]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/minsyms.c
Unify gdb printf functions
[thirdparty/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2022 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
23
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
28
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
32
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
37
38
39 #include "defs.h"
40 #include <ctype.h>
41 #include "symtab.h"
42 #include "bfd.h"
43 #include "filenames.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "demangle.h"
47 #include "value.h"
48 #include "cp-abi.h"
49 #include "target.h"
50 #include "cp-support.h"
51 #include "language.h"
52 #include "cli/cli-utils.h"
53 #include "gdbsupport/symbol.h"
54 #include <algorithm>
55 #include "safe-ctype.h"
56 #include "gdbsupport/parallel-for.h"
57 #include "inferior.h"
58
59 #if CXX_STD_THREAD
60 #include <mutex>
61 #endif
62
63 /* Return true if MINSYM is a cold clone symbol.
64 Recognize f.i. these symbols (mangled/demangled):
65 - _ZL3foov.cold
66 foo() [clone .cold]
67 - _ZL9do_rpo_vnP8functionP8edge_defP11bitmap_headbb.cold.138
68 do_rpo_vn(function*, edge_def*, bitmap_head*, bool, bool) \
69 [clone .cold.138]. */
70
71 static bool
72 msymbol_is_cold_clone (minimal_symbol *minsym)
73 {
74 const char *name = minsym->natural_name ();
75 size_t name_len = strlen (name);
76 if (name_len < 1)
77 return false;
78
79 const char *last = &name[name_len - 1];
80 if (*last != ']')
81 return false;
82
83 const char *suffix = " [clone .cold";
84 size_t suffix_len = strlen (suffix);
85 const char *found = strstr (name, suffix);
86 if (found == nullptr)
87 return false;
88
89 const char *start = &found[suffix_len];
90 if (*start == ']')
91 return true;
92
93 if (*start != '.')
94 return false;
95
96 const char *p;
97 for (p = start + 1; p <= last; ++p)
98 {
99 if (*p >= '0' && *p <= '9')
100 continue;
101 break;
102 }
103
104 if (p == last)
105 return true;
106
107 return false;
108 }
109
110 /* See minsyms.h. */
111
112 bool
113 msymbol_is_function (struct objfile *objfile, minimal_symbol *minsym,
114 CORE_ADDR *func_address_p)
115 {
116 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
117
118 switch (minsym->type)
119 {
120 case mst_slot_got_plt:
121 case mst_data:
122 case mst_bss:
123 case mst_abs:
124 case mst_file_data:
125 case mst_file_bss:
126 case mst_data_gnu_ifunc:
127 {
128 struct gdbarch *gdbarch = objfile->arch ();
129 CORE_ADDR pc = gdbarch_convert_from_func_ptr_addr
130 (gdbarch, msym_addr, current_inferior ()->top_target ());
131 if (pc != msym_addr)
132 {
133 if (func_address_p != NULL)
134 *func_address_p = pc;
135 return true;
136 }
137 return false;
138 }
139 case mst_file_text:
140 /* Ignore function symbol that is not a function entry. */
141 if (msymbol_is_cold_clone (minsym))
142 return false;
143 /* fallthru */
144 default:
145 if (func_address_p != NULL)
146 *func_address_p = msym_addr;
147 return true;
148 }
149 }
150
151 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
152 At the end, copy them all into one newly allocated array. */
153
154 #define BUNCH_SIZE 127
155
156 struct msym_bunch
157 {
158 struct msym_bunch *next;
159 struct minimal_symbol contents[BUNCH_SIZE];
160 };
161
162 /* See minsyms.h. */
163
164 unsigned int
165 msymbol_hash_iw (const char *string)
166 {
167 unsigned int hash = 0;
168
169 while (*string && *string != '(')
170 {
171 string = skip_spaces (string);
172 if (*string && *string != '(')
173 {
174 hash = SYMBOL_HASH_NEXT (hash, *string);
175 ++string;
176 }
177 }
178 return hash;
179 }
180
181 /* See minsyms.h. */
182
183 unsigned int
184 msymbol_hash (const char *string)
185 {
186 unsigned int hash = 0;
187
188 for (; *string; ++string)
189 hash = SYMBOL_HASH_NEXT (hash, *string);
190 return hash;
191 }
192
193 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
194 static void
195 add_minsym_to_hash_table (struct minimal_symbol *sym,
196 struct minimal_symbol **table,
197 unsigned int hash_value)
198 {
199 if (sym->hash_next == NULL)
200 {
201 unsigned int hash = hash_value % MINIMAL_SYMBOL_HASH_SIZE;
202
203 sym->hash_next = table[hash];
204 table[hash] = sym;
205 }
206 }
207
208 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
209 TABLE. */
210 static void
211 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
212 struct objfile *objfile,
213 unsigned int hash_value)
214 {
215 if (sym->demangled_hash_next == NULL)
216 {
217 objfile->per_bfd->demangled_hash_languages.set (sym->language ());
218
219 struct minimal_symbol **table
220 = objfile->per_bfd->msymbol_demangled_hash;
221 unsigned int hash_index = hash_value % MINIMAL_SYMBOL_HASH_SIZE;
222 sym->demangled_hash_next = table[hash_index];
223 table[hash_index] = sym;
224 }
225 }
226
227 /* Worker object for lookup_minimal_symbol. Stores temporary results
228 while walking the symbol tables. */
229
230 struct found_minimal_symbols
231 {
232 /* External symbols are best. */
233 bound_minimal_symbol external_symbol;
234
235 /* File-local symbols are next best. */
236 bound_minimal_symbol file_symbol;
237
238 /* Symbols for shared library trampolines are next best. */
239 bound_minimal_symbol trampoline_symbol;
240
241 /* Called when a symbol name matches. Check if the minsym is a
242 better type than what we had already found, and record it in one
243 of the members fields if so. Returns true if we collected the
244 real symbol, in which case we can stop searching. */
245 bool maybe_collect (const char *sfile, objfile *objf,
246 minimal_symbol *msymbol);
247 };
248
249 /* See declaration above. */
250
251 bool
252 found_minimal_symbols::maybe_collect (const char *sfile,
253 struct objfile *objfile,
254 minimal_symbol *msymbol)
255 {
256 switch (MSYMBOL_TYPE (msymbol))
257 {
258 case mst_file_text:
259 case mst_file_data:
260 case mst_file_bss:
261 if (sfile == NULL
262 || filename_cmp (msymbol->filename, sfile) == 0)
263 {
264 file_symbol.minsym = msymbol;
265 file_symbol.objfile = objfile;
266 }
267 break;
268
269 case mst_solib_trampoline:
270
271 /* If a trampoline symbol is found, we prefer to keep
272 looking for the *real* symbol. If the actual symbol
273 is not found, then we'll use the trampoline
274 entry. */
275 if (trampoline_symbol.minsym == NULL)
276 {
277 trampoline_symbol.minsym = msymbol;
278 trampoline_symbol.objfile = objfile;
279 }
280 break;
281
282 case mst_unknown:
283 default:
284 external_symbol.minsym = msymbol;
285 external_symbol.objfile = objfile;
286 /* We have the real symbol. No use looking further. */
287 return true;
288 }
289
290 /* Keep looking. */
291 return false;
292 }
293
294 /* Walk the mangled name hash table, and pass each symbol whose name
295 matches LOOKUP_NAME according to NAMECMP to FOUND. */
296
297 static void
298 lookup_minimal_symbol_mangled (const char *lookup_name,
299 const char *sfile,
300 struct objfile *objfile,
301 struct minimal_symbol **table,
302 unsigned int hash,
303 int (*namecmp) (const char *, const char *),
304 found_minimal_symbols &found)
305 {
306 for (minimal_symbol *msymbol = table[hash];
307 msymbol != NULL;
308 msymbol = msymbol->hash_next)
309 {
310 const char *symbol_name = msymbol->linkage_name ();
311
312 if (namecmp (symbol_name, lookup_name) == 0
313 && found.maybe_collect (sfile, objfile, msymbol))
314 return;
315 }
316 }
317
318 /* Walk the demangled name hash table, and pass each symbol whose name
319 matches LOOKUP_NAME according to MATCHER to FOUND. */
320
321 static void
322 lookup_minimal_symbol_demangled (const lookup_name_info &lookup_name,
323 const char *sfile,
324 struct objfile *objfile,
325 struct minimal_symbol **table,
326 unsigned int hash,
327 symbol_name_matcher_ftype *matcher,
328 found_minimal_symbols &found)
329 {
330 for (minimal_symbol *msymbol = table[hash];
331 msymbol != NULL;
332 msymbol = msymbol->demangled_hash_next)
333 {
334 const char *symbol_name = msymbol->search_name ();
335
336 if (matcher (symbol_name, lookup_name, NULL)
337 && found.maybe_collect (sfile, objfile, msymbol))
338 return;
339 }
340 }
341
342 /* Look through all the current minimal symbol tables and find the
343 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
344 the search to that objfile. If SFILE is non-NULL, the only file-scope
345 symbols considered will be from that source file (global symbols are
346 still preferred). Returns a pointer to the minimal symbol that
347 matches, or NULL if no match is found.
348
349 Note: One instance where there may be duplicate minimal symbols with
350 the same name is when the symbol tables for a shared library and the
351 symbol tables for an executable contain global symbols with the same
352 names (the dynamic linker deals with the duplication).
353
354 It's also possible to have minimal symbols with different mangled
355 names, but identical demangled names. For example, the GNU C++ v3
356 ABI requires the generation of two (or perhaps three) copies of
357 constructor functions --- "in-charge", "not-in-charge", and
358 "allocate" copies; destructors may be duplicated as well.
359 Obviously, there must be distinct mangled names for each of these,
360 but the demangled names are all the same: S::S or S::~S. */
361
362 struct bound_minimal_symbol
363 lookup_minimal_symbol (const char *name, const char *sfile,
364 struct objfile *objf)
365 {
366 found_minimal_symbols found;
367
368 unsigned int mangled_hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
369
370 auto *mangled_cmp
371 = (case_sensitivity == case_sensitive_on
372 ? strcmp
373 : strcasecmp);
374
375 if (sfile != NULL)
376 sfile = lbasename (sfile);
377
378 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
379
380 for (objfile *objfile : current_program_space->objfiles ())
381 {
382 if (found.external_symbol.minsym != NULL)
383 break;
384
385 if (objf == NULL || objf == objfile
386 || objf == objfile->separate_debug_objfile_backlink)
387 {
388 if (symbol_lookup_debug)
389 {
390 gdb_printf (gdb_stdlog,
391 "lookup_minimal_symbol (%s, %s, %s)\n",
392 name, sfile != NULL ? sfile : "NULL",
393 objfile_debug_name (objfile));
394 }
395
396 /* Do two passes: the first over the ordinary hash table,
397 and the second over the demangled hash table. */
398 lookup_minimal_symbol_mangled (name, sfile, objfile,
399 objfile->per_bfd->msymbol_hash,
400 mangled_hash, mangled_cmp, found);
401
402 /* If not found, try the demangled hash table. */
403 if (found.external_symbol.minsym == NULL)
404 {
405 /* Once for each language in the demangled hash names
406 table (usually just zero or one languages). */
407 for (unsigned iter = 0; iter < nr_languages; ++iter)
408 {
409 if (!objfile->per_bfd->demangled_hash_languages.test (iter))
410 continue;
411 enum language lang = (enum language) iter;
412
413 unsigned int hash
414 = (lookup_name.search_name_hash (lang)
415 % MINIMAL_SYMBOL_HASH_SIZE);
416
417 symbol_name_matcher_ftype *match
418 = language_def (lang)->get_symbol_name_matcher
419 (lookup_name);
420 struct minimal_symbol **msymbol_demangled_hash
421 = objfile->per_bfd->msymbol_demangled_hash;
422
423 lookup_minimal_symbol_demangled (lookup_name, sfile, objfile,
424 msymbol_demangled_hash,
425 hash, match, found);
426
427 if (found.external_symbol.minsym != NULL)
428 break;
429 }
430 }
431 }
432 }
433
434 /* External symbols are best. */
435 if (found.external_symbol.minsym != NULL)
436 {
437 if (symbol_lookup_debug)
438 {
439 minimal_symbol *minsym = found.external_symbol.minsym;
440
441 gdb_printf (gdb_stdlog,
442 "lookup_minimal_symbol (...) = %s (external)\n",
443 host_address_to_string (minsym));
444 }
445 return found.external_symbol;
446 }
447
448 /* File-local symbols are next best. */
449 if (found.file_symbol.minsym != NULL)
450 {
451 if (symbol_lookup_debug)
452 {
453 minimal_symbol *minsym = found.file_symbol.minsym;
454
455 gdb_printf (gdb_stdlog,
456 "lookup_minimal_symbol (...) = %s (file-local)\n",
457 host_address_to_string (minsym));
458 }
459 return found.file_symbol;
460 }
461
462 /* Symbols for shared library trampolines are next best. */
463 if (found.trampoline_symbol.minsym != NULL)
464 {
465 if (symbol_lookup_debug)
466 {
467 minimal_symbol *minsym = found.trampoline_symbol.minsym;
468
469 gdb_printf (gdb_stdlog,
470 "lookup_minimal_symbol (...) = %s (trampoline)\n",
471 host_address_to_string (minsym));
472 }
473
474 return found.trampoline_symbol;
475 }
476
477 /* Not found. */
478 if (symbol_lookup_debug)
479 gdb_printf (gdb_stdlog, "lookup_minimal_symbol (...) = NULL\n");
480 return {};
481 }
482
483 /* See minsyms.h. */
484
485 struct bound_minimal_symbol
486 lookup_bound_minimal_symbol (const char *name)
487 {
488 return lookup_minimal_symbol (name, NULL, NULL);
489 }
490
491 /* See gdbsupport/symbol.h. */
492
493 int
494 find_minimal_symbol_address (const char *name, CORE_ADDR *addr,
495 struct objfile *objfile)
496 {
497 struct bound_minimal_symbol sym
498 = lookup_minimal_symbol (name, NULL, objfile);
499
500 if (sym.minsym != NULL)
501 *addr = BMSYMBOL_VALUE_ADDRESS (sym);
502
503 return sym.minsym == NULL;
504 }
505
506 /* Get the lookup name form best suitable for linkage name
507 matching. */
508
509 static const char *
510 linkage_name_str (const lookup_name_info &lookup_name)
511 {
512 /* Unlike most languages (including C++), Ada uses the
513 encoded/linkage name as the search name recorded in symbols. So
514 if debugging in Ada mode, prefer the Ada-encoded name. This also
515 makes Ada's verbatim match syntax ("<...>") work, because
516 "lookup_name.name()" includes the "<>"s, while
517 "lookup_name.ada().lookup_name()" is the encoded name with "<>"s
518 stripped. */
519 if (current_language->la_language == language_ada)
520 return lookup_name.ada ().lookup_name ().c_str ();
521
522 return lookup_name.c_str ();
523 }
524
525 /* See minsyms.h. */
526
527 void
528 iterate_over_minimal_symbols
529 (struct objfile *objf, const lookup_name_info &lookup_name,
530 gdb::function_view<bool (struct minimal_symbol *)> callback)
531 {
532 /* The first pass is over the ordinary hash table. */
533 {
534 const char *name = linkage_name_str (lookup_name);
535 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
536 auto *mangled_cmp
537 = (case_sensitivity == case_sensitive_on
538 ? strcmp
539 : strcasecmp);
540
541 for (minimal_symbol *iter = objf->per_bfd->msymbol_hash[hash];
542 iter != NULL;
543 iter = iter->hash_next)
544 {
545 if (mangled_cmp (iter->linkage_name (), name) == 0)
546 if (callback (iter))
547 return;
548 }
549 }
550
551 /* The second pass is over the demangled table. Once for each
552 language in the demangled hash names table (usually just zero or
553 one). */
554 for (unsigned liter = 0; liter < nr_languages; ++liter)
555 {
556 if (!objf->per_bfd->demangled_hash_languages.test (liter))
557 continue;
558
559 enum language lang = (enum language) liter;
560 const language_defn *lang_def = language_def (lang);
561 symbol_name_matcher_ftype *name_match
562 = lang_def->get_symbol_name_matcher (lookup_name);
563
564 unsigned int hash
565 = lookup_name.search_name_hash (lang) % MINIMAL_SYMBOL_HASH_SIZE;
566 for (minimal_symbol *iter = objf->per_bfd->msymbol_demangled_hash[hash];
567 iter != NULL;
568 iter = iter->demangled_hash_next)
569 if (name_match (iter->search_name (), lookup_name, NULL))
570 if (callback (iter))
571 return;
572 }
573 }
574
575 /* See minsyms.h. */
576
577 bound_minimal_symbol
578 lookup_minimal_symbol_linkage (const char *name, struct objfile *objf)
579 {
580 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
581
582 for (objfile *objfile : objf->separate_debug_objfiles ())
583 {
584 for (minimal_symbol *msymbol = objfile->per_bfd->msymbol_hash[hash];
585 msymbol != NULL;
586 msymbol = msymbol->hash_next)
587 {
588 if (strcmp (msymbol->linkage_name (), name) == 0
589 && (MSYMBOL_TYPE (msymbol) == mst_data
590 || MSYMBOL_TYPE (msymbol) == mst_bss))
591 return {msymbol, objfile};
592 }
593 }
594
595 return {};
596 }
597
598 /* See minsyms.h. */
599
600 struct bound_minimal_symbol
601 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
602 {
603 struct minimal_symbol *msymbol;
604 struct bound_minimal_symbol found_symbol;
605 struct bound_minimal_symbol found_file_symbol;
606
607 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
608
609 for (objfile *objfile : current_program_space->objfiles ())
610 {
611 if (found_symbol.minsym != NULL)
612 break;
613
614 if (objf == NULL || objf == objfile
615 || objf == objfile->separate_debug_objfile_backlink)
616 {
617 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
618 msymbol != NULL && found_symbol.minsym == NULL;
619 msymbol = msymbol->hash_next)
620 {
621 if (strcmp (msymbol->linkage_name (), name) == 0 &&
622 (MSYMBOL_TYPE (msymbol) == mst_text
623 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
624 || MSYMBOL_TYPE (msymbol) == mst_file_text))
625 {
626 switch (MSYMBOL_TYPE (msymbol))
627 {
628 case mst_file_text:
629 found_file_symbol.minsym = msymbol;
630 found_file_symbol.objfile = objfile;
631 break;
632 default:
633 found_symbol.minsym = msymbol;
634 found_symbol.objfile = objfile;
635 break;
636 }
637 }
638 }
639 }
640 }
641 /* External symbols are best. */
642 if (found_symbol.minsym)
643 return found_symbol;
644
645 /* File-local symbols are next best. */
646 return found_file_symbol;
647 }
648
649 /* See minsyms.h. */
650
651 struct minimal_symbol *
652 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
653 struct objfile *objf)
654 {
655 struct minimal_symbol *msymbol;
656
657 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
658
659 for (objfile *objfile : current_program_space->objfiles ())
660 {
661 if (objf == NULL || objf == objfile
662 || objf == objfile->separate_debug_objfile_backlink)
663 {
664 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
665 msymbol != NULL;
666 msymbol = msymbol->hash_next)
667 {
668 if (MSYMBOL_VALUE_ADDRESS (objfile, msymbol) == pc
669 && strcmp (msymbol->linkage_name (), name) == 0)
670 return msymbol;
671 }
672 }
673 }
674
675 return NULL;
676 }
677
678 /* A helper function that makes *PC section-relative. This searches
679 the sections of OBJFILE and if *PC is in a section, it subtracts
680 the section offset and returns true. Otherwise it returns
681 false. */
682
683 static int
684 frob_address (struct objfile *objfile, CORE_ADDR *pc)
685 {
686 struct obj_section *iter;
687
688 ALL_OBJFILE_OSECTIONS (objfile, iter)
689 {
690 if (*pc >= iter->addr () && *pc < iter->endaddr ())
691 {
692 *pc -= iter->offset ();
693 return 1;
694 }
695 }
696
697 return 0;
698 }
699
700 /* Helper for lookup_minimal_symbol_by_pc_section. Convert a
701 lookup_msym_prefer to a minimal_symbol_type. */
702
703 static minimal_symbol_type
704 msym_prefer_to_msym_type (lookup_msym_prefer prefer)
705 {
706 switch (prefer)
707 {
708 case lookup_msym_prefer::TEXT:
709 return mst_text;
710 case lookup_msym_prefer::TRAMPOLINE:
711 return mst_solib_trampoline;
712 case lookup_msym_prefer::GNU_IFUNC:
713 return mst_text_gnu_ifunc;
714 }
715
716 /* Assert here instead of in a default switch case above so that
717 -Wswitch warns if a new enumerator is added. */
718 gdb_assert_not_reached ("unhandled lookup_msym_prefer");
719 }
720
721 /* See minsyms.h.
722
723 Note that we need to look through ALL the minimal symbol tables
724 before deciding on the symbol that comes closest to the specified PC.
725 This is because objfiles can overlap, for example objfile A has .text
726 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
727 .data at 0x40048. */
728
729 bound_minimal_symbol
730 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc_in, struct obj_section *section,
731 lookup_msym_prefer prefer,
732 bound_minimal_symbol *previous)
733 {
734 int lo;
735 int hi;
736 int newobj;
737 struct minimal_symbol *msymbol;
738 struct minimal_symbol *best_symbol = NULL;
739 struct objfile *best_objfile = NULL;
740 struct bound_minimal_symbol result;
741
742 if (previous != nullptr)
743 {
744 previous->minsym = nullptr;
745 previous->objfile = nullptr;
746 }
747
748 if (section == NULL)
749 {
750 section = find_pc_section (pc_in);
751 if (section == NULL)
752 return {};
753 }
754
755 minimal_symbol_type want_type = msym_prefer_to_msym_type (prefer);
756
757 /* We can not require the symbol found to be in section, because
758 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
759 symbol - but find_pc_section won't return an absolute section and
760 hence the code below would skip over absolute symbols. We can
761 still take advantage of the call to find_pc_section, though - the
762 object file still must match. In case we have separate debug
763 files, search both the file and its separate debug file. There's
764 no telling which one will have the minimal symbols. */
765
766 gdb_assert (section != NULL);
767
768 for (objfile *objfile : section->objfile->separate_debug_objfiles ())
769 {
770 CORE_ADDR pc = pc_in;
771
772 /* If this objfile has a minimal symbol table, go search it
773 using a binary search. */
774
775 if (objfile->per_bfd->minimal_symbol_count > 0)
776 {
777 int best_zero_sized = -1;
778
779 msymbol = objfile->per_bfd->msymbols.get ();
780 lo = 0;
781 hi = objfile->per_bfd->minimal_symbol_count - 1;
782
783 /* This code assumes that the minimal symbols are sorted by
784 ascending address values. If the pc value is greater than or
785 equal to the first symbol's address, then some symbol in this
786 minimal symbol table is a suitable candidate for being the
787 "best" symbol. This includes the last real symbol, for cases
788 where the pc value is larger than any address in this vector.
789
790 By iterating until the address associated with the current
791 hi index (the endpoint of the test interval) is less than
792 or equal to the desired pc value, we accomplish two things:
793 (1) the case where the pc value is larger than any minimal
794 symbol address is trivially solved, (2) the address associated
795 with the hi index is always the one we want when the iteration
796 terminates. In essence, we are iterating the test interval
797 down until the pc value is pushed out of it from the high end.
798
799 Warning: this code is trickier than it would appear at first. */
800
801 if (frob_address (objfile, &pc)
802 && pc >= MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[lo]))
803 {
804 while (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]) > pc)
805 {
806 /* pc is still strictly less than highest address. */
807 /* Note "new" will always be >= lo. */
808 newobj = (lo + hi) / 2;
809 if ((MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[newobj]) >= pc)
810 || (lo == newobj))
811 {
812 hi = newobj;
813 }
814 else
815 {
816 lo = newobj;
817 }
818 }
819
820 /* If we have multiple symbols at the same address, we want
821 hi to point to the last one. That way we can find the
822 right symbol if it has an index greater than hi. */
823 while (hi < objfile->per_bfd->minimal_symbol_count - 1
824 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
825 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi + 1])))
826 hi++;
827
828 /* Skip various undesirable symbols. */
829 while (hi >= 0)
830 {
831 /* Skip any absolute symbols. This is apparently
832 what adb and dbx do, and is needed for the CM-5.
833 There are two known possible problems: (1) on
834 ELF, apparently end, edata, etc. are absolute.
835 Not sure ignoring them here is a big deal, but if
836 we want to use them, the fix would go in
837 elfread.c. (2) I think shared library entry
838 points on the NeXT are absolute. If we want
839 special handling for this it probably should be
840 triggered by a special mst_abs_or_lib or some
841 such. */
842
843 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
844 {
845 hi--;
846 continue;
847 }
848
849 /* If SECTION was specified, skip any symbol from
850 wrong section. */
851 if (section
852 /* Some types of debug info, such as COFF,
853 don't fill the bfd_section member, so don't
854 throw away symbols on those platforms. */
855 && msymbol[hi].obj_section (objfile) != nullptr
856 && (!matching_obj_sections
857 (msymbol[hi].obj_section (objfile),
858 section)))
859 {
860 hi--;
861 continue;
862 }
863
864 /* If we are looking for a trampoline and this is a
865 text symbol, or the other way around, check the
866 preceding symbol too. If they are otherwise
867 identical prefer that one. */
868 if (hi > 0
869 && MSYMBOL_TYPE (&msymbol[hi]) != want_type
870 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
871 && (MSYMBOL_SIZE (&msymbol[hi])
872 == MSYMBOL_SIZE (&msymbol[hi - 1]))
873 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
874 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1]))
875 && (msymbol[hi].obj_section (objfile)
876 == msymbol[hi - 1].obj_section (objfile)))
877 {
878 hi--;
879 continue;
880 }
881
882 /* If the minimal symbol has a zero size, save it
883 but keep scanning backwards looking for one with
884 a non-zero size. A zero size may mean that the
885 symbol isn't an object or function (e.g. a
886 label), or it may just mean that the size was not
887 specified. */
888 if (MSYMBOL_SIZE (&msymbol[hi]) == 0)
889 {
890 if (best_zero_sized == -1)
891 best_zero_sized = hi;
892 hi--;
893 continue;
894 }
895
896 /* If we are past the end of the current symbol, try
897 the previous symbol if it has a larger overlapping
898 size. This happens on i686-pc-linux-gnu with glibc;
899 the nocancel variants of system calls are inside
900 the cancellable variants, but both have sizes. */
901 if (hi > 0
902 && MSYMBOL_SIZE (&msymbol[hi]) != 0
903 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
904 + MSYMBOL_SIZE (&msymbol[hi]))
905 && pc < (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1])
906 + MSYMBOL_SIZE (&msymbol[hi - 1])))
907 {
908 hi--;
909 continue;
910 }
911
912 /* Otherwise, this symbol must be as good as we're going
913 to get. */
914 break;
915 }
916
917 /* If HI has a zero size, and best_zero_sized is set,
918 then we had two or more zero-sized symbols; prefer
919 the first one we found (which may have a higher
920 address). Also, if we ran off the end, be sure
921 to back up. */
922 if (best_zero_sized != -1
923 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
924 hi = best_zero_sized;
925
926 /* If the minimal symbol has a non-zero size, and this
927 PC appears to be outside the symbol's contents, then
928 refuse to use this symbol. If we found a zero-sized
929 symbol with an address greater than this symbol's,
930 use that instead. We assume that if symbols have
931 specified sizes, they do not overlap. */
932
933 if (hi >= 0
934 && MSYMBOL_SIZE (&msymbol[hi]) != 0
935 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
936 + MSYMBOL_SIZE (&msymbol[hi])))
937 {
938 if (best_zero_sized != -1)
939 hi = best_zero_sized;
940 else
941 {
942 /* If needed record this symbol as the closest
943 previous symbol. */
944 if (previous != nullptr)
945 {
946 if (previous->minsym == nullptr
947 || (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
948 > MSYMBOL_VALUE_RAW_ADDRESS
949 (previous->minsym)))
950 {
951 previous->minsym = &msymbol[hi];
952 previous->objfile = objfile;
953 }
954 }
955 /* Go on to the next object file. */
956 continue;
957 }
958 }
959
960 /* The minimal symbol indexed by hi now is the best one in this
961 objfile's minimal symbol table. See if it is the best one
962 overall. */
963
964 if (hi >= 0
965 && ((best_symbol == NULL) ||
966 (MSYMBOL_VALUE_RAW_ADDRESS (best_symbol) <
967 MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]))))
968 {
969 best_symbol = &msymbol[hi];
970 best_objfile = objfile;
971 }
972 }
973 }
974 }
975
976 result.minsym = best_symbol;
977 result.objfile = best_objfile;
978 return result;
979 }
980
981 /* See minsyms.h. */
982
983 struct bound_minimal_symbol
984 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
985 {
986 return lookup_minimal_symbol_by_pc_section (pc, NULL);
987 }
988
989 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
990
991 bool
992 in_gnu_ifunc_stub (CORE_ADDR pc)
993 {
994 bound_minimal_symbol msymbol
995 = lookup_minimal_symbol_by_pc_section (pc, NULL,
996 lookup_msym_prefer::GNU_IFUNC);
997 return msymbol.minsym && MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc;
998 }
999
1000 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
1001
1002 static CORE_ADDR
1003 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
1004 {
1005 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
1006 "the ELF support compiled in."),
1007 paddress (gdbarch, pc));
1008 }
1009
1010 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
1011
1012 static bool
1013 stub_gnu_ifunc_resolve_name (const char *function_name,
1014 CORE_ADDR *function_address_p)
1015 {
1016 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
1017 "the ELF support compiled in."),
1018 function_name);
1019 }
1020
1021 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
1022
1023 static void
1024 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
1025 {
1026 internal_error (__FILE__, __LINE__,
1027 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
1028 }
1029
1030 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
1031
1032 static void
1033 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1034 {
1035 internal_error (__FILE__, __LINE__,
1036 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
1037 }
1038
1039 /* See elf_gnu_ifunc_fns for its real implementation. */
1040
1041 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
1042 {
1043 stub_gnu_ifunc_resolve_addr,
1044 stub_gnu_ifunc_resolve_name,
1045 stub_gnu_ifunc_resolver_stop,
1046 stub_gnu_ifunc_resolver_return_stop,
1047 };
1048
1049 /* A placeholder for &elf_gnu_ifunc_fns. */
1050
1051 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
1052
1053 \f
1054
1055 /* Return leading symbol character for a BFD. If BFD is NULL,
1056 return the leading symbol character from the main objfile. */
1057
1058 static int
1059 get_symbol_leading_char (bfd *abfd)
1060 {
1061 if (abfd != NULL)
1062 return bfd_get_symbol_leading_char (abfd);
1063 if (current_program_space->symfile_object_file != NULL)
1064 {
1065 objfile *objf = current_program_space->symfile_object_file;
1066 if (objf->obfd != NULL)
1067 return bfd_get_symbol_leading_char (objf->obfd);
1068 }
1069 return 0;
1070 }
1071
1072 /* See minsyms.h. */
1073
1074 minimal_symbol_reader::minimal_symbol_reader (struct objfile *obj)
1075 : m_objfile (obj),
1076 m_msym_bunch (NULL),
1077 /* Note that presetting m_msym_bunch_index to BUNCH_SIZE causes the
1078 first call to save a minimal symbol to allocate the memory for
1079 the first bunch. */
1080 m_msym_bunch_index (BUNCH_SIZE),
1081 m_msym_count (0)
1082 {
1083 }
1084
1085 /* Discard the currently collected minimal symbols, if any. If we wish
1086 to save them for later use, we must have already copied them somewhere
1087 else before calling this function. */
1088
1089 minimal_symbol_reader::~minimal_symbol_reader ()
1090 {
1091 struct msym_bunch *next;
1092
1093 while (m_msym_bunch != NULL)
1094 {
1095 next = m_msym_bunch->next;
1096 xfree (m_msym_bunch);
1097 m_msym_bunch = next;
1098 }
1099 }
1100
1101 /* See minsyms.h. */
1102
1103 void
1104 minimal_symbol_reader::record (const char *name, CORE_ADDR address,
1105 enum minimal_symbol_type ms_type)
1106 {
1107 int section;
1108
1109 switch (ms_type)
1110 {
1111 case mst_text:
1112 case mst_text_gnu_ifunc:
1113 case mst_file_text:
1114 case mst_solib_trampoline:
1115 section = SECT_OFF_TEXT (m_objfile);
1116 break;
1117 case mst_data:
1118 case mst_data_gnu_ifunc:
1119 case mst_file_data:
1120 section = SECT_OFF_DATA (m_objfile);
1121 break;
1122 case mst_bss:
1123 case mst_file_bss:
1124 section = SECT_OFF_BSS (m_objfile);
1125 break;
1126 default:
1127 section = -1;
1128 }
1129
1130 record_with_info (name, address, ms_type, section);
1131 }
1132
1133 /* Convert an enumerator of type minimal_symbol_type to its string
1134 representation. */
1135
1136 static const char *
1137 mst_str (minimal_symbol_type t)
1138 {
1139 #define MST_TO_STR(x) case x: return #x;
1140 switch (t)
1141 {
1142 MST_TO_STR (mst_unknown);
1143 MST_TO_STR (mst_text);
1144 MST_TO_STR (mst_text_gnu_ifunc);
1145 MST_TO_STR (mst_slot_got_plt);
1146 MST_TO_STR (mst_data);
1147 MST_TO_STR (mst_bss);
1148 MST_TO_STR (mst_abs);
1149 MST_TO_STR (mst_solib_trampoline);
1150 MST_TO_STR (mst_file_text);
1151 MST_TO_STR (mst_file_data);
1152 MST_TO_STR (mst_file_bss);
1153
1154 default:
1155 return "mst_???";
1156 }
1157 #undef MST_TO_STR
1158 }
1159
1160 /* See minsyms.h. */
1161
1162 struct minimal_symbol *
1163 minimal_symbol_reader::record_full (gdb::string_view name,
1164 bool copy_name, CORE_ADDR address,
1165 enum minimal_symbol_type ms_type,
1166 int section)
1167 {
1168 struct msym_bunch *newobj;
1169 struct minimal_symbol *msymbol;
1170
1171 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
1172 the minimal symbols, because if there is also another symbol
1173 at the same address (e.g. the first function of the file),
1174 lookup_minimal_symbol_by_pc would have no way of getting the
1175 right one. */
1176 if (ms_type == mst_file_text && name[0] == 'g'
1177 && (name == GCC_COMPILED_FLAG_SYMBOL
1178 || name == GCC2_COMPILED_FLAG_SYMBOL))
1179 return (NULL);
1180
1181 /* It's safe to strip the leading char here once, since the name
1182 is also stored stripped in the minimal symbol table. */
1183 if (name[0] == get_symbol_leading_char (m_objfile->obfd))
1184 name = name.substr (1);
1185
1186 if (ms_type == mst_file_text && startswith (name, "__gnu_compiled"))
1187 return (NULL);
1188
1189 if (symtab_create_debug >= 2)
1190 gdb_printf (gdb_stdlog,
1191 "Recording minsym: %-21s %18s %4d %.*s\n",
1192 mst_str (ms_type), hex_string (address), section,
1193 (int) name.size (), name.data ());
1194
1195 if (m_msym_bunch_index == BUNCH_SIZE)
1196 {
1197 newobj = XCNEW (struct msym_bunch);
1198 m_msym_bunch_index = 0;
1199 newobj->next = m_msym_bunch;
1200 m_msym_bunch = newobj;
1201 }
1202 msymbol = &m_msym_bunch->contents[m_msym_bunch_index];
1203 msymbol->set_language (language_auto,
1204 &m_objfile->per_bfd->storage_obstack);
1205
1206 if (copy_name)
1207 msymbol->m_name = obstack_strndup (&m_objfile->per_bfd->storage_obstack,
1208 name.data (), name.size ());
1209 else
1210 msymbol->m_name = name.data ();
1211
1212 SET_MSYMBOL_VALUE_ADDRESS (msymbol, address);
1213 msymbol->set_section_index (section);
1214
1215 MSYMBOL_TYPE (msymbol) = ms_type;
1216
1217 /* If we already read minimal symbols for this objfile, then don't
1218 ever allocate a new one. */
1219 if (!m_objfile->per_bfd->minsyms_read)
1220 {
1221 m_msym_bunch_index++;
1222 m_objfile->per_bfd->n_minsyms++;
1223 }
1224 m_msym_count++;
1225 return msymbol;
1226 }
1227
1228 /* Compare two minimal symbols by address and return true if FN1's address
1229 is less than FN2's, so that we sort into unsigned numeric order.
1230 Within groups with the same address, sort by name. */
1231
1232 static inline bool
1233 minimal_symbol_is_less_than (const minimal_symbol &fn1,
1234 const minimal_symbol &fn2)
1235 {
1236 if (MSYMBOL_VALUE_RAW_ADDRESS (&fn1) < MSYMBOL_VALUE_RAW_ADDRESS (&fn2))
1237 {
1238 return true; /* addr 1 is less than addr 2. */
1239 }
1240 else if (MSYMBOL_VALUE_RAW_ADDRESS (&fn1) > MSYMBOL_VALUE_RAW_ADDRESS (&fn2))
1241 {
1242 return false; /* addr 1 is greater than addr 2. */
1243 }
1244 else
1245 /* addrs are equal: sort by name */
1246 {
1247 const char *name1 = fn1.linkage_name ();
1248 const char *name2 = fn2.linkage_name ();
1249
1250 if (name1 && name2) /* both have names */
1251 return strcmp (name1, name2) < 0;
1252 else if (name2)
1253 return true; /* fn1 has no name, so it is "less". */
1254 else if (name1) /* fn2 has no name, so it is "less". */
1255 return false;
1256 else
1257 return false; /* Neither has a name, so they're equal. */
1258 }
1259 }
1260
1261 /* Compact duplicate entries out of a minimal symbol table by walking
1262 through the table and compacting out entries with duplicate addresses
1263 and matching names. Return the number of entries remaining.
1264
1265 On entry, the table resides between msymbol[0] and msymbol[mcount].
1266 On exit, it resides between msymbol[0] and msymbol[result_count].
1267
1268 When files contain multiple sources of symbol information, it is
1269 possible for the minimal symbol table to contain many duplicate entries.
1270 As an example, SVR4 systems use ELF formatted object files, which
1271 usually contain at least two different types of symbol tables (a
1272 standard ELF one and a smaller dynamic linking table), as well as
1273 DWARF debugging information for files compiled with -g.
1274
1275 Without compacting, the minimal symbol table for gdb itself contains
1276 over a 1000 duplicates, about a third of the total table size. Aside
1277 from the potential trap of not noticing that two successive entries
1278 identify the same location, this duplication impacts the time required
1279 to linearly scan the table, which is done in a number of places. So we
1280 just do one linear scan here and toss out the duplicates.
1281
1282 Since the different sources of information for each symbol may
1283 have different levels of "completeness", we may have duplicates
1284 that have one entry with type "mst_unknown" and the other with a
1285 known type. So if the one we are leaving alone has type mst_unknown,
1286 overwrite its type with the type from the one we are compacting out. */
1287
1288 static int
1289 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1290 struct objfile *objfile)
1291 {
1292 struct minimal_symbol *copyfrom;
1293 struct minimal_symbol *copyto;
1294
1295 if (mcount > 0)
1296 {
1297 copyfrom = copyto = msymbol;
1298 while (copyfrom < msymbol + mcount - 1)
1299 {
1300 if (MSYMBOL_VALUE_RAW_ADDRESS (copyfrom)
1301 == MSYMBOL_VALUE_RAW_ADDRESS ((copyfrom + 1))
1302 && (copyfrom->section_index ()
1303 == (copyfrom + 1)->section_index ())
1304 && strcmp (copyfrom->linkage_name (),
1305 (copyfrom + 1)->linkage_name ()) == 0)
1306 {
1307 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1308 {
1309 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1310 }
1311 copyfrom++;
1312 }
1313 else
1314 *copyto++ = *copyfrom++;
1315 }
1316 *copyto++ = *copyfrom++;
1317 mcount = copyto - msymbol;
1318 }
1319 return (mcount);
1320 }
1321
1322 static void
1323 clear_minimal_symbol_hash_tables (struct objfile *objfile)
1324 {
1325 for (size_t i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1326 {
1327 objfile->per_bfd->msymbol_hash[i] = 0;
1328 objfile->per_bfd->msymbol_demangled_hash[i] = 0;
1329 }
1330 }
1331
1332 /* This struct is used to store values we compute for msymbols on the
1333 background threads but don't need to keep around long term. */
1334 struct computed_hash_values
1335 {
1336 /* Length of the linkage_name of the symbol. */
1337 size_t name_length;
1338 /* Hash code (using fast_hash) of the linkage_name. */
1339 hashval_t mangled_name_hash;
1340 /* The msymbol_hash of the linkage_name. */
1341 unsigned int minsym_hash;
1342 /* The msymbol_hash of the search_name. */
1343 unsigned int minsym_demangled_hash;
1344 };
1345
1346 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1347 after compacting or sorting the table since the entries move around
1348 thus causing the internal minimal_symbol pointers to become jumbled. */
1349
1350 static void
1351 build_minimal_symbol_hash_tables
1352 (struct objfile *objfile,
1353 const std::vector<computed_hash_values>& hash_values)
1354 {
1355 int i;
1356 struct minimal_symbol *msym;
1357
1358 /* (Re)insert the actual entries. */
1359 int mcount = objfile->per_bfd->minimal_symbol_count;
1360 for ((i = 0,
1361 msym = objfile->per_bfd->msymbols.get ());
1362 i < mcount;
1363 i++, msym++)
1364 {
1365 msym->hash_next = 0;
1366 add_minsym_to_hash_table (msym, objfile->per_bfd->msymbol_hash,
1367 hash_values[i].minsym_hash);
1368
1369 msym->demangled_hash_next = 0;
1370 if (msym->search_name () != msym->linkage_name ())
1371 add_minsym_to_demangled_hash_table
1372 (msym, objfile, hash_values[i].minsym_demangled_hash);
1373 }
1374 }
1375
1376 /* Add the minimal symbols in the existing bunches to the objfile's official
1377 minimal symbol table. In most cases there is no minimal symbol table yet
1378 for this objfile, and the existing bunches are used to create one. Once
1379 in a while (for shared libraries for example), we add symbols (e.g. common
1380 symbols) to an existing objfile. */
1381
1382 void
1383 minimal_symbol_reader::install ()
1384 {
1385 int mcount;
1386 struct msym_bunch *bunch;
1387 struct minimal_symbol *msymbols;
1388 int alloc_count;
1389
1390 if (m_objfile->per_bfd->minsyms_read)
1391 return;
1392
1393 if (m_msym_count > 0)
1394 {
1395 if (symtab_create_debug)
1396 {
1397 gdb_printf (gdb_stdlog,
1398 "Installing %d minimal symbols of objfile %s.\n",
1399 m_msym_count, objfile_name (m_objfile));
1400 }
1401
1402 /* Allocate enough space, into which we will gather the bunches
1403 of new and existing minimal symbols, sort them, and then
1404 compact out the duplicate entries. Once we have a final
1405 table, we will give back the excess space. */
1406
1407 alloc_count = m_msym_count + m_objfile->per_bfd->minimal_symbol_count;
1408 gdb::unique_xmalloc_ptr<minimal_symbol>
1409 msym_holder (XNEWVEC (minimal_symbol, alloc_count));
1410 msymbols = msym_holder.get ();
1411
1412 /* Copy in the existing minimal symbols, if there are any. */
1413
1414 if (m_objfile->per_bfd->minimal_symbol_count)
1415 memcpy (msymbols, m_objfile->per_bfd->msymbols.get (),
1416 m_objfile->per_bfd->minimal_symbol_count
1417 * sizeof (struct minimal_symbol));
1418
1419 /* Walk through the list of minimal symbol bunches, adding each symbol
1420 to the new contiguous array of symbols. Note that we start with the
1421 current, possibly partially filled bunch (thus we use the current
1422 msym_bunch_index for the first bunch we copy over), and thereafter
1423 each bunch is full. */
1424
1425 mcount = m_objfile->per_bfd->minimal_symbol_count;
1426
1427 for (bunch = m_msym_bunch; bunch != NULL; bunch = bunch->next)
1428 {
1429 memcpy (&msymbols[mcount], &bunch->contents[0],
1430 m_msym_bunch_index * sizeof (struct minimal_symbol));
1431 mcount += m_msym_bunch_index;
1432 m_msym_bunch_index = BUNCH_SIZE;
1433 }
1434
1435 /* Sort the minimal symbols by address. */
1436
1437 std::sort (msymbols, msymbols + mcount, minimal_symbol_is_less_than);
1438
1439 /* Compact out any duplicates, and free up whatever space we are
1440 no longer using. */
1441
1442 mcount = compact_minimal_symbols (msymbols, mcount, m_objfile);
1443 msym_holder.reset (XRESIZEVEC (struct minimal_symbol,
1444 msym_holder.release (),
1445 mcount));
1446
1447 /* Attach the minimal symbol table to the specified objfile.
1448 The strings themselves are also located in the storage_obstack
1449 of this objfile. */
1450
1451 if (m_objfile->per_bfd->minimal_symbol_count != 0)
1452 clear_minimal_symbol_hash_tables (m_objfile);
1453
1454 m_objfile->per_bfd->minimal_symbol_count = mcount;
1455 m_objfile->per_bfd->msymbols = std::move (msym_holder);
1456
1457 #if CXX_STD_THREAD
1458 /* Mutex that is used when modifying or accessing the demangled
1459 hash table. */
1460 std::mutex demangled_mutex;
1461 #endif
1462
1463 std::vector<computed_hash_values> hash_values (mcount);
1464
1465 msymbols = m_objfile->per_bfd->msymbols.get ();
1466 gdb::parallel_for_each
1467 (&msymbols[0], &msymbols[mcount],
1468 [&] (minimal_symbol *start, minimal_symbol *end)
1469 {
1470 for (minimal_symbol *msym = start; msym < end; ++msym)
1471 {
1472 size_t idx = msym - msymbols;
1473 hash_values[idx].name_length = strlen (msym->linkage_name ());
1474 if (!msym->name_set)
1475 {
1476 /* This will be freed later, by compute_and_set_names. */
1477 gdb::unique_xmalloc_ptr<char> demangled_name
1478 = symbol_find_demangled_name (msym, msym->linkage_name ());
1479 msym->set_demangled_name
1480 (demangled_name.release (),
1481 &m_objfile->per_bfd->storage_obstack);
1482 msym->name_set = 1;
1483 }
1484 /* This mangled_name_hash computation has to be outside of
1485 the name_set check, or compute_and_set_names below will
1486 be called with an invalid hash value. */
1487 hash_values[idx].mangled_name_hash
1488 = fast_hash (msym->linkage_name (),
1489 hash_values[idx].name_length);
1490 hash_values[idx].minsym_hash
1491 = msymbol_hash (msym->linkage_name ());
1492 /* We only use this hash code if the search name differs
1493 from the linkage name. See the code in
1494 build_minimal_symbol_hash_tables. */
1495 if (msym->search_name () != msym->linkage_name ())
1496 hash_values[idx].minsym_demangled_hash
1497 = search_name_hash (msym->language (), msym->search_name ());
1498 }
1499 {
1500 /* To limit how long we hold the lock, we only acquire it here
1501 and not while we demangle the names above. */
1502 #if CXX_STD_THREAD
1503 std::lock_guard<std::mutex> guard (demangled_mutex);
1504 #endif
1505 for (minimal_symbol *msym = start; msym < end; ++msym)
1506 {
1507 size_t idx = msym - msymbols;
1508 msym->compute_and_set_names
1509 (gdb::string_view (msym->linkage_name (),
1510 hash_values[idx].name_length),
1511 false,
1512 m_objfile->per_bfd,
1513 hash_values[idx].mangled_name_hash);
1514 }
1515 }
1516 });
1517
1518 build_minimal_symbol_hash_tables (m_objfile, hash_values);
1519 }
1520 }
1521
1522 /* Check if PC is in a shared library trampoline code stub.
1523 Return minimal symbol for the trampoline entry or NULL if PC is not
1524 in a trampoline code stub. */
1525
1526 static struct minimal_symbol *
1527 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1528 {
1529 bound_minimal_symbol msymbol
1530 = lookup_minimal_symbol_by_pc_section (pc, NULL,
1531 lookup_msym_prefer::TRAMPOLINE);
1532
1533 if (msymbol.minsym != NULL
1534 && MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
1535 return msymbol.minsym;
1536 return NULL;
1537 }
1538
1539 /* If PC is in a shared library trampoline code stub, return the
1540 address of the `real' function belonging to the stub.
1541 Return 0 if PC is not in a trampoline code stub or if the real
1542 function is not found in the minimal symbol table.
1543
1544 We may fail to find the right function if a function with the
1545 same name is defined in more than one shared library, but this
1546 is considered bad programming style. We could return 0 if we find
1547 a duplicate function in case this matters someday. */
1548
1549 CORE_ADDR
1550 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1551 {
1552 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1553
1554 if (tsymbol != NULL)
1555 {
1556 for (objfile *objfile : current_program_space->objfiles ())
1557 {
1558 for (minimal_symbol *msymbol : objfile->msymbols ())
1559 {
1560 /* Also handle minimal symbols pointing to function
1561 descriptors. */
1562 if ((MSYMBOL_TYPE (msymbol) == mst_text
1563 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
1564 || MSYMBOL_TYPE (msymbol) == mst_data
1565 || MSYMBOL_TYPE (msymbol) == mst_data_gnu_ifunc)
1566 && strcmp (msymbol->linkage_name (),
1567 tsymbol->linkage_name ()) == 0)
1568 {
1569 CORE_ADDR func;
1570
1571 /* Ignore data symbols that are not function
1572 descriptors. */
1573 if (msymbol_is_function (objfile, msymbol, &func))
1574 return func;
1575 }
1576 }
1577 }
1578 }
1579 return 0;
1580 }
1581
1582 /* See minsyms.h. */
1583
1584 CORE_ADDR
1585 minimal_symbol_upper_bound (struct bound_minimal_symbol minsym)
1586 {
1587 short section;
1588 struct obj_section *obj_section;
1589 CORE_ADDR result;
1590 struct minimal_symbol *iter, *msymbol;
1591
1592 gdb_assert (minsym.minsym != NULL);
1593
1594 /* If the minimal symbol has a size, use it. Otherwise use the
1595 lesser of the next minimal symbol in the same section, or the end
1596 of the section, as the end of the function. */
1597
1598 if (MSYMBOL_SIZE (minsym.minsym) != 0)
1599 return BMSYMBOL_VALUE_ADDRESS (minsym) + MSYMBOL_SIZE (minsym.minsym);
1600
1601 /* Step over other symbols at this same address, and symbols in
1602 other sections, to find the next symbol in this section with a
1603 different address. */
1604
1605 struct minimal_symbol *past_the_end
1606 = (minsym.objfile->per_bfd->msymbols.get ()
1607 + minsym.objfile->per_bfd->minimal_symbol_count);
1608 msymbol = minsym.minsym;
1609 section = msymbol->section_index ();
1610 for (iter = msymbol + 1; iter != past_the_end; ++iter)
1611 {
1612 if ((MSYMBOL_VALUE_RAW_ADDRESS (iter)
1613 != MSYMBOL_VALUE_RAW_ADDRESS (msymbol))
1614 && iter->section_index () == section)
1615 break;
1616 }
1617
1618 obj_section = minsym.obj_section ();
1619 if (iter != past_the_end
1620 && (MSYMBOL_VALUE_ADDRESS (minsym.objfile, iter)
1621 < obj_section->endaddr ()))
1622 result = MSYMBOL_VALUE_ADDRESS (minsym.objfile, iter);
1623 else
1624 /* We got the start address from the last msymbol in the objfile.
1625 So the end address is the end of the section. */
1626 result = obj_section->endaddr ();
1627
1628 return result;
1629 }