]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/minsyms.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2004, 2007-2012 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
23
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
28
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
32
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
37
38
39 #include "defs.h"
40 #include <ctype.h>
41 #include "gdb_string.h"
42 #include "symtab.h"
43 #include "bfd.h"
44 #include "filenames.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "demangle.h"
48 #include "value.h"
49 #include "cp-abi.h"
50 #include "target.h"
51 #include "cp-support.h"
52 #include "language.h"
53
54 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
55 At the end, copy them all into one newly allocated location on an objfile's
56 symbol obstack. */
57
58 #define BUNCH_SIZE 127
59
60 struct msym_bunch
61 {
62 struct msym_bunch *next;
63 struct minimal_symbol contents[BUNCH_SIZE];
64 };
65
66 /* Bunch currently being filled up.
67 The next field points to chain of filled bunches. */
68
69 static struct msym_bunch *msym_bunch;
70
71 /* Number of slots filled in current bunch. */
72
73 static int msym_bunch_index;
74
75 /* Total number of minimal symbols recorded so far for the objfile. */
76
77 static int msym_count;
78
79 /* See minsyms.h. */
80
81 unsigned int
82 msymbol_hash_iw (const char *string)
83 {
84 unsigned int hash = 0;
85
86 while (*string && *string != '(')
87 {
88 while (isspace (*string))
89 ++string;
90 if (*string && *string != '(')
91 {
92 hash = SYMBOL_HASH_NEXT (hash, *string);
93 ++string;
94 }
95 }
96 return hash;
97 }
98
99 /* See minsyms.h. */
100
101 unsigned int
102 msymbol_hash (const char *string)
103 {
104 unsigned int hash = 0;
105
106 for (; *string; ++string)
107 hash = SYMBOL_HASH_NEXT (hash, *string);
108 return hash;
109 }
110
111 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
112 static void
113 add_minsym_to_hash_table (struct minimal_symbol *sym,
114 struct minimal_symbol **table)
115 {
116 if (sym->hash_next == NULL)
117 {
118 unsigned int hash
119 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
120
121 sym->hash_next = table[hash];
122 table[hash] = sym;
123 }
124 }
125
126 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
127 TABLE. */
128 static void
129 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
130 struct minimal_symbol **table)
131 {
132 if (sym->demangled_hash_next == NULL)
133 {
134 unsigned int hash = msymbol_hash_iw (SYMBOL_SEARCH_NAME (sym))
135 % MINIMAL_SYMBOL_HASH_SIZE;
136
137 sym->demangled_hash_next = table[hash];
138 table[hash] = sym;
139 }
140 }
141
142 /* See minsyms.h. */
143
144 struct objfile *
145 msymbol_objfile (struct minimal_symbol *sym)
146 {
147 struct objfile *objf;
148 struct minimal_symbol *tsym;
149
150 unsigned int hash
151 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
152
153 for (objf = object_files; objf; objf = objf->next)
154 for (tsym = objf->msymbol_hash[hash]; tsym; tsym = tsym->hash_next)
155 if (tsym == sym)
156 return objf;
157
158 /* We should always be able to find the objfile ... */
159 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
160 }
161
162
163 /* Look through all the current minimal symbol tables and find the
164 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
165 the search to that objfile. If SFILE is non-NULL, the only file-scope
166 symbols considered will be from that source file (global symbols are
167 still preferred). Returns a pointer to the minimal symbol that
168 matches, or NULL if no match is found.
169
170 Note: One instance where there may be duplicate minimal symbols with
171 the same name is when the symbol tables for a shared library and the
172 symbol tables for an executable contain global symbols with the same
173 names (the dynamic linker deals with the duplication).
174
175 It's also possible to have minimal symbols with different mangled
176 names, but identical demangled names. For example, the GNU C++ v3
177 ABI requires the generation of two (or perhaps three) copies of
178 constructor functions --- "in-charge", "not-in-charge", and
179 "allocate" copies; destructors may be duplicated as well.
180 Obviously, there must be distinct mangled names for each of these,
181 but the demangled names are all the same: S::S or S::~S. */
182
183 struct minimal_symbol *
184 lookup_minimal_symbol (const char *name, const char *sfile,
185 struct objfile *objf)
186 {
187 struct objfile *objfile;
188 struct minimal_symbol *msymbol;
189 struct minimal_symbol *found_symbol = NULL;
190 struct minimal_symbol *found_file_symbol = NULL;
191 struct minimal_symbol *trampoline_symbol = NULL;
192
193 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
194 unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
195
196 int needtofreename = 0;
197 const char *modified_name;
198
199 if (sfile != NULL)
200 sfile = lbasename (sfile);
201
202 /* For C++, canonicalize the input name. */
203 modified_name = name;
204 if (current_language->la_language == language_cplus)
205 {
206 char *cname = cp_canonicalize_string (name);
207
208 if (cname)
209 {
210 modified_name = cname;
211 needtofreename = 1;
212 }
213 }
214
215 for (objfile = object_files;
216 objfile != NULL && found_symbol == NULL;
217 objfile = objfile->next)
218 {
219 if (objf == NULL || objf == objfile
220 || objf == objfile->separate_debug_objfile_backlink)
221 {
222 /* Do two passes: the first over the ordinary hash table,
223 and the second over the demangled hash table. */
224 int pass;
225
226 for (pass = 1; pass <= 2 && found_symbol == NULL; pass++)
227 {
228 /* Select hash list according to pass. */
229 if (pass == 1)
230 msymbol = objfile->msymbol_hash[hash];
231 else
232 msymbol = objfile->msymbol_demangled_hash[dem_hash];
233
234 while (msymbol != NULL && found_symbol == NULL)
235 {
236 int match;
237
238 if (pass == 1)
239 {
240 int (*cmp) (const char *, const char *);
241
242 cmp = (case_sensitivity == case_sensitive_on
243 ? strcmp : strcasecmp);
244 match = cmp (SYMBOL_LINKAGE_NAME (msymbol),
245 modified_name) == 0;
246 }
247 else
248 {
249 /* The function respects CASE_SENSITIVITY. */
250 match = SYMBOL_MATCHES_SEARCH_NAME (msymbol,
251 modified_name);
252 }
253
254 if (match)
255 {
256 switch (MSYMBOL_TYPE (msymbol))
257 {
258 case mst_file_text:
259 case mst_file_data:
260 case mst_file_bss:
261 if (sfile == NULL
262 || filename_cmp (msymbol->filename, sfile) == 0)
263 found_file_symbol = msymbol;
264 break;
265
266 case mst_solib_trampoline:
267
268 /* If a trampoline symbol is found, we prefer to
269 keep looking for the *real* symbol. If the
270 actual symbol is not found, then we'll use the
271 trampoline entry. */
272 if (trampoline_symbol == NULL)
273 trampoline_symbol = msymbol;
274 break;
275
276 case mst_unknown:
277 default:
278 found_symbol = msymbol;
279 break;
280 }
281 }
282
283 /* Find the next symbol on the hash chain. */
284 if (pass == 1)
285 msymbol = msymbol->hash_next;
286 else
287 msymbol = msymbol->demangled_hash_next;
288 }
289 }
290 }
291 }
292
293 if (needtofreename)
294 xfree ((void *) modified_name);
295
296 /* External symbols are best. */
297 if (found_symbol)
298 return found_symbol;
299
300 /* File-local symbols are next best. */
301 if (found_file_symbol)
302 return found_file_symbol;
303
304 /* Symbols for shared library trampolines are next best. */
305 if (trampoline_symbol)
306 return trampoline_symbol;
307
308 return NULL;
309 }
310
311 /* See minsyms.h. */
312
313 void
314 iterate_over_minimal_symbols (struct objfile *objf, const char *name,
315 void (*callback) (struct minimal_symbol *,
316 void *),
317 void *user_data)
318 {
319 unsigned int hash;
320 struct minimal_symbol *iter;
321 int (*cmp) (const char *, const char *);
322
323 /* The first pass is over the ordinary hash table. */
324 hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
325 iter = objf->msymbol_hash[hash];
326 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
327 while (iter)
328 {
329 if (cmp (SYMBOL_LINKAGE_NAME (iter), name) == 0)
330 (*callback) (iter, user_data);
331 iter = iter->hash_next;
332 }
333
334 /* The second pass is over the demangled table. */
335 hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
336 iter = objf->msymbol_demangled_hash[hash];
337 while (iter)
338 {
339 if (SYMBOL_MATCHES_SEARCH_NAME (iter, name))
340 (*callback) (iter, user_data);
341 iter = iter->demangled_hash_next;
342 }
343 }
344
345 /* See minsyms.h. */
346
347 struct minimal_symbol *
348 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
349 {
350 struct objfile *objfile;
351 struct minimal_symbol *msymbol;
352 struct minimal_symbol *found_symbol = NULL;
353 struct minimal_symbol *found_file_symbol = NULL;
354
355 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
356
357 for (objfile = object_files;
358 objfile != NULL && found_symbol == NULL;
359 objfile = objfile->next)
360 {
361 if (objf == NULL || objf == objfile
362 || objf == objfile->separate_debug_objfile_backlink)
363 {
364 for (msymbol = objfile->msymbol_hash[hash];
365 msymbol != NULL && found_symbol == NULL;
366 msymbol = msymbol->hash_next)
367 {
368 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
369 (MSYMBOL_TYPE (msymbol) == mst_text
370 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
371 || MSYMBOL_TYPE (msymbol) == mst_file_text))
372 {
373 switch (MSYMBOL_TYPE (msymbol))
374 {
375 case mst_file_text:
376 found_file_symbol = msymbol;
377 break;
378 default:
379 found_symbol = msymbol;
380 break;
381 }
382 }
383 }
384 }
385 }
386 /* External symbols are best. */
387 if (found_symbol)
388 return found_symbol;
389
390 /* File-local symbols are next best. */
391 if (found_file_symbol)
392 return found_file_symbol;
393
394 return NULL;
395 }
396
397 /* See minsyms.h. */
398
399 struct minimal_symbol *
400 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
401 struct objfile *objf)
402 {
403 struct objfile *objfile;
404 struct minimal_symbol *msymbol;
405
406 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
407
408 for (objfile = object_files;
409 objfile != NULL;
410 objfile = objfile->next)
411 {
412 if (objf == NULL || objf == objfile
413 || objf == objfile->separate_debug_objfile_backlink)
414 {
415 for (msymbol = objfile->msymbol_hash[hash];
416 msymbol != NULL;
417 msymbol = msymbol->hash_next)
418 {
419 if (SYMBOL_VALUE_ADDRESS (msymbol) == pc
420 && strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0)
421 return msymbol;
422 }
423 }
424 }
425
426 return NULL;
427 }
428
429 /* See minsyms.h. */
430
431 struct minimal_symbol *
432 lookup_minimal_symbol_solib_trampoline (const char *name,
433 struct objfile *objf)
434 {
435 struct objfile *objfile;
436 struct minimal_symbol *msymbol;
437 struct minimal_symbol *found_symbol = NULL;
438
439 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
440
441 for (objfile = object_files;
442 objfile != NULL && found_symbol == NULL;
443 objfile = objfile->next)
444 {
445 if (objf == NULL || objf == objfile
446 || objf == objfile->separate_debug_objfile_backlink)
447 {
448 for (msymbol = objfile->msymbol_hash[hash];
449 msymbol != NULL && found_symbol == NULL;
450 msymbol = msymbol->hash_next)
451 {
452 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
453 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
454 return msymbol;
455 }
456 }
457 }
458
459 return NULL;
460 }
461
462 /* Search through the minimal symbol table for each objfile and find
463 the symbol whose address is the largest address that is still less
464 than or equal to PC, and matches SECTION (which is not NULL).
465 Returns a pointer to the minimal symbol if such a symbol is found,
466 or NULL if PC is not in a suitable range.
467 Note that we need to look through ALL the minimal symbol tables
468 before deciding on the symbol that comes closest to the specified PC.
469 This is because objfiles can overlap, for example objfile A has .text
470 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
471 .data at 0x40048.
472
473 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
474 there are text and trampoline symbols at the same address.
475 Otherwise prefer mst_text symbols. */
476
477 static struct minimal_symbol *
478 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc,
479 struct obj_section *section,
480 int want_trampoline)
481 {
482 int lo;
483 int hi;
484 int new;
485 struct objfile *objfile;
486 struct minimal_symbol *msymbol;
487 struct minimal_symbol *best_symbol = NULL;
488 enum minimal_symbol_type want_type, other_type;
489
490 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
491 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
492
493 /* We can not require the symbol found to be in section, because
494 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
495 symbol - but find_pc_section won't return an absolute section and
496 hence the code below would skip over absolute symbols. We can
497 still take advantage of the call to find_pc_section, though - the
498 object file still must match. In case we have separate debug
499 files, search both the file and its separate debug file. There's
500 no telling which one will have the minimal symbols. */
501
502 gdb_assert (section != NULL);
503
504 for (objfile = section->objfile;
505 objfile != NULL;
506 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
507 {
508 /* If this objfile has a minimal symbol table, go search it using
509 a binary search. Note that a minimal symbol table always consists
510 of at least two symbols, a "real" symbol and the terminating
511 "null symbol". If there are no real symbols, then there is no
512 minimal symbol table at all. */
513
514 if (objfile->minimal_symbol_count > 0)
515 {
516 int best_zero_sized = -1;
517
518 msymbol = objfile->msymbols;
519 lo = 0;
520 hi = objfile->minimal_symbol_count - 1;
521
522 /* This code assumes that the minimal symbols are sorted by
523 ascending address values. If the pc value is greater than or
524 equal to the first symbol's address, then some symbol in this
525 minimal symbol table is a suitable candidate for being the
526 "best" symbol. This includes the last real symbol, for cases
527 where the pc value is larger than any address in this vector.
528
529 By iterating until the address associated with the current
530 hi index (the endpoint of the test interval) is less than
531 or equal to the desired pc value, we accomplish two things:
532 (1) the case where the pc value is larger than any minimal
533 symbol address is trivially solved, (2) the address associated
534 with the hi index is always the one we want when the interation
535 terminates. In essence, we are iterating the test interval
536 down until the pc value is pushed out of it from the high end.
537
538 Warning: this code is trickier than it would appear at first. */
539
540 /* Should also require that pc is <= end of objfile. FIXME! */
541 if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo]))
542 {
543 while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc)
544 {
545 /* pc is still strictly less than highest address. */
546 /* Note "new" will always be >= lo. */
547 new = (lo + hi) / 2;
548 if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) ||
549 (lo == new))
550 {
551 hi = new;
552 }
553 else
554 {
555 lo = new;
556 }
557 }
558
559 /* If we have multiple symbols at the same address, we want
560 hi to point to the last one. That way we can find the
561 right symbol if it has an index greater than hi. */
562 while (hi < objfile->minimal_symbol_count - 1
563 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
564 == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1])))
565 hi++;
566
567 /* Skip various undesirable symbols. */
568 while (hi >= 0)
569 {
570 /* Skip any absolute symbols. This is apparently
571 what adb and dbx do, and is needed for the CM-5.
572 There are two known possible problems: (1) on
573 ELF, apparently end, edata, etc. are absolute.
574 Not sure ignoring them here is a big deal, but if
575 we want to use them, the fix would go in
576 elfread.c. (2) I think shared library entry
577 points on the NeXT are absolute. If we want
578 special handling for this it probably should be
579 triggered by a special mst_abs_or_lib or some
580 such. */
581
582 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
583 {
584 hi--;
585 continue;
586 }
587
588 /* If SECTION was specified, skip any symbol from
589 wrong section. */
590 if (section
591 /* Some types of debug info, such as COFF,
592 don't fill the bfd_section member, so don't
593 throw away symbols on those platforms. */
594 && SYMBOL_OBJ_SECTION (&msymbol[hi]) != NULL
595 && (!matching_obj_sections
596 (SYMBOL_OBJ_SECTION (&msymbol[hi]), section)))
597 {
598 hi--;
599 continue;
600 }
601
602 /* If we are looking for a trampoline and this is a
603 text symbol, or the other way around, check the
604 preceding symbol too. If they are otherwise
605 identical prefer that one. */
606 if (hi > 0
607 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
608 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
609 && (MSYMBOL_SIZE (&msymbol[hi])
610 == MSYMBOL_SIZE (&msymbol[hi - 1]))
611 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
612 == SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1]))
613 && (SYMBOL_OBJ_SECTION (&msymbol[hi])
614 == SYMBOL_OBJ_SECTION (&msymbol[hi - 1])))
615 {
616 hi--;
617 continue;
618 }
619
620 /* If the minimal symbol has a zero size, save it
621 but keep scanning backwards looking for one with
622 a non-zero size. A zero size may mean that the
623 symbol isn't an object or function (e.g. a
624 label), or it may just mean that the size was not
625 specified. */
626 if (MSYMBOL_SIZE (&msymbol[hi]) == 0
627 && best_zero_sized == -1)
628 {
629 best_zero_sized = hi;
630 hi--;
631 continue;
632 }
633
634 /* If we are past the end of the current symbol, try
635 the previous symbol if it has a larger overlapping
636 size. This happens on i686-pc-linux-gnu with glibc;
637 the nocancel variants of system calls are inside
638 the cancellable variants, but both have sizes. */
639 if (hi > 0
640 && MSYMBOL_SIZE (&msymbol[hi]) != 0
641 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
642 + MSYMBOL_SIZE (&msymbol[hi]))
643 && pc < (SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1])
644 + MSYMBOL_SIZE (&msymbol[hi - 1])))
645 {
646 hi--;
647 continue;
648 }
649
650 /* Otherwise, this symbol must be as good as we're going
651 to get. */
652 break;
653 }
654
655 /* If HI has a zero size, and best_zero_sized is set,
656 then we had two or more zero-sized symbols; prefer
657 the first one we found (which may have a higher
658 address). Also, if we ran off the end, be sure
659 to back up. */
660 if (best_zero_sized != -1
661 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
662 hi = best_zero_sized;
663
664 /* If the minimal symbol has a non-zero size, and this
665 PC appears to be outside the symbol's contents, then
666 refuse to use this symbol. If we found a zero-sized
667 symbol with an address greater than this symbol's,
668 use that instead. We assume that if symbols have
669 specified sizes, they do not overlap. */
670
671 if (hi >= 0
672 && MSYMBOL_SIZE (&msymbol[hi]) != 0
673 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
674 + MSYMBOL_SIZE (&msymbol[hi])))
675 {
676 if (best_zero_sized != -1)
677 hi = best_zero_sized;
678 else
679 /* Go on to the next object file. */
680 continue;
681 }
682
683 /* The minimal symbol indexed by hi now is the best one in this
684 objfile's minimal symbol table. See if it is the best one
685 overall. */
686
687 if (hi >= 0
688 && ((best_symbol == NULL) ||
689 (SYMBOL_VALUE_ADDRESS (best_symbol) <
690 SYMBOL_VALUE_ADDRESS (&msymbol[hi]))))
691 {
692 best_symbol = &msymbol[hi];
693 }
694 }
695 }
696 }
697 return (best_symbol);
698 }
699
700 struct minimal_symbol *
701 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
702 {
703 if (section == NULL)
704 {
705 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
706 force the section but that (well unless you're doing overlay
707 debugging) always returns NULL making the call somewhat useless. */
708 section = find_pc_section (pc);
709 if (section == NULL)
710 return NULL;
711 }
712 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
713 }
714
715 /* See minsyms.h. */
716
717 struct minimal_symbol *
718 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
719 {
720 return lookup_minimal_symbol_by_pc_section (pc, NULL);
721 }
722
723 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
724
725 int
726 in_gnu_ifunc_stub (CORE_ADDR pc)
727 {
728 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
729
730 return msymbol && MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc;
731 }
732
733 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
734
735 static CORE_ADDR
736 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
737 {
738 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
739 "the ELF support compiled in."),
740 paddress (gdbarch, pc));
741 }
742
743 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
744
745 static int
746 stub_gnu_ifunc_resolve_name (const char *function_name,
747 CORE_ADDR *function_address_p)
748 {
749 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
750 "the ELF support compiled in."),
751 function_name);
752 }
753
754 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
755
756 static void
757 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
758 {
759 internal_error (__FILE__, __LINE__,
760 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
761 }
762
763 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
764
765 static void
766 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
767 {
768 internal_error (__FILE__, __LINE__,
769 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
770 }
771
772 /* See elf_gnu_ifunc_fns for its real implementation. */
773
774 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
775 {
776 stub_gnu_ifunc_resolve_addr,
777 stub_gnu_ifunc_resolve_name,
778 stub_gnu_ifunc_resolver_stop,
779 stub_gnu_ifunc_resolver_return_stop,
780 };
781
782 /* A placeholder for &elf_gnu_ifunc_fns. */
783
784 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
785
786 /* See minsyms.h. */
787
788 struct minimal_symbol *
789 lookup_minimal_symbol_and_objfile (const char *name,
790 struct objfile **objfile_p)
791 {
792 struct objfile *objfile;
793 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
794
795 ALL_OBJFILES (objfile)
796 {
797 struct minimal_symbol *msym;
798
799 for (msym = objfile->msymbol_hash[hash];
800 msym != NULL;
801 msym = msym->hash_next)
802 {
803 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
804 {
805 *objfile_p = objfile;
806 return msym;
807 }
808 }
809 }
810
811 return 0;
812 }
813 \f
814
815 /* Return leading symbol character for a BFD. If BFD is NULL,
816 return the leading symbol character from the main objfile. */
817
818 static int get_symbol_leading_char (bfd *);
819
820 static int
821 get_symbol_leading_char (bfd *abfd)
822 {
823 if (abfd != NULL)
824 return bfd_get_symbol_leading_char (abfd);
825 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
826 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
827 return 0;
828 }
829
830 /* See minsyms.h. */
831
832 void
833 init_minimal_symbol_collection (void)
834 {
835 msym_count = 0;
836 msym_bunch = NULL;
837 /* Note that presetting msym_bunch_index to BUNCH_SIZE causes the
838 first call to save a minimal symbol to allocate the memory for
839 the first bunch. */
840 msym_bunch_index = BUNCH_SIZE;
841 }
842
843 /* See minsyms.h. */
844
845 void
846 prim_record_minimal_symbol (const char *name, CORE_ADDR address,
847 enum minimal_symbol_type ms_type,
848 struct objfile *objfile)
849 {
850 int section;
851
852 switch (ms_type)
853 {
854 case mst_text:
855 case mst_text_gnu_ifunc:
856 case mst_file_text:
857 case mst_solib_trampoline:
858 section = SECT_OFF_TEXT (objfile);
859 break;
860 case mst_data:
861 case mst_file_data:
862 section = SECT_OFF_DATA (objfile);
863 break;
864 case mst_bss:
865 case mst_file_bss:
866 section = SECT_OFF_BSS (objfile);
867 break;
868 default:
869 section = -1;
870 }
871
872 prim_record_minimal_symbol_and_info (name, address, ms_type,
873 section, NULL, objfile);
874 }
875
876 /* See minsyms.h. */
877
878 struct minimal_symbol *
879 prim_record_minimal_symbol_full (const char *name, int name_len, int copy_name,
880 CORE_ADDR address,
881 enum minimal_symbol_type ms_type,
882 int section,
883 asection *bfd_section,
884 struct objfile *objfile)
885 {
886 struct obj_section *obj_section;
887 struct msym_bunch *new;
888 struct minimal_symbol *msymbol;
889
890 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
891 the minimal symbols, because if there is also another symbol
892 at the same address (e.g. the first function of the file),
893 lookup_minimal_symbol_by_pc would have no way of getting the
894 right one. */
895 if (ms_type == mst_file_text && name[0] == 'g'
896 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
897 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
898 return (NULL);
899
900 /* It's safe to strip the leading char here once, since the name
901 is also stored stripped in the minimal symbol table. */
902 if (name[0] == get_symbol_leading_char (objfile->obfd))
903 {
904 ++name;
905 --name_len;
906 }
907
908 if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0)
909 return (NULL);
910
911 if (msym_bunch_index == BUNCH_SIZE)
912 {
913 new = XCALLOC (1, struct msym_bunch);
914 msym_bunch_index = 0;
915 new->next = msym_bunch;
916 msym_bunch = new;
917 }
918 msymbol = &msym_bunch->contents[msym_bunch_index];
919 SYMBOL_SET_LANGUAGE (msymbol, language_auto);
920 SYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, objfile);
921
922 SYMBOL_VALUE_ADDRESS (msymbol) = address;
923 SYMBOL_SECTION (msymbol) = section;
924 SYMBOL_OBJ_SECTION (msymbol) = NULL;
925
926 /* Find obj_section corresponding to bfd_section. */
927 if (bfd_section)
928 ALL_OBJFILE_OSECTIONS (objfile, obj_section)
929 {
930 if (obj_section->the_bfd_section == bfd_section)
931 {
932 SYMBOL_OBJ_SECTION (msymbol) = obj_section;
933 break;
934 }
935 }
936
937 MSYMBOL_TYPE (msymbol) = ms_type;
938 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
939 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
940 /* Do not use the SET_MSYMBOL_SIZE macro to initialize the size,
941 as it would also set the has_size flag. */
942 msymbol->size = 0;
943
944 /* The hash pointers must be cleared! If they're not,
945 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
946 msymbol->hash_next = NULL;
947 msymbol->demangled_hash_next = NULL;
948
949 msym_bunch_index++;
950 msym_count++;
951 OBJSTAT (objfile, n_minsyms++);
952 return msymbol;
953 }
954
955 /* See minsyms.h. */
956
957 struct minimal_symbol *
958 prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address,
959 enum minimal_symbol_type ms_type,
960 int section,
961 asection *bfd_section,
962 struct objfile *objfile)
963 {
964 return prim_record_minimal_symbol_full (name, strlen (name), 1,
965 address, ms_type, section,
966 bfd_section, objfile);
967 }
968
969 /* Compare two minimal symbols by address and return a signed result based
970 on unsigned comparisons, so that we sort into unsigned numeric order.
971 Within groups with the same address, sort by name. */
972
973 static int
974 compare_minimal_symbols (const void *fn1p, const void *fn2p)
975 {
976 const struct minimal_symbol *fn1;
977 const struct minimal_symbol *fn2;
978
979 fn1 = (const struct minimal_symbol *) fn1p;
980 fn2 = (const struct minimal_symbol *) fn2p;
981
982 if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2))
983 {
984 return (-1); /* addr 1 is less than addr 2. */
985 }
986 else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2))
987 {
988 return (1); /* addr 1 is greater than addr 2. */
989 }
990 else
991 /* addrs are equal: sort by name */
992 {
993 const char *name1 = SYMBOL_LINKAGE_NAME (fn1);
994 const char *name2 = SYMBOL_LINKAGE_NAME (fn2);
995
996 if (name1 && name2) /* both have names */
997 return strcmp (name1, name2);
998 else if (name2)
999 return 1; /* fn1 has no name, so it is "less". */
1000 else if (name1) /* fn2 has no name, so it is "less". */
1001 return -1;
1002 else
1003 return (0); /* Neither has a name, so they're equal. */
1004 }
1005 }
1006
1007 /* Discard the currently collected minimal symbols, if any. If we wish
1008 to save them for later use, we must have already copied them somewhere
1009 else before calling this function.
1010
1011 FIXME: We could allocate the minimal symbol bunches on their own
1012 obstack and then simply blow the obstack away when we are done with
1013 it. Is it worth the extra trouble though? */
1014
1015 static void
1016 do_discard_minimal_symbols_cleanup (void *arg)
1017 {
1018 struct msym_bunch *next;
1019
1020 while (msym_bunch != NULL)
1021 {
1022 next = msym_bunch->next;
1023 xfree (msym_bunch);
1024 msym_bunch = next;
1025 }
1026 }
1027
1028 /* See minsyms.h. */
1029
1030 struct cleanup *
1031 make_cleanup_discard_minimal_symbols (void)
1032 {
1033 return make_cleanup (do_discard_minimal_symbols_cleanup, 0);
1034 }
1035
1036
1037
1038 /* Compact duplicate entries out of a minimal symbol table by walking
1039 through the table and compacting out entries with duplicate addresses
1040 and matching names. Return the number of entries remaining.
1041
1042 On entry, the table resides between msymbol[0] and msymbol[mcount].
1043 On exit, it resides between msymbol[0] and msymbol[result_count].
1044
1045 When files contain multiple sources of symbol information, it is
1046 possible for the minimal symbol table to contain many duplicate entries.
1047 As an example, SVR4 systems use ELF formatted object files, which
1048 usually contain at least two different types of symbol tables (a
1049 standard ELF one and a smaller dynamic linking table), as well as
1050 DWARF debugging information for files compiled with -g.
1051
1052 Without compacting, the minimal symbol table for gdb itself contains
1053 over a 1000 duplicates, about a third of the total table size. Aside
1054 from the potential trap of not noticing that two successive entries
1055 identify the same location, this duplication impacts the time required
1056 to linearly scan the table, which is done in a number of places. So we
1057 just do one linear scan here and toss out the duplicates.
1058
1059 Note that we are not concerned here about recovering the space that
1060 is potentially freed up, because the strings themselves are allocated
1061 on the objfile_obstack, and will get automatically freed when the symbol
1062 table is freed. The caller can free up the unused minimal symbols at
1063 the end of the compacted region if their allocation strategy allows it.
1064
1065 Also note we only go up to the next to last entry within the loop
1066 and then copy the last entry explicitly after the loop terminates.
1067
1068 Since the different sources of information for each symbol may
1069 have different levels of "completeness", we may have duplicates
1070 that have one entry with type "mst_unknown" and the other with a
1071 known type. So if the one we are leaving alone has type mst_unknown,
1072 overwrite its type with the type from the one we are compacting out. */
1073
1074 static int
1075 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1076 struct objfile *objfile)
1077 {
1078 struct minimal_symbol *copyfrom;
1079 struct minimal_symbol *copyto;
1080
1081 if (mcount > 0)
1082 {
1083 copyfrom = copyto = msymbol;
1084 while (copyfrom < msymbol + mcount - 1)
1085 {
1086 if (SYMBOL_VALUE_ADDRESS (copyfrom)
1087 == SYMBOL_VALUE_ADDRESS ((copyfrom + 1))
1088 && strcmp (SYMBOL_LINKAGE_NAME (copyfrom),
1089 SYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1090 {
1091 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1092 {
1093 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1094 }
1095 copyfrom++;
1096 }
1097 else
1098 *copyto++ = *copyfrom++;
1099 }
1100 *copyto++ = *copyfrom++;
1101 mcount = copyto - msymbol;
1102 }
1103 return (mcount);
1104 }
1105
1106 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1107 after compacting or sorting the table since the entries move around
1108 thus causing the internal minimal_symbol pointers to become jumbled. */
1109
1110 static void
1111 build_minimal_symbol_hash_tables (struct objfile *objfile)
1112 {
1113 int i;
1114 struct minimal_symbol *msym;
1115
1116 /* Clear the hash tables. */
1117 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1118 {
1119 objfile->msymbol_hash[i] = 0;
1120 objfile->msymbol_demangled_hash[i] = 0;
1121 }
1122
1123 /* Now, (re)insert the actual entries. */
1124 for (i = objfile->minimal_symbol_count, msym = objfile->msymbols;
1125 i > 0;
1126 i--, msym++)
1127 {
1128 msym->hash_next = 0;
1129 add_minsym_to_hash_table (msym, objfile->msymbol_hash);
1130
1131 msym->demangled_hash_next = 0;
1132 if (SYMBOL_SEARCH_NAME (msym) != SYMBOL_LINKAGE_NAME (msym))
1133 add_minsym_to_demangled_hash_table (msym,
1134 objfile->msymbol_demangled_hash);
1135 }
1136 }
1137
1138 /* Add the minimal symbols in the existing bunches to the objfile's official
1139 minimal symbol table. In most cases there is no minimal symbol table yet
1140 for this objfile, and the existing bunches are used to create one. Once
1141 in a while (for shared libraries for example), we add symbols (e.g. common
1142 symbols) to an existing objfile.
1143
1144 Because of the way minimal symbols are collected, we generally have no way
1145 of knowing what source language applies to any particular minimal symbol.
1146 Specifically, we have no way of knowing if the minimal symbol comes from a
1147 C++ compilation unit or not. So for the sake of supporting cached
1148 demangled C++ names, we have no choice but to try and demangle each new one
1149 that comes in. If the demangling succeeds, then we assume it is a C++
1150 symbol and set the symbol's language and demangled name fields
1151 appropriately. Note that in order to avoid unnecessary demanglings, and
1152 allocating obstack space that subsequently can't be freed for the demangled
1153 names, we mark all newly added symbols with language_auto. After
1154 compaction of the minimal symbols, we go back and scan the entire minimal
1155 symbol table looking for these new symbols. For each new symbol we attempt
1156 to demangle it, and if successful, record it as a language_cplus symbol
1157 and cache the demangled form on the symbol obstack. Symbols which don't
1158 demangle are marked as language_unknown symbols, which inhibits future
1159 attempts to demangle them if we later add more minimal symbols. */
1160
1161 void
1162 install_minimal_symbols (struct objfile *objfile)
1163 {
1164 int bindex;
1165 int mcount;
1166 struct msym_bunch *bunch;
1167 struct minimal_symbol *msymbols;
1168 int alloc_count;
1169
1170 if (msym_count > 0)
1171 {
1172 if (symtab_create_debug)
1173 {
1174 fprintf_unfiltered (gdb_stdlog,
1175 "Installing %d minimal symbols of objfile %s.\n",
1176 msym_count, objfile->name);
1177 }
1178
1179 /* Allocate enough space in the obstack, into which we will gather the
1180 bunches of new and existing minimal symbols, sort them, and then
1181 compact out the duplicate entries. Once we have a final table,
1182 we will give back the excess space. */
1183
1184 alloc_count = msym_count + objfile->minimal_symbol_count + 1;
1185 obstack_blank (&objfile->objfile_obstack,
1186 alloc_count * sizeof (struct minimal_symbol));
1187 msymbols = (struct minimal_symbol *)
1188 obstack_base (&objfile->objfile_obstack);
1189
1190 /* Copy in the existing minimal symbols, if there are any. */
1191
1192 if (objfile->minimal_symbol_count)
1193 memcpy ((char *) msymbols, (char *) objfile->msymbols,
1194 objfile->minimal_symbol_count * sizeof (struct minimal_symbol));
1195
1196 /* Walk through the list of minimal symbol bunches, adding each symbol
1197 to the new contiguous array of symbols. Note that we start with the
1198 current, possibly partially filled bunch (thus we use the current
1199 msym_bunch_index for the first bunch we copy over), and thereafter
1200 each bunch is full. */
1201
1202 mcount = objfile->minimal_symbol_count;
1203
1204 for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next)
1205 {
1206 for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++)
1207 msymbols[mcount] = bunch->contents[bindex];
1208 msym_bunch_index = BUNCH_SIZE;
1209 }
1210
1211 /* Sort the minimal symbols by address. */
1212
1213 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1214 compare_minimal_symbols);
1215
1216 /* Compact out any duplicates, and free up whatever space we are
1217 no longer using. */
1218
1219 mcount = compact_minimal_symbols (msymbols, mcount, objfile);
1220
1221 obstack_blank (&objfile->objfile_obstack,
1222 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1223 msymbols = (struct minimal_symbol *)
1224 obstack_finish (&objfile->objfile_obstack);
1225
1226 /* We also terminate the minimal symbol table with a "null symbol",
1227 which is *not* included in the size of the table. This makes it
1228 easier to find the end of the table when we are handed a pointer
1229 to some symbol in the middle of it. Zero out the fields in the
1230 "null symbol" allocated at the end of the array. Note that the
1231 symbol count does *not* include this null symbol, which is why it
1232 is indexed by mcount and not mcount-1. */
1233
1234 memset (&msymbols[mcount], 0, sizeof (struct minimal_symbol));
1235
1236 /* Attach the minimal symbol table to the specified objfile.
1237 The strings themselves are also located in the objfile_obstack
1238 of this objfile. */
1239
1240 objfile->minimal_symbol_count = mcount;
1241 objfile->msymbols = msymbols;
1242
1243 /* Try to guess the appropriate C++ ABI by looking at the names
1244 of the minimal symbols in the table. */
1245 {
1246 int i;
1247
1248 for (i = 0; i < mcount; i++)
1249 {
1250 /* If a symbol's name starts with _Z and was successfully
1251 demangled, then we can assume we've found a GNU v3 symbol.
1252 For now we set the C++ ABI globally; if the user is
1253 mixing ABIs then the user will need to "set cp-abi"
1254 manually. */
1255 const char *name = SYMBOL_LINKAGE_NAME (&objfile->msymbols[i]);
1256
1257 if (name[0] == '_' && name[1] == 'Z'
1258 && SYMBOL_DEMANGLED_NAME (&objfile->msymbols[i]) != NULL)
1259 {
1260 set_cp_abi_as_auto_default ("gnu-v3");
1261 break;
1262 }
1263 }
1264 }
1265
1266 /* Now build the hash tables; we can't do this incrementally
1267 at an earlier point since we weren't finished with the obstack
1268 yet. (And if the msymbol obstack gets moved, all the internal
1269 pointers to other msymbols need to be adjusted.) */
1270 build_minimal_symbol_hash_tables (objfile);
1271 }
1272 }
1273
1274 /* See minsyms.h. */
1275
1276 void
1277 terminate_minimal_symbol_table (struct objfile *objfile)
1278 {
1279 if (! objfile->msymbols)
1280 objfile->msymbols = ((struct minimal_symbol *)
1281 obstack_alloc (&objfile->objfile_obstack,
1282 sizeof (objfile->msymbols[0])));
1283
1284 {
1285 struct minimal_symbol *m
1286 = &objfile->msymbols[objfile->minimal_symbol_count];
1287
1288 memset (m, 0, sizeof (*m));
1289 /* Don't rely on these enumeration values being 0's. */
1290 MSYMBOL_TYPE (m) = mst_unknown;
1291 SYMBOL_SET_LANGUAGE (m, language_unknown);
1292 }
1293 }
1294
1295 /* Sort all the minimal symbols in OBJFILE. */
1296
1297 void
1298 msymbols_sort (struct objfile *objfile)
1299 {
1300 qsort (objfile->msymbols, objfile->minimal_symbol_count,
1301 sizeof (struct minimal_symbol), compare_minimal_symbols);
1302 build_minimal_symbol_hash_tables (objfile);
1303 }
1304
1305 /* See minsyms.h. */
1306
1307 struct minimal_symbol *
1308 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1309 {
1310 struct obj_section *section = find_pc_section (pc);
1311 struct minimal_symbol *msymbol;
1312
1313 if (section == NULL)
1314 return NULL;
1315 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1316
1317 if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1318 return msymbol;
1319 return NULL;
1320 }
1321
1322 /* If PC is in a shared library trampoline code stub, return the
1323 address of the `real' function belonging to the stub.
1324 Return 0 if PC is not in a trampoline code stub or if the real
1325 function is not found in the minimal symbol table.
1326
1327 We may fail to find the right function if a function with the
1328 same name is defined in more than one shared library, but this
1329 is considered bad programming style. We could return 0 if we find
1330 a duplicate function in case this matters someday. */
1331
1332 CORE_ADDR
1333 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1334 {
1335 struct objfile *objfile;
1336 struct minimal_symbol *msymbol;
1337 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1338
1339 if (tsymbol != NULL)
1340 {
1341 ALL_MSYMBOLS (objfile, msymbol)
1342 {
1343 if ((MSYMBOL_TYPE (msymbol) == mst_text
1344 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc)
1345 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1346 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1347 return SYMBOL_VALUE_ADDRESS (msymbol);
1348
1349 /* Also handle minimal symbols pointing to function descriptors. */
1350 if (MSYMBOL_TYPE (msymbol) == mst_data
1351 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1352 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1353 {
1354 CORE_ADDR func;
1355
1356 func = gdbarch_convert_from_func_ptr_addr
1357 (get_objfile_arch (objfile),
1358 SYMBOL_VALUE_ADDRESS (msymbol),
1359 &current_target);
1360
1361 /* Ignore data symbols that are not function descriptors. */
1362 if (func != SYMBOL_VALUE_ADDRESS (msymbol))
1363 return func;
1364 }
1365 }
1366 }
1367 return 0;
1368 }