
141 if (msymbol_is_cold_clone (minsym))
142 return false;
143 /* fallthru */
144 default:
145 if (func_address_p != NULL)
146 *func_address_p = msym_addr;
147 return true;
148 }
149 }
150
151 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
152 At the end, copy them all into one newly allocated array. */
153
154 #define BUNCH_SIZE 127
155
156 struct msym_bunch
157 {
158 struct msym_bunch *next;
159 struct minimal_symbol contents[BUNCH_SIZE];
160 };
161
162 /* See minsyms.h. */
163
164 unsigned int
165 msymbol_hash_iw (const char *string)
166 {
167 unsigned int hash = 0;
168
169 while (*string && *string != '(')
170 {
171 string = skip_spaces (string);
172 if (*string && *string != '(')
173 {
174 hash = SYMBOL_HASH_NEXT (hash, *string);
175 ++string;
176 }
177 }
178 return hash;
179 }
180
181 /* See minsyms.h. */
182
183 unsigned int
184 msymbol_hash (const char *string)
185 {
186 unsigned int hash = 0;
187
188 for (; *string; ++string)
189 hash = SYMBOL_HASH_NEXT (hash, *string);
190 return hash;
191 }
192
193 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
194 static void
195 add_minsym_to_hash_table (struct minimal_symbol *sym,
196 struct minimal_symbol **table,
197 unsigned int hash_value)
198 {
199 if (sym->hash_next == NULL)
200 {
201 unsigned int hash = hash_value % MINIMAL_SYMBOL_HASH_SIZE;
202
203 sym->hash_next = table[hash];
204 table[hash] = sym;
205 }
206 }
207
208 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
209 TABLE. */
210 static void
211 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
212 struct objfile *objfile,
213 unsigned int hash_value)
214 {
215 if (sym->demangled_hash_next == NULL)
216 {
217 objfile->per_bfd->demangled_hash_languages.set (sym->language ());
218
219 struct minimal_symbol **table
220 = objfile->per_bfd->msymbol_demangled_hash;
221 unsigned int hash_index = hash_value % MINIMAL_SYMBOL_HASH_SIZE;
222 sym->demangled_hash_next = table[hash_index];
223 table[hash_index] = sym;
224 }
225 }
226
227 /* Worker object for lookup_minimal_symbol. Stores temporary results
228 while walking the symbol tables. */
229
230 struct found_minimal_symbols
231 {
232 /* External symbols are best. */
233 bound_minimal_symbol external_symbol {};
234
235 /* File-local symbols are next best. */
236 bound_minimal_symbol file_symbol {};
237
238 /* Symbols for shared library trampolines are next best. */
239 bound_minimal_symbol trampoline_symbol {};
240
241 /* Called when a symbol name matches. Check if the minsym is a
242 better type than what we had already found, and record it in one
243 of the members fields if so. Returns true if we collected the
244 real symbol, in which case we can stop searching. */
245 bool maybe_collect (const char *sfile, objfile *objf,
246 minimal_symbol *msymbol);
247 };
248
249 /* See declaration above. */
250
251 bool
252 found_minimal_symbols::maybe_collect (const char *sfile,
253 struct objfile *objfile,
254 minimal_symbol *msymbol)
255 {
256 switch (MSYMBOL_TYPE (msymbol))
257 {
258 case mst_file_text:
259 case mst_file_data:
260 case mst_file_bss:
261 if (sfile == NULL
262 || filename_cmp (msymbol->filename, sfile) == 0)
263 {
264 file_symbol.minsym = msymbol;
265 file_symbol.objfile = objfile;
266 }
267 break;
268
269 case mst_solib_trampoline:
270
271 /* If a trampoline symbol is found, we prefer to keep
272 looking for the *real* symbol. If the actual symbol
273 is not found, then we'll use the trampoline
274 entry. */
275 if (trampoline_symbol.minsym == NULL)
276 {
277 trampoline_symbol.minsym = msymbol;
278 trampoline_symbol.objfile = objfile;
279 }
280 break;
281
282 case mst_unknown:
283 default:
284 external_symbol.minsym = msymbol;
285 external_symbol.objfile = objfile;
286 /* We have the real symbol. No use looking further. */
287 return true;
288 }
289
290 /* Keep looking. */
291 return false;
292 }
293
294 /* Walk the mangled name hash table, and pass each symbol whose name
295 matches LOOKUP_NAME according to NAMECMP to FOUND. */
296
297 static void
298 lookup_minimal_symbol_mangled (const char *lookup_name,
299 const char *sfile,
300 struct objfile *objfile,
301 struct minimal_symbol **table,
302 unsigned int hash,
303 int (*namecmp) (const char *, const char *),
304 found_minimal_symbols &found)
305 {
306 for (minimal_symbol *msymbol = table[hash];
307 msymbol != NULL;
308 msymbol = msymbol->hash_next)
309 {
310 const char *symbol_name = msymbol->linkage_name ();
311
312 if (namecmp (symbol_name, lookup_name) == 0
313 && found.maybe_collect (sfile, objfile, msymbol))
314 return;
315 }
316 }
317
318 /* Walk the demangled name hash table, and pass each symbol whose name
319 matches LOOKUP_NAME according to MATCHER to FOUND. */
320
321 static void
322 lookup_minimal_symbol_demangled (const lookup_name_info &lookup_name,
323 const char *sfile,
324 struct objfile *objfile,
325 struct minimal_symbol **table,
326 unsigned int hash,
327 symbol_name_matcher_ftype *matcher,
328 found_minimal_symbols &found)
329 {
330 for (minimal_symbol *msymbol = table[hash];
331 msymbol != NULL;
332 msymbol = msymbol->demangled_hash_next)
333 {
334 const char *symbol_name = msymbol->search_name ();
335
336 if (matcher (symbol_name, lookup_name, NULL)
337 && found.maybe_collect (sfile, objfile, msymbol))
338 return;
339 }
340 }
341
342 /* Look through all the current minimal symbol tables and find the
343 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
344 the search to that objfile. If SFILE is non-NULL, the only file-scope
345 symbols considered will be from that source file (global symbols are
346 still preferred). Returns a pointer to the minimal symbol that
347 matches, or NULL if no match is found.
348
349 Note: One instance where there may be duplicate minimal symbols with
350 the same name is when the symbol tables for a shared library and the
351 symbol tables for an executable contain global symbols with the same
352 names (the dynamic linker deals with the duplication).
353
354 It's also possible to have minimal symbols with different mangled
355 names, but identical demangled names. For example, the GNU C++ v3
356 ABI requires the generation of two (or perhaps three) copies of
357 constructor functions --- "in-charge", "not-in-charge", and
358 "allocate" copies; destructors may be duplicated as well.
359 Obviously, there must be distinct mangled names for each of these,
360 but the demangled names are all the same: S::S or S::~S. */
361
362 struct bound_minimal_symbol
363 lookup_minimal_symbol (const char *name, const char *sfile,
364 struct objfile *objf)
365 {
366 found_minimal_symbols found;
367
368 unsigned int mangled_hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
369
370 auto *mangled_cmp
371 = (case_sensitivity == case_sensitive_on
372 ? strcmp
373 : strcasecmp);
374
375 if (sfile != NULL)
376 sfile = lbasename (sfile);
377
378 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
379
380 for (objfile *objfile : current_program_space->objfiles ())
381 {
382 if (found.external_symbol.minsym != NULL)
383 break;
384
385 if (objf == NULL || objf == objfile
386 || objf == objfile->separate_debug_objfile_backlink)
387 {
388 if (symbol_lookup_debug)
389 {
390 fprintf_unfiltered (gdb_stdlog,
391 "lookup_minimal_symbol (%s, %s, %s)\n",
392 name, sfile != NULL ? sfile : "NULL",
393 objfile_debug_name (objfile));
394 }
395
396 /* Do two passes: the first over the ordinary hash table,
397 and the second over the demangled hash table. */
398 lookup_minimal_symbol_mangled (name, sfile, objfile,
399 objfile->per_bfd->msymbol_hash,
400 mangled_hash, mangled_cmp, found);
401
402 /* If not found, try the demangled hash table. */
403 if (found.external_symbol.minsym == NULL)
404 {
405 /* Once for each language in the demangled hash names
406 table (usually just zero or one languages). */
407 for (unsigned iter = 0; iter < nr_languages; ++iter)
408 {
409 if (!objfile->per_bfd->demangled_hash_languages.test (iter))
410 continue;
411 enum language lang = (enum language) iter;
412
413 unsigned int hash
414 = (lookup_name.search_name_hash (lang)
415 % MINIMAL_SYMBOL_HASH_SIZE);
416
417 symbol_name_matcher_ftype *match
418 = language_def (lang)->get_symbol_name_matcher
419 (lookup_name);
420 struct minimal_symbol **msymbol_demangled_hash
421 = objfile->per_bfd->msymbol_demangled_hash;
422
423 lookup_minimal_symbol_demangled (lookup_name, sfile, objfile,
424 msymbol_demangled_hash,
425 hash, match, found);
426
427 if (found.external_symbol.minsym != NULL)
428 break;
429 }
430 }
431 }
432 }
433
434 /* External symbols are best. */
435 if (found.external_symbol.minsym != NULL)
436 {
437 if (symbol_lookup_debug)
438 {
439 minimal_symbol *minsym = found.external_symbol.minsym;
440
441 fprintf_unfiltered (gdb_stdlog,
442 "lookup_minimal_symbol (...) = %s (external)\n",
443 host_address_to_string (minsym));
444 }
445 return found.external_symbol;
446 }
447
448 /* File-local symbols are next best. */
449 if (found.file_symbol.minsym != NULL)
450 {
451 if (symbol_lookup_debug)
452 {
453 minimal_symbol *minsym = found.file_symbol.minsym;
454
455 fprintf_unfiltered (gdb_stdlog,
456 "lookup_minimal_symbol (...) = %s (file-local)\n",
457 host_address_to_string (minsym));
458 }
459 return found.file_symbol;
460 }
461
462 /* Symbols for shared library trampolines are next best. */
463 if (found.trampoline_symbol.minsym != NULL)
464 {
465 if (symbol_lookup_debug)
466 {
467 minimal_symbol *minsym = found.trampoline_symbol.minsym;
468
469 fprintf_unfiltered (gdb_stdlog,
470 "lookup_minimal_symbol (...) = %s (trampoline)\n",
471 host_address_to_string (minsym));
472 }
473
474 return found.trampoline_symbol;
475 }
476
477 /* Not found. */
478 if (symbol_lookup_debug)
479 fprintf_unfiltered (gdb_stdlog, "lookup_minimal_symbol (...) = NULL\n");
480 return {};
481 }
482
483 /* See minsyms.h. */
484
485 struct bound_minimal_symbol
486 lookup_bound_minimal_symbol (const char *name)
487 {
488 return lookup_minimal_symbol (name, NULL, NULL);
489 }
490
491 /* See gdbsupport/symbol.h. */
492
493 int
494 find_minimal_symbol_address (const char *name, CORE_ADDR *addr,
495 struct objfile *objfile)
496 {
497 struct bound_minimal_symbol sym
498 = lookup_minimal_symbol (name, NULL, objfile);
499
500 if (sym.minsym != NULL)
501 *addr = BMSYMBOL_VALUE_ADDRESS (sym);
502
503 return sym.minsym == NULL;
504 }
505
506 /* Get the lookup name form best suitable for linkage name
507 matching. */
508
509 static const char *
510 linkage_name_str (const lookup_name_info &lookup_name)
511 {
512 /* Unlike most languages (including C++), Ada uses the
513 encoded/linkage name as the search name recorded in symbols. So
514 if debugging in Ada mode, prefer the Ada-encoded name. This also
515 makes Ada's verbatim match syntax ("<...>") work, because
516 "lookup_name.name()" includes the "<>"s, while
517 "lookup_name.ada().lookup_name()" is the encoded name with "<>"s
518 stripped. */
519 if (current_language->la_language == language_ada)
520 return lookup_name.ada ().lookup_name ().c_str ();
521
522 return lookup_name.c_str ();
523 }
524
525 /* See minsyms.h. */
526
527 void
528 iterate_over_minimal_symbols
529 (struct objfile *objf, const lookup_name_info &lookup_name,
530 gdb::function_view<bool (struct minimal_symbol *)> callback)
531 {
532 /* The first pass is over the ordinary hash table. */
533 {
534 const char *name = linkage_name_str (lookup_name);
535 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
536 auto *mangled_cmp
537 = (case_sensitivity == case_sensitive_on
538 ? strcmp
539 : strcasecmp);
540
541 for (minimal_symbol *iter = objf->per_bfd->msymbol_hash[hash];
542 iter != NULL;
543 iter = iter->hash_next)
544 {
545 if (mangled_cmp (iter->linkage_name (), name) == 0)
546 if (callback (iter))
547 return;
548 }
549 }
550
551 /* The second pass is over the demangled table. Once for each
552 language in the demangled hash names table (usually just zero or
553 one). */
554 for (unsigned liter = 0; liter < nr_languages; ++liter)
555 {
556 if (!objf->per_bfd->demangled_hash_languages.test (liter))
557 continue;
558
559 enum language lang = (enum language) liter;
560 const language_defn *lang_def = language_def (lang);
561 symbol_name_matcher_ftype *name_match
562 = lang_def->get_symbol_name_matcher (lookup_name);
563
564 unsigned int hash
565 = lookup_name.search_name_hash (lang) % MINIMAL_SYMBOL_HASH_SIZE;
566 for (minimal_symbol *iter = objf->per_bfd->msymbol_demangled_hash[hash];
567 iter != NULL;
568 iter = iter->demangled_hash_next)
569 if (name_match (iter->search_name (), lookup_name, NULL))
570 if (callback (iter))
571 return;
572 }
573 }
574
575 /* See minsyms.h. */
576
577 bound_minimal_symbol
578 lookup_minimal_symbol_linkage (const char *name, struct objfile *objf)
579 {
580 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
581
582 for (objfile *objfile : objf->separate_debug_objfiles ())
583 {
584 for (minimal_symbol *msymbol = objfile->per_bfd->msymbol_hash[hash];
585 msymbol != NULL;
586 msymbol = msymbol->hash_next)
587 {
588 if (strcmp (msymbol->linkage_name (), name) == 0
589 && (MSYMBOL_TYPE (msymbol) == mst_data
590 || MSYMBOL_TYPE (msymbol) == mst_bss))
591 return {msymbol, objfile};
592 }
593 }
594
595 return {};
596 }
597
598 /* See minsyms.h. */
599
600 struct bound_minimal_symbol
601 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
602 {
603 struct minimal_symbol *msymbol;
604 struct bound_minimal_symbol found_symbol = { NULL, NULL };
605 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
606
607 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
608
609 for (objfile *objfile : current_program_space->objfiles ())
610 {
611 if (found_symbol.minsym != NULL)
612 break;
613
614 if (objf == NULL || objf == objfile
615 || objf == objfile->separate_debug_objfile_backlink)
616 {
617 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
618 msymbol != NULL && found_symbol.minsym == NULL;
619 msymbol = msymbol->hash_next)
620 {
621 if (strcmp (msymbol->linkage_name (), name) == 0 &&
622 (MSYMBOL_TYPE (msymbol) == mst_text
623 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
624 || MSYMBOL_TYPE (msymbol) == mst_file_text))
625 {
626 switch (MSYMBOL_TYPE (msymbol))
627 {
628 case mst_file_text:
629 found_file_symbol.minsym = msymbol;
630 found_file_symbol.objfile = objfile;
631 break;
632 default:
633 found_symbol.minsym = msymbol;
634 found_symbol.objfile = objfile;
635 break;
636 }
637 }
638 }
639 }
640 }
641 /* External symbols are best. */
642 if (found_symbol.minsym)
643 return found_symbol;
644
645 /* File-local symbols are next best. */
646 return found_file_symbol;
647 }
648
649 /* See minsyms.h. */
650
651 struct minimal_symbol *
652 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
653 struct objfile *objf)
654 {
655 struct minimal_symbol *msymbol;
656
657 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
658
659 for (objfile *objfile : current_program_space->objfiles ())
660 {
661 if (objf == NULL || objf == objfile
662 || objf == objfile->separate_debug_objfile_backlink)
663 {
664 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
665 msymbol != NULL;
666 msymbol = msymbol->hash_next)
667 {
668 if (MSYMBOL_VALUE_ADDRESS (objfile, msymbol) == pc
669 && strcmp (msymbol->linkage_name (), name) == 0)
670 return msymbol;
671 }
672 }
673 }
674
675 return NULL;
676 }
677
678 /* A helper function that makes *PC section-relative. This searches
679 the sections of OBJFILE and if *PC is in a section, it subtracts
680 the section offset and returns true. Otherwise it returns
681 false. */
682
683 static int
684 frob_address (struct objfile *objfile, CORE_ADDR *pc)
685 {
686 struct obj_section *iter;
687
688 ALL_OBJFILE_OSECTIONS (objfile, iter)
689 {
690 if (*pc >= iter->addr () && *pc < iter->endaddr ())
691 {
692 *pc -= iter->offset ();
693 return 1;
694 }
695 }
696
697 return 0;
698 }
699
700 /* Helper for lookup_minimal_symbol_by_pc_section. Convert a
701 lookup_msym_prefer to a minimal_symbol_type. */
702
703 static minimal_symbol_type
704 msym_prefer_to_msym_type (lookup_msym_prefer prefer)
705 {
706 switch (prefer)
707 {
708 case lookup_msym_prefer::TEXT:
709 return mst_text;
710 case lookup_msym_prefer::TRAMPOLINE:
711 return mst_solib_trampoline;
712 case lookup_msym_prefer::GNU_IFUNC:
713 return mst_text_gnu_ifunc;
714 }
715
716 /* Assert here instead of in a default switch case above so that
717 -Wswitch warns if a new enumerator is added. */
718 gdb_assert_not_reached ("unhandled lookup_msym_prefer");
719 }
720
721 /* See minsyms.h.
722
723 Note that we need to look through ALL the minimal symbol tables
724 before deciding on the symbol that comes closest to the specified PC.
725 This is because objfiles can overlap, for example objfile A has .text
726 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
727 .data at 0x40048. */
728
729 bound_minimal_symbol
730 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc_in, struct obj_section *section,
731 lookup_msym_prefer prefer,
732 bound_minimal_symbol *previous)
733 {
734 int lo;
735 int hi;
736 int newobj;
737 struct minimal_symbol *msymbol;
738 struct minimal_symbol *best_symbol = NULL;
739 struct objfile *best_objfile = NULL;
740 struct bound_minimal_symbol result;
741
742 if (previous != nullptr)
743 {
744 previous->minsym = nullptr;
745 previous->objfile = nullptr;
746 }
747
748 if (section == NULL)
749 {
750 section = find_pc_section (pc_in);
751 if (section == NULL)
752 return {};
753 }
754
755 minimal_symbol_type want_type = msym_prefer_to_msym_type (prefer);
756
757 /* We can not require the symbol found to be in section, because
758 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
759 symbol - but find_pc_section won't return an absolute section and
760 hence the code below would skip over absolute symbols. We can
761 still take advantage of the call to find_pc_section, though - the
762 object file still must match. In case we have separate debug
763 files, search both the file and its separate debug file. There's
764 no telling which one will have the minimal symbols. */
765
766 gdb_assert (section != NULL);
767
768 for (objfile *objfile : section->objfile->separate_debug_objfiles ())
769 {
770 CORE_ADDR pc = pc_in;
771
772 /* If this objfile has a minimal symbol table, go search it
773 using a binary search. */
774
775 if (objfile->per_bfd->minimal_symbol_count > 0)
776 {
777 int best_zero_sized = -1;
778
779 msymbol = objfile->per_bfd->msymbols.get ();
780 lo = 0;
781 hi = objfile->per_bfd->minimal_symbol_count - 1;
782
783 /* This code assumes that the minimal symbols are sorted by
784 ascending address values. If the pc value is greater than or
785 equal to the first symbol's address, then some symbol in this
786 minimal symbol table is a suitable candidate for being the
787 "best" symbol. This includes the last real symbol, for cases
788 where the pc value is larger than any address in this vector.
789
790 By iterating until the address associated with the current
791 hi index (the endpoint of the test interval) is less than
792 or equal to the desired pc value, we accomplish two things:
793 (1) the case where the pc value is larger than any minimal
794 symbol address is trivially solved, (2) the address associated
795 with the hi index is always the one we want when the iteration
796 terminates. In essence, we are iterating the test interval
797 down until the pc value is pushed out of it from the high end.
798
799 Warning: this code is trickier than it would appear at first. */
800
801 if (frob_address (objfile, &pc)
802 && pc >= MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[lo]))
803 {
804 while (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]) > pc)
805 {
806 /* pc is still strictly less than highest address. */
807 /* Note "new" will always be >= lo. */
808 newobj = (lo + hi) / 2;
809 if ((MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[newobj]) >= pc)
810 || (lo == newobj))
811 {
812 hi = newobj;
813 }
814 else
815 {
816 lo = newobj;
817 }
818 }
819
820 /* If we have multiple symbols at the same address, we want
821 hi to point to the last one. That way we can find the
822 right symbol if it has an index greater than hi. */
823 while (hi < objfile->per_bfd->minimal_symbol_count - 1
824 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
825 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi + 1])))
826 hi++;
827
828 /* Skip various undesirable symbols. */
829 while (hi >= 0)
830 {
831 /* Skip any absolute symbols. This is apparently
832 what adb and dbx do, and is needed for the CM-5.
833 There are two known possible problems: (1) on
834 ELF, apparently end, edata, etc. are absolute.
835 Not sure ignoring them here is a big deal, but if
836 we want to use them, the fix would go in
837 elfread.c. (2) I think shared library entry
838 points on the NeXT are absolute. If we want
839 special handling for this it probably should be
840 triggered by a special mst_abs_or_lib or some
841 such. */
842
843 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
844 {
845 hi--;
846 continue;
847 }
848
849 /* If SECTION was specified, skip any symbol from
850 wrong section. */
851 if (section
852 /* Some types of debug info, such as COFF,
853 don't fill the bfd_section member, so don't
854 throw away symbols on those platforms. */
855 && msymbol[hi].obj_section (objfile) != nullptr
856 && (!matching_obj_sections
857 (msymbol[hi].obj_section (objfile),
858 section)))
859 {
860 hi--;
861 continue;
862 }
863
864 /* If we are looking for a trampoline and this is a
865 text symbol, or the other way around, check the
866 preceding symbol too. If they are otherwise
867 identical prefer that one. */
868 if (hi > 0
869 && MSYMBOL_TYPE (&msymbol[hi]) != want_type
870 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
871 && (MSYMBOL_SIZE (&msymbol[hi])
872 == MSYMBOL_SIZE (&msymbol[hi - 1]))
873 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
874 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1]))
875 && (msymbol[hi].obj_section (objfile)
876 == msymbol[hi - 1].obj_section (objfile)))
877 {
878 hi--;
879 continue;
880 }
881
882 /* If the minimal symbol has a zero size, save it
883 but keep scanning backwards looking for one with
884 a non-zero size. A zero size may mean that the
885 symbol isn't an object or function (e.g. a
886 label), or it may just mean that the size was not
887 specified. */
888 if (MSYMBOL_SIZE (&msymbol[hi]) == 0)
889 {
890 if (best_zero_sized == -1)
891 best_zero_sized = hi;
892 hi--;
893 continue;
894 }
895
896 /* If we are past the end of the current symbol, try
897 the previous symbol if it has a larger overlapping
898 size. This happens on i686-pc-linux-gnu with glibc;
899 the nocancel variants of system calls are inside
900 the cancellable variants, but both have sizes. */
901 if (hi > 0
902 && MSYMBOL_SIZE (&msymbol[hi]) != 0
903 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
904 + MSYMBOL_SIZE (&msymbol[hi]))
905 && pc < (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1])
906 + MSYMBOL_SIZE (&msymbol[hi - 1])))
907 {
908 hi--;
909 continue;
910 }
911
912 /* Otherwise, this symbol must be as good as we're going
913 to get. */
914 break;
915 }
916
917 /* If HI has a zero size, and best_zero_sized is set,
918 then we had two or more zero-sized symbols; prefer
919 the first one we found (which may have a higher
920 address). Also, if we ran off the end, be sure
921 to back up. */
922 if (best_zero_sized != -1
923 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
924 hi = best_zero_sized;
925
926 /* If the minimal symbol has a non-zero size, and this
927 PC appears to be outside the symbol's contents, then
928 refuse to use this symbol. If we found a zero-sized
929 symbol with an address greater than this symbol's,
930 use that instead. We assume that if symbols have
931 specified sizes, they do not overlap. */
932
933 if (hi >= 0
934 && MSYMBOL_SIZE (&msymbol[hi]) != 0
935 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
936 + MSYMBOL_SIZE (&msymbol[hi])))
937 {
938 if (best_zero_sized != -1)
939 hi = best_zero_sized;
940 else
941 {
942 /* If needed record this symbol as the closest
943 previous symbol. */
944 if (previous != nullptr)
945 {
946 if (previous->minsym == nullptr
947 || (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
948 > MSYMBOL_VALUE_RAW_ADDRESS
949 (previous->minsym)))
950 {
951 previous->minsym = &msymbol[hi];
952 previous->objfile = objfile;
953 }
954 }
955 /* Go on to the next object file. */
956 continue;
957 }
958 }
959
960 /* The minimal symbol indexed by hi now is the best one in this
961 objfile's minimal symbol table. See if it is the best one
962 overall. */
963
964 if (hi >= 0
965 && ((best_symbol == NULL) ||
966 (MSYMBOL_VALUE_RAW_ADDRESS (best_symbol) <
967 MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]))))
968 {
969 best_symbol = &msymbol[hi];
970 best_objfile = objfile;
971 }
972 }
973 }
974 }
975
976 result.minsym = best_symbol;
977 result.objfile = best_objfile;
978 return result;
979 }
980
981 /* See minsyms.h. */
982
983 struct bound_minimal_symbol
984 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
985 {
986 return lookup_minimal_symbol_by_pc_section (pc, NULL);
987 }
988
989 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
990
991 bool
992 in_gnu_ifunc_stub (CORE_ADDR pc)
993 {
994 bound_minimal_symbol msymbol
995 = lookup_minimal_symbol_by_pc_section (pc, NULL,
996 lookup_msym_prefer::GNU_IFUNC);
997 return msymbol.minsym && MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc;
998 }
999
1000 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
1001
1002 static CORE_ADDR
1003 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
1004 {
1005 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
1006 "the ELF support compiled in."),
1007 paddress (gdbarch, pc));
1008 }
1009
1010 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
1011
1012 static bool
1013 stub_gnu_ifunc_resolve_name (const char *function_name,
1014 CORE_ADDR *function_address_p)
1015 {
1016 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
1017 "the ELF support compiled in."),
1018 function_name);
1019 }
1020
1021 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
1022
1023 static void
1024 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
1025 {
1026 internal_error (__FILE__, __LINE__,
1027 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
1028 }
1029
1030 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
1031
1032 static void
1033 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1034 {
1035 internal_error (__FILE__, __LINE__,
1036 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
1037 }
1038
1039 /* See elf_gnu_ifunc_fns for its real implementation. */
1040
1041 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
1042 {
1043 stub_gnu_ifunc_resolve_addr,
1044 stub_gnu_ifunc_resolve_name,
1045 stub_gnu_ifunc_resolver_stop,
1046 stub_gnu_ifunc_resolver_return_stop,
1047 };
1048
1049 /* A placeholder for &elf_gnu_ifunc_fns. */
1050
1051 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
1052
1053 \f
1054
1055 /* Return leading symbol character for a BFD. If BFD is NULL,
1056 return the leading symbol character from the main objfile. */
1057
1058 static int
1059 get_symbol_leading_char (bfd *abfd)
1060 {
1061 if (abfd != NULL)
1062 return bfd_get_symbol_leading_char (abfd);
1063 if (current_program_space->symfile_object_file != NULL)
1064 {
1065 objfile *objf = current_program_space->symfile_object_file;
1066 if (objf->obfd != NULL)
1067 return bfd_get_symbol_leading_char (objf->obfd);
1068 }
1069 return 0;
1070 }
1071
1072 /* See minsyms.h. */
1073
1074 minimal_symbol_reader::minimal_symbol_reader (struct objfile *obj)
1075 : m_objfile (obj),
1076 m_msym_bunch (NULL),
1077 /* Note that presetting m_msym_bunch_index to BUNCH_SIZE causes the
1078 first call to save a minimal symbol to allocate the memory for
1079 the first bunch. */
1080 m_msym_bunch_index (BUNCH_SIZE),
1081 m_msym_count (0)
1082 {
1083 }
1084
1085 /* Discard the currently collected minimal symbols, if any. If we wish
1086 to save them for later use, we must have already copied them somewhere
1087 else before calling this function. */
1088
1089 minimal_symbol_reader::~minimal_symbol_reader ()
1090 {
1091 struct msym_bunch *next;
1092
1093 while (m_msym_bunch != NULL)
1094 {
1095 next = m_msym_bunch->next;
1096 xfree (m_msym_bunch);
1097 m_msym_bunch = next;
1098 }
1099 }
1100
1101 /* See minsyms.h. */
1102
1103 void
1104 minimal_symbol_reader::record (const char *name, CORE_ADDR address,
1105 enum minimal_symbol_type ms_type)
1106 {
1107 int section;
1108
1109 switch (ms_type)
1110 {
1111 case mst_text:
1112 case mst_text_gnu_ifunc:
1113 case mst_file_text:
1114 case mst_solib_trampoline:
1115 section = SECT_OFF_TEXT (m_objfile);
1116 break;
1117 case mst_data:
1118 case mst_data_gnu_ifunc:
1119 case mst_file_data:
1120 section = SECT_OFF_DATA (m_objfile);
1121 break;
1122 case mst_bss:
1123 case mst_file_bss:
1124 section = SECT_OFF_BSS (m_objfile);
1125 break;
1126 default:
1127 section = -1;
1128 }
1129
1130 record_with_info (name, address, ms_type, section);
1131 }
1132
1133 /* Convert an enumerator of type minimal_symbol_type to its string
1134 representation. */
1135
1136 static const char *
1137 mst_str (minimal_symbol_type t)
1138 {
1139 #define MST_TO_STR(x) case x: return #x;
1140 switch (t)
1141 {
1142 MST_TO_STR (mst_unknown);
1143 MST_TO_STR (mst_text);
1144 MST_TO_STR (mst_text_gnu_ifunc);
1145 MST_TO_STR (mst_slot_got_plt);
1146 MST_TO_STR (mst_data);
1147 MST_TO_STR (mst_bss);
1148 MST_TO_STR (mst_abs);
1149 MST_TO_STR (mst_solib_trampoline);
1150 MST_TO_STR (mst_file_text);
1151 MST_TO_STR (mst_file_data);
1152 MST_TO_STR (mst_file_bss);
1153
1154 default:
1155 return "mst_???";
1156 }
1157 #undef MST_TO_STR
1158 }
1159
1160 /* See minsyms.h. */
1161
1162 struct minimal_symbol *
1163 minimal_symbol_reader::record_full (gdb::string_view name,
1164 bool copy_name, CORE_ADDR address,
1165 enum minimal_symbol_type ms_type,
1166 int section)
1167 {
1168 struct msym_bunch *newobj;
1169 struct minimal_symbol *msymbol;
1170
1171 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
1172 the minimal symbols, because if there is also another symbol
1173 at the same address (e.g. the first function of the file),
1174 lookup_minimal_symbol_by_pc would have no way of getting the
1175 right one. */
1176 if (ms_type == mst_file_text && name[0] == 'g'
1177 && (name == GCC_COMPILED_FLAG_SYMBOL
1178 || name == GCC2_COMPILED_FLAG_SYMBOL))
1179 return (NULL);
1180
1181 /* It's safe to strip the leading char here once, since the name
1182 is also stored stripped in the minimal symbol table. */
1183 if (name[0] == get_symbol_leading_char (m_objfile->obfd))
1184 name = name.substr (1);
1185
1186 if (ms_type == mst_file_text && startswith (name, "__gnu_compiled"))
1187 return (NULL);
1188
1189 if (symtab_create_debug >= 2)
1190 printf_unfiltered ("Recording minsym: %-21s %18s %4d %.*s\n",
1191 mst_str (ms_type), hex_string (address), section,
1192 (int) name.size (), name.data ());
1193
1194 if (m_msym_bunch_index == BUNCH_SIZE)
1195 {
1196 newobj = XCNEW (struct msym_bunch);
1197 m_msym_bunch_index = 0;
1198 newobj->next = m_msym_bunch;
1199 m_msym_bunch = newobj;
1200 }
1201 msymbol = &m_msym_bunch->contents[m_msym_bunch_index];
1202 msymbol->set_language (language_auto,
1203 &m_objfile->per_bfd->storage_obstack);
1204
1205 if (copy_name)
1206 msymbol->m_name = obstack_strndup (&m_objfile->per_bfd->storage_obstack,
1207 name.data (), name.size ());
1208 else
1209 msymbol->m_name = name.data ();
1210
1211 SET_MSYMBOL_VALUE_ADDRESS (msymbol, address);
1212 msymbol->set_section_index (section);
1213
1214 MSYMBOL_TYPE (msymbol) = ms_type;
1215
1216 /* If we already read minimal symbols for this objfile, then don't
1217 ever allocate a new one. */
1218 if (!m_objfile->per_bfd->minsyms_read)
1219 {
1220 m_msym_bunch_index++;
1221 m_objfile->per_bfd->n_minsyms++;
1222 }
1223 m_msym_count++;
1224 return msymbol;
1225 }
1226
1227 /* Compare two minimal symbols by address and return true if FN1's address
1228 is less than FN2's, so that we sort into unsigned numeric order.
1229 Within groups with the same address, sort by name. */
1230
1231 static inline bool
1232 minimal_symbol_is_less_than (const minimal_symbol &fn1,
1233 const minimal_symbol &fn2)
1234 {
1235 if (MSYMBOL_VALUE_RAW_ADDRESS (&fn1) < MSYMBOL_VALUE_RAW_ADDRESS (&fn2))
1236 {
1237 return true; /* addr 1 is less than addr 2. */
1238 }
1239 else if (MSYMBOL_VALUE_RAW_ADDRESS (&fn1) > MSYMBOL_VALUE_RAW_ADDRESS (&fn2))
1240 {
1241 return false; /* addr 1 is greater than addr 2. */
1242 }
1243 else
1244 /* addrs are equal: sort by name */
1245 {
1246 const char *name1 = fn1.linkage_name ();
1247 const char *name2 = fn2.linkage_name ();
1248
1249 if (name1 && name2) /* both have names */
1250 return strcmp (name1, name2) < 0;
1251 else if (name2)
1252 return true; /* fn1 has no name, so it is "less". */
1253 else if (name1) /* fn2 has no name, so it is "less". */
1254 return false;
1255 else
1256 return false; /* Neither has a name, so they're equal. */
1257 }
1258 }
1259
1260 /* Compact duplicate entries out of a minimal symbol table by walking
1261 through the table and compacting out entries with duplicate addresses
1262 and matching names. Return the number of entries remaining.
1263
1264 On entry, the table resides between msymbol[0] and msymbol[mcount].
1265 On exit, it resides between msymbol[0] and msymbol[result_count].
1266
1267 When files contain multiple sources of symbol information, it is
1268 possible for the minimal symbol table to contain many duplicate entries.
1269 As an example, SVR4 systems use ELF formatted object files, which
1270 usually contain at least two different types of symbol tables (a
1271 standard ELF one and a smaller dynamic linking table), as well as
1272 DWARF debugging information for files compiled with -g.
1273
1274 Without compacting, the minimal symbol table for gdb itself contains
1275 over a 1000 duplicates, about a third of the total table size. Aside
1276 from the potential trap of not noticing that two successive entries
1277 identify the same location, this duplication impacts the time required
1278 to linearly scan the table, which is done in a number of places. So we
1279 just do one linear scan here and toss out the duplicates.
1280
1281 Since the different sources of information for each symbol may
1282 have different levels of "completeness", we may have duplicates
1283 that have one entry with type "mst_unknown" and the other with a
1284 known type. So if the one we are leaving alone has type mst_unknown,
1285 overwrite its type with the type from the one we are compacting out. */
1286
1287 static int
1288 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1289 struct objfile *objfile)
1290 {
1291 struct minimal_symbol *copyfrom;
1292 struct minimal_symbol *copyto;
1293
1294 if (mcount > 0)
1295 {
1296 copyfrom = copyto = msymbol;
1297 while (copyfrom < msymbol + mcount - 1)
1298 {
1299 if (MSYMBOL_VALUE_RAW_ADDRESS (copyfrom)
1300 == MSYMBOL_VALUE_RAW_ADDRESS ((copyfrom + 1))
1301 && (copyfrom->section_index ()
1302 == (copyfrom + 1)->section_index ())
1303 && strcmp (copyfrom->linkage_name (),
1304 (copyfrom + 1)->linkage_name ()) == 0)
1305 {
1306 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1307 {
1308 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1309 }
1310 copyfrom++;
1311 }
1312 else
1313 *copyto++ = *copyfrom++;
1314 }
1315 *copyto++ = *copyfrom++;
1316 mcount = copyto - msymbol;
1317 }
1318 return (mcount);
1319 }
1320
1321 static void
1322 clear_minimal_symbol_hash_tables (struct objfile *objfile)
1323 {
1324 for (size_t i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1325 {
1326 objfile->per_bfd->msymbol_hash[i] = 0;
1327 objfile->per_bfd->msymbol_demangled_hash[i] = 0;
1328 }
1329 }
1330
1331 /* This struct is used to store values we compute for msymbols on the
1332 background threads but don't need to keep around long term. */
1333 struct computed_hash_values
1334 {
1335 /* Length of the linkage_name of the symbol. */
1336 size_t name_length;
1337 /* Hash code (using fast_hash) of the linkage_name. */
1338 hashval_t mangled_name_hash;
1339 /* The msymbol_hash of the linkage_name. */
1340 unsigned int minsym_hash;
1341 /* The msymbol_hash of the search_name. */
1342 unsigned int minsym_demangled_hash;
1343 };
1344
1345 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1346 after compacting or sorting the table since the entries move around
1347 thus causing the internal minimal_symbol pointers to become jumbled. */
1348
1349 static void
1350 build_minimal_symbol_hash_tables
1351 (struct objfile *objfile,
1352 const std::vector<computed_hash_values>& hash_values)
1353 {
1354 int i;
1355 struct minimal_symbol *msym;
1356
1357 /* (Re)insert the actual entries. */
1358 int mcount = objfile->per_bfd->minimal_symbol_count;
1359 for ((i = 0,
1360 msym = objfile->per_bfd->msymbols.get ());
1361 i < mcount;
1362 i++, msym++)
1363 {
1364 msym->hash_next = 0;
1365 add_minsym_to_hash_table (msym, objfile->per_bfd->msymbol_hash,
1366 hash_values[i].minsym_hash);
1367
1368 msym->demangled_hash_next = 0;
1369 if (msym->search_name () != msym->linkage_name ())
1370 add_minsym_to_demangled_hash_table
1371 (msym, objfile, hash_values[i].minsym_demangled_hash);
1372 }
1373 }
1374
1375 /* Add the minimal symbols in the existing bunches to the objfile's official
1376 minimal symbol table. In most cases there is no minimal symbol table yet
1377 for this objfile, and the existing bunches are used to create one. Once
1378 in a while (for shared libraries for example), we add symbols (e.g. common
1379 symbols) to an existing objfile. */
1380
1381 void
1382 minimal_symbol_reader::install ()
1383 {
1384 int mcount;
1385 struct msym_bunch *bunch;
1386 struct minimal_symbol *msymbols;
1387 int alloc_count;
1388
1389 if (m_objfile->per_bfd->minsyms_read)
1390 return;
1391
1392 if (m_msym_count > 0)
1393 {
1394 if (symtab_create_debug)
1395 {
1396 fprintf_unfiltered (gdb_stdlog,
1397 "Installing %d minimal symbols of objfile %s.\n",
1398 m_msym_count, objfile_name (m_objfile));
1399 }
1400
1401 /* Allocate enough space, into which we will gather the bunches
1402 of new and existing minimal symbols, sort them, and then
1403 compact out the duplicate entries. Once we have a final
1404 table, we will give back the excess space. */
1405
1406 alloc_count = m_msym_count + m_objfile->per_bfd->minimal_symbol_count;
1407 gdb::unique_xmalloc_ptr<minimal_symbol>
1408 msym_holder (XNEWVEC (minimal_symbol, alloc_count));
1409 msymbols = msym_holder.get ();
1410
1411 /* Copy in the existing minimal symbols, if there are any. */
1412
1413 if (m_objfile->per_bfd->minimal_symbol_count)
1414 memcpy (msymbols, m_objfile->per_bfd->msymbols.get (),
1415 m_objfile->per_bfd->minimal_symbol_count
1416 * sizeof (struct minimal_symbol));
1417
1418 /* Walk through the list of minimal symbol bunches, adding each symbol
1419 to the new contiguous array of symbols. Note that we start with the
1420 current, possibly partially filled bunch (thus we use the current
1421 msym_bunch_index for the first bunch we copy over), and thereafter
1422 each bunch is full. */
1423
1424 mcount = m_objfile->per_bfd->minimal_symbol_count;
1425
1426 for (bunch = m_msym_bunch; bunch != NULL; bunch = bunch->next)
1427 {
1428 memcpy (&msymbols[mcount], &bunch->contents[0],
1429 m_msym_bunch_index * sizeof (struct minimal_symbol));
1430 mcount += m_msym_bunch_index;
1431 m_msym_bunch_index = BUNCH_SIZE;
1432 }
1433
1434 /* Sort the minimal symbols by address. */
1435
1436 std::sort (msymbols, msymbols + mcount, minimal_symbol_is_less_than);
1437
1438 /* Compact out any duplicates, and free up whatever space we are
1439 no longer using. */
1440
1441 mcount = compact_minimal_symbols (msymbols, mcount, m_objfile);
1442 msym_holder.reset (XRESIZEVEC (struct minimal_symbol,
1443 msym_holder.release (),
1444 mcount));
1445
1446 /* Attach the minimal symbol table to the specified objfile.
1447 The strings themselves are also located in the storage_obstack
1448 of this objfile. */
1449
1450 if (m_objfile->per_bfd->minimal_symbol_count != 0)
1451 clear_minimal_symbol_hash_tables (m_objfile);
1452
1453 m_objfile->per_bfd->minimal_symbol_count = mcount;
1454 m_objfile->per_bfd->msymbols = std::move (msym_holder);
1455
1456 #if CXX_STD_THREAD
1457 /* Mutex that is used when modifying or accessing the demangled
1458 hash table. */
1459 std::mutex demangled_mutex;
1460 #endif
1461
1462 std::vector<computed_hash_values> hash_values (mcount);
1463
1464 msymbols = m_objfile->per_bfd->msymbols.get ();
1465 gdb::parallel_for_each
1466 (&msymbols[0], &msymbols[mcount],
1467 [&] (minimal_symbol *start, minimal_symbol *end)
1468 {
1469 for (minimal_symbol *msym = start; msym < end; ++msym)
1470 {
1471 size_t idx = msym - msymbols;
1472 hash_values[idx].name_length = strlen (msym->linkage_name ());
1473 if (!msym->name_set)
1474 {
1475 /* This will be freed later, by compute_and_set_names. */
1476 char *demangled_name
1477 = symbol_find_demangled_name (msym, msym->linkage_name ());
1478 msym->set_demangled_name
1479 (demangled_name, &m_objfile->per_bfd->storage_obstack);
1480 msym->name_set = 1;
1481 }
1482 /* This mangled_name_hash computation has to be outside of
1483 the name_set check, or compute_and_set_names below will
1484 be called with an invalid hash value. */
1485 hash_values[idx].mangled_name_hash
1486 = fast_hash (msym->linkage_name (),
1487 hash_values[idx].name_length);
1488 hash_values[idx].minsym_hash
1489 = msymbol_hash (msym->linkage_name ());
1490 /* We only use this hash code if the search name differs
1491 from the linkage name. See the code in
1492 build_minimal_symbol_hash_tables. */
1493 if (msym->search_name () != msym->linkage_name ())
1494 hash_values[idx].minsym_demangled_hash
1495 = search_name_hash (msym->language (), msym->search_name ());
1496 }
1497 {
1498 /* To limit how long we hold the lock, we only acquire it here
1499 and not while we demangle the names above. */
1500 #if CXX_STD_THREAD
1501 std::lock_guard<std::mutex> guard (demangled_mutex);
1502 #endif
1503 for (minimal_symbol *msym = start; msym < end; ++msym)
1504 {
1505 size_t idx = msym - msymbols;
1506 msym->compute_and_set_names
1507 (gdb::string_view (msym->linkage_name (),
1508 hash_values[idx].name_length),
1509 false,
1510 m_objfile->per_bfd,
1511 hash_values[idx].mangled_name_hash);
1512 }
1513 }
1514 });
1515
1516 build_minimal_symbol_hash_tables (m_objfile, hash_values);
1517 }
1518 }
1519
1520 /* Check if PC is in a shared library trampoline code stub.
1521 Return minimal symbol for the trampoline entry or NULL if PC is not
1522 in a trampoline code stub. */
1523
1524 static struct minimal_symbol *
1525 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1526 {
1527 bound_minimal_symbol msymbol
1528 = lookup_minimal_symbol_by_pc_section (pc, NULL,
1529 lookup_msym_prefer::TRAMPOLINE);
1530
1531 if (msymbol.minsym != NULL
1532 && MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
1533 return msymbol.minsym;
1534 return NULL;
1535 }
1536
1537 /* If PC is in a shared library trampoline code stub, return the
1538 address of the `real' function belonging to the stub.
1539 Return 0 if PC is not in a trampoline code stub or if the real
1540 function is not found in the minimal symbol table.
1541
1542 We may fail to find the right function if a function with the
1543 same name is defined in more than one shared library, but this
1544 is considered bad programming style. We could return 0 if we find
1545 a duplicate function in case this matters someday. */
1546
1547 CORE_ADDR
1548 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1549 {
1550 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1551
1552 if (tsymbol != NULL)
1553 {
1554 for (objfile *objfile : current_program_space->objfiles ())
1555 {
1556 for (minimal_symbol *msymbol : objfile->msymbols ())
1557 {
1558 /* Also handle minimal symbols pointing to function
1559 descriptors. */
1560 if ((MSYMBOL_TYPE (msymbol) == mst_text
1561 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
1562 || MSYMBOL_TYPE (msymbol) == mst_data
1563 || MSYMBOL_TYPE (msymbol) == mst_data_gnu_ifunc)
1564 && strcmp (msymbol->linkage_name (),
1565 tsymbol->linkage_name ()) == 0)
1566 {
1567 CORE_ADDR func;
1568
1569 /* Ignore data symbols that are not function
1570 descriptors. */
1571 if (msymbol_is_function (objfile, msymbol, &func))
1572 return func;
1573 }
1574 }
1575 }
1576 }
1577 return 0;
1578 }
1579
1580 /* See minsyms.h. */
1581
1582 CORE_ADDR
1583 minimal_symbol_upper_bound (struct bound_minimal_symbol minsym)
1584 {
1585 short section;
1586 struct obj_section *obj_section;
1587 CORE_ADDR result;
1588 struct minimal_symbol *iter, *msymbol;
1589
1590 gdb_assert (minsym.minsym != NULL);
1591
1592 /* If the minimal symbol has a size, use it. Otherwise use the
1593 lesser of the next minimal symbol in the same section, or the end
1594 of the section, as the end of the function. */
1595
1596 if (MSYMBOL_SIZE (minsym.minsym) != 0)
1597 return BMSYMBOL_VALUE_ADDRESS (minsym) + MSYMBOL_SIZE (minsym.minsym);
1598
1599 /* Step over other symbols at this same address, and symbols in
1600 other sections, to find the next symbol in this section with a
1601 different address. */
1602
1603 struct minimal_symbol *past_the_end
1604 = (minsym.objfile->per_bfd->msymbols.get ()
1605 + minsym.objfile->per_bfd->minimal_symbol_count);
1606 msymbol = minsym.minsym;
1607 section = msymbol->section_index ();
1608 for (iter = msymbol + 1; iter != past_the_end; ++iter)
1609 {
1610 if ((MSYMBOL_VALUE_RAW_ADDRESS (iter)
1611 != MSYMBOL_VALUE_RAW_ADDRESS (msymbol))
1612 && iter->section_index () == section)
1613 break;
1614 }
1615
1616 obj_section = minsym.obj_section ();
1617 if (iter != past_the_end
1618 && (MSYMBOL_VALUE_ADDRESS (minsym.objfile, iter)
1619 < obj_section->endaddr ()))
1620 result = MSYMBOL_VALUE_ADDRESS (minsym.objfile, iter);
1621 else
1622 /* We got the start address from the last msymbol in the objfile.
1623 So the end address is the end of the section. */
1624 result = obj_section->endaddr ();
1625
1626 return result;
1627 }