]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-linux-tdep.c
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / mips-linux-tdep.c
1 /* Target-dependent code for GNU/Linux on MIPS processors.
2
3 Copyright (C) 2001, 2002, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "gdbcore.h"
25 #include "target.h"
26 #include "solib-svr4.h"
27 #include "osabi.h"
28 #include "mips-tdep.h"
29 #include "gdb_string.h"
30 #include "gdb_assert.h"
31 #include "frame.h"
32 #include "regcache.h"
33 #include "trad-frame.h"
34 #include "tramp-frame.h"
35 #include "floatformat.h"
36 #include "solib.h"
37 #include "symtab.h"
38 #include "mips-linux-tdep.h"
39
40 /* Figure out where the longjmp will land.
41 We expect the first arg to be a pointer to the jmp_buf structure
42 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
43 at. The pc is copied into PC. This routine returns 1 on
44 success. */
45
46 #define MIPS_LINUX_JB_ELEMENT_SIZE 4
47 #define MIPS_LINUX_JB_PC 0
48
49 static int
50 mips_linux_get_longjmp_target (CORE_ADDR *pc)
51 {
52 CORE_ADDR jb_addr;
53 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
54
55 jb_addr = read_register (MIPS_A0_REGNUM);
56
57 if (target_read_memory (jb_addr
58 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE,
59 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
60 return 0;
61
62 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
63
64 return 1;
65 }
66
67 /* Transform the bits comprising a 32-bit register to the right size
68 for regcache_raw_supply(). This is needed when mips_isa_regsize()
69 is 8. */
70
71 static void
72 supply_32bit_reg (int regnum, const void *addr)
73 {
74 gdb_byte buf[MAX_REGISTER_SIZE];
75 store_signed_integer (buf, register_size (current_gdbarch, regnum),
76 extract_signed_integer (addr, 4));
77 regcache_raw_supply (current_regcache, regnum, buf);
78 }
79
80 /* Unpack an elf_gregset_t into GDB's register cache. */
81
82 void
83 mips_supply_gregset (mips_elf_gregset_t *gregsetp)
84 {
85 int regi;
86 mips_elf_greg_t *regp = *gregsetp;
87 char zerobuf[MAX_REGISTER_SIZE];
88
89 memset (zerobuf, 0, MAX_REGISTER_SIZE);
90
91 for (regi = EF_REG0; regi <= EF_REG31; regi++)
92 supply_32bit_reg ((regi - EF_REG0), (char *)(regp + regi));
93
94 supply_32bit_reg (mips_regnum (current_gdbarch)->lo,
95 (char *)(regp + EF_LO));
96 supply_32bit_reg (mips_regnum (current_gdbarch)->hi,
97 (char *)(regp + EF_HI));
98
99 supply_32bit_reg (mips_regnum (current_gdbarch)->pc,
100 (char *)(regp + EF_CP0_EPC));
101 supply_32bit_reg (mips_regnum (current_gdbarch)->badvaddr,
102 (char *)(regp + EF_CP0_BADVADDR));
103 supply_32bit_reg (MIPS_PS_REGNUM, (char *)(regp + EF_CP0_STATUS));
104 supply_32bit_reg (mips_regnum (current_gdbarch)->cause,
105 (char *)(regp + EF_CP0_CAUSE));
106
107 /* Fill inaccessible registers with zero. */
108 regcache_raw_supply (current_regcache, MIPS_UNUSED_REGNUM, zerobuf);
109 for (regi = MIPS_FIRST_EMBED_REGNUM;
110 regi < MIPS_LAST_EMBED_REGNUM;
111 regi++)
112 regcache_raw_supply (current_regcache, regi, zerobuf);
113 }
114
115 /* Pack our registers (or one register) into an elf_gregset_t. */
116
117 void
118 mips_fill_gregset (mips_elf_gregset_t *gregsetp, int regno)
119 {
120 int regaddr, regi;
121 mips_elf_greg_t *regp = *gregsetp;
122 void *dst;
123
124 if (regno == -1)
125 {
126 memset (regp, 0, sizeof (mips_elf_gregset_t));
127 for (regi = 0; regi < 32; regi++)
128 mips_fill_gregset (gregsetp, regi);
129 mips_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->lo);
130 mips_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->hi);
131 mips_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->pc);
132 mips_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->badvaddr);
133 mips_fill_gregset (gregsetp, MIPS_PS_REGNUM);
134 mips_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->cause);
135
136 return;
137 }
138
139 if (regno < 32)
140 {
141 dst = regp + regno + EF_REG0;
142 regcache_raw_collect (current_regcache, regno, dst);
143 return;
144 }
145
146 if (regno == mips_regnum (current_gdbarch)->lo)
147 regaddr = EF_LO;
148 else if (regno == mips_regnum (current_gdbarch)->hi)
149 regaddr = EF_HI;
150 else if (regno == mips_regnum (current_gdbarch)->pc)
151 regaddr = EF_CP0_EPC;
152 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
153 regaddr = EF_CP0_BADVADDR;
154 else if (regno == MIPS_PS_REGNUM)
155 regaddr = EF_CP0_STATUS;
156 else if (regno == mips_regnum (current_gdbarch)->cause)
157 regaddr = EF_CP0_CAUSE;
158 else
159 regaddr = -1;
160
161 if (regaddr != -1)
162 {
163 dst = regp + regaddr;
164 regcache_raw_collect (current_regcache, regno, dst);
165 }
166 }
167
168 /* Likewise, unpack an elf_fpregset_t. */
169
170 void
171 mips_supply_fpregset (mips_elf_fpregset_t *fpregsetp)
172 {
173 int regi;
174 char zerobuf[MAX_REGISTER_SIZE];
175
176 memset (zerobuf, 0, MAX_REGISTER_SIZE);
177
178 for (regi = 0; regi < 32; regi++)
179 regcache_raw_supply (current_regcache, FP0_REGNUM + regi,
180 (char *)(*fpregsetp + regi));
181
182 regcache_raw_supply (current_regcache,
183 mips_regnum (current_gdbarch)->fp_control_status,
184 (char *)(*fpregsetp + 32));
185
186 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
187 regcache_raw_supply (current_regcache,
188 mips_regnum (current_gdbarch)->fp_implementation_revision,
189 zerobuf);
190 }
191
192 /* Likewise, pack one or all floating point registers into an
193 elf_fpregset_t. */
194
195 void
196 mips_fill_fpregset (mips_elf_fpregset_t *fpregsetp, int regno)
197 {
198 char *from, *to;
199
200 if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
201 {
202 to = (char *) (*fpregsetp + regno - FP0_REGNUM);
203 regcache_raw_collect (current_regcache, regno, to);
204 }
205 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
206 {
207 to = (char *) (*fpregsetp + 32);
208 regcache_raw_collect (current_regcache, regno, to);
209 }
210 else if (regno == -1)
211 {
212 int regi;
213
214 for (regi = 0; regi < 32; regi++)
215 mips_fill_fpregset (fpregsetp, FP0_REGNUM + regi);
216 mips_fill_fpregset (fpregsetp,
217 mips_regnum (current_gdbarch)->fp_control_status);
218 }
219 }
220
221 /* Map gdb internal register number to ptrace ``address''.
222 These ``addresses'' are normally defined in <asm/ptrace.h>. */
223
224 static CORE_ADDR
225 mips_linux_register_addr (int regno, CORE_ADDR blockend)
226 {
227 int regaddr;
228
229 if (regno < 0 || regno >= NUM_REGS)
230 error (_("Bogon register number %d."), regno);
231
232 if (regno < 32)
233 regaddr = regno;
234 else if ((regno >= mips_regnum (current_gdbarch)->fp0)
235 && (regno < mips_regnum (current_gdbarch)->fp0 + 32))
236 regaddr = FPR_BASE + (regno - mips_regnum (current_gdbarch)->fp0);
237 else if (regno == mips_regnum (current_gdbarch)->pc)
238 regaddr = PC;
239 else if (regno == mips_regnum (current_gdbarch)->cause)
240 regaddr = CAUSE;
241 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
242 regaddr = BADVADDR;
243 else if (regno == mips_regnum (current_gdbarch)->lo)
244 regaddr = MMLO;
245 else if (regno == mips_regnum (current_gdbarch)->hi)
246 regaddr = MMHI;
247 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
248 regaddr = FPC_CSR;
249 else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision)
250 regaddr = FPC_EIR;
251 else
252 error (_("Unknowable register number %d."), regno);
253
254 return regaddr;
255 }
256
257 /* Support for 64-bit ABIs. */
258
259 /* Figure out where the longjmp will land.
260 We expect the first arg to be a pointer to the jmp_buf structure
261 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
262 at. The pc is copied into PC. This routine returns 1 on
263 success. */
264
265 /* Details about jmp_buf. */
266
267 #define MIPS64_LINUX_JB_PC 0
268
269 static int
270 mips64_linux_get_longjmp_target (CORE_ADDR *pc)
271 {
272 CORE_ADDR jb_addr;
273 void *buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
274 int element_size = TARGET_PTR_BIT == 32 ? 4 : 8;
275
276 jb_addr = read_register (MIPS_A0_REGNUM);
277
278 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
279 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
280 return 0;
281
282 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
283
284 return 1;
285 }
286
287 /* Register set support functions. These operate on standard 64-bit
288 regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
289 target will still use the 64-bit format for PTRACE_GETREGS. */
290
291 /* Supply a 64-bit register. */
292
293 void
294 supply_64bit_reg (int regnum, const gdb_byte *buf)
295 {
296 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
297 && register_size (current_gdbarch, regnum) == 4)
298 regcache_raw_supply (current_regcache, regnum, buf + 4);
299 else
300 regcache_raw_supply (current_regcache, regnum, buf);
301 }
302
303 /* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
304
305 void
306 mips64_supply_gregset (mips64_elf_gregset_t *gregsetp)
307 {
308 int regi;
309 mips64_elf_greg_t *regp = *gregsetp;
310 gdb_byte zerobuf[MAX_REGISTER_SIZE];
311
312 memset (zerobuf, 0, MAX_REGISTER_SIZE);
313
314 for (regi = MIPS64_EF_REG0; regi <= MIPS64_EF_REG31; regi++)
315 supply_64bit_reg (regi - MIPS64_EF_REG0, (gdb_byte *)(regp + regi));
316
317 supply_64bit_reg (mips_regnum (current_gdbarch)->lo,
318 (gdb_byte *) (regp + MIPS64_EF_LO));
319 supply_64bit_reg (mips_regnum (current_gdbarch)->hi,
320 (gdb_byte *) (regp + MIPS64_EF_HI));
321
322 supply_64bit_reg (mips_regnum (current_gdbarch)->pc,
323 (gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
324 supply_64bit_reg (mips_regnum (current_gdbarch)->badvaddr,
325 (gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
326 supply_64bit_reg (MIPS_PS_REGNUM,
327 (gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
328 supply_64bit_reg (mips_regnum (current_gdbarch)->cause,
329 (gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
330
331 /* Fill inaccessible registers with zero. */
332 regcache_raw_supply (current_regcache, MIPS_UNUSED_REGNUM, zerobuf);
333 for (regi = MIPS_FIRST_EMBED_REGNUM;
334 regi < MIPS_LAST_EMBED_REGNUM;
335 regi++)
336 regcache_raw_supply (current_regcache, regi, zerobuf);
337 }
338
339 /* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
340
341 void
342 mips64_fill_gregset (mips64_elf_gregset_t *gregsetp, int regno)
343 {
344 int regaddr, regi;
345 mips64_elf_greg_t *regp = *gregsetp;
346 void *src, *dst;
347
348 if (regno == -1)
349 {
350 memset (regp, 0, sizeof (mips64_elf_gregset_t));
351 for (regi = 0; regi < 32; regi++)
352 mips64_fill_gregset (gregsetp, regi);
353 mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->lo);
354 mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->hi);
355 mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->pc);
356 mips64_fill_gregset (gregsetp,
357 mips_regnum (current_gdbarch)->badvaddr);
358 mips64_fill_gregset (gregsetp, MIPS_PS_REGNUM);
359 mips64_fill_gregset (gregsetp,
360 mips_regnum (current_gdbarch)->cause);
361
362 return;
363 }
364
365 if (regno < 32)
366 regaddr = regno + MIPS64_EF_REG0;
367 else if (regno == mips_regnum (current_gdbarch)->lo)
368 regaddr = MIPS64_EF_LO;
369 else if (regno == mips_regnum (current_gdbarch)->hi)
370 regaddr = MIPS64_EF_HI;
371 else if (regno == mips_regnum (current_gdbarch)->pc)
372 regaddr = MIPS64_EF_CP0_EPC;
373 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
374 regaddr = MIPS64_EF_CP0_BADVADDR;
375 else if (regno == MIPS_PS_REGNUM)
376 regaddr = MIPS64_EF_CP0_STATUS;
377 else if (regno == mips_regnum (current_gdbarch)->cause)
378 regaddr = MIPS64_EF_CP0_CAUSE;
379 else
380 regaddr = -1;
381
382 if (regaddr != -1)
383 {
384 gdb_byte buf[MAX_REGISTER_SIZE];
385 LONGEST val;
386
387 regcache_raw_collect (current_regcache, regno, buf);
388 val = extract_signed_integer (buf,
389 register_size (current_gdbarch, regno));
390 dst = regp + regaddr;
391 store_signed_integer (dst, 8, val);
392 }
393 }
394
395 /* Likewise, unpack an elf_fpregset_t. */
396
397 void
398 mips64_supply_fpregset (mips64_elf_fpregset_t *fpregsetp)
399 {
400 int regi;
401
402 /* See mips_linux_o32_sigframe_init for a description of the
403 peculiar FP register layout. */
404 if (register_size (current_gdbarch, FP0_REGNUM) == 4)
405 for (regi = 0; regi < 32; regi++)
406 {
407 gdb_byte *reg_ptr = (gdb_byte *) (*fpregsetp + (regi & ~1));
408 if ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) != (regi & 1))
409 reg_ptr += 4;
410 regcache_raw_supply (current_regcache, FP0_REGNUM + regi, reg_ptr);
411 }
412 else
413 for (regi = 0; regi < 32; regi++)
414 regcache_raw_supply (current_regcache, FP0_REGNUM + regi,
415 (char *)(*fpregsetp + regi));
416
417 supply_32bit_reg (mips_regnum (current_gdbarch)->fp_control_status,
418 (gdb_byte *)(*fpregsetp + 32));
419
420 /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
421 include it - but the result of PTRACE_GETFPREGS does. The best we
422 can do is to assume that its value is present. */
423 supply_32bit_reg (mips_regnum (current_gdbarch)->fp_implementation_revision,
424 (gdb_byte *)(*fpregsetp + 32) + 4);
425 }
426
427 /* Likewise, pack one or all floating point registers into an
428 elf_fpregset_t. */
429
430 void
431 mips64_fill_fpregset (mips64_elf_fpregset_t *fpregsetp, int regno)
432 {
433 gdb_byte *to;
434
435 if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
436 {
437 /* See mips_linux_o32_sigframe_init for a description of the
438 peculiar FP register layout. */
439 if (register_size (current_gdbarch, regno) == 4)
440 {
441 int regi = regno - FP0_REGNUM;
442
443 to = (gdb_byte *) (*fpregsetp + (regi & ~1));
444 if ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) != (regi & 1))
445 to += 4;
446 regcache_raw_collect (current_regcache, regno, to);
447 }
448 else
449 {
450 to = (gdb_byte *) (*fpregsetp + regno - FP0_REGNUM);
451 regcache_raw_collect (current_regcache, regno, to);
452 }
453 }
454 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
455 {
456 gdb_byte buf[MAX_REGISTER_SIZE];
457 LONGEST val;
458
459 regcache_raw_collect (current_regcache, regno, buf);
460 val = extract_signed_integer (buf,
461 register_size (current_gdbarch, regno));
462 to = (gdb_byte *) (*fpregsetp + 32);
463 store_signed_integer (to, 4, val);
464 }
465 else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision)
466 {
467 gdb_byte buf[MAX_REGISTER_SIZE];
468 LONGEST val;
469
470 regcache_raw_collect (current_regcache, regno, buf);
471 val = extract_signed_integer (buf,
472 register_size (current_gdbarch, regno));
473 to = (gdb_byte *) (*fpregsetp + 32) + 4;
474 store_signed_integer (to, 4, val);
475 }
476 else if (regno == -1)
477 {
478 int regi;
479
480 for (regi = 0; regi < 32; regi++)
481 mips64_fill_fpregset (fpregsetp, FP0_REGNUM + regi);
482 mips64_fill_fpregset (fpregsetp,
483 mips_regnum (current_gdbarch)->fp_control_status);
484 mips64_fill_fpregset (fpregsetp, (mips_regnum (current_gdbarch)
485 ->fp_implementation_revision));
486 }
487 }
488
489
490 /* Map gdb internal register number to ptrace ``address''.
491 These ``addresses'' are normally defined in <asm/ptrace.h>. */
492
493 static CORE_ADDR
494 mips64_linux_register_addr (int regno, CORE_ADDR blockend)
495 {
496 int regaddr;
497
498 if (regno < 0 || regno >= NUM_REGS)
499 error (_("Bogon register number %d."), regno);
500
501 if (regno < 32)
502 regaddr = regno;
503 else if ((regno >= mips_regnum (current_gdbarch)->fp0)
504 && (regno < mips_regnum (current_gdbarch)->fp0 + 32))
505 regaddr = MIPS64_FPR_BASE + (regno - FP0_REGNUM);
506 else if (regno == mips_regnum (current_gdbarch)->pc)
507 regaddr = MIPS64_PC;
508 else if (regno == mips_regnum (current_gdbarch)->cause)
509 regaddr = MIPS64_CAUSE;
510 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
511 regaddr = MIPS64_BADVADDR;
512 else if (regno == mips_regnum (current_gdbarch)->lo)
513 regaddr = MIPS64_MMLO;
514 else if (regno == mips_regnum (current_gdbarch)->hi)
515 regaddr = MIPS64_MMHI;
516 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
517 regaddr = MIPS64_FPC_CSR;
518 else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision)
519 regaddr = MIPS64_FPC_EIR;
520 else
521 error (_("Unknowable register number %d."), regno);
522
523 return regaddr;
524 }
525
526 /* Use a local version of this function to get the correct types for
527 regsets, until multi-arch core support is ready. */
528
529 static void
530 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
531 int which, CORE_ADDR reg_addr)
532 {
533 mips_elf_gregset_t gregset;
534 mips_elf_fpregset_t fpregset;
535 mips64_elf_gregset_t gregset64;
536 mips64_elf_fpregset_t fpregset64;
537
538 if (which == 0)
539 {
540 if (core_reg_size == sizeof (gregset))
541 {
542 memcpy ((char *) &gregset, core_reg_sect, sizeof (gregset));
543 mips_supply_gregset (&gregset);
544 }
545 else if (core_reg_size == sizeof (gregset64))
546 {
547 memcpy ((char *) &gregset64, core_reg_sect, sizeof (gregset64));
548 mips64_supply_gregset (&gregset64);
549 }
550 else
551 {
552 warning (_("wrong size gregset struct in core file"));
553 }
554 }
555 else if (which == 2)
556 {
557 if (core_reg_size == sizeof (fpregset))
558 {
559 memcpy ((char *) &fpregset, core_reg_sect, sizeof (fpregset));
560 mips_supply_fpregset (&fpregset);
561 }
562 else if (core_reg_size == sizeof (fpregset64))
563 {
564 memcpy ((char *) &fpregset64, core_reg_sect,
565 sizeof (fpregset64));
566 mips64_supply_fpregset (&fpregset64);
567 }
568 else
569 {
570 warning (_("wrong size fpregset struct in core file"));
571 }
572 }
573 }
574
575 /* Register that we are able to handle ELF file formats using standard
576 procfs "regset" structures. */
577
578 static struct core_fns regset_core_fns =
579 {
580 bfd_target_elf_flavour, /* core_flavour */
581 default_check_format, /* check_format */
582 default_core_sniffer, /* core_sniffer */
583 fetch_core_registers, /* core_read_registers */
584 NULL /* next */
585 };
586
587 /* Handle for obtaining pointer to the current register_addr()
588 function for a given architecture. */
589 static struct gdbarch_data *register_addr_data;
590
591 CORE_ADDR
592 register_addr (int regno, CORE_ADDR blockend)
593 {
594 CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR) =
595 gdbarch_data (current_gdbarch, register_addr_data);
596
597 gdb_assert (register_addr_ptr != 0);
598
599 return register_addr_ptr (regno, blockend);
600 }
601
602 static void
603 set_mips_linux_register_addr (struct gdbarch *gdbarch,
604 CORE_ADDR (*register_addr_ptr) (int,
605 CORE_ADDR))
606 {
607 deprecated_set_gdbarch_data (gdbarch, register_addr_data,
608 register_addr_ptr);
609 }
610
611 static void *
612 init_register_addr_data (struct gdbarch *gdbarch)
613 {
614 return 0;
615 }
616
617 /* Check the code at PC for a dynamic linker lazy resolution stub.
618 Because they aren't in the .plt section, we pattern-match on the
619 code generated by GNU ld. They look like this:
620
621 lw t9,0x8010(gp)
622 addu t7,ra
623 jalr t9,ra
624 addiu t8,zero,INDEX
625
626 (with the appropriate doubleword instructions for N64). Also
627 return the dynamic symbol index used in the last instruction. */
628
629 static int
630 mips_linux_in_dynsym_stub (CORE_ADDR pc, char *name)
631 {
632 unsigned char buf[28], *p;
633 ULONGEST insn, insn1;
634 int n64 = (mips_abi (current_gdbarch) == MIPS_ABI_N64);
635
636 read_memory (pc - 12, buf, 28);
637
638 if (n64)
639 {
640 /* ld t9,0x8010(gp) */
641 insn1 = 0xdf998010;
642 }
643 else
644 {
645 /* lw t9,0x8010(gp) */
646 insn1 = 0x8f998010;
647 }
648
649 p = buf + 12;
650 while (p >= buf)
651 {
652 insn = extract_unsigned_integer (p, 4);
653 if (insn == insn1)
654 break;
655 p -= 4;
656 }
657 if (p < buf)
658 return 0;
659
660 insn = extract_unsigned_integer (p + 4, 4);
661 if (n64)
662 {
663 /* daddu t7,ra */
664 if (insn != 0x03e0782d)
665 return 0;
666 }
667 else
668 {
669 /* addu t7,ra */
670 if (insn != 0x03e07821)
671 return 0;
672 }
673
674 insn = extract_unsigned_integer (p + 8, 4);
675 /* jalr t9,ra */
676 if (insn != 0x0320f809)
677 return 0;
678
679 insn = extract_unsigned_integer (p + 12, 4);
680 if (n64)
681 {
682 /* daddiu t8,zero,0 */
683 if ((insn & 0xffff0000) != 0x64180000)
684 return 0;
685 }
686 else
687 {
688 /* addiu t8,zero,0 */
689 if ((insn & 0xffff0000) != 0x24180000)
690 return 0;
691 }
692
693 return (insn & 0xffff);
694 }
695
696 /* Return non-zero iff PC belongs to the dynamic linker resolution
697 code or to a stub. */
698
699 int
700 mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
701 {
702 /* Check whether PC is in the dynamic linker. This also checks
703 whether it is in the .plt section, which MIPS does not use. */
704 if (in_solib_dynsym_resolve_code (pc))
705 return 1;
706
707 /* Pattern match for the stub. It would be nice if there were a
708 more efficient way to avoid this check. */
709 if (mips_linux_in_dynsym_stub (pc, NULL))
710 return 1;
711
712 return 0;
713 }
714
715 /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
716 and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
717 implementation of this triggers at "fixup" from the same objfile as
718 "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
719 "__dl_runtime_resolve" directly. An unresolved PLT entry will
720 point to _dl_runtime_resolve, which will first call
721 __dl_runtime_resolve, and then pass control to the resolved
722 function. */
723
724 static CORE_ADDR
725 mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
726 {
727 struct minimal_symbol *resolver;
728
729 resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
730
731 if (resolver && SYMBOL_VALUE_ADDRESS (resolver) == pc)
732 return frame_pc_unwind (get_current_frame ());
733
734 return 0;
735 }
736
737 /* Signal trampoline support. There are four supported layouts for a
738 signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
739 n64 rt_sigframe. We handle them all independently; not the most
740 efficient way, but simplest. First, declare all the unwinders. */
741
742 static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
743 struct frame_info *next_frame,
744 struct trad_frame_cache *this_cache,
745 CORE_ADDR func);
746
747 static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
748 struct frame_info *next_frame,
749 struct trad_frame_cache *this_cache,
750 CORE_ADDR func);
751
752 #define MIPS_NR_LINUX 4000
753 #define MIPS_NR_N64_LINUX 5000
754 #define MIPS_NR_N32_LINUX 6000
755
756 #define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
757 #define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
758 #define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
759 #define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
760
761 #define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
762 #define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
763 #define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
764 #define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
765 #define MIPS_INST_SYSCALL 0x0000000c
766
767 static const struct tramp_frame mips_linux_o32_sigframe = {
768 SIGTRAMP_FRAME,
769 4,
770 {
771 { MIPS_INST_LI_V0_SIGRETURN, -1 },
772 { MIPS_INST_SYSCALL, -1 },
773 { TRAMP_SENTINEL_INSN, -1 }
774 },
775 mips_linux_o32_sigframe_init
776 };
777
778 static const struct tramp_frame mips_linux_o32_rt_sigframe = {
779 SIGTRAMP_FRAME,
780 4,
781 {
782 { MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
783 { MIPS_INST_SYSCALL, -1 },
784 { TRAMP_SENTINEL_INSN, -1 } },
785 mips_linux_o32_sigframe_init
786 };
787
788 static const struct tramp_frame mips_linux_n32_rt_sigframe = {
789 SIGTRAMP_FRAME,
790 4,
791 {
792 { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
793 { MIPS_INST_SYSCALL, -1 },
794 { TRAMP_SENTINEL_INSN, -1 }
795 },
796 mips_linux_n32n64_sigframe_init
797 };
798
799 static const struct tramp_frame mips_linux_n64_rt_sigframe = {
800 SIGTRAMP_FRAME,
801 4,
802 { MIPS_INST_LI_V0_N64_RT_SIGRETURN,
803 MIPS_INST_SYSCALL,
804 TRAMP_SENTINEL_INSN },
805 mips_linux_n32n64_sigframe_init
806 };
807
808 /* *INDENT-OFF* */
809 /* The unwinder for o32 signal frames. The legacy structures look
810 like this:
811
812 struct sigframe {
813 u32 sf_ass[4]; [argument save space for o32]
814 u32 sf_code[2]; [signal trampoline]
815 struct sigcontext sf_sc;
816 sigset_t sf_mask;
817 };
818
819 struct sigcontext {
820 unsigned int sc_regmask; [Unused]
821 unsigned int sc_status;
822 unsigned long long sc_pc;
823 unsigned long long sc_regs[32];
824 unsigned long long sc_fpregs[32];
825 unsigned int sc_ownedfp;
826 unsigned int sc_fpc_csr;
827 unsigned int sc_fpc_eir; [Unused]
828 unsigned int sc_used_math;
829 unsigned int sc_ssflags; [Unused]
830 [Alignment hole of four bytes]
831 unsigned long long sc_mdhi;
832 unsigned long long sc_mdlo;
833
834 unsigned int sc_cause; [Unused]
835 unsigned int sc_badvaddr; [Unused]
836
837 unsigned long sc_sigset[4]; [kernel's sigset_t]
838 };
839
840 The RT signal frames look like this:
841
842 struct rt_sigframe {
843 u32 rs_ass[4]; [argument save space for o32]
844 u32 rs_code[2] [signal trampoline]
845 struct siginfo rs_info;
846 struct ucontext rs_uc;
847 };
848
849 struct ucontext {
850 unsigned long uc_flags;
851 struct ucontext *uc_link;
852 stack_t uc_stack;
853 [Alignment hole of four bytes]
854 struct sigcontext uc_mcontext;
855 sigset_t uc_sigmask;
856 }; */
857 /* *INDENT-ON* */
858
859 #define SIGFRAME_CODE_OFFSET (4 * 4)
860 #define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
861
862 #define RTSIGFRAME_SIGINFO_SIZE 128
863 #define STACK_T_SIZE (3 * 4)
864 #define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
865 #define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
866 + RTSIGFRAME_SIGINFO_SIZE \
867 + UCONTEXT_SIGCONTEXT_OFFSET)
868
869 #define SIGCONTEXT_PC (1 * 8)
870 #define SIGCONTEXT_REGS (2 * 8)
871 #define SIGCONTEXT_FPREGS (34 * 8)
872 #define SIGCONTEXT_FPCSR (66 * 8 + 4)
873 #define SIGCONTEXT_HI (69 * 8)
874 #define SIGCONTEXT_LO (70 * 8)
875 #define SIGCONTEXT_CAUSE (71 * 8 + 0)
876 #define SIGCONTEXT_BADVADDR (71 * 8 + 4)
877
878 #define SIGCONTEXT_REG_SIZE 8
879
880 static void
881 mips_linux_o32_sigframe_init (const struct tramp_frame *self,
882 struct frame_info *next_frame,
883 struct trad_frame_cache *this_cache,
884 CORE_ADDR func)
885 {
886 int ireg, reg_position;
887 CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET;
888 const struct mips_regnum *regs = mips_regnum (current_gdbarch);
889 CORE_ADDR regs_base;
890
891 if (self == &mips_linux_o32_sigframe)
892 sigcontext_base += SIGFRAME_SIGCONTEXT_OFFSET;
893 else
894 sigcontext_base += RTSIGFRAME_SIGCONTEXT_OFFSET;
895
896 /* I'm not proud of this hack. Eventually we will have the
897 infrastructure to indicate the size of saved registers on a
898 per-frame basis, but right now we don't; the kernel saves eight
899 bytes but we only want four. Use regs_base to access any
900 64-bit fields. */
901 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
902 regs_base = sigcontext_base + 4;
903 else
904 regs_base = sigcontext_base;
905
906 #if 0
907 trad_frame_set_reg_addr (this_cache, ORIG_ZERO_REGNUM + NUM_REGS,
908 regs_base + SIGCONTEXT_REGS);
909 #endif
910
911 for (ireg = 1; ireg < 32; ireg++)
912 trad_frame_set_reg_addr (this_cache,
913 ireg + MIPS_ZERO_REGNUM + NUM_REGS,
914 regs_base + SIGCONTEXT_REGS
915 + ireg * SIGCONTEXT_REG_SIZE);
916
917 /* The way that floating point registers are saved, unfortunately,
918 depends on the architecture the kernel is built for. For the r3000 and
919 tx39, four bytes of each register are at the beginning of each of the
920 32 eight byte slots. For everything else, the registers are saved
921 using double precision; only the even-numbered slots are initialized,
922 and the high bits are the odd-numbered register. Assume the latter
923 layout, since we can't tell, and it's much more common. Which bits are
924 the "high" bits depends on endianness. */
925 for (ireg = 0; ireg < 32; ireg++)
926 if ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) != (ireg & 1))
927 trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
928 sigcontext_base + SIGCONTEXT_FPREGS + 4
929 + (ireg & ~1) * SIGCONTEXT_REG_SIZE);
930 else
931 trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
932 sigcontext_base + SIGCONTEXT_FPREGS
933 + (ireg & ~1) * SIGCONTEXT_REG_SIZE);
934
935 trad_frame_set_reg_addr (this_cache, regs->pc + NUM_REGS,
936 regs_base + SIGCONTEXT_PC);
937
938 trad_frame_set_reg_addr (this_cache,
939 regs->fp_control_status + NUM_REGS,
940 sigcontext_base + SIGCONTEXT_FPCSR);
941 trad_frame_set_reg_addr (this_cache, regs->hi + NUM_REGS,
942 regs_base + SIGCONTEXT_HI);
943 trad_frame_set_reg_addr (this_cache, regs->lo + NUM_REGS,
944 regs_base + SIGCONTEXT_LO);
945 trad_frame_set_reg_addr (this_cache, regs->cause + NUM_REGS,
946 sigcontext_base + SIGCONTEXT_CAUSE);
947 trad_frame_set_reg_addr (this_cache, regs->badvaddr + NUM_REGS,
948 sigcontext_base + SIGCONTEXT_BADVADDR);
949
950 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
951 trad_frame_set_id (this_cache,
952 frame_id_build (func - SIGFRAME_CODE_OFFSET,
953 func));
954 }
955
956 /* *INDENT-OFF* */
957 /* For N32/N64 things look different. There is no non-rt signal frame.
958
959 struct rt_sigframe_n32 {
960 u32 rs_ass[4]; [ argument save space for o32 ]
961 u32 rs_code[2]; [ signal trampoline ]
962 struct siginfo rs_info;
963 struct ucontextn32 rs_uc;
964 };
965
966 struct ucontextn32 {
967 u32 uc_flags;
968 s32 uc_link;
969 stack32_t uc_stack;
970 struct sigcontext uc_mcontext;
971 sigset_t uc_sigmask; [ mask last for extensibility ]
972 };
973
974 struct rt_sigframe_n32 {
975 u32 rs_ass[4]; [ argument save space for o32 ]
976 u32 rs_code[2]; [ signal trampoline ]
977 struct siginfo rs_info;
978 struct ucontext rs_uc;
979 };
980
981 struct ucontext {
982 unsigned long uc_flags;
983 struct ucontext *uc_link;
984 stack_t uc_stack;
985 struct sigcontext uc_mcontext;
986 sigset_t uc_sigmask; [ mask last for extensibility ]
987 };
988
989 And the sigcontext is different (this is for both n32 and n64):
990
991 struct sigcontext {
992 unsigned long long sc_regs[32];
993 unsigned long long sc_fpregs[32];
994 unsigned long long sc_mdhi;
995 unsigned long long sc_mdlo;
996 unsigned long long sc_pc;
997 unsigned int sc_status;
998 unsigned int sc_fpc_csr;
999 unsigned int sc_fpc_eir;
1000 unsigned int sc_used_math;
1001 unsigned int sc_cause;
1002 unsigned int sc_badvaddr;
1003 }; */
1004 /* *INDENT-ON* */
1005
1006 #define N32_STACK_T_SIZE STACK_T_SIZE
1007 #define N64_STACK_T_SIZE (2 * 8 + 4)
1008 #define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
1009 #define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
1010 #define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1011 + RTSIGFRAME_SIGINFO_SIZE \
1012 + N32_UCONTEXT_SIGCONTEXT_OFFSET)
1013 #define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1014 + RTSIGFRAME_SIGINFO_SIZE \
1015 + N64_UCONTEXT_SIGCONTEXT_OFFSET)
1016
1017 #define N64_SIGCONTEXT_REGS (0 * 8)
1018 #define N64_SIGCONTEXT_FPREGS (32 * 8)
1019 #define N64_SIGCONTEXT_HI (64 * 8)
1020 #define N64_SIGCONTEXT_LO (65 * 8)
1021 #define N64_SIGCONTEXT_PC (66 * 8)
1022 #define N64_SIGCONTEXT_FPCSR (67 * 8 + 1 * 4)
1023 #define N64_SIGCONTEXT_FIR (67 * 8 + 2 * 4)
1024 #define N64_SIGCONTEXT_CAUSE (67 * 8 + 4 * 4)
1025 #define N64_SIGCONTEXT_BADVADDR (67 * 8 + 5 * 4)
1026
1027 #define N64_SIGCONTEXT_REG_SIZE 8
1028
1029 static void
1030 mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
1031 struct frame_info *next_frame,
1032 struct trad_frame_cache *this_cache,
1033 CORE_ADDR func)
1034 {
1035 int ireg, reg_position;
1036 CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET;
1037 const struct mips_regnum *regs = mips_regnum (current_gdbarch);
1038
1039 if (self == &mips_linux_n32_rt_sigframe)
1040 sigcontext_base += N32_SIGFRAME_SIGCONTEXT_OFFSET;
1041 else
1042 sigcontext_base += N64_SIGFRAME_SIGCONTEXT_OFFSET;
1043
1044 #if 0
1045 trad_frame_set_reg_addr (this_cache, ORIG_ZERO_REGNUM + NUM_REGS,
1046 sigcontext_base + N64_SIGCONTEXT_REGS);
1047 #endif
1048
1049 for (ireg = 1; ireg < 32; ireg++)
1050 trad_frame_set_reg_addr (this_cache,
1051 ireg + MIPS_ZERO_REGNUM + NUM_REGS,
1052 sigcontext_base + N64_SIGCONTEXT_REGS
1053 + ireg * N64_SIGCONTEXT_REG_SIZE);
1054
1055 for (ireg = 0; ireg < 32; ireg++)
1056 trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
1057 sigcontext_base + N64_SIGCONTEXT_FPREGS
1058 + ireg * N64_SIGCONTEXT_REG_SIZE);
1059
1060 trad_frame_set_reg_addr (this_cache, regs->pc + NUM_REGS,
1061 sigcontext_base + N64_SIGCONTEXT_PC);
1062
1063 trad_frame_set_reg_addr (this_cache,
1064 regs->fp_control_status + NUM_REGS,
1065 sigcontext_base + N64_SIGCONTEXT_FPCSR);
1066 trad_frame_set_reg_addr (this_cache, regs->hi + NUM_REGS,
1067 sigcontext_base + N64_SIGCONTEXT_HI);
1068 trad_frame_set_reg_addr (this_cache, regs->lo + NUM_REGS,
1069 sigcontext_base + N64_SIGCONTEXT_LO);
1070 trad_frame_set_reg_addr (this_cache, regs->cause + NUM_REGS,
1071 sigcontext_base + N64_SIGCONTEXT_CAUSE);
1072 trad_frame_set_reg_addr (this_cache, regs->badvaddr + NUM_REGS,
1073 sigcontext_base + N64_SIGCONTEXT_BADVADDR);
1074
1075 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1076 trad_frame_set_id (this_cache,
1077 frame_id_build (func - SIGFRAME_CODE_OFFSET,
1078 func));
1079 }
1080
1081 /* Wrapper functions. These are only used by libthread_db. */
1082
1083 void
1084 supply_gregset (mips_elf_gregset_t *gregsetp)
1085 {
1086 if (mips_isa_regsize (current_gdbarch) == 4)
1087 mips_supply_gregset (gregsetp);
1088 else
1089 mips64_supply_gregset ((void *) gregsetp);
1090 }
1091
1092 void
1093 fill_gregset (mips_elf_gregset_t *gregsetp, int regno)
1094 {
1095 if (mips_isa_regsize (current_gdbarch) == 4)
1096 mips_fill_gregset (gregsetp, regno);
1097 else
1098 mips64_fill_gregset ((void *) gregsetp, regno);
1099 }
1100
1101 /* Likewise, unpack an elf_fpregset_t. */
1102
1103 void
1104 supply_fpregset (mips_elf_fpregset_t *fpregsetp)
1105 {
1106 if (mips_isa_regsize (current_gdbarch) == 4)
1107 mips_supply_fpregset (fpregsetp);
1108 else
1109 mips64_supply_fpregset ((void *) fpregsetp);
1110 }
1111
1112 /* Likewise, pack one or all floating point registers into an
1113 elf_fpregset_t. */
1114
1115 void
1116 fill_fpregset (mips_elf_fpregset_t *fpregsetp, int regno)
1117 {
1118 if (mips_isa_regsize (current_gdbarch) == 4)
1119 mips_fill_fpregset (fpregsetp, regno);
1120 else
1121 mips64_fill_fpregset ((void *) fpregsetp, regno);
1122 }
1123
1124 /* Initialize one of the GNU/Linux OS ABIs. */
1125
1126 static void
1127 mips_linux_init_abi (struct gdbarch_info info,
1128 struct gdbarch *gdbarch)
1129 {
1130 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1131 enum mips_abi abi = mips_abi (gdbarch);
1132
1133 switch (abi)
1134 {
1135 case MIPS_ABI_O32:
1136 set_gdbarch_get_longjmp_target (gdbarch,
1137 mips_linux_get_longjmp_target);
1138 set_solib_svr4_fetch_link_map_offsets
1139 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1140 set_mips_linux_register_addr (gdbarch, mips_linux_register_addr);
1141 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
1142 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
1143 break;
1144 case MIPS_ABI_N32:
1145 set_gdbarch_get_longjmp_target (gdbarch,
1146 mips_linux_get_longjmp_target);
1147 set_solib_svr4_fetch_link_map_offsets
1148 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1149 set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr);
1150 set_gdbarch_long_double_bit (gdbarch, 128);
1151 /* These floatformats should probably be renamed. MIPS uses
1152 the same 128-bit IEEE floating point format that IA-64 uses,
1153 except that the quiet/signalling NaN bit is reversed (GDB
1154 does not distinguish between quiet and signalling NaNs). */
1155 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1156 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
1157 else
1158 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_little);
1159 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
1160 break;
1161 case MIPS_ABI_N64:
1162 set_gdbarch_get_longjmp_target (gdbarch,
1163 mips64_linux_get_longjmp_target);
1164 set_solib_svr4_fetch_link_map_offsets
1165 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1166 set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr);
1167 set_gdbarch_long_double_bit (gdbarch, 128);
1168 /* These floatformats should probably be renamed. MIPS uses
1169 the same 128-bit IEEE floating point format that IA-64 uses,
1170 except that the quiet/signalling NaN bit is reversed (GDB
1171 does not distinguish between quiet and signalling NaNs). */
1172 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1173 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
1174 else
1175 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_little);
1176 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
1177 break;
1178 default:
1179 internal_error (__FILE__, __LINE__, _("can't handle ABI"));
1180 break;
1181 }
1182
1183 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1184 set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
1185
1186 set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
1187
1188 /* Enable TLS support. */
1189 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1190 svr4_fetch_objfile_link_map);
1191 }
1192
1193 void
1194 _initialize_mips_linux_tdep (void)
1195 {
1196 const struct bfd_arch_info *arch_info;
1197
1198 register_addr_data =
1199 gdbarch_data_register_post_init (init_register_addr_data);
1200
1201 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
1202 arch_info != NULL;
1203 arch_info = arch_info->next)
1204 {
1205 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
1206 GDB_OSABI_LINUX,
1207 mips_linux_init_abi);
1208 }
1209
1210 deprecated_add_core_fns (&regset_core_fns);
1211 }