]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/minsyms.c
496dba029675bad6b91e5941fe296393b2ab7e39
[thirdparty/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2018 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
23
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
28
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
32
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
37
38
39 #include "defs.h"
40 #include <ctype.h>
41 #include "symtab.h"
42 #include "bfd.h"
43 #include "filenames.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "demangle.h"
47 #include "value.h"
48 #include "cp-abi.h"
49 #include "target.h"
50 #include "cp-support.h"
51 #include "language.h"
52 #include "cli/cli-utils.h"
53 #include "symbol.h"
54 #include <algorithm>
55 #include "safe-ctype.h"
56
57 /* See minsyms.h. */
58
59 bool
60 msymbol_is_function (struct objfile *objfile, minimal_symbol *minsym,
61 CORE_ADDR *func_address_p)
62 {
63 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
64
65 switch (minsym->type)
66 {
67 case mst_slot_got_plt:
68 case mst_data:
69 case mst_bss:
70 case mst_abs:
71 case mst_file_data:
72 case mst_file_bss:
73 case mst_data_gnu_ifunc:
74 {
75 struct gdbarch *gdbarch = get_objfile_arch (objfile);
76 CORE_ADDR pc = gdbarch_convert_from_func_ptr_addr (gdbarch, msym_addr,
77 target_stack);
78 if (pc != msym_addr)
79 {
80 if (func_address_p != NULL)
81 *func_address_p = pc;
82 return true;
83 }
84 return false;
85 }
86 default:
87 if (func_address_p != NULL)
88 *func_address_p = msym_addr;
89 return true;
90 }
91 }
92
93 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
94 At the end, copy them all into one newly allocated location on an objfile's
95 per-BFD storage obstack. */
96
97 #define BUNCH_SIZE 127
98
99 struct msym_bunch
100 {
101 struct msym_bunch *next;
102 struct minimal_symbol contents[BUNCH_SIZE];
103 };
104
105 /* See minsyms.h. */
106
107 unsigned int
108 msymbol_hash_iw (const char *string)
109 {
110 unsigned int hash = 0;
111
112 while (*string && *string != '(')
113 {
114 string = skip_spaces (string);
115 if (*string && *string != '(')
116 {
117 hash = SYMBOL_HASH_NEXT (hash, *string);
118 ++string;
119 }
120 }
121 return hash;
122 }
123
124 /* See minsyms.h. */
125
126 unsigned int
127 msymbol_hash (const char *string)
128 {
129 unsigned int hash = 0;
130
131 for (; *string; ++string)
132 hash = SYMBOL_HASH_NEXT (hash, *string);
133 return hash;
134 }
135
136 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
137 static void
138 add_minsym_to_hash_table (struct minimal_symbol *sym,
139 struct minimal_symbol **table)
140 {
141 if (sym->hash_next == NULL)
142 {
143 unsigned int hash
144 = msymbol_hash (MSYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
145
146 sym->hash_next = table[hash];
147 table[hash] = sym;
148 }
149 }
150
151 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
152 TABLE. */
153 static void
154 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
155 struct objfile *objfile)
156 {
157 if (sym->demangled_hash_next == NULL)
158 {
159 unsigned int hash = search_name_hash (MSYMBOL_LANGUAGE (sym),
160 MSYMBOL_SEARCH_NAME (sym));
161
162 auto &vec = objfile->per_bfd->demangled_hash_languages;
163 auto it = std::lower_bound (vec.begin (), vec.end (),
164 MSYMBOL_LANGUAGE (sym));
165 if (it == vec.end () || *it != MSYMBOL_LANGUAGE (sym))
166 vec.insert (it, MSYMBOL_LANGUAGE (sym));
167
168 struct minimal_symbol **table
169 = objfile->per_bfd->msymbol_demangled_hash;
170 unsigned int hash_index = hash % MINIMAL_SYMBOL_HASH_SIZE;
171 sym->demangled_hash_next = table[hash_index];
172 table[hash_index] = sym;
173 }
174 }
175
176 /* Worker object for lookup_minimal_symbol. Stores temporary results
177 while walking the symbol tables. */
178
179 struct found_minimal_symbols
180 {
181 /* External symbols are best. */
182 bound_minimal_symbol external_symbol {};
183
184 /* File-local symbols are next best. */
185 bound_minimal_symbol file_symbol {};
186
187 /* Symbols for shared library trampolines are next best. */
188 bound_minimal_symbol trampoline_symbol {};
189
190 /* Called when a symbol name matches. Check if the minsym is a
191 better type than what we had already found, and record it in one
192 of the members fields if so. Returns true if we collected the
193 real symbol, in which case we can stop searching. */
194 bool maybe_collect (const char *sfile, objfile *objf,
195 minimal_symbol *msymbol);
196 };
197
198 /* See declaration above. */
199
200 bool
201 found_minimal_symbols::maybe_collect (const char *sfile,
202 struct objfile *objfile,
203 minimal_symbol *msymbol)
204 {
205 switch (MSYMBOL_TYPE (msymbol))
206 {
207 case mst_file_text:
208 case mst_file_data:
209 case mst_file_bss:
210 if (sfile == NULL
211 || filename_cmp (msymbol->filename, sfile) == 0)
212 {
213 file_symbol.minsym = msymbol;
214 file_symbol.objfile = objfile;
215 }
216 break;
217
218 case mst_solib_trampoline:
219
220 /* If a trampoline symbol is found, we prefer to keep
221 looking for the *real* symbol. If the actual symbol
222 is not found, then we'll use the trampoline
223 entry. */
224 if (trampoline_symbol.minsym == NULL)
225 {
226 trampoline_symbol.minsym = msymbol;
227 trampoline_symbol.objfile = objfile;
228 }
229 break;
230
231 case mst_unknown:
232 default:
233 external_symbol.minsym = msymbol;
234 external_symbol.objfile = objfile;
235 /* We have the real symbol. No use looking further. */
236 return true;
237 }
238
239 /* Keep looking. */
240 return false;
241 }
242
243 /* Walk the mangled name hash table, and pass each symbol whose name
244 matches LOOKUP_NAME according to NAMECMP to FOUND. */
245
246 static void
247 lookup_minimal_symbol_mangled (const char *lookup_name,
248 const char *sfile,
249 struct objfile *objfile,
250 struct minimal_symbol **table,
251 unsigned int hash,
252 int (*namecmp) (const char *, const char *),
253 found_minimal_symbols &found)
254 {
255 for (minimal_symbol *msymbol = table[hash];
256 msymbol != NULL;
257 msymbol = msymbol->hash_next)
258 {
259 const char *symbol_name = MSYMBOL_LINKAGE_NAME (msymbol);
260
261 if (namecmp (symbol_name, lookup_name) == 0
262 && found.maybe_collect (sfile, objfile, msymbol))
263 return;
264 }
265 }
266
267 /* Walk the demangled name hash table, and pass each symbol whose name
268 matches LOOKUP_NAME according to MATCHER to FOUND. */
269
270 static void
271 lookup_minimal_symbol_demangled (const lookup_name_info &lookup_name,
272 const char *sfile,
273 struct objfile *objfile,
274 struct minimal_symbol **table,
275 unsigned int hash,
276 symbol_name_matcher_ftype *matcher,
277 found_minimal_symbols &found)
278 {
279 for (minimal_symbol *msymbol = table[hash];
280 msymbol != NULL;
281 msymbol = msymbol->demangled_hash_next)
282 {
283 const char *symbol_name = MSYMBOL_SEARCH_NAME (msymbol);
284
285 if (matcher (symbol_name, lookup_name, NULL)
286 && found.maybe_collect (sfile, objfile, msymbol))
287 return;
288 }
289 }
290
291 /* Look through all the current minimal symbol tables and find the
292 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
293 the search to that objfile. If SFILE is non-NULL, the only file-scope
294 symbols considered will be from that source file (global symbols are
295 still preferred). Returns a pointer to the minimal symbol that
296 matches, or NULL if no match is found.
297
298 Note: One instance where there may be duplicate minimal symbols with
299 the same name is when the symbol tables for a shared library and the
300 symbol tables for an executable contain global symbols with the same
301 names (the dynamic linker deals with the duplication).
302
303 It's also possible to have minimal symbols with different mangled
304 names, but identical demangled names. For example, the GNU C++ v3
305 ABI requires the generation of two (or perhaps three) copies of
306 constructor functions --- "in-charge", "not-in-charge", and
307 "allocate" copies; destructors may be duplicated as well.
308 Obviously, there must be distinct mangled names for each of these,
309 but the demangled names are all the same: S::S or S::~S. */
310
311 struct bound_minimal_symbol
312 lookup_minimal_symbol (const char *name, const char *sfile,
313 struct objfile *objf)
314 {
315 struct objfile *objfile;
316 found_minimal_symbols found;
317
318 unsigned int mangled_hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
319
320 auto *mangled_cmp
321 = (case_sensitivity == case_sensitive_on
322 ? strcmp
323 : strcasecmp);
324
325 if (sfile != NULL)
326 sfile = lbasename (sfile);
327
328 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
329
330 for (objfile = object_files;
331 objfile != NULL && found.external_symbol.minsym == NULL;
332 objfile = objfile->next)
333 {
334 if (objf == NULL || objf == objfile
335 || objf == objfile->separate_debug_objfile_backlink)
336 {
337 if (symbol_lookup_debug)
338 {
339 fprintf_unfiltered (gdb_stdlog,
340 "lookup_minimal_symbol (%s, %s, %s)\n",
341 name, sfile != NULL ? sfile : "NULL",
342 objfile_debug_name (objfile));
343 }
344
345 /* Do two passes: the first over the ordinary hash table,
346 and the second over the demangled hash table. */
347 lookup_minimal_symbol_mangled (name, sfile, objfile,
348 objfile->per_bfd->msymbol_hash,
349 mangled_hash, mangled_cmp, found);
350
351 /* If not found, try the demangled hash table. */
352 if (found.external_symbol.minsym == NULL)
353 {
354 /* Once for each language in the demangled hash names
355 table (usually just zero or one languages). */
356 for (auto lang : objfile->per_bfd->demangled_hash_languages)
357 {
358 unsigned int hash
359 = (lookup_name.search_name_hash (lang)
360 % MINIMAL_SYMBOL_HASH_SIZE);
361
362 symbol_name_matcher_ftype *match
363 = get_symbol_name_matcher (language_def (lang),
364 lookup_name);
365 struct minimal_symbol **msymbol_demangled_hash
366 = objfile->per_bfd->msymbol_demangled_hash;
367
368 lookup_minimal_symbol_demangled (lookup_name, sfile, objfile,
369 msymbol_demangled_hash,
370 hash, match, found);
371
372 if (found.external_symbol.minsym != NULL)
373 break;
374 }
375 }
376 }
377 }
378
379 /* External symbols are best. */
380 if (found.external_symbol.minsym != NULL)
381 {
382 if (symbol_lookup_debug)
383 {
384 minimal_symbol *minsym = found.external_symbol.minsym;
385
386 fprintf_unfiltered (gdb_stdlog,
387 "lookup_minimal_symbol (...) = %s (external)\n",
388 host_address_to_string (minsym));
389 }
390 return found.external_symbol;
391 }
392
393 /* File-local symbols are next best. */
394 if (found.file_symbol.minsym != NULL)
395 {
396 if (symbol_lookup_debug)
397 {
398 minimal_symbol *minsym = found.file_symbol.minsym;
399
400 fprintf_unfiltered (gdb_stdlog,
401 "lookup_minimal_symbol (...) = %s (file-local)\n",
402 host_address_to_string (minsym));
403 }
404 return found.file_symbol;
405 }
406
407 /* Symbols for shared library trampolines are next best. */
408 if (found.trampoline_symbol.minsym != NULL)
409 {
410 if (symbol_lookup_debug)
411 {
412 minimal_symbol *minsym = found.trampoline_symbol.minsym;
413
414 fprintf_unfiltered (gdb_stdlog,
415 "lookup_minimal_symbol (...) = %s (trampoline)\n",
416 host_address_to_string (minsym));
417 }
418
419 return found.trampoline_symbol;
420 }
421
422 /* Not found. */
423 if (symbol_lookup_debug)
424 fprintf_unfiltered (gdb_stdlog, "lookup_minimal_symbol (...) = NULL\n");
425 return {};
426 }
427
428 /* See minsyms.h. */
429
430 struct bound_minimal_symbol
431 lookup_bound_minimal_symbol (const char *name)
432 {
433 return lookup_minimal_symbol (name, NULL, NULL);
434 }
435
436 /* See common/symbol.h. */
437
438 int
439 find_minimal_symbol_address (const char *name, CORE_ADDR *addr,
440 struct objfile *objfile)
441 {
442 struct bound_minimal_symbol sym
443 = lookup_minimal_symbol (name, NULL, objfile);
444
445 if (sym.minsym != NULL)
446 *addr = BMSYMBOL_VALUE_ADDRESS (sym);
447
448 return sym.minsym == NULL;
449 }
450
451 /* Get the lookup name form best suitable for linkage name
452 matching. */
453
454 static const char *
455 linkage_name_str (const lookup_name_info &lookup_name)
456 {
457 /* Unlike most languages (including C++), Ada uses the
458 encoded/linkage name as the search name recorded in symbols. So
459 if debugging in Ada mode, prefer the Ada-encoded name. This also
460 makes Ada's verbatim match syntax ("<...>") work, because
461 "lookup_name.name()" includes the "<>"s, while
462 "lookup_name.ada().lookup_name()" is the encoded name with "<>"s
463 stripped. */
464 if (current_language->la_language == language_ada)
465 return lookup_name.ada ().lookup_name ().c_str ();
466
467 return lookup_name.name ().c_str ();
468 }
469
470 /* See minsyms.h. */
471
472 void
473 iterate_over_minimal_symbols
474 (struct objfile *objf, const lookup_name_info &lookup_name,
475 gdb::function_view<bool (struct minimal_symbol *)> callback)
476 {
477 /* The first pass is over the ordinary hash table. */
478 {
479 const char *name = linkage_name_str (lookup_name);
480 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
481 auto *mangled_cmp
482 = (case_sensitivity == case_sensitive_on
483 ? strcmp
484 : strcasecmp);
485
486 for (minimal_symbol *iter = objf->per_bfd->msymbol_hash[hash];
487 iter != NULL;
488 iter = iter->hash_next)
489 {
490 if (mangled_cmp (MSYMBOL_LINKAGE_NAME (iter), name) == 0)
491 if (callback (iter))
492 return;
493 }
494 }
495
496 /* The second pass is over the demangled table. Once for each
497 language in the demangled hash names table (usually just zero or
498 one). */
499 for (auto lang : objf->per_bfd->demangled_hash_languages)
500 {
501 const language_defn *lang_def = language_def (lang);
502 symbol_name_matcher_ftype *name_match
503 = get_symbol_name_matcher (lang_def, lookup_name);
504
505 unsigned int hash
506 = lookup_name.search_name_hash (lang) % MINIMAL_SYMBOL_HASH_SIZE;
507 for (minimal_symbol *iter = objf->per_bfd->msymbol_demangled_hash[hash];
508 iter != NULL;
509 iter = iter->demangled_hash_next)
510 if (name_match (MSYMBOL_SEARCH_NAME (iter), lookup_name, NULL))
511 if (callback (iter))
512 return;
513 }
514 }
515
516 /* See minsyms.h. */
517
518 struct bound_minimal_symbol
519 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
520 {
521 struct objfile *objfile;
522 struct minimal_symbol *msymbol;
523 struct bound_minimal_symbol found_symbol = { NULL, NULL };
524 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
525
526 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
527
528 for (objfile = object_files;
529 objfile != NULL && found_symbol.minsym == NULL;
530 objfile = objfile->next)
531 {
532 if (objf == NULL || objf == objfile
533 || objf == objfile->separate_debug_objfile_backlink)
534 {
535 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
536 msymbol != NULL && found_symbol.minsym == NULL;
537 msymbol = msymbol->hash_next)
538 {
539 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
540 (MSYMBOL_TYPE (msymbol) == mst_text
541 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
542 || MSYMBOL_TYPE (msymbol) == mst_file_text))
543 {
544 switch (MSYMBOL_TYPE (msymbol))
545 {
546 case mst_file_text:
547 found_file_symbol.minsym = msymbol;
548 found_file_symbol.objfile = objfile;
549 break;
550 default:
551 found_symbol.minsym = msymbol;
552 found_symbol.objfile = objfile;
553 break;
554 }
555 }
556 }
557 }
558 }
559 /* External symbols are best. */
560 if (found_symbol.minsym)
561 return found_symbol;
562
563 /* File-local symbols are next best. */
564 return found_file_symbol;
565 }
566
567 /* See minsyms.h. */
568
569 struct minimal_symbol *
570 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
571 struct objfile *objf)
572 {
573 struct objfile *objfile;
574 struct minimal_symbol *msymbol;
575
576 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
577
578 for (objfile = object_files;
579 objfile != NULL;
580 objfile = objfile->next)
581 {
582 if (objf == NULL || objf == objfile
583 || objf == objfile->separate_debug_objfile_backlink)
584 {
585 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
586 msymbol != NULL;
587 msymbol = msymbol->hash_next)
588 {
589 if (MSYMBOL_VALUE_ADDRESS (objfile, msymbol) == pc
590 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0)
591 return msymbol;
592 }
593 }
594 }
595
596 return NULL;
597 }
598
599 /* See minsyms.h. */
600
601 struct bound_minimal_symbol
602 lookup_minimal_symbol_solib_trampoline (const char *name,
603 struct objfile *objf)
604 {
605 struct objfile *objfile;
606 struct minimal_symbol *msymbol;
607 struct bound_minimal_symbol found_symbol = { NULL, NULL };
608
609 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
610
611 for (objfile = object_files;
612 objfile != NULL;
613 objfile = objfile->next)
614 {
615 if (objf == NULL || objf == objfile
616 || objf == objfile->separate_debug_objfile_backlink)
617 {
618 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
619 msymbol != NULL;
620 msymbol = msymbol->hash_next)
621 {
622 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
623 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
624 {
625 found_symbol.objfile = objfile;
626 found_symbol.minsym = msymbol;
627 return found_symbol;
628 }
629 }
630 }
631 }
632
633 return found_symbol;
634 }
635
636 /* A helper function that makes *PC section-relative. This searches
637 the sections of OBJFILE and if *PC is in a section, it subtracts
638 the section offset and returns true. Otherwise it returns
639 false. */
640
641 static int
642 frob_address (struct objfile *objfile, CORE_ADDR *pc)
643 {
644 struct obj_section *iter;
645
646 ALL_OBJFILE_OSECTIONS (objfile, iter)
647 {
648 if (*pc >= obj_section_addr (iter) && *pc < obj_section_endaddr (iter))
649 {
650 *pc -= obj_section_offset (iter);
651 return 1;
652 }
653 }
654
655 return 0;
656 }
657
658 /* Search through the minimal symbol table for each objfile and find
659 the symbol whose address is the largest address that is still less
660 than or equal to PC, and matches SECTION (which is not NULL).
661 Returns a pointer to the minimal symbol if such a symbol is found,
662 or NULL if PC is not in a suitable range.
663 Note that we need to look through ALL the minimal symbol tables
664 before deciding on the symbol that comes closest to the specified PC.
665 This is because objfiles can overlap, for example objfile A has .text
666 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
667 .data at 0x40048.
668
669 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
670 there are text and trampoline symbols at the same address.
671 Otherwise prefer mst_text symbols. */
672
673 bound_minimal_symbol
674 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc_in, struct obj_section *section,
675 lookup_msym_prefer prefer)
676 {
677 int lo;
678 int hi;
679 int newobj;
680 struct objfile *objfile;
681 struct minimal_symbol *msymbol;
682 struct minimal_symbol *best_symbol = NULL;
683 struct objfile *best_objfile = NULL;
684 struct bound_minimal_symbol result;
685 enum minimal_symbol_type want_type;
686
687 if (section == NULL)
688 {
689 section = find_pc_section (pc_in);
690 if (section == NULL)
691 return {};
692 }
693
694 switch (prefer)
695 {
696 case lookup_msym_prefer::TEXT:
697 want_type = mst_text;
698 break;
699 case lookup_msym_prefer::TRAMPOLINE:
700 want_type = mst_solib_trampoline;
701 break;
702 case lookup_msym_prefer::GNU_IFUNC:
703 want_type = mst_text_gnu_ifunc;
704 break;
705 }
706
707 /* We can not require the symbol found to be in section, because
708 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
709 symbol - but find_pc_section won't return an absolute section and
710 hence the code below would skip over absolute symbols. We can
711 still take advantage of the call to find_pc_section, though - the
712 object file still must match. In case we have separate debug
713 files, search both the file and its separate debug file. There's
714 no telling which one will have the minimal symbols. */
715
716 gdb_assert (section != NULL);
717
718 for (objfile = section->objfile;
719 objfile != NULL;
720 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
721 {
722 CORE_ADDR pc = pc_in;
723
724 /* If this objfile has a minimal symbol table, go search it using
725 a binary search. Note that a minimal symbol table always consists
726 of at least two symbols, a "real" symbol and the terminating
727 "null symbol". If there are no real symbols, then there is no
728 minimal symbol table at all. */
729
730 if (objfile->per_bfd->minimal_symbol_count > 0)
731 {
732 int best_zero_sized = -1;
733
734 msymbol = objfile->per_bfd->msymbols;
735 lo = 0;
736 hi = objfile->per_bfd->minimal_symbol_count - 1;
737
738 /* This code assumes that the minimal symbols are sorted by
739 ascending address values. If the pc value is greater than or
740 equal to the first symbol's address, then some symbol in this
741 minimal symbol table is a suitable candidate for being the
742 "best" symbol. This includes the last real symbol, for cases
743 where the pc value is larger than any address in this vector.
744
745 By iterating until the address associated with the current
746 hi index (the endpoint of the test interval) is less than
747 or equal to the desired pc value, we accomplish two things:
748 (1) the case where the pc value is larger than any minimal
749 symbol address is trivially solved, (2) the address associated
750 with the hi index is always the one we want when the interation
751 terminates. In essence, we are iterating the test interval
752 down until the pc value is pushed out of it from the high end.
753
754 Warning: this code is trickier than it would appear at first. */
755
756 if (frob_address (objfile, &pc)
757 && pc >= MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[lo]))
758 {
759 while (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]) > pc)
760 {
761 /* pc is still strictly less than highest address. */
762 /* Note "new" will always be >= lo. */
763 newobj = (lo + hi) / 2;
764 if ((MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[newobj]) >= pc)
765 || (lo == newobj))
766 {
767 hi = newobj;
768 }
769 else
770 {
771 lo = newobj;
772 }
773 }
774
775 /* If we have multiple symbols at the same address, we want
776 hi to point to the last one. That way we can find the
777 right symbol if it has an index greater than hi. */
778 while (hi < objfile->per_bfd->minimal_symbol_count - 1
779 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
780 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi + 1])))
781 hi++;
782
783 /* Skip various undesirable symbols. */
784 while (hi >= 0)
785 {
786 /* Skip any absolute symbols. This is apparently
787 what adb and dbx do, and is needed for the CM-5.
788 There are two known possible problems: (1) on
789 ELF, apparently end, edata, etc. are absolute.
790 Not sure ignoring them here is a big deal, but if
791 we want to use them, the fix would go in
792 elfread.c. (2) I think shared library entry
793 points on the NeXT are absolute. If we want
794 special handling for this it probably should be
795 triggered by a special mst_abs_or_lib or some
796 such. */
797
798 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
799 {
800 hi--;
801 continue;
802 }
803
804 /* If SECTION was specified, skip any symbol from
805 wrong section. */
806 if (section
807 /* Some types of debug info, such as COFF,
808 don't fill the bfd_section member, so don't
809 throw away symbols on those platforms. */
810 && MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]) != NULL
811 && (!matching_obj_sections
812 (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]),
813 section)))
814 {
815 hi--;
816 continue;
817 }
818
819 /* If we are looking for a trampoline and this is a
820 text symbol, or the other way around, check the
821 preceding symbol too. If they are otherwise
822 identical prefer that one. */
823 if (hi > 0
824 && MSYMBOL_TYPE (&msymbol[hi]) != want_type
825 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
826 && (MSYMBOL_SIZE (&msymbol[hi])
827 == MSYMBOL_SIZE (&msymbol[hi - 1]))
828 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
829 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1]))
830 && (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi])
831 == MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi - 1])))
832 {
833 hi--;
834 continue;
835 }
836
837 /* If the minimal symbol has a zero size, save it
838 but keep scanning backwards looking for one with
839 a non-zero size. A zero size may mean that the
840 symbol isn't an object or function (e.g. a
841 label), or it may just mean that the size was not
842 specified. */
843 if (MSYMBOL_SIZE (&msymbol[hi]) == 0)
844 {
845 if (best_zero_sized == -1)
846 best_zero_sized = hi;
847 hi--;
848 continue;
849 }
850
851 /* If we are past the end of the current symbol, try
852 the previous symbol if it has a larger overlapping
853 size. This happens on i686-pc-linux-gnu with glibc;
854 the nocancel variants of system calls are inside
855 the cancellable variants, but both have sizes. */
856 if (hi > 0
857 && MSYMBOL_SIZE (&msymbol[hi]) != 0
858 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
859 + MSYMBOL_SIZE (&msymbol[hi]))
860 && pc < (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1])
861 + MSYMBOL_SIZE (&msymbol[hi - 1])))
862 {
863 hi--;
864 continue;
865 }
866
867 /* Otherwise, this symbol must be as good as we're going
868 to get. */
869 break;
870 }
871
872 /* If HI has a zero size, and best_zero_sized is set,
873 then we had two or more zero-sized symbols; prefer
874 the first one we found (which may have a higher
875 address). Also, if we ran off the end, be sure
876 to back up. */
877 if (best_zero_sized != -1
878 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
879 hi = best_zero_sized;
880
881 /* If the minimal symbol has a non-zero size, and this
882 PC appears to be outside the symbol's contents, then
883 refuse to use this symbol. If we found a zero-sized
884 symbol with an address greater than this symbol's,
885 use that instead. We assume that if symbols have
886 specified sizes, they do not overlap. */
887
888 if (hi >= 0
889 && MSYMBOL_SIZE (&msymbol[hi]) != 0
890 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
891 + MSYMBOL_SIZE (&msymbol[hi])))
892 {
893 if (best_zero_sized != -1)
894 hi = best_zero_sized;
895 else
896 /* Go on to the next object file. */
897 continue;
898 }
899
900 /* The minimal symbol indexed by hi now is the best one in this
901 objfile's minimal symbol table. See if it is the best one
902 overall. */
903
904 if (hi >= 0
905 && ((best_symbol == NULL) ||
906 (MSYMBOL_VALUE_RAW_ADDRESS (best_symbol) <
907 MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]))))
908 {
909 best_symbol = &msymbol[hi];
910 best_objfile = objfile;
911 }
912 }
913 }
914 }
915
916 result.minsym = best_symbol;
917 result.objfile = best_objfile;
918 return result;
919 }
920
921 /* See minsyms.h. */
922
923 struct bound_minimal_symbol
924 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
925 {
926 return lookup_minimal_symbol_by_pc_section (pc, NULL);
927 }
928
929 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
930
931 int
932 in_gnu_ifunc_stub (CORE_ADDR pc)
933 {
934 bound_minimal_symbol msymbol
935 = lookup_minimal_symbol_by_pc_section (pc, NULL,
936 lookup_msym_prefer::GNU_IFUNC);
937 return msymbol.minsym && MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc;
938 }
939
940 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
941
942 static CORE_ADDR
943 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
944 {
945 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
946 "the ELF support compiled in."),
947 paddress (gdbarch, pc));
948 }
949
950 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
951
952 static int
953 stub_gnu_ifunc_resolve_name (const char *function_name,
954 CORE_ADDR *function_address_p)
955 {
956 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
957 "the ELF support compiled in."),
958 function_name);
959 }
960
961 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
962
963 static void
964 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
965 {
966 internal_error (__FILE__, __LINE__,
967 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
968 }
969
970 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
971
972 static void
973 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
974 {
975 internal_error (__FILE__, __LINE__,
976 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
977 }
978
979 /* See elf_gnu_ifunc_fns for its real implementation. */
980
981 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
982 {
983 stub_gnu_ifunc_resolve_addr,
984 stub_gnu_ifunc_resolve_name,
985 stub_gnu_ifunc_resolver_stop,
986 stub_gnu_ifunc_resolver_return_stop,
987 };
988
989 /* A placeholder for &elf_gnu_ifunc_fns. */
990
991 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
992
993 /* See minsyms.h. */
994
995 struct bound_minimal_symbol
996 lookup_minimal_symbol_and_objfile (const char *name)
997 {
998 struct bound_minimal_symbol result;
999 struct objfile *objfile;
1000
1001 ALL_OBJFILES (objfile)
1002 {
1003 result = lookup_minimal_symbol (name, NULL, objfile);
1004 if (result.minsym != NULL)
1005 return result;
1006 }
1007
1008 memset (&result, 0, sizeof (result));
1009 return result;
1010 }
1011 \f
1012
1013 /* Return leading symbol character for a BFD. If BFD is NULL,
1014 return the leading symbol character from the main objfile. */
1015
1016 static int
1017 get_symbol_leading_char (bfd *abfd)
1018 {
1019 if (abfd != NULL)
1020 return bfd_get_symbol_leading_char (abfd);
1021 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
1022 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
1023 return 0;
1024 }
1025
1026 /* See minsyms.h. */
1027
1028 minimal_symbol_reader::minimal_symbol_reader (struct objfile *obj)
1029 : m_objfile (obj),
1030 m_msym_bunch (NULL),
1031 /* Note that presetting m_msym_bunch_index to BUNCH_SIZE causes the
1032 first call to save a minimal symbol to allocate the memory for
1033 the first bunch. */
1034 m_msym_bunch_index (BUNCH_SIZE),
1035 m_msym_count (0)
1036 {
1037 }
1038
1039 /* Discard the currently collected minimal symbols, if any. If we wish
1040 to save them for later use, we must have already copied them somewhere
1041 else before calling this function.
1042
1043 FIXME: We could allocate the minimal symbol bunches on their own
1044 obstack and then simply blow the obstack away when we are done with
1045 it. Is it worth the extra trouble though? */
1046
1047 minimal_symbol_reader::~minimal_symbol_reader ()
1048 {
1049 struct msym_bunch *next;
1050
1051 while (m_msym_bunch != NULL)
1052 {
1053 next = m_msym_bunch->next;
1054 xfree (m_msym_bunch);
1055 m_msym_bunch = next;
1056 }
1057 }
1058
1059 /* See minsyms.h. */
1060
1061 void
1062 minimal_symbol_reader::record (const char *name, CORE_ADDR address,
1063 enum minimal_symbol_type ms_type)
1064 {
1065 int section;
1066
1067 switch (ms_type)
1068 {
1069 case mst_text:
1070 case mst_text_gnu_ifunc:
1071 case mst_file_text:
1072 case mst_solib_trampoline:
1073 section = SECT_OFF_TEXT (m_objfile);
1074 break;
1075 case mst_data:
1076 case mst_data_gnu_ifunc:
1077 case mst_file_data:
1078 section = SECT_OFF_DATA (m_objfile);
1079 break;
1080 case mst_bss:
1081 case mst_file_bss:
1082 section = SECT_OFF_BSS (m_objfile);
1083 break;
1084 default:
1085 section = -1;
1086 }
1087
1088 record_with_info (name, address, ms_type, section);
1089 }
1090
1091 /* See minsyms.h. */
1092
1093 struct minimal_symbol *
1094 minimal_symbol_reader::record_full (const char *name, int name_len,
1095 bool copy_name, CORE_ADDR address,
1096 enum minimal_symbol_type ms_type,
1097 int section)
1098 {
1099 struct msym_bunch *newobj;
1100 struct minimal_symbol *msymbol;
1101
1102 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
1103 the minimal symbols, because if there is also another symbol
1104 at the same address (e.g. the first function of the file),
1105 lookup_minimal_symbol_by_pc would have no way of getting the
1106 right one. */
1107 if (ms_type == mst_file_text && name[0] == 'g'
1108 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
1109 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
1110 return (NULL);
1111
1112 /* It's safe to strip the leading char here once, since the name
1113 is also stored stripped in the minimal symbol table. */
1114 if (name[0] == get_symbol_leading_char (m_objfile->obfd))
1115 {
1116 ++name;
1117 --name_len;
1118 }
1119
1120 if (ms_type == mst_file_text && startswith (name, "__gnu_compiled"))
1121 return (NULL);
1122
1123 if (m_msym_bunch_index == BUNCH_SIZE)
1124 {
1125 newobj = XCNEW (struct msym_bunch);
1126 m_msym_bunch_index = 0;
1127 newobj->next = m_msym_bunch;
1128 m_msym_bunch = newobj;
1129 }
1130 msymbol = &m_msym_bunch->contents[m_msym_bunch_index];
1131 MSYMBOL_SET_LANGUAGE (msymbol, language_auto,
1132 &m_objfile->per_bfd->storage_obstack);
1133 MSYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, m_objfile);
1134
1135 SET_MSYMBOL_VALUE_ADDRESS (msymbol, address);
1136 MSYMBOL_SECTION (msymbol) = section;
1137
1138 MSYMBOL_TYPE (msymbol) = ms_type;
1139 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
1140 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
1141 /* Do not use the SET_MSYMBOL_SIZE macro to initialize the size,
1142 as it would also set the has_size flag. */
1143 msymbol->size = 0;
1144
1145 /* The hash pointers must be cleared! If they're not,
1146 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
1147 msymbol->hash_next = NULL;
1148 msymbol->demangled_hash_next = NULL;
1149
1150 /* If we already read minimal symbols for this objfile, then don't
1151 ever allocate a new one. */
1152 if (!m_objfile->per_bfd->minsyms_read)
1153 {
1154 m_msym_bunch_index++;
1155 m_objfile->per_bfd->n_minsyms++;
1156 }
1157 m_msym_count++;
1158 return msymbol;
1159 }
1160
1161 /* Compare two minimal symbols by address and return a signed result based
1162 on unsigned comparisons, so that we sort into unsigned numeric order.
1163 Within groups with the same address, sort by name. */
1164
1165 static int
1166 compare_minimal_symbols (const void *fn1p, const void *fn2p)
1167 {
1168 const struct minimal_symbol *fn1;
1169 const struct minimal_symbol *fn2;
1170
1171 fn1 = (const struct minimal_symbol *) fn1p;
1172 fn2 = (const struct minimal_symbol *) fn2p;
1173
1174 if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) < MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1175 {
1176 return (-1); /* addr 1 is less than addr 2. */
1177 }
1178 else if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) > MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1179 {
1180 return (1); /* addr 1 is greater than addr 2. */
1181 }
1182 else
1183 /* addrs are equal: sort by name */
1184 {
1185 const char *name1 = MSYMBOL_LINKAGE_NAME (fn1);
1186 const char *name2 = MSYMBOL_LINKAGE_NAME (fn2);
1187
1188 if (name1 && name2) /* both have names */
1189 return strcmp (name1, name2);
1190 else if (name2)
1191 return 1; /* fn1 has no name, so it is "less". */
1192 else if (name1) /* fn2 has no name, so it is "less". */
1193 return -1;
1194 else
1195 return (0); /* Neither has a name, so they're equal. */
1196 }
1197 }
1198
1199 /* Compact duplicate entries out of a minimal symbol table by walking
1200 through the table and compacting out entries with duplicate addresses
1201 and matching names. Return the number of entries remaining.
1202
1203 On entry, the table resides between msymbol[0] and msymbol[mcount].
1204 On exit, it resides between msymbol[0] and msymbol[result_count].
1205
1206 When files contain multiple sources of symbol information, it is
1207 possible for the minimal symbol table to contain many duplicate entries.
1208 As an example, SVR4 systems use ELF formatted object files, which
1209 usually contain at least two different types of symbol tables (a
1210 standard ELF one and a smaller dynamic linking table), as well as
1211 DWARF debugging information for files compiled with -g.
1212
1213 Without compacting, the minimal symbol table for gdb itself contains
1214 over a 1000 duplicates, about a third of the total table size. Aside
1215 from the potential trap of not noticing that two successive entries
1216 identify the same location, this duplication impacts the time required
1217 to linearly scan the table, which is done in a number of places. So we
1218 just do one linear scan here and toss out the duplicates.
1219
1220 Note that we are not concerned here about recovering the space that
1221 is potentially freed up, because the strings themselves are allocated
1222 on the storage_obstack, and will get automatically freed when the symbol
1223 table is freed. The caller can free up the unused minimal symbols at
1224 the end of the compacted region if their allocation strategy allows it.
1225
1226 Also note we only go up to the next to last entry within the loop
1227 and then copy the last entry explicitly after the loop terminates.
1228
1229 Since the different sources of information for each symbol may
1230 have different levels of "completeness", we may have duplicates
1231 that have one entry with type "mst_unknown" and the other with a
1232 known type. So if the one we are leaving alone has type mst_unknown,
1233 overwrite its type with the type from the one we are compacting out. */
1234
1235 static int
1236 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1237 struct objfile *objfile)
1238 {
1239 struct minimal_symbol *copyfrom;
1240 struct minimal_symbol *copyto;
1241
1242 if (mcount > 0)
1243 {
1244 copyfrom = copyto = msymbol;
1245 while (copyfrom < msymbol + mcount - 1)
1246 {
1247 if (MSYMBOL_VALUE_RAW_ADDRESS (copyfrom)
1248 == MSYMBOL_VALUE_RAW_ADDRESS ((copyfrom + 1))
1249 && MSYMBOL_SECTION (copyfrom) == MSYMBOL_SECTION (copyfrom + 1)
1250 && strcmp (MSYMBOL_LINKAGE_NAME (copyfrom),
1251 MSYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1252 {
1253 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1254 {
1255 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1256 }
1257 copyfrom++;
1258 }
1259 else
1260 *copyto++ = *copyfrom++;
1261 }
1262 *copyto++ = *copyfrom++;
1263 mcount = copyto - msymbol;
1264 }
1265 return (mcount);
1266 }
1267
1268 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1269 after compacting or sorting the table since the entries move around
1270 thus causing the internal minimal_symbol pointers to become jumbled. */
1271
1272 static void
1273 build_minimal_symbol_hash_tables (struct objfile *objfile)
1274 {
1275 int i;
1276 struct minimal_symbol *msym;
1277
1278 /* Clear the hash tables. */
1279 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1280 {
1281 objfile->per_bfd->msymbol_hash[i] = 0;
1282 objfile->per_bfd->msymbol_demangled_hash[i] = 0;
1283 }
1284
1285 /* Now, (re)insert the actual entries. */
1286 for ((i = objfile->per_bfd->minimal_symbol_count,
1287 msym = objfile->per_bfd->msymbols);
1288 i > 0;
1289 i--, msym++)
1290 {
1291 msym->hash_next = 0;
1292 add_minsym_to_hash_table (msym, objfile->per_bfd->msymbol_hash);
1293
1294 msym->demangled_hash_next = 0;
1295 if (MSYMBOL_SEARCH_NAME (msym) != MSYMBOL_LINKAGE_NAME (msym))
1296 add_minsym_to_demangled_hash_table (msym, objfile);
1297 }
1298 }
1299
1300 /* Add the minimal symbols in the existing bunches to the objfile's official
1301 minimal symbol table. In most cases there is no minimal symbol table yet
1302 for this objfile, and the existing bunches are used to create one. Once
1303 in a while (for shared libraries for example), we add symbols (e.g. common
1304 symbols) to an existing objfile.
1305
1306 Because of the way minimal symbols are collected, we generally have no way
1307 of knowing what source language applies to any particular minimal symbol.
1308 Specifically, we have no way of knowing if the minimal symbol comes from a
1309 C++ compilation unit or not. So for the sake of supporting cached
1310 demangled C++ names, we have no choice but to try and demangle each new one
1311 that comes in. If the demangling succeeds, then we assume it is a C++
1312 symbol and set the symbol's language and demangled name fields
1313 appropriately. Note that in order to avoid unnecessary demanglings, and
1314 allocating obstack space that subsequently can't be freed for the demangled
1315 names, we mark all newly added symbols with language_auto. After
1316 compaction of the minimal symbols, we go back and scan the entire minimal
1317 symbol table looking for these new symbols. For each new symbol we attempt
1318 to demangle it, and if successful, record it as a language_cplus symbol
1319 and cache the demangled form on the symbol obstack. Symbols which don't
1320 demangle are marked as language_unknown symbols, which inhibits future
1321 attempts to demangle them if we later add more minimal symbols. */
1322
1323 void
1324 minimal_symbol_reader::install ()
1325 {
1326 int bindex;
1327 int mcount;
1328 struct msym_bunch *bunch;
1329 struct minimal_symbol *msymbols;
1330 int alloc_count;
1331
1332 if (m_objfile->per_bfd->minsyms_read)
1333 return;
1334
1335 if (m_msym_count > 0)
1336 {
1337 if (symtab_create_debug)
1338 {
1339 fprintf_unfiltered (gdb_stdlog,
1340 "Installing %d minimal symbols of objfile %s.\n",
1341 m_msym_count, objfile_name (m_objfile));
1342 }
1343
1344 /* Allocate enough space in the obstack, into which we will gather the
1345 bunches of new and existing minimal symbols, sort them, and then
1346 compact out the duplicate entries. Once we have a final table,
1347 we will give back the excess space. */
1348
1349 alloc_count = m_msym_count + m_objfile->per_bfd->minimal_symbol_count + 1;
1350 obstack_blank (&m_objfile->per_bfd->storage_obstack,
1351 alloc_count * sizeof (struct minimal_symbol));
1352 msymbols = (struct minimal_symbol *)
1353 obstack_base (&m_objfile->per_bfd->storage_obstack);
1354
1355 /* Copy in the existing minimal symbols, if there are any. */
1356
1357 if (m_objfile->per_bfd->minimal_symbol_count)
1358 memcpy ((char *) msymbols, (char *) m_objfile->per_bfd->msymbols,
1359 m_objfile->per_bfd->minimal_symbol_count * sizeof (struct minimal_symbol));
1360
1361 /* Walk through the list of minimal symbol bunches, adding each symbol
1362 to the new contiguous array of symbols. Note that we start with the
1363 current, possibly partially filled bunch (thus we use the current
1364 msym_bunch_index for the first bunch we copy over), and thereafter
1365 each bunch is full. */
1366
1367 mcount = m_objfile->per_bfd->minimal_symbol_count;
1368
1369 for (bunch = m_msym_bunch; bunch != NULL; bunch = bunch->next)
1370 {
1371 for (bindex = 0; bindex < m_msym_bunch_index; bindex++, mcount++)
1372 msymbols[mcount] = bunch->contents[bindex];
1373 m_msym_bunch_index = BUNCH_SIZE;
1374 }
1375
1376 /* Sort the minimal symbols by address. */
1377
1378 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1379 compare_minimal_symbols);
1380
1381 /* Compact out any duplicates, and free up whatever space we are
1382 no longer using. */
1383
1384 mcount = compact_minimal_symbols (msymbols, mcount, m_objfile);
1385
1386 obstack_blank_fast (&m_objfile->per_bfd->storage_obstack,
1387 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1388 msymbols = (struct minimal_symbol *)
1389 obstack_finish (&m_objfile->per_bfd->storage_obstack);
1390
1391 /* We also terminate the minimal symbol table with a "null symbol",
1392 which is *not* included in the size of the table. This makes it
1393 easier to find the end of the table when we are handed a pointer
1394 to some symbol in the middle of it. Zero out the fields in the
1395 "null symbol" allocated at the end of the array. Note that the
1396 symbol count does *not* include this null symbol, which is why it
1397 is indexed by mcount and not mcount-1. */
1398
1399 memset (&msymbols[mcount], 0, sizeof (struct minimal_symbol));
1400
1401 /* Attach the minimal symbol table to the specified objfile.
1402 The strings themselves are also located in the storage_obstack
1403 of this objfile. */
1404
1405 m_objfile->per_bfd->minimal_symbol_count = mcount;
1406 m_objfile->per_bfd->msymbols = msymbols;
1407
1408 /* Now build the hash tables; we can't do this incrementally
1409 at an earlier point since we weren't finished with the obstack
1410 yet. (And if the msymbol obstack gets moved, all the internal
1411 pointers to other msymbols need to be adjusted.) */
1412 build_minimal_symbol_hash_tables (m_objfile);
1413 }
1414 }
1415
1416 /* See minsyms.h. */
1417
1418 void
1419 terminate_minimal_symbol_table (struct objfile *objfile)
1420 {
1421 if (! objfile->per_bfd->msymbols)
1422 objfile->per_bfd->msymbols
1423 = ((struct minimal_symbol *)
1424 obstack_alloc (&objfile->per_bfd->storage_obstack,
1425 sizeof (struct minimal_symbol)));
1426
1427 {
1428 struct minimal_symbol *m
1429 = &objfile->per_bfd->msymbols[objfile->per_bfd->minimal_symbol_count];
1430
1431 memset (m, 0, sizeof (*m));
1432 /* Don't rely on these enumeration values being 0's. */
1433 MSYMBOL_TYPE (m) = mst_unknown;
1434 MSYMBOL_SET_LANGUAGE (m, language_unknown,
1435 &objfile->per_bfd->storage_obstack);
1436 }
1437 }
1438
1439 /* Check if PC is in a shared library trampoline code stub.
1440 Return minimal symbol for the trampoline entry or NULL if PC is not
1441 in a trampoline code stub. */
1442
1443 static struct minimal_symbol *
1444 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1445 {
1446 bound_minimal_symbol msymbol
1447 = lookup_minimal_symbol_by_pc_section (pc, NULL,
1448 lookup_msym_prefer::TRAMPOLINE);
1449
1450 if (msymbol.minsym != NULL
1451 && MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
1452 return msymbol.minsym;
1453 return NULL;
1454 }
1455
1456 /* If PC is in a shared library trampoline code stub, return the
1457 address of the `real' function belonging to the stub.
1458 Return 0 if PC is not in a trampoline code stub or if the real
1459 function is not found in the minimal symbol table.
1460
1461 We may fail to find the right function if a function with the
1462 same name is defined in more than one shared library, but this
1463 is considered bad programming style. We could return 0 if we find
1464 a duplicate function in case this matters someday. */
1465
1466 CORE_ADDR
1467 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1468 {
1469 struct objfile *objfile;
1470 struct minimal_symbol *msymbol;
1471 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1472
1473 if (tsymbol != NULL)
1474 {
1475 ALL_MSYMBOLS (objfile, msymbol)
1476 {
1477 /* Also handle minimal symbols pointing to function descriptors. */
1478 if ((MSYMBOL_TYPE (msymbol) == mst_text
1479 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
1480 || MSYMBOL_TYPE (msymbol) == mst_data
1481 || MSYMBOL_TYPE (msymbol) == mst_data_gnu_ifunc)
1482 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1483 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1484 {
1485 CORE_ADDR func;
1486
1487 /* Ignore data symbols that are not function
1488 descriptors. */
1489 if (msymbol_is_function (objfile, msymbol, &func))
1490 return func;
1491 }
1492 }
1493 }
1494 return 0;
1495 }
1496
1497 /* See minsyms.h. */
1498
1499 CORE_ADDR
1500 minimal_symbol_upper_bound (struct bound_minimal_symbol minsym)
1501 {
1502 int i;
1503 short section;
1504 struct obj_section *obj_section;
1505 CORE_ADDR result;
1506 struct minimal_symbol *msymbol;
1507
1508 gdb_assert (minsym.minsym != NULL);
1509
1510 /* If the minimal symbol has a size, use it. Otherwise use the
1511 lesser of the next minimal symbol in the same section, or the end
1512 of the section, as the end of the function. */
1513
1514 if (MSYMBOL_SIZE (minsym.minsym) != 0)
1515 return BMSYMBOL_VALUE_ADDRESS (minsym) + MSYMBOL_SIZE (minsym.minsym);
1516
1517 /* Step over other symbols at this same address, and symbols in
1518 other sections, to find the next symbol in this section with a
1519 different address. */
1520
1521 msymbol = minsym.minsym;
1522 section = MSYMBOL_SECTION (msymbol);
1523 for (i = 1; MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
1524 {
1525 if ((MSYMBOL_VALUE_RAW_ADDRESS (msymbol + i)
1526 != MSYMBOL_VALUE_RAW_ADDRESS (msymbol))
1527 && MSYMBOL_SECTION (msymbol + i) == section)
1528 break;
1529 }
1530
1531 obj_section = MSYMBOL_OBJ_SECTION (minsym.objfile, minsym.minsym);
1532 if (MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL
1533 && (MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i)
1534 < obj_section_endaddr (obj_section)))
1535 result = MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i);
1536 else
1537 /* We got the start address from the last msymbol in the objfile.
1538 So the end address is the end of the section. */
1539 result = obj_section_endaddr (obj_section);
1540
1541 return result;
1542 }