]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-nat.c
import gdb-1999-07-07 post reformat
[thirdparty/binutils-gdb.git] / gdb / mips-nat.c
1 /* Low level DECstation interface to ptrace, for GDB when running native.
2 Copyright 1988, 1989, 1991, 1992, 1995 Free Software Foundation, Inc.
3 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
4 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "inferior.h"
25 #include "gdbcore.h"
26 #include <sys/ptrace.h>
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/user.h>
30 #undef JB_S0
31 #undef JB_S1
32 #undef JB_S2
33 #undef JB_S3
34 #undef JB_S4
35 #undef JB_S5
36 #undef JB_S6
37 #undef JB_S7
38 #undef JB_SP
39 #undef JB_S8
40 #undef JB_PC
41 #undef JB_SR
42 #undef NJBREGS
43 #include <setjmp.h> /* For JB_XXX. */
44
45 /* Size of elements in jmpbuf */
46
47 #define JB_ELEMENT_SIZE 4
48
49 /* Map gdb internal register number to ptrace ``address''.
50 These ``addresses'' are defined in DECstation <sys/ptrace.h> */
51
52 #define REGISTER_PTRACE_ADDR(regno) \
53 (regno < 32 ? GPR_BASE + regno \
54 : regno == PC_REGNUM ? PC \
55 : regno == CAUSE_REGNUM ? CAUSE \
56 : regno == HI_REGNUM ? MMHI \
57 : regno == LO_REGNUM ? MMLO \
58 : regno == FCRCS_REGNUM ? FPC_CSR \
59 : regno == FCRIR_REGNUM ? FPC_EIR \
60 : regno >= FP0_REGNUM ? FPR_BASE + (regno - FP0_REGNUM) \
61 : 0)
62
63 static char zerobuf[MAX_REGISTER_RAW_SIZE] =
64 {0};
65
66 static void fetch_core_registers PARAMS ((char *, unsigned, int, CORE_ADDR));
67
68 /* Get all registers from the inferior */
69
70 void
71 fetch_inferior_registers (regno)
72 int regno;
73 {
74 register unsigned int regaddr;
75 char buf[MAX_REGISTER_RAW_SIZE];
76 register int i;
77
78 registers_fetched ();
79
80 for (regno = 1; regno < NUM_REGS; regno++)
81 {
82 regaddr = REGISTER_PTRACE_ADDR (regno);
83 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
84 {
85 *(int *) &buf[i] = ptrace (PT_READ_U, inferior_pid,
86 (PTRACE_ARG3_TYPE) regaddr, 0);
87 regaddr += sizeof (int);
88 }
89 supply_register (regno, buf);
90 }
91
92 supply_register (ZERO_REGNUM, zerobuf);
93 /* Frame ptr reg must appear to be 0; it is faked by stack handling code. */
94 supply_register (FP_REGNUM, zerobuf);
95 }
96
97 /* Store our register values back into the inferior.
98 If REGNO is -1, do this for all registers.
99 Otherwise, REGNO specifies which register (so we can save time). */
100
101 void
102 store_inferior_registers (regno)
103 int regno;
104 {
105 register unsigned int regaddr;
106 char buf[80];
107
108 if (regno > 0)
109 {
110 if (regno == ZERO_REGNUM || regno == PS_REGNUM
111 || regno == BADVADDR_REGNUM || regno == CAUSE_REGNUM
112 || regno == FCRIR_REGNUM || regno == FP_REGNUM
113 || (regno >= FIRST_EMBED_REGNUM && regno <= LAST_EMBED_REGNUM))
114 return;
115 regaddr = REGISTER_PTRACE_ADDR (regno);
116 errno = 0;
117 ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
118 read_register (regno));
119 if (errno != 0)
120 {
121 sprintf (buf, "writing register number %d", regno);
122 perror_with_name (buf);
123 }
124 }
125 else
126 {
127 for (regno = 0; regno < NUM_REGS; regno++)
128 store_inferior_registers (regno);
129 }
130 }
131
132
133 /* Figure out where the longjmp will land.
134 We expect the first arg to be a pointer to the jmp_buf structure from which
135 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
136 This routine returns true on success. */
137
138 int
139 get_longjmp_target (pc)
140 CORE_ADDR *pc;
141 {
142 CORE_ADDR jb_addr;
143 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
144
145 jb_addr = read_register (A0_REGNUM);
146
147 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
148 TARGET_PTR_BIT / TARGET_CHAR_BIT))
149 return 0;
150
151 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
152
153 return 1;
154 }
155
156 /* Extract the register values out of the core file and store
157 them where `read_register' will find them.
158
159 CORE_REG_SECT points to the register values themselves, read into memory.
160 CORE_REG_SIZE is the size of that area.
161 WHICH says which set of registers we are handling (0 = int, 2 = float
162 on machines where they are discontiguous).
163 REG_ADDR is the offset from u.u_ar0 to the register values relative to
164 core_reg_sect. This is used with old-fashioned core files to
165 locate the registers in a large upage-plus-stack ".reg" section.
166 Original upage address X is at location core_reg_sect+x+reg_addr.
167 */
168
169 static void
170 fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
171 char *core_reg_sect;
172 unsigned core_reg_size;
173 int which;
174 CORE_ADDR reg_addr;
175 {
176 register int regno;
177 register unsigned int addr;
178 int bad_reg = -1;
179 register reg_ptr = -reg_addr; /* Original u.u_ar0 is -reg_addr. */
180
181 /* If u.u_ar0 was an absolute address in the core file, relativize it now,
182 so we can use it as an offset into core_reg_sect. When we're done,
183 "register 0" will be at core_reg_sect+reg_ptr, and we can use
184 register_addr to offset to the other registers. If this is a modern
185 core file without a upage, reg_ptr will be zero and this is all a big
186 NOP. */
187 if (reg_ptr > core_reg_size)
188 #ifdef KERNEL_U_ADDR
189 reg_ptr -= KERNEL_U_ADDR;
190 #else
191 error ("Old mips core file can't be processed on this machine.");
192 #endif
193
194 for (regno = 0; regno < NUM_REGS; regno++)
195 {
196 addr = register_addr (regno, reg_ptr);
197 if (addr >= core_reg_size)
198 {
199 if (bad_reg < 0)
200 bad_reg = regno;
201 }
202 else
203 {
204 supply_register (regno, core_reg_sect + addr);
205 }
206 }
207 if (bad_reg >= 0)
208 {
209 error ("Register %s not found in core file.", REGISTER_NAME (bad_reg));
210 }
211 supply_register (ZERO_REGNUM, zerobuf);
212 /* Frame ptr reg must appear to be 0; it is faked by stack handling code. */
213 supply_register (FP_REGNUM, zerobuf);
214 }
215
216 /* Return the address in the core dump or inferior of register REGNO.
217 BLOCKEND is the address of the end of the user structure. */
218
219 CORE_ADDR
220 register_addr (regno, blockend)
221 int regno;
222 CORE_ADDR blockend;
223 {
224 CORE_ADDR addr;
225
226 if (regno < 0 || regno >= NUM_REGS)
227 error ("Invalid register number %d.", regno);
228
229 REGISTER_U_ADDR (addr, blockend, regno);
230
231 return addr;
232 }
233 \f
234
235 /* Register that we are able to handle mips core file formats.
236 FIXME: is this really bfd_target_unknown_flavour? */
237
238 static struct core_fns mips_core_fns =
239 {
240 bfd_target_unknown_flavour,
241 fetch_core_registers,
242 NULL
243 };
244
245 void
246 _initialize_core_mips ()
247 {
248 add_core_fns (&mips_core_fns);
249 }