]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-tdep.c
* mips-tdep.c (mips32_next_pc): Fix a typo in BGTZL.
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include "gdb_assert.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41 #include "osabi.h"
42 #include "mips-tdep.h"
43 #include "block.h"
44 #include "reggroups.h"
45 #include "opcode/mips.h"
46 #include "elf/mips.h"
47 #include "elf-bfd.h"
48 #include "symcat.h"
49 #include "sim-regno.h"
50 #include "dis-asm.h"
51 #include "frame-unwind.h"
52 #include "frame-base.h"
53 #include "trad-frame.h"
54 #include "infcall.h"
55 #include "floatformat.h"
56 #include "remote.h"
57 #include "target-descriptions.h"
58 #include "dwarf2-frame.h"
59 #include "user-regs.h"
60
61 static const struct objfile_data *mips_pdr_data;
62
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
66 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
67 #define ST0_FR (1 << 26)
68
69 /* The sizes of floating point registers. */
70
71 enum
72 {
73 MIPS_FPU_SINGLE_REGSIZE = 4,
74 MIPS_FPU_DOUBLE_REGSIZE = 8
75 };
76
77 enum
78 {
79 MIPS32_REGSIZE = 4,
80 MIPS64_REGSIZE = 8
81 };
82
83 static const char *mips_abi_string;
84
85 static const char *mips_abi_strings[] = {
86 "auto",
87 "n32",
88 "o32",
89 "n64",
90 "o64",
91 "eabi32",
92 "eabi64",
93 NULL
94 };
95
96 /* The standard register names, and all the valid aliases for them. */
97 struct register_alias
98 {
99 const char *name;
100 int regnum;
101 };
102
103 /* Aliases for o32 and most other ABIs. */
104 const struct register_alias mips_o32_aliases[] = {
105 { "ta0", 12 },
106 { "ta1", 13 },
107 { "ta2", 14 },
108 { "ta3", 15 }
109 };
110
111 /* Aliases for n32 and n64. */
112 const struct register_alias mips_n32_n64_aliases[] = {
113 { "ta0", 8 },
114 { "ta1", 9 },
115 { "ta2", 10 },
116 { "ta3", 11 }
117 };
118
119 /* Aliases for ABI-independent registers. */
120 const struct register_alias mips_register_aliases[] = {
121 /* The architecture manuals specify these ABI-independent names for
122 the GPRs. */
123 #define R(n) { "r" #n, n }
124 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
125 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
126 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
127 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
128 #undef R
129
130 /* k0 and k1 are sometimes called these instead (for "kernel
131 temp"). */
132 { "kt0", 26 },
133 { "kt1", 27 },
134
135 /* This is the traditional GDB name for the CP0 status register. */
136 { "sr", MIPS_PS_REGNUM },
137
138 /* This is the traditional GDB name for the CP0 BadVAddr register. */
139 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
140
141 /* This is the traditional GDB name for the FCSR. */
142 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
143 };
144
145 /* Some MIPS boards don't support floating point while others only
146 support single-precision floating-point operations. */
147
148 enum mips_fpu_type
149 {
150 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
151 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
152 MIPS_FPU_NONE /* No floating point. */
153 };
154
155 #ifndef MIPS_DEFAULT_FPU_TYPE
156 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
157 #endif
158 static int mips_fpu_type_auto = 1;
159 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
160
161 static int mips_debug = 0;
162
163 /* Properties (for struct target_desc) describing the g/G packet
164 layout. */
165 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
166 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
167
168 struct target_desc *mips_tdesc_gp32;
169 struct target_desc *mips_tdesc_gp64;
170
171 /* MIPS specific per-architecture information */
172 struct gdbarch_tdep
173 {
174 /* from the elf header */
175 int elf_flags;
176
177 /* mips options */
178 enum mips_abi mips_abi;
179 enum mips_abi found_abi;
180 enum mips_fpu_type mips_fpu_type;
181 int mips_last_arg_regnum;
182 int mips_last_fp_arg_regnum;
183 int default_mask_address_p;
184 /* Is the target using 64-bit raw integer registers but only
185 storing a left-aligned 32-bit value in each? */
186 int mips64_transfers_32bit_regs_p;
187 /* Indexes for various registers. IRIX and embedded have
188 different values. This contains the "public" fields. Don't
189 add any that do not need to be public. */
190 const struct mips_regnum *regnum;
191 /* Register names table for the current register set. */
192 const char **mips_processor_reg_names;
193
194 /* The size of register data available from the target, if known.
195 This doesn't quite obsolete the manual
196 mips64_transfers_32bit_regs_p, since that is documented to force
197 left alignment even for big endian (very strange). */
198 int register_size_valid_p;
199 int register_size;
200 };
201
202 static int
203 n32n64_floatformat_always_valid (const struct floatformat *fmt,
204 const void *from)
205 {
206 return 1;
207 }
208
209 /* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
210 They are implemented as a pair of 64bit doubles where the high
211 part holds the result of the operation rounded to double, and
212 the low double holds the difference between the exact result and
213 the rounded result. So "high" + "low" contains the result with
214 added precision. Unfortunately, the floatformat structure used
215 by GDB is not powerful enough to describe this format. As a temporary
216 measure, we define a 128bit floatformat that only uses the high part.
217 We lose a bit of precision but that's probably the best we can do
218 for now with the current infrastructure. */
219
220 static const struct floatformat floatformat_n32n64_long_double_big =
221 {
222 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
223 floatformat_intbit_no,
224 "floatformat_n32n64_long_double_big",
225 n32n64_floatformat_always_valid
226 };
227
228 static const struct floatformat *floatformats_n32n64_long[BFD_ENDIAN_UNKNOWN] =
229 {
230 &floatformat_n32n64_long_double_big,
231 &floatformat_n32n64_long_double_big
232 };
233
234 const struct mips_regnum *
235 mips_regnum (struct gdbarch *gdbarch)
236 {
237 return gdbarch_tdep (gdbarch)->regnum;
238 }
239
240 static int
241 mips_fpa0_regnum (struct gdbarch *gdbarch)
242 {
243 return mips_regnum (gdbarch)->fp0 + 12;
244 }
245
246 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
247 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
248
249 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
250
251 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
252
253 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
254
255 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
256 functions to test, set, or clear bit 0 of addresses. */
257
258 static CORE_ADDR
259 is_mips16_addr (CORE_ADDR addr)
260 {
261 return ((addr) & 1);
262 }
263
264 static CORE_ADDR
265 unmake_mips16_addr (CORE_ADDR addr)
266 {
267 return ((addr) & ~(CORE_ADDR) 1);
268 }
269
270 /* Return the MIPS ABI associated with GDBARCH. */
271 enum mips_abi
272 mips_abi (struct gdbarch *gdbarch)
273 {
274 return gdbarch_tdep (gdbarch)->mips_abi;
275 }
276
277 int
278 mips_isa_regsize (struct gdbarch *gdbarch)
279 {
280 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
281
282 /* If we know how big the registers are, use that size. */
283 if (tdep->register_size_valid_p)
284 return tdep->register_size;
285
286 /* Fall back to the previous behavior. */
287 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
288 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
289 }
290
291 /* Return the currently configured (or set) saved register size. */
292
293 unsigned int
294 mips_abi_regsize (struct gdbarch *gdbarch)
295 {
296 switch (mips_abi (gdbarch))
297 {
298 case MIPS_ABI_EABI32:
299 case MIPS_ABI_O32:
300 return 4;
301 case MIPS_ABI_N32:
302 case MIPS_ABI_N64:
303 case MIPS_ABI_O64:
304 case MIPS_ABI_EABI64:
305 return 8;
306 case MIPS_ABI_UNKNOWN:
307 case MIPS_ABI_LAST:
308 default:
309 internal_error (__FILE__, __LINE__, _("bad switch"));
310 }
311 }
312
313 /* Functions for setting and testing a bit in a minimal symbol that
314 marks it as 16-bit function. The MSB of the minimal symbol's
315 "info" field is used for this purpose.
316
317 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
318 i.e. refers to a 16-bit function, and sets a "special" bit in a
319 minimal symbol to mark it as a 16-bit function
320
321 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
322
323 static void
324 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
325 {
326 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
327 {
328 MSYMBOL_INFO (msym) = (char *)
329 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
330 SYMBOL_VALUE_ADDRESS (msym) |= 1;
331 }
332 }
333
334 static int
335 msymbol_is_special (struct minimal_symbol *msym)
336 {
337 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
338 }
339
340 /* XFER a value from the big/little/left end of the register.
341 Depending on the size of the value it might occupy the entire
342 register or just part of it. Make an allowance for this, aligning
343 things accordingly. */
344
345 static void
346 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
347 enum bfd_endian endian, gdb_byte *in,
348 const gdb_byte *out, int buf_offset)
349 {
350 int reg_offset = 0;
351 gdb_assert (reg_num >= gdbarch_num_regs (current_gdbarch));
352 /* Need to transfer the left or right part of the register, based on
353 the targets byte order. */
354 switch (endian)
355 {
356 case BFD_ENDIAN_BIG:
357 reg_offset = register_size (current_gdbarch, reg_num) - length;
358 break;
359 case BFD_ENDIAN_LITTLE:
360 reg_offset = 0;
361 break;
362 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
363 reg_offset = 0;
364 break;
365 default:
366 internal_error (__FILE__, __LINE__, _("bad switch"));
367 }
368 if (mips_debug)
369 fprintf_unfiltered (gdb_stderr,
370 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
371 reg_num, reg_offset, buf_offset, length);
372 if (mips_debug && out != NULL)
373 {
374 int i;
375 fprintf_unfiltered (gdb_stdlog, "out ");
376 for (i = 0; i < length; i++)
377 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
378 }
379 if (in != NULL)
380 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
381 in + buf_offset);
382 if (out != NULL)
383 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
384 out + buf_offset);
385 if (mips_debug && in != NULL)
386 {
387 int i;
388 fprintf_unfiltered (gdb_stdlog, "in ");
389 for (i = 0; i < length; i++)
390 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
391 }
392 if (mips_debug)
393 fprintf_unfiltered (gdb_stdlog, "\n");
394 }
395
396 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
397 compatiblity mode. A return value of 1 means that we have
398 physical 64-bit registers, but should treat them as 32-bit registers. */
399
400 static int
401 mips2_fp_compat (struct frame_info *frame)
402 {
403 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
404 meaningful. */
405 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
406 4)
407 return 0;
408
409 #if 0
410 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
411 in all the places we deal with FP registers. PR gdb/413. */
412 /* Otherwise check the FR bit in the status register - it controls
413 the FP compatiblity mode. If it is clear we are in compatibility
414 mode. */
415 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
416 return 1;
417 #endif
418
419 return 0;
420 }
421
422 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
423
424 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
425
426 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
427
428 static struct type *mips_float_register_type (void);
429 static struct type *mips_double_register_type (void);
430
431 /* The list of available "set mips " and "show mips " commands */
432
433 static struct cmd_list_element *setmipscmdlist = NULL;
434 static struct cmd_list_element *showmipscmdlist = NULL;
435
436 /* Integer registers 0 thru 31 are handled explicitly by
437 mips_register_name(). Processor specific registers 32 and above
438 are listed in the following tables. */
439
440 enum
441 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
442
443 /* Generic MIPS. */
444
445 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
446 "sr", "lo", "hi", "bad", "cause", "pc",
447 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
448 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
449 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
450 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
451 "fsr", "fir", "" /*"fp" */ , "",
452 "", "", "", "", "", "", "", "",
453 "", "", "", "", "", "", "", "",
454 };
455
456 /* Names of IDT R3041 registers. */
457
458 static const char *mips_r3041_reg_names[] = {
459 "sr", "lo", "hi", "bad", "cause", "pc",
460 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
461 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
462 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
463 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
464 "fsr", "fir", "", /*"fp" */ "",
465 "", "", "bus", "ccfg", "", "", "", "",
466 "", "", "port", "cmp", "", "", "epc", "prid",
467 };
468
469 /* Names of tx39 registers. */
470
471 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
472 "sr", "lo", "hi", "bad", "cause", "pc",
473 "", "", "", "", "", "", "", "",
474 "", "", "", "", "", "", "", "",
475 "", "", "", "", "", "", "", "",
476 "", "", "", "", "", "", "", "",
477 "", "", "", "",
478 "", "", "", "", "", "", "", "",
479 "", "", "config", "cache", "debug", "depc", "epc", ""
480 };
481
482 /* Names of IRIX registers. */
483 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
484 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
485 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
486 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
487 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
488 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
489 };
490
491
492 /* Return the name of the register corresponding to REGNO. */
493 static const char *
494 mips_register_name (int regno)
495 {
496 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
497 /* GPR names for all ABIs other than n32/n64. */
498 static char *mips_gpr_names[] = {
499 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
500 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
501 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
502 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
503 };
504
505 /* GPR names for n32 and n64 ABIs. */
506 static char *mips_n32_n64_gpr_names[] = {
507 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
508 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
509 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
510 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
511 };
512
513 enum mips_abi abi = mips_abi (current_gdbarch);
514
515 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
516 but then don't make the raw register names visible. */
517 int rawnum = regno % gdbarch_num_regs (current_gdbarch);
518 if (regno < gdbarch_num_regs (current_gdbarch))
519 return "";
520
521 /* The MIPS integer registers are always mapped from 0 to 31. The
522 names of the registers (which reflects the conventions regarding
523 register use) vary depending on the ABI. */
524 if (0 <= rawnum && rawnum < 32)
525 {
526 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
527 return mips_n32_n64_gpr_names[rawnum];
528 else
529 return mips_gpr_names[rawnum];
530 }
531 else if (tdesc_has_registers (gdbarch_target_desc (current_gdbarch)))
532 return tdesc_register_name (rawnum);
533 else if (32 <= rawnum && rawnum < gdbarch_num_regs (current_gdbarch))
534 {
535 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
536 return tdep->mips_processor_reg_names[rawnum - 32];
537 }
538 else
539 internal_error (__FILE__, __LINE__,
540 _("mips_register_name: bad register number %d"), rawnum);
541 }
542
543 /* Return the groups that a MIPS register can be categorised into. */
544
545 static int
546 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
547 struct reggroup *reggroup)
548 {
549 int vector_p;
550 int float_p;
551 int raw_p;
552 int rawnum = regnum % gdbarch_num_regs (current_gdbarch);
553 int pseudo = regnum / gdbarch_num_regs (current_gdbarch);
554 if (reggroup == all_reggroup)
555 return pseudo;
556 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
557 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
558 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
559 (gdbarch), as not all architectures are multi-arch. */
560 raw_p = rawnum < gdbarch_num_regs (current_gdbarch);
561 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
562 || gdbarch_register_name (current_gdbarch, regnum)[0] == '\0')
563 return 0;
564 if (reggroup == float_reggroup)
565 return float_p && pseudo;
566 if (reggroup == vector_reggroup)
567 return vector_p && pseudo;
568 if (reggroup == general_reggroup)
569 return (!vector_p && !float_p) && pseudo;
570 /* Save the pseudo registers. Need to make certain that any code
571 extracting register values from a saved register cache also uses
572 pseudo registers. */
573 if (reggroup == save_reggroup)
574 return raw_p && pseudo;
575 /* Restore the same pseudo register. */
576 if (reggroup == restore_reggroup)
577 return raw_p && pseudo;
578 return 0;
579 }
580
581 /* Return the groups that a MIPS register can be categorised into.
582 This version is only used if we have a target description which
583 describes real registers (and their groups). */
584
585 static int
586 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
587 struct reggroup *reggroup)
588 {
589 int rawnum = regnum % gdbarch_num_regs (gdbarch);
590 int pseudo = regnum / gdbarch_num_regs (gdbarch);
591 int ret;
592
593 /* Only save, restore, and display the pseudo registers. Need to
594 make certain that any code extracting register values from a
595 saved register cache also uses pseudo registers.
596
597 Note: saving and restoring the pseudo registers is slightly
598 strange; if we have 64 bits, we should save and restore all
599 64 bits. But this is hard and has little benefit. */
600 if (!pseudo)
601 return 0;
602
603 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
604 if (ret != -1)
605 return ret;
606
607 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
608 }
609
610 /* Map the symbol table registers which live in the range [1 *
611 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
612 registers. Take care of alignment and size problems. */
613
614 static void
615 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
616 int cookednum, gdb_byte *buf)
617 {
618 int rawnum = cookednum % gdbarch_num_regs (current_gdbarch);
619 gdb_assert (cookednum >= gdbarch_num_regs (current_gdbarch)
620 && cookednum < 2 * gdbarch_num_regs (current_gdbarch));
621 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
622 regcache_raw_read (regcache, rawnum, buf);
623 else if (register_size (gdbarch, rawnum) >
624 register_size (gdbarch, cookednum))
625 {
626 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
627 || gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
628 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
629 else
630 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
631 }
632 else
633 internal_error (__FILE__, __LINE__, _("bad register size"));
634 }
635
636 static void
637 mips_pseudo_register_write (struct gdbarch *gdbarch,
638 struct regcache *regcache, int cookednum,
639 const gdb_byte *buf)
640 {
641 int rawnum = cookednum % gdbarch_num_regs (current_gdbarch);
642 gdb_assert (cookednum >= gdbarch_num_regs (current_gdbarch)
643 && cookednum < 2 * gdbarch_num_regs (current_gdbarch));
644 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
645 regcache_raw_write (regcache, rawnum, buf);
646 else if (register_size (gdbarch, rawnum) >
647 register_size (gdbarch, cookednum))
648 {
649 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
650 || gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
651 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
652 else
653 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
654 }
655 else
656 internal_error (__FILE__, __LINE__, _("bad register size"));
657 }
658
659 /* Table to translate MIPS16 register field to actual register number. */
660 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
661
662 /* Heuristic_proc_start may hunt through the text section for a long
663 time across a 2400 baud serial line. Allows the user to limit this
664 search. */
665
666 static unsigned int heuristic_fence_post = 0;
667
668 /* Number of bytes of storage in the actual machine representation for
669 register N. NOTE: This defines the pseudo register type so need to
670 rebuild the architecture vector. */
671
672 static int mips64_transfers_32bit_regs_p = 0;
673
674 static void
675 set_mips64_transfers_32bit_regs (char *args, int from_tty,
676 struct cmd_list_element *c)
677 {
678 struct gdbarch_info info;
679 gdbarch_info_init (&info);
680 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
681 instead of relying on globals. Doing that would let generic code
682 handle the search for this specific architecture. */
683 if (!gdbarch_update_p (info))
684 {
685 mips64_transfers_32bit_regs_p = 0;
686 error (_("32-bit compatibility mode not supported"));
687 }
688 }
689
690 /* Convert to/from a register and the corresponding memory value. */
691
692 static int
693 mips_convert_register_p (int regnum, struct type *type)
694 {
695 return (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
696 && register_size (current_gdbarch, regnum) == 4
697 && (regnum % gdbarch_num_regs (current_gdbarch))
698 >= mips_regnum (current_gdbarch)->fp0
699 && (regnum % gdbarch_num_regs (current_gdbarch))
700 < mips_regnum (current_gdbarch)->fp0 + 32
701 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
702 }
703
704 static void
705 mips_register_to_value (struct frame_info *frame, int regnum,
706 struct type *type, gdb_byte *to)
707 {
708 get_frame_register (frame, regnum + 0, to + 4);
709 get_frame_register (frame, regnum + 1, to + 0);
710 }
711
712 static void
713 mips_value_to_register (struct frame_info *frame, int regnum,
714 struct type *type, const gdb_byte *from)
715 {
716 put_frame_register (frame, regnum + 0, from + 4);
717 put_frame_register (frame, regnum + 1, from + 0);
718 }
719
720 /* Return the GDB type object for the "standard" data type of data in
721 register REG. */
722
723 static struct type *
724 mips_register_type (struct gdbarch *gdbarch, int regnum)
725 {
726 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (current_gdbarch));
727 if ((regnum % gdbarch_num_regs (current_gdbarch))
728 >= mips_regnum (current_gdbarch)->fp0
729 && (regnum % gdbarch_num_regs (current_gdbarch))
730 < mips_regnum (current_gdbarch)->fp0 + 32)
731 {
732 /* The floating-point registers raw, or cooked, always match
733 mips_isa_regsize(), and also map 1:1, byte for byte. */
734 if (mips_isa_regsize (gdbarch) == 4)
735 return builtin_type_ieee_single;
736 else
737 return builtin_type_ieee_double;
738 }
739 else if (regnum < gdbarch_num_regs (current_gdbarch))
740 {
741 /* The raw or ISA registers. These are all sized according to
742 the ISA regsize. */
743 if (mips_isa_regsize (gdbarch) == 4)
744 return builtin_type_int32;
745 else
746 return builtin_type_int64;
747 }
748 else
749 {
750 /* The cooked or ABI registers. These are sized according to
751 the ABI (with a few complications). */
752 if (regnum >= (gdbarch_num_regs (current_gdbarch)
753 + mips_regnum (current_gdbarch)->fp_control_status)
754 && regnum <= gdbarch_num_regs (current_gdbarch)
755 + MIPS_LAST_EMBED_REGNUM)
756 /* The pseudo/cooked view of the embedded registers is always
757 32-bit. The raw view is handled below. */
758 return builtin_type_int32;
759 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
760 /* The target, while possibly using a 64-bit register buffer,
761 is only transfering 32-bits of each integer register.
762 Reflect this in the cooked/pseudo (ABI) register value. */
763 return builtin_type_int32;
764 else if (mips_abi_regsize (gdbarch) == 4)
765 /* The ABI is restricted to 32-bit registers (the ISA could be
766 32- or 64-bit). */
767 return builtin_type_int32;
768 else
769 /* 64-bit ABI. */
770 return builtin_type_int64;
771 }
772 }
773
774 /* Return the GDB type for the pseudo register REGNUM, which is the
775 ABI-level view. This function is only called if there is a target
776 description which includes registers, so we know precisely the
777 types of hardware registers. */
778
779 static struct type *
780 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
781 {
782 const int num_regs = gdbarch_num_regs (gdbarch);
783 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
784 int rawnum = regnum % num_regs;
785 struct type *rawtype;
786
787 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
788
789 /* Absent registers are still absent. */
790 rawtype = gdbarch_register_type (gdbarch, rawnum);
791 if (TYPE_LENGTH (rawtype) == 0)
792 return rawtype;
793
794 if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
795 /* Present the floating point registers however the hardware did;
796 do not try to convert between FPU layouts. */
797 return rawtype;
798
799 if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
800 {
801 /* The pseudo/cooked view of embedded registers is always
802 32-bit, even if the target transfers 64-bit values for them.
803 New targets relying on XML descriptions should only transfer
804 the necessary 32 bits, but older versions of GDB expected 64,
805 so allow the target to provide 64 bits without interfering
806 with the displayed type. */
807 return builtin_type_int32;
808 }
809
810 /* Use pointer types for registers if we can. For n32 we can not,
811 since we do not have a 64-bit pointer type. */
812 if (mips_abi_regsize (gdbarch) == TYPE_LENGTH (builtin_type_void_data_ptr))
813 {
814 if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
815 return builtin_type_void_data_ptr;
816 else if (rawnum == MIPS_EMBED_PC_REGNUM)
817 return builtin_type_void_func_ptr;
818 }
819
820 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
821 && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
822 return builtin_type_int32;
823
824 /* For all other registers, pass through the hardware type. */
825 return rawtype;
826 }
827
828 /* Should the upper word of 64-bit addresses be zeroed? */
829 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
830
831 static int
832 mips_mask_address_p (struct gdbarch_tdep *tdep)
833 {
834 switch (mask_address_var)
835 {
836 case AUTO_BOOLEAN_TRUE:
837 return 1;
838 case AUTO_BOOLEAN_FALSE:
839 return 0;
840 break;
841 case AUTO_BOOLEAN_AUTO:
842 return tdep->default_mask_address_p;
843 default:
844 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
845 return -1;
846 }
847 }
848
849 static void
850 show_mask_address (struct ui_file *file, int from_tty,
851 struct cmd_list_element *c, const char *value)
852 {
853 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
854
855 deprecated_show_value_hack (file, from_tty, c, value);
856 switch (mask_address_var)
857 {
858 case AUTO_BOOLEAN_TRUE:
859 printf_filtered ("The 32 bit mips address mask is enabled\n");
860 break;
861 case AUTO_BOOLEAN_FALSE:
862 printf_filtered ("The 32 bit mips address mask is disabled\n");
863 break;
864 case AUTO_BOOLEAN_AUTO:
865 printf_filtered
866 ("The 32 bit address mask is set automatically. Currently %s\n",
867 mips_mask_address_p (tdep) ? "enabled" : "disabled");
868 break;
869 default:
870 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
871 break;
872 }
873 }
874
875 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
876
877 int
878 mips_pc_is_mips16 (CORE_ADDR memaddr)
879 {
880 struct minimal_symbol *sym;
881
882 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
883 if (is_mips16_addr (memaddr))
884 return 1;
885
886 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
887 the high bit of the info field. Use this to decide if the function is
888 MIPS16 or normal MIPS. */
889 sym = lookup_minimal_symbol_by_pc (memaddr);
890 if (sym)
891 return msymbol_is_special (sym);
892 else
893 return 0;
894 }
895
896 /* MIPS believes that the PC has a sign extended value. Perhaps the
897 all registers should be sign extended for simplicity? */
898
899 static CORE_ADDR
900 mips_read_pc (struct regcache *regcache)
901 {
902 ULONGEST pc;
903 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
904 regcache_cooked_read_signed (regcache, regnum, &pc);
905 return pc;
906 }
907
908 static CORE_ADDR
909 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
910 {
911 return frame_unwind_register_signed (next_frame,
912 gdbarch_num_regs (current_gdbarch)
913 + mips_regnum (gdbarch)->pc);
914 }
915
916 static CORE_ADDR
917 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
918 {
919 return frame_unwind_register_signed (next_frame,
920 gdbarch_num_regs (current_gdbarch)
921 + MIPS_SP_REGNUM);
922 }
923
924 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
925 dummy frame. The frame ID's base needs to match the TOS value
926 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
927 breakpoint. */
928
929 static struct frame_id
930 mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
931 {
932 return frame_id_build
933 (frame_unwind_register_signed (next_frame,
934 gdbarch_num_regs (current_gdbarch)
935 + MIPS_SP_REGNUM),
936 frame_pc_unwind (next_frame));
937 }
938
939 static void
940 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
941 {
942 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
943 regcache_cooked_write_unsigned (regcache, regnum, pc);
944 }
945
946 /* Fetch and return instruction from the specified location. If the PC
947 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
948
949 static ULONGEST
950 mips_fetch_instruction (CORE_ADDR addr)
951 {
952 gdb_byte buf[MIPS_INSN32_SIZE];
953 int instlen;
954 int status;
955
956 if (mips_pc_is_mips16 (addr))
957 {
958 instlen = MIPS_INSN16_SIZE;
959 addr = unmake_mips16_addr (addr);
960 }
961 else
962 instlen = MIPS_INSN32_SIZE;
963 status = read_memory_nobpt (addr, buf, instlen);
964 if (status)
965 memory_error (status, addr);
966 return extract_unsigned_integer (buf, instlen);
967 }
968
969 /* These the fields of 32 bit mips instructions */
970 #define mips32_op(x) (x >> 26)
971 #define itype_op(x) (x >> 26)
972 #define itype_rs(x) ((x >> 21) & 0x1f)
973 #define itype_rt(x) ((x >> 16) & 0x1f)
974 #define itype_immediate(x) (x & 0xffff)
975
976 #define jtype_op(x) (x >> 26)
977 #define jtype_target(x) (x & 0x03ffffff)
978
979 #define rtype_op(x) (x >> 26)
980 #define rtype_rs(x) ((x >> 21) & 0x1f)
981 #define rtype_rt(x) ((x >> 16) & 0x1f)
982 #define rtype_rd(x) ((x >> 11) & 0x1f)
983 #define rtype_shamt(x) ((x >> 6) & 0x1f)
984 #define rtype_funct(x) (x & 0x3f)
985
986 static LONGEST
987 mips32_relative_offset (ULONGEST inst)
988 {
989 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
990 }
991
992 /* Determine where to set a single step breakpoint while considering
993 branch prediction. */
994 static CORE_ADDR
995 mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
996 {
997 unsigned long inst;
998 int op;
999 inst = mips_fetch_instruction (pc);
1000 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
1001 {
1002 if (itype_op (inst) >> 2 == 5)
1003 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1004 {
1005 op = (itype_op (inst) & 0x03);
1006 switch (op)
1007 {
1008 case 0: /* BEQL */
1009 goto equal_branch;
1010 case 1: /* BNEL */
1011 goto neq_branch;
1012 case 2: /* BLEZL */
1013 goto less_branch;
1014 case 3: /* BGTZL */
1015 goto greater_branch;
1016 default:
1017 pc += 4;
1018 }
1019 }
1020 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1021 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1022 {
1023 int tf = itype_rt (inst) & 0x01;
1024 int cnum = itype_rt (inst) >> 2;
1025 int fcrcs =
1026 get_frame_register_signed (frame, mips_regnum (current_gdbarch)->
1027 fp_control_status);
1028 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1029
1030 if (((cond >> cnum) & 0x01) == tf)
1031 pc += mips32_relative_offset (inst) + 4;
1032 else
1033 pc += 8;
1034 }
1035 else
1036 pc += 4; /* Not a branch, next instruction is easy */
1037 }
1038 else
1039 { /* This gets way messy */
1040
1041 /* Further subdivide into SPECIAL, REGIMM and other */
1042 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1043 {
1044 case 0: /* SPECIAL */
1045 op = rtype_funct (inst);
1046 switch (op)
1047 {
1048 case 8: /* JR */
1049 case 9: /* JALR */
1050 /* Set PC to that address */
1051 pc = get_frame_register_signed (frame, rtype_rs (inst));
1052 break;
1053 default:
1054 pc += 4;
1055 }
1056
1057 break; /* end SPECIAL */
1058 case 1: /* REGIMM */
1059 {
1060 op = itype_rt (inst); /* branch condition */
1061 switch (op)
1062 {
1063 case 0: /* BLTZ */
1064 case 2: /* BLTZL */
1065 case 16: /* BLTZAL */
1066 case 18: /* BLTZALL */
1067 less_branch:
1068 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1069 pc += mips32_relative_offset (inst) + 4;
1070 else
1071 pc += 8; /* after the delay slot */
1072 break;
1073 case 1: /* BGEZ */
1074 case 3: /* BGEZL */
1075 case 17: /* BGEZAL */
1076 case 19: /* BGEZALL */
1077 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1078 pc += mips32_relative_offset (inst) + 4;
1079 else
1080 pc += 8; /* after the delay slot */
1081 break;
1082 /* All of the other instructions in the REGIMM category */
1083 default:
1084 pc += 4;
1085 }
1086 }
1087 break; /* end REGIMM */
1088 case 2: /* J */
1089 case 3: /* JAL */
1090 {
1091 unsigned long reg;
1092 reg = jtype_target (inst) << 2;
1093 /* Upper four bits get never changed... */
1094 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1095 }
1096 break;
1097 /* FIXME case JALX : */
1098 {
1099 unsigned long reg;
1100 reg = jtype_target (inst) << 2;
1101 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
1102 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1103 }
1104 break; /* The new PC will be alternate mode */
1105 case 4: /* BEQ, BEQL */
1106 equal_branch:
1107 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1108 get_frame_register_signed (frame, itype_rt (inst)))
1109 pc += mips32_relative_offset (inst) + 4;
1110 else
1111 pc += 8;
1112 break;
1113 case 5: /* BNE, BNEL */
1114 neq_branch:
1115 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1116 get_frame_register_signed (frame, itype_rt (inst)))
1117 pc += mips32_relative_offset (inst) + 4;
1118 else
1119 pc += 8;
1120 break;
1121 case 6: /* BLEZ, BLEZL */
1122 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1123 pc += mips32_relative_offset (inst) + 4;
1124 else
1125 pc += 8;
1126 break;
1127 case 7:
1128 default:
1129 greater_branch: /* BGTZ, BGTZL */
1130 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1131 pc += mips32_relative_offset (inst) + 4;
1132 else
1133 pc += 8;
1134 break;
1135 } /* switch */
1136 } /* else */
1137 return pc;
1138 } /* mips32_next_pc */
1139
1140 /* Decoding the next place to set a breakpoint is irregular for the
1141 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1142 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1143 We dont want to set a single step instruction on the extend instruction
1144 either.
1145 */
1146
1147 /* Lots of mips16 instruction formats */
1148 /* Predicting jumps requires itype,ritype,i8type
1149 and their extensions extItype,extritype,extI8type
1150 */
1151 enum mips16_inst_fmts
1152 {
1153 itype, /* 0 immediate 5,10 */
1154 ritype, /* 1 5,3,8 */
1155 rrtype, /* 2 5,3,3,5 */
1156 rritype, /* 3 5,3,3,5 */
1157 rrrtype, /* 4 5,3,3,3,2 */
1158 rriatype, /* 5 5,3,3,1,4 */
1159 shifttype, /* 6 5,3,3,3,2 */
1160 i8type, /* 7 5,3,8 */
1161 i8movtype, /* 8 5,3,3,5 */
1162 i8mov32rtype, /* 9 5,3,5,3 */
1163 i64type, /* 10 5,3,8 */
1164 ri64type, /* 11 5,3,3,5 */
1165 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1166 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1167 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1168 extRRItype, /* 15 5,5,5,5,3,3,5 */
1169 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1170 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1171 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1172 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1173 extRi64type, /* 20 5,6,5,5,3,3,5 */
1174 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1175 };
1176 /* I am heaping all the fields of the formats into one structure and
1177 then, only the fields which are involved in instruction extension */
1178 struct upk_mips16
1179 {
1180 CORE_ADDR offset;
1181 unsigned int regx; /* Function in i8 type */
1182 unsigned int regy;
1183 };
1184
1185
1186 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1187 for the bits which make up the immediatate extension. */
1188
1189 static CORE_ADDR
1190 extended_offset (unsigned int extension)
1191 {
1192 CORE_ADDR value;
1193 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1194 value = value << 6;
1195 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1196 value = value << 5;
1197 value |= extension & 0x01f; /* extract 4:0 */
1198 return value;
1199 }
1200
1201 /* Only call this function if you know that this is an extendable
1202 instruction. It won't malfunction, but why make excess remote memory
1203 references? If the immediate operands get sign extended or something,
1204 do it after the extension is performed. */
1205 /* FIXME: Every one of these cases needs to worry about sign extension
1206 when the offset is to be used in relative addressing. */
1207
1208 static unsigned int
1209 fetch_mips_16 (CORE_ADDR pc)
1210 {
1211 gdb_byte buf[8];
1212 pc &= 0xfffffffe; /* clear the low order bit */
1213 target_read_memory (pc, buf, 2);
1214 return extract_unsigned_integer (buf, 2);
1215 }
1216
1217 static void
1218 unpack_mips16 (CORE_ADDR pc,
1219 unsigned int extension,
1220 unsigned int inst,
1221 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1222 {
1223 CORE_ADDR offset;
1224 int regx;
1225 int regy;
1226 switch (insn_format)
1227 {
1228 case itype:
1229 {
1230 CORE_ADDR value;
1231 if (extension)
1232 {
1233 value = extended_offset (extension);
1234 value = value << 11; /* rom for the original value */
1235 value |= inst & 0x7ff; /* eleven bits from instruction */
1236 }
1237 else
1238 {
1239 value = inst & 0x7ff;
1240 /* FIXME : Consider sign extension */
1241 }
1242 offset = value;
1243 regx = -1;
1244 regy = -1;
1245 }
1246 break;
1247 case ritype:
1248 case i8type:
1249 { /* A register identifier and an offset */
1250 /* Most of the fields are the same as I type but the
1251 immediate value is of a different length */
1252 CORE_ADDR value;
1253 if (extension)
1254 {
1255 value = extended_offset (extension);
1256 value = value << 8; /* from the original instruction */
1257 value |= inst & 0xff; /* eleven bits from instruction */
1258 regx = (extension >> 8) & 0x07; /* or i8 funct */
1259 if (value & 0x4000) /* test the sign bit , bit 26 */
1260 {
1261 value &= ~0x3fff; /* remove the sign bit */
1262 value = -value;
1263 }
1264 }
1265 else
1266 {
1267 value = inst & 0xff; /* 8 bits */
1268 regx = (inst >> 8) & 0x07; /* or i8 funct */
1269 /* FIXME: Do sign extension , this format needs it */
1270 if (value & 0x80) /* THIS CONFUSES ME */
1271 {
1272 value &= 0xef; /* remove the sign bit */
1273 value = -value;
1274 }
1275 }
1276 offset = value;
1277 regy = -1;
1278 break;
1279 }
1280 case jalxtype:
1281 {
1282 unsigned long value;
1283 unsigned int nexthalf;
1284 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1285 value = value << 16;
1286 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1287 value |= nexthalf;
1288 offset = value;
1289 regx = -1;
1290 regy = -1;
1291 break;
1292 }
1293 default:
1294 internal_error (__FILE__, __LINE__, _("bad switch"));
1295 }
1296 upk->offset = offset;
1297 upk->regx = regx;
1298 upk->regy = regy;
1299 }
1300
1301
1302 static CORE_ADDR
1303 add_offset_16 (CORE_ADDR pc, int offset)
1304 {
1305 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
1306 }
1307
1308 static CORE_ADDR
1309 extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
1310 unsigned int extension, unsigned int insn)
1311 {
1312 int op = (insn >> 11);
1313 switch (op)
1314 {
1315 case 2: /* Branch */
1316 {
1317 CORE_ADDR offset;
1318 struct upk_mips16 upk;
1319 unpack_mips16 (pc, extension, insn, itype, &upk);
1320 offset = upk.offset;
1321 if (offset & 0x800)
1322 {
1323 offset &= 0xeff;
1324 offset = -offset;
1325 }
1326 pc += (offset << 1) + 2;
1327 break;
1328 }
1329 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1330 {
1331 struct upk_mips16 upk;
1332 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1333 pc = add_offset_16 (pc, upk.offset);
1334 if ((insn >> 10) & 0x01) /* Exchange mode */
1335 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1336 else
1337 pc |= 0x01;
1338 break;
1339 }
1340 case 4: /* beqz */
1341 {
1342 struct upk_mips16 upk;
1343 int reg;
1344 unpack_mips16 (pc, extension, insn, ritype, &upk);
1345 reg = get_frame_register_signed (frame, upk.regx);
1346 if (reg == 0)
1347 pc += (upk.offset << 1) + 2;
1348 else
1349 pc += 2;
1350 break;
1351 }
1352 case 5: /* bnez */
1353 {
1354 struct upk_mips16 upk;
1355 int reg;
1356 unpack_mips16 (pc, extension, insn, ritype, &upk);
1357 reg = get_frame_register_signed (frame, upk.regx);
1358 if (reg != 0)
1359 pc += (upk.offset << 1) + 2;
1360 else
1361 pc += 2;
1362 break;
1363 }
1364 case 12: /* I8 Formats btez btnez */
1365 {
1366 struct upk_mips16 upk;
1367 int reg;
1368 unpack_mips16 (pc, extension, insn, i8type, &upk);
1369 /* upk.regx contains the opcode */
1370 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
1371 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1372 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1373 /* pc = add_offset_16(pc,upk.offset) ; */
1374 pc += (upk.offset << 1) + 2;
1375 else
1376 pc += 2;
1377 break;
1378 }
1379 case 29: /* RR Formats JR, JALR, JALR-RA */
1380 {
1381 struct upk_mips16 upk;
1382 /* upk.fmt = rrtype; */
1383 op = insn & 0x1f;
1384 if (op == 0)
1385 {
1386 int reg;
1387 upk.regx = (insn >> 8) & 0x07;
1388 upk.regy = (insn >> 5) & 0x07;
1389 switch (upk.regy)
1390 {
1391 case 0:
1392 reg = upk.regx;
1393 break;
1394 case 1:
1395 reg = 31;
1396 break; /* Function return instruction */
1397 case 2:
1398 reg = upk.regx;
1399 break;
1400 default:
1401 reg = 31;
1402 break; /* BOGUS Guess */
1403 }
1404 pc = get_frame_register_signed (frame, reg);
1405 }
1406 else
1407 pc += 2;
1408 break;
1409 }
1410 case 30:
1411 /* This is an instruction extension. Fetch the real instruction
1412 (which follows the extension) and decode things based on
1413 that. */
1414 {
1415 pc += 2;
1416 pc = extended_mips16_next_pc (frame, pc, insn, fetch_mips_16 (pc));
1417 break;
1418 }
1419 default:
1420 {
1421 pc += 2;
1422 break;
1423 }
1424 }
1425 return pc;
1426 }
1427
1428 static CORE_ADDR
1429 mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
1430 {
1431 unsigned int insn = fetch_mips_16 (pc);
1432 return extended_mips16_next_pc (frame, pc, 0, insn);
1433 }
1434
1435 /* The mips_next_pc function supports single_step when the remote
1436 target monitor or stub is not developed enough to do a single_step.
1437 It works by decoding the current instruction and predicting where a
1438 branch will go. This isnt hard because all the data is available.
1439 The MIPS32 and MIPS16 variants are quite different. */
1440 static CORE_ADDR
1441 mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1442 {
1443 if (is_mips16_addr (pc))
1444 return mips16_next_pc (frame, pc);
1445 else
1446 return mips32_next_pc (frame, pc);
1447 }
1448
1449 struct mips_frame_cache
1450 {
1451 CORE_ADDR base;
1452 struct trad_frame_saved_reg *saved_regs;
1453 };
1454
1455 /* Set a register's saved stack address in temp_saved_regs. If an
1456 address has already been set for this register, do nothing; this
1457 way we will only recognize the first save of a given register in a
1458 function prologue.
1459
1460 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
1461 [gdbarch_num_regs .. 2*gdbarch_num_regs).
1462 Strictly speaking, only the second range is used as it is only second
1463 range (the ABI instead of ISA registers) that comes into play when finding
1464 saved registers in a frame. */
1465
1466 static void
1467 set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1468 CORE_ADDR offset)
1469 {
1470 if (this_cache != NULL
1471 && this_cache->saved_regs[regnum].addr == -1)
1472 {
1473 this_cache->saved_regs[regnum
1474 + 0 * gdbarch_num_regs (current_gdbarch)].addr
1475 = offset;
1476 this_cache->saved_regs[regnum
1477 + 1 * gdbarch_num_regs (current_gdbarch)].addr
1478 = offset;
1479 }
1480 }
1481
1482
1483 /* Fetch the immediate value from a MIPS16 instruction.
1484 If the previous instruction was an EXTEND, use it to extend
1485 the upper bits of the immediate value. This is a helper function
1486 for mips16_scan_prologue. */
1487
1488 static int
1489 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1490 unsigned short inst, /* current instruction */
1491 int nbits, /* number of bits in imm field */
1492 int scale, /* scale factor to be applied to imm */
1493 int is_signed) /* is the imm field signed? */
1494 {
1495 int offset;
1496
1497 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1498 {
1499 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1500 if (offset & 0x8000) /* check for negative extend */
1501 offset = 0 - (0x10000 - (offset & 0xffff));
1502 return offset | (inst & 0x1f);
1503 }
1504 else
1505 {
1506 int max_imm = 1 << nbits;
1507 int mask = max_imm - 1;
1508 int sign_bit = max_imm >> 1;
1509
1510 offset = inst & mask;
1511 if (is_signed && (offset & sign_bit))
1512 offset = 0 - (max_imm - offset);
1513 return offset * scale;
1514 }
1515 }
1516
1517
1518 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1519 the associated FRAME_CACHE if not null.
1520 Return the address of the first instruction past the prologue. */
1521
1522 static CORE_ADDR
1523 mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1524 struct frame_info *next_frame,
1525 struct mips_frame_cache *this_cache)
1526 {
1527 CORE_ADDR cur_pc;
1528 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1529 CORE_ADDR sp;
1530 long frame_offset = 0; /* Size of stack frame. */
1531 long frame_adjust = 0; /* Offset of FP from SP. */
1532 int frame_reg = MIPS_SP_REGNUM;
1533 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1534 unsigned inst = 0; /* current instruction */
1535 unsigned entry_inst = 0; /* the entry instruction */
1536 int reg, offset;
1537
1538 int extend_bytes = 0;
1539 int prev_extend_bytes;
1540 CORE_ADDR end_prologue_addr = 0;
1541
1542 /* Can be called when there's no process, and hence when there's no
1543 NEXT_FRAME. */
1544 if (next_frame != NULL)
1545 sp = frame_unwind_register_signed (next_frame,
1546 gdbarch_num_regs (current_gdbarch)
1547 + MIPS_SP_REGNUM);
1548 else
1549 sp = 0;
1550
1551 if (limit_pc > start_pc + 200)
1552 limit_pc = start_pc + 200;
1553
1554 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1555 {
1556 /* Save the previous instruction. If it's an EXTEND, we'll extract
1557 the immediate offset extension from it in mips16_get_imm. */
1558 prev_inst = inst;
1559
1560 /* Fetch and decode the instruction. */
1561 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1562
1563 /* Normally we ignore extend instructions. However, if it is
1564 not followed by a valid prologue instruction, then this
1565 instruction is not part of the prologue either. We must
1566 remember in this case to adjust the end_prologue_addr back
1567 over the extend. */
1568 if ((inst & 0xf800) == 0xf000) /* extend */
1569 {
1570 extend_bytes = MIPS_INSN16_SIZE;
1571 continue;
1572 }
1573
1574 prev_extend_bytes = extend_bytes;
1575 extend_bytes = 0;
1576
1577 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1578 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1579 {
1580 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1581 if (offset < 0) /* negative stack adjustment? */
1582 frame_offset -= offset;
1583 else
1584 /* Exit loop if a positive stack adjustment is found, which
1585 usually means that the stack cleanup code in the function
1586 epilogue is reached. */
1587 break;
1588 }
1589 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1590 {
1591 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1592 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1593 set_reg_offset (this_cache, reg, sp + offset);
1594 }
1595 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1596 {
1597 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1598 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1599 set_reg_offset (this_cache, reg, sp + offset);
1600 }
1601 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1602 {
1603 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1604 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1605 }
1606 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1607 {
1608 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1609 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1610 }
1611 else if (inst == 0x673d) /* move $s1, $sp */
1612 {
1613 frame_addr = sp;
1614 frame_reg = 17;
1615 }
1616 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1617 {
1618 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1619 frame_addr = sp + offset;
1620 frame_reg = 17;
1621 frame_adjust = offset;
1622 }
1623 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1624 {
1625 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1626 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1627 set_reg_offset (this_cache, reg, frame_addr + offset);
1628 }
1629 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1630 {
1631 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1632 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1633 set_reg_offset (this_cache, reg, frame_addr + offset);
1634 }
1635 else if ((inst & 0xf81f) == 0xe809
1636 && (inst & 0x700) != 0x700) /* entry */
1637 entry_inst = inst; /* save for later processing */
1638 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1639 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1640 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1641 {
1642 /* This instruction is part of the prologue, but we don't
1643 need to do anything special to handle it. */
1644 }
1645 else
1646 {
1647 /* This instruction is not an instruction typically found
1648 in a prologue, so we must have reached the end of the
1649 prologue. */
1650 if (end_prologue_addr == 0)
1651 end_prologue_addr = cur_pc - prev_extend_bytes;
1652 }
1653 }
1654
1655 /* The entry instruction is typically the first instruction in a function,
1656 and it stores registers at offsets relative to the value of the old SP
1657 (before the prologue). But the value of the sp parameter to this
1658 function is the new SP (after the prologue has been executed). So we
1659 can't calculate those offsets until we've seen the entire prologue,
1660 and can calculate what the old SP must have been. */
1661 if (entry_inst != 0)
1662 {
1663 int areg_count = (entry_inst >> 8) & 7;
1664 int sreg_count = (entry_inst >> 6) & 3;
1665
1666 /* The entry instruction always subtracts 32 from the SP. */
1667 frame_offset += 32;
1668
1669 /* Now we can calculate what the SP must have been at the
1670 start of the function prologue. */
1671 sp += frame_offset;
1672
1673 /* Check if a0-a3 were saved in the caller's argument save area. */
1674 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1675 {
1676 set_reg_offset (this_cache, reg, sp + offset);
1677 offset += mips_abi_regsize (current_gdbarch);
1678 }
1679
1680 /* Check if the ra register was pushed on the stack. */
1681 offset = -4;
1682 if (entry_inst & 0x20)
1683 {
1684 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1685 offset -= mips_abi_regsize (current_gdbarch);
1686 }
1687
1688 /* Check if the s0 and s1 registers were pushed on the stack. */
1689 for (reg = 16; reg < sreg_count + 16; reg++)
1690 {
1691 set_reg_offset (this_cache, reg, sp + offset);
1692 offset -= mips_abi_regsize (current_gdbarch);
1693 }
1694 }
1695
1696 if (this_cache != NULL)
1697 {
1698 this_cache->base =
1699 (frame_unwind_register_signed (next_frame,
1700 gdbarch_num_regs (current_gdbarch)
1701 + frame_reg)
1702 + frame_offset - frame_adjust);
1703 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1704 be able to get rid of the assignment below, evetually. But it's
1705 still needed for now. */
1706 this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
1707 + mips_regnum (current_gdbarch)->pc]
1708 = this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
1709 + MIPS_RA_REGNUM];
1710 }
1711
1712 /* If we didn't reach the end of the prologue when scanning the function
1713 instructions, then set end_prologue_addr to the address of the
1714 instruction immediately after the last one we scanned. */
1715 if (end_prologue_addr == 0)
1716 end_prologue_addr = cur_pc;
1717
1718 return end_prologue_addr;
1719 }
1720
1721 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1722 Procedures that use the 32-bit instruction set are handled by the
1723 mips_insn32 unwinder. */
1724
1725 static struct mips_frame_cache *
1726 mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
1727 {
1728 struct mips_frame_cache *cache;
1729
1730 if ((*this_cache) != NULL)
1731 return (*this_cache);
1732 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1733 (*this_cache) = cache;
1734 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1735
1736 /* Analyze the function prologue. */
1737 {
1738 const CORE_ADDR pc =
1739 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1740 CORE_ADDR start_addr;
1741
1742 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1743 if (start_addr == 0)
1744 start_addr = heuristic_proc_start (pc);
1745 /* We can't analyze the prologue if we couldn't find the begining
1746 of the function. */
1747 if (start_addr == 0)
1748 return cache;
1749
1750 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1751 }
1752
1753 /* gdbarch_sp_regnum contains the value and not the address. */
1754 trad_frame_set_value (cache->saved_regs, gdbarch_num_regs (current_gdbarch)
1755 + MIPS_SP_REGNUM, cache->base);
1756
1757 return (*this_cache);
1758 }
1759
1760 static void
1761 mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1762 struct frame_id *this_id)
1763 {
1764 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1765 this_cache);
1766 (*this_id) = frame_id_build (info->base,
1767 frame_func_unwind (next_frame, NORMAL_FRAME));
1768 }
1769
1770 static void
1771 mips_insn16_frame_prev_register (struct frame_info *next_frame,
1772 void **this_cache,
1773 int regnum, int *optimizedp,
1774 enum lval_type *lvalp, CORE_ADDR *addrp,
1775 int *realnump, gdb_byte *valuep)
1776 {
1777 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1778 this_cache);
1779 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1780 optimizedp, lvalp, addrp, realnump, valuep);
1781 }
1782
1783 static const struct frame_unwind mips_insn16_frame_unwind =
1784 {
1785 NORMAL_FRAME,
1786 mips_insn16_frame_this_id,
1787 mips_insn16_frame_prev_register
1788 };
1789
1790 static const struct frame_unwind *
1791 mips_insn16_frame_sniffer (struct frame_info *next_frame)
1792 {
1793 CORE_ADDR pc = frame_pc_unwind (next_frame);
1794 if (mips_pc_is_mips16 (pc))
1795 return &mips_insn16_frame_unwind;
1796 return NULL;
1797 }
1798
1799 static CORE_ADDR
1800 mips_insn16_frame_base_address (struct frame_info *next_frame,
1801 void **this_cache)
1802 {
1803 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1804 this_cache);
1805 return info->base;
1806 }
1807
1808 static const struct frame_base mips_insn16_frame_base =
1809 {
1810 &mips_insn16_frame_unwind,
1811 mips_insn16_frame_base_address,
1812 mips_insn16_frame_base_address,
1813 mips_insn16_frame_base_address
1814 };
1815
1816 static const struct frame_base *
1817 mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
1818 {
1819 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1820 return &mips_insn16_frame_base;
1821 else
1822 return NULL;
1823 }
1824
1825 /* Mark all the registers as unset in the saved_regs array
1826 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1827
1828 void
1829 reset_saved_regs (struct mips_frame_cache *this_cache)
1830 {
1831 if (this_cache == NULL || this_cache->saved_regs == NULL)
1832 return;
1833
1834 {
1835 const int num_regs = gdbarch_num_regs (current_gdbarch);
1836 int i;
1837
1838 for (i = 0; i < num_regs; i++)
1839 {
1840 this_cache->saved_regs[i].addr = -1;
1841 }
1842 }
1843 }
1844
1845 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1846 the associated FRAME_CACHE if not null.
1847 Return the address of the first instruction past the prologue. */
1848
1849 static CORE_ADDR
1850 mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1851 struct frame_info *next_frame,
1852 struct mips_frame_cache *this_cache)
1853 {
1854 CORE_ADDR cur_pc;
1855 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1856 CORE_ADDR sp;
1857 long frame_offset;
1858 int frame_reg = MIPS_SP_REGNUM;
1859
1860 CORE_ADDR end_prologue_addr = 0;
1861 int seen_sp_adjust = 0;
1862 int load_immediate_bytes = 0;
1863
1864 /* Can be called when there's no process, and hence when there's no
1865 NEXT_FRAME. */
1866 if (next_frame != NULL)
1867 sp = frame_unwind_register_signed (next_frame,
1868 gdbarch_num_regs (current_gdbarch)
1869 + MIPS_SP_REGNUM);
1870 else
1871 sp = 0;
1872
1873 if (limit_pc > start_pc + 200)
1874 limit_pc = start_pc + 200;
1875
1876 restart:
1877
1878 frame_offset = 0;
1879 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1880 {
1881 unsigned long inst, high_word, low_word;
1882 int reg;
1883
1884 /* Fetch the instruction. */
1885 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1886
1887 /* Save some code by pre-extracting some useful fields. */
1888 high_word = (inst >> 16) & 0xffff;
1889 low_word = inst & 0xffff;
1890 reg = high_word & 0x1f;
1891
1892 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1893 || high_word == 0x23bd /* addi $sp,$sp,-i */
1894 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1895 {
1896 if (low_word & 0x8000) /* negative stack adjustment? */
1897 frame_offset += 0x10000 - low_word;
1898 else
1899 /* Exit loop if a positive stack adjustment is found, which
1900 usually means that the stack cleanup code in the function
1901 epilogue is reached. */
1902 break;
1903 seen_sp_adjust = 1;
1904 }
1905 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1906 {
1907 set_reg_offset (this_cache, reg, sp + low_word);
1908 }
1909 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1910 {
1911 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1912 set_reg_offset (this_cache, reg, sp + low_word);
1913 }
1914 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1915 {
1916 /* Old gcc frame, r30 is virtual frame pointer. */
1917 if ((long) low_word != frame_offset)
1918 frame_addr = sp + low_word;
1919 else if (next_frame && frame_reg == MIPS_SP_REGNUM)
1920 {
1921 unsigned alloca_adjust;
1922
1923 frame_reg = 30;
1924 frame_addr = frame_unwind_register_signed
1925 (next_frame,
1926 gdbarch_num_regs (current_gdbarch) + 30);
1927
1928 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1929 if (alloca_adjust > 0)
1930 {
1931 /* FP > SP + frame_size. This may be because of
1932 an alloca or somethings similar. Fix sp to
1933 "pre-alloca" value, and try again. */
1934 sp += alloca_adjust;
1935 /* Need to reset the status of all registers. Otherwise,
1936 we will hit a guard that prevents the new address
1937 for each register to be recomputed during the second
1938 pass. */
1939 reset_saved_regs (this_cache);
1940 goto restart;
1941 }
1942 }
1943 }
1944 /* move $30,$sp. With different versions of gas this will be either
1945 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1946 Accept any one of these. */
1947 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1948 {
1949 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1950 if (next_frame && frame_reg == MIPS_SP_REGNUM)
1951 {
1952 unsigned alloca_adjust;
1953
1954 frame_reg = 30;
1955 frame_addr = frame_unwind_register_signed
1956 (next_frame,
1957 gdbarch_num_regs (current_gdbarch) + 30);
1958
1959 alloca_adjust = (unsigned) (frame_addr - sp);
1960 if (alloca_adjust > 0)
1961 {
1962 /* FP > SP + frame_size. This may be because of
1963 an alloca or somethings similar. Fix sp to
1964 "pre-alloca" value, and try again. */
1965 sp = frame_addr;
1966 /* Need to reset the status of all registers. Otherwise,
1967 we will hit a guard that prevents the new address
1968 for each register to be recomputed during the second
1969 pass. */
1970 reset_saved_regs (this_cache);
1971 goto restart;
1972 }
1973 }
1974 }
1975 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1976 {
1977 set_reg_offset (this_cache, reg, frame_addr + low_word);
1978 }
1979 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1980 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1981 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1982 || high_word == 0x3c1c /* lui $gp,n */
1983 || high_word == 0x279c /* addiu $gp,$gp,n */
1984 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1985 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1986 )
1987 {
1988 /* These instructions are part of the prologue, but we don't
1989 need to do anything special to handle them. */
1990 }
1991 /* The instructions below load $at or $t0 with an immediate
1992 value in preparation for a stack adjustment via
1993 subu $sp,$sp,[$at,$t0]. These instructions could also
1994 initialize a local variable, so we accept them only before
1995 a stack adjustment instruction was seen. */
1996 else if (!seen_sp_adjust
1997 && (high_word == 0x3c01 /* lui $at,n */
1998 || high_word == 0x3c08 /* lui $t0,n */
1999 || high_word == 0x3421 /* ori $at,$at,n */
2000 || high_word == 0x3508 /* ori $t0,$t0,n */
2001 || high_word == 0x3401 /* ori $at,$zero,n */
2002 || high_word == 0x3408 /* ori $t0,$zero,n */
2003 ))
2004 {
2005 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
2006 }
2007 else
2008 {
2009 /* This instruction is not an instruction typically found
2010 in a prologue, so we must have reached the end of the
2011 prologue. */
2012 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
2013 loop now? Why would we need to continue scanning the function
2014 instructions? */
2015 if (end_prologue_addr == 0)
2016 end_prologue_addr = cur_pc;
2017 }
2018 }
2019
2020 if (this_cache != NULL)
2021 {
2022 this_cache->base =
2023 (frame_unwind_register_signed (next_frame,
2024 gdbarch_num_regs (current_gdbarch)
2025 + frame_reg)
2026 + frame_offset);
2027 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
2028 this assignment below, eventually. But it's still needed
2029 for now. */
2030 this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
2031 + mips_regnum (current_gdbarch)->pc]
2032 = this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
2033 + MIPS_RA_REGNUM];
2034 }
2035
2036 /* If we didn't reach the end of the prologue when scanning the function
2037 instructions, then set end_prologue_addr to the address of the
2038 instruction immediately after the last one we scanned. */
2039 /* brobecker/2004-10-10: I don't think this would ever happen, but
2040 we may as well be careful and do our best if we have a null
2041 end_prologue_addr. */
2042 if (end_prologue_addr == 0)
2043 end_prologue_addr = cur_pc;
2044
2045 /* In a frameless function, we might have incorrectly
2046 skipped some load immediate instructions. Undo the skipping
2047 if the load immediate was not followed by a stack adjustment. */
2048 if (load_immediate_bytes && !seen_sp_adjust)
2049 end_prologue_addr -= load_immediate_bytes;
2050
2051 return end_prologue_addr;
2052 }
2053
2054 /* Heuristic unwinder for procedures using 32-bit instructions (covers
2055 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
2056 instructions (a.k.a. MIPS16) are handled by the mips_insn16
2057 unwinder. */
2058
2059 static struct mips_frame_cache *
2060 mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
2061 {
2062 struct mips_frame_cache *cache;
2063
2064 if ((*this_cache) != NULL)
2065 return (*this_cache);
2066
2067 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2068 (*this_cache) = cache;
2069 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2070
2071 /* Analyze the function prologue. */
2072 {
2073 const CORE_ADDR pc =
2074 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2075 CORE_ADDR start_addr;
2076
2077 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2078 if (start_addr == 0)
2079 start_addr = heuristic_proc_start (pc);
2080 /* We can't analyze the prologue if we couldn't find the begining
2081 of the function. */
2082 if (start_addr == 0)
2083 return cache;
2084
2085 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
2086 }
2087
2088 /* gdbarch_sp_regnum contains the value and not the address. */
2089 trad_frame_set_value (cache->saved_regs,
2090 gdbarch_num_regs (current_gdbarch) + MIPS_SP_REGNUM,
2091 cache->base);
2092
2093 return (*this_cache);
2094 }
2095
2096 static void
2097 mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
2098 struct frame_id *this_id)
2099 {
2100 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2101 this_cache);
2102 (*this_id) = frame_id_build (info->base,
2103 frame_func_unwind (next_frame, NORMAL_FRAME));
2104 }
2105
2106 static void
2107 mips_insn32_frame_prev_register (struct frame_info *next_frame,
2108 void **this_cache,
2109 int regnum, int *optimizedp,
2110 enum lval_type *lvalp, CORE_ADDR *addrp,
2111 int *realnump, gdb_byte *valuep)
2112 {
2113 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2114 this_cache);
2115 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2116 optimizedp, lvalp, addrp, realnump, valuep);
2117 }
2118
2119 static const struct frame_unwind mips_insn32_frame_unwind =
2120 {
2121 NORMAL_FRAME,
2122 mips_insn32_frame_this_id,
2123 mips_insn32_frame_prev_register
2124 };
2125
2126 static const struct frame_unwind *
2127 mips_insn32_frame_sniffer (struct frame_info *next_frame)
2128 {
2129 CORE_ADDR pc = frame_pc_unwind (next_frame);
2130 if (! mips_pc_is_mips16 (pc))
2131 return &mips_insn32_frame_unwind;
2132 return NULL;
2133 }
2134
2135 static CORE_ADDR
2136 mips_insn32_frame_base_address (struct frame_info *next_frame,
2137 void **this_cache)
2138 {
2139 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2140 this_cache);
2141 return info->base;
2142 }
2143
2144 static const struct frame_base mips_insn32_frame_base =
2145 {
2146 &mips_insn32_frame_unwind,
2147 mips_insn32_frame_base_address,
2148 mips_insn32_frame_base_address,
2149 mips_insn32_frame_base_address
2150 };
2151
2152 static const struct frame_base *
2153 mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2154 {
2155 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2156 return &mips_insn32_frame_base;
2157 else
2158 return NULL;
2159 }
2160
2161 static struct trad_frame_cache *
2162 mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2163 {
2164 CORE_ADDR pc;
2165 CORE_ADDR start_addr;
2166 CORE_ADDR stack_addr;
2167 struct trad_frame_cache *this_trad_cache;
2168
2169 if ((*this_cache) != NULL)
2170 return (*this_cache);
2171 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2172 (*this_cache) = this_trad_cache;
2173
2174 /* The return address is in the link register. */
2175 trad_frame_set_reg_realreg (this_trad_cache,
2176 gdbarch_pc_regnum (current_gdbarch),
2177 (gdbarch_num_regs (current_gdbarch)
2178 + MIPS_RA_REGNUM));
2179
2180 /* Frame ID, since it's a frameless / stackless function, no stack
2181 space is allocated and SP on entry is the current SP. */
2182 pc = frame_pc_unwind (next_frame);
2183 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2184 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
2185 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
2186
2187 /* Assume that the frame's base is the same as the
2188 stack-pointer. */
2189 trad_frame_set_this_base (this_trad_cache, stack_addr);
2190
2191 return this_trad_cache;
2192 }
2193
2194 static void
2195 mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2196 struct frame_id *this_id)
2197 {
2198 struct trad_frame_cache *this_trad_cache
2199 = mips_stub_frame_cache (next_frame, this_cache);
2200 trad_frame_get_id (this_trad_cache, this_id);
2201 }
2202
2203 static void
2204 mips_stub_frame_prev_register (struct frame_info *next_frame,
2205 void **this_cache,
2206 int regnum, int *optimizedp,
2207 enum lval_type *lvalp, CORE_ADDR *addrp,
2208 int *realnump, gdb_byte *valuep)
2209 {
2210 struct trad_frame_cache *this_trad_cache
2211 = mips_stub_frame_cache (next_frame, this_cache);
2212 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2213 lvalp, addrp, realnump, valuep);
2214 }
2215
2216 static const struct frame_unwind mips_stub_frame_unwind =
2217 {
2218 NORMAL_FRAME,
2219 mips_stub_frame_this_id,
2220 mips_stub_frame_prev_register
2221 };
2222
2223 static const struct frame_unwind *
2224 mips_stub_frame_sniffer (struct frame_info *next_frame)
2225 {
2226 gdb_byte dummy[4];
2227 struct obj_section *s;
2228 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2229
2230 /* Use the stub unwinder for unreadable code. */
2231 if (target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
2232 return &mips_stub_frame_unwind;
2233
2234 if (in_plt_section (pc, NULL))
2235 return &mips_stub_frame_unwind;
2236
2237 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2238 s = find_pc_section (pc);
2239
2240 if (s != NULL
2241 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2242 ".MIPS.stubs") == 0)
2243 return &mips_stub_frame_unwind;
2244
2245 return NULL;
2246 }
2247
2248 static CORE_ADDR
2249 mips_stub_frame_base_address (struct frame_info *next_frame,
2250 void **this_cache)
2251 {
2252 struct trad_frame_cache *this_trad_cache
2253 = mips_stub_frame_cache (next_frame, this_cache);
2254 return trad_frame_get_this_base (this_trad_cache);
2255 }
2256
2257 static const struct frame_base mips_stub_frame_base =
2258 {
2259 &mips_stub_frame_unwind,
2260 mips_stub_frame_base_address,
2261 mips_stub_frame_base_address,
2262 mips_stub_frame_base_address
2263 };
2264
2265 static const struct frame_base *
2266 mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2267 {
2268 if (mips_stub_frame_sniffer (next_frame) != NULL)
2269 return &mips_stub_frame_base;
2270 else
2271 return NULL;
2272 }
2273
2274 /* mips_addr_bits_remove - remove useless address bits */
2275
2276 static CORE_ADDR
2277 mips_addr_bits_remove (CORE_ADDR addr)
2278 {
2279 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2280 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2281 /* This hack is a work-around for existing boards using PMON, the
2282 simulator, and any other 64-bit targets that doesn't have true
2283 64-bit addressing. On these targets, the upper 32 bits of
2284 addresses are ignored by the hardware. Thus, the PC or SP are
2285 likely to have been sign extended to all 1s by instruction
2286 sequences that load 32-bit addresses. For example, a typical
2287 piece of code that loads an address is this:
2288
2289 lui $r2, <upper 16 bits>
2290 ori $r2, <lower 16 bits>
2291
2292 But the lui sign-extends the value such that the upper 32 bits
2293 may be all 1s. The workaround is simply to mask off these
2294 bits. In the future, gcc may be changed to support true 64-bit
2295 addressing, and this masking will have to be disabled. */
2296 return addr &= 0xffffffffUL;
2297 else
2298 return addr;
2299 }
2300
2301 /* mips_software_single_step() is called just before we want to resume
2302 the inferior, if we want to single-step it but there is no hardware
2303 or kernel single-step support (MIPS on GNU/Linux for example). We find
2304 the target of the coming instruction and breakpoint it. */
2305
2306 int
2307 mips_software_single_step (struct frame_info *frame)
2308 {
2309 CORE_ADDR pc, next_pc;
2310
2311 pc = get_frame_pc (frame);
2312 next_pc = mips_next_pc (frame, pc);
2313
2314 insert_single_step_breakpoint (next_pc);
2315 return 1;
2316 }
2317
2318 /* Test whether the PC points to the return instruction at the
2319 end of a function. */
2320
2321 static int
2322 mips_about_to_return (CORE_ADDR pc)
2323 {
2324 if (mips_pc_is_mips16 (pc))
2325 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2326 generates a "jr $ra"; other times it generates code to load
2327 the return address from the stack to an accessible register (such
2328 as $a3), then a "jr" using that register. This second case
2329 is almost impossible to distinguish from an indirect jump
2330 used for switch statements, so we don't even try. */
2331 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2332 else
2333 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2334 }
2335
2336
2337 /* This fencepost looks highly suspicious to me. Removing it also
2338 seems suspicious as it could affect remote debugging across serial
2339 lines. */
2340
2341 static CORE_ADDR
2342 heuristic_proc_start (CORE_ADDR pc)
2343 {
2344 CORE_ADDR start_pc;
2345 CORE_ADDR fence;
2346 int instlen;
2347 int seen_adjsp = 0;
2348
2349 pc = gdbarch_addr_bits_remove (current_gdbarch, pc);
2350 start_pc = pc;
2351 fence = start_pc - heuristic_fence_post;
2352 if (start_pc == 0)
2353 return 0;
2354
2355 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2356 fence = VM_MIN_ADDRESS;
2357
2358 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2359
2360 /* search back for previous return */
2361 for (start_pc -= instlen;; start_pc -= instlen)
2362 if (start_pc < fence)
2363 {
2364 /* It's not clear to me why we reach this point when
2365 stop_soon, but with this test, at least we
2366 don't print out warnings for every child forked (eg, on
2367 decstation). 22apr93 rich@cygnus.com. */
2368 if (stop_soon == NO_STOP_QUIETLY)
2369 {
2370 static int blurb_printed = 0;
2371
2372 warning (_("GDB can't find the start of the function at 0x%s."),
2373 paddr_nz (pc));
2374
2375 if (!blurb_printed)
2376 {
2377 /* This actually happens frequently in embedded
2378 development, when you first connect to a board
2379 and your stack pointer and pc are nowhere in
2380 particular. This message needs to give people
2381 in that situation enough information to
2382 determine that it's no big deal. */
2383 printf_filtered ("\n\
2384 GDB is unable to find the start of the function at 0x%s\n\
2385 and thus can't determine the size of that function's stack frame.\n\
2386 This means that GDB may be unable to access that stack frame, or\n\
2387 the frames below it.\n\
2388 This problem is most likely caused by an invalid program counter or\n\
2389 stack pointer.\n\
2390 However, if you think GDB should simply search farther back\n\
2391 from 0x%s for code which looks like the beginning of a\n\
2392 function, you can increase the range of the search using the `set\n\
2393 heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2394 blurb_printed = 1;
2395 }
2396 }
2397
2398 return 0;
2399 }
2400 else if (mips_pc_is_mips16 (start_pc))
2401 {
2402 unsigned short inst;
2403
2404 /* On MIPS16, any one of the following is likely to be the
2405 start of a function:
2406 extend save
2407 save
2408 entry
2409 addiu sp,-n
2410 daddiu sp,-n
2411 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2412 inst = mips_fetch_instruction (start_pc);
2413 if ((inst & 0xff80) == 0x6480) /* save */
2414 {
2415 if (start_pc - instlen >= fence)
2416 {
2417 inst = mips_fetch_instruction (start_pc - instlen);
2418 if ((inst & 0xf800) == 0xf000) /* extend */
2419 start_pc -= instlen;
2420 }
2421 break;
2422 }
2423 else if (((inst & 0xf81f) == 0xe809
2424 && (inst & 0x700) != 0x700) /* entry */
2425 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2426 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2427 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2428 break;
2429 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2430 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2431 seen_adjsp = 1;
2432 else
2433 seen_adjsp = 0;
2434 }
2435 else if (mips_about_to_return (start_pc))
2436 {
2437 /* Skip return and its delay slot. */
2438 start_pc += 2 * MIPS_INSN32_SIZE;
2439 break;
2440 }
2441
2442 return start_pc;
2443 }
2444
2445 struct mips_objfile_private
2446 {
2447 bfd_size_type size;
2448 char *contents;
2449 };
2450
2451 /* According to the current ABI, should the type be passed in a
2452 floating-point register (assuming that there is space)? When there
2453 is no FPU, FP are not even considered as possible candidates for
2454 FP registers and, consequently this returns false - forces FP
2455 arguments into integer registers. */
2456
2457 static int
2458 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2459 {
2460 return ((typecode == TYPE_CODE_FLT
2461 || (MIPS_EABI
2462 && (typecode == TYPE_CODE_STRUCT
2463 || typecode == TYPE_CODE_UNION)
2464 && TYPE_NFIELDS (arg_type) == 1
2465 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2466 == TYPE_CODE_FLT))
2467 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2468 }
2469
2470 /* On o32, argument passing in GPRs depends on the alignment of the type being
2471 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2472
2473 static int
2474 mips_type_needs_double_align (struct type *type)
2475 {
2476 enum type_code typecode = TYPE_CODE (type);
2477
2478 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2479 return 1;
2480 else if (typecode == TYPE_CODE_STRUCT)
2481 {
2482 if (TYPE_NFIELDS (type) < 1)
2483 return 0;
2484 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2485 }
2486 else if (typecode == TYPE_CODE_UNION)
2487 {
2488 int i, n;
2489
2490 n = TYPE_NFIELDS (type);
2491 for (i = 0; i < n; i++)
2492 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2493 return 1;
2494 return 0;
2495 }
2496 return 0;
2497 }
2498
2499 /* Adjust the address downward (direction of stack growth) so that it
2500 is correctly aligned for a new stack frame. */
2501 static CORE_ADDR
2502 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2503 {
2504 return align_down (addr, 16);
2505 }
2506
2507 static CORE_ADDR
2508 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2509 struct regcache *regcache, CORE_ADDR bp_addr,
2510 int nargs, struct value **args, CORE_ADDR sp,
2511 int struct_return, CORE_ADDR struct_addr)
2512 {
2513 int argreg;
2514 int float_argreg;
2515 int argnum;
2516 int len = 0;
2517 int stack_offset = 0;
2518 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2519 CORE_ADDR func_addr = find_function_addr (function, NULL);
2520 int regsize = mips_abi_regsize (gdbarch);
2521
2522 /* For shared libraries, "t9" needs to point at the function
2523 address. */
2524 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2525
2526 /* Set the return address register to point to the entry point of
2527 the program, where a breakpoint lies in wait. */
2528 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2529
2530 /* First ensure that the stack and structure return address (if any)
2531 are properly aligned. The stack has to be at least 64-bit
2532 aligned even on 32-bit machines, because doubles must be 64-bit
2533 aligned. For n32 and n64, stack frames need to be 128-bit
2534 aligned, so we round to this widest known alignment. */
2535
2536 sp = align_down (sp, 16);
2537 struct_addr = align_down (struct_addr, 16);
2538
2539 /* Now make space on the stack for the args. We allocate more
2540 than necessary for EABI, because the first few arguments are
2541 passed in registers, but that's OK. */
2542 for (argnum = 0; argnum < nargs; argnum++)
2543 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
2544 sp -= align_up (len, 16);
2545
2546 if (mips_debug)
2547 fprintf_unfiltered (gdb_stdlog,
2548 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2549 paddr_nz (sp), (long) align_up (len, 16));
2550
2551 /* Initialize the integer and float register pointers. */
2552 argreg = MIPS_A0_REGNUM;
2553 float_argreg = mips_fpa0_regnum (current_gdbarch);
2554
2555 /* The struct_return pointer occupies the first parameter-passing reg. */
2556 if (struct_return)
2557 {
2558 if (mips_debug)
2559 fprintf_unfiltered (gdb_stdlog,
2560 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2561 argreg, paddr_nz (struct_addr));
2562 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2563 }
2564
2565 /* Now load as many as possible of the first arguments into
2566 registers, and push the rest onto the stack. Loop thru args
2567 from first to last. */
2568 for (argnum = 0; argnum < nargs; argnum++)
2569 {
2570 const gdb_byte *val;
2571 gdb_byte valbuf[MAX_REGISTER_SIZE];
2572 struct value *arg = args[argnum];
2573 struct type *arg_type = check_typedef (value_type (arg));
2574 int len = TYPE_LENGTH (arg_type);
2575 enum type_code typecode = TYPE_CODE (arg_type);
2576
2577 if (mips_debug)
2578 fprintf_unfiltered (gdb_stdlog,
2579 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2580 argnum + 1, len, (int) typecode);
2581
2582 /* The EABI passes structures that do not fit in a register by
2583 reference. */
2584 if (len > regsize
2585 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2586 {
2587 store_unsigned_integer (valbuf, regsize, VALUE_ADDRESS (arg));
2588 typecode = TYPE_CODE_PTR;
2589 len = regsize;
2590 val = valbuf;
2591 if (mips_debug)
2592 fprintf_unfiltered (gdb_stdlog, " push");
2593 }
2594 else
2595 val = value_contents (arg);
2596
2597 /* 32-bit ABIs always start floating point arguments in an
2598 even-numbered floating point register. Round the FP register
2599 up before the check to see if there are any FP registers
2600 left. Non MIPS_EABI targets also pass the FP in the integer
2601 registers so also round up normal registers. */
2602 if (regsize < 8 && fp_register_arg_p (typecode, arg_type))
2603 {
2604 if ((float_argreg & 1))
2605 float_argreg++;
2606 }
2607
2608 /* Floating point arguments passed in registers have to be
2609 treated specially. On 32-bit architectures, doubles
2610 are passed in register pairs; the even register gets
2611 the low word, and the odd register gets the high word.
2612 On non-EABI processors, the first two floating point arguments are
2613 also copied to general registers, because MIPS16 functions
2614 don't use float registers for arguments. This duplication of
2615 arguments in general registers can't hurt non-MIPS16 functions
2616 because those registers are normally skipped. */
2617 /* MIPS_EABI squeezes a struct that contains a single floating
2618 point value into an FP register instead of pushing it onto the
2619 stack. */
2620 if (fp_register_arg_p (typecode, arg_type)
2621 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2622 {
2623 /* EABI32 will pass doubles in consecutive registers, even on
2624 64-bit cores. At one time, we used to check the size of
2625 `float_argreg' to determine whether or not to pass doubles
2626 in consecutive registers, but this is not sufficient for
2627 making the ABI determination. */
2628 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
2629 {
2630 int low_offset = gdbarch_byte_order (current_gdbarch)
2631 == BFD_ENDIAN_BIG ? 4 : 0;
2632 unsigned long regval;
2633
2634 /* Write the low word of the double to the even register(s). */
2635 regval = extract_unsigned_integer (val + low_offset, 4);
2636 if (mips_debug)
2637 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2638 float_argreg, phex (regval, 4));
2639 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2640
2641 /* Write the high word of the double to the odd register(s). */
2642 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2643 if (mips_debug)
2644 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2645 float_argreg, phex (regval, 4));
2646 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2647 }
2648 else
2649 {
2650 /* This is a floating point value that fits entirely
2651 in a single register. */
2652 /* On 32 bit ABI's the float_argreg is further adjusted
2653 above to ensure that it is even register aligned. */
2654 LONGEST regval = extract_unsigned_integer (val, len);
2655 if (mips_debug)
2656 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2657 float_argreg, phex (regval, len));
2658 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2659 }
2660 }
2661 else
2662 {
2663 /* Copy the argument to general registers or the stack in
2664 register-sized pieces. Large arguments are split between
2665 registers and stack. */
2666 /* Note: structs whose size is not a multiple of regsize
2667 are treated specially: Irix cc passes
2668 them in registers where gcc sometimes puts them on the
2669 stack. For maximum compatibility, we will put them in
2670 both places. */
2671 int odd_sized_struct = (len > regsize && len % regsize != 0);
2672
2673 /* Note: Floating-point values that didn't fit into an FP
2674 register are only written to memory. */
2675 while (len > 0)
2676 {
2677 /* Remember if the argument was written to the stack. */
2678 int stack_used_p = 0;
2679 int partial_len = (len < regsize ? len : regsize);
2680
2681 if (mips_debug)
2682 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2683 partial_len);
2684
2685 /* Write this portion of the argument to the stack. */
2686 if (argreg > MIPS_LAST_ARG_REGNUM
2687 || odd_sized_struct
2688 || fp_register_arg_p (typecode, arg_type))
2689 {
2690 /* Should shorter than int integer values be
2691 promoted to int before being stored? */
2692 int longword_offset = 0;
2693 CORE_ADDR addr;
2694 stack_used_p = 1;
2695 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
2696 {
2697 if (regsize == 8
2698 && (typecode == TYPE_CODE_INT
2699 || typecode == TYPE_CODE_PTR
2700 || typecode == TYPE_CODE_FLT) && len <= 4)
2701 longword_offset = regsize - len;
2702 else if ((typecode == TYPE_CODE_STRUCT
2703 || typecode == TYPE_CODE_UNION)
2704 && TYPE_LENGTH (arg_type) < regsize)
2705 longword_offset = regsize - len;
2706 }
2707
2708 if (mips_debug)
2709 {
2710 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2711 paddr_nz (stack_offset));
2712 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2713 paddr_nz (longword_offset));
2714 }
2715
2716 addr = sp + stack_offset + longword_offset;
2717
2718 if (mips_debug)
2719 {
2720 int i;
2721 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2722 paddr_nz (addr));
2723 for (i = 0; i < partial_len; i++)
2724 {
2725 fprintf_unfiltered (gdb_stdlog, "%02x",
2726 val[i] & 0xff);
2727 }
2728 }
2729 write_memory (addr, val, partial_len);
2730 }
2731
2732 /* Note!!! This is NOT an else clause. Odd sized
2733 structs may go thru BOTH paths. Floating point
2734 arguments will not. */
2735 /* Write this portion of the argument to a general
2736 purpose register. */
2737 if (argreg <= MIPS_LAST_ARG_REGNUM
2738 && !fp_register_arg_p (typecode, arg_type))
2739 {
2740 LONGEST regval =
2741 extract_unsigned_integer (val, partial_len);
2742
2743 if (mips_debug)
2744 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2745 argreg,
2746 phex (regval, regsize));
2747 regcache_cooked_write_unsigned (regcache, argreg, regval);
2748 argreg++;
2749 }
2750
2751 len -= partial_len;
2752 val += partial_len;
2753
2754 /* Compute the the offset into the stack at which we
2755 will copy the next parameter.
2756
2757 In the new EABI (and the NABI32), the stack_offset
2758 only needs to be adjusted when it has been used. */
2759
2760 if (stack_used_p)
2761 stack_offset += align_up (partial_len, regsize);
2762 }
2763 }
2764 if (mips_debug)
2765 fprintf_unfiltered (gdb_stdlog, "\n");
2766 }
2767
2768 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2769
2770 /* Return adjusted stack pointer. */
2771 return sp;
2772 }
2773
2774 /* Determine the return value convention being used. */
2775
2776 static enum return_value_convention
2777 mips_eabi_return_value (struct gdbarch *gdbarch,
2778 struct type *type, struct regcache *regcache,
2779 gdb_byte *readbuf, const gdb_byte *writebuf)
2780 {
2781 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2782 return RETURN_VALUE_STRUCT_CONVENTION;
2783 if (readbuf)
2784 memset (readbuf, 0, TYPE_LENGTH (type));
2785 return RETURN_VALUE_REGISTER_CONVENTION;
2786 }
2787
2788
2789 /* N32/N64 ABI stuff. */
2790
2791 /* Search for a naturally aligned double at OFFSET inside a struct
2792 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
2793 registers. */
2794
2795 static int
2796 mips_n32n64_fp_arg_chunk_p (struct type *arg_type, int offset)
2797 {
2798 int i;
2799
2800 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
2801 return 0;
2802
2803 if (MIPS_FPU_TYPE != MIPS_FPU_DOUBLE)
2804 return 0;
2805
2806 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
2807 return 0;
2808
2809 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
2810 {
2811 int pos;
2812 struct type *field_type;
2813
2814 /* We're only looking at normal fields. */
2815 if (TYPE_FIELD_STATIC (arg_type, i)
2816 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
2817 continue;
2818
2819 /* If we have gone past the offset, there is no double to pass. */
2820 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
2821 if (pos > offset)
2822 return 0;
2823
2824 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
2825
2826 /* If this field is entirely before the requested offset, go
2827 on to the next one. */
2828 if (pos + TYPE_LENGTH (field_type) <= offset)
2829 continue;
2830
2831 /* If this is our special aligned double, we can stop. */
2832 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
2833 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
2834 return 1;
2835
2836 /* This field starts at or before the requested offset, and
2837 overlaps it. If it is a structure, recurse inwards. */
2838 return mips_n32n64_fp_arg_chunk_p (field_type, offset - pos);
2839 }
2840
2841 return 0;
2842 }
2843
2844 static CORE_ADDR
2845 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2846 struct regcache *regcache, CORE_ADDR bp_addr,
2847 int nargs, struct value **args, CORE_ADDR sp,
2848 int struct_return, CORE_ADDR struct_addr)
2849 {
2850 int argreg;
2851 int float_argreg;
2852 int argnum;
2853 int len = 0;
2854 int stack_offset = 0;
2855 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2856 CORE_ADDR func_addr = find_function_addr (function, NULL);
2857
2858 /* For shared libraries, "t9" needs to point at the function
2859 address. */
2860 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2861
2862 /* Set the return address register to point to the entry point of
2863 the program, where a breakpoint lies in wait. */
2864 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2865
2866 /* First ensure that the stack and structure return address (if any)
2867 are properly aligned. The stack has to be at least 64-bit
2868 aligned even on 32-bit machines, because doubles must be 64-bit
2869 aligned. For n32 and n64, stack frames need to be 128-bit
2870 aligned, so we round to this widest known alignment. */
2871
2872 sp = align_down (sp, 16);
2873 struct_addr = align_down (struct_addr, 16);
2874
2875 /* Now make space on the stack for the args. */
2876 for (argnum = 0; argnum < nargs; argnum++)
2877 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
2878 sp -= align_up (len, 16);
2879
2880 if (mips_debug)
2881 fprintf_unfiltered (gdb_stdlog,
2882 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2883 paddr_nz (sp), (long) align_up (len, 16));
2884
2885 /* Initialize the integer and float register pointers. */
2886 argreg = MIPS_A0_REGNUM;
2887 float_argreg = mips_fpa0_regnum (current_gdbarch);
2888
2889 /* The struct_return pointer occupies the first parameter-passing reg. */
2890 if (struct_return)
2891 {
2892 if (mips_debug)
2893 fprintf_unfiltered (gdb_stdlog,
2894 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
2895 argreg, paddr_nz (struct_addr));
2896 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2897 }
2898
2899 /* Now load as many as possible of the first arguments into
2900 registers, and push the rest onto the stack. Loop thru args
2901 from first to last. */
2902 for (argnum = 0; argnum < nargs; argnum++)
2903 {
2904 const gdb_byte *val;
2905 struct value *arg = args[argnum];
2906 struct type *arg_type = check_typedef (value_type (arg));
2907 int len = TYPE_LENGTH (arg_type);
2908 enum type_code typecode = TYPE_CODE (arg_type);
2909
2910 if (mips_debug)
2911 fprintf_unfiltered (gdb_stdlog,
2912 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
2913 argnum + 1, len, (int) typecode);
2914
2915 val = value_contents (arg);
2916
2917 if (fp_register_arg_p (typecode, arg_type)
2918 && argreg <= MIPS_LAST_ARG_REGNUM)
2919 {
2920 /* This is a floating point value that fits entirely
2921 in a single register. */
2922 LONGEST regval = extract_unsigned_integer (val, len);
2923 if (mips_debug)
2924 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2925 float_argreg, phex (regval, len));
2926 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
2927
2928 if (mips_debug)
2929 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2930 argreg, phex (regval, len));
2931 regcache_cooked_write_unsigned (regcache, argreg, regval);
2932 float_argreg++;
2933 argreg++;
2934 }
2935 else
2936 {
2937 /* Copy the argument to general registers or the stack in
2938 register-sized pieces. Large arguments are split between
2939 registers and stack. */
2940 /* For N32/N64, structs, unions, or other composite types are
2941 treated as a sequence of doublewords, and are passed in integer
2942 or floating point registers as though they were simple scalar
2943 parameters to the extent that they fit, with any excess on the
2944 stack packed according to the normal memory layout of the
2945 object.
2946 The caller does not reserve space for the register arguments;
2947 the callee is responsible for reserving it if required. */
2948 /* Note: Floating-point values that didn't fit into an FP
2949 register are only written to memory. */
2950 while (len > 0)
2951 {
2952 /* Remember if the argument was written to the stack. */
2953 int stack_used_p = 0;
2954 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
2955
2956 if (mips_debug)
2957 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2958 partial_len);
2959
2960 if (fp_register_arg_p (typecode, arg_type))
2961 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM);
2962
2963 /* Write this portion of the argument to the stack. */
2964 if (argreg > MIPS_LAST_ARG_REGNUM)
2965 {
2966 /* Should shorter than int integer values be
2967 promoted to int before being stored? */
2968 int longword_offset = 0;
2969 CORE_ADDR addr;
2970 stack_used_p = 1;
2971 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
2972 {
2973 if ((typecode == TYPE_CODE_INT
2974 || typecode == TYPE_CODE_PTR
2975 || typecode == TYPE_CODE_FLT)
2976 && len <= 4)
2977 longword_offset = MIPS64_REGSIZE - len;
2978 }
2979
2980 if (mips_debug)
2981 {
2982 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2983 paddr_nz (stack_offset));
2984 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2985 paddr_nz (longword_offset));
2986 }
2987
2988 addr = sp + stack_offset + longword_offset;
2989
2990 if (mips_debug)
2991 {
2992 int i;
2993 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2994 paddr_nz (addr));
2995 for (i = 0; i < partial_len; i++)
2996 {
2997 fprintf_unfiltered (gdb_stdlog, "%02x",
2998 val[i] & 0xff);
2999 }
3000 }
3001 write_memory (addr, val, partial_len);
3002 }
3003
3004 /* Note!!! This is NOT an else clause. Odd sized
3005 structs may go thru BOTH paths. */
3006 /* Write this portion of the argument to a general
3007 purpose register. */
3008 if (argreg <= MIPS_LAST_ARG_REGNUM)
3009 {
3010 LONGEST regval =
3011 extract_unsigned_integer (val, partial_len);
3012
3013 /* A non-floating-point argument being passed in a
3014 general register. If a struct or union, and if
3015 the remaining length is smaller than the register
3016 size, we have to adjust the register value on
3017 big endian targets.
3018
3019 It does not seem to be necessary to do the
3020 same for integral types. */
3021
3022 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
3023 && partial_len < MIPS64_REGSIZE
3024 && (typecode == TYPE_CODE_STRUCT
3025 || typecode == TYPE_CODE_UNION))
3026 regval <<= ((MIPS64_REGSIZE - partial_len)
3027 * TARGET_CHAR_BIT);
3028
3029 if (mips_debug)
3030 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3031 argreg,
3032 phex (regval, MIPS64_REGSIZE));
3033 regcache_cooked_write_unsigned (regcache, argreg, regval);
3034
3035 if (mips_n32n64_fp_arg_chunk_p (arg_type,
3036 TYPE_LENGTH (arg_type) - len))
3037 {
3038 if (mips_debug)
3039 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
3040 float_argreg,
3041 phex (regval, MIPS64_REGSIZE));
3042 regcache_cooked_write_unsigned (regcache, float_argreg,
3043 regval);
3044 }
3045
3046 float_argreg++;
3047 argreg++;
3048 }
3049
3050 len -= partial_len;
3051 val += partial_len;
3052
3053 /* Compute the the offset into the stack at which we
3054 will copy the next parameter.
3055
3056 In N32 (N64?), the stack_offset only needs to be
3057 adjusted when it has been used. */
3058
3059 if (stack_used_p)
3060 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3061 }
3062 }
3063 if (mips_debug)
3064 fprintf_unfiltered (gdb_stdlog, "\n");
3065 }
3066
3067 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3068
3069 /* Return adjusted stack pointer. */
3070 return sp;
3071 }
3072
3073 static enum return_value_convention
3074 mips_n32n64_return_value (struct gdbarch *gdbarch,
3075 struct type *type, struct regcache *regcache,
3076 gdb_byte *readbuf, const gdb_byte *writebuf)
3077 {
3078 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3079
3080 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
3081
3082 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
3083 if needed), as appropriate for the type. Composite results (struct,
3084 union, or array) are returned in $2/$f0 and $3/$f2 according to the
3085 following rules:
3086
3087 * A struct with only one or two floating point fields is returned in $f0
3088 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
3089 case.
3090
3091 * Any other struct or union results of at most 128 bits are returned in
3092 $2 (first 64 bits) and $3 (remainder, if necessary).
3093
3094 * Larger composite results are handled by converting the function to a
3095 procedure with an implicit first parameter, which is a pointer to an area
3096 reserved by the caller to receive the result. [The o32-bit ABI requires
3097 that all composite results be handled by conversion to implicit first
3098 parameters. The MIPS/SGI Fortran implementation has always made a
3099 specific exception to return COMPLEX results in the floating point
3100 registers.] */
3101
3102 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3103 || TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
3104 return RETURN_VALUE_STRUCT_CONVENTION;
3105 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3106 && TYPE_LENGTH (type) == 16
3107 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3108 {
3109 /* A 128-bit floating-point value fills both $f0 and $f2. The
3110 two registers are used in the same as memory order, so the
3111 eight bytes with the lower memory address are in $f0. */
3112 if (mips_debug)
3113 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
3114 mips_xfer_register (regcache,
3115 gdbarch_num_regs (current_gdbarch)
3116 + mips_regnum (current_gdbarch)->fp0,
3117 8, gdbarch_byte_order (current_gdbarch),
3118 readbuf, writebuf, 0);
3119 mips_xfer_register (regcache,
3120 gdbarch_num_regs (current_gdbarch)
3121 + mips_regnum (current_gdbarch)->fp0 + 2,
3122 8, gdbarch_byte_order (current_gdbarch),
3123 readbuf ? readbuf + 8 : readbuf,
3124 writebuf ? writebuf + 8 : writebuf, 0);
3125 return RETURN_VALUE_REGISTER_CONVENTION;
3126 }
3127 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3128 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3129 {
3130 /* A single or double floating-point value that fits in FP0. */
3131 if (mips_debug)
3132 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3133 mips_xfer_register (regcache,
3134 gdbarch_num_regs (current_gdbarch)
3135 + mips_regnum (current_gdbarch)->fp0,
3136 TYPE_LENGTH (type),
3137 gdbarch_byte_order (current_gdbarch),
3138 readbuf, writebuf, 0);
3139 return RETURN_VALUE_REGISTER_CONVENTION;
3140 }
3141 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3142 && TYPE_NFIELDS (type) <= 2
3143 && TYPE_NFIELDS (type) >= 1
3144 && ((TYPE_NFIELDS (type) == 1
3145 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
3146 == TYPE_CODE_FLT))
3147 || (TYPE_NFIELDS (type) == 2
3148 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
3149 == TYPE_CODE_FLT)
3150 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
3151 == TYPE_CODE_FLT)))
3152 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3153 {
3154 /* A struct that contains one or two floats. Each value is part
3155 in the least significant part of their floating point
3156 register.. */
3157 int regnum;
3158 int field;
3159 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3160 field < TYPE_NFIELDS (type); field++, regnum += 2)
3161 {
3162 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3163 / TARGET_CHAR_BIT);
3164 if (mips_debug)
3165 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3166 offset);
3167 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3168 + regnum,
3169 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3170 gdbarch_byte_order (current_gdbarch),
3171 readbuf, writebuf, offset);
3172 }
3173 return RETURN_VALUE_REGISTER_CONVENTION;
3174 }
3175 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3176 || TYPE_CODE (type) == TYPE_CODE_UNION)
3177 {
3178 /* A structure or union. Extract the left justified value,
3179 regardless of the byte order. I.e. DO NOT USE
3180 mips_xfer_lower. */
3181 int offset;
3182 int regnum;
3183 for (offset = 0, regnum = MIPS_V0_REGNUM;
3184 offset < TYPE_LENGTH (type);
3185 offset += register_size (current_gdbarch, regnum), regnum++)
3186 {
3187 int xfer = register_size (current_gdbarch, regnum);
3188 if (offset + xfer > TYPE_LENGTH (type))
3189 xfer = TYPE_LENGTH (type) - offset;
3190 if (mips_debug)
3191 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3192 offset, xfer, regnum);
3193 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3194 + regnum, xfer,
3195 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3196 }
3197 return RETURN_VALUE_REGISTER_CONVENTION;
3198 }
3199 else
3200 {
3201 /* A scalar extract each part but least-significant-byte
3202 justified. */
3203 int offset;
3204 int regnum;
3205 for (offset = 0, regnum = MIPS_V0_REGNUM;
3206 offset < TYPE_LENGTH (type);
3207 offset += register_size (current_gdbarch, regnum), regnum++)
3208 {
3209 int xfer = register_size (current_gdbarch, regnum);
3210 if (offset + xfer > TYPE_LENGTH (type))
3211 xfer = TYPE_LENGTH (type) - offset;
3212 if (mips_debug)
3213 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3214 offset, xfer, regnum);
3215 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3216 + regnum, xfer,
3217 gdbarch_byte_order (current_gdbarch),
3218 readbuf, writebuf, offset);
3219 }
3220 return RETURN_VALUE_REGISTER_CONVENTION;
3221 }
3222 }
3223
3224 /* O32 ABI stuff. */
3225
3226 static CORE_ADDR
3227 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3228 struct regcache *regcache, CORE_ADDR bp_addr,
3229 int nargs, struct value **args, CORE_ADDR sp,
3230 int struct_return, CORE_ADDR struct_addr)
3231 {
3232 int argreg;
3233 int float_argreg;
3234 int argnum;
3235 int len = 0;
3236 int stack_offset = 0;
3237 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3238 CORE_ADDR func_addr = find_function_addr (function, NULL);
3239
3240 /* For shared libraries, "t9" needs to point at the function
3241 address. */
3242 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3243
3244 /* Set the return address register to point to the entry point of
3245 the program, where a breakpoint lies in wait. */
3246 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3247
3248 /* First ensure that the stack and structure return address (if any)
3249 are properly aligned. The stack has to be at least 64-bit
3250 aligned even on 32-bit machines, because doubles must be 64-bit
3251 aligned. For n32 and n64, stack frames need to be 128-bit
3252 aligned, so we round to this widest known alignment. */
3253
3254 sp = align_down (sp, 16);
3255 struct_addr = align_down (struct_addr, 16);
3256
3257 /* Now make space on the stack for the args. */
3258 for (argnum = 0; argnum < nargs; argnum++)
3259 {
3260 struct type *arg_type = check_typedef (value_type (args[argnum]));
3261 int arglen = TYPE_LENGTH (arg_type);
3262
3263 /* Align to double-word if necessary. */
3264 if (mips_type_needs_double_align (arg_type))
3265 len = align_up (len, MIPS32_REGSIZE * 2);
3266 /* Allocate space on the stack. */
3267 len += align_up (arglen, MIPS32_REGSIZE);
3268 }
3269 sp -= align_up (len, 16);
3270
3271 if (mips_debug)
3272 fprintf_unfiltered (gdb_stdlog,
3273 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3274 paddr_nz (sp), (long) align_up (len, 16));
3275
3276 /* Initialize the integer and float register pointers. */
3277 argreg = MIPS_A0_REGNUM;
3278 float_argreg = mips_fpa0_regnum (current_gdbarch);
3279
3280 /* The struct_return pointer occupies the first parameter-passing reg. */
3281 if (struct_return)
3282 {
3283 if (mips_debug)
3284 fprintf_unfiltered (gdb_stdlog,
3285 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3286 argreg, paddr_nz (struct_addr));
3287 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3288 stack_offset += MIPS32_REGSIZE;
3289 }
3290
3291 /* Now load as many as possible of the first arguments into
3292 registers, and push the rest onto the stack. Loop thru args
3293 from first to last. */
3294 for (argnum = 0; argnum < nargs; argnum++)
3295 {
3296 const gdb_byte *val;
3297 struct value *arg = args[argnum];
3298 struct type *arg_type = check_typedef (value_type (arg));
3299 int len = TYPE_LENGTH (arg_type);
3300 enum type_code typecode = TYPE_CODE (arg_type);
3301
3302 if (mips_debug)
3303 fprintf_unfiltered (gdb_stdlog,
3304 "mips_o32_push_dummy_call: %d len=%d type=%d",
3305 argnum + 1, len, (int) typecode);
3306
3307 val = value_contents (arg);
3308
3309 /* 32-bit ABIs always start floating point arguments in an
3310 even-numbered floating point register. Round the FP register
3311 up before the check to see if there are any FP registers
3312 left. O32/O64 targets also pass the FP in the integer
3313 registers so also round up normal registers. */
3314 if (fp_register_arg_p (typecode, arg_type))
3315 {
3316 if ((float_argreg & 1))
3317 float_argreg++;
3318 }
3319
3320 /* Floating point arguments passed in registers have to be
3321 treated specially. On 32-bit architectures, doubles
3322 are passed in register pairs; the even register gets
3323 the low word, and the odd register gets the high word.
3324 On O32/O64, the first two floating point arguments are
3325 also copied to general registers, because MIPS16 functions
3326 don't use float registers for arguments. This duplication of
3327 arguments in general registers can't hurt non-MIPS16 functions
3328 because those registers are normally skipped. */
3329
3330 if (fp_register_arg_p (typecode, arg_type)
3331 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3332 {
3333 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
3334 {
3335 int low_offset = gdbarch_byte_order (current_gdbarch)
3336 == BFD_ENDIAN_BIG ? 4 : 0;
3337 unsigned long regval;
3338
3339 /* Write the low word of the double to the even register(s). */
3340 regval = extract_unsigned_integer (val + low_offset, 4);
3341 if (mips_debug)
3342 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3343 float_argreg, phex (regval, 4));
3344 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3345 if (mips_debug)
3346 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3347 argreg, phex (regval, 4));
3348 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3349
3350 /* Write the high word of the double to the odd register(s). */
3351 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3352 if (mips_debug)
3353 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3354 float_argreg, phex (regval, 4));
3355 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3356
3357 if (mips_debug)
3358 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3359 argreg, phex (regval, 4));
3360 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3361 }
3362 else
3363 {
3364 /* This is a floating point value that fits entirely
3365 in a single register. */
3366 /* On 32 bit ABI's the float_argreg is further adjusted
3367 above to ensure that it is even register aligned. */
3368 LONGEST regval = extract_unsigned_integer (val, len);
3369 if (mips_debug)
3370 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3371 float_argreg, phex (regval, len));
3372 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3373 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3374 registers for each argument. The below is (my
3375 guess) to ensure that the corresponding integer
3376 register has reserved the same space. */
3377 if (mips_debug)
3378 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3379 argreg, phex (regval, len));
3380 regcache_cooked_write_unsigned (regcache, argreg, regval);
3381 argreg += 2;
3382 }
3383 /* Reserve space for the FP register. */
3384 stack_offset += align_up (len, MIPS32_REGSIZE);
3385 }
3386 else
3387 {
3388 /* Copy the argument to general registers or the stack in
3389 register-sized pieces. Large arguments are split between
3390 registers and stack. */
3391 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
3392 are treated specially: Irix cc passes
3393 them in registers where gcc sometimes puts them on the
3394 stack. For maximum compatibility, we will put them in
3395 both places. */
3396 int odd_sized_struct = (len > MIPS32_REGSIZE
3397 && len % MIPS32_REGSIZE != 0);
3398 /* Structures should be aligned to eight bytes (even arg registers)
3399 on MIPS_ABI_O32, if their first member has double precision. */
3400 if (mips_type_needs_double_align (arg_type))
3401 {
3402 if ((argreg & 1))
3403 {
3404 argreg++;
3405 stack_offset += MIPS32_REGSIZE;
3406 }
3407 }
3408 while (len > 0)
3409 {
3410 /* Remember if the argument was written to the stack. */
3411 int stack_used_p = 0;
3412 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
3413
3414 if (mips_debug)
3415 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3416 partial_len);
3417
3418 /* Write this portion of the argument to the stack. */
3419 if (argreg > MIPS_LAST_ARG_REGNUM
3420 || odd_sized_struct)
3421 {
3422 /* Should shorter than int integer values be
3423 promoted to int before being stored? */
3424 int longword_offset = 0;
3425 CORE_ADDR addr;
3426 stack_used_p = 1;
3427
3428 if (mips_debug)
3429 {
3430 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3431 paddr_nz (stack_offset));
3432 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3433 paddr_nz (longword_offset));
3434 }
3435
3436 addr = sp + stack_offset + longword_offset;
3437
3438 if (mips_debug)
3439 {
3440 int i;
3441 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3442 paddr_nz (addr));
3443 for (i = 0; i < partial_len; i++)
3444 {
3445 fprintf_unfiltered (gdb_stdlog, "%02x",
3446 val[i] & 0xff);
3447 }
3448 }
3449 write_memory (addr, val, partial_len);
3450 }
3451
3452 /* Note!!! This is NOT an else clause. Odd sized
3453 structs may go thru BOTH paths. */
3454 /* Write this portion of the argument to a general
3455 purpose register. */
3456 if (argreg <= MIPS_LAST_ARG_REGNUM)
3457 {
3458 LONGEST regval = extract_signed_integer (val, partial_len);
3459 /* Value may need to be sign extended, because
3460 mips_isa_regsize() != mips_abi_regsize(). */
3461
3462 /* A non-floating-point argument being passed in a
3463 general register. If a struct or union, and if
3464 the remaining length is smaller than the register
3465 size, we have to adjust the register value on
3466 big endian targets.
3467
3468 It does not seem to be necessary to do the
3469 same for integral types.
3470
3471 Also don't do this adjustment on O64 binaries.
3472
3473 cagney/2001-07-23: gdb/179: Also, GCC, when
3474 outputting LE O32 with sizeof (struct) <
3475 mips_abi_regsize(), generates a left shift
3476 as part of storing the argument in a register
3477 (the left shift isn't generated when
3478 sizeof (struct) >= mips_abi_regsize()). Since
3479 it is quite possible that this is GCC
3480 contradicting the LE/O32 ABI, GDB has not been
3481 adjusted to accommodate this. Either someone
3482 needs to demonstrate that the LE/O32 ABI
3483 specifies such a left shift OR this new ABI gets
3484 identified as such and GDB gets tweaked
3485 accordingly. */
3486
3487 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
3488 && partial_len < MIPS32_REGSIZE
3489 && (typecode == TYPE_CODE_STRUCT
3490 || typecode == TYPE_CODE_UNION))
3491 regval <<= ((MIPS32_REGSIZE - partial_len)
3492 * TARGET_CHAR_BIT);
3493
3494 if (mips_debug)
3495 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3496 argreg,
3497 phex (regval, MIPS32_REGSIZE));
3498 regcache_cooked_write_unsigned (regcache, argreg, regval);
3499 argreg++;
3500
3501 /* Prevent subsequent floating point arguments from
3502 being passed in floating point registers. */
3503 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3504 }
3505
3506 len -= partial_len;
3507 val += partial_len;
3508
3509 /* Compute the the offset into the stack at which we
3510 will copy the next parameter.
3511
3512 In older ABIs, the caller reserved space for
3513 registers that contained arguments. This was loosely
3514 refered to as their "home". Consequently, space is
3515 always allocated. */
3516
3517 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
3518 }
3519 }
3520 if (mips_debug)
3521 fprintf_unfiltered (gdb_stdlog, "\n");
3522 }
3523
3524 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3525
3526 /* Return adjusted stack pointer. */
3527 return sp;
3528 }
3529
3530 static enum return_value_convention
3531 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3532 struct regcache *regcache,
3533 gdb_byte *readbuf, const gdb_byte *writebuf)
3534 {
3535 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3536
3537 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3538 || TYPE_CODE (type) == TYPE_CODE_UNION
3539 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3540 return RETURN_VALUE_STRUCT_CONVENTION;
3541 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3542 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3543 {
3544 /* A single-precision floating-point value. It fits in the
3545 least significant part of FP0. */
3546 if (mips_debug)
3547 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3548 mips_xfer_register (regcache,
3549 gdbarch_num_regs (current_gdbarch)
3550 + mips_regnum (current_gdbarch)->fp0,
3551 TYPE_LENGTH (type),
3552 gdbarch_byte_order (current_gdbarch),
3553 readbuf, writebuf, 0);
3554 return RETURN_VALUE_REGISTER_CONVENTION;
3555 }
3556 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3557 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3558 {
3559 /* A double-precision floating-point value. The most
3560 significant part goes in FP1, and the least significant in
3561 FP0. */
3562 if (mips_debug)
3563 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3564 switch (gdbarch_byte_order (current_gdbarch))
3565 {
3566 case BFD_ENDIAN_LITTLE:
3567 mips_xfer_register (regcache,
3568 gdbarch_num_regs (current_gdbarch)
3569 + mips_regnum (current_gdbarch)->fp0 +
3570 0, 4, gdbarch_byte_order (current_gdbarch),
3571 readbuf, writebuf, 0);
3572 mips_xfer_register (regcache,
3573 gdbarch_num_regs (current_gdbarch)
3574 + mips_regnum (current_gdbarch)->fp0 + 1,
3575 4, gdbarch_byte_order (current_gdbarch),
3576 readbuf, writebuf, 4);
3577 break;
3578 case BFD_ENDIAN_BIG:
3579 mips_xfer_register (regcache,
3580 gdbarch_num_regs (current_gdbarch)
3581 + mips_regnum (current_gdbarch)->fp0 + 1,
3582 4, gdbarch_byte_order (current_gdbarch),
3583 readbuf, writebuf, 0);
3584 mips_xfer_register (regcache,
3585 gdbarch_num_regs (current_gdbarch)
3586 + mips_regnum (current_gdbarch)->fp0 + 0,
3587 4, gdbarch_byte_order (current_gdbarch),
3588 readbuf, writebuf, 4);
3589 break;
3590 default:
3591 internal_error (__FILE__, __LINE__, _("bad switch"));
3592 }
3593 return RETURN_VALUE_REGISTER_CONVENTION;
3594 }
3595 #if 0
3596 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3597 && TYPE_NFIELDS (type) <= 2
3598 && TYPE_NFIELDS (type) >= 1
3599 && ((TYPE_NFIELDS (type) == 1
3600 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3601 == TYPE_CODE_FLT))
3602 || (TYPE_NFIELDS (type) == 2
3603 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3604 == TYPE_CODE_FLT)
3605 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3606 == TYPE_CODE_FLT)))
3607 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3608 {
3609 /* A struct that contains one or two floats. Each value is part
3610 in the least significant part of their floating point
3611 register.. */
3612 gdb_byte reg[MAX_REGISTER_SIZE];
3613 int regnum;
3614 int field;
3615 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3616 field < TYPE_NFIELDS (type); field++, regnum += 2)
3617 {
3618 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3619 / TARGET_CHAR_BIT);
3620 if (mips_debug)
3621 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3622 offset);
3623 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3624 + regnum,
3625 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3626 gdbarch_byte_order (current_gdbarch),
3627 readbuf, writebuf, offset);
3628 }
3629 return RETURN_VALUE_REGISTER_CONVENTION;
3630 }
3631 #endif
3632 #if 0
3633 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3634 || TYPE_CODE (type) == TYPE_CODE_UNION)
3635 {
3636 /* A structure or union. Extract the left justified value,
3637 regardless of the byte order. I.e. DO NOT USE
3638 mips_xfer_lower. */
3639 int offset;
3640 int regnum;
3641 for (offset = 0, regnum = MIPS_V0_REGNUM;
3642 offset < TYPE_LENGTH (type);
3643 offset += register_size (current_gdbarch, regnum), regnum++)
3644 {
3645 int xfer = register_size (current_gdbarch, regnum);
3646 if (offset + xfer > TYPE_LENGTH (type))
3647 xfer = TYPE_LENGTH (type) - offset;
3648 if (mips_debug)
3649 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3650 offset, xfer, regnum);
3651 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3652 + regnum, xfer,
3653 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3654 }
3655 return RETURN_VALUE_REGISTER_CONVENTION;
3656 }
3657 #endif
3658 else
3659 {
3660 /* A scalar extract each part but least-significant-byte
3661 justified. o32 thinks registers are 4 byte, regardless of
3662 the ISA. */
3663 int offset;
3664 int regnum;
3665 for (offset = 0, regnum = MIPS_V0_REGNUM;
3666 offset < TYPE_LENGTH (type);
3667 offset += MIPS32_REGSIZE, regnum++)
3668 {
3669 int xfer = MIPS32_REGSIZE;
3670 if (offset + xfer > TYPE_LENGTH (type))
3671 xfer = TYPE_LENGTH (type) - offset;
3672 if (mips_debug)
3673 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3674 offset, xfer, regnum);
3675 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3676 + regnum, xfer,
3677 gdbarch_byte_order (current_gdbarch),
3678 readbuf, writebuf, offset);
3679 }
3680 return RETURN_VALUE_REGISTER_CONVENTION;
3681 }
3682 }
3683
3684 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3685 ABI. */
3686
3687 static CORE_ADDR
3688 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3689 struct regcache *regcache, CORE_ADDR bp_addr,
3690 int nargs,
3691 struct value **args, CORE_ADDR sp,
3692 int struct_return, CORE_ADDR struct_addr)
3693 {
3694 int argreg;
3695 int float_argreg;
3696 int argnum;
3697 int len = 0;
3698 int stack_offset = 0;
3699 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3700 CORE_ADDR func_addr = find_function_addr (function, NULL);
3701
3702 /* For shared libraries, "t9" needs to point at the function
3703 address. */
3704 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3705
3706 /* Set the return address register to point to the entry point of
3707 the program, where a breakpoint lies in wait. */
3708 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3709
3710 /* First ensure that the stack and structure return address (if any)
3711 are properly aligned. The stack has to be at least 64-bit
3712 aligned even on 32-bit machines, because doubles must be 64-bit
3713 aligned. For n32 and n64, stack frames need to be 128-bit
3714 aligned, so we round to this widest known alignment. */
3715
3716 sp = align_down (sp, 16);
3717 struct_addr = align_down (struct_addr, 16);
3718
3719 /* Now make space on the stack for the args. */
3720 for (argnum = 0; argnum < nargs; argnum++)
3721 {
3722 struct type *arg_type = check_typedef (value_type (args[argnum]));
3723 int arglen = TYPE_LENGTH (arg_type);
3724
3725 /* Allocate space on the stack. */
3726 len += align_up (arglen, MIPS64_REGSIZE);
3727 }
3728 sp -= align_up (len, 16);
3729
3730 if (mips_debug)
3731 fprintf_unfiltered (gdb_stdlog,
3732 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3733 paddr_nz (sp), (long) align_up (len, 16));
3734
3735 /* Initialize the integer and float register pointers. */
3736 argreg = MIPS_A0_REGNUM;
3737 float_argreg = mips_fpa0_regnum (current_gdbarch);
3738
3739 /* The struct_return pointer occupies the first parameter-passing reg. */
3740 if (struct_return)
3741 {
3742 if (mips_debug)
3743 fprintf_unfiltered (gdb_stdlog,
3744 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3745 argreg, paddr_nz (struct_addr));
3746 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3747 stack_offset += MIPS64_REGSIZE;
3748 }
3749
3750 /* Now load as many as possible of the first arguments into
3751 registers, and push the rest onto the stack. Loop thru args
3752 from first to last. */
3753 for (argnum = 0; argnum < nargs; argnum++)
3754 {
3755 const gdb_byte *val;
3756 struct value *arg = args[argnum];
3757 struct type *arg_type = check_typedef (value_type (arg));
3758 int len = TYPE_LENGTH (arg_type);
3759 enum type_code typecode = TYPE_CODE (arg_type);
3760
3761 if (mips_debug)
3762 fprintf_unfiltered (gdb_stdlog,
3763 "mips_o64_push_dummy_call: %d len=%d type=%d",
3764 argnum + 1, len, (int) typecode);
3765
3766 val = value_contents (arg);
3767
3768 /* Floating point arguments passed in registers have to be
3769 treated specially. On 32-bit architectures, doubles
3770 are passed in register pairs; the even register gets
3771 the low word, and the odd register gets the high word.
3772 On O32/O64, the first two floating point arguments are
3773 also copied to general registers, because MIPS16 functions
3774 don't use float registers for arguments. This duplication of
3775 arguments in general registers can't hurt non-MIPS16 functions
3776 because those registers are normally skipped. */
3777
3778 if (fp_register_arg_p (typecode, arg_type)
3779 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3780 {
3781 LONGEST regval = extract_unsigned_integer (val, len);
3782 if (mips_debug)
3783 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3784 float_argreg, phex (regval, len));
3785 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3786 if (mips_debug)
3787 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3788 argreg, phex (regval, len));
3789 regcache_cooked_write_unsigned (regcache, argreg, regval);
3790 argreg++;
3791 /* Reserve space for the FP register. */
3792 stack_offset += align_up (len, MIPS64_REGSIZE);
3793 }
3794 else
3795 {
3796 /* Copy the argument to general registers or the stack in
3797 register-sized pieces. Large arguments are split between
3798 registers and stack. */
3799 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
3800 are treated specially: Irix cc passes them in registers
3801 where gcc sometimes puts them on the stack. For maximum
3802 compatibility, we will put them in both places. */
3803 int odd_sized_struct = (len > MIPS64_REGSIZE
3804 && len % MIPS64_REGSIZE != 0);
3805 while (len > 0)
3806 {
3807 /* Remember if the argument was written to the stack. */
3808 int stack_used_p = 0;
3809 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
3810
3811 if (mips_debug)
3812 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3813 partial_len);
3814
3815 /* Write this portion of the argument to the stack. */
3816 if (argreg > MIPS_LAST_ARG_REGNUM
3817 || odd_sized_struct)
3818 {
3819 /* Should shorter than int integer values be
3820 promoted to int before being stored? */
3821 int longword_offset = 0;
3822 CORE_ADDR addr;
3823 stack_used_p = 1;
3824 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
3825 {
3826 if ((typecode == TYPE_CODE_INT
3827 || typecode == TYPE_CODE_PTR
3828 || typecode == TYPE_CODE_FLT)
3829 && len <= 4)
3830 longword_offset = MIPS64_REGSIZE - len;
3831 }
3832
3833 if (mips_debug)
3834 {
3835 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3836 paddr_nz (stack_offset));
3837 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3838 paddr_nz (longword_offset));
3839 }
3840
3841 addr = sp + stack_offset + longword_offset;
3842
3843 if (mips_debug)
3844 {
3845 int i;
3846 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3847 paddr_nz (addr));
3848 for (i = 0; i < partial_len; i++)
3849 {
3850 fprintf_unfiltered (gdb_stdlog, "%02x",
3851 val[i] & 0xff);
3852 }
3853 }
3854 write_memory (addr, val, partial_len);
3855 }
3856
3857 /* Note!!! This is NOT an else clause. Odd sized
3858 structs may go thru BOTH paths. */
3859 /* Write this portion of the argument to a general
3860 purpose register. */
3861 if (argreg <= MIPS_LAST_ARG_REGNUM)
3862 {
3863 LONGEST regval = extract_signed_integer (val, partial_len);
3864 /* Value may need to be sign extended, because
3865 mips_isa_regsize() != mips_abi_regsize(). */
3866
3867 /* A non-floating-point argument being passed in a
3868 general register. If a struct or union, and if
3869 the remaining length is smaller than the register
3870 size, we have to adjust the register value on
3871 big endian targets.
3872
3873 It does not seem to be necessary to do the
3874 same for integral types. */
3875
3876 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
3877 && partial_len < MIPS64_REGSIZE
3878 && (typecode == TYPE_CODE_STRUCT
3879 || typecode == TYPE_CODE_UNION))
3880 regval <<= ((MIPS64_REGSIZE - partial_len)
3881 * TARGET_CHAR_BIT);
3882
3883 if (mips_debug)
3884 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3885 argreg,
3886 phex (regval, MIPS64_REGSIZE));
3887 regcache_cooked_write_unsigned (regcache, argreg, regval);
3888 argreg++;
3889
3890 /* Prevent subsequent floating point arguments from
3891 being passed in floating point registers. */
3892 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3893 }
3894
3895 len -= partial_len;
3896 val += partial_len;
3897
3898 /* Compute the the offset into the stack at which we
3899 will copy the next parameter.
3900
3901 In older ABIs, the caller reserved space for
3902 registers that contained arguments. This was loosely
3903 refered to as their "home". Consequently, space is
3904 always allocated. */
3905
3906 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3907 }
3908 }
3909 if (mips_debug)
3910 fprintf_unfiltered (gdb_stdlog, "\n");
3911 }
3912
3913 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3914
3915 /* Return adjusted stack pointer. */
3916 return sp;
3917 }
3918
3919 static enum return_value_convention
3920 mips_o64_return_value (struct gdbarch *gdbarch,
3921 struct type *type, struct regcache *regcache,
3922 gdb_byte *readbuf, const gdb_byte *writebuf)
3923 {
3924 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3925
3926 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3927 || TYPE_CODE (type) == TYPE_CODE_UNION
3928 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3929 return RETURN_VALUE_STRUCT_CONVENTION;
3930 else if (fp_register_arg_p (TYPE_CODE (type), type))
3931 {
3932 /* A floating-point value. It fits in the least significant
3933 part of FP0. */
3934 if (mips_debug)
3935 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3936 mips_xfer_register (regcache,
3937 gdbarch_num_regs (current_gdbarch)
3938 + mips_regnum (current_gdbarch)->fp0,
3939 TYPE_LENGTH (type),
3940 gdbarch_byte_order (current_gdbarch),
3941 readbuf, writebuf, 0);
3942 return RETURN_VALUE_REGISTER_CONVENTION;
3943 }
3944 else
3945 {
3946 /* A scalar extract each part but least-significant-byte
3947 justified. */
3948 int offset;
3949 int regnum;
3950 for (offset = 0, regnum = MIPS_V0_REGNUM;
3951 offset < TYPE_LENGTH (type);
3952 offset += MIPS64_REGSIZE, regnum++)
3953 {
3954 int xfer = MIPS64_REGSIZE;
3955 if (offset + xfer > TYPE_LENGTH (type))
3956 xfer = TYPE_LENGTH (type) - offset;
3957 if (mips_debug)
3958 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3959 offset, xfer, regnum);
3960 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3961 + regnum, xfer,
3962 gdbarch_byte_order (current_gdbarch),
3963 readbuf, writebuf, offset);
3964 }
3965 return RETURN_VALUE_REGISTER_CONVENTION;
3966 }
3967 }
3968
3969 /* Floating point register management.
3970
3971 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3972 64bit operations, these early MIPS cpus treat fp register pairs
3973 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3974 registers and offer a compatibility mode that emulates the MIPS2 fp
3975 model. When operating in MIPS2 fp compat mode, later cpu's split
3976 double precision floats into two 32-bit chunks and store them in
3977 consecutive fp regs. To display 64-bit floats stored in this
3978 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3979 Throw in user-configurable endianness and you have a real mess.
3980
3981 The way this works is:
3982 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3983 double-precision value will be split across two logical registers.
3984 The lower-numbered logical register will hold the low-order bits,
3985 regardless of the processor's endianness.
3986 - If we are on a 64-bit processor, and we are looking for a
3987 single-precision value, it will be in the low ordered bits
3988 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3989 save slot in memory.
3990 - If we are in 64-bit mode, everything is straightforward.
3991
3992 Note that this code only deals with "live" registers at the top of the
3993 stack. We will attempt to deal with saved registers later, when
3994 the raw/cooked register interface is in place. (We need a general
3995 interface that can deal with dynamic saved register sizes -- fp
3996 regs could be 32 bits wide in one frame and 64 on the frame above
3997 and below). */
3998
3999 static struct type *
4000 mips_float_register_type (void)
4001 {
4002 return builtin_type_ieee_single;
4003 }
4004
4005 static struct type *
4006 mips_double_register_type (void)
4007 {
4008 return builtin_type_ieee_double;
4009 }
4010
4011 /* Copy a 32-bit single-precision value from the current frame
4012 into rare_buffer. */
4013
4014 static void
4015 mips_read_fp_register_single (struct frame_info *frame, int regno,
4016 gdb_byte *rare_buffer)
4017 {
4018 int raw_size = register_size (current_gdbarch, regno);
4019 gdb_byte *raw_buffer = alloca (raw_size);
4020
4021 if (!frame_register_read (frame, regno, raw_buffer))
4022 error (_("can't read register %d (%s)"),
4023 regno, gdbarch_register_name (current_gdbarch, regno));
4024 if (raw_size == 8)
4025 {
4026 /* We have a 64-bit value for this register. Find the low-order
4027 32 bits. */
4028 int offset;
4029
4030 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4031 offset = 4;
4032 else
4033 offset = 0;
4034
4035 memcpy (rare_buffer, raw_buffer + offset, 4);
4036 }
4037 else
4038 {
4039 memcpy (rare_buffer, raw_buffer, 4);
4040 }
4041 }
4042
4043 /* Copy a 64-bit double-precision value from the current frame into
4044 rare_buffer. This may include getting half of it from the next
4045 register. */
4046
4047 static void
4048 mips_read_fp_register_double (struct frame_info *frame, int regno,
4049 gdb_byte *rare_buffer)
4050 {
4051 int raw_size = register_size (current_gdbarch, regno);
4052
4053 if (raw_size == 8 && !mips2_fp_compat (frame))
4054 {
4055 /* We have a 64-bit value for this register, and we should use
4056 all 64 bits. */
4057 if (!frame_register_read (frame, regno, rare_buffer))
4058 error (_("can't read register %d (%s)"),
4059 regno, gdbarch_register_name (current_gdbarch, regno));
4060 }
4061 else
4062 {
4063 int rawnum = regno % gdbarch_num_regs (current_gdbarch);
4064
4065 if ((rawnum - mips_regnum (current_gdbarch)->fp0) & 1)
4066 internal_error (__FILE__, __LINE__,
4067 _("mips_read_fp_register_double: bad access to "
4068 "odd-numbered FP register"));
4069
4070 /* mips_read_fp_register_single will find the correct 32 bits from
4071 each register. */
4072 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4073 {
4074 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4075 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4076 }
4077 else
4078 {
4079 mips_read_fp_register_single (frame, regno, rare_buffer);
4080 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4081 }
4082 }
4083 }
4084
4085 static void
4086 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4087 int regnum)
4088 { /* do values for FP (float) regs */
4089 gdb_byte *raw_buffer;
4090 double doub, flt1; /* doubles extracted from raw hex data */
4091 int inv1, inv2;
4092
4093 raw_buffer = alloca (2 * register_size (current_gdbarch,
4094 mips_regnum (current_gdbarch)->fp0));
4095
4096 fprintf_filtered (file, "%s:",
4097 gdbarch_register_name (current_gdbarch, regnum));
4098 fprintf_filtered (file, "%*s",
4099 4 - (int) strlen (gdbarch_register_name
4100 (current_gdbarch, regnum)),
4101 "");
4102
4103 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat (frame))
4104 {
4105 /* 4-byte registers: Print hex and floating. Also print even
4106 numbered registers as doubles. */
4107 mips_read_fp_register_single (frame, regnum, raw_buffer);
4108 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4109
4110 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
4111 file);
4112
4113 fprintf_filtered (file, " flt: ");
4114 if (inv1)
4115 fprintf_filtered (file, " <invalid float> ");
4116 else
4117 fprintf_filtered (file, "%-17.9g", flt1);
4118
4119 if ((regnum - gdbarch_num_regs (current_gdbarch)) % 2 == 0)
4120 {
4121 mips_read_fp_register_double (frame, regnum, raw_buffer);
4122 doub = unpack_double (mips_double_register_type (), raw_buffer,
4123 &inv2);
4124
4125 fprintf_filtered (file, " dbl: ");
4126 if (inv2)
4127 fprintf_filtered (file, "<invalid double>");
4128 else
4129 fprintf_filtered (file, "%-24.17g", doub);
4130 }
4131 }
4132 else
4133 {
4134 /* Eight byte registers: print each one as hex, float and double. */
4135 mips_read_fp_register_single (frame, regnum, raw_buffer);
4136 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4137
4138 mips_read_fp_register_double (frame, regnum, raw_buffer);
4139 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4140
4141
4142 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4143 file);
4144
4145 fprintf_filtered (file, " flt: ");
4146 if (inv1)
4147 fprintf_filtered (file, "<invalid float>");
4148 else
4149 fprintf_filtered (file, "%-17.9g", flt1);
4150
4151 fprintf_filtered (file, " dbl: ");
4152 if (inv2)
4153 fprintf_filtered (file, "<invalid double>");
4154 else
4155 fprintf_filtered (file, "%-24.17g", doub);
4156 }
4157 }
4158
4159 static void
4160 mips_print_register (struct ui_file *file, struct frame_info *frame,
4161 int regnum)
4162 {
4163 struct gdbarch *gdbarch = get_frame_arch (frame);
4164 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4165 int offset;
4166
4167 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4168 {
4169 mips_print_fp_register (file, frame, regnum);
4170 return;
4171 }
4172
4173 /* Get the data in raw format. */
4174 if (!frame_register_read (frame, regnum, raw_buffer))
4175 {
4176 fprintf_filtered (file, "%s: [Invalid]",
4177 gdbarch_register_name (current_gdbarch, regnum));
4178 return;
4179 }
4180
4181 fputs_filtered (gdbarch_register_name (current_gdbarch, regnum), file);
4182
4183 /* The problem with printing numeric register names (r26, etc.) is that
4184 the user can't use them on input. Probably the best solution is to
4185 fix it so that either the numeric or the funky (a2, etc.) names
4186 are accepted on input. */
4187 if (regnum < MIPS_NUMREGS)
4188 fprintf_filtered (file, "(r%d): ", regnum);
4189 else
4190 fprintf_filtered (file, ": ");
4191
4192 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4193 offset =
4194 register_size (current_gdbarch,
4195 regnum) - register_size (current_gdbarch, regnum);
4196 else
4197 offset = 0;
4198
4199 print_scalar_formatted (raw_buffer + offset,
4200 register_type (gdbarch, regnum), 'x', 0,
4201 file);
4202 }
4203
4204 /* Replacement for generic do_registers_info.
4205 Print regs in pretty columns. */
4206
4207 static int
4208 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4209 int regnum)
4210 {
4211 fprintf_filtered (file, " ");
4212 mips_print_fp_register (file, frame, regnum);
4213 fprintf_filtered (file, "\n");
4214 return regnum + 1;
4215 }
4216
4217
4218 /* Print a row's worth of GP (int) registers, with name labels above */
4219
4220 static int
4221 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4222 int start_regnum)
4223 {
4224 struct gdbarch *gdbarch = get_frame_arch (frame);
4225 /* do values for GP (int) regs */
4226 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4227 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4228 int col, byte;
4229 int regnum;
4230
4231 /* For GP registers, we print a separate row of names above the vals */
4232 for (col = 0, regnum = start_regnum;
4233 col < ncols && regnum < gdbarch_num_regs (current_gdbarch)
4234 + gdbarch_num_pseudo_regs (current_gdbarch);
4235 regnum++)
4236 {
4237 if (*gdbarch_register_name (current_gdbarch, regnum) == '\0')
4238 continue; /* unused register */
4239 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4240 TYPE_CODE_FLT)
4241 break; /* end the row: reached FP register */
4242 /* Large registers are handled separately. */
4243 if (register_size (current_gdbarch, regnum)
4244 > mips_abi_regsize (current_gdbarch))
4245 {
4246 if (col > 0)
4247 break; /* End the row before this register. */
4248
4249 /* Print this register on a row by itself. */
4250 mips_print_register (file, frame, regnum);
4251 fprintf_filtered (file, "\n");
4252 return regnum + 1;
4253 }
4254 if (col == 0)
4255 fprintf_filtered (file, " ");
4256 fprintf_filtered (file,
4257 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4258 gdbarch_register_name (current_gdbarch, regnum));
4259 col++;
4260 }
4261
4262 if (col == 0)
4263 return regnum;
4264
4265 /* print the R0 to R31 names */
4266 if ((start_regnum % gdbarch_num_regs (current_gdbarch)) < MIPS_NUMREGS)
4267 fprintf_filtered (file, "\n R%-4d",
4268 start_regnum % gdbarch_num_regs (current_gdbarch));
4269 else
4270 fprintf_filtered (file, "\n ");
4271
4272 /* now print the values in hex, 4 or 8 to the row */
4273 for (col = 0, regnum = start_regnum;
4274 col < ncols && regnum < gdbarch_num_regs (current_gdbarch)
4275 + gdbarch_num_pseudo_regs (current_gdbarch);
4276 regnum++)
4277 {
4278 if (*gdbarch_register_name (current_gdbarch, regnum) == '\0')
4279 continue; /* unused register */
4280 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4281 TYPE_CODE_FLT)
4282 break; /* end row: reached FP register */
4283 if (register_size (current_gdbarch, regnum)
4284 > mips_abi_regsize (current_gdbarch))
4285 break; /* End row: large register. */
4286
4287 /* OK: get the data in raw format. */
4288 if (!frame_register_read (frame, regnum, raw_buffer))
4289 error (_("can't read register %d (%s)"),
4290 regnum, gdbarch_register_name (current_gdbarch, regnum));
4291 /* pad small registers */
4292 for (byte = 0;
4293 byte < (mips_abi_regsize (current_gdbarch)
4294 - register_size (current_gdbarch, regnum)); byte++)
4295 printf_filtered (" ");
4296 /* Now print the register value in hex, endian order. */
4297 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4298 for (byte =
4299 register_size (current_gdbarch,
4300 regnum) - register_size (current_gdbarch, regnum);
4301 byte < register_size (current_gdbarch, regnum); byte++)
4302 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4303 else
4304 for (byte = register_size (current_gdbarch, regnum) - 1;
4305 byte >= 0; byte--)
4306 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4307 fprintf_filtered (file, " ");
4308 col++;
4309 }
4310 if (col > 0) /* ie. if we actually printed anything... */
4311 fprintf_filtered (file, "\n");
4312
4313 return regnum;
4314 }
4315
4316 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4317
4318 static void
4319 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4320 struct frame_info *frame, int regnum, int all)
4321 {
4322 if (regnum != -1) /* do one specified register */
4323 {
4324 gdb_assert (regnum >= gdbarch_num_regs (current_gdbarch));
4325 if (*(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
4326 error (_("Not a valid register for the current processor type"));
4327
4328 mips_print_register (file, frame, regnum);
4329 fprintf_filtered (file, "\n");
4330 }
4331 else
4332 /* do all (or most) registers */
4333 {
4334 regnum = gdbarch_num_regs (current_gdbarch);
4335 while (regnum < gdbarch_num_regs (current_gdbarch)
4336 + gdbarch_num_pseudo_regs (current_gdbarch))
4337 {
4338 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4339 TYPE_CODE_FLT)
4340 {
4341 if (all) /* true for "INFO ALL-REGISTERS" command */
4342 regnum = print_fp_register_row (file, frame, regnum);
4343 else
4344 regnum += MIPS_NUMREGS; /* skip floating point regs */
4345 }
4346 else
4347 regnum = print_gp_register_row (file, frame, regnum);
4348 }
4349 }
4350 }
4351
4352 /* Is this a branch with a delay slot? */
4353
4354 static int
4355 is_delayed (unsigned long insn)
4356 {
4357 int i;
4358 for (i = 0; i < NUMOPCODES; ++i)
4359 if (mips_opcodes[i].pinfo != INSN_MACRO
4360 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4361 break;
4362 return (i < NUMOPCODES
4363 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4364 | INSN_COND_BRANCH_DELAY
4365 | INSN_COND_BRANCH_LIKELY)));
4366 }
4367
4368 int
4369 mips_single_step_through_delay (struct gdbarch *gdbarch,
4370 struct frame_info *frame)
4371 {
4372 CORE_ADDR pc = get_frame_pc (frame);
4373 gdb_byte buf[MIPS_INSN32_SIZE];
4374
4375 /* There is no branch delay slot on MIPS16. */
4376 if (mips_pc_is_mips16 (pc))
4377 return 0;
4378
4379 if (!breakpoint_here_p (pc + 4))
4380 return 0;
4381
4382 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4383 /* If error reading memory, guess that it is not a delayed
4384 branch. */
4385 return 0;
4386 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
4387 }
4388
4389 /* To skip prologues, I use this predicate. Returns either PC itself
4390 if the code at PC does not look like a function prologue; otherwise
4391 returns an address that (if we're lucky) follows the prologue. If
4392 LENIENT, then we must skip everything which is involved in setting
4393 up the frame (it's OK to skip more, just so long as we don't skip
4394 anything which might clobber the registers which are being saved.
4395 We must skip more in the case where part of the prologue is in the
4396 delay slot of a non-prologue instruction). */
4397
4398 static CORE_ADDR
4399 mips_skip_prologue (CORE_ADDR pc)
4400 {
4401 CORE_ADDR limit_pc;
4402 CORE_ADDR func_addr;
4403
4404 /* See if we can determine the end of the prologue via the symbol table.
4405 If so, then return either PC, or the PC after the prologue, whichever
4406 is greater. */
4407 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4408 {
4409 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4410 if (post_prologue_pc != 0)
4411 return max (pc, post_prologue_pc);
4412 }
4413
4414 /* Can't determine prologue from the symbol table, need to examine
4415 instructions. */
4416
4417 /* Find an upper limit on the function prologue using the debug
4418 information. If the debug information could not be used to provide
4419 that bound, then use an arbitrary large number as the upper bound. */
4420 limit_pc = skip_prologue_using_sal (pc);
4421 if (limit_pc == 0)
4422 limit_pc = pc + 100; /* Magic. */
4423
4424 if (mips_pc_is_mips16 (pc))
4425 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
4426 else
4427 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
4428 }
4429
4430 /* Check whether the PC is in a function epilogue (32-bit version).
4431 This is a helper function for mips_in_function_epilogue_p. */
4432 static int
4433 mips32_in_function_epilogue_p (CORE_ADDR pc)
4434 {
4435 CORE_ADDR func_addr = 0, func_end = 0;
4436
4437 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4438 {
4439 /* The MIPS epilogue is max. 12 bytes long. */
4440 CORE_ADDR addr = func_end - 12;
4441
4442 if (addr < func_addr + 4)
4443 addr = func_addr + 4;
4444 if (pc < addr)
4445 return 0;
4446
4447 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
4448 {
4449 unsigned long high_word;
4450 unsigned long inst;
4451
4452 inst = mips_fetch_instruction (pc);
4453 high_word = (inst >> 16) & 0xffff;
4454
4455 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
4456 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
4457 && inst != 0x03e00008 /* jr $ra */
4458 && inst != 0x00000000) /* nop */
4459 return 0;
4460 }
4461
4462 return 1;
4463 }
4464
4465 return 0;
4466 }
4467
4468 /* Check whether the PC is in a function epilogue (16-bit version).
4469 This is a helper function for mips_in_function_epilogue_p. */
4470 static int
4471 mips16_in_function_epilogue_p (CORE_ADDR pc)
4472 {
4473 CORE_ADDR func_addr = 0, func_end = 0;
4474
4475 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4476 {
4477 /* The MIPS epilogue is max. 12 bytes long. */
4478 CORE_ADDR addr = func_end - 12;
4479
4480 if (addr < func_addr + 4)
4481 addr = func_addr + 4;
4482 if (pc < addr)
4483 return 0;
4484
4485 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
4486 {
4487 unsigned short inst;
4488
4489 inst = mips_fetch_instruction (pc);
4490
4491 if ((inst & 0xf800) == 0xf000) /* extend */
4492 continue;
4493
4494 if (inst != 0x6300 /* addiu $sp,offset */
4495 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
4496 && inst != 0xe820 /* jr $ra */
4497 && inst != 0xe8a0 /* jrc $ra */
4498 && inst != 0x6500) /* nop */
4499 return 0;
4500 }
4501
4502 return 1;
4503 }
4504
4505 return 0;
4506 }
4507
4508 /* The epilogue is defined here as the area at the end of a function,
4509 after an instruction which destroys the function's stack frame. */
4510 static int
4511 mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4512 {
4513 if (mips_pc_is_mips16 (pc))
4514 return mips16_in_function_epilogue_p (pc);
4515 else
4516 return mips32_in_function_epilogue_p (pc);
4517 }
4518
4519 /* Root of all "set mips "/"show mips " commands. This will eventually be
4520 used for all MIPS-specific commands. */
4521
4522 static void
4523 show_mips_command (char *args, int from_tty)
4524 {
4525 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4526 }
4527
4528 static void
4529 set_mips_command (char *args, int from_tty)
4530 {
4531 printf_unfiltered
4532 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4533 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4534 }
4535
4536 /* Commands to show/set the MIPS FPU type. */
4537
4538 static void
4539 show_mipsfpu_command (char *args, int from_tty)
4540 {
4541 char *fpu;
4542 switch (MIPS_FPU_TYPE)
4543 {
4544 case MIPS_FPU_SINGLE:
4545 fpu = "single-precision";
4546 break;
4547 case MIPS_FPU_DOUBLE:
4548 fpu = "double-precision";
4549 break;
4550 case MIPS_FPU_NONE:
4551 fpu = "absent (none)";
4552 break;
4553 default:
4554 internal_error (__FILE__, __LINE__, _("bad switch"));
4555 }
4556 if (mips_fpu_type_auto)
4557 printf_unfiltered
4558 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4559 fpu);
4560 else
4561 printf_unfiltered
4562 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4563 }
4564
4565
4566 static void
4567 set_mipsfpu_command (char *args, int from_tty)
4568 {
4569 printf_unfiltered
4570 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4571 show_mipsfpu_command (args, from_tty);
4572 }
4573
4574 static void
4575 set_mipsfpu_single_command (char *args, int from_tty)
4576 {
4577 struct gdbarch_info info;
4578 gdbarch_info_init (&info);
4579 mips_fpu_type = MIPS_FPU_SINGLE;
4580 mips_fpu_type_auto = 0;
4581 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4582 instead of relying on globals. Doing that would let generic code
4583 handle the search for this specific architecture. */
4584 if (!gdbarch_update_p (info))
4585 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4586 }
4587
4588 static void
4589 set_mipsfpu_double_command (char *args, int from_tty)
4590 {
4591 struct gdbarch_info info;
4592 gdbarch_info_init (&info);
4593 mips_fpu_type = MIPS_FPU_DOUBLE;
4594 mips_fpu_type_auto = 0;
4595 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4596 instead of relying on globals. Doing that would let generic code
4597 handle the search for this specific architecture. */
4598 if (!gdbarch_update_p (info))
4599 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4600 }
4601
4602 static void
4603 set_mipsfpu_none_command (char *args, int from_tty)
4604 {
4605 struct gdbarch_info info;
4606 gdbarch_info_init (&info);
4607 mips_fpu_type = MIPS_FPU_NONE;
4608 mips_fpu_type_auto = 0;
4609 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4610 instead of relying on globals. Doing that would let generic code
4611 handle the search for this specific architecture. */
4612 if (!gdbarch_update_p (info))
4613 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4614 }
4615
4616 static void
4617 set_mipsfpu_auto_command (char *args, int from_tty)
4618 {
4619 mips_fpu_type_auto = 1;
4620 }
4621
4622 /* Attempt to identify the particular processor model by reading the
4623 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4624 the relevant processor still exists (it dates back to '94) and
4625 secondly this is not the way to do this. The processor type should
4626 be set by forcing an architecture change. */
4627
4628 void
4629 deprecated_mips_set_processor_regs_hack (void)
4630 {
4631 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4632 ULONGEST prid;
4633
4634 regcache_cooked_read_unsigned (get_current_regcache (),
4635 MIPS_PRID_REGNUM, &prid);
4636 if ((prid & ~0xf) == 0x700)
4637 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4638 }
4639
4640 /* Just like reinit_frame_cache, but with the right arguments to be
4641 callable as an sfunc. */
4642
4643 static void
4644 reinit_frame_cache_sfunc (char *args, int from_tty,
4645 struct cmd_list_element *c)
4646 {
4647 reinit_frame_cache ();
4648 }
4649
4650 static int
4651 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4652 {
4653 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4654
4655 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4656 disassembler needs to be able to locally determine the ISA, and
4657 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4658 work. */
4659 if (mips_pc_is_mips16 (memaddr))
4660 info->mach = bfd_mach_mips16;
4661
4662 /* Round down the instruction address to the appropriate boundary. */
4663 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4664
4665 /* Set the disassembler options. */
4666 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
4667 {
4668 /* Set up the disassembler info, so that we get the right
4669 register names from libopcodes. */
4670 if (tdep->mips_abi == MIPS_ABI_N32)
4671 info->disassembler_options = "gpr-names=n32";
4672 else
4673 info->disassembler_options = "gpr-names=64";
4674 info->flavour = bfd_target_elf_flavour;
4675 }
4676 else
4677 /* This string is not recognized explicitly by the disassembler,
4678 but it tells the disassembler to not try to guess the ABI from
4679 the bfd elf headers, such that, if the user overrides the ABI
4680 of a program linked as NewABI, the disassembly will follow the
4681 register naming conventions specified by the user. */
4682 info->disassembler_options = "gpr-names=32";
4683
4684 /* Call the appropriate disassembler based on the target endian-ness. */
4685 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4686 return print_insn_big_mips (memaddr, info);
4687 else
4688 return print_insn_little_mips (memaddr, info);
4689 }
4690
4691 /* This function implements gdbarch_breakpoint_from_pc. It uses the program
4692 counter value to determine whether a 16- or 32-bit breakpoint should be used.
4693 It returns a pointer to a string of bytes that encode a breakpoint
4694 instruction, stores the length of the string to *lenptr, and adjusts pc (if
4695 necessary) to point to the actual memory location where the breakpoint
4696 should be inserted. */
4697
4698 static const gdb_byte *
4699 mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
4700 {
4701 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4702 {
4703 if (mips_pc_is_mips16 (*pcptr))
4704 {
4705 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4706 *pcptr = unmake_mips16_addr (*pcptr);
4707 *lenptr = sizeof (mips16_big_breakpoint);
4708 return mips16_big_breakpoint;
4709 }
4710 else
4711 {
4712 /* The IDT board uses an unusual breakpoint value, and
4713 sometimes gets confused when it sees the usual MIPS
4714 breakpoint instruction. */
4715 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4716 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4717 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
4718
4719 *lenptr = sizeof (big_breakpoint);
4720
4721 if (strcmp (target_shortname, "mips") == 0)
4722 return idt_big_breakpoint;
4723 else if (strcmp (target_shortname, "ddb") == 0
4724 || strcmp (target_shortname, "pmon") == 0
4725 || strcmp (target_shortname, "lsi") == 0)
4726 return pmon_big_breakpoint;
4727 else
4728 return big_breakpoint;
4729 }
4730 }
4731 else
4732 {
4733 if (mips_pc_is_mips16 (*pcptr))
4734 {
4735 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4736 *pcptr = unmake_mips16_addr (*pcptr);
4737 *lenptr = sizeof (mips16_little_breakpoint);
4738 return mips16_little_breakpoint;
4739 }
4740 else
4741 {
4742 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4743 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4744 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
4745
4746 *lenptr = sizeof (little_breakpoint);
4747
4748 if (strcmp (target_shortname, "mips") == 0)
4749 return idt_little_breakpoint;
4750 else if (strcmp (target_shortname, "ddb") == 0
4751 || strcmp (target_shortname, "pmon") == 0
4752 || strcmp (target_shortname, "lsi") == 0)
4753 return pmon_little_breakpoint;
4754 else
4755 return little_breakpoint;
4756 }
4757 }
4758 }
4759
4760 /* If PC is in a mips16 call or return stub, return the address of the target
4761 PC, which is either the callee or the caller. There are several
4762 cases which must be handled:
4763
4764 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4765 target PC is in $31 ($ra).
4766 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4767 and the target PC is in $2.
4768 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4769 before the jal instruction, this is effectively a call stub
4770 and the the target PC is in $2. Otherwise this is effectively
4771 a return stub and the target PC is in $18.
4772
4773 See the source code for the stubs in gcc/config/mips/mips16.S for
4774 gory details. */
4775
4776 static CORE_ADDR
4777 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
4778 {
4779 char *name;
4780 CORE_ADDR start_addr;
4781
4782 /* Find the starting address and name of the function containing the PC. */
4783 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4784 return 0;
4785
4786 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4787 target PC is in $31 ($ra). */
4788 if (strcmp (name, "__mips16_ret_sf") == 0
4789 || strcmp (name, "__mips16_ret_df") == 0)
4790 return get_frame_register_signed (frame, MIPS_RA_REGNUM);
4791
4792 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4793 {
4794 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4795 and the target PC is in $2. */
4796 if (name[19] >= '0' && name[19] <= '9')
4797 return get_frame_register_signed (frame, 2);
4798
4799 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4800 before the jal instruction, this is effectively a call stub
4801 and the the target PC is in $2. Otherwise this is effectively
4802 a return stub and the target PC is in $18. */
4803 else if (name[19] == 's' || name[19] == 'd')
4804 {
4805 if (pc == start_addr)
4806 {
4807 /* Check if the target of the stub is a compiler-generated
4808 stub. Such a stub for a function bar might have a name
4809 like __fn_stub_bar, and might look like this:
4810 mfc1 $4,$f13
4811 mfc1 $5,$f12
4812 mfc1 $6,$f15
4813 mfc1 $7,$f14
4814 la $1,bar (becomes a lui/addiu pair)
4815 jr $1
4816 So scan down to the lui/addi and extract the target
4817 address from those two instructions. */
4818
4819 CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
4820 ULONGEST inst;
4821 int i;
4822
4823 /* See if the name of the target function is __fn_stub_*. */
4824 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4825 0)
4826 return target_pc;
4827 if (strncmp (name, "__fn_stub_", 10) != 0
4828 && strcmp (name, "etext") != 0
4829 && strcmp (name, "_etext") != 0)
4830 return target_pc;
4831
4832 /* Scan through this _fn_stub_ code for the lui/addiu pair.
4833 The limit on the search is arbitrarily set to 20
4834 instructions. FIXME. */
4835 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
4836 {
4837 inst = mips_fetch_instruction (target_pc);
4838 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4839 pc = (inst << 16) & 0xffff0000; /* high word */
4840 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4841 return pc | (inst & 0xffff); /* low word */
4842 }
4843
4844 /* Couldn't find the lui/addui pair, so return stub address. */
4845 return target_pc;
4846 }
4847 else
4848 /* This is the 'return' part of a call stub. The return
4849 address is in $r18. */
4850 return get_frame_register_signed (frame, 18);
4851 }
4852 }
4853 return 0; /* not a stub */
4854 }
4855
4856 /* Convert a dbx stab register number (from `r' declaration) to a GDB
4857 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
4858
4859 static int
4860 mips_stab_reg_to_regnum (int num)
4861 {
4862 int regnum;
4863 if (num >= 0 && num < 32)
4864 regnum = num;
4865 else if (num >= 38 && num < 70)
4866 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
4867 else if (num == 70)
4868 regnum = mips_regnum (current_gdbarch)->hi;
4869 else if (num == 71)
4870 regnum = mips_regnum (current_gdbarch)->lo;
4871 else
4872 /* This will hopefully (eventually) provoke a warning. Should
4873 we be calling complaint() here? */
4874 return gdbarch_num_regs (current_gdbarch)
4875 + gdbarch_num_pseudo_regs (current_gdbarch);
4876 return gdbarch_num_regs (current_gdbarch) + regnum;
4877 }
4878
4879
4880 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4881 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
4882
4883 static int
4884 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
4885 {
4886 int regnum;
4887 if (num >= 0 && num < 32)
4888 regnum = num;
4889 else if (num >= 32 && num < 64)
4890 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
4891 else if (num == 64)
4892 regnum = mips_regnum (current_gdbarch)->hi;
4893 else if (num == 65)
4894 regnum = mips_regnum (current_gdbarch)->lo;
4895 else
4896 /* This will hopefully (eventually) provoke a warning. Should we
4897 be calling complaint() here? */
4898 return gdbarch_num_regs (current_gdbarch)
4899 + gdbarch_num_pseudo_regs (current_gdbarch);
4900 return gdbarch_num_regs (current_gdbarch) + regnum;
4901 }
4902
4903 static int
4904 mips_register_sim_regno (int regnum)
4905 {
4906 /* Only makes sense to supply raw registers. */
4907 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (current_gdbarch));
4908 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4909 decide if it is valid. Should instead define a standard sim/gdb
4910 register numbering scheme. */
4911 if (gdbarch_register_name (current_gdbarch,
4912 gdbarch_num_regs
4913 (current_gdbarch) + regnum) != NULL
4914 && gdbarch_register_name (current_gdbarch,
4915 gdbarch_num_regs
4916 (current_gdbarch) + regnum)[0] != '\0')
4917 return regnum;
4918 else
4919 return LEGACY_SIM_REGNO_IGNORE;
4920 }
4921
4922
4923 /* Convert an integer into an address. Extracting the value signed
4924 guarantees a correctly sign extended address. */
4925
4926 static CORE_ADDR
4927 mips_integer_to_address (struct gdbarch *gdbarch,
4928 struct type *type, const gdb_byte *buf)
4929 {
4930 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
4931 }
4932
4933 /* Dummy virtual frame pointer method. This is no more or less accurate
4934 than most other architectures; we just need to be explicit about it,
4935 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
4936 an assertion failure. */
4937
4938 static void
4939 mips_virtual_frame_pointer (CORE_ADDR pc, int *reg, LONGEST *offset)
4940 {
4941 *reg = MIPS_SP_REGNUM;
4942 *offset = 0;
4943 }
4944
4945 static void
4946 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4947 {
4948 enum mips_abi *abip = (enum mips_abi *) obj;
4949 const char *name = bfd_get_section_name (abfd, sect);
4950
4951 if (*abip != MIPS_ABI_UNKNOWN)
4952 return;
4953
4954 if (strncmp (name, ".mdebug.", 8) != 0)
4955 return;
4956
4957 if (strcmp (name, ".mdebug.abi32") == 0)
4958 *abip = MIPS_ABI_O32;
4959 else if (strcmp (name, ".mdebug.abiN32") == 0)
4960 *abip = MIPS_ABI_N32;
4961 else if (strcmp (name, ".mdebug.abi64") == 0)
4962 *abip = MIPS_ABI_N64;
4963 else if (strcmp (name, ".mdebug.abiO64") == 0)
4964 *abip = MIPS_ABI_O64;
4965 else if (strcmp (name, ".mdebug.eabi32") == 0)
4966 *abip = MIPS_ABI_EABI32;
4967 else if (strcmp (name, ".mdebug.eabi64") == 0)
4968 *abip = MIPS_ABI_EABI64;
4969 else
4970 warning (_("unsupported ABI %s."), name + 8);
4971 }
4972
4973 static void
4974 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
4975 {
4976 int *lbp = (int *) obj;
4977 const char *name = bfd_get_section_name (abfd, sect);
4978
4979 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
4980 *lbp = 32;
4981 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
4982 *lbp = 64;
4983 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
4984 warning (_("unrecognized .gcc_compiled_longXX"));
4985 }
4986
4987 static enum mips_abi
4988 global_mips_abi (void)
4989 {
4990 int i;
4991
4992 for (i = 0; mips_abi_strings[i] != NULL; i++)
4993 if (mips_abi_strings[i] == mips_abi_string)
4994 return (enum mips_abi) i;
4995
4996 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
4997 }
4998
4999 static void
5000 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
5001 {
5002 /* If the size matches the set of 32-bit or 64-bit integer registers,
5003 assume that's what we've got. */
5004 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
5005 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
5006
5007 /* If the size matches the full set of registers GDB traditionally
5008 knows about, including floating point, for either 32-bit or
5009 64-bit, assume that's what we've got. */
5010 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
5011 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
5012
5013 /* Otherwise we don't have a useful guess. */
5014 }
5015
5016 static struct value *
5017 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
5018 {
5019 const int *reg_p = baton;
5020 return value_of_register (*reg_p, frame);
5021 }
5022
5023 static struct gdbarch *
5024 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5025 {
5026 struct gdbarch *gdbarch;
5027 struct gdbarch_tdep *tdep;
5028 int elf_flags;
5029 enum mips_abi mips_abi, found_abi, wanted_abi;
5030 int i, num_regs;
5031 enum mips_fpu_type fpu_type;
5032 struct tdesc_arch_data *tdesc_data = NULL;
5033 int elf_fpu_type = 0;
5034
5035 /* Check any target description for validity. */
5036 if (tdesc_has_registers (info.target_desc))
5037 {
5038 static const char *const mips_gprs[] = {
5039 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5040 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5041 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5042 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5043 };
5044 static const char *const mips_fprs[] = {
5045 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5046 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5047 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5048 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
5049 };
5050
5051 const struct tdesc_feature *feature;
5052 int valid_p;
5053
5054 feature = tdesc_find_feature (info.target_desc,
5055 "org.gnu.gdb.mips.cpu");
5056 if (feature == NULL)
5057 return NULL;
5058
5059 tdesc_data = tdesc_data_alloc ();
5060
5061 valid_p = 1;
5062 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
5063 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
5064 mips_gprs[i]);
5065
5066
5067 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5068 MIPS_EMBED_LO_REGNUM, "lo");
5069 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5070 MIPS_EMBED_HI_REGNUM, "hi");
5071 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5072 MIPS_EMBED_PC_REGNUM, "pc");
5073
5074 if (!valid_p)
5075 {
5076 tdesc_data_cleanup (tdesc_data);
5077 return NULL;
5078 }
5079
5080 feature = tdesc_find_feature (info.target_desc,
5081 "org.gnu.gdb.mips.cp0");
5082 if (feature == NULL)
5083 {
5084 tdesc_data_cleanup (tdesc_data);
5085 return NULL;
5086 }
5087
5088 valid_p = 1;
5089 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5090 MIPS_EMBED_BADVADDR_REGNUM,
5091 "badvaddr");
5092 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5093 MIPS_PS_REGNUM, "status");
5094 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5095 MIPS_EMBED_CAUSE_REGNUM, "cause");
5096
5097 if (!valid_p)
5098 {
5099 tdesc_data_cleanup (tdesc_data);
5100 return NULL;
5101 }
5102
5103 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
5104 backend is not prepared for that, though. */
5105 feature = tdesc_find_feature (info.target_desc,
5106 "org.gnu.gdb.mips.fpu");
5107 if (feature == NULL)
5108 {
5109 tdesc_data_cleanup (tdesc_data);
5110 return NULL;
5111 }
5112
5113 valid_p = 1;
5114 for (i = 0; i < 32; i++)
5115 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5116 i + MIPS_EMBED_FP0_REGNUM,
5117 mips_fprs[i]);
5118
5119 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5120 MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
5121 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5122 MIPS_EMBED_FP0_REGNUM + 33, "fir");
5123
5124 if (!valid_p)
5125 {
5126 tdesc_data_cleanup (tdesc_data);
5127 return NULL;
5128 }
5129
5130 /* It would be nice to detect an attempt to use a 64-bit ABI
5131 when only 32-bit registers are provided. */
5132 }
5133
5134 /* First of all, extract the elf_flags, if available. */
5135 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5136 elf_flags = elf_elfheader (info.abfd)->e_flags;
5137 else if (arches != NULL)
5138 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
5139 else
5140 elf_flags = 0;
5141 if (gdbarch_debug)
5142 fprintf_unfiltered (gdb_stdlog,
5143 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
5144
5145 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5146 switch ((elf_flags & EF_MIPS_ABI))
5147 {
5148 case E_MIPS_ABI_O32:
5149 found_abi = MIPS_ABI_O32;
5150 break;
5151 case E_MIPS_ABI_O64:
5152 found_abi = MIPS_ABI_O64;
5153 break;
5154 case E_MIPS_ABI_EABI32:
5155 found_abi = MIPS_ABI_EABI32;
5156 break;
5157 case E_MIPS_ABI_EABI64:
5158 found_abi = MIPS_ABI_EABI64;
5159 break;
5160 default:
5161 if ((elf_flags & EF_MIPS_ABI2))
5162 found_abi = MIPS_ABI_N32;
5163 else
5164 found_abi = MIPS_ABI_UNKNOWN;
5165 break;
5166 }
5167
5168 /* GCC creates a pseudo-section whose name describes the ABI. */
5169 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5170 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
5171
5172 /* If we have no useful BFD information, use the ABI from the last
5173 MIPS architecture (if there is one). */
5174 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5175 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5176
5177 /* Try the architecture for any hint of the correct ABI. */
5178 if (found_abi == MIPS_ABI_UNKNOWN
5179 && info.bfd_arch_info != NULL
5180 && info.bfd_arch_info->arch == bfd_arch_mips)
5181 {
5182 switch (info.bfd_arch_info->mach)
5183 {
5184 case bfd_mach_mips3900:
5185 found_abi = MIPS_ABI_EABI32;
5186 break;
5187 case bfd_mach_mips4100:
5188 case bfd_mach_mips5000:
5189 found_abi = MIPS_ABI_EABI64;
5190 break;
5191 case bfd_mach_mips8000:
5192 case bfd_mach_mips10000:
5193 /* On Irix, ELF64 executables use the N64 ABI. The
5194 pseudo-sections which describe the ABI aren't present
5195 on IRIX. (Even for executables created by gcc.) */
5196 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5197 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5198 found_abi = MIPS_ABI_N64;
5199 else
5200 found_abi = MIPS_ABI_N32;
5201 break;
5202 }
5203 }
5204
5205 /* Default 64-bit objects to N64 instead of O32. */
5206 if (found_abi == MIPS_ABI_UNKNOWN
5207 && info.abfd != NULL
5208 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5209 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5210 found_abi = MIPS_ABI_N64;
5211
5212 if (gdbarch_debug)
5213 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5214 found_abi);
5215
5216 /* What has the user specified from the command line? */
5217 wanted_abi = global_mips_abi ();
5218 if (gdbarch_debug)
5219 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5220 wanted_abi);
5221
5222 /* Now that we have found what the ABI for this binary would be,
5223 check whether the user is overriding it. */
5224 if (wanted_abi != MIPS_ABI_UNKNOWN)
5225 mips_abi = wanted_abi;
5226 else if (found_abi != MIPS_ABI_UNKNOWN)
5227 mips_abi = found_abi;
5228 else
5229 mips_abi = MIPS_ABI_O32;
5230 if (gdbarch_debug)
5231 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5232 mips_abi);
5233
5234 /* Also used when doing an architecture lookup. */
5235 if (gdbarch_debug)
5236 fprintf_unfiltered (gdb_stdlog,
5237 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5238 mips64_transfers_32bit_regs_p);
5239
5240 /* Determine the MIPS FPU type. */
5241 #ifdef HAVE_ELF
5242 if (info.abfd
5243 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5244 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5245 Tag_GNU_MIPS_ABI_FP);
5246 #endif /* HAVE_ELF */
5247
5248 if (!mips_fpu_type_auto)
5249 fpu_type = mips_fpu_type;
5250 else if (elf_fpu_type != 0)
5251 {
5252 switch (elf_fpu_type)
5253 {
5254 case 1:
5255 fpu_type = MIPS_FPU_DOUBLE;
5256 break;
5257 case 2:
5258 fpu_type = MIPS_FPU_SINGLE;
5259 break;
5260 case 3:
5261 default:
5262 /* Soft float or unknown. */
5263 fpu_type = MIPS_FPU_NONE;
5264 break;
5265 }
5266 }
5267 else if (info.bfd_arch_info != NULL
5268 && info.bfd_arch_info->arch == bfd_arch_mips)
5269 switch (info.bfd_arch_info->mach)
5270 {
5271 case bfd_mach_mips3900:
5272 case bfd_mach_mips4100:
5273 case bfd_mach_mips4111:
5274 case bfd_mach_mips4120:
5275 fpu_type = MIPS_FPU_NONE;
5276 break;
5277 case bfd_mach_mips4650:
5278 fpu_type = MIPS_FPU_SINGLE;
5279 break;
5280 default:
5281 fpu_type = MIPS_FPU_DOUBLE;
5282 break;
5283 }
5284 else if (arches != NULL)
5285 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5286 else
5287 fpu_type = MIPS_FPU_DOUBLE;
5288 if (gdbarch_debug)
5289 fprintf_unfiltered (gdb_stdlog,
5290 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
5291
5292 /* Check for blatant incompatibilities. */
5293
5294 /* If we have only 32-bit registers, then we can't debug a 64-bit
5295 ABI. */
5296 if (info.target_desc
5297 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
5298 && mips_abi != MIPS_ABI_EABI32
5299 && mips_abi != MIPS_ABI_O32)
5300 {
5301 if (tdesc_data != NULL)
5302 tdesc_data_cleanup (tdesc_data);
5303 return NULL;
5304 }
5305
5306 /* try to find a pre-existing architecture */
5307 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5308 arches != NULL;
5309 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5310 {
5311 /* MIPS needs to be pedantic about which ABI the object is
5312 using. */
5313 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5314 continue;
5315 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5316 continue;
5317 /* Need to be pedantic about which register virtual size is
5318 used. */
5319 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5320 != mips64_transfers_32bit_regs_p)
5321 continue;
5322 /* Be pedantic about which FPU is selected. */
5323 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5324 continue;
5325
5326 if (tdesc_data != NULL)
5327 tdesc_data_cleanup (tdesc_data);
5328 return arches->gdbarch;
5329 }
5330
5331 /* Need a new architecture. Fill in a target specific vector. */
5332 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5333 gdbarch = gdbarch_alloc (&info, tdep);
5334 tdep->elf_flags = elf_flags;
5335 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
5336 tdep->found_abi = found_abi;
5337 tdep->mips_abi = mips_abi;
5338 tdep->mips_fpu_type = fpu_type;
5339 tdep->register_size_valid_p = 0;
5340 tdep->register_size = 0;
5341
5342 if (info.target_desc)
5343 {
5344 /* Some useful properties can be inferred from the target. */
5345 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
5346 {
5347 tdep->register_size_valid_p = 1;
5348 tdep->register_size = 4;
5349 }
5350 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
5351 {
5352 tdep->register_size_valid_p = 1;
5353 tdep->register_size = 8;
5354 }
5355 }
5356
5357 /* Initially set everything according to the default ABI/ISA. */
5358 set_gdbarch_short_bit (gdbarch, 16);
5359 set_gdbarch_int_bit (gdbarch, 32);
5360 set_gdbarch_float_bit (gdbarch, 32);
5361 set_gdbarch_double_bit (gdbarch, 64);
5362 set_gdbarch_long_double_bit (gdbarch, 64);
5363 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5364 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5365 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5366
5367 set_gdbarch_elf_make_msymbol_special (gdbarch,
5368 mips_elf_make_msymbol_special);
5369
5370 /* Fill in the OS dependant register numbers and names. */
5371 {
5372 const char **reg_names;
5373 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5374 struct mips_regnum);
5375 if (tdesc_has_registers (info.target_desc))
5376 {
5377 regnum->lo = MIPS_EMBED_LO_REGNUM;
5378 regnum->hi = MIPS_EMBED_HI_REGNUM;
5379 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5380 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5381 regnum->pc = MIPS_EMBED_PC_REGNUM;
5382 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5383 regnum->fp_control_status = 70;
5384 regnum->fp_implementation_revision = 71;
5385 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
5386 reg_names = NULL;
5387 }
5388 else if (info.osabi == GDB_OSABI_IRIX)
5389 {
5390 regnum->fp0 = 32;
5391 regnum->pc = 64;
5392 regnum->cause = 65;
5393 regnum->badvaddr = 66;
5394 regnum->hi = 67;
5395 regnum->lo = 68;
5396 regnum->fp_control_status = 69;
5397 regnum->fp_implementation_revision = 70;
5398 num_regs = 71;
5399 reg_names = mips_irix_reg_names;
5400 }
5401 else
5402 {
5403 regnum->lo = MIPS_EMBED_LO_REGNUM;
5404 regnum->hi = MIPS_EMBED_HI_REGNUM;
5405 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5406 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5407 regnum->pc = MIPS_EMBED_PC_REGNUM;
5408 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5409 regnum->fp_control_status = 70;
5410 regnum->fp_implementation_revision = 71;
5411 num_regs = 90;
5412 if (info.bfd_arch_info != NULL
5413 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5414 reg_names = mips_tx39_reg_names;
5415 else
5416 reg_names = mips_generic_reg_names;
5417 }
5418 /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
5419 replaced by read_pc? */
5420 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5421 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5422 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5423 set_gdbarch_num_regs (gdbarch, num_regs);
5424 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5425 set_gdbarch_register_name (gdbarch, mips_register_name);
5426 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
5427 tdep->mips_processor_reg_names = reg_names;
5428 tdep->regnum = regnum;
5429 }
5430
5431 switch (mips_abi)
5432 {
5433 case MIPS_ABI_O32:
5434 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5435 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
5436 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5437 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5438 tdep->default_mask_address_p = 0;
5439 set_gdbarch_long_bit (gdbarch, 32);
5440 set_gdbarch_ptr_bit (gdbarch, 32);
5441 set_gdbarch_long_long_bit (gdbarch, 64);
5442 break;
5443 case MIPS_ABI_O64:
5444 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5445 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
5446 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5447 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5448 tdep->default_mask_address_p = 0;
5449 set_gdbarch_long_bit (gdbarch, 32);
5450 set_gdbarch_ptr_bit (gdbarch, 32);
5451 set_gdbarch_long_long_bit (gdbarch, 64);
5452 break;
5453 case MIPS_ABI_EABI32:
5454 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5455 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5456 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5457 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5458 tdep->default_mask_address_p = 0;
5459 set_gdbarch_long_bit (gdbarch, 32);
5460 set_gdbarch_ptr_bit (gdbarch, 32);
5461 set_gdbarch_long_long_bit (gdbarch, 64);
5462 break;
5463 case MIPS_ABI_EABI64:
5464 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5465 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5466 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5467 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5468 tdep->default_mask_address_p = 0;
5469 set_gdbarch_long_bit (gdbarch, 64);
5470 set_gdbarch_ptr_bit (gdbarch, 64);
5471 set_gdbarch_long_long_bit (gdbarch, 64);
5472 break;
5473 case MIPS_ABI_N32:
5474 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5475 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5476 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5477 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5478 tdep->default_mask_address_p = 0;
5479 set_gdbarch_long_bit (gdbarch, 32);
5480 set_gdbarch_ptr_bit (gdbarch, 32);
5481 set_gdbarch_long_long_bit (gdbarch, 64);
5482 set_gdbarch_long_double_bit (gdbarch, 128);
5483 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
5484 break;
5485 case MIPS_ABI_N64:
5486 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5487 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5488 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5489 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5490 tdep->default_mask_address_p = 0;
5491 set_gdbarch_long_bit (gdbarch, 64);
5492 set_gdbarch_ptr_bit (gdbarch, 64);
5493 set_gdbarch_long_long_bit (gdbarch, 64);
5494 set_gdbarch_long_double_bit (gdbarch, 128);
5495 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
5496 break;
5497 default:
5498 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5499 }
5500
5501 /* GCC creates a pseudo-section whose name specifies the size of
5502 longs, since -mlong32 or -mlong64 may be used independent of
5503 other options. How those options affect pointer sizes is ABI and
5504 architecture dependent, so use them to override the default sizes
5505 set by the ABI. This table shows the relationship between ABI,
5506 -mlongXX, and size of pointers:
5507
5508 ABI -mlongXX ptr bits
5509 --- -------- --------
5510 o32 32 32
5511 o32 64 32
5512 n32 32 32
5513 n32 64 64
5514 o64 32 32
5515 o64 64 64
5516 n64 32 32
5517 n64 64 64
5518 eabi32 32 32
5519 eabi32 64 32
5520 eabi64 32 32
5521 eabi64 64 64
5522
5523 Note that for o32 and eabi32, pointers are always 32 bits
5524 regardless of any -mlongXX option. For all others, pointers and
5525 longs are the same, as set by -mlongXX or set by defaults.
5526 */
5527
5528 if (info.abfd != NULL)
5529 {
5530 int long_bit = 0;
5531
5532 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5533 if (long_bit)
5534 {
5535 set_gdbarch_long_bit (gdbarch, long_bit);
5536 switch (mips_abi)
5537 {
5538 case MIPS_ABI_O32:
5539 case MIPS_ABI_EABI32:
5540 break;
5541 case MIPS_ABI_N32:
5542 case MIPS_ABI_O64:
5543 case MIPS_ABI_N64:
5544 case MIPS_ABI_EABI64:
5545 set_gdbarch_ptr_bit (gdbarch, long_bit);
5546 break;
5547 default:
5548 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5549 }
5550 }
5551 }
5552
5553 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5554 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5555 comment:
5556
5557 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5558 flag in object files because to do so would make it impossible to
5559 link with libraries compiled without "-gp32". This is
5560 unnecessarily restrictive.
5561
5562 We could solve this problem by adding "-gp32" multilibs to gcc,
5563 but to set this flag before gcc is built with such multilibs will
5564 break too many systems.''
5565
5566 But even more unhelpfully, the default linker output target for
5567 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5568 for 64-bit programs - you need to change the ABI to change this,
5569 and not all gcc targets support that currently. Therefore using
5570 this flag to detect 32-bit mode would do the wrong thing given
5571 the current gcc - it would make GDB treat these 64-bit programs
5572 as 32-bit programs by default. */
5573
5574 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5575 set_gdbarch_write_pc (gdbarch, mips_write_pc);
5576
5577 /* Add/remove bits from an address. The MIPS needs be careful to
5578 ensure that all 32 bit addresses are sign extended to 64 bits. */
5579 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5580
5581 /* Unwind the frame. */
5582 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
5583 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
5584 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
5585
5586 /* Map debug register numbers onto internal register numbers. */
5587 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5588 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5589 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5590 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5591 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5592 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5593 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5594 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5595
5596 /* MIPS version of CALL_DUMMY */
5597
5598 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5599 replaced by a command, and all targets will default to on stack
5600 (regardless of the stack's execute status). */
5601 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5602 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5603
5604 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5605 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5606 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5607
5608 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5609 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5610
5611 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5612
5613 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
5614
5615 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5616 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5617 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5618
5619 set_gdbarch_register_type (gdbarch, mips_register_type);
5620
5621 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5622
5623 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5624
5625 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5626 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5627 need to all be folded into the target vector. Since they are
5628 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5629 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5630 is sitting on? */
5631 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5632
5633 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
5634
5635 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5636
5637 /* Virtual tables. */
5638 set_gdbarch_vbit_in_delta (gdbarch, 1);
5639
5640 mips_register_g_packet_guesses (gdbarch);
5641
5642 /* Hook in OS ABI-specific overrides, if they have been registered. */
5643 info.tdep_info = (void *) tdesc_data;
5644 gdbarch_init_osabi (info, gdbarch);
5645
5646 /* Unwind the frame. */
5647 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
5648 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
5649 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5650 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
5651 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
5652 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
5653 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5654 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5655
5656 if (tdesc_data)
5657 {
5658 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
5659 tdesc_use_registers (gdbarch, tdesc_data);
5660
5661 /* Override the normal target description methods to handle our
5662 dual real and pseudo registers. */
5663 set_gdbarch_register_name (gdbarch, mips_register_name);
5664 set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
5665
5666 num_regs = gdbarch_num_regs (gdbarch);
5667 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5668 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
5669 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5670 }
5671
5672 /* Add ABI-specific aliases for the registers. */
5673 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5674 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
5675 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
5676 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
5677 else
5678 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
5679 user_reg_add (gdbarch, mips_o32_aliases[i].name,
5680 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
5681
5682 /* Add some other standard aliases. */
5683 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
5684 user_reg_add (gdbarch, mips_register_aliases[i].name,
5685 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
5686
5687 return gdbarch;
5688 }
5689
5690 static void
5691 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5692 {
5693 struct gdbarch_info info;
5694
5695 /* Force the architecture to update, and (if it's a MIPS architecture)
5696 mips_gdbarch_init will take care of the rest. */
5697 gdbarch_info_init (&info);
5698 gdbarch_update_p (info);
5699 }
5700
5701 /* Print out which MIPS ABI is in use. */
5702
5703 static void
5704 show_mips_abi (struct ui_file *file,
5705 int from_tty,
5706 struct cmd_list_element *ignored_cmd,
5707 const char *ignored_value)
5708 {
5709 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
5710 fprintf_filtered
5711 (file,
5712 "The MIPS ABI is unknown because the current architecture "
5713 "is not MIPS.\n");
5714 else
5715 {
5716 enum mips_abi global_abi = global_mips_abi ();
5717 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5718 const char *actual_abi_str = mips_abi_strings[actual_abi];
5719
5720 if (global_abi == MIPS_ABI_UNKNOWN)
5721 fprintf_filtered
5722 (file,
5723 "The MIPS ABI is set automatically (currently \"%s\").\n",
5724 actual_abi_str);
5725 else if (global_abi == actual_abi)
5726 fprintf_filtered
5727 (file,
5728 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5729 actual_abi_str);
5730 else
5731 {
5732 /* Probably shouldn't happen... */
5733 fprintf_filtered
5734 (file,
5735 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5736 actual_abi_str, mips_abi_strings[global_abi]);
5737 }
5738 }
5739 }
5740
5741 static void
5742 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5743 {
5744 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5745 if (tdep != NULL)
5746 {
5747 int ef_mips_arch;
5748 int ef_mips_32bitmode;
5749 /* Determine the ISA. */
5750 switch (tdep->elf_flags & EF_MIPS_ARCH)
5751 {
5752 case E_MIPS_ARCH_1:
5753 ef_mips_arch = 1;
5754 break;
5755 case E_MIPS_ARCH_2:
5756 ef_mips_arch = 2;
5757 break;
5758 case E_MIPS_ARCH_3:
5759 ef_mips_arch = 3;
5760 break;
5761 case E_MIPS_ARCH_4:
5762 ef_mips_arch = 4;
5763 break;
5764 default:
5765 ef_mips_arch = 0;
5766 break;
5767 }
5768 /* Determine the size of a pointer. */
5769 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
5770 fprintf_unfiltered (file,
5771 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5772 tdep->elf_flags);
5773 fprintf_unfiltered (file,
5774 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5775 ef_mips_32bitmode);
5776 fprintf_unfiltered (file,
5777 "mips_dump_tdep: ef_mips_arch = %d\n",
5778 ef_mips_arch);
5779 fprintf_unfiltered (file,
5780 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5781 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
5782 fprintf_unfiltered (file,
5783 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5784 mips_mask_address_p (tdep),
5785 tdep->default_mask_address_p);
5786 }
5787 fprintf_unfiltered (file,
5788 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5789 MIPS_DEFAULT_FPU_TYPE,
5790 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5791 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5792 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5793 : "???"));
5794 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
5795 fprintf_unfiltered (file,
5796 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5797 MIPS_FPU_TYPE,
5798 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5799 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5800 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5801 : "???"));
5802 }
5803
5804 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
5805
5806 void
5807 _initialize_mips_tdep (void)
5808 {
5809 static struct cmd_list_element *mipsfpulist = NULL;
5810 struct cmd_list_element *c;
5811
5812 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
5813 if (MIPS_ABI_LAST + 1
5814 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5815 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
5816
5817 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
5818
5819 mips_pdr_data = register_objfile_data ();
5820
5821 /* Create feature sets with the appropriate properties. The values
5822 are not important. */
5823 mips_tdesc_gp32 = allocate_target_description ();
5824 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
5825
5826 mips_tdesc_gp64 = allocate_target_description ();
5827 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
5828
5829 /* Add root prefix command for all "set mips"/"show mips" commands */
5830 add_prefix_cmd ("mips", no_class, set_mips_command,
5831 _("Various MIPS specific commands."),
5832 &setmipscmdlist, "set mips ", 0, &setlist);
5833
5834 add_prefix_cmd ("mips", no_class, show_mips_command,
5835 _("Various MIPS specific commands."),
5836 &showmipscmdlist, "show mips ", 0, &showlist);
5837
5838 /* Allow the user to override the ABI. */
5839 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5840 &mips_abi_string, _("\
5841 Set the MIPS ABI used by this program."), _("\
5842 Show the MIPS ABI used by this program."), _("\
5843 This option can be set to one of:\n\
5844 auto - the default ABI associated with the current binary\n\
5845 o32\n\
5846 o64\n\
5847 n32\n\
5848 n64\n\
5849 eabi32\n\
5850 eabi64"),
5851 mips_abi_update,
5852 show_mips_abi,
5853 &setmipscmdlist, &showmipscmdlist);
5854
5855 /* Let the user turn off floating point and set the fence post for
5856 heuristic_proc_start. */
5857
5858 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5859 _("Set use of MIPS floating-point coprocessor."),
5860 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5861 add_cmd ("single", class_support, set_mipsfpu_single_command,
5862 _("Select single-precision MIPS floating-point coprocessor."),
5863 &mipsfpulist);
5864 add_cmd ("double", class_support, set_mipsfpu_double_command,
5865 _("Select double-precision MIPS floating-point coprocessor."),
5866 &mipsfpulist);
5867 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5868 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5869 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5870 add_cmd ("none", class_support, set_mipsfpu_none_command,
5871 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
5872 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5873 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5874 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5875 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5876 _("Select MIPS floating-point coprocessor automatically."),
5877 &mipsfpulist);
5878 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5879 _("Show current use of MIPS floating-point coprocessor target."),
5880 &showlist);
5881
5882 /* We really would like to have both "0" and "unlimited" work, but
5883 command.c doesn't deal with that. So make it a var_zinteger
5884 because the user can always use "999999" or some such for unlimited. */
5885 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
5886 &heuristic_fence_post, _("\
5887 Set the distance searched for the start of a function."), _("\
5888 Show the distance searched for the start of a function."), _("\
5889 If you are debugging a stripped executable, GDB needs to search through the\n\
5890 program for the start of a function. This command sets the distance of the\n\
5891 search. The only need to set it is when debugging a stripped executable."),
5892 reinit_frame_cache_sfunc,
5893 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
5894 &setlist, &showlist);
5895
5896 /* Allow the user to control whether the upper bits of 64-bit
5897 addresses should be zeroed. */
5898 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5899 &mask_address_var, _("\
5900 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5901 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
5902 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5903 allow GDB to determine the correct value."),
5904 NULL, show_mask_address,
5905 &setmipscmdlist, &showmipscmdlist);
5906
5907 /* Allow the user to control the size of 32 bit registers within the
5908 raw remote packet. */
5909 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
5910 &mips64_transfers_32bit_regs_p, _("\
5911 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5912 _("\
5913 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5914 _("\
5915 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5916 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5917 64 bits for others. Use \"off\" to disable compatibility mode"),
5918 set_mips64_transfers_32bit_regs,
5919 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
5920 &setlist, &showlist);
5921
5922 /* Debug this files internals. */
5923 add_setshow_zinteger_cmd ("mips", class_maintenance,
5924 &mips_debug, _("\
5925 Set mips debugging."), _("\
5926 Show mips debugging."), _("\
5927 When non-zero, mips specific debugging is enabled."),
5928 NULL,
5929 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
5930 &setdebuglist, &showdebuglist);
5931 }