]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-tdep.c
PARAMS removal.
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2 Copyright 1988-1999, Free Software Foundation, Inc.
3 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
4 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "value.h"
29 #include "gdbcmd.h"
30 #include "language.h"
31 #include "gdbcore.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdbtypes.h"
35 #include "target.h"
36 #include "arch-utils.h"
37
38 #include "opcode/mips.h"
39 #include "elf/mips.h"
40 #include "elf-bfd.h"
41
42
43 /* All the possible MIPS ABIs. */
44
45 enum mips_abi
46 {
47 MIPS_ABI_UNKNOWN,
48 MIPS_ABI_N32,
49 MIPS_ABI_O32,
50 MIPS_ABI_O64,
51 MIPS_ABI_EABI32,
52 MIPS_ABI_EABI64
53 };
54
55 struct frame_extra_info
56 {
57 mips_extra_func_info_t proc_desc;
58 int num_args;
59 };
60
61 /* Various MIPS ISA options (related to stack analysis) can be
62 overridden dynamically. Establish an enum/array for managing
63 them. */
64
65 static char size_auto[] = "auto";
66 static char size_32[] = "32";
67 static char size_64[] = "64";
68
69 static char *size_enums[] = {
70 size_auto,
71 size_32,
72 size_64,
73 0
74 };
75
76 /* Some MIPS boards don't support floating point while others only
77 support single-precision floating-point operations. See also
78 FP_REGISTER_DOUBLE. */
79
80 enum mips_fpu_type
81 {
82 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
83 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
84 MIPS_FPU_NONE /* No floating point. */
85 };
86
87 #ifndef MIPS_DEFAULT_FPU_TYPE
88 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
89 #endif
90 static int mips_fpu_type_auto = 1;
91 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
92 #define MIPS_FPU_TYPE mips_fpu_type
93
94 /* Do not use "TARGET_IS_MIPS64" to test the size of floating point registers */
95 #ifndef FP_REGISTER_DOUBLE
96 #define FP_REGISTER_DOUBLE (REGISTER_VIRTUAL_SIZE(FP0_REGNUM) == 8)
97 #endif
98
99
100 /* MIPS specific per-architecture information */
101 struct gdbarch_tdep
102 {
103 /* from the elf header */
104 int elf_flags;
105 /* mips options */
106 enum mips_abi mips_abi;
107 enum mips_fpu_type mips_fpu_type;
108 int mips_last_arg_regnum;
109 int mips_last_fp_arg_regnum;
110 int mips_default_saved_regsize;
111 int mips_fp_register_double;
112 int mips_regs_have_home_p;
113 int mips_default_stack_argsize;
114 };
115
116 #if GDB_MULTI_ARCH
117 #undef MIPS_EABI
118 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
119 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
120 #endif
121
122 #if GDB_MULTI_ARCH
123 #undef MIPS_LAST_FP_ARG_REGNUM
124 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
125 #endif
126
127 #if GDB_MULTI_ARCH
128 #undef MIPS_LAST_ARG_REGNUM
129 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
130 #endif
131
132 #if GDB_MULTI_ARCH
133 #undef MIPS_FPU_TYPE
134 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
135 #endif
136
137 /* Return the currently configured (or set) saved register size. */
138
139 #if GDB_MULTI_ARCH
140 #undef MIPS_DEFAULT_SAVED_REGSIZE
141 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
142 #elif !defined (MIPS_DEFAULT_SAVED_REGSIZE)
143 #define MIPS_DEFAULT_SAVED_REGSIZE MIPS_REGSIZE
144 #endif
145
146 static char *mips_saved_regsize_string = size_auto;
147
148 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
149
150 static unsigned int
151 mips_saved_regsize ()
152 {
153 if (mips_saved_regsize_string == size_auto)
154 return MIPS_DEFAULT_SAVED_REGSIZE;
155 else if (mips_saved_regsize_string == size_64)
156 return 8;
157 else /* if (mips_saved_regsize_string == size_32) */
158 return 4;
159 }
160
161 /* Indicate that the ABI makes use of double-precision registers
162 provided by the FPU (rather than combining pairs of registers to
163 form double-precision values). Do not use "TARGET_IS_MIPS64" to
164 determine if the ABI is using double-precision registers. See also
165 MIPS_FPU_TYPE. */
166 #if GDB_MULTI_ARCH
167 #undef FP_REGISTER_DOUBLE
168 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
169 #endif
170
171 /* Does the caller allocate a ``home'' for each register used in the
172 function call? The N32 ABI and MIPS_EABI do not, the others do. */
173
174 #if GDB_MULTI_ARCH
175 #undef MIPS_REGS_HAVE_HOME_P
176 #define MIPS_REGS_HAVE_HOME_P (gdbarch_tdep (current_gdbarch)->mips_regs_have_home_p)
177 #elif !defined (MIPS_REGS_HAVE_HOME_P)
178 #define MIPS_REGS_HAVE_HOME_P (!MIPS_EABI)
179 #endif
180
181 /* The amount of space reserved on the stack for registers. This is
182 different to MIPS_SAVED_REGSIZE as it determines the alignment of
183 data allocated after the registers have run out. */
184
185 #if GDB_MULTI_ARCH
186 #undef MIPS_DEFAULT_STACK_ARGSIZE
187 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
188 #elif !defined (MIPS_DEFAULT_STACK_ARGSIZE)
189 #define MIPS_DEFAULT_STACK_ARGSIZE (MIPS_DEFAULT_SAVED_REGSIZE)
190 #endif
191
192 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
193
194 static char *mips_stack_argsize_string = size_auto;
195
196 static unsigned int
197 mips_stack_argsize (void)
198 {
199 if (mips_stack_argsize_string == size_auto)
200 return MIPS_DEFAULT_STACK_ARGSIZE;
201 else if (mips_stack_argsize_string == size_64)
202 return 8;
203 else /* if (mips_stack_argsize_string == size_32) */
204 return 4;
205 }
206
207
208
209 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
210
211 #if 0
212 static int mips_in_lenient_prologue (CORE_ADDR, CORE_ADDR);
213 #endif
214
215 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
216
217 static void mips_print_register (int, int);
218
219 static mips_extra_func_info_t
220 heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *);
221
222 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
223
224 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
225
226 int mips_set_processor_type (char *);
227
228 static void mips_show_processor_type_command (char *, int);
229
230 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
231
232 static mips_extra_func_info_t
233 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame);
234
235 static CORE_ADDR after_prologue (CORE_ADDR pc,
236 mips_extra_func_info_t proc_desc);
237
238 /* This value is the model of MIPS in use. It is derived from the value
239 of the PrID register. */
240
241 char *mips_processor_type;
242
243 char *tmp_mips_processor_type;
244
245 /* A set of original names, to be used when restoring back to generic
246 registers from a specific set. */
247
248 char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
249 char **mips_processor_reg_names = mips_generic_reg_names;
250
251 /* The list of available "set mips " and "show mips " commands */
252 static struct cmd_list_element *setmipscmdlist = NULL;
253 static struct cmd_list_element *showmipscmdlist = NULL;
254
255 char *
256 mips_register_name (i)
257 int i;
258 {
259 return mips_processor_reg_names[i];
260 }
261 /* *INDENT-OFF* */
262 /* Names of IDT R3041 registers. */
263
264 char *mips_r3041_reg_names[] = {
265 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
266 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
267 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
268 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
269 "sr", "lo", "hi", "bad", "cause","pc",
270 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
271 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
272 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
273 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
274 "fsr", "fir", "fp", "",
275 "", "", "bus", "ccfg", "", "", "", "",
276 "", "", "port", "cmp", "", "", "epc", "prid",
277 };
278
279 /* Names of IDT R3051 registers. */
280
281 char *mips_r3051_reg_names[] = {
282 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
283 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
284 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
285 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
286 "sr", "lo", "hi", "bad", "cause","pc",
287 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
288 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
289 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
290 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
291 "fsr", "fir", "fp", "",
292 "inx", "rand", "elo", "", "ctxt", "", "", "",
293 "", "", "ehi", "", "", "", "epc", "prid",
294 };
295
296 /* Names of IDT R3081 registers. */
297
298 char *mips_r3081_reg_names[] = {
299 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
300 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
301 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
302 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
303 "sr", "lo", "hi", "bad", "cause","pc",
304 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
305 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
306 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
307 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
308 "fsr", "fir", "fp", "",
309 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
310 "", "", "ehi", "", "", "", "epc", "prid",
311 };
312
313 /* Names of LSI 33k registers. */
314
315 char *mips_lsi33k_reg_names[] = {
316 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
317 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
318 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
319 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
320 "epc", "hi", "lo", "sr", "cause","badvaddr",
321 "dcic", "bpc", "bda", "", "", "", "", "",
322 "", "", "", "", "", "", "", "",
323 "", "", "", "", "", "", "", "",
324 "", "", "", "", "", "", "", "",
325 "", "", "", "",
326 "", "", "", "", "", "", "", "",
327 "", "", "", "", "", "", "", "",
328 };
329
330 struct {
331 char *name;
332 char **regnames;
333 } mips_processor_type_table[] = {
334 { "generic", mips_generic_reg_names },
335 { "r3041", mips_r3041_reg_names },
336 { "r3051", mips_r3051_reg_names },
337 { "r3071", mips_r3081_reg_names },
338 { "r3081", mips_r3081_reg_names },
339 { "lsi33k", mips_lsi33k_reg_names },
340 { NULL, NULL }
341 };
342 /* *INDENT-ON* */
343
344
345
346
347 /* Table to translate MIPS16 register field to actual register number. */
348 static int mips16_to_32_reg[8] =
349 {16, 17, 2, 3, 4, 5, 6, 7};
350
351 /* Heuristic_proc_start may hunt through the text section for a long
352 time across a 2400 baud serial line. Allows the user to limit this
353 search. */
354
355 static unsigned int heuristic_fence_post = 0;
356
357 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
358 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
359 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
360 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
361 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
362 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
363 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
364 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
365 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
366 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
367 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
368 #define _PROC_MAGIC_ 0x0F0F0F0F
369 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
370 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
371
372 struct linked_proc_info
373 {
374 struct mips_extra_func_info info;
375 struct linked_proc_info *next;
376 }
377 *linked_proc_desc_table = NULL;
378
379 void
380 mips_print_extra_frame_info (fi)
381 struct frame_info *fi;
382 {
383 if (fi
384 && fi->extra_info
385 && fi->extra_info->proc_desc
386 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
387 printf_filtered (" frame pointer is at %s+%s\n",
388 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
389 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
390 }
391
392 /* Convert between RAW and VIRTUAL registers. The RAW register size
393 defines the remote-gdb packet. */
394
395 static int mips64_transfers_32bit_regs_p = 0;
396
397 int
398 mips_register_raw_size (reg_nr)
399 int reg_nr;
400 {
401 if (mips64_transfers_32bit_regs_p)
402 return REGISTER_VIRTUAL_SIZE (reg_nr);
403 else
404 return MIPS_REGSIZE;
405 }
406
407 int
408 mips_register_convertible (reg_nr)
409 int reg_nr;
410 {
411 if (mips64_transfers_32bit_regs_p)
412 return 0;
413 else
414 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
415 }
416
417 void
418 mips_register_convert_to_virtual (n, virtual_type, raw_buf, virt_buf)
419 int n;
420 struct type *virtual_type;
421 char *raw_buf;
422 char *virt_buf;
423 {
424 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
425 memcpy (virt_buf,
426 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
427 TYPE_LENGTH (virtual_type));
428 else
429 memcpy (virt_buf,
430 raw_buf,
431 TYPE_LENGTH (virtual_type));
432 }
433
434 void
435 mips_register_convert_to_raw (virtual_type, n, virt_buf, raw_buf)
436 struct type *virtual_type;
437 int n;
438 char *virt_buf;
439 char *raw_buf;
440 {
441 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
442 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
443 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
444 virt_buf,
445 TYPE_LENGTH (virtual_type));
446 else
447 memcpy (raw_buf,
448 virt_buf,
449 TYPE_LENGTH (virtual_type));
450 }
451
452 /* Should the upper word of 64-bit addresses be zeroed? */
453 static int mask_address_p = 1;
454
455 /* Should call_function allocate stack space for a struct return? */
456 int
457 mips_use_struct_convention (gcc_p, type)
458 int gcc_p;
459 struct type *type;
460 {
461 if (MIPS_EABI)
462 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
463 else
464 return 1; /* Structures are returned by ref in extra arg0 */
465 }
466
467 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
468
469 static int
470 pc_is_mips16 (bfd_vma memaddr)
471 {
472 struct minimal_symbol *sym;
473
474 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
475 if (IS_MIPS16_ADDR (memaddr))
476 return 1;
477
478 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
479 the high bit of the info field. Use this to decide if the function is
480 MIPS16 or normal MIPS. */
481 sym = lookup_minimal_symbol_by_pc (memaddr);
482 if (sym)
483 return MSYMBOL_IS_SPECIAL (sym);
484 else
485 return 0;
486 }
487
488
489 /* This returns the PC of the first inst after the prologue. If we can't
490 find the prologue, then return 0. */
491
492 static CORE_ADDR
493 after_prologue (pc, proc_desc)
494 CORE_ADDR pc;
495 mips_extra_func_info_t proc_desc;
496 {
497 struct symtab_and_line sal;
498 CORE_ADDR func_addr, func_end;
499
500 if (!proc_desc)
501 proc_desc = find_proc_desc (pc, NULL);
502
503 if (proc_desc)
504 {
505 /* If function is frameless, then we need to do it the hard way. I
506 strongly suspect that frameless always means prologueless... */
507 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
508 && PROC_FRAME_OFFSET (proc_desc) == 0)
509 return 0;
510 }
511
512 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
513 return 0; /* Unknown */
514
515 sal = find_pc_line (func_addr, 0);
516
517 if (sal.end < func_end)
518 return sal.end;
519
520 /* The line after the prologue is after the end of the function. In this
521 case, tell the caller to find the prologue the hard way. */
522
523 return 0;
524 }
525
526 /* Decode a MIPS32 instruction that saves a register in the stack, and
527 set the appropriate bit in the general register mask or float register mask
528 to indicate which register is saved. This is a helper function
529 for mips_find_saved_regs. */
530
531 static void
532 mips32_decode_reg_save (inst, gen_mask, float_mask)
533 t_inst inst;
534 unsigned long *gen_mask;
535 unsigned long *float_mask;
536 {
537 int reg;
538
539 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
540 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
541 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
542 {
543 /* It might be possible to use the instruction to
544 find the offset, rather than the code below which
545 is based on things being in a certain order in the
546 frame, but figuring out what the instruction's offset
547 is relative to might be a little tricky. */
548 reg = (inst & 0x001f0000) >> 16;
549 *gen_mask |= (1 << reg);
550 }
551 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
552 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
553 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
554
555 {
556 reg = ((inst & 0x001f0000) >> 16);
557 *float_mask |= (1 << reg);
558 }
559 }
560
561 /* Decode a MIPS16 instruction that saves a register in the stack, and
562 set the appropriate bit in the general register or float register mask
563 to indicate which register is saved. This is a helper function
564 for mips_find_saved_regs. */
565
566 static void
567 mips16_decode_reg_save (inst, gen_mask)
568 t_inst inst;
569 unsigned long *gen_mask;
570 {
571 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
572 {
573 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
574 *gen_mask |= (1 << reg);
575 }
576 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
577 {
578 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
579 *gen_mask |= (1 << reg);
580 }
581 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
582 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
583 *gen_mask |= (1 << RA_REGNUM);
584 }
585
586
587 /* Fetch and return instruction from the specified location. If the PC
588 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
589
590 static t_inst
591 mips_fetch_instruction (addr)
592 CORE_ADDR addr;
593 {
594 char buf[MIPS_INSTLEN];
595 int instlen;
596 int status;
597
598 if (pc_is_mips16 (addr))
599 {
600 instlen = MIPS16_INSTLEN;
601 addr = UNMAKE_MIPS16_ADDR (addr);
602 }
603 else
604 instlen = MIPS_INSTLEN;
605 status = read_memory_nobpt (addr, buf, instlen);
606 if (status)
607 memory_error (status, addr);
608 return extract_unsigned_integer (buf, instlen);
609 }
610
611
612 /* These the fields of 32 bit mips instructions */
613 #define mips32_op(x) (x >> 25)
614 #define itype_op(x) (x >> 25)
615 #define itype_rs(x) ((x >> 21)& 0x1f)
616 #define itype_rt(x) ((x >> 16) & 0x1f)
617 #define itype_immediate(x) ( x & 0xffff)
618
619 #define jtype_op(x) (x >> 25)
620 #define jtype_target(x) ( x & 0x03fffff)
621
622 #define rtype_op(x) (x >>25)
623 #define rtype_rs(x) ((x>>21) & 0x1f)
624 #define rtype_rt(x) ((x>>16) & 0x1f)
625 #define rtype_rd(x) ((x>>11) & 0x1f)
626 #define rtype_shamt(x) ((x>>6) & 0x1f)
627 #define rtype_funct(x) (x & 0x3f )
628
629 static CORE_ADDR
630 mips32_relative_offset (unsigned long inst)
631 {
632 long x;
633 x = itype_immediate (inst);
634 if (x & 0x8000) /* sign bit set */
635 {
636 x |= 0xffff0000; /* sign extension */
637 }
638 x = x << 2;
639 return x;
640 }
641
642 /* Determine whate to set a single step breakpoint while considering
643 branch prediction */
644 CORE_ADDR
645 mips32_next_pc (CORE_ADDR pc)
646 {
647 unsigned long inst;
648 int op;
649 inst = mips_fetch_instruction (pc);
650 if ((inst & 0xe0000000) != 0) /* Not a special, junp or branch instruction */
651 {
652 if ((inst >> 27) == 5) /* BEQL BNEZ BLEZL BGTZE , bits 0101xx */
653 {
654 op = ((inst >> 25) & 0x03);
655 switch (op)
656 {
657 case 0:
658 goto equal_branch; /* BEQL */
659 case 1:
660 goto neq_branch; /* BNEZ */
661 case 2:
662 goto less_branch; /* BLEZ */
663 case 3:
664 goto greater_branch; /* BGTZ */
665 default:
666 pc += 4;
667 }
668 }
669 else
670 pc += 4; /* Not a branch, next instruction is easy */
671 }
672 else
673 { /* This gets way messy */
674
675 /* Further subdivide into SPECIAL, REGIMM and other */
676 switch (op = ((inst >> 26) & 0x07)) /* extract bits 28,27,26 */
677 {
678 case 0: /* SPECIAL */
679 op = rtype_funct (inst);
680 switch (op)
681 {
682 case 8: /* JR */
683 case 9: /* JALR */
684 pc = read_register (rtype_rs (inst)); /* Set PC to that address */
685 break;
686 default:
687 pc += 4;
688 }
689
690 break; /* end special */
691 case 1: /* REGIMM */
692 {
693 op = jtype_op (inst); /* branch condition */
694 switch (jtype_op (inst))
695 {
696 case 0: /* BLTZ */
697 case 2: /* BLTXL */
698 case 16: /* BLTZALL */
699 case 18: /* BLTZALL */
700 less_branch:
701 if (read_register (itype_rs (inst)) < 0)
702 pc += mips32_relative_offset (inst) + 4;
703 else
704 pc += 8; /* after the delay slot */
705 break;
706 case 1: /* GEZ */
707 case 3: /* BGEZL */
708 case 17: /* BGEZAL */
709 case 19: /* BGEZALL */
710 greater_equal_branch:
711 if (read_register (itype_rs (inst)) >= 0)
712 pc += mips32_relative_offset (inst) + 4;
713 else
714 pc += 8; /* after the delay slot */
715 break;
716 /* All of the other intructions in the REGIMM catagory */
717 default:
718 pc += 4;
719 }
720 }
721 break; /* end REGIMM */
722 case 2: /* J */
723 case 3: /* JAL */
724 {
725 unsigned long reg;
726 reg = jtype_target (inst) << 2;
727 pc = reg + ((pc + 4) & 0xf0000000);
728 /* Whats this mysterious 0xf000000 adjustment ??? */
729 }
730 break;
731 /* FIXME case JALX : */
732 {
733 unsigned long reg;
734 reg = jtype_target (inst) << 2;
735 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
736 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
737 }
738 break; /* The new PC will be alternate mode */
739 case 4: /* BEQ , BEQL */
740 equal_branch:
741 if (read_register (itype_rs (inst)) ==
742 read_register (itype_rt (inst)))
743 pc += mips32_relative_offset (inst) + 4;
744 else
745 pc += 8;
746 break;
747 case 5: /* BNE , BNEL */
748 neq_branch:
749 if (read_register (itype_rs (inst)) !=
750 read_register (itype_rs (inst)))
751 pc += mips32_relative_offset (inst) + 4;
752 else
753 pc += 8;
754 break;
755 case 6: /* BLEZ , BLEZL */
756 less_zero_branch:
757 if (read_register (itype_rs (inst) <= 0))
758 pc += mips32_relative_offset (inst) + 4;
759 else
760 pc += 8;
761 break;
762 case 7:
763 greater_branch: /* BGTZ BGTZL */
764 if (read_register (itype_rs (inst) > 0))
765 pc += mips32_relative_offset (inst) + 4;
766 else
767 pc += 8;
768 break;
769 default:
770 pc += 8;
771 } /* switch */
772 } /* else */
773 return pc;
774 } /* mips32_next_pc */
775
776 /* Decoding the next place to set a breakpoint is irregular for the
777 mips 16 variant, but fortunatly, there fewer instructions. We have to cope
778 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
779 We dont want to set a single step instruction on the extend instruction
780 either.
781 */
782
783 /* Lots of mips16 instruction formats */
784 /* Predicting jumps requires itype,ritype,i8type
785 and their extensions extItype,extritype,extI8type
786 */
787 enum mips16_inst_fmts
788 {
789 itype, /* 0 immediate 5,10 */
790 ritype, /* 1 5,3,8 */
791 rrtype, /* 2 5,3,3,5 */
792 rritype, /* 3 5,3,3,5 */
793 rrrtype, /* 4 5,3,3,3,2 */
794 rriatype, /* 5 5,3,3,1,4 */
795 shifttype, /* 6 5,3,3,3,2 */
796 i8type, /* 7 5,3,8 */
797 i8movtype, /* 8 5,3,3,5 */
798 i8mov32rtype, /* 9 5,3,5,3 */
799 i64type, /* 10 5,3,8 */
800 ri64type, /* 11 5,3,3,5 */
801 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
802 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
803 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
804 extRRItype, /* 15 5,5,5,5,3,3,5 */
805 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
806 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
807 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
808 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
809 extRi64type, /* 20 5,6,5,5,3,3,5 */
810 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
811 };
812 /* I am heaping all the fields of the formats into one structure and then,
813 only the fields which are involved in instruction extension */
814 struct upk_mips16
815 {
816 unsigned short inst;
817 enum mips16_inst_fmts fmt;
818 unsigned long offset;
819 unsigned int regx; /* Function in i8 type */
820 unsigned int regy;
821 };
822
823
824
825 static void
826 print_unpack (char *comment,
827 struct upk_mips16 *u)
828 {
829 printf ("%s %04x ,f(%d) off(%s) (x(%x) y(%x)\n",
830 comment, u->inst, u->fmt, paddr (u->offset), u->regx, u->regy);
831 }
832
833 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same
834 format for the bits which make up the immediatate extension.
835 */
836 static unsigned long
837 extended_offset (unsigned long extension)
838 {
839 unsigned long value;
840 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
841 value = value << 6;
842 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
843 value = value << 5;
844 value |= extension & 0x01f; /* extract 4:0 */
845 return value;
846 }
847
848 /* Only call this function if you know that this is an extendable
849 instruction, It wont malfunction, but why make excess remote memory references?
850 If the immediate operands get sign extended or somthing, do it after
851 the extension is performed.
852 */
853 /* FIXME: Every one of these cases needs to worry about sign extension
854 when the offset is to be used in relative addressing */
855
856
857 static unsigned short
858 fetch_mips_16 (CORE_ADDR pc)
859 {
860 char buf[8];
861 pc &= 0xfffffffe; /* clear the low order bit */
862 target_read_memory (pc, buf, 2);
863 return extract_unsigned_integer (buf, 2);
864 }
865
866 static void
867 unpack_mips16 (CORE_ADDR pc,
868 struct upk_mips16 *upk)
869 {
870 CORE_ADDR extpc;
871 unsigned long extension;
872 int extended;
873 extpc = (pc - 4) & ~0x01; /* Extensions are 32 bit instructions */
874 /* Decrement to previous address and loose the 16bit mode flag */
875 /* return if the instruction was extendable, but not actually extended */
876 extended = ((mips32_op (extension) == 30) ? 1 : 0);
877 if (extended)
878 {
879 extension = mips_fetch_instruction (extpc);
880 }
881 switch (upk->fmt)
882 {
883 case itype:
884 {
885 unsigned long value;
886 if (extended)
887 {
888 value = extended_offset (extension);
889 value = value << 11; /* rom for the original value */
890 value |= upk->inst & 0x7ff; /* eleven bits from instruction */
891 }
892 else
893 {
894 value = upk->inst & 0x7ff;
895 /* FIXME : Consider sign extension */
896 }
897 upk->offset = value;
898 }
899 break;
900 case ritype:
901 case i8type:
902 { /* A register identifier and an offset */
903 /* Most of the fields are the same as I type but the
904 immediate value is of a different length */
905 unsigned long value;
906 if (extended)
907 {
908 value = extended_offset (extension);
909 value = value << 8; /* from the original instruction */
910 value |= upk->inst & 0xff; /* eleven bits from instruction */
911 upk->regx = (extension >> 8) & 0x07; /* or i8 funct */
912 if (value & 0x4000) /* test the sign bit , bit 26 */
913 {
914 value &= ~0x3fff; /* remove the sign bit */
915 value = -value;
916 }
917 }
918 else
919 {
920 value = upk->inst & 0xff; /* 8 bits */
921 upk->regx = (upk->inst >> 8) & 0x07; /* or i8 funct */
922 /* FIXME: Do sign extension , this format needs it */
923 if (value & 0x80) /* THIS CONFUSES ME */
924 {
925 value &= 0xef; /* remove the sign bit */
926 value = -value;
927 }
928
929 }
930 upk->offset = value;
931 break;
932 }
933 case jalxtype:
934 {
935 unsigned long value;
936 unsigned short nexthalf;
937 value = ((upk->inst & 0x1f) << 5) | ((upk->inst >> 5) & 0x1f);
938 value = value << 16;
939 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
940 value |= nexthalf;
941 upk->offset = value;
942 break;
943 }
944 default:
945 printf_filtered ("Decoding unimplemented instruction format type\n");
946 break;
947 }
948 /* print_unpack("UPK",upk) ; */
949 }
950
951
952 #define mips16_op(x) (x >> 11)
953
954 /* This is a map of the opcodes which ae known to perform branches */
955 static unsigned char map16[32] =
956 {0, 0, 1, 1, 1, 1, 0, 0,
957 0, 0, 0, 0, 1, 0, 0, 0,
958 0, 0, 0, 0, 0, 0, 0, 0,
959 0, 0, 0, 0, 0, 1, 1, 0
960 };
961
962 static CORE_ADDR
963 add_offset_16 (CORE_ADDR pc, int offset)
964 {
965 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
966
967 }
968
969
970
971 static struct upk_mips16 upk;
972
973 CORE_ADDR
974 mips16_next_pc (CORE_ADDR pc)
975 {
976 int op;
977 t_inst inst;
978 /* inst = mips_fetch_instruction(pc) ; - This doesnt always work */
979 inst = fetch_mips_16 (pc);
980 upk.inst = inst;
981 op = mips16_op (upk.inst);
982 if (map16[op])
983 {
984 int reg;
985 switch (op)
986 {
987 case 2: /* Branch */
988 upk.fmt = itype;
989 unpack_mips16 (pc, &upk);
990 {
991 long offset;
992 offset = upk.offset;
993 if (offset & 0x800)
994 {
995 offset &= 0xeff;
996 offset = -offset;
997 }
998 pc += (offset << 1) + 2;
999 }
1000 break;
1001 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1002 upk.fmt = jalxtype;
1003 unpack_mips16 (pc, &upk);
1004 pc = add_offset_16 (pc, upk.offset);
1005 if ((upk.inst >> 10) & 0x01) /* Exchange mode */
1006 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1007 else
1008 pc |= 0x01;
1009 break;
1010 case 4: /* beqz */
1011 upk.fmt = ritype;
1012 unpack_mips16 (pc, &upk);
1013 reg = read_register (upk.regx);
1014 if (reg == 0)
1015 pc += (upk.offset << 1) + 2;
1016 else
1017 pc += 2;
1018 break;
1019 case 5: /* bnez */
1020 upk.fmt = ritype;
1021 unpack_mips16 (pc, &upk);
1022 reg = read_register (upk.regx);
1023 if (reg != 0)
1024 pc += (upk.offset << 1) + 2;
1025 else
1026 pc += 2;
1027 break;
1028 case 12: /* I8 Formats btez btnez */
1029 upk.fmt = i8type;
1030 unpack_mips16 (pc, &upk);
1031 /* upk.regx contains the opcode */
1032 reg = read_register (24); /* Test register is 24 */
1033 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1034 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1035 /* pc = add_offset_16(pc,upk.offset) ; */
1036 pc += (upk.offset << 1) + 2;
1037 else
1038 pc += 2;
1039 break;
1040 case 29: /* RR Formats JR, JALR, JALR-RA */
1041 upk.fmt = rrtype;
1042 op = upk.inst & 0x1f;
1043 if (op == 0)
1044 {
1045 upk.regx = (upk.inst >> 8) & 0x07;
1046 upk.regy = (upk.inst >> 5) & 0x07;
1047 switch (upk.regy)
1048 {
1049 case 0:
1050 reg = upk.regx;
1051 break;
1052 case 1:
1053 reg = 31;
1054 break; /* Function return instruction */
1055 case 2:
1056 reg = upk.regx;
1057 break;
1058 default:
1059 reg = 31;
1060 break; /* BOGUS Guess */
1061 }
1062 pc = read_register (reg);
1063 }
1064 else
1065 pc += 2;
1066 break;
1067 case 30: /* This is an extend instruction */
1068 pc += 4; /* Dont be setting breakpints on the second half */
1069 break;
1070 default:
1071 printf ("Filtered - next PC probably incorrrect due to jump inst\n");
1072 pc += 2;
1073 break;
1074 }
1075 }
1076 else
1077 pc += 2; /* just a good old instruction */
1078 /* See if we CAN actually break on the next instruction */
1079 /* printf("NXTm16PC %08x\n",(unsigned long)pc) ; */
1080 return pc;
1081 } /* mips16_next_pc */
1082
1083 /* The mips_next_pc function supports single_tep when the remote target monitor or
1084 stub is not developed enough to so a single_step.
1085 It works by decoding the current instruction and predicting where a branch
1086 will go. This isnt hard because all the data is available.
1087 The MIPS32 and MIPS16 variants are quite different
1088 */
1089 CORE_ADDR
1090 mips_next_pc (CORE_ADDR pc)
1091 {
1092 t_inst inst;
1093 /* inst = mips_fetch_instruction(pc) ; */
1094 /* if (pc_is_mips16) <----- This is failing */
1095 if (pc & 0x01)
1096 return mips16_next_pc (pc);
1097 else
1098 return mips32_next_pc (pc);
1099 } /* mips_next_pc */
1100
1101 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
1102 NULL). */
1103
1104 void
1105 mips_find_saved_regs (fci)
1106 struct frame_info *fci;
1107 {
1108 int ireg;
1109 CORE_ADDR reg_position;
1110 /* r0 bit means kernel trap */
1111 int kernel_trap;
1112 /* What registers have been saved? Bitmasks. */
1113 unsigned long gen_mask, float_mask;
1114 mips_extra_func_info_t proc_desc;
1115 t_inst inst;
1116
1117 frame_saved_regs_zalloc (fci);
1118
1119 /* If it is the frame for sigtramp, the saved registers are located
1120 in a sigcontext structure somewhere on the stack.
1121 If the stack layout for sigtramp changes we might have to change these
1122 constants and the companion fixup_sigtramp in mdebugread.c */
1123 #ifndef SIGFRAME_BASE
1124 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1125 above the sigtramp frame. */
1126 #define SIGFRAME_BASE MIPS_REGSIZE
1127 /* FIXME! Are these correct?? */
1128 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1129 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1130 #define SIGFRAME_FPREGSAVE_OFF \
1131 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1132 #endif
1133 #ifndef SIGFRAME_REG_SIZE
1134 /* FIXME! Is this correct?? */
1135 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1136 #endif
1137 if (fci->signal_handler_caller)
1138 {
1139 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1140 {
1141 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1142 + ireg * SIGFRAME_REG_SIZE;
1143 fci->saved_regs[ireg] = reg_position;
1144 }
1145 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1146 {
1147 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1148 + ireg * SIGFRAME_REG_SIZE;
1149 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1150 }
1151 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1152 return;
1153 }
1154
1155 proc_desc = fci->extra_info->proc_desc;
1156 if (proc_desc == NULL)
1157 /* I'm not sure how/whether this can happen. Normally when we can't
1158 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1159 and set the saved_regs right away. */
1160 return;
1161
1162 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1163 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1164 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1165
1166 if ( /* In any frame other than the innermost or a frame interrupted by
1167 a signal, we assume that all registers have been saved.
1168 This assumes that all register saves in a function happen before
1169 the first function call. */
1170 (fci->next == NULL || fci->next->signal_handler_caller)
1171
1172 /* In a dummy frame we know exactly where things are saved. */
1173 && !PROC_DESC_IS_DUMMY (proc_desc)
1174
1175 /* Don't bother unless we are inside a function prologue. Outside the
1176 prologue, we know where everything is. */
1177
1178 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
1179
1180 /* Not sure exactly what kernel_trap means, but if it means
1181 the kernel saves the registers without a prologue doing it,
1182 we better not examine the prologue to see whether registers
1183 have been saved yet. */
1184 && !kernel_trap)
1185 {
1186 /* We need to figure out whether the registers that the proc_desc
1187 claims are saved have been saved yet. */
1188
1189 CORE_ADDR addr;
1190
1191 /* Bitmasks; set if we have found a save for the register. */
1192 unsigned long gen_save_found = 0;
1193 unsigned long float_save_found = 0;
1194 int instlen;
1195
1196 /* If the address is odd, assume this is MIPS16 code. */
1197 addr = PROC_LOW_ADDR (proc_desc);
1198 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1199
1200 /* Scan through this function's instructions preceding the current
1201 PC, and look for those that save registers. */
1202 while (addr < fci->pc)
1203 {
1204 inst = mips_fetch_instruction (addr);
1205 if (pc_is_mips16 (addr))
1206 mips16_decode_reg_save (inst, &gen_save_found);
1207 else
1208 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1209 addr += instlen;
1210 }
1211 gen_mask = gen_save_found;
1212 float_mask = float_save_found;
1213 }
1214
1215 /* Fill in the offsets for the registers which gen_mask says
1216 were saved. */
1217 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1218 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1219 if (gen_mask & 0x80000000)
1220 {
1221 fci->saved_regs[ireg] = reg_position;
1222 reg_position -= MIPS_SAVED_REGSIZE;
1223 }
1224
1225 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1226 of that normally used by gcc. Therefore, we have to fetch the first
1227 instruction of the function, and if it's an entry instruction that
1228 saves $s0 or $s1, correct their saved addresses. */
1229 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1230 {
1231 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1232 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1233 {
1234 int reg;
1235 int sreg_count = (inst >> 6) & 3;
1236
1237 /* Check if the ra register was pushed on the stack. */
1238 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1239 if (inst & 0x20)
1240 reg_position -= MIPS_SAVED_REGSIZE;
1241
1242 /* Check if the s0 and s1 registers were pushed on the stack. */
1243 for (reg = 16; reg < sreg_count + 16; reg++)
1244 {
1245 fci->saved_regs[reg] = reg_position;
1246 reg_position -= MIPS_SAVED_REGSIZE;
1247 }
1248 }
1249 }
1250
1251 /* Fill in the offsets for the registers which float_mask says
1252 were saved. */
1253 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1254
1255 /* The freg_offset points to where the first *double* register
1256 is saved. So skip to the high-order word. */
1257 if (!GDB_TARGET_IS_MIPS64)
1258 reg_position += MIPS_SAVED_REGSIZE;
1259
1260 /* Fill in the offsets for the float registers which float_mask says
1261 were saved. */
1262 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1263 if (float_mask & 0x80000000)
1264 {
1265 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1266 reg_position -= MIPS_SAVED_REGSIZE;
1267 }
1268
1269 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1270 }
1271
1272 static CORE_ADDR
1273 read_next_frame_reg (fi, regno)
1274 struct frame_info *fi;
1275 int regno;
1276 {
1277 for (; fi; fi = fi->next)
1278 {
1279 /* We have to get the saved sp from the sigcontext
1280 if it is a signal handler frame. */
1281 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1282 return fi->frame;
1283 else
1284 {
1285 if (fi->saved_regs == NULL)
1286 mips_find_saved_regs (fi);
1287 if (fi->saved_regs[regno])
1288 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
1289 }
1290 }
1291 return read_register (regno);
1292 }
1293
1294 /* mips_addr_bits_remove - remove useless address bits */
1295
1296 CORE_ADDR
1297 mips_addr_bits_remove (addr)
1298 CORE_ADDR addr;
1299 {
1300 #if GDB_TARGET_IS_MIPS64
1301 if (mask_address_p && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1302 {
1303 /* This hack is a work-around for existing boards using PMON,
1304 the simulator, and any other 64-bit targets that doesn't have
1305 true 64-bit addressing. On these targets, the upper 32 bits
1306 of addresses are ignored by the hardware. Thus, the PC or SP
1307 are likely to have been sign extended to all 1s by instruction
1308 sequences that load 32-bit addresses. For example, a typical
1309 piece of code that loads an address is this:
1310 lui $r2, <upper 16 bits>
1311 ori $r2, <lower 16 bits>
1312 But the lui sign-extends the value such that the upper 32 bits
1313 may be all 1s. The workaround is simply to mask off these bits.
1314 In the future, gcc may be changed to support true 64-bit
1315 addressing, and this masking will have to be disabled. */
1316 addr &= (CORE_ADDR) 0xffffffff;
1317 }
1318 #else
1319 /* Even when GDB is configured for some 32-bit targets (e.g. mips-elf),
1320 BFD is configured to handle 64-bit targets, so CORE_ADDR is 64 bits.
1321 So we still have to mask off useless bits from addresses. */
1322 addr &= (CORE_ADDR) 0xffffffff;
1323 #endif
1324
1325 return addr;
1326 }
1327
1328 void
1329 mips_init_frame_pc_first (fromleaf, prev)
1330 int fromleaf;
1331 struct frame_info *prev;
1332 {
1333 CORE_ADDR pc, tmp;
1334
1335 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
1336 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
1337 tmp = mips_skip_stub (pc);
1338 prev->pc = tmp ? tmp : pc;
1339 }
1340
1341
1342 CORE_ADDR
1343 mips_frame_saved_pc (frame)
1344 struct frame_info *frame;
1345 {
1346 CORE_ADDR saved_pc;
1347 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1348 /* We have to get the saved pc from the sigcontext
1349 if it is a signal handler frame. */
1350 int pcreg = frame->signal_handler_caller ? PC_REGNUM
1351 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1352
1353 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1354 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1355 else
1356 saved_pc = read_next_frame_reg (frame, pcreg);
1357
1358 return ADDR_BITS_REMOVE (saved_pc);
1359 }
1360
1361 static struct mips_extra_func_info temp_proc_desc;
1362 static CORE_ADDR temp_saved_regs[NUM_REGS];
1363
1364 /* Set a register's saved stack address in temp_saved_regs. If an address
1365 has already been set for this register, do nothing; this way we will
1366 only recognize the first save of a given register in a function prologue.
1367 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1368
1369 static void
1370 set_reg_offset (regno, offset)
1371 int regno;
1372 CORE_ADDR offset;
1373 {
1374 if (temp_saved_regs[regno] == 0)
1375 temp_saved_regs[regno] = offset;
1376 }
1377
1378
1379 /* Test whether the PC points to the return instruction at the
1380 end of a function. */
1381
1382 static int
1383 mips_about_to_return (pc)
1384 CORE_ADDR pc;
1385 {
1386 if (pc_is_mips16 (pc))
1387 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1388 generates a "jr $ra"; other times it generates code to load
1389 the return address from the stack to an accessible register (such
1390 as $a3), then a "jr" using that register. This second case
1391 is almost impossible to distinguish from an indirect jump
1392 used for switch statements, so we don't even try. */
1393 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1394 else
1395 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1396 }
1397
1398
1399 /* This fencepost looks highly suspicious to me. Removing it also
1400 seems suspicious as it could affect remote debugging across serial
1401 lines. */
1402
1403 static CORE_ADDR
1404 heuristic_proc_start (pc)
1405 CORE_ADDR pc;
1406 {
1407 CORE_ADDR start_pc;
1408 CORE_ADDR fence;
1409 int instlen;
1410 int seen_adjsp = 0;
1411
1412 pc = ADDR_BITS_REMOVE (pc);
1413 start_pc = pc;
1414 fence = start_pc - heuristic_fence_post;
1415 if (start_pc == 0)
1416 return 0;
1417
1418 if (heuristic_fence_post == UINT_MAX
1419 || fence < VM_MIN_ADDRESS)
1420 fence = VM_MIN_ADDRESS;
1421
1422 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1423
1424 /* search back for previous return */
1425 for (start_pc -= instlen;; start_pc -= instlen)
1426 if (start_pc < fence)
1427 {
1428 /* It's not clear to me why we reach this point when
1429 stop_soon_quietly, but with this test, at least we
1430 don't print out warnings for every child forked (eg, on
1431 decstation). 22apr93 rich@cygnus.com. */
1432 if (!stop_soon_quietly)
1433 {
1434 static int blurb_printed = 0;
1435
1436 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1437 paddr_nz (pc));
1438
1439 if (!blurb_printed)
1440 {
1441 /* This actually happens frequently in embedded
1442 development, when you first connect to a board
1443 and your stack pointer and pc are nowhere in
1444 particular. This message needs to give people
1445 in that situation enough information to
1446 determine that it's no big deal. */
1447 printf_filtered ("\n\
1448 GDB is unable to find the start of the function at 0x%s\n\
1449 and thus can't determine the size of that function's stack frame.\n\
1450 This means that GDB may be unable to access that stack frame, or\n\
1451 the frames below it.\n\
1452 This problem is most likely caused by an invalid program counter or\n\
1453 stack pointer.\n\
1454 However, if you think GDB should simply search farther back\n\
1455 from 0x%s for code which looks like the beginning of a\n\
1456 function, you can increase the range of the search using the `set\n\
1457 heuristic-fence-post' command.\n",
1458 paddr_nz (pc), paddr_nz (pc));
1459 blurb_printed = 1;
1460 }
1461 }
1462
1463 return 0;
1464 }
1465 else if (pc_is_mips16 (start_pc))
1466 {
1467 unsigned short inst;
1468
1469 /* On MIPS16, any one of the following is likely to be the
1470 start of a function:
1471 entry
1472 addiu sp,-n
1473 daddiu sp,-n
1474 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1475 inst = mips_fetch_instruction (start_pc);
1476 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1477 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1478 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1479 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1480 break;
1481 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1482 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1483 seen_adjsp = 1;
1484 else
1485 seen_adjsp = 0;
1486 }
1487 else if (mips_about_to_return (start_pc))
1488 {
1489 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1490 break;
1491 }
1492
1493 #if 0
1494 /* skip nops (usually 1) 0 - is this */
1495 while (start_pc < pc && read_memory_integer (start_pc, MIPS_INSTLEN) == 0)
1496 start_pc += MIPS_INSTLEN;
1497 #endif
1498 return start_pc;
1499 }
1500
1501 /* Fetch the immediate value from a MIPS16 instruction.
1502 If the previous instruction was an EXTEND, use it to extend
1503 the upper bits of the immediate value. This is a helper function
1504 for mips16_heuristic_proc_desc. */
1505
1506 static int
1507 mips16_get_imm (prev_inst, inst, nbits, scale, is_signed)
1508 unsigned short prev_inst; /* previous instruction */
1509 unsigned short inst; /* current instruction */
1510 int nbits; /* number of bits in imm field */
1511 int scale; /* scale factor to be applied to imm */
1512 int is_signed; /* is the imm field signed? */
1513 {
1514 int offset;
1515
1516 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1517 {
1518 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1519 if (offset & 0x8000) /* check for negative extend */
1520 offset = 0 - (0x10000 - (offset & 0xffff));
1521 return offset | (inst & 0x1f);
1522 }
1523 else
1524 {
1525 int max_imm = 1 << nbits;
1526 int mask = max_imm - 1;
1527 int sign_bit = max_imm >> 1;
1528
1529 offset = inst & mask;
1530 if (is_signed && (offset & sign_bit))
1531 offset = 0 - (max_imm - offset);
1532 return offset * scale;
1533 }
1534 }
1535
1536
1537 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1538 stream from start_pc to limit_pc. */
1539
1540 static void
1541 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp)
1542 CORE_ADDR start_pc, limit_pc;
1543 struct frame_info *next_frame;
1544 CORE_ADDR sp;
1545 {
1546 CORE_ADDR cur_pc;
1547 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1548 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1549 unsigned inst = 0; /* current instruction */
1550 unsigned entry_inst = 0; /* the entry instruction */
1551 int reg, offset;
1552
1553 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1554 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1555
1556 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1557 {
1558 /* Save the previous instruction. If it's an EXTEND, we'll extract
1559 the immediate offset extension from it in mips16_get_imm. */
1560 prev_inst = inst;
1561
1562 /* Fetch and decode the instruction. */
1563 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1564 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1565 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1566 {
1567 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1568 if (offset < 0) /* negative stack adjustment? */
1569 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1570 else
1571 /* Exit loop if a positive stack adjustment is found, which
1572 usually means that the stack cleanup code in the function
1573 epilogue is reached. */
1574 break;
1575 }
1576 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1577 {
1578 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1579 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1580 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1581 set_reg_offset (reg, sp + offset);
1582 }
1583 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1584 {
1585 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1586 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1587 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1588 set_reg_offset (reg, sp + offset);
1589 }
1590 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1591 {
1592 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1593 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1594 set_reg_offset (RA_REGNUM, sp + offset);
1595 }
1596 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1597 {
1598 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1599 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1600 set_reg_offset (RA_REGNUM, sp + offset);
1601 }
1602 else if (inst == 0x673d) /* move $s1, $sp */
1603 {
1604 frame_addr = sp;
1605 PROC_FRAME_REG (&temp_proc_desc) = 17;
1606 }
1607 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1608 {
1609 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1610 frame_addr = sp + offset;
1611 PROC_FRAME_REG (&temp_proc_desc) = 17;
1612 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1613 }
1614 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1615 {
1616 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1617 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1618 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1619 set_reg_offset (reg, frame_addr + offset);
1620 }
1621 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1622 {
1623 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1624 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1625 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1626 set_reg_offset (reg, frame_addr + offset);
1627 }
1628 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1629 entry_inst = inst; /* save for later processing */
1630 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1631 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
1632 }
1633
1634 /* The entry instruction is typically the first instruction in a function,
1635 and it stores registers at offsets relative to the value of the old SP
1636 (before the prologue). But the value of the sp parameter to this
1637 function is the new SP (after the prologue has been executed). So we
1638 can't calculate those offsets until we've seen the entire prologue,
1639 and can calculate what the old SP must have been. */
1640 if (entry_inst != 0)
1641 {
1642 int areg_count = (entry_inst >> 8) & 7;
1643 int sreg_count = (entry_inst >> 6) & 3;
1644
1645 /* The entry instruction always subtracts 32 from the SP. */
1646 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
1647
1648 /* Now we can calculate what the SP must have been at the
1649 start of the function prologue. */
1650 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
1651
1652 /* Check if a0-a3 were saved in the caller's argument save area. */
1653 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1654 {
1655 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1656 set_reg_offset (reg, sp + offset);
1657 offset += MIPS_SAVED_REGSIZE;
1658 }
1659
1660 /* Check if the ra register was pushed on the stack. */
1661 offset = -4;
1662 if (entry_inst & 0x20)
1663 {
1664 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1665 set_reg_offset (RA_REGNUM, sp + offset);
1666 offset -= MIPS_SAVED_REGSIZE;
1667 }
1668
1669 /* Check if the s0 and s1 registers were pushed on the stack. */
1670 for (reg = 16; reg < sreg_count + 16; reg++)
1671 {
1672 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1673 set_reg_offset (reg, sp + offset);
1674 offset -= MIPS_SAVED_REGSIZE;
1675 }
1676 }
1677 }
1678
1679 static void
1680 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp)
1681 CORE_ADDR start_pc, limit_pc;
1682 struct frame_info *next_frame;
1683 CORE_ADDR sp;
1684 {
1685 CORE_ADDR cur_pc;
1686 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1687 restart:
1688 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
1689 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
1690 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1691 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
1692 {
1693 unsigned long inst, high_word, low_word;
1694 int reg;
1695
1696 /* Fetch the instruction. */
1697 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1698
1699 /* Save some code by pre-extracting some useful fields. */
1700 high_word = (inst >> 16) & 0xffff;
1701 low_word = inst & 0xffff;
1702 reg = high_word & 0x1f;
1703
1704 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1705 || high_word == 0x23bd /* addi $sp,$sp,-i */
1706 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1707 {
1708 if (low_word & 0x8000) /* negative stack adjustment? */
1709 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
1710 else
1711 /* Exit loop if a positive stack adjustment is found, which
1712 usually means that the stack cleanup code in the function
1713 epilogue is reached. */
1714 break;
1715 }
1716 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1717 {
1718 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1719 set_reg_offset (reg, sp + low_word);
1720 }
1721 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1722 {
1723 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
1724 but the register size used is only 32 bits. Make the address
1725 for the saved register point to the lower 32 bits. */
1726 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1727 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
1728 }
1729 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1730 {
1731 /* Old gcc frame, r30 is virtual frame pointer. */
1732 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
1733 frame_addr = sp + low_word;
1734 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1735 {
1736 unsigned alloca_adjust;
1737 PROC_FRAME_REG (&temp_proc_desc) = 30;
1738 frame_addr = read_next_frame_reg (next_frame, 30);
1739 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1740 if (alloca_adjust > 0)
1741 {
1742 /* FP > SP + frame_size. This may be because
1743 * of an alloca or somethings similar.
1744 * Fix sp to "pre-alloca" value, and try again.
1745 */
1746 sp += alloca_adjust;
1747 goto restart;
1748 }
1749 }
1750 }
1751 /* move $30,$sp. With different versions of gas this will be either
1752 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1753 Accept any one of these. */
1754 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1755 {
1756 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1757 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1758 {
1759 unsigned alloca_adjust;
1760 PROC_FRAME_REG (&temp_proc_desc) = 30;
1761 frame_addr = read_next_frame_reg (next_frame, 30);
1762 alloca_adjust = (unsigned) (frame_addr - sp);
1763 if (alloca_adjust > 0)
1764 {
1765 /* FP > SP + frame_size. This may be because
1766 * of an alloca or somethings similar.
1767 * Fix sp to "pre-alloca" value, and try again.
1768 */
1769 sp += alloca_adjust;
1770 goto restart;
1771 }
1772 }
1773 }
1774 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1775 {
1776 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1777 set_reg_offset (reg, frame_addr + low_word);
1778 }
1779 }
1780 }
1781
1782 static mips_extra_func_info_t
1783 heuristic_proc_desc (start_pc, limit_pc, next_frame)
1784 CORE_ADDR start_pc, limit_pc;
1785 struct frame_info *next_frame;
1786 {
1787 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
1788
1789 if (start_pc == 0)
1790 return NULL;
1791 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
1792 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
1793 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
1794 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
1795 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
1796
1797 if (start_pc + 200 < limit_pc)
1798 limit_pc = start_pc + 200;
1799 if (pc_is_mips16 (start_pc))
1800 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1801 else
1802 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1803 return &temp_proc_desc;
1804 }
1805
1806 static mips_extra_func_info_t
1807 non_heuristic_proc_desc (pc, addrptr)
1808 CORE_ADDR pc;
1809 CORE_ADDR *addrptr;
1810 {
1811 CORE_ADDR startaddr;
1812 mips_extra_func_info_t proc_desc;
1813 struct block *b = block_for_pc (pc);
1814 struct symbol *sym;
1815
1816 find_pc_partial_function (pc, NULL, &startaddr, NULL);
1817 if (addrptr)
1818 *addrptr = startaddr;
1819 if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0))
1820 sym = NULL;
1821 else
1822 {
1823 if (startaddr > BLOCK_START (b))
1824 /* This is the "pathological" case referred to in a comment in
1825 print_frame_info. It might be better to move this check into
1826 symbol reading. */
1827 sym = NULL;
1828 else
1829 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
1830 }
1831
1832 /* If we never found a PDR for this function in symbol reading, then
1833 examine prologues to find the information. */
1834 if (sym)
1835 {
1836 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
1837 if (PROC_FRAME_REG (proc_desc) == -1)
1838 return NULL;
1839 else
1840 return proc_desc;
1841 }
1842 else
1843 return NULL;
1844 }
1845
1846
1847 static mips_extra_func_info_t
1848 find_proc_desc (pc, next_frame)
1849 CORE_ADDR pc;
1850 struct frame_info *next_frame;
1851 {
1852 mips_extra_func_info_t proc_desc;
1853 CORE_ADDR startaddr;
1854
1855 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
1856
1857 if (proc_desc)
1858 {
1859 /* IF this is the topmost frame AND
1860 * (this proc does not have debugging information OR
1861 * the PC is in the procedure prologue)
1862 * THEN create a "heuristic" proc_desc (by analyzing
1863 * the actual code) to replace the "official" proc_desc.
1864 */
1865 if (next_frame == NULL)
1866 {
1867 struct symtab_and_line val;
1868 struct symbol *proc_symbol =
1869 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
1870
1871 if (proc_symbol)
1872 {
1873 val = find_pc_line (BLOCK_START
1874 (SYMBOL_BLOCK_VALUE (proc_symbol)),
1875 0);
1876 val.pc = val.end ? val.end : pc;
1877 }
1878 if (!proc_symbol || pc < val.pc)
1879 {
1880 mips_extra_func_info_t found_heuristic =
1881 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
1882 pc, next_frame);
1883 if (found_heuristic)
1884 proc_desc = found_heuristic;
1885 }
1886 }
1887 }
1888 else
1889 {
1890 /* Is linked_proc_desc_table really necessary? It only seems to be used
1891 by procedure call dummys. However, the procedures being called ought
1892 to have their own proc_descs, and even if they don't,
1893 heuristic_proc_desc knows how to create them! */
1894
1895 register struct linked_proc_info *link;
1896
1897 for (link = linked_proc_desc_table; link; link = link->next)
1898 if (PROC_LOW_ADDR (&link->info) <= pc
1899 && PROC_HIGH_ADDR (&link->info) > pc)
1900 return &link->info;
1901
1902 if (startaddr == 0)
1903 startaddr = heuristic_proc_start (pc);
1904
1905 proc_desc =
1906 heuristic_proc_desc (startaddr, pc, next_frame);
1907 }
1908 return proc_desc;
1909 }
1910
1911 static CORE_ADDR
1912 get_frame_pointer (frame, proc_desc)
1913 struct frame_info *frame;
1914 mips_extra_func_info_t proc_desc;
1915 {
1916 return ADDR_BITS_REMOVE (
1917 read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) +
1918 PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
1919 }
1920
1921 mips_extra_func_info_t cached_proc_desc;
1922
1923 CORE_ADDR
1924 mips_frame_chain (frame)
1925 struct frame_info *frame;
1926 {
1927 mips_extra_func_info_t proc_desc;
1928 CORE_ADDR tmp;
1929 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
1930
1931 if (saved_pc == 0 || inside_entry_file (saved_pc))
1932 return 0;
1933
1934 /* Check if the PC is inside a call stub. If it is, fetch the
1935 PC of the caller of that stub. */
1936 if ((tmp = mips_skip_stub (saved_pc)) != 0)
1937 saved_pc = tmp;
1938
1939 /* Look up the procedure descriptor for this PC. */
1940 proc_desc = find_proc_desc (saved_pc, frame);
1941 if (!proc_desc)
1942 return 0;
1943
1944 cached_proc_desc = proc_desc;
1945
1946 /* If no frame pointer and frame size is zero, we must be at end
1947 of stack (or otherwise hosed). If we don't check frame size,
1948 we loop forever if we see a zero size frame. */
1949 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
1950 && PROC_FRAME_OFFSET (proc_desc) == 0
1951 /* The previous frame from a sigtramp frame might be frameless
1952 and have frame size zero. */
1953 && !frame->signal_handler_caller)
1954 return 0;
1955 else
1956 return get_frame_pointer (frame, proc_desc);
1957 }
1958
1959 void
1960 mips_init_extra_frame_info (fromleaf, fci)
1961 int fromleaf;
1962 struct frame_info *fci;
1963 {
1964 int regnum;
1965
1966 /* Use proc_desc calculated in frame_chain */
1967 mips_extra_func_info_t proc_desc =
1968 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next);
1969
1970 fci->extra_info = (struct frame_extra_info *)
1971 frame_obstack_alloc (sizeof (struct frame_extra_info));
1972
1973 fci->saved_regs = NULL;
1974 fci->extra_info->proc_desc =
1975 proc_desc == &temp_proc_desc ? 0 : proc_desc;
1976 if (proc_desc)
1977 {
1978 /* Fixup frame-pointer - only needed for top frame */
1979 /* This may not be quite right, if proc has a real frame register.
1980 Get the value of the frame relative sp, procedure might have been
1981 interrupted by a signal at it's very start. */
1982 if (fci->pc == PROC_LOW_ADDR (proc_desc)
1983 && !PROC_DESC_IS_DUMMY (proc_desc))
1984 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
1985 else
1986 fci->frame = get_frame_pointer (fci->next, proc_desc);
1987
1988 if (proc_desc == &temp_proc_desc)
1989 {
1990 char *name;
1991
1992 /* Do not set the saved registers for a sigtramp frame,
1993 mips_find_saved_registers will do that for us.
1994 We can't use fci->signal_handler_caller, it is not yet set. */
1995 find_pc_partial_function (fci->pc, &name,
1996 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
1997 if (!IN_SIGTRAMP (fci->pc, name))
1998 {
1999 frame_saved_regs_zalloc (fci);
2000 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2001 fci->saved_regs[PC_REGNUM]
2002 = fci->saved_regs[RA_REGNUM];
2003 }
2004 }
2005
2006 /* hack: if argument regs are saved, guess these contain args */
2007 /* assume we can't tell how many args for now */
2008 fci->extra_info->num_args = -1;
2009 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2010 {
2011 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2012 {
2013 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
2014 break;
2015 }
2016 }
2017 }
2018 }
2019
2020 /* MIPS stack frames are almost impenetrable. When execution stops,
2021 we basically have to look at symbol information for the function
2022 that we stopped in, which tells us *which* register (if any) is
2023 the base of the frame pointer, and what offset from that register
2024 the frame itself is at.
2025
2026 This presents a problem when trying to examine a stack in memory
2027 (that isn't executing at the moment), using the "frame" command. We
2028 don't have a PC, nor do we have any registers except SP.
2029
2030 This routine takes two arguments, SP and PC, and tries to make the
2031 cached frames look as if these two arguments defined a frame on the
2032 cache. This allows the rest of info frame to extract the important
2033 arguments without difficulty. */
2034
2035 struct frame_info *
2036 setup_arbitrary_frame (argc, argv)
2037 int argc;
2038 CORE_ADDR *argv;
2039 {
2040 if (argc != 2)
2041 error ("MIPS frame specifications require two arguments: sp and pc");
2042
2043 return create_new_frame (argv[0], argv[1]);
2044 }
2045
2046 CORE_ADDR
2047 mips_push_arguments (nargs, args, sp, struct_return, struct_addr)
2048 int nargs;
2049 value_ptr *args;
2050 CORE_ADDR sp;
2051 int struct_return;
2052 CORE_ADDR struct_addr;
2053 {
2054 int argreg;
2055 int float_argreg;
2056 int argnum;
2057 int len = 0;
2058 int stack_offset = 0;
2059
2060 /* Macros to round N up or down to the next A boundary; A must be
2061 a power of two. */
2062 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2063 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2064
2065 /* First ensure that the stack and structure return address (if any)
2066 are properly aligned. The stack has to be at least 64-bit aligned
2067 even on 32-bit machines, because doubles must be 64-bit aligned.
2068 On at least one MIPS variant, stack frames need to be 128-bit
2069 aligned, so we round to this widest known alignment. */
2070 sp = ROUND_DOWN (sp, 16);
2071 struct_addr = ROUND_DOWN (struct_addr, MIPS_SAVED_REGSIZE);
2072
2073 /* Now make space on the stack for the args. We allocate more
2074 than necessary for EABI, because the first few arguments are
2075 passed in registers, but that's OK. */
2076 for (argnum = 0; argnum < nargs; argnum++)
2077 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), MIPS_SAVED_REGSIZE);
2078 sp -= ROUND_UP (len, 16);
2079
2080 /* Initialize the integer and float register pointers. */
2081 argreg = A0_REGNUM;
2082 float_argreg = FPA0_REGNUM;
2083
2084 /* the struct_return pointer occupies the first parameter-passing reg */
2085 if (struct_return)
2086 write_register (argreg++, struct_addr);
2087
2088 /* Now load as many as possible of the first arguments into
2089 registers, and push the rest onto the stack. Loop thru args
2090 from first to last. */
2091 for (argnum = 0; argnum < nargs; argnum++)
2092 {
2093 char *val;
2094 char valbuf[MAX_REGISTER_RAW_SIZE];
2095 value_ptr arg = args[argnum];
2096 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2097 int len = TYPE_LENGTH (arg_type);
2098 enum type_code typecode = TYPE_CODE (arg_type);
2099
2100 /* The EABI passes structures that do not fit in a register by
2101 reference. In all other cases, pass the structure by value. */
2102 if (MIPS_EABI && len > MIPS_SAVED_REGSIZE &&
2103 (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2104 {
2105 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2106 typecode = TYPE_CODE_PTR;
2107 len = MIPS_SAVED_REGSIZE;
2108 val = valbuf;
2109 }
2110 else
2111 val = (char *) VALUE_CONTENTS (arg);
2112
2113 /* 32-bit ABIs always start floating point arguments in an
2114 even-numbered floating point register. */
2115 if (!FP_REGISTER_DOUBLE && typecode == TYPE_CODE_FLT
2116 && (float_argreg & 1))
2117 float_argreg++;
2118
2119 /* Floating point arguments passed in registers have to be
2120 treated specially. On 32-bit architectures, doubles
2121 are passed in register pairs; the even register gets
2122 the low word, and the odd register gets the high word.
2123 On non-EABI processors, the first two floating point arguments are
2124 also copied to general registers, because MIPS16 functions
2125 don't use float registers for arguments. This duplication of
2126 arguments in general registers can't hurt non-MIPS16 functions
2127 because those registers are normally skipped. */
2128 if (typecode == TYPE_CODE_FLT
2129 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM
2130 && MIPS_FPU_TYPE != MIPS_FPU_NONE)
2131 {
2132 if (!FP_REGISTER_DOUBLE && len == 8)
2133 {
2134 int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
2135 unsigned long regval;
2136
2137 /* Write the low word of the double to the even register(s). */
2138 regval = extract_unsigned_integer (val + low_offset, 4);
2139 write_register (float_argreg++, regval);
2140 if (!MIPS_EABI)
2141 write_register (argreg + 1, regval);
2142
2143 /* Write the high word of the double to the odd register(s). */
2144 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2145 write_register (float_argreg++, regval);
2146 if (!MIPS_EABI)
2147 {
2148 write_register (argreg, regval);
2149 argreg += 2;
2150 }
2151
2152 }
2153 else
2154 {
2155 /* This is a floating point value that fits entirely
2156 in a single register. */
2157 /* On 32 bit ABI's the float_argreg is further adjusted
2158 above to ensure that it is even register aligned. */
2159 CORE_ADDR regval = extract_address (val, len);
2160 write_register (float_argreg++, regval);
2161 if (!MIPS_EABI)
2162 {
2163 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
2164 registers for each argument. The below is (my
2165 guess) to ensure that the corresponding integer
2166 register has reserved the same space. */
2167 write_register (argreg, regval);
2168 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
2169 }
2170 }
2171 }
2172 else
2173 {
2174 /* Copy the argument to general registers or the stack in
2175 register-sized pieces. Large arguments are split between
2176 registers and stack. */
2177 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2178 are treated specially: Irix cc passes them in registers
2179 where gcc sometimes puts them on the stack. For maximum
2180 compatibility, we will put them in both places. */
2181
2182 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2183 (len % MIPS_SAVED_REGSIZE != 0));
2184 while (len > 0)
2185 {
2186 int partial_len = len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2187
2188 if (argreg > MIPS_LAST_ARG_REGNUM || odd_sized_struct)
2189 {
2190 /* Write this portion of the argument to the stack. */
2191 /* Should shorter than int integer values be
2192 promoted to int before being stored? */
2193
2194 int longword_offset = 0;
2195 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2196 {
2197 if (MIPS_STACK_ARGSIZE == 8 &&
2198 (typecode == TYPE_CODE_INT ||
2199 typecode == TYPE_CODE_PTR ||
2200 typecode == TYPE_CODE_FLT) && len <= 4)
2201 longword_offset = MIPS_STACK_ARGSIZE - len;
2202 else if ((typecode == TYPE_CODE_STRUCT ||
2203 typecode == TYPE_CODE_UNION) &&
2204 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2205 longword_offset = MIPS_STACK_ARGSIZE - len;
2206 }
2207
2208 write_memory (sp + stack_offset + longword_offset,
2209 val, partial_len);
2210 }
2211
2212 /* Note!!! This is NOT an else clause.
2213 Odd sized structs may go thru BOTH paths. */
2214 if (argreg <= MIPS_LAST_ARG_REGNUM)
2215 {
2216 CORE_ADDR regval = extract_address (val, partial_len);
2217
2218 /* A non-floating-point argument being passed in a
2219 general register. If a struct or union, and if
2220 the remaining length is smaller than the register
2221 size, we have to adjust the register value on
2222 big endian targets.
2223
2224 It does not seem to be necessary to do the
2225 same for integral types.
2226
2227 Also don't do this adjustment on EABI and O64
2228 binaries. */
2229
2230 if (!MIPS_EABI
2231 && MIPS_SAVED_REGSIZE < 8
2232 && TARGET_BYTE_ORDER == BIG_ENDIAN
2233 && partial_len < MIPS_SAVED_REGSIZE
2234 && (typecode == TYPE_CODE_STRUCT ||
2235 typecode == TYPE_CODE_UNION))
2236 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
2237 TARGET_CHAR_BIT);
2238
2239 write_register (argreg, regval);
2240 argreg++;
2241
2242 /* If this is the old ABI, prevent subsequent floating
2243 point arguments from being passed in floating point
2244 registers. */
2245 if (!MIPS_EABI)
2246 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
2247 }
2248
2249 len -= partial_len;
2250 val += partial_len;
2251
2252 /* The offset onto the stack at which we will start
2253 copying parameters (after the registers are used up)
2254 begins at (4 * MIPS_REGSIZE) in the old ABI. This
2255 leaves room for the "home" area for register parameters.
2256
2257 In the new EABI (and the NABI32), the 8 register parameters
2258 do not have "home" stack space reserved for them, so the
2259 stack offset does not get incremented until after
2260 we have used up the 8 parameter registers. */
2261
2262 if (MIPS_REGS_HAVE_HOME_P || argnum >= 8)
2263 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2264 }
2265 }
2266 }
2267
2268 /* Return adjusted stack pointer. */
2269 return sp;
2270 }
2271
2272 CORE_ADDR
2273 mips_push_return_address (pc, sp)
2274 CORE_ADDR pc;
2275 CORE_ADDR sp;
2276 {
2277 /* Set the return address register to point to the entry
2278 point of the program, where a breakpoint lies in wait. */
2279 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
2280 return sp;
2281 }
2282
2283 static void
2284 mips_push_register (CORE_ADDR * sp, int regno)
2285 {
2286 char buffer[MAX_REGISTER_RAW_SIZE];
2287 int regsize;
2288 int offset;
2289 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
2290 {
2291 regsize = MIPS_SAVED_REGSIZE;
2292 offset = (TARGET_BYTE_ORDER == BIG_ENDIAN
2293 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
2294 : 0);
2295 }
2296 else
2297 {
2298 regsize = REGISTER_RAW_SIZE (regno);
2299 offset = 0;
2300 }
2301 *sp -= regsize;
2302 read_register_gen (regno, buffer);
2303 write_memory (*sp, buffer + offset, regsize);
2304 }
2305
2306 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
2307 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
2308
2309 void
2310 mips_push_dummy_frame ()
2311 {
2312 int ireg;
2313 struct linked_proc_info *link = (struct linked_proc_info *)
2314 xmalloc (sizeof (struct linked_proc_info));
2315 mips_extra_func_info_t proc_desc = &link->info;
2316 CORE_ADDR sp = ADDR_BITS_REMOVE (read_register (SP_REGNUM));
2317 CORE_ADDR old_sp = sp;
2318 link->next = linked_proc_desc_table;
2319 linked_proc_desc_table = link;
2320
2321 /* FIXME! are these correct ? */
2322 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
2323 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
2324 #define FLOAT_REG_SAVE_MASK MASK(0,19)
2325 #define FLOAT_SINGLE_REG_SAVE_MASK \
2326 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
2327 /*
2328 * The registers we must save are all those not preserved across
2329 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
2330 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
2331 * and FP Control/Status registers.
2332 *
2333 *
2334 * Dummy frame layout:
2335 * (high memory)
2336 * Saved PC
2337 * Saved MMHI, MMLO, FPC_CSR
2338 * Saved R31
2339 * Saved R28
2340 * ...
2341 * Saved R1
2342 * Saved D18 (i.e. F19, F18)
2343 * ...
2344 * Saved D0 (i.e. F1, F0)
2345 * Argument build area and stack arguments written via mips_push_arguments
2346 * (low memory)
2347 */
2348
2349 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
2350 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
2351 PROC_FRAME_OFFSET (proc_desc) = 0;
2352 PROC_FRAME_ADJUST (proc_desc) = 0;
2353 mips_push_register (&sp, PC_REGNUM);
2354 mips_push_register (&sp, HI_REGNUM);
2355 mips_push_register (&sp, LO_REGNUM);
2356 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
2357
2358 /* Save general CPU registers */
2359 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
2360 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
2361 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
2362 for (ireg = 32; --ireg >= 0;)
2363 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
2364 mips_push_register (&sp, ireg);
2365
2366 /* Save floating point registers starting with high order word */
2367 PROC_FREG_MASK (proc_desc) =
2368 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
2369 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
2370 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
2371 from FP. */
2372 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
2373 for (ireg = 32; --ireg >= 0;)
2374 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
2375 mips_push_register (&sp, ireg + FP0_REGNUM);
2376
2377 /* Update the frame pointer for the call dummy and the stack pointer.
2378 Set the procedure's starting and ending addresses to point to the
2379 call dummy address at the entry point. */
2380 write_register (PUSH_FP_REGNUM, old_sp);
2381 write_register (SP_REGNUM, sp);
2382 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
2383 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
2384 SET_PROC_DESC_IS_DUMMY (proc_desc);
2385 PROC_PC_REG (proc_desc) = RA_REGNUM;
2386 }
2387
2388 void
2389 mips_pop_frame ()
2390 {
2391 register int regnum;
2392 struct frame_info *frame = get_current_frame ();
2393 CORE_ADDR new_sp = FRAME_FP (frame);
2394
2395 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
2396
2397 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
2398 if (frame->saved_regs == NULL)
2399 mips_find_saved_regs (frame);
2400 for (regnum = 0; regnum < NUM_REGS; regnum++)
2401 {
2402 if (regnum != SP_REGNUM && regnum != PC_REGNUM
2403 && frame->saved_regs[regnum])
2404 write_register (regnum,
2405 read_memory_integer (frame->saved_regs[regnum],
2406 MIPS_SAVED_REGSIZE));
2407 }
2408 write_register (SP_REGNUM, new_sp);
2409 flush_cached_frames ();
2410
2411 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
2412 {
2413 struct linked_proc_info *pi_ptr, *prev_ptr;
2414
2415 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
2416 pi_ptr != NULL;
2417 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
2418 {
2419 if (&pi_ptr->info == proc_desc)
2420 break;
2421 }
2422
2423 if (pi_ptr == NULL)
2424 error ("Can't locate dummy extra frame info\n");
2425
2426 if (prev_ptr != NULL)
2427 prev_ptr->next = pi_ptr->next;
2428 else
2429 linked_proc_desc_table = pi_ptr->next;
2430
2431 free (pi_ptr);
2432
2433 write_register (HI_REGNUM,
2434 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
2435 MIPS_SAVED_REGSIZE));
2436 write_register (LO_REGNUM,
2437 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
2438 MIPS_SAVED_REGSIZE));
2439 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
2440 write_register (FCRCS_REGNUM,
2441 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
2442 MIPS_SAVED_REGSIZE));
2443 }
2444 }
2445
2446 static void
2447 mips_print_register (regnum, all)
2448 int regnum, all;
2449 {
2450 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2451
2452 /* Get the data in raw format. */
2453 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2454 {
2455 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
2456 return;
2457 }
2458
2459 /* If an even floating point register, also print as double. */
2460 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
2461 && !((regnum - FP0_REGNUM) & 1))
2462 if (REGISTER_RAW_SIZE (regnum) == 4) /* this would be silly on MIPS64 or N32 (Irix 6) */
2463 {
2464 char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
2465
2466 read_relative_register_raw_bytes (regnum, dbuffer);
2467 read_relative_register_raw_bytes (regnum + 1, dbuffer + MIPS_REGSIZE);
2468 REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
2469
2470 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
2471 val_print (builtin_type_double, dbuffer, 0, 0,
2472 gdb_stdout, 0, 1, 0, Val_pretty_default);
2473 printf_filtered ("); ");
2474 }
2475 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
2476
2477 /* The problem with printing numeric register names (r26, etc.) is that
2478 the user can't use them on input. Probably the best solution is to
2479 fix it so that either the numeric or the funky (a2, etc.) names
2480 are accepted on input. */
2481 if (regnum < MIPS_NUMREGS)
2482 printf_filtered ("(r%d): ", regnum);
2483 else
2484 printf_filtered (": ");
2485
2486 /* If virtual format is floating, print it that way. */
2487 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2488 if (FP_REGISTER_DOUBLE)
2489 { /* show 8-byte floats as float AND double: */
2490 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2491
2492 printf_filtered (" (float) ");
2493 val_print (builtin_type_float, raw_buffer + offset, 0, 0,
2494 gdb_stdout, 0, 1, 0, Val_pretty_default);
2495 printf_filtered (", (double) ");
2496 val_print (builtin_type_double, raw_buffer, 0, 0,
2497 gdb_stdout, 0, 1, 0, Val_pretty_default);
2498 }
2499 else
2500 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
2501 gdb_stdout, 0, 1, 0, Val_pretty_default);
2502 /* Else print as integer in hex. */
2503 else
2504 {
2505 int offset;
2506
2507 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2508 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2509 else
2510 offset = 0;
2511
2512 print_scalar_formatted (raw_buffer + offset,
2513 REGISTER_VIRTUAL_TYPE (regnum),
2514 'x', 0, gdb_stdout);
2515 }
2516 }
2517
2518 /* Replacement for generic do_registers_info.
2519 Print regs in pretty columns. */
2520
2521 static int
2522 do_fp_register_row (regnum)
2523 int regnum;
2524 { /* do values for FP (float) regs */
2525 char *raw_buffer[2];
2526 char *dbl_buffer;
2527 /* use HI and LO to control the order of combining two flt regs */
2528 int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN);
2529 int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN);
2530 double doub, flt1, flt2; /* doubles extracted from raw hex data */
2531 int inv1, inv2, inv3;
2532
2533 raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2534 raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2535 dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2536
2537 /* Get the data in raw format. */
2538 if (read_relative_register_raw_bytes (regnum, raw_buffer[HI]))
2539 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2540 if (REGISTER_RAW_SIZE (regnum) == 4)
2541 {
2542 /* 4-byte registers: we can fit two registers per row. */
2543 /* Also print every pair of 4-byte regs as an 8-byte double. */
2544 if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO]))
2545 error ("can't read register %d (%s)",
2546 regnum + 1, REGISTER_NAME (regnum + 1));
2547
2548 /* copy the two floats into one double, and unpack both */
2549 memcpy (dbl_buffer, raw_buffer, 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2550 flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1);
2551 flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2);
2552 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
2553
2554 printf_filtered (inv1 ? " %-5s: <invalid float>" :
2555 " %-5s%-17.9g", REGISTER_NAME (regnum), flt1);
2556 printf_filtered (inv2 ? " %-5s: <invalid float>" :
2557 " %-5s%-17.9g", REGISTER_NAME (regnum + 1), flt2);
2558 printf_filtered (inv3 ? " dbl: <invalid double>\n" :
2559 " dbl: %-24.17g\n", doub);
2560 /* may want to do hex display here (future enhancement) */
2561 regnum += 2;
2562 }
2563 else
2564 { /* eight byte registers: print each one as float AND as double. */
2565 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2566
2567 memcpy (dbl_buffer, raw_buffer[HI], 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2568 flt1 = unpack_double (builtin_type_float,
2569 &raw_buffer[HI][offset], &inv1);
2570 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
2571
2572 printf_filtered (inv1 ? " %-5s: <invalid float>" :
2573 " %-5s flt: %-17.9g", REGISTER_NAME (regnum), flt1);
2574 printf_filtered (inv3 ? " dbl: <invalid double>\n" :
2575 " dbl: %-24.17g\n", doub);
2576 /* may want to do hex display here (future enhancement) */
2577 regnum++;
2578 }
2579 return regnum;
2580 }
2581
2582 /* Print a row's worth of GP (int) registers, with name labels above */
2583
2584 static int
2585 do_gp_register_row (regnum)
2586 int regnum;
2587 {
2588 /* do values for GP (int) regs */
2589 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2590 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
2591 int col, byte;
2592 int start_regnum = regnum;
2593 int numregs = NUM_REGS;
2594
2595
2596 /* For GP registers, we print a separate row of names above the vals */
2597 printf_filtered (" ");
2598 for (col = 0; col < ncols && regnum < numregs; regnum++)
2599 {
2600 if (*REGISTER_NAME (regnum) == '\0')
2601 continue; /* unused register */
2602 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2603 break; /* end the row: reached FP register */
2604 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
2605 REGISTER_NAME (regnum));
2606 col++;
2607 }
2608 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
2609 start_regnum); /* print the R0 to R31 names */
2610
2611 regnum = start_regnum; /* go back to start of row */
2612 /* now print the values in hex, 4 or 8 to the row */
2613 for (col = 0; col < ncols && regnum < numregs; regnum++)
2614 {
2615 if (*REGISTER_NAME (regnum) == '\0')
2616 continue; /* unused register */
2617 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2618 break; /* end row: reached FP register */
2619 /* OK: get the data in raw format. */
2620 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2621 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2622 /* pad small registers */
2623 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
2624 printf_filtered (" ");
2625 /* Now print the register value in hex, endian order. */
2626 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2627 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2628 byte < REGISTER_RAW_SIZE (regnum);
2629 byte++)
2630 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2631 else
2632 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
2633 byte >= 0;
2634 byte--)
2635 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2636 printf_filtered (" ");
2637 col++;
2638 }
2639 if (col > 0) /* ie. if we actually printed anything... */
2640 printf_filtered ("\n");
2641
2642 return regnum;
2643 }
2644
2645 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
2646
2647 void
2648 mips_do_registers_info (regnum, fpregs)
2649 int regnum;
2650 int fpregs;
2651 {
2652 if (regnum != -1) /* do one specified register */
2653 {
2654 if (*(REGISTER_NAME (regnum)) == '\0')
2655 error ("Not a valid register for the current processor type");
2656
2657 mips_print_register (regnum, 0);
2658 printf_filtered ("\n");
2659 }
2660 else
2661 /* do all (or most) registers */
2662 {
2663 regnum = 0;
2664 while (regnum < NUM_REGS)
2665 {
2666 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2667 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
2668 regnum = do_fp_register_row (regnum); /* FP regs */
2669 else
2670 regnum += MIPS_NUMREGS; /* skip floating point regs */
2671 else
2672 regnum = do_gp_register_row (regnum); /* GP (int) regs */
2673 }
2674 }
2675 }
2676
2677 /* Return number of args passed to a frame. described by FIP.
2678 Can return -1, meaning no way to tell. */
2679
2680 int
2681 mips_frame_num_args (frame)
2682 struct frame_info *frame;
2683 {
2684 #if 0 /* FIXME Use or lose this! */
2685 struct chain_info_t *p;
2686
2687 p = mips_find_cached_frame (FRAME_FP (frame));
2688 if (p->valid)
2689 return p->the_info.numargs;
2690 #endif
2691 return -1;
2692 }
2693
2694 /* Is this a branch with a delay slot? */
2695
2696 static int is_delayed (unsigned long);
2697
2698 static int
2699 is_delayed (insn)
2700 unsigned long insn;
2701 {
2702 int i;
2703 for (i = 0; i < NUMOPCODES; ++i)
2704 if (mips_opcodes[i].pinfo != INSN_MACRO
2705 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
2706 break;
2707 return (i < NUMOPCODES
2708 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
2709 | INSN_COND_BRANCH_DELAY
2710 | INSN_COND_BRANCH_LIKELY)));
2711 }
2712
2713 int
2714 mips_step_skips_delay (pc)
2715 CORE_ADDR pc;
2716 {
2717 char buf[MIPS_INSTLEN];
2718
2719 /* There is no branch delay slot on MIPS16. */
2720 if (pc_is_mips16 (pc))
2721 return 0;
2722
2723 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
2724 /* If error reading memory, guess that it is not a delayed branch. */
2725 return 0;
2726 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
2727 }
2728
2729
2730 /* Skip the PC past function prologue instructions (32-bit version).
2731 This is a helper function for mips_skip_prologue. */
2732
2733 static CORE_ADDR
2734 mips32_skip_prologue (pc, lenient)
2735 CORE_ADDR pc; /* starting PC to search from */
2736 int lenient;
2737 {
2738 t_inst inst;
2739 CORE_ADDR end_pc;
2740 int seen_sp_adjust = 0;
2741 int load_immediate_bytes = 0;
2742
2743 /* Skip the typical prologue instructions. These are the stack adjustment
2744 instruction and the instructions that save registers on the stack
2745 or in the gcc frame. */
2746 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
2747 {
2748 unsigned long high_word;
2749
2750 inst = mips_fetch_instruction (pc);
2751 high_word = (inst >> 16) & 0xffff;
2752
2753 #if 0
2754 if (lenient && is_delayed (inst))
2755 continue;
2756 #endif
2757
2758 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
2759 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
2760 seen_sp_adjust = 1;
2761 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
2762 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
2763 seen_sp_adjust = 1;
2764 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
2765 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
2766 && (inst & 0x001F0000)) /* reg != $zero */
2767 continue;
2768
2769 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
2770 continue;
2771 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
2772 /* sx reg,n($s8) */
2773 continue; /* reg != $zero */
2774
2775 /* move $s8,$sp. With different versions of gas this will be either
2776 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
2777 Accept any one of these. */
2778 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2779 continue;
2780
2781 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
2782 continue;
2783 else if (high_word == 0x3c1c) /* lui $gp,n */
2784 continue;
2785 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
2786 continue;
2787 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
2788 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
2789 continue;
2790 /* The following instructions load $at or $t0 with an immediate
2791 value in preparation for a stack adjustment via
2792 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
2793 a local variable, so we accept them only before a stack adjustment
2794 instruction was seen. */
2795 else if (!seen_sp_adjust)
2796 {
2797 if (high_word == 0x3c01 || /* lui $at,n */
2798 high_word == 0x3c08) /* lui $t0,n */
2799 {
2800 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
2801 continue;
2802 }
2803 else if (high_word == 0x3421 || /* ori $at,$at,n */
2804 high_word == 0x3508 || /* ori $t0,$t0,n */
2805 high_word == 0x3401 || /* ori $at,$zero,n */
2806 high_word == 0x3408) /* ori $t0,$zero,n */
2807 {
2808 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
2809 continue;
2810 }
2811 else
2812 break;
2813 }
2814 else
2815 break;
2816 }
2817
2818 /* In a frameless function, we might have incorrectly
2819 skipped some load immediate instructions. Undo the skipping
2820 if the load immediate was not followed by a stack adjustment. */
2821 if (load_immediate_bytes && !seen_sp_adjust)
2822 pc -= load_immediate_bytes;
2823 return pc;
2824 }
2825
2826 /* Skip the PC past function prologue instructions (16-bit version).
2827 This is a helper function for mips_skip_prologue. */
2828
2829 static CORE_ADDR
2830 mips16_skip_prologue (pc, lenient)
2831 CORE_ADDR pc; /* starting PC to search from */
2832 int lenient;
2833 {
2834 CORE_ADDR end_pc;
2835 int extend_bytes = 0;
2836 int prev_extend_bytes;
2837
2838 /* Table of instructions likely to be found in a function prologue. */
2839 static struct
2840 {
2841 unsigned short inst;
2842 unsigned short mask;
2843 }
2844 table[] =
2845 {
2846 {
2847 0x6300, 0xff00
2848 }
2849 , /* addiu $sp,offset */
2850 {
2851 0xfb00, 0xff00
2852 }
2853 , /* daddiu $sp,offset */
2854 {
2855 0xd000, 0xf800
2856 }
2857 , /* sw reg,n($sp) */
2858 {
2859 0xf900, 0xff00
2860 }
2861 , /* sd reg,n($sp) */
2862 {
2863 0x6200, 0xff00
2864 }
2865 , /* sw $ra,n($sp) */
2866 {
2867 0xfa00, 0xff00
2868 }
2869 , /* sd $ra,n($sp) */
2870 {
2871 0x673d, 0xffff
2872 }
2873 , /* move $s1,sp */
2874 {
2875 0xd980, 0xff80
2876 }
2877 , /* sw $a0-$a3,n($s1) */
2878 {
2879 0x6704, 0xff1c
2880 }
2881 , /* move reg,$a0-$a3 */
2882 {
2883 0xe809, 0xf81f
2884 }
2885 , /* entry pseudo-op */
2886 {
2887 0x0100, 0xff00
2888 }
2889 , /* addiu $s1,$sp,n */
2890 {
2891 0, 0
2892 } /* end of table marker */
2893 };
2894
2895 /* Skip the typical prologue instructions. These are the stack adjustment
2896 instruction and the instructions that save registers on the stack
2897 or in the gcc frame. */
2898 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
2899 {
2900 unsigned short inst;
2901 int i;
2902
2903 inst = mips_fetch_instruction (pc);
2904
2905 /* Normally we ignore an extend instruction. However, if it is
2906 not followed by a valid prologue instruction, we must adjust
2907 the pc back over the extend so that it won't be considered
2908 part of the prologue. */
2909 if ((inst & 0xf800) == 0xf000) /* extend */
2910 {
2911 extend_bytes = MIPS16_INSTLEN;
2912 continue;
2913 }
2914 prev_extend_bytes = extend_bytes;
2915 extend_bytes = 0;
2916
2917 /* Check for other valid prologue instructions besides extend. */
2918 for (i = 0; table[i].mask != 0; i++)
2919 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
2920 break;
2921 if (table[i].mask != 0) /* it was in table? */
2922 continue; /* ignore it */
2923 else
2924 /* non-prologue */
2925 {
2926 /* Return the current pc, adjusted backwards by 2 if
2927 the previous instruction was an extend. */
2928 return pc - prev_extend_bytes;
2929 }
2930 }
2931 return pc;
2932 }
2933
2934 /* To skip prologues, I use this predicate. Returns either PC itself
2935 if the code at PC does not look like a function prologue; otherwise
2936 returns an address that (if we're lucky) follows the prologue. If
2937 LENIENT, then we must skip everything which is involved in setting
2938 up the frame (it's OK to skip more, just so long as we don't skip
2939 anything which might clobber the registers which are being saved.
2940 We must skip more in the case where part of the prologue is in the
2941 delay slot of a non-prologue instruction). */
2942
2943 CORE_ADDR
2944 mips_skip_prologue (pc, lenient)
2945 CORE_ADDR pc;
2946 int lenient;
2947 {
2948 /* See if we can determine the end of the prologue via the symbol table.
2949 If so, then return either PC, or the PC after the prologue, whichever
2950 is greater. */
2951
2952 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
2953
2954 if (post_prologue_pc != 0)
2955 return max (pc, post_prologue_pc);
2956
2957 /* Can't determine prologue from the symbol table, need to examine
2958 instructions. */
2959
2960 if (pc_is_mips16 (pc))
2961 return mips16_skip_prologue (pc, lenient);
2962 else
2963 return mips32_skip_prologue (pc, lenient);
2964 }
2965
2966 #if 0
2967 /* The lenient prologue stuff should be superseded by the code in
2968 init_extra_frame_info which looks to see whether the stores mentioned
2969 in the proc_desc have actually taken place. */
2970
2971 /* Is address PC in the prologue (loosely defined) for function at
2972 STARTADDR? */
2973
2974 static int
2975 mips_in_lenient_prologue (startaddr, pc)
2976 CORE_ADDR startaddr;
2977 CORE_ADDR pc;
2978 {
2979 CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1);
2980 return pc >= startaddr && pc < end_prologue;
2981 }
2982 #endif
2983
2984 /* Determine how a return value is stored within the MIPS register
2985 file, given the return type `valtype'. */
2986
2987 struct return_value_word
2988 {
2989 int len;
2990 int reg;
2991 int reg_offset;
2992 int buf_offset;
2993 };
2994
2995 static void return_value_location (struct type *, struct return_value_word *,
2996 struct return_value_word *);
2997
2998 static void
2999 return_value_location (valtype, hi, lo)
3000 struct type *valtype;
3001 struct return_value_word *hi;
3002 struct return_value_word *lo;
3003 {
3004 int len = TYPE_LENGTH (valtype);
3005
3006 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3007 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
3008 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
3009 {
3010 if (!FP_REGISTER_DOUBLE && len == 8)
3011 {
3012 /* We need to break a 64bit float in two 32 bit halves and
3013 spread them across a floating-point register pair. */
3014 lo->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
3015 hi->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 0 : 4;
3016 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3017 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
3018 ? 4 : 0);
3019 hi->reg_offset = lo->reg_offset;
3020 lo->reg = FP0_REGNUM + 0;
3021 hi->reg = FP0_REGNUM + 1;
3022 lo->len = 4;
3023 hi->len = 4;
3024 }
3025 else
3026 {
3027 /* The floating point value fits in a single floating-point
3028 register. */
3029 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3030 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
3031 && len == 4)
3032 ? 4 : 0);
3033 lo->reg = FP0_REGNUM;
3034 lo->len = len;
3035 lo->buf_offset = 0;
3036 hi->len = 0;
3037 hi->reg_offset = 0;
3038 hi->buf_offset = 0;
3039 hi->reg = 0;
3040 }
3041 }
3042 else
3043 {
3044 /* Locate a result possibly spread across two registers. */
3045 int regnum = 2;
3046 lo->reg = regnum + 0;
3047 hi->reg = regnum + 1;
3048 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3049 && len < MIPS_SAVED_REGSIZE)
3050 {
3051 /* "un-left-justify" the value in the low register */
3052 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
3053 lo->len = len;
3054 hi->reg_offset = 0;
3055 hi->len = 0;
3056 }
3057 else if (TARGET_BYTE_ORDER == BIG_ENDIAN
3058 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
3059 && len < MIPS_SAVED_REGSIZE * 2
3060 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3061 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3062 {
3063 /* "un-left-justify" the value spread across two registers. */
3064 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
3065 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
3066 hi->reg_offset = 0;
3067 hi->len = len - lo->len;
3068 }
3069 else
3070 {
3071 /* Only perform a partial copy of the second register. */
3072 lo->reg_offset = 0;
3073 hi->reg_offset = 0;
3074 if (len > MIPS_SAVED_REGSIZE)
3075 {
3076 lo->len = MIPS_SAVED_REGSIZE;
3077 hi->len = len - MIPS_SAVED_REGSIZE;
3078 }
3079 else
3080 {
3081 lo->len = len;
3082 hi->len = 0;
3083 }
3084 }
3085 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3086 && REGISTER_RAW_SIZE (regnum) == 8
3087 && MIPS_SAVED_REGSIZE == 4)
3088 {
3089 /* Account for the fact that only the least-signficant part
3090 of the register is being used */
3091 lo->reg_offset += 4;
3092 hi->reg_offset += 4;
3093 }
3094 lo->buf_offset = 0;
3095 hi->buf_offset = lo->len;
3096 }
3097 }
3098
3099 /* Given a return value in `regbuf' with a type `valtype', extract and
3100 copy its value into `valbuf'. */
3101
3102 void
3103 mips_extract_return_value (valtype, regbuf, valbuf)
3104 struct type *valtype;
3105 char regbuf[REGISTER_BYTES];
3106 char *valbuf;
3107 {
3108 struct return_value_word lo;
3109 struct return_value_word hi;
3110 return_value_location (valtype, &lo, &hi);
3111
3112 memcpy (valbuf + lo.buf_offset,
3113 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
3114 lo.len);
3115
3116 if (hi.len > 0)
3117 memcpy (valbuf + hi.buf_offset,
3118 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
3119 hi.len);
3120
3121 #if 0
3122 int regnum;
3123 int offset = 0;
3124 int len = TYPE_LENGTH (valtype);
3125
3126 regnum = 2;
3127 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3128 && (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE
3129 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE
3130 && len <= MIPS_FPU_SINGLE_REGSIZE)))
3131 regnum = FP0_REGNUM;
3132
3133 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3134 { /* "un-left-justify" the value from the register */
3135 if (len < REGISTER_RAW_SIZE (regnum))
3136 offset = REGISTER_RAW_SIZE (regnum) - len;
3137 if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
3138 len < REGISTER_RAW_SIZE (regnum) * 2 &&
3139 (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3140 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3141 offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
3142 }
3143 memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset, len);
3144 REGISTER_CONVERT_TO_TYPE (regnum, valtype, valbuf);
3145 #endif
3146 }
3147
3148 /* Given a return value in `valbuf' with a type `valtype', write it's
3149 value into the appropriate register. */
3150
3151 void
3152 mips_store_return_value (valtype, valbuf)
3153 struct type *valtype;
3154 char *valbuf;
3155 {
3156 char raw_buffer[MAX_REGISTER_RAW_SIZE];
3157 struct return_value_word lo;
3158 struct return_value_word hi;
3159 return_value_location (valtype, &lo, &hi);
3160
3161 memset (raw_buffer, 0, sizeof (raw_buffer));
3162 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
3163 write_register_bytes (REGISTER_BYTE (lo.reg),
3164 raw_buffer,
3165 REGISTER_RAW_SIZE (lo.reg));
3166
3167 if (hi.len > 0)
3168 {
3169 memset (raw_buffer, 0, sizeof (raw_buffer));
3170 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
3171 write_register_bytes (REGISTER_BYTE (hi.reg),
3172 raw_buffer,
3173 REGISTER_RAW_SIZE (hi.reg));
3174 }
3175
3176 #if 0
3177 int regnum;
3178 int offset = 0;
3179 int len = TYPE_LENGTH (valtype);
3180 char raw_buffer[MAX_REGISTER_RAW_SIZE];
3181
3182 regnum = 2;
3183 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3184 && (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE
3185 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE
3186 && len <= MIPS_REGSIZE)))
3187 regnum = FP0_REGNUM;
3188
3189 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3190 { /* "left-justify" the value in the register */
3191 if (len < REGISTER_RAW_SIZE (regnum))
3192 offset = REGISTER_RAW_SIZE (regnum) - len;
3193 if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
3194 len < REGISTER_RAW_SIZE (regnum) * 2 &&
3195 (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3196 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3197 offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
3198 }
3199 memcpy (raw_buffer + offset, valbuf, len);
3200 REGISTER_CONVERT_FROM_TYPE (regnum, valtype, raw_buffer);
3201 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer,
3202 len > REGISTER_RAW_SIZE (regnum) ?
3203 len : REGISTER_RAW_SIZE (regnum));
3204 #endif
3205 }
3206
3207 /* Exported procedure: Is PC in the signal trampoline code */
3208
3209 int
3210 in_sigtramp (pc, ignore)
3211 CORE_ADDR pc;
3212 char *ignore; /* function name */
3213 {
3214 if (sigtramp_address == 0)
3215 fixup_sigtramp ();
3216 return (pc >= sigtramp_address && pc < sigtramp_end);
3217 }
3218
3219 /* Root of all "set mips "/"show mips " commands. This will eventually be
3220 used for all MIPS-specific commands. */
3221
3222 static void show_mips_command (char *, int);
3223 static void
3224 show_mips_command (args, from_tty)
3225 char *args;
3226 int from_tty;
3227 {
3228 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
3229 }
3230
3231 static void set_mips_command (char *, int);
3232 static void
3233 set_mips_command (args, from_tty)
3234 char *args;
3235 int from_tty;
3236 {
3237 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
3238 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
3239 }
3240
3241 /* Commands to show/set the MIPS FPU type. */
3242
3243 static void show_mipsfpu_command (char *, int);
3244 static void
3245 show_mipsfpu_command (args, from_tty)
3246 char *args;
3247 int from_tty;
3248 {
3249 char *msg;
3250 char *fpu;
3251 switch (MIPS_FPU_TYPE)
3252 {
3253 case MIPS_FPU_SINGLE:
3254 fpu = "single-precision";
3255 break;
3256 case MIPS_FPU_DOUBLE:
3257 fpu = "double-precision";
3258 break;
3259 case MIPS_FPU_NONE:
3260 fpu = "absent (none)";
3261 break;
3262 }
3263 if (mips_fpu_type_auto)
3264 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
3265 fpu);
3266 else
3267 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
3268 fpu);
3269 }
3270
3271
3272 static void set_mipsfpu_command (char *, int);
3273 static void
3274 set_mipsfpu_command (args, from_tty)
3275 char *args;
3276 int from_tty;
3277 {
3278 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
3279 show_mipsfpu_command (args, from_tty);
3280 }
3281
3282 static void set_mipsfpu_single_command (char *, int);
3283 static void
3284 set_mipsfpu_single_command (args, from_tty)
3285 char *args;
3286 int from_tty;
3287 {
3288 mips_fpu_type = MIPS_FPU_SINGLE;
3289 mips_fpu_type_auto = 0;
3290 if (GDB_MULTI_ARCH)
3291 {
3292 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
3293 }
3294 }
3295
3296 static void set_mipsfpu_double_command (char *, int);
3297 static void
3298 set_mipsfpu_double_command (args, from_tty)
3299 char *args;
3300 int from_tty;
3301 {
3302 mips_fpu_type = MIPS_FPU_DOUBLE;
3303 mips_fpu_type_auto = 0;
3304 if (GDB_MULTI_ARCH)
3305 {
3306 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
3307 }
3308 }
3309
3310 static void set_mipsfpu_none_command (char *, int);
3311 static void
3312 set_mipsfpu_none_command (args, from_tty)
3313 char *args;
3314 int from_tty;
3315 {
3316 mips_fpu_type = MIPS_FPU_NONE;
3317 mips_fpu_type_auto = 0;
3318 if (GDB_MULTI_ARCH)
3319 {
3320 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
3321 }
3322 }
3323
3324 static void set_mipsfpu_auto_command (char *, int);
3325 static void
3326 set_mipsfpu_auto_command (args, from_tty)
3327 char *args;
3328 int from_tty;
3329 {
3330 mips_fpu_type_auto = 1;
3331 }
3332
3333 /* Command to set the processor type. */
3334
3335 void
3336 mips_set_processor_type_command (args, from_tty)
3337 char *args;
3338 int from_tty;
3339 {
3340 int i;
3341
3342 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
3343 {
3344 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
3345 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3346 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
3347
3348 /* Restore the value. */
3349 tmp_mips_processor_type = strsave (mips_processor_type);
3350
3351 return;
3352 }
3353
3354 if (!mips_set_processor_type (tmp_mips_processor_type))
3355 {
3356 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
3357 /* Restore its value. */
3358 tmp_mips_processor_type = strsave (mips_processor_type);
3359 }
3360 }
3361
3362 static void
3363 mips_show_processor_type_command (args, from_tty)
3364 char *args;
3365 int from_tty;
3366 {
3367 }
3368
3369 /* Modify the actual processor type. */
3370
3371 int
3372 mips_set_processor_type (str)
3373 char *str;
3374 {
3375 int i, j;
3376
3377 if (str == NULL)
3378 return 0;
3379
3380 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3381 {
3382 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
3383 {
3384 mips_processor_type = str;
3385 mips_processor_reg_names = mips_processor_type_table[i].regnames;
3386 return 1;
3387 /* FIXME tweak fpu flag too */
3388 }
3389 }
3390
3391 return 0;
3392 }
3393
3394 /* Attempt to identify the particular processor model by reading the
3395 processor id. */
3396
3397 char *
3398 mips_read_processor_type ()
3399 {
3400 CORE_ADDR prid;
3401
3402 prid = read_register (PRID_REGNUM);
3403
3404 if ((prid & ~0xf) == 0x700)
3405 return savestring ("r3041", strlen ("r3041"));
3406
3407 return NULL;
3408 }
3409
3410 /* Just like reinit_frame_cache, but with the right arguments to be
3411 callable as an sfunc. */
3412
3413 static void
3414 reinit_frame_cache_sfunc (args, from_tty, c)
3415 char *args;
3416 int from_tty;
3417 struct cmd_list_element *c;
3418 {
3419 reinit_frame_cache ();
3420 }
3421
3422 int
3423 gdb_print_insn_mips (memaddr, info)
3424 bfd_vma memaddr;
3425 disassemble_info *info;
3426 {
3427 mips_extra_func_info_t proc_desc;
3428
3429 /* Search for the function containing this address. Set the low bit
3430 of the address when searching, in case we were given an even address
3431 that is the start of a 16-bit function. If we didn't do this,
3432 the search would fail because the symbol table says the function
3433 starts at an odd address, i.e. 1 byte past the given address. */
3434 memaddr = ADDR_BITS_REMOVE (memaddr);
3435 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
3436
3437 /* Make an attempt to determine if this is a 16-bit function. If
3438 the procedure descriptor exists and the address therein is odd,
3439 it's definitely a 16-bit function. Otherwise, we have to just
3440 guess that if the address passed in is odd, it's 16-bits. */
3441 if (proc_desc)
3442 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ? 16 : TM_PRINT_INSN_MACH;
3443 else
3444 info->mach = pc_is_mips16 (memaddr) ? 16 : TM_PRINT_INSN_MACH;
3445
3446 /* Round down the instruction address to the appropriate boundary. */
3447 memaddr &= (info->mach == 16 ? ~1 : ~3);
3448
3449 /* Call the appropriate disassembler based on the target endian-ness. */
3450 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3451 return print_insn_big_mips (memaddr, info);
3452 else
3453 return print_insn_little_mips (memaddr, info);
3454 }
3455
3456 /* Old-style breakpoint macros.
3457 The IDT board uses an unusual breakpoint value, and sometimes gets
3458 confused when it sees the usual MIPS breakpoint instruction. */
3459
3460 #define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
3461 #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
3462 #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
3463 #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
3464 #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
3465 #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
3466 #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
3467 #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
3468
3469 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
3470 counter value to determine whether a 16- or 32-bit breakpoint should be
3471 used. It returns a pointer to a string of bytes that encode a breakpoint
3472 instruction, stores the length of the string to *lenptr, and adjusts pc
3473 (if necessary) to point to the actual memory location where the
3474 breakpoint should be inserted. */
3475
3476 unsigned char *
3477 mips_breakpoint_from_pc (pcptr, lenptr)
3478 CORE_ADDR *pcptr;
3479 int *lenptr;
3480 {
3481 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3482 {
3483 if (pc_is_mips16 (*pcptr))
3484 {
3485 static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT;
3486 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
3487 *lenptr = sizeof (mips16_big_breakpoint);
3488 return mips16_big_breakpoint;
3489 }
3490 else
3491 {
3492 static char big_breakpoint[] = BIG_BREAKPOINT;
3493 static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
3494 static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
3495
3496 *lenptr = sizeof (big_breakpoint);
3497
3498 if (strcmp (target_shortname, "mips") == 0)
3499 return idt_big_breakpoint;
3500 else if (strcmp (target_shortname, "ddb") == 0
3501 || strcmp (target_shortname, "pmon") == 0
3502 || strcmp (target_shortname, "lsi") == 0)
3503 return pmon_big_breakpoint;
3504 else
3505 return big_breakpoint;
3506 }
3507 }
3508 else
3509 {
3510 if (pc_is_mips16 (*pcptr))
3511 {
3512 static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT;
3513 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
3514 *lenptr = sizeof (mips16_little_breakpoint);
3515 return mips16_little_breakpoint;
3516 }
3517 else
3518 {
3519 static char little_breakpoint[] = LITTLE_BREAKPOINT;
3520 static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT;
3521 static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT;
3522
3523 *lenptr = sizeof (little_breakpoint);
3524
3525 if (strcmp (target_shortname, "mips") == 0)
3526 return idt_little_breakpoint;
3527 else if (strcmp (target_shortname, "ddb") == 0
3528 || strcmp (target_shortname, "pmon") == 0
3529 || strcmp (target_shortname, "lsi") == 0)
3530 return pmon_little_breakpoint;
3531 else
3532 return little_breakpoint;
3533 }
3534 }
3535 }
3536
3537 /* If PC is in a mips16 call or return stub, return the address of the target
3538 PC, which is either the callee or the caller. There are several
3539 cases which must be handled:
3540
3541 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3542 target PC is in $31 ($ra).
3543 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3544 and the target PC is in $2.
3545 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3546 before the jal instruction, this is effectively a call stub
3547 and the the target PC is in $2. Otherwise this is effectively
3548 a return stub and the target PC is in $18.
3549
3550 See the source code for the stubs in gcc/config/mips/mips16.S for
3551 gory details.
3552
3553 This function implements the SKIP_TRAMPOLINE_CODE macro.
3554 */
3555
3556 CORE_ADDR
3557 mips_skip_stub (pc)
3558 CORE_ADDR pc;
3559 {
3560 char *name;
3561 CORE_ADDR start_addr;
3562
3563 /* Find the starting address and name of the function containing the PC. */
3564 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
3565 return 0;
3566
3567 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3568 target PC is in $31 ($ra). */
3569 if (strcmp (name, "__mips16_ret_sf") == 0
3570 || strcmp (name, "__mips16_ret_df") == 0)
3571 return read_register (RA_REGNUM);
3572
3573 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3574 {
3575 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3576 and the target PC is in $2. */
3577 if (name[19] >= '0' && name[19] <= '9')
3578 return read_register (2);
3579
3580 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3581 before the jal instruction, this is effectively a call stub
3582 and the the target PC is in $2. Otherwise this is effectively
3583 a return stub and the target PC is in $18. */
3584 else if (name[19] == 's' || name[19] == 'd')
3585 {
3586 if (pc == start_addr)
3587 {
3588 /* Check if the target of the stub is a compiler-generated
3589 stub. Such a stub for a function bar might have a name
3590 like __fn_stub_bar, and might look like this:
3591 mfc1 $4,$f13
3592 mfc1 $5,$f12
3593 mfc1 $6,$f15
3594 mfc1 $7,$f14
3595 la $1,bar (becomes a lui/addiu pair)
3596 jr $1
3597 So scan down to the lui/addi and extract the target
3598 address from those two instructions. */
3599
3600 CORE_ADDR target_pc = read_register (2);
3601 t_inst inst;
3602 int i;
3603
3604 /* See if the name of the target function is __fn_stub_*. */
3605 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
3606 return target_pc;
3607 if (strncmp (name, "__fn_stub_", 10) != 0
3608 && strcmp (name, "etext") != 0
3609 && strcmp (name, "_etext") != 0)
3610 return target_pc;
3611
3612 /* Scan through this _fn_stub_ code for the lui/addiu pair.
3613 The limit on the search is arbitrarily set to 20
3614 instructions. FIXME. */
3615 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
3616 {
3617 inst = mips_fetch_instruction (target_pc);
3618 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
3619 pc = (inst << 16) & 0xffff0000; /* high word */
3620 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
3621 return pc | (inst & 0xffff); /* low word */
3622 }
3623
3624 /* Couldn't find the lui/addui pair, so return stub address. */
3625 return target_pc;
3626 }
3627 else
3628 /* This is the 'return' part of a call stub. The return
3629 address is in $r18. */
3630 return read_register (18);
3631 }
3632 }
3633 return 0; /* not a stub */
3634 }
3635
3636
3637 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
3638 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
3639
3640 int
3641 mips_in_call_stub (pc, name)
3642 CORE_ADDR pc;
3643 char *name;
3644 {
3645 CORE_ADDR start_addr;
3646
3647 /* Find the starting address of the function containing the PC. If the
3648 caller didn't give us a name, look it up at the same time. */
3649 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
3650 return 0;
3651
3652 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3653 {
3654 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
3655 if (name[19] >= '0' && name[19] <= '9')
3656 return 1;
3657 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3658 before the jal instruction, this is effectively a call stub. */
3659 else if (name[19] == 's' || name[19] == 'd')
3660 return pc == start_addr;
3661 }
3662
3663 return 0; /* not a stub */
3664 }
3665
3666
3667 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
3668 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
3669
3670 int
3671 mips_in_return_stub (pc, name)
3672 CORE_ADDR pc;
3673 char *name;
3674 {
3675 CORE_ADDR start_addr;
3676
3677 /* Find the starting address of the function containing the PC. */
3678 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
3679 return 0;
3680
3681 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
3682 if (strcmp (name, "__mips16_ret_sf") == 0
3683 || strcmp (name, "__mips16_ret_df") == 0)
3684 return 1;
3685
3686 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
3687 i.e. after the jal instruction, this is effectively a return stub. */
3688 if (strncmp (name, "__mips16_call_stub_", 19) == 0
3689 && (name[19] == 's' || name[19] == 'd')
3690 && pc != start_addr)
3691 return 1;
3692
3693 return 0; /* not a stub */
3694 }
3695
3696
3697 /* Return non-zero if the PC is in a library helper function that should
3698 be ignored. This implements the IGNORE_HELPER_CALL macro. */
3699
3700 int
3701 mips_ignore_helper (pc)
3702 CORE_ADDR pc;
3703 {
3704 char *name;
3705
3706 /* Find the starting address and name of the function containing the PC. */
3707 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
3708 return 0;
3709
3710 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
3711 that we want to ignore. */
3712 return (strcmp (name, "__mips16_ret_sf") == 0
3713 || strcmp (name, "__mips16_ret_df") == 0);
3714 }
3715
3716
3717 /* Return a location where we can set a breakpoint that will be hit
3718 when an inferior function call returns. This is normally the
3719 program's entry point. Executables that don't have an entry
3720 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
3721 whose address is the location where the breakpoint should be placed. */
3722
3723 CORE_ADDR
3724 mips_call_dummy_address ()
3725 {
3726 struct minimal_symbol *sym;
3727
3728 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
3729 if (sym)
3730 return SYMBOL_VALUE_ADDRESS (sym);
3731 else
3732 return entry_point_address ();
3733 }
3734
3735
3736 /* If the current gcc for for this target does not produce correct debugging
3737 information for float parameters, both prototyped and unprototyped, then
3738 define this macro. This forces gdb to always assume that floats are
3739 passed as doubles and then converted in the callee.
3740
3741 For the mips chip, it appears that the debug info marks the parameters as
3742 floats regardless of whether the function is prototyped, but the actual
3743 values are passed as doubles for the non-prototyped case and floats for
3744 the prototyped case. Thus we choose to make the non-prototyped case work
3745 for C and break the prototyped case, since the non-prototyped case is
3746 probably much more common. (FIXME). */
3747
3748 static int
3749 mips_coerce_float_to_double (struct type *formal, struct type *actual)
3750 {
3751 return current_language->la_language == language_c;
3752 }
3753
3754 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
3755 the register stored on the stack (32) is different to its real raw
3756 size (64). The below ensures that registers are fetched from the
3757 stack using their ABI size and then stored into the RAW_BUFFER
3758 using their raw size.
3759
3760 The alternative to adding this function would be to add an ABI
3761 macro - REGISTER_STACK_SIZE(). */
3762
3763 static void
3764 mips_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
3765 char *raw_buffer;
3766 int *optimized;
3767 CORE_ADDR *addrp;
3768 struct frame_info *frame;
3769 int regnum;
3770 enum lval_type *lval;
3771 {
3772 CORE_ADDR addr;
3773
3774 if (!target_has_registers)
3775 error ("No registers.");
3776
3777 /* Normal systems don't optimize out things with register numbers. */
3778 if (optimized != NULL)
3779 *optimized = 0;
3780 addr = find_saved_register (frame, regnum);
3781 if (addr != 0)
3782 {
3783 if (lval != NULL)
3784 *lval = lval_memory;
3785 if (regnum == SP_REGNUM)
3786 {
3787 if (raw_buffer != NULL)
3788 {
3789 /* Put it back in target format. */
3790 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
3791 (LONGEST) addr);
3792 }
3793 if (addrp != NULL)
3794 *addrp = 0;
3795 return;
3796 }
3797 if (raw_buffer != NULL)
3798 {
3799 LONGEST val;
3800 if (regnum < 32)
3801 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
3802 saved. */
3803 val = read_memory_integer (addr, MIPS_SAVED_REGSIZE);
3804 else
3805 val = read_memory_integer (addr, REGISTER_RAW_SIZE (regnum));
3806 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
3807 }
3808 }
3809 else
3810 {
3811 if (lval != NULL)
3812 *lval = lval_register;
3813 addr = REGISTER_BYTE (regnum);
3814 if (raw_buffer != NULL)
3815 read_register_gen (regnum, raw_buffer);
3816 }
3817 if (addrp != NULL)
3818 *addrp = addr;
3819 }
3820
3821 static gdbarch_init_ftype mips_gdbarch_init;
3822 static struct gdbarch *
3823 mips_gdbarch_init (info, arches)
3824 struct gdbarch_info info;
3825 struct gdbarch_list *arches;
3826 {
3827 static LONGEST mips_call_dummy_words[] =
3828 {0};
3829 struct gdbarch *gdbarch;
3830 struct gdbarch_tdep *tdep;
3831 int elf_flags;
3832 char *ef_mips_abi;
3833 int ef_mips_bitptrs;
3834 int ef_mips_arch;
3835 enum mips_abi mips_abi;
3836
3837 /* Extract the elf_flags if available */
3838 if (info.abfd != NULL
3839 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
3840 elf_flags = elf_elfheader (info.abfd)->e_flags;
3841 else
3842 elf_flags = 0;
3843
3844 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
3845 switch ((elf_flags & EF_MIPS_ABI))
3846 {
3847 case E_MIPS_ABI_O32:
3848 mips_abi = MIPS_ABI_O32;
3849 break;
3850 case E_MIPS_ABI_O64:
3851 mips_abi = MIPS_ABI_O64;
3852 break;
3853 case E_MIPS_ABI_EABI32:
3854 mips_abi = MIPS_ABI_EABI32;
3855 break;
3856 case E_MIPS_ABI_EABI64:
3857 mips_abi = MIPS_ABI_EABI32;
3858 break;
3859 default:
3860 mips_abi = MIPS_ABI_UNKNOWN;
3861 break;
3862 }
3863 #ifdef MIPS_DEFAULT_ABI
3864 if (mips_abi == MIPS_ABI_UNKNOWN)
3865 mips_abi = MIPS_DEFAULT_ABI;
3866 #endif
3867
3868 /* try to find a pre-existing architecture */
3869 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3870 arches != NULL;
3871 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3872 {
3873 /* MIPS needs to be pedantic about which ABI the object is
3874 using. */
3875 if (gdbarch_tdep (current_gdbarch)->elf_flags != elf_flags)
3876 continue;
3877 if (gdbarch_tdep (current_gdbarch)->mips_abi != mips_abi)
3878 continue;
3879 return arches->gdbarch;
3880 }
3881
3882 /* Need a new architecture. Fill in a target specific vector. */
3883 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
3884 gdbarch = gdbarch_alloc (&info, tdep);
3885 tdep->elf_flags = elf_flags;
3886
3887 /* Initially set everything according to the ABI. */
3888 set_gdbarch_short_bit (gdbarch, 16);
3889 set_gdbarch_int_bit (gdbarch, 32);
3890 set_gdbarch_float_bit (gdbarch, 32);
3891 set_gdbarch_double_bit (gdbarch, 64);
3892 set_gdbarch_long_double_bit (gdbarch, 64);
3893 tdep->mips_abi = mips_abi;
3894 switch (mips_abi)
3895 {
3896 case MIPS_ABI_O32:
3897 ef_mips_abi = "o32";
3898 tdep->mips_default_saved_regsize = 4;
3899 tdep->mips_default_stack_argsize = 4;
3900 tdep->mips_fp_register_double = 0;
3901 tdep->mips_last_arg_regnum = ZERO_REGNUM + 7;
3902 tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 15;
3903 tdep->mips_regs_have_home_p = 1;
3904 set_gdbarch_long_bit (gdbarch, 32);
3905 set_gdbarch_ptr_bit (gdbarch, 32);
3906 set_gdbarch_long_long_bit (gdbarch, 64);
3907 break;
3908 case MIPS_ABI_O64:
3909 ef_mips_abi = "o64";
3910 tdep->mips_default_saved_regsize = 8;
3911 tdep->mips_default_stack_argsize = 8;
3912 tdep->mips_fp_register_double = 1;
3913 tdep->mips_last_arg_regnum = ZERO_REGNUM + 7;
3914 tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 15;
3915 tdep->mips_regs_have_home_p = 1;
3916 set_gdbarch_long_bit (gdbarch, 32);
3917 set_gdbarch_ptr_bit (gdbarch, 32);
3918 set_gdbarch_long_long_bit (gdbarch, 64);
3919 break;
3920 case MIPS_ABI_EABI32:
3921 ef_mips_abi = "eabi32";
3922 tdep->mips_default_saved_regsize = 4;
3923 tdep->mips_default_stack_argsize = 4;
3924 tdep->mips_fp_register_double = 0;
3925 tdep->mips_last_arg_regnum = ZERO_REGNUM + 11;
3926 tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 19;
3927 tdep->mips_regs_have_home_p = 0;
3928 set_gdbarch_long_bit (gdbarch, 32);
3929 set_gdbarch_ptr_bit (gdbarch, 32);
3930 set_gdbarch_long_long_bit (gdbarch, 64);
3931 break;
3932 case MIPS_ABI_EABI64:
3933 ef_mips_abi = "eabi64";
3934 tdep->mips_default_saved_regsize = 8;
3935 tdep->mips_default_stack_argsize = 8;
3936 tdep->mips_fp_register_double = 1;
3937 tdep->mips_last_arg_regnum = ZERO_REGNUM + 11;
3938 tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 19;
3939 tdep->mips_regs_have_home_p = 0;
3940 set_gdbarch_long_bit (gdbarch, 64);
3941 set_gdbarch_ptr_bit (gdbarch, 64);
3942 set_gdbarch_long_long_bit (gdbarch, 64);
3943 break;
3944 case MIPS_ABI_N32:
3945 ef_mips_abi = "n32";
3946 tdep->mips_default_saved_regsize = 4;
3947 tdep->mips_default_stack_argsize = 8;
3948 tdep->mips_fp_register_double = 1;
3949 tdep->mips_last_arg_regnum = ZERO_REGNUM + 11;
3950 tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 19;
3951 tdep->mips_regs_have_home_p = 0;
3952 set_gdbarch_long_bit (gdbarch, 32);
3953 set_gdbarch_ptr_bit (gdbarch, 32);
3954 set_gdbarch_long_long_bit (gdbarch, 64);
3955 break;
3956 default:
3957 ef_mips_abi = "default";
3958 tdep->mips_default_saved_regsize = MIPS_REGSIZE;
3959 tdep->mips_default_stack_argsize = MIPS_REGSIZE;
3960 tdep->mips_fp_register_double = (REGISTER_VIRTUAL_SIZE (FP0_REGNUM) == 8);
3961 tdep->mips_last_arg_regnum = ZERO_REGNUM + 11;
3962 tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 19;
3963 tdep->mips_regs_have_home_p = 1;
3964 set_gdbarch_long_bit (gdbarch, 32);
3965 set_gdbarch_ptr_bit (gdbarch, 32);
3966 set_gdbarch_long_long_bit (gdbarch, 64);
3967 break;
3968 }
3969
3970 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
3971 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
3972 comment:
3973
3974 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
3975 flag in object files because to do so would make it impossible to
3976 link with libraries compiled without "-gp32". This is
3977 unnecessarily restrictive.
3978
3979 We could solve this problem by adding "-gp32" multilibs to gcc,
3980 but to set this flag before gcc is built with such multilibs will
3981 break too many systems.''
3982
3983 But even more unhelpfully, the default linker output target for
3984 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
3985 for 64-bit programs - you need to change the ABI to change this,
3986 and not all gcc targets support that currently. Therefore using
3987 this flag to detect 32-bit mode would do the wrong thing given
3988 the current gcc - it would make GDB treat these 64-bit programs
3989 as 32-bit programs by default. */
3990
3991 /* determine the ISA */
3992 switch (elf_flags & EF_MIPS_ARCH)
3993 {
3994 case E_MIPS_ARCH_1:
3995 ef_mips_arch = 1;
3996 break;
3997 case E_MIPS_ARCH_2:
3998 ef_mips_arch = 2;
3999 break;
4000 case E_MIPS_ARCH_3:
4001 ef_mips_arch = 3;
4002 break;
4003 case E_MIPS_ARCH_4:
4004 ef_mips_arch = 0;
4005 break;
4006 default:
4007 break;
4008 }
4009
4010 #if 0
4011 /* determine the size of a pointer */
4012 if ((elf_flags & EF_MIPS_32BITPTRS))
4013 {
4014 ef_mips_bitptrs = 32;
4015 }
4016 else if ((elf_flags & EF_MIPS_64BITPTRS))
4017 {
4018 ef_mips_bitptrs = 64;
4019 }
4020 else
4021 {
4022 ef_mips_bitptrs = 0;
4023 }
4024 #endif
4025
4026 /* enable/disable the MIPS FPU */
4027 if (!mips_fpu_type_auto)
4028 tdep->mips_fpu_type = mips_fpu_type;
4029 else if (info.bfd_arch_info != NULL
4030 && info.bfd_arch_info->arch == bfd_arch_mips)
4031 switch (info.bfd_arch_info->mach)
4032 {
4033 case bfd_mach_mips4100:
4034 case bfd_mach_mips4111:
4035 tdep->mips_fpu_type = MIPS_FPU_NONE;
4036 break;
4037 default:
4038 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4039 break;
4040 }
4041 else
4042 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4043
4044 /* MIPS version of register names. NOTE: At present the MIPS
4045 register name management is part way between the old -
4046 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
4047 Further work on it is required. */
4048 set_gdbarch_register_name (gdbarch, mips_register_name);
4049 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
4050 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
4051 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
4052 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
4053 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
4054 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
4055
4056 /* Initialize a frame */
4057 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
4058
4059 /* MIPS version of CALL_DUMMY */
4060
4061 set_gdbarch_call_dummy_p (gdbarch, 1);
4062 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
4063 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
4064 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
4065 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
4066 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
4067 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
4068 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
4069 set_gdbarch_call_dummy_length (gdbarch, 0);
4070 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
4071 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
4072 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
4073 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
4074 set_gdbarch_push_arguments (gdbarch, mips_push_arguments);
4075 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
4076 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
4077
4078 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
4079 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
4080
4081 if (gdbarch_debug)
4082 {
4083 fprintf_unfiltered (gdb_stdlog,
4084 "mips_gdbarch_init: (info)ef_mips_abi = %s\n",
4085 ef_mips_abi);
4086 fprintf_unfiltered (gdb_stdlog,
4087 "mips_gdbarch_init: (info)ef_mips_arch = %d\n",
4088 ef_mips_arch);
4089 fprintf_unfiltered (gdb_stdlog,
4090 "mips_gdbarch_init: (info)ef_mips_bitptrs = %d\n",
4091 ef_mips_bitptrs);
4092 fprintf_unfiltered (gdb_stdlog,
4093 "mips_gdbarch_init: MIPS_REGSIZE = %d\n",
4094 MIPS_REGSIZE);
4095 fprintf_unfiltered (gdb_stdlog,
4096 "mips_gdbarch_init: tdep->elf_flags = 0x%x\n",
4097 tdep->elf_flags);
4098 fprintf_unfiltered (gdb_stdlog,
4099 "mips_gdbarch_init: tdep->mips_abi = %d\n",
4100 tdep->mips_abi);
4101 fprintf_unfiltered (gdb_stdlog,
4102 "mips_gdbarch_init: tdep->mips_fpu_type = %d (%s)\n",
4103 tdep->mips_fpu_type,
4104 (tdep->mips_fpu_type == MIPS_FPU_NONE ? "none"
4105 : tdep->mips_fpu_type == MIPS_FPU_SINGLE ? "single"
4106 : tdep->mips_fpu_type == MIPS_FPU_DOUBLE ? "double"
4107 : "???"));
4108 fprintf_unfiltered (gdb_stdlog,
4109 "mips_gdbarch_init: tdep->mips_last_arg_regnum = %d\n",
4110 tdep->mips_last_arg_regnum);
4111 fprintf_unfiltered (gdb_stdlog,
4112 "mips_gdbarch_init: tdep->mips_last_fp_arg_regnum = %d (%d)\n",
4113 tdep->mips_last_fp_arg_regnum,
4114 tdep->mips_last_fp_arg_regnum - FP0_REGNUM);
4115 fprintf_unfiltered (gdb_stdlog,
4116 "mips_gdbarch_init: tdep->mips_default_saved_regsize = %d\n",
4117 tdep->mips_default_saved_regsize);
4118 fprintf_unfiltered (gdb_stdlog,
4119 "mips_gdbarch_init: tdep->mips_fp_register_double = %d (%s)\n",
4120 tdep->mips_fp_register_double,
4121 (tdep->mips_fp_register_double ? "true" : "false"));
4122 fprintf_unfiltered (gdb_stdlog,
4123 "mips_gdbarch_init: tdep->mips_regs_have_home_p = %d\n",
4124 tdep->mips_regs_have_home_p);
4125 fprintf_unfiltered (gdb_stdlog,
4126 "mips_gdbarch_init: tdep->mips_default_stack_argsize = %d\n",
4127 tdep->mips_default_stack_argsize);
4128 }
4129
4130 return gdbarch;
4131 }
4132
4133
4134 void
4135 _initialize_mips_tdep ()
4136 {
4137 static struct cmd_list_element *mipsfpulist = NULL;
4138 struct cmd_list_element *c;
4139
4140 if (GDB_MULTI_ARCH)
4141 register_gdbarch_init (bfd_arch_mips, mips_gdbarch_init);
4142 if (!tm_print_insn) /* Someone may have already set it */
4143 tm_print_insn = gdb_print_insn_mips;
4144
4145 /* Add root prefix command for all "set mips"/"show mips" commands */
4146 add_prefix_cmd ("mips", no_class, set_mips_command,
4147 "Various MIPS specific commands.",
4148 &setmipscmdlist, "set mips ", 0, &setlist);
4149
4150 add_prefix_cmd ("mips", no_class, show_mips_command,
4151 "Various MIPS specific commands.",
4152 &showmipscmdlist, "show mips ", 0, &showlist);
4153
4154 /* Allow the user to override the saved register size. */
4155 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
4156 class_obscure,
4157 size_enums,
4158 &mips_saved_regsize_string, "\
4159 Set size of general purpose registers saved on the stack.\n\
4160 This option can be set to one of:\n\
4161 32 - Force GDB to treat saved GP registers as 32-bit\n\
4162 64 - Force GDB to treat saved GP registers as 64-bit\n\
4163 auto - Allow GDB to use the target's default setting or autodetect the\n\
4164 saved GP register size from information contained in the executable.\n\
4165 (default: auto)",
4166 &setmipscmdlist),
4167 &showmipscmdlist);
4168
4169 /* Allow the user to override the argument stack size. */
4170 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
4171 class_obscure,
4172 size_enums,
4173 &mips_stack_argsize_string, "\
4174 Set the amount of stack space reserved for each argument.\n\
4175 This option can be set to one of:\n\
4176 32 - Force GDB to allocate 32-bit chunks per argument\n\
4177 64 - Force GDB to allocate 64-bit chunks per argument\n\
4178 auto - Allow GDB to determine the correct setting from the current\n\
4179 target and executable (default)",
4180 &setmipscmdlist),
4181 &showmipscmdlist);
4182
4183 /* Let the user turn off floating point and set the fence post for
4184 heuristic_proc_start. */
4185
4186 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
4187 "Set use of MIPS floating-point coprocessor.",
4188 &mipsfpulist, "set mipsfpu ", 0, &setlist);
4189 add_cmd ("single", class_support, set_mipsfpu_single_command,
4190 "Select single-precision MIPS floating-point coprocessor.",
4191 &mipsfpulist);
4192 add_cmd ("double", class_support, set_mipsfpu_double_command,
4193 "Select double-precision MIPS floating-point coprocessor .",
4194 &mipsfpulist);
4195 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
4196 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
4197 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
4198 add_cmd ("none", class_support, set_mipsfpu_none_command,
4199 "Select no MIPS floating-point coprocessor.",
4200 &mipsfpulist);
4201 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
4202 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
4203 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
4204 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
4205 "Select MIPS floating-point coprocessor automatically.",
4206 &mipsfpulist);
4207 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
4208 "Show current use of MIPS floating-point coprocessor target.",
4209 &showlist);
4210
4211 #if !GDB_MULTI_ARCH
4212 c = add_set_cmd ("processor", class_support, var_string_noescape,
4213 (char *) &tmp_mips_processor_type,
4214 "Set the type of MIPS processor in use.\n\
4215 Set this to be able to access processor-type-specific registers.\n\
4216 ",
4217 &setlist);
4218 c->function.cfunc = mips_set_processor_type_command;
4219 c = add_show_from_set (c, &showlist);
4220 c->function.cfunc = mips_show_processor_type_command;
4221
4222 tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE);
4223 mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0);
4224 #endif
4225
4226 /* We really would like to have both "0" and "unlimited" work, but
4227 command.c doesn't deal with that. So make it a var_zinteger
4228 because the user can always use "999999" or some such for unlimited. */
4229 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
4230 (char *) &heuristic_fence_post,
4231 "\
4232 Set the distance searched for the start of a function.\n\
4233 If you are debugging a stripped executable, GDB needs to search through the\n\
4234 program for the start of a function. This command sets the distance of the\n\
4235 search. The only need to set it is when debugging a stripped executable.",
4236 &setlist);
4237 /* We need to throw away the frame cache when we set this, since it
4238 might change our ability to get backtraces. */
4239 c->function.sfunc = reinit_frame_cache_sfunc;
4240 add_show_from_set (c, &showlist);
4241
4242 /* Allow the user to control whether the upper bits of 64-bit
4243 addresses should be zeroed. */
4244 add_show_from_set
4245 (add_set_cmd ("mask-address", no_class, var_boolean, (char *) &mask_address_p,
4246 "Set zeroing of upper 32 bits of 64-bit addresses.\n\
4247 Use \"on\" to enable the masking, and \"off\" to disable it.\n\
4248 Without an argument, zeroing of upper address bits is enabled.", &setlist),
4249 &showlist);
4250
4251 /* Allow the user to control the size of 32 bit registers within the
4252 raw remote packet. */
4253 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
4254 class_obscure,
4255 var_boolean,
4256 (char *)&mips64_transfers_32bit_regs_p, "\
4257 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
4258 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
4259 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
4260 64 bits for others. Use \"off\" to disable compatibility mode",
4261 &setlist),
4262 &showlist);
4263 }