]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-tdep.c
* mips-tdep.c (mips_n32n64_return_value): Fix a comment.
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include "gdb_assert.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41 #include "osabi.h"
42 #include "mips-tdep.h"
43 #include "block.h"
44 #include "reggroups.h"
45 #include "opcode/mips.h"
46 #include "elf/mips.h"
47 #include "elf-bfd.h"
48 #include "symcat.h"
49 #include "sim-regno.h"
50 #include "dis-asm.h"
51 #include "frame-unwind.h"
52 #include "frame-base.h"
53 #include "trad-frame.h"
54 #include "infcall.h"
55 #include "floatformat.h"
56 #include "remote.h"
57 #include "target-descriptions.h"
58 #include "dwarf2-frame.h"
59 #include "user-regs.h"
60
61 static const struct objfile_data *mips_pdr_data;
62
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
66 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
67 #define ST0_FR (1 << 26)
68
69 /* The sizes of floating point registers. */
70
71 enum
72 {
73 MIPS_FPU_SINGLE_REGSIZE = 4,
74 MIPS_FPU_DOUBLE_REGSIZE = 8
75 };
76
77 enum
78 {
79 MIPS32_REGSIZE = 4,
80 MIPS64_REGSIZE = 8
81 };
82
83 static const char *mips_abi_string;
84
85 static const char *mips_abi_strings[] = {
86 "auto",
87 "n32",
88 "o32",
89 "n64",
90 "o64",
91 "eabi32",
92 "eabi64",
93 NULL
94 };
95
96 /* The standard register names, and all the valid aliases for them. */
97 struct register_alias
98 {
99 const char *name;
100 int regnum;
101 };
102
103 /* Aliases for o32 and most other ABIs. */
104 const struct register_alias mips_o32_aliases[] = {
105 { "ta0", 12 },
106 { "ta1", 13 },
107 { "ta2", 14 },
108 { "ta3", 15 }
109 };
110
111 /* Aliases for n32 and n64. */
112 const struct register_alias mips_n32_n64_aliases[] = {
113 { "ta0", 8 },
114 { "ta1", 9 },
115 { "ta2", 10 },
116 { "ta3", 11 }
117 };
118
119 /* Aliases for ABI-independent registers. */
120 const struct register_alias mips_register_aliases[] = {
121 /* The architecture manuals specify these ABI-independent names for
122 the GPRs. */
123 #define R(n) { "r" #n, n }
124 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
125 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
126 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
127 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
128 #undef R
129
130 /* k0 and k1 are sometimes called these instead (for "kernel
131 temp"). */
132 { "kt0", 26 },
133 { "kt1", 27 },
134
135 /* This is the traditional GDB name for the CP0 status register. */
136 { "sr", MIPS_PS_REGNUM },
137
138 /* This is the traditional GDB name for the CP0 BadVAddr register. */
139 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
140
141 /* This is the traditional GDB name for the FCSR. */
142 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
143 };
144
145 /* Some MIPS boards don't support floating point while others only
146 support single-precision floating-point operations. */
147
148 enum mips_fpu_type
149 {
150 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
151 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
152 MIPS_FPU_NONE /* No floating point. */
153 };
154
155 #ifndef MIPS_DEFAULT_FPU_TYPE
156 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
157 #endif
158 static int mips_fpu_type_auto = 1;
159 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
160
161 static int mips_debug = 0;
162
163 /* Properties (for struct target_desc) describing the g/G packet
164 layout. */
165 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
166 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
167
168 struct target_desc *mips_tdesc_gp32;
169 struct target_desc *mips_tdesc_gp64;
170
171 /* MIPS specific per-architecture information */
172 struct gdbarch_tdep
173 {
174 /* from the elf header */
175 int elf_flags;
176
177 /* mips options */
178 enum mips_abi mips_abi;
179 enum mips_abi found_abi;
180 enum mips_fpu_type mips_fpu_type;
181 int mips_last_arg_regnum;
182 int mips_last_fp_arg_regnum;
183 int default_mask_address_p;
184 /* Is the target using 64-bit raw integer registers but only
185 storing a left-aligned 32-bit value in each? */
186 int mips64_transfers_32bit_regs_p;
187 /* Indexes for various registers. IRIX and embedded have
188 different values. This contains the "public" fields. Don't
189 add any that do not need to be public. */
190 const struct mips_regnum *regnum;
191 /* Register names table for the current register set. */
192 const char **mips_processor_reg_names;
193
194 /* The size of register data available from the target, if known.
195 This doesn't quite obsolete the manual
196 mips64_transfers_32bit_regs_p, since that is documented to force
197 left alignment even for big endian (very strange). */
198 int register_size_valid_p;
199 int register_size;
200 };
201
202 static int
203 n32n64_floatformat_always_valid (const struct floatformat *fmt,
204 const void *from)
205 {
206 return 1;
207 }
208
209 /* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
210 They are implemented as a pair of 64bit doubles where the high
211 part holds the result of the operation rounded to double, and
212 the low double holds the difference between the exact result and
213 the rounded result. So "high" + "low" contains the result with
214 added precision. Unfortunately, the floatformat structure used
215 by GDB is not powerful enough to describe this format. As a temporary
216 measure, we define a 128bit floatformat that only uses the high part.
217 We lose a bit of precision but that's probably the best we can do
218 for now with the current infrastructure. */
219
220 static const struct floatformat floatformat_n32n64_long_double_big =
221 {
222 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
223 floatformat_intbit_no,
224 "floatformat_n32n64_long_double_big",
225 n32n64_floatformat_always_valid
226 };
227
228 static const struct floatformat *floatformats_n32n64_long[BFD_ENDIAN_UNKNOWN] =
229 {
230 &floatformat_n32n64_long_double_big,
231 &floatformat_n32n64_long_double_big
232 };
233
234 const struct mips_regnum *
235 mips_regnum (struct gdbarch *gdbarch)
236 {
237 return gdbarch_tdep (gdbarch)->regnum;
238 }
239
240 static int
241 mips_fpa0_regnum (struct gdbarch *gdbarch)
242 {
243 return mips_regnum (gdbarch)->fp0 + 12;
244 }
245
246 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
247 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
248
249 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
250
251 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
252
253 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
254
255 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
256 functions to test, set, or clear bit 0 of addresses. */
257
258 static CORE_ADDR
259 is_mips16_addr (CORE_ADDR addr)
260 {
261 return ((addr) & 1);
262 }
263
264 static CORE_ADDR
265 unmake_mips16_addr (CORE_ADDR addr)
266 {
267 return ((addr) & ~(CORE_ADDR) 1);
268 }
269
270 /* Return the MIPS ABI associated with GDBARCH. */
271 enum mips_abi
272 mips_abi (struct gdbarch *gdbarch)
273 {
274 return gdbarch_tdep (gdbarch)->mips_abi;
275 }
276
277 int
278 mips_isa_regsize (struct gdbarch *gdbarch)
279 {
280 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
281
282 /* If we know how big the registers are, use that size. */
283 if (tdep->register_size_valid_p)
284 return tdep->register_size;
285
286 /* Fall back to the previous behavior. */
287 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
288 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
289 }
290
291 /* Return the currently configured (or set) saved register size. */
292
293 unsigned int
294 mips_abi_regsize (struct gdbarch *gdbarch)
295 {
296 switch (mips_abi (gdbarch))
297 {
298 case MIPS_ABI_EABI32:
299 case MIPS_ABI_O32:
300 return 4;
301 case MIPS_ABI_N32:
302 case MIPS_ABI_N64:
303 case MIPS_ABI_O64:
304 case MIPS_ABI_EABI64:
305 return 8;
306 case MIPS_ABI_UNKNOWN:
307 case MIPS_ABI_LAST:
308 default:
309 internal_error (__FILE__, __LINE__, _("bad switch"));
310 }
311 }
312
313 /* Functions for setting and testing a bit in a minimal symbol that
314 marks it as 16-bit function. The MSB of the minimal symbol's
315 "info" field is used for this purpose.
316
317 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
318 i.e. refers to a 16-bit function, and sets a "special" bit in a
319 minimal symbol to mark it as a 16-bit function
320
321 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
322
323 static void
324 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
325 {
326 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
327 {
328 MSYMBOL_INFO (msym) = (char *)
329 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
330 SYMBOL_VALUE_ADDRESS (msym) |= 1;
331 }
332 }
333
334 static int
335 msymbol_is_special (struct minimal_symbol *msym)
336 {
337 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
338 }
339
340 /* XFER a value from the big/little/left end of the register.
341 Depending on the size of the value it might occupy the entire
342 register or just part of it. Make an allowance for this, aligning
343 things accordingly. */
344
345 static void
346 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
347 enum bfd_endian endian, gdb_byte *in,
348 const gdb_byte *out, int buf_offset)
349 {
350 int reg_offset = 0;
351 gdb_assert (reg_num >= gdbarch_num_regs (current_gdbarch));
352 /* Need to transfer the left or right part of the register, based on
353 the targets byte order. */
354 switch (endian)
355 {
356 case BFD_ENDIAN_BIG:
357 reg_offset = register_size (current_gdbarch, reg_num) - length;
358 break;
359 case BFD_ENDIAN_LITTLE:
360 reg_offset = 0;
361 break;
362 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
363 reg_offset = 0;
364 break;
365 default:
366 internal_error (__FILE__, __LINE__, _("bad switch"));
367 }
368 if (mips_debug)
369 fprintf_unfiltered (gdb_stderr,
370 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
371 reg_num, reg_offset, buf_offset, length);
372 if (mips_debug && out != NULL)
373 {
374 int i;
375 fprintf_unfiltered (gdb_stdlog, "out ");
376 for (i = 0; i < length; i++)
377 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
378 }
379 if (in != NULL)
380 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
381 in + buf_offset);
382 if (out != NULL)
383 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
384 out + buf_offset);
385 if (mips_debug && in != NULL)
386 {
387 int i;
388 fprintf_unfiltered (gdb_stdlog, "in ");
389 for (i = 0; i < length; i++)
390 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
391 }
392 if (mips_debug)
393 fprintf_unfiltered (gdb_stdlog, "\n");
394 }
395
396 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
397 compatiblity mode. A return value of 1 means that we have
398 physical 64-bit registers, but should treat them as 32-bit registers. */
399
400 static int
401 mips2_fp_compat (struct frame_info *frame)
402 {
403 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
404 meaningful. */
405 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
406 4)
407 return 0;
408
409 #if 0
410 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
411 in all the places we deal with FP registers. PR gdb/413. */
412 /* Otherwise check the FR bit in the status register - it controls
413 the FP compatiblity mode. If it is clear we are in compatibility
414 mode. */
415 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
416 return 1;
417 #endif
418
419 return 0;
420 }
421
422 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
423
424 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
425
426 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
427
428 static struct type *mips_float_register_type (void);
429 static struct type *mips_double_register_type (void);
430
431 /* The list of available "set mips " and "show mips " commands */
432
433 static struct cmd_list_element *setmipscmdlist = NULL;
434 static struct cmd_list_element *showmipscmdlist = NULL;
435
436 /* Integer registers 0 thru 31 are handled explicitly by
437 mips_register_name(). Processor specific registers 32 and above
438 are listed in the following tables. */
439
440 enum
441 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
442
443 /* Generic MIPS. */
444
445 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
446 "sr", "lo", "hi", "bad", "cause", "pc",
447 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
448 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
449 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
450 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
451 "fsr", "fir", "" /*"fp" */ , "",
452 "", "", "", "", "", "", "", "",
453 "", "", "", "", "", "", "", "",
454 };
455
456 /* Names of IDT R3041 registers. */
457
458 static const char *mips_r3041_reg_names[] = {
459 "sr", "lo", "hi", "bad", "cause", "pc",
460 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
461 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
462 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
463 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
464 "fsr", "fir", "", /*"fp" */ "",
465 "", "", "bus", "ccfg", "", "", "", "",
466 "", "", "port", "cmp", "", "", "epc", "prid",
467 };
468
469 /* Names of tx39 registers. */
470
471 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
472 "sr", "lo", "hi", "bad", "cause", "pc",
473 "", "", "", "", "", "", "", "",
474 "", "", "", "", "", "", "", "",
475 "", "", "", "", "", "", "", "",
476 "", "", "", "", "", "", "", "",
477 "", "", "", "",
478 "", "", "", "", "", "", "", "",
479 "", "", "config", "cache", "debug", "depc", "epc", ""
480 };
481
482 /* Names of IRIX registers. */
483 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
484 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
485 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
486 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
487 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
488 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
489 };
490
491
492 /* Return the name of the register corresponding to REGNO. */
493 static const char *
494 mips_register_name (int regno)
495 {
496 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
497 /* GPR names for all ABIs other than n32/n64. */
498 static char *mips_gpr_names[] = {
499 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
500 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
501 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
502 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
503 };
504
505 /* GPR names for n32 and n64 ABIs. */
506 static char *mips_n32_n64_gpr_names[] = {
507 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
508 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
509 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
510 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
511 };
512
513 enum mips_abi abi = mips_abi (current_gdbarch);
514
515 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
516 but then don't make the raw register names visible. */
517 int rawnum = regno % gdbarch_num_regs (current_gdbarch);
518 if (regno < gdbarch_num_regs (current_gdbarch))
519 return "";
520
521 /* The MIPS integer registers are always mapped from 0 to 31. The
522 names of the registers (which reflects the conventions regarding
523 register use) vary depending on the ABI. */
524 if (0 <= rawnum && rawnum < 32)
525 {
526 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
527 return mips_n32_n64_gpr_names[rawnum];
528 else
529 return mips_gpr_names[rawnum];
530 }
531 else if (tdesc_has_registers (gdbarch_target_desc (current_gdbarch)))
532 return tdesc_register_name (rawnum);
533 else if (32 <= rawnum && rawnum < gdbarch_num_regs (current_gdbarch))
534 {
535 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
536 return tdep->mips_processor_reg_names[rawnum - 32];
537 }
538 else
539 internal_error (__FILE__, __LINE__,
540 _("mips_register_name: bad register number %d"), rawnum);
541 }
542
543 /* Return the groups that a MIPS register can be categorised into. */
544
545 static int
546 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
547 struct reggroup *reggroup)
548 {
549 int vector_p;
550 int float_p;
551 int raw_p;
552 int rawnum = regnum % gdbarch_num_regs (current_gdbarch);
553 int pseudo = regnum / gdbarch_num_regs (current_gdbarch);
554 if (reggroup == all_reggroup)
555 return pseudo;
556 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
557 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
558 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
559 (gdbarch), as not all architectures are multi-arch. */
560 raw_p = rawnum < gdbarch_num_regs (current_gdbarch);
561 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
562 || gdbarch_register_name (current_gdbarch, regnum)[0] == '\0')
563 return 0;
564 if (reggroup == float_reggroup)
565 return float_p && pseudo;
566 if (reggroup == vector_reggroup)
567 return vector_p && pseudo;
568 if (reggroup == general_reggroup)
569 return (!vector_p && !float_p) && pseudo;
570 /* Save the pseudo registers. Need to make certain that any code
571 extracting register values from a saved register cache also uses
572 pseudo registers. */
573 if (reggroup == save_reggroup)
574 return raw_p && pseudo;
575 /* Restore the same pseudo register. */
576 if (reggroup == restore_reggroup)
577 return raw_p && pseudo;
578 return 0;
579 }
580
581 /* Return the groups that a MIPS register can be categorised into.
582 This version is only used if we have a target description which
583 describes real registers (and their groups). */
584
585 static int
586 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
587 struct reggroup *reggroup)
588 {
589 int rawnum = regnum % gdbarch_num_regs (gdbarch);
590 int pseudo = regnum / gdbarch_num_regs (gdbarch);
591 int ret;
592
593 /* Only save, restore, and display the pseudo registers. Need to
594 make certain that any code extracting register values from a
595 saved register cache also uses pseudo registers.
596
597 Note: saving and restoring the pseudo registers is slightly
598 strange; if we have 64 bits, we should save and restore all
599 64 bits. But this is hard and has little benefit. */
600 if (!pseudo)
601 return 0;
602
603 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
604 if (ret != -1)
605 return ret;
606
607 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
608 }
609
610 /* Map the symbol table registers which live in the range [1 *
611 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
612 registers. Take care of alignment and size problems. */
613
614 static void
615 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
616 int cookednum, gdb_byte *buf)
617 {
618 int rawnum = cookednum % gdbarch_num_regs (current_gdbarch);
619 gdb_assert (cookednum >= gdbarch_num_regs (current_gdbarch)
620 && cookednum < 2 * gdbarch_num_regs (current_gdbarch));
621 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
622 regcache_raw_read (regcache, rawnum, buf);
623 else if (register_size (gdbarch, rawnum) >
624 register_size (gdbarch, cookednum))
625 {
626 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
627 || gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
628 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
629 else
630 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
631 }
632 else
633 internal_error (__FILE__, __LINE__, _("bad register size"));
634 }
635
636 static void
637 mips_pseudo_register_write (struct gdbarch *gdbarch,
638 struct regcache *regcache, int cookednum,
639 const gdb_byte *buf)
640 {
641 int rawnum = cookednum % gdbarch_num_regs (current_gdbarch);
642 gdb_assert (cookednum >= gdbarch_num_regs (current_gdbarch)
643 && cookednum < 2 * gdbarch_num_regs (current_gdbarch));
644 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
645 regcache_raw_write (regcache, rawnum, buf);
646 else if (register_size (gdbarch, rawnum) >
647 register_size (gdbarch, cookednum))
648 {
649 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
650 || gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
651 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
652 else
653 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
654 }
655 else
656 internal_error (__FILE__, __LINE__, _("bad register size"));
657 }
658
659 /* Table to translate MIPS16 register field to actual register number. */
660 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
661
662 /* Heuristic_proc_start may hunt through the text section for a long
663 time across a 2400 baud serial line. Allows the user to limit this
664 search. */
665
666 static unsigned int heuristic_fence_post = 0;
667
668 /* Number of bytes of storage in the actual machine representation for
669 register N. NOTE: This defines the pseudo register type so need to
670 rebuild the architecture vector. */
671
672 static int mips64_transfers_32bit_regs_p = 0;
673
674 static void
675 set_mips64_transfers_32bit_regs (char *args, int from_tty,
676 struct cmd_list_element *c)
677 {
678 struct gdbarch_info info;
679 gdbarch_info_init (&info);
680 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
681 instead of relying on globals. Doing that would let generic code
682 handle the search for this specific architecture. */
683 if (!gdbarch_update_p (info))
684 {
685 mips64_transfers_32bit_regs_p = 0;
686 error (_("32-bit compatibility mode not supported"));
687 }
688 }
689
690 /* Convert to/from a register and the corresponding memory value. */
691
692 static int
693 mips_convert_register_p (int regnum, struct type *type)
694 {
695 return (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
696 && register_size (current_gdbarch, regnum) == 4
697 && (regnum % gdbarch_num_regs (current_gdbarch))
698 >= mips_regnum (current_gdbarch)->fp0
699 && (regnum % gdbarch_num_regs (current_gdbarch))
700 < mips_regnum (current_gdbarch)->fp0 + 32
701 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
702 }
703
704 static void
705 mips_register_to_value (struct frame_info *frame, int regnum,
706 struct type *type, gdb_byte *to)
707 {
708 get_frame_register (frame, regnum + 0, to + 4);
709 get_frame_register (frame, regnum + 1, to + 0);
710 }
711
712 static void
713 mips_value_to_register (struct frame_info *frame, int regnum,
714 struct type *type, const gdb_byte *from)
715 {
716 put_frame_register (frame, regnum + 0, from + 4);
717 put_frame_register (frame, regnum + 1, from + 0);
718 }
719
720 /* Return the GDB type object for the "standard" data type of data in
721 register REG. */
722
723 static struct type *
724 mips_register_type (struct gdbarch *gdbarch, int regnum)
725 {
726 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (current_gdbarch));
727 if ((regnum % gdbarch_num_regs (current_gdbarch))
728 >= mips_regnum (current_gdbarch)->fp0
729 && (regnum % gdbarch_num_regs (current_gdbarch))
730 < mips_regnum (current_gdbarch)->fp0 + 32)
731 {
732 /* The floating-point registers raw, or cooked, always match
733 mips_isa_regsize(), and also map 1:1, byte for byte. */
734 if (mips_isa_regsize (gdbarch) == 4)
735 return builtin_type_ieee_single;
736 else
737 return builtin_type_ieee_double;
738 }
739 else if (regnum < gdbarch_num_regs (current_gdbarch))
740 {
741 /* The raw or ISA registers. These are all sized according to
742 the ISA regsize. */
743 if (mips_isa_regsize (gdbarch) == 4)
744 return builtin_type_int32;
745 else
746 return builtin_type_int64;
747 }
748 else
749 {
750 /* The cooked or ABI registers. These are sized according to
751 the ABI (with a few complications). */
752 if (regnum >= (gdbarch_num_regs (current_gdbarch)
753 + mips_regnum (current_gdbarch)->fp_control_status)
754 && regnum <= gdbarch_num_regs (current_gdbarch)
755 + MIPS_LAST_EMBED_REGNUM)
756 /* The pseudo/cooked view of the embedded registers is always
757 32-bit. The raw view is handled below. */
758 return builtin_type_int32;
759 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
760 /* The target, while possibly using a 64-bit register buffer,
761 is only transfering 32-bits of each integer register.
762 Reflect this in the cooked/pseudo (ABI) register value. */
763 return builtin_type_int32;
764 else if (mips_abi_regsize (gdbarch) == 4)
765 /* The ABI is restricted to 32-bit registers (the ISA could be
766 32- or 64-bit). */
767 return builtin_type_int32;
768 else
769 /* 64-bit ABI. */
770 return builtin_type_int64;
771 }
772 }
773
774 /* Return the GDB type for the pseudo register REGNUM, which is the
775 ABI-level view. This function is only called if there is a target
776 description which includes registers, so we know precisely the
777 types of hardware registers. */
778
779 static struct type *
780 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
781 {
782 const int num_regs = gdbarch_num_regs (gdbarch);
783 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
784 int rawnum = regnum % num_regs;
785 struct type *rawtype;
786
787 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
788
789 /* Absent registers are still absent. */
790 rawtype = gdbarch_register_type (gdbarch, rawnum);
791 if (TYPE_LENGTH (rawtype) == 0)
792 return rawtype;
793
794 if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
795 /* Present the floating point registers however the hardware did;
796 do not try to convert between FPU layouts. */
797 return rawtype;
798
799 if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
800 {
801 /* The pseudo/cooked view of embedded registers is always
802 32-bit, even if the target transfers 64-bit values for them.
803 New targets relying on XML descriptions should only transfer
804 the necessary 32 bits, but older versions of GDB expected 64,
805 so allow the target to provide 64 bits without interfering
806 with the displayed type. */
807 return builtin_type_int32;
808 }
809
810 /* Use pointer types for registers if we can. For n32 we can not,
811 since we do not have a 64-bit pointer type. */
812 if (mips_abi_regsize (gdbarch) == TYPE_LENGTH (builtin_type_void_data_ptr))
813 {
814 if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
815 return builtin_type_void_data_ptr;
816 else if (rawnum == MIPS_EMBED_PC_REGNUM)
817 return builtin_type_void_func_ptr;
818 }
819
820 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
821 && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
822 return builtin_type_int32;
823
824 /* For all other registers, pass through the hardware type. */
825 return rawtype;
826 }
827
828 /* Should the upper word of 64-bit addresses be zeroed? */
829 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
830
831 static int
832 mips_mask_address_p (struct gdbarch_tdep *tdep)
833 {
834 switch (mask_address_var)
835 {
836 case AUTO_BOOLEAN_TRUE:
837 return 1;
838 case AUTO_BOOLEAN_FALSE:
839 return 0;
840 break;
841 case AUTO_BOOLEAN_AUTO:
842 return tdep->default_mask_address_p;
843 default:
844 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
845 return -1;
846 }
847 }
848
849 static void
850 show_mask_address (struct ui_file *file, int from_tty,
851 struct cmd_list_element *c, const char *value)
852 {
853 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
854
855 deprecated_show_value_hack (file, from_tty, c, value);
856 switch (mask_address_var)
857 {
858 case AUTO_BOOLEAN_TRUE:
859 printf_filtered ("The 32 bit mips address mask is enabled\n");
860 break;
861 case AUTO_BOOLEAN_FALSE:
862 printf_filtered ("The 32 bit mips address mask is disabled\n");
863 break;
864 case AUTO_BOOLEAN_AUTO:
865 printf_filtered
866 ("The 32 bit address mask is set automatically. Currently %s\n",
867 mips_mask_address_p (tdep) ? "enabled" : "disabled");
868 break;
869 default:
870 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
871 break;
872 }
873 }
874
875 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
876
877 int
878 mips_pc_is_mips16 (CORE_ADDR memaddr)
879 {
880 struct minimal_symbol *sym;
881
882 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
883 if (is_mips16_addr (memaddr))
884 return 1;
885
886 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
887 the high bit of the info field. Use this to decide if the function is
888 MIPS16 or normal MIPS. */
889 sym = lookup_minimal_symbol_by_pc (memaddr);
890 if (sym)
891 return msymbol_is_special (sym);
892 else
893 return 0;
894 }
895
896 /* MIPS believes that the PC has a sign extended value. Perhaps the
897 all registers should be sign extended for simplicity? */
898
899 static CORE_ADDR
900 mips_read_pc (struct regcache *regcache)
901 {
902 ULONGEST pc;
903 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
904 regcache_cooked_read_signed (regcache, regnum, &pc);
905 return pc;
906 }
907
908 static CORE_ADDR
909 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
910 {
911 return frame_unwind_register_signed (next_frame,
912 gdbarch_num_regs (current_gdbarch)
913 + mips_regnum (gdbarch)->pc);
914 }
915
916 static CORE_ADDR
917 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
918 {
919 return frame_unwind_register_signed (next_frame,
920 gdbarch_num_regs (current_gdbarch)
921 + MIPS_SP_REGNUM);
922 }
923
924 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
925 dummy frame. The frame ID's base needs to match the TOS value
926 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
927 breakpoint. */
928
929 static struct frame_id
930 mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
931 {
932 return frame_id_build
933 (frame_unwind_register_signed (next_frame,
934 gdbarch_num_regs (current_gdbarch)
935 + MIPS_SP_REGNUM),
936 frame_pc_unwind (next_frame));
937 }
938
939 static void
940 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
941 {
942 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
943 regcache_cooked_write_unsigned (regcache, regnum, pc);
944 }
945
946 /* Fetch and return instruction from the specified location. If the PC
947 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
948
949 static ULONGEST
950 mips_fetch_instruction (CORE_ADDR addr)
951 {
952 gdb_byte buf[MIPS_INSN32_SIZE];
953 int instlen;
954 int status;
955
956 if (mips_pc_is_mips16 (addr))
957 {
958 instlen = MIPS_INSN16_SIZE;
959 addr = unmake_mips16_addr (addr);
960 }
961 else
962 instlen = MIPS_INSN32_SIZE;
963 status = read_memory_nobpt (addr, buf, instlen);
964 if (status)
965 memory_error (status, addr);
966 return extract_unsigned_integer (buf, instlen);
967 }
968
969 /* These the fields of 32 bit mips instructions */
970 #define mips32_op(x) (x >> 26)
971 #define itype_op(x) (x >> 26)
972 #define itype_rs(x) ((x >> 21) & 0x1f)
973 #define itype_rt(x) ((x >> 16) & 0x1f)
974 #define itype_immediate(x) (x & 0xffff)
975
976 #define jtype_op(x) (x >> 26)
977 #define jtype_target(x) (x & 0x03ffffff)
978
979 #define rtype_op(x) (x >> 26)
980 #define rtype_rs(x) ((x >> 21) & 0x1f)
981 #define rtype_rt(x) ((x >> 16) & 0x1f)
982 #define rtype_rd(x) ((x >> 11) & 0x1f)
983 #define rtype_shamt(x) ((x >> 6) & 0x1f)
984 #define rtype_funct(x) (x & 0x3f)
985
986 static LONGEST
987 mips32_relative_offset (ULONGEST inst)
988 {
989 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
990 }
991
992 /* Determine where to set a single step breakpoint while considering
993 branch prediction. */
994 static CORE_ADDR
995 mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
996 {
997 unsigned long inst;
998 int op;
999 inst = mips_fetch_instruction (pc);
1000 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
1001 {
1002 if (itype_op (inst) >> 2 == 5)
1003 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1004 {
1005 op = (itype_op (inst) & 0x03);
1006 switch (op)
1007 {
1008 case 0: /* BEQL */
1009 goto equal_branch;
1010 case 1: /* BNEL */
1011 goto neq_branch;
1012 case 2: /* BLEZL */
1013 goto less_branch;
1014 case 3: /* BGTZ */
1015 goto greater_branch;
1016 default:
1017 pc += 4;
1018 }
1019 }
1020 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1021 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1022 {
1023 int tf = itype_rt (inst) & 0x01;
1024 int cnum = itype_rt (inst) >> 2;
1025 int fcrcs =
1026 get_frame_register_signed (frame, mips_regnum (current_gdbarch)->
1027 fp_control_status);
1028 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1029
1030 if (((cond >> cnum) & 0x01) == tf)
1031 pc += mips32_relative_offset (inst) + 4;
1032 else
1033 pc += 8;
1034 }
1035 else
1036 pc += 4; /* Not a branch, next instruction is easy */
1037 }
1038 else
1039 { /* This gets way messy */
1040
1041 /* Further subdivide into SPECIAL, REGIMM and other */
1042 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1043 {
1044 case 0: /* SPECIAL */
1045 op = rtype_funct (inst);
1046 switch (op)
1047 {
1048 case 8: /* JR */
1049 case 9: /* JALR */
1050 /* Set PC to that address */
1051 pc = get_frame_register_signed (frame, rtype_rs (inst));
1052 break;
1053 default:
1054 pc += 4;
1055 }
1056
1057 break; /* end SPECIAL */
1058 case 1: /* REGIMM */
1059 {
1060 op = itype_rt (inst); /* branch condition */
1061 switch (op)
1062 {
1063 case 0: /* BLTZ */
1064 case 2: /* BLTZL */
1065 case 16: /* BLTZAL */
1066 case 18: /* BLTZALL */
1067 less_branch:
1068 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1069 pc += mips32_relative_offset (inst) + 4;
1070 else
1071 pc += 8; /* after the delay slot */
1072 break;
1073 case 1: /* BGEZ */
1074 case 3: /* BGEZL */
1075 case 17: /* BGEZAL */
1076 case 19: /* BGEZALL */
1077 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1078 pc += mips32_relative_offset (inst) + 4;
1079 else
1080 pc += 8; /* after the delay slot */
1081 break;
1082 /* All of the other instructions in the REGIMM category */
1083 default:
1084 pc += 4;
1085 }
1086 }
1087 break; /* end REGIMM */
1088 case 2: /* J */
1089 case 3: /* JAL */
1090 {
1091 unsigned long reg;
1092 reg = jtype_target (inst) << 2;
1093 /* Upper four bits get never changed... */
1094 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1095 }
1096 break;
1097 /* FIXME case JALX : */
1098 {
1099 unsigned long reg;
1100 reg = jtype_target (inst) << 2;
1101 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
1102 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1103 }
1104 break; /* The new PC will be alternate mode */
1105 case 4: /* BEQ, BEQL */
1106 equal_branch:
1107 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1108 get_frame_register_signed (frame, itype_rt (inst)))
1109 pc += mips32_relative_offset (inst) + 4;
1110 else
1111 pc += 8;
1112 break;
1113 case 5: /* BNE, BNEL */
1114 neq_branch:
1115 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1116 get_frame_register_signed (frame, itype_rt (inst)))
1117 pc += mips32_relative_offset (inst) + 4;
1118 else
1119 pc += 8;
1120 break;
1121 case 6: /* BLEZ, BLEZL */
1122 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1123 pc += mips32_relative_offset (inst) + 4;
1124 else
1125 pc += 8;
1126 break;
1127 case 7:
1128 default:
1129 greater_branch: /* BGTZ, BGTZL */
1130 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1131 pc += mips32_relative_offset (inst) + 4;
1132 else
1133 pc += 8;
1134 break;
1135 } /* switch */
1136 } /* else */
1137 return pc;
1138 } /* mips32_next_pc */
1139
1140 /* Decoding the next place to set a breakpoint is irregular for the
1141 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1142 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1143 We dont want to set a single step instruction on the extend instruction
1144 either.
1145 */
1146
1147 /* Lots of mips16 instruction formats */
1148 /* Predicting jumps requires itype,ritype,i8type
1149 and their extensions extItype,extritype,extI8type
1150 */
1151 enum mips16_inst_fmts
1152 {
1153 itype, /* 0 immediate 5,10 */
1154 ritype, /* 1 5,3,8 */
1155 rrtype, /* 2 5,3,3,5 */
1156 rritype, /* 3 5,3,3,5 */
1157 rrrtype, /* 4 5,3,3,3,2 */
1158 rriatype, /* 5 5,3,3,1,4 */
1159 shifttype, /* 6 5,3,3,3,2 */
1160 i8type, /* 7 5,3,8 */
1161 i8movtype, /* 8 5,3,3,5 */
1162 i8mov32rtype, /* 9 5,3,5,3 */
1163 i64type, /* 10 5,3,8 */
1164 ri64type, /* 11 5,3,3,5 */
1165 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1166 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1167 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1168 extRRItype, /* 15 5,5,5,5,3,3,5 */
1169 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1170 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1171 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1172 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1173 extRi64type, /* 20 5,6,5,5,3,3,5 */
1174 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1175 };
1176 /* I am heaping all the fields of the formats into one structure and
1177 then, only the fields which are involved in instruction extension */
1178 struct upk_mips16
1179 {
1180 CORE_ADDR offset;
1181 unsigned int regx; /* Function in i8 type */
1182 unsigned int regy;
1183 };
1184
1185
1186 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1187 for the bits which make up the immediatate extension. */
1188
1189 static CORE_ADDR
1190 extended_offset (unsigned int extension)
1191 {
1192 CORE_ADDR value;
1193 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1194 value = value << 6;
1195 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1196 value = value << 5;
1197 value |= extension & 0x01f; /* extract 4:0 */
1198 return value;
1199 }
1200
1201 /* Only call this function if you know that this is an extendable
1202 instruction. It won't malfunction, but why make excess remote memory
1203 references? If the immediate operands get sign extended or something,
1204 do it after the extension is performed. */
1205 /* FIXME: Every one of these cases needs to worry about sign extension
1206 when the offset is to be used in relative addressing. */
1207
1208 static unsigned int
1209 fetch_mips_16 (CORE_ADDR pc)
1210 {
1211 gdb_byte buf[8];
1212 pc &= 0xfffffffe; /* clear the low order bit */
1213 target_read_memory (pc, buf, 2);
1214 return extract_unsigned_integer (buf, 2);
1215 }
1216
1217 static void
1218 unpack_mips16 (CORE_ADDR pc,
1219 unsigned int extension,
1220 unsigned int inst,
1221 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1222 {
1223 CORE_ADDR offset;
1224 int regx;
1225 int regy;
1226 switch (insn_format)
1227 {
1228 case itype:
1229 {
1230 CORE_ADDR value;
1231 if (extension)
1232 {
1233 value = extended_offset (extension);
1234 value = value << 11; /* rom for the original value */
1235 value |= inst & 0x7ff; /* eleven bits from instruction */
1236 }
1237 else
1238 {
1239 value = inst & 0x7ff;
1240 /* FIXME : Consider sign extension */
1241 }
1242 offset = value;
1243 regx = -1;
1244 regy = -1;
1245 }
1246 break;
1247 case ritype:
1248 case i8type:
1249 { /* A register identifier and an offset */
1250 /* Most of the fields are the same as I type but the
1251 immediate value is of a different length */
1252 CORE_ADDR value;
1253 if (extension)
1254 {
1255 value = extended_offset (extension);
1256 value = value << 8; /* from the original instruction */
1257 value |= inst & 0xff; /* eleven bits from instruction */
1258 regx = (extension >> 8) & 0x07; /* or i8 funct */
1259 if (value & 0x4000) /* test the sign bit , bit 26 */
1260 {
1261 value &= ~0x3fff; /* remove the sign bit */
1262 value = -value;
1263 }
1264 }
1265 else
1266 {
1267 value = inst & 0xff; /* 8 bits */
1268 regx = (inst >> 8) & 0x07; /* or i8 funct */
1269 /* FIXME: Do sign extension , this format needs it */
1270 if (value & 0x80) /* THIS CONFUSES ME */
1271 {
1272 value &= 0xef; /* remove the sign bit */
1273 value = -value;
1274 }
1275 }
1276 offset = value;
1277 regy = -1;
1278 break;
1279 }
1280 case jalxtype:
1281 {
1282 unsigned long value;
1283 unsigned int nexthalf;
1284 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1285 value = value << 16;
1286 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1287 value |= nexthalf;
1288 offset = value;
1289 regx = -1;
1290 regy = -1;
1291 break;
1292 }
1293 default:
1294 internal_error (__FILE__, __LINE__, _("bad switch"));
1295 }
1296 upk->offset = offset;
1297 upk->regx = regx;
1298 upk->regy = regy;
1299 }
1300
1301
1302 static CORE_ADDR
1303 add_offset_16 (CORE_ADDR pc, int offset)
1304 {
1305 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
1306 }
1307
1308 static CORE_ADDR
1309 extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
1310 unsigned int extension, unsigned int insn)
1311 {
1312 int op = (insn >> 11);
1313 switch (op)
1314 {
1315 case 2: /* Branch */
1316 {
1317 CORE_ADDR offset;
1318 struct upk_mips16 upk;
1319 unpack_mips16 (pc, extension, insn, itype, &upk);
1320 offset = upk.offset;
1321 if (offset & 0x800)
1322 {
1323 offset &= 0xeff;
1324 offset = -offset;
1325 }
1326 pc += (offset << 1) + 2;
1327 break;
1328 }
1329 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1330 {
1331 struct upk_mips16 upk;
1332 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1333 pc = add_offset_16 (pc, upk.offset);
1334 if ((insn >> 10) & 0x01) /* Exchange mode */
1335 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1336 else
1337 pc |= 0x01;
1338 break;
1339 }
1340 case 4: /* beqz */
1341 {
1342 struct upk_mips16 upk;
1343 int reg;
1344 unpack_mips16 (pc, extension, insn, ritype, &upk);
1345 reg = get_frame_register_signed (frame, upk.regx);
1346 if (reg == 0)
1347 pc += (upk.offset << 1) + 2;
1348 else
1349 pc += 2;
1350 break;
1351 }
1352 case 5: /* bnez */
1353 {
1354 struct upk_mips16 upk;
1355 int reg;
1356 unpack_mips16 (pc, extension, insn, ritype, &upk);
1357 reg = get_frame_register_signed (frame, upk.regx);
1358 if (reg != 0)
1359 pc += (upk.offset << 1) + 2;
1360 else
1361 pc += 2;
1362 break;
1363 }
1364 case 12: /* I8 Formats btez btnez */
1365 {
1366 struct upk_mips16 upk;
1367 int reg;
1368 unpack_mips16 (pc, extension, insn, i8type, &upk);
1369 /* upk.regx contains the opcode */
1370 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
1371 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1372 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1373 /* pc = add_offset_16(pc,upk.offset) ; */
1374 pc += (upk.offset << 1) + 2;
1375 else
1376 pc += 2;
1377 break;
1378 }
1379 case 29: /* RR Formats JR, JALR, JALR-RA */
1380 {
1381 struct upk_mips16 upk;
1382 /* upk.fmt = rrtype; */
1383 op = insn & 0x1f;
1384 if (op == 0)
1385 {
1386 int reg;
1387 upk.regx = (insn >> 8) & 0x07;
1388 upk.regy = (insn >> 5) & 0x07;
1389 switch (upk.regy)
1390 {
1391 case 0:
1392 reg = upk.regx;
1393 break;
1394 case 1:
1395 reg = 31;
1396 break; /* Function return instruction */
1397 case 2:
1398 reg = upk.regx;
1399 break;
1400 default:
1401 reg = 31;
1402 break; /* BOGUS Guess */
1403 }
1404 pc = get_frame_register_signed (frame, reg);
1405 }
1406 else
1407 pc += 2;
1408 break;
1409 }
1410 case 30:
1411 /* This is an instruction extension. Fetch the real instruction
1412 (which follows the extension) and decode things based on
1413 that. */
1414 {
1415 pc += 2;
1416 pc = extended_mips16_next_pc (frame, pc, insn, fetch_mips_16 (pc));
1417 break;
1418 }
1419 default:
1420 {
1421 pc += 2;
1422 break;
1423 }
1424 }
1425 return pc;
1426 }
1427
1428 static CORE_ADDR
1429 mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
1430 {
1431 unsigned int insn = fetch_mips_16 (pc);
1432 return extended_mips16_next_pc (frame, pc, 0, insn);
1433 }
1434
1435 /* The mips_next_pc function supports single_step when the remote
1436 target monitor or stub is not developed enough to do a single_step.
1437 It works by decoding the current instruction and predicting where a
1438 branch will go. This isnt hard because all the data is available.
1439 The MIPS32 and MIPS16 variants are quite different. */
1440 static CORE_ADDR
1441 mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1442 {
1443 if (is_mips16_addr (pc))
1444 return mips16_next_pc (frame, pc);
1445 else
1446 return mips32_next_pc (frame, pc);
1447 }
1448
1449 struct mips_frame_cache
1450 {
1451 CORE_ADDR base;
1452 struct trad_frame_saved_reg *saved_regs;
1453 };
1454
1455 /* Set a register's saved stack address in temp_saved_regs. If an
1456 address has already been set for this register, do nothing; this
1457 way we will only recognize the first save of a given register in a
1458 function prologue.
1459
1460 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
1461 [gdbarch_num_regs .. 2*gdbarch_num_regs).
1462 Strictly speaking, only the second range is used as it is only second
1463 range (the ABI instead of ISA registers) that comes into play when finding
1464 saved registers in a frame. */
1465
1466 static void
1467 set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1468 CORE_ADDR offset)
1469 {
1470 if (this_cache != NULL
1471 && this_cache->saved_regs[regnum].addr == -1)
1472 {
1473 this_cache->saved_regs[regnum
1474 + 0 * gdbarch_num_regs (current_gdbarch)].addr
1475 = offset;
1476 this_cache->saved_regs[regnum
1477 + 1 * gdbarch_num_regs (current_gdbarch)].addr
1478 = offset;
1479 }
1480 }
1481
1482
1483 /* Fetch the immediate value from a MIPS16 instruction.
1484 If the previous instruction was an EXTEND, use it to extend
1485 the upper bits of the immediate value. This is a helper function
1486 for mips16_scan_prologue. */
1487
1488 static int
1489 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1490 unsigned short inst, /* current instruction */
1491 int nbits, /* number of bits in imm field */
1492 int scale, /* scale factor to be applied to imm */
1493 int is_signed) /* is the imm field signed? */
1494 {
1495 int offset;
1496
1497 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1498 {
1499 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1500 if (offset & 0x8000) /* check for negative extend */
1501 offset = 0 - (0x10000 - (offset & 0xffff));
1502 return offset | (inst & 0x1f);
1503 }
1504 else
1505 {
1506 int max_imm = 1 << nbits;
1507 int mask = max_imm - 1;
1508 int sign_bit = max_imm >> 1;
1509
1510 offset = inst & mask;
1511 if (is_signed && (offset & sign_bit))
1512 offset = 0 - (max_imm - offset);
1513 return offset * scale;
1514 }
1515 }
1516
1517
1518 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1519 the associated FRAME_CACHE if not null.
1520 Return the address of the first instruction past the prologue. */
1521
1522 static CORE_ADDR
1523 mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1524 struct frame_info *next_frame,
1525 struct mips_frame_cache *this_cache)
1526 {
1527 CORE_ADDR cur_pc;
1528 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1529 CORE_ADDR sp;
1530 long frame_offset = 0; /* Size of stack frame. */
1531 long frame_adjust = 0; /* Offset of FP from SP. */
1532 int frame_reg = MIPS_SP_REGNUM;
1533 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1534 unsigned inst = 0; /* current instruction */
1535 unsigned entry_inst = 0; /* the entry instruction */
1536 int reg, offset;
1537
1538 int extend_bytes = 0;
1539 int prev_extend_bytes;
1540 CORE_ADDR end_prologue_addr = 0;
1541
1542 /* Can be called when there's no process, and hence when there's no
1543 NEXT_FRAME. */
1544 if (next_frame != NULL)
1545 sp = frame_unwind_register_signed (next_frame,
1546 gdbarch_num_regs (current_gdbarch)
1547 + MIPS_SP_REGNUM);
1548 else
1549 sp = 0;
1550
1551 if (limit_pc > start_pc + 200)
1552 limit_pc = start_pc + 200;
1553
1554 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1555 {
1556 /* Save the previous instruction. If it's an EXTEND, we'll extract
1557 the immediate offset extension from it in mips16_get_imm. */
1558 prev_inst = inst;
1559
1560 /* Fetch and decode the instruction. */
1561 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1562
1563 /* Normally we ignore extend instructions. However, if it is
1564 not followed by a valid prologue instruction, then this
1565 instruction is not part of the prologue either. We must
1566 remember in this case to adjust the end_prologue_addr back
1567 over the extend. */
1568 if ((inst & 0xf800) == 0xf000) /* extend */
1569 {
1570 extend_bytes = MIPS_INSN16_SIZE;
1571 continue;
1572 }
1573
1574 prev_extend_bytes = extend_bytes;
1575 extend_bytes = 0;
1576
1577 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1578 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1579 {
1580 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1581 if (offset < 0) /* negative stack adjustment? */
1582 frame_offset -= offset;
1583 else
1584 /* Exit loop if a positive stack adjustment is found, which
1585 usually means that the stack cleanup code in the function
1586 epilogue is reached. */
1587 break;
1588 }
1589 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1590 {
1591 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1592 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1593 set_reg_offset (this_cache, reg, sp + offset);
1594 }
1595 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1596 {
1597 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1598 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1599 set_reg_offset (this_cache, reg, sp + offset);
1600 }
1601 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1602 {
1603 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1604 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1605 }
1606 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1607 {
1608 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1609 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1610 }
1611 else if (inst == 0x673d) /* move $s1, $sp */
1612 {
1613 frame_addr = sp;
1614 frame_reg = 17;
1615 }
1616 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1617 {
1618 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1619 frame_addr = sp + offset;
1620 frame_reg = 17;
1621 frame_adjust = offset;
1622 }
1623 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1624 {
1625 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1626 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1627 set_reg_offset (this_cache, reg, frame_addr + offset);
1628 }
1629 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1630 {
1631 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1632 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1633 set_reg_offset (this_cache, reg, frame_addr + offset);
1634 }
1635 else if ((inst & 0xf81f) == 0xe809
1636 && (inst & 0x700) != 0x700) /* entry */
1637 entry_inst = inst; /* save for later processing */
1638 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1639 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1640 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1641 {
1642 /* This instruction is part of the prologue, but we don't
1643 need to do anything special to handle it. */
1644 }
1645 else
1646 {
1647 /* This instruction is not an instruction typically found
1648 in a prologue, so we must have reached the end of the
1649 prologue. */
1650 if (end_prologue_addr == 0)
1651 end_prologue_addr = cur_pc - prev_extend_bytes;
1652 }
1653 }
1654
1655 /* The entry instruction is typically the first instruction in a function,
1656 and it stores registers at offsets relative to the value of the old SP
1657 (before the prologue). But the value of the sp parameter to this
1658 function is the new SP (after the prologue has been executed). So we
1659 can't calculate those offsets until we've seen the entire prologue,
1660 and can calculate what the old SP must have been. */
1661 if (entry_inst != 0)
1662 {
1663 int areg_count = (entry_inst >> 8) & 7;
1664 int sreg_count = (entry_inst >> 6) & 3;
1665
1666 /* The entry instruction always subtracts 32 from the SP. */
1667 frame_offset += 32;
1668
1669 /* Now we can calculate what the SP must have been at the
1670 start of the function prologue. */
1671 sp += frame_offset;
1672
1673 /* Check if a0-a3 were saved in the caller's argument save area. */
1674 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1675 {
1676 set_reg_offset (this_cache, reg, sp + offset);
1677 offset += mips_abi_regsize (current_gdbarch);
1678 }
1679
1680 /* Check if the ra register was pushed on the stack. */
1681 offset = -4;
1682 if (entry_inst & 0x20)
1683 {
1684 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1685 offset -= mips_abi_regsize (current_gdbarch);
1686 }
1687
1688 /* Check if the s0 and s1 registers were pushed on the stack. */
1689 for (reg = 16; reg < sreg_count + 16; reg++)
1690 {
1691 set_reg_offset (this_cache, reg, sp + offset);
1692 offset -= mips_abi_regsize (current_gdbarch);
1693 }
1694 }
1695
1696 if (this_cache != NULL)
1697 {
1698 this_cache->base =
1699 (frame_unwind_register_signed (next_frame,
1700 gdbarch_num_regs (current_gdbarch)
1701 + frame_reg)
1702 + frame_offset - frame_adjust);
1703 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1704 be able to get rid of the assignment below, evetually. But it's
1705 still needed for now. */
1706 this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
1707 + mips_regnum (current_gdbarch)->pc]
1708 = this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
1709 + MIPS_RA_REGNUM];
1710 }
1711
1712 /* If we didn't reach the end of the prologue when scanning the function
1713 instructions, then set end_prologue_addr to the address of the
1714 instruction immediately after the last one we scanned. */
1715 if (end_prologue_addr == 0)
1716 end_prologue_addr = cur_pc;
1717
1718 return end_prologue_addr;
1719 }
1720
1721 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1722 Procedures that use the 32-bit instruction set are handled by the
1723 mips_insn32 unwinder. */
1724
1725 static struct mips_frame_cache *
1726 mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
1727 {
1728 struct mips_frame_cache *cache;
1729
1730 if ((*this_cache) != NULL)
1731 return (*this_cache);
1732 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1733 (*this_cache) = cache;
1734 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1735
1736 /* Analyze the function prologue. */
1737 {
1738 const CORE_ADDR pc =
1739 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1740 CORE_ADDR start_addr;
1741
1742 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1743 if (start_addr == 0)
1744 start_addr = heuristic_proc_start (pc);
1745 /* We can't analyze the prologue if we couldn't find the begining
1746 of the function. */
1747 if (start_addr == 0)
1748 return cache;
1749
1750 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1751 }
1752
1753 /* gdbarch_sp_regnum contains the value and not the address. */
1754 trad_frame_set_value (cache->saved_regs, gdbarch_num_regs (current_gdbarch)
1755 + MIPS_SP_REGNUM, cache->base);
1756
1757 return (*this_cache);
1758 }
1759
1760 static void
1761 mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1762 struct frame_id *this_id)
1763 {
1764 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1765 this_cache);
1766 (*this_id) = frame_id_build (info->base,
1767 frame_func_unwind (next_frame, NORMAL_FRAME));
1768 }
1769
1770 static void
1771 mips_insn16_frame_prev_register (struct frame_info *next_frame,
1772 void **this_cache,
1773 int regnum, int *optimizedp,
1774 enum lval_type *lvalp, CORE_ADDR *addrp,
1775 int *realnump, gdb_byte *valuep)
1776 {
1777 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1778 this_cache);
1779 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1780 optimizedp, lvalp, addrp, realnump, valuep);
1781 }
1782
1783 static const struct frame_unwind mips_insn16_frame_unwind =
1784 {
1785 NORMAL_FRAME,
1786 mips_insn16_frame_this_id,
1787 mips_insn16_frame_prev_register
1788 };
1789
1790 static const struct frame_unwind *
1791 mips_insn16_frame_sniffer (struct frame_info *next_frame)
1792 {
1793 CORE_ADDR pc = frame_pc_unwind (next_frame);
1794 if (mips_pc_is_mips16 (pc))
1795 return &mips_insn16_frame_unwind;
1796 return NULL;
1797 }
1798
1799 static CORE_ADDR
1800 mips_insn16_frame_base_address (struct frame_info *next_frame,
1801 void **this_cache)
1802 {
1803 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1804 this_cache);
1805 return info->base;
1806 }
1807
1808 static const struct frame_base mips_insn16_frame_base =
1809 {
1810 &mips_insn16_frame_unwind,
1811 mips_insn16_frame_base_address,
1812 mips_insn16_frame_base_address,
1813 mips_insn16_frame_base_address
1814 };
1815
1816 static const struct frame_base *
1817 mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
1818 {
1819 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1820 return &mips_insn16_frame_base;
1821 else
1822 return NULL;
1823 }
1824
1825 /* Mark all the registers as unset in the saved_regs array
1826 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1827
1828 void
1829 reset_saved_regs (struct mips_frame_cache *this_cache)
1830 {
1831 if (this_cache == NULL || this_cache->saved_regs == NULL)
1832 return;
1833
1834 {
1835 const int num_regs = gdbarch_num_regs (current_gdbarch);
1836 int i;
1837
1838 for (i = 0; i < num_regs; i++)
1839 {
1840 this_cache->saved_regs[i].addr = -1;
1841 }
1842 }
1843 }
1844
1845 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1846 the associated FRAME_CACHE if not null.
1847 Return the address of the first instruction past the prologue. */
1848
1849 static CORE_ADDR
1850 mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1851 struct frame_info *next_frame,
1852 struct mips_frame_cache *this_cache)
1853 {
1854 CORE_ADDR cur_pc;
1855 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1856 CORE_ADDR sp;
1857 long frame_offset;
1858 int frame_reg = MIPS_SP_REGNUM;
1859
1860 CORE_ADDR end_prologue_addr = 0;
1861 int seen_sp_adjust = 0;
1862 int load_immediate_bytes = 0;
1863
1864 /* Can be called when there's no process, and hence when there's no
1865 NEXT_FRAME. */
1866 if (next_frame != NULL)
1867 sp = frame_unwind_register_signed (next_frame,
1868 gdbarch_num_regs (current_gdbarch)
1869 + MIPS_SP_REGNUM);
1870 else
1871 sp = 0;
1872
1873 if (limit_pc > start_pc + 200)
1874 limit_pc = start_pc + 200;
1875
1876 restart:
1877
1878 frame_offset = 0;
1879 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1880 {
1881 unsigned long inst, high_word, low_word;
1882 int reg;
1883
1884 /* Fetch the instruction. */
1885 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1886
1887 /* Save some code by pre-extracting some useful fields. */
1888 high_word = (inst >> 16) & 0xffff;
1889 low_word = inst & 0xffff;
1890 reg = high_word & 0x1f;
1891
1892 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1893 || high_word == 0x23bd /* addi $sp,$sp,-i */
1894 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1895 {
1896 if (low_word & 0x8000) /* negative stack adjustment? */
1897 frame_offset += 0x10000 - low_word;
1898 else
1899 /* Exit loop if a positive stack adjustment is found, which
1900 usually means that the stack cleanup code in the function
1901 epilogue is reached. */
1902 break;
1903 seen_sp_adjust = 1;
1904 }
1905 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1906 {
1907 set_reg_offset (this_cache, reg, sp + low_word);
1908 }
1909 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1910 {
1911 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1912 set_reg_offset (this_cache, reg, sp + low_word);
1913 }
1914 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1915 {
1916 /* Old gcc frame, r30 is virtual frame pointer. */
1917 if ((long) low_word != frame_offset)
1918 frame_addr = sp + low_word;
1919 else if (next_frame && frame_reg == MIPS_SP_REGNUM)
1920 {
1921 unsigned alloca_adjust;
1922
1923 frame_reg = 30;
1924 frame_addr = frame_unwind_register_signed
1925 (next_frame,
1926 gdbarch_num_regs (current_gdbarch) + 30);
1927
1928 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1929 if (alloca_adjust > 0)
1930 {
1931 /* FP > SP + frame_size. This may be because of
1932 an alloca or somethings similar. Fix sp to
1933 "pre-alloca" value, and try again. */
1934 sp += alloca_adjust;
1935 /* Need to reset the status of all registers. Otherwise,
1936 we will hit a guard that prevents the new address
1937 for each register to be recomputed during the second
1938 pass. */
1939 reset_saved_regs (this_cache);
1940 goto restart;
1941 }
1942 }
1943 }
1944 /* move $30,$sp. With different versions of gas this will be either
1945 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1946 Accept any one of these. */
1947 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1948 {
1949 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1950 if (next_frame && frame_reg == MIPS_SP_REGNUM)
1951 {
1952 unsigned alloca_adjust;
1953
1954 frame_reg = 30;
1955 frame_addr = frame_unwind_register_signed
1956 (next_frame,
1957 gdbarch_num_regs (current_gdbarch) + 30);
1958
1959 alloca_adjust = (unsigned) (frame_addr - sp);
1960 if (alloca_adjust > 0)
1961 {
1962 /* FP > SP + frame_size. This may be because of
1963 an alloca or somethings similar. Fix sp to
1964 "pre-alloca" value, and try again. */
1965 sp = frame_addr;
1966 /* Need to reset the status of all registers. Otherwise,
1967 we will hit a guard that prevents the new address
1968 for each register to be recomputed during the second
1969 pass. */
1970 reset_saved_regs (this_cache);
1971 goto restart;
1972 }
1973 }
1974 }
1975 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1976 {
1977 set_reg_offset (this_cache, reg, frame_addr + low_word);
1978 }
1979 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1980 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1981 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1982 || high_word == 0x3c1c /* lui $gp,n */
1983 || high_word == 0x279c /* addiu $gp,$gp,n */
1984 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1985 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1986 )
1987 {
1988 /* These instructions are part of the prologue, but we don't
1989 need to do anything special to handle them. */
1990 }
1991 /* The instructions below load $at or $t0 with an immediate
1992 value in preparation for a stack adjustment via
1993 subu $sp,$sp,[$at,$t0]. These instructions could also
1994 initialize a local variable, so we accept them only before
1995 a stack adjustment instruction was seen. */
1996 else if (!seen_sp_adjust
1997 && (high_word == 0x3c01 /* lui $at,n */
1998 || high_word == 0x3c08 /* lui $t0,n */
1999 || high_word == 0x3421 /* ori $at,$at,n */
2000 || high_word == 0x3508 /* ori $t0,$t0,n */
2001 || high_word == 0x3401 /* ori $at,$zero,n */
2002 || high_word == 0x3408 /* ori $t0,$zero,n */
2003 ))
2004 {
2005 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
2006 }
2007 else
2008 {
2009 /* This instruction is not an instruction typically found
2010 in a prologue, so we must have reached the end of the
2011 prologue. */
2012 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
2013 loop now? Why would we need to continue scanning the function
2014 instructions? */
2015 if (end_prologue_addr == 0)
2016 end_prologue_addr = cur_pc;
2017 }
2018 }
2019
2020 if (this_cache != NULL)
2021 {
2022 this_cache->base =
2023 (frame_unwind_register_signed (next_frame,
2024 gdbarch_num_regs (current_gdbarch)
2025 + frame_reg)
2026 + frame_offset);
2027 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
2028 this assignment below, eventually. But it's still needed
2029 for now. */
2030 this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
2031 + mips_regnum (current_gdbarch)->pc]
2032 = this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
2033 + MIPS_RA_REGNUM];
2034 }
2035
2036 /* If we didn't reach the end of the prologue when scanning the function
2037 instructions, then set end_prologue_addr to the address of the
2038 instruction immediately after the last one we scanned. */
2039 /* brobecker/2004-10-10: I don't think this would ever happen, but
2040 we may as well be careful and do our best if we have a null
2041 end_prologue_addr. */
2042 if (end_prologue_addr == 0)
2043 end_prologue_addr = cur_pc;
2044
2045 /* In a frameless function, we might have incorrectly
2046 skipped some load immediate instructions. Undo the skipping
2047 if the load immediate was not followed by a stack adjustment. */
2048 if (load_immediate_bytes && !seen_sp_adjust)
2049 end_prologue_addr -= load_immediate_bytes;
2050
2051 return end_prologue_addr;
2052 }
2053
2054 /* Heuristic unwinder for procedures using 32-bit instructions (covers
2055 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
2056 instructions (a.k.a. MIPS16) are handled by the mips_insn16
2057 unwinder. */
2058
2059 static struct mips_frame_cache *
2060 mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
2061 {
2062 struct mips_frame_cache *cache;
2063
2064 if ((*this_cache) != NULL)
2065 return (*this_cache);
2066
2067 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2068 (*this_cache) = cache;
2069 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2070
2071 /* Analyze the function prologue. */
2072 {
2073 const CORE_ADDR pc =
2074 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2075 CORE_ADDR start_addr;
2076
2077 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2078 if (start_addr == 0)
2079 start_addr = heuristic_proc_start (pc);
2080 /* We can't analyze the prologue if we couldn't find the begining
2081 of the function. */
2082 if (start_addr == 0)
2083 return cache;
2084
2085 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
2086 }
2087
2088 /* gdbarch_sp_regnum contains the value and not the address. */
2089 trad_frame_set_value (cache->saved_regs,
2090 gdbarch_num_regs (current_gdbarch) + MIPS_SP_REGNUM,
2091 cache->base);
2092
2093 return (*this_cache);
2094 }
2095
2096 static void
2097 mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
2098 struct frame_id *this_id)
2099 {
2100 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2101 this_cache);
2102 (*this_id) = frame_id_build (info->base,
2103 frame_func_unwind (next_frame, NORMAL_FRAME));
2104 }
2105
2106 static void
2107 mips_insn32_frame_prev_register (struct frame_info *next_frame,
2108 void **this_cache,
2109 int regnum, int *optimizedp,
2110 enum lval_type *lvalp, CORE_ADDR *addrp,
2111 int *realnump, gdb_byte *valuep)
2112 {
2113 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2114 this_cache);
2115 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2116 optimizedp, lvalp, addrp, realnump, valuep);
2117 }
2118
2119 static const struct frame_unwind mips_insn32_frame_unwind =
2120 {
2121 NORMAL_FRAME,
2122 mips_insn32_frame_this_id,
2123 mips_insn32_frame_prev_register
2124 };
2125
2126 static const struct frame_unwind *
2127 mips_insn32_frame_sniffer (struct frame_info *next_frame)
2128 {
2129 CORE_ADDR pc = frame_pc_unwind (next_frame);
2130 if (! mips_pc_is_mips16 (pc))
2131 return &mips_insn32_frame_unwind;
2132 return NULL;
2133 }
2134
2135 static CORE_ADDR
2136 mips_insn32_frame_base_address (struct frame_info *next_frame,
2137 void **this_cache)
2138 {
2139 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2140 this_cache);
2141 return info->base;
2142 }
2143
2144 static const struct frame_base mips_insn32_frame_base =
2145 {
2146 &mips_insn32_frame_unwind,
2147 mips_insn32_frame_base_address,
2148 mips_insn32_frame_base_address,
2149 mips_insn32_frame_base_address
2150 };
2151
2152 static const struct frame_base *
2153 mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2154 {
2155 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2156 return &mips_insn32_frame_base;
2157 else
2158 return NULL;
2159 }
2160
2161 static struct trad_frame_cache *
2162 mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2163 {
2164 CORE_ADDR pc;
2165 CORE_ADDR start_addr;
2166 CORE_ADDR stack_addr;
2167 struct trad_frame_cache *this_trad_cache;
2168
2169 if ((*this_cache) != NULL)
2170 return (*this_cache);
2171 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2172 (*this_cache) = this_trad_cache;
2173
2174 /* The return address is in the link register. */
2175 trad_frame_set_reg_realreg (this_trad_cache,
2176 gdbarch_pc_regnum (current_gdbarch),
2177 (gdbarch_num_regs (current_gdbarch)
2178 + MIPS_RA_REGNUM));
2179
2180 /* Frame ID, since it's a frameless / stackless function, no stack
2181 space is allocated and SP on entry is the current SP. */
2182 pc = frame_pc_unwind (next_frame);
2183 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2184 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
2185 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
2186
2187 /* Assume that the frame's base is the same as the
2188 stack-pointer. */
2189 trad_frame_set_this_base (this_trad_cache, stack_addr);
2190
2191 return this_trad_cache;
2192 }
2193
2194 static void
2195 mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2196 struct frame_id *this_id)
2197 {
2198 struct trad_frame_cache *this_trad_cache
2199 = mips_stub_frame_cache (next_frame, this_cache);
2200 trad_frame_get_id (this_trad_cache, this_id);
2201 }
2202
2203 static void
2204 mips_stub_frame_prev_register (struct frame_info *next_frame,
2205 void **this_cache,
2206 int regnum, int *optimizedp,
2207 enum lval_type *lvalp, CORE_ADDR *addrp,
2208 int *realnump, gdb_byte *valuep)
2209 {
2210 struct trad_frame_cache *this_trad_cache
2211 = mips_stub_frame_cache (next_frame, this_cache);
2212 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2213 lvalp, addrp, realnump, valuep);
2214 }
2215
2216 static const struct frame_unwind mips_stub_frame_unwind =
2217 {
2218 NORMAL_FRAME,
2219 mips_stub_frame_this_id,
2220 mips_stub_frame_prev_register
2221 };
2222
2223 static const struct frame_unwind *
2224 mips_stub_frame_sniffer (struct frame_info *next_frame)
2225 {
2226 gdb_byte dummy[4];
2227 struct obj_section *s;
2228 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2229
2230 /* Use the stub unwinder for unreadable code. */
2231 if (target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
2232 return &mips_stub_frame_unwind;
2233
2234 if (in_plt_section (pc, NULL))
2235 return &mips_stub_frame_unwind;
2236
2237 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2238 s = find_pc_section (pc);
2239
2240 if (s != NULL
2241 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2242 ".MIPS.stubs") == 0)
2243 return &mips_stub_frame_unwind;
2244
2245 return NULL;
2246 }
2247
2248 static CORE_ADDR
2249 mips_stub_frame_base_address (struct frame_info *next_frame,
2250 void **this_cache)
2251 {
2252 struct trad_frame_cache *this_trad_cache
2253 = mips_stub_frame_cache (next_frame, this_cache);
2254 return trad_frame_get_this_base (this_trad_cache);
2255 }
2256
2257 static const struct frame_base mips_stub_frame_base =
2258 {
2259 &mips_stub_frame_unwind,
2260 mips_stub_frame_base_address,
2261 mips_stub_frame_base_address,
2262 mips_stub_frame_base_address
2263 };
2264
2265 static const struct frame_base *
2266 mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2267 {
2268 if (mips_stub_frame_sniffer (next_frame) != NULL)
2269 return &mips_stub_frame_base;
2270 else
2271 return NULL;
2272 }
2273
2274 /* mips_addr_bits_remove - remove useless address bits */
2275
2276 static CORE_ADDR
2277 mips_addr_bits_remove (CORE_ADDR addr)
2278 {
2279 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2280 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2281 /* This hack is a work-around for existing boards using PMON, the
2282 simulator, and any other 64-bit targets that doesn't have true
2283 64-bit addressing. On these targets, the upper 32 bits of
2284 addresses are ignored by the hardware. Thus, the PC or SP are
2285 likely to have been sign extended to all 1s by instruction
2286 sequences that load 32-bit addresses. For example, a typical
2287 piece of code that loads an address is this:
2288
2289 lui $r2, <upper 16 bits>
2290 ori $r2, <lower 16 bits>
2291
2292 But the lui sign-extends the value such that the upper 32 bits
2293 may be all 1s. The workaround is simply to mask off these
2294 bits. In the future, gcc may be changed to support true 64-bit
2295 addressing, and this masking will have to be disabled. */
2296 return addr &= 0xffffffffUL;
2297 else
2298 return addr;
2299 }
2300
2301 /* mips_software_single_step() is called just before we want to resume
2302 the inferior, if we want to single-step it but there is no hardware
2303 or kernel single-step support (MIPS on GNU/Linux for example). We find
2304 the target of the coming instruction and breakpoint it. */
2305
2306 int
2307 mips_software_single_step (struct frame_info *frame)
2308 {
2309 CORE_ADDR pc, next_pc;
2310
2311 pc = get_frame_pc (frame);
2312 next_pc = mips_next_pc (frame, pc);
2313
2314 insert_single_step_breakpoint (next_pc);
2315 return 1;
2316 }
2317
2318 /* Test whether the PC points to the return instruction at the
2319 end of a function. */
2320
2321 static int
2322 mips_about_to_return (CORE_ADDR pc)
2323 {
2324 if (mips_pc_is_mips16 (pc))
2325 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2326 generates a "jr $ra"; other times it generates code to load
2327 the return address from the stack to an accessible register (such
2328 as $a3), then a "jr" using that register. This second case
2329 is almost impossible to distinguish from an indirect jump
2330 used for switch statements, so we don't even try. */
2331 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2332 else
2333 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2334 }
2335
2336
2337 /* This fencepost looks highly suspicious to me. Removing it also
2338 seems suspicious as it could affect remote debugging across serial
2339 lines. */
2340
2341 static CORE_ADDR
2342 heuristic_proc_start (CORE_ADDR pc)
2343 {
2344 CORE_ADDR start_pc;
2345 CORE_ADDR fence;
2346 int instlen;
2347 int seen_adjsp = 0;
2348
2349 pc = gdbarch_addr_bits_remove (current_gdbarch, pc);
2350 start_pc = pc;
2351 fence = start_pc - heuristic_fence_post;
2352 if (start_pc == 0)
2353 return 0;
2354
2355 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2356 fence = VM_MIN_ADDRESS;
2357
2358 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2359
2360 /* search back for previous return */
2361 for (start_pc -= instlen;; start_pc -= instlen)
2362 if (start_pc < fence)
2363 {
2364 /* It's not clear to me why we reach this point when
2365 stop_soon, but with this test, at least we
2366 don't print out warnings for every child forked (eg, on
2367 decstation). 22apr93 rich@cygnus.com. */
2368 if (stop_soon == NO_STOP_QUIETLY)
2369 {
2370 static int blurb_printed = 0;
2371
2372 warning (_("GDB can't find the start of the function at 0x%s."),
2373 paddr_nz (pc));
2374
2375 if (!blurb_printed)
2376 {
2377 /* This actually happens frequently in embedded
2378 development, when you first connect to a board
2379 and your stack pointer and pc are nowhere in
2380 particular. This message needs to give people
2381 in that situation enough information to
2382 determine that it's no big deal. */
2383 printf_filtered ("\n\
2384 GDB is unable to find the start of the function at 0x%s\n\
2385 and thus can't determine the size of that function's stack frame.\n\
2386 This means that GDB may be unable to access that stack frame, or\n\
2387 the frames below it.\n\
2388 This problem is most likely caused by an invalid program counter or\n\
2389 stack pointer.\n\
2390 However, if you think GDB should simply search farther back\n\
2391 from 0x%s for code which looks like the beginning of a\n\
2392 function, you can increase the range of the search using the `set\n\
2393 heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2394 blurb_printed = 1;
2395 }
2396 }
2397
2398 return 0;
2399 }
2400 else if (mips_pc_is_mips16 (start_pc))
2401 {
2402 unsigned short inst;
2403
2404 /* On MIPS16, any one of the following is likely to be the
2405 start of a function:
2406 extend save
2407 save
2408 entry
2409 addiu sp,-n
2410 daddiu sp,-n
2411 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2412 inst = mips_fetch_instruction (start_pc);
2413 if ((inst & 0xff80) == 0x6480) /* save */
2414 {
2415 if (start_pc - instlen >= fence)
2416 {
2417 inst = mips_fetch_instruction (start_pc - instlen);
2418 if ((inst & 0xf800) == 0xf000) /* extend */
2419 start_pc -= instlen;
2420 }
2421 break;
2422 }
2423 else if (((inst & 0xf81f) == 0xe809
2424 && (inst & 0x700) != 0x700) /* entry */
2425 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2426 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2427 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2428 break;
2429 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2430 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2431 seen_adjsp = 1;
2432 else
2433 seen_adjsp = 0;
2434 }
2435 else if (mips_about_to_return (start_pc))
2436 {
2437 /* Skip return and its delay slot. */
2438 start_pc += 2 * MIPS_INSN32_SIZE;
2439 break;
2440 }
2441
2442 return start_pc;
2443 }
2444
2445 struct mips_objfile_private
2446 {
2447 bfd_size_type size;
2448 char *contents;
2449 };
2450
2451 /* According to the current ABI, should the type be passed in a
2452 floating-point register (assuming that there is space)? When there
2453 is no FPU, FP are not even considered as possible candidates for
2454 FP registers and, consequently this returns false - forces FP
2455 arguments into integer registers. */
2456
2457 static int
2458 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2459 {
2460 return ((typecode == TYPE_CODE_FLT
2461 || (MIPS_EABI
2462 && (typecode == TYPE_CODE_STRUCT
2463 || typecode == TYPE_CODE_UNION)
2464 && TYPE_NFIELDS (arg_type) == 1
2465 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2466 == TYPE_CODE_FLT))
2467 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2468 }
2469
2470 /* On o32, argument passing in GPRs depends on the alignment of the type being
2471 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2472
2473 static int
2474 mips_type_needs_double_align (struct type *type)
2475 {
2476 enum type_code typecode = TYPE_CODE (type);
2477
2478 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2479 return 1;
2480 else if (typecode == TYPE_CODE_STRUCT)
2481 {
2482 if (TYPE_NFIELDS (type) < 1)
2483 return 0;
2484 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2485 }
2486 else if (typecode == TYPE_CODE_UNION)
2487 {
2488 int i, n;
2489
2490 n = TYPE_NFIELDS (type);
2491 for (i = 0; i < n; i++)
2492 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2493 return 1;
2494 return 0;
2495 }
2496 return 0;
2497 }
2498
2499 /* Adjust the address downward (direction of stack growth) so that it
2500 is correctly aligned for a new stack frame. */
2501 static CORE_ADDR
2502 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2503 {
2504 return align_down (addr, 16);
2505 }
2506
2507 static CORE_ADDR
2508 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2509 struct regcache *regcache, CORE_ADDR bp_addr,
2510 int nargs, struct value **args, CORE_ADDR sp,
2511 int struct_return, CORE_ADDR struct_addr)
2512 {
2513 int argreg;
2514 int float_argreg;
2515 int argnum;
2516 int len = 0;
2517 int stack_offset = 0;
2518 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2519 CORE_ADDR func_addr = find_function_addr (function, NULL);
2520 int regsize = mips_abi_regsize (gdbarch);
2521
2522 /* For shared libraries, "t9" needs to point at the function
2523 address. */
2524 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2525
2526 /* Set the return address register to point to the entry point of
2527 the program, where a breakpoint lies in wait. */
2528 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2529
2530 /* First ensure that the stack and structure return address (if any)
2531 are properly aligned. The stack has to be at least 64-bit
2532 aligned even on 32-bit machines, because doubles must be 64-bit
2533 aligned. For n32 and n64, stack frames need to be 128-bit
2534 aligned, so we round to this widest known alignment. */
2535
2536 sp = align_down (sp, 16);
2537 struct_addr = align_down (struct_addr, 16);
2538
2539 /* Now make space on the stack for the args. We allocate more
2540 than necessary for EABI, because the first few arguments are
2541 passed in registers, but that's OK. */
2542 for (argnum = 0; argnum < nargs; argnum++)
2543 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
2544 sp -= align_up (len, 16);
2545
2546 if (mips_debug)
2547 fprintf_unfiltered (gdb_stdlog,
2548 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2549 paddr_nz (sp), (long) align_up (len, 16));
2550
2551 /* Initialize the integer and float register pointers. */
2552 argreg = MIPS_A0_REGNUM;
2553 float_argreg = mips_fpa0_regnum (current_gdbarch);
2554
2555 /* The struct_return pointer occupies the first parameter-passing reg. */
2556 if (struct_return)
2557 {
2558 if (mips_debug)
2559 fprintf_unfiltered (gdb_stdlog,
2560 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2561 argreg, paddr_nz (struct_addr));
2562 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2563 }
2564
2565 /* Now load as many as possible of the first arguments into
2566 registers, and push the rest onto the stack. Loop thru args
2567 from first to last. */
2568 for (argnum = 0; argnum < nargs; argnum++)
2569 {
2570 const gdb_byte *val;
2571 gdb_byte valbuf[MAX_REGISTER_SIZE];
2572 struct value *arg = args[argnum];
2573 struct type *arg_type = check_typedef (value_type (arg));
2574 int len = TYPE_LENGTH (arg_type);
2575 enum type_code typecode = TYPE_CODE (arg_type);
2576
2577 if (mips_debug)
2578 fprintf_unfiltered (gdb_stdlog,
2579 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2580 argnum + 1, len, (int) typecode);
2581
2582 /* The EABI passes structures that do not fit in a register by
2583 reference. */
2584 if (len > regsize
2585 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2586 {
2587 store_unsigned_integer (valbuf, regsize, VALUE_ADDRESS (arg));
2588 typecode = TYPE_CODE_PTR;
2589 len = regsize;
2590 val = valbuf;
2591 if (mips_debug)
2592 fprintf_unfiltered (gdb_stdlog, " push");
2593 }
2594 else
2595 val = value_contents (arg);
2596
2597 /* 32-bit ABIs always start floating point arguments in an
2598 even-numbered floating point register. Round the FP register
2599 up before the check to see if there are any FP registers
2600 left. Non MIPS_EABI targets also pass the FP in the integer
2601 registers so also round up normal registers. */
2602 if (regsize < 8 && fp_register_arg_p (typecode, arg_type))
2603 {
2604 if ((float_argreg & 1))
2605 float_argreg++;
2606 }
2607
2608 /* Floating point arguments passed in registers have to be
2609 treated specially. On 32-bit architectures, doubles
2610 are passed in register pairs; the even register gets
2611 the low word, and the odd register gets the high word.
2612 On non-EABI processors, the first two floating point arguments are
2613 also copied to general registers, because MIPS16 functions
2614 don't use float registers for arguments. This duplication of
2615 arguments in general registers can't hurt non-MIPS16 functions
2616 because those registers are normally skipped. */
2617 /* MIPS_EABI squeezes a struct that contains a single floating
2618 point value into an FP register instead of pushing it onto the
2619 stack. */
2620 if (fp_register_arg_p (typecode, arg_type)
2621 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2622 {
2623 /* EABI32 will pass doubles in consecutive registers, even on
2624 64-bit cores. At one time, we used to check the size of
2625 `float_argreg' to determine whether or not to pass doubles
2626 in consecutive registers, but this is not sufficient for
2627 making the ABI determination. */
2628 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
2629 {
2630 int low_offset = gdbarch_byte_order (current_gdbarch)
2631 == BFD_ENDIAN_BIG ? 4 : 0;
2632 unsigned long regval;
2633
2634 /* Write the low word of the double to the even register(s). */
2635 regval = extract_unsigned_integer (val + low_offset, 4);
2636 if (mips_debug)
2637 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2638 float_argreg, phex (regval, 4));
2639 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2640
2641 /* Write the high word of the double to the odd register(s). */
2642 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2643 if (mips_debug)
2644 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2645 float_argreg, phex (regval, 4));
2646 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2647 }
2648 else
2649 {
2650 /* This is a floating point value that fits entirely
2651 in a single register. */
2652 /* On 32 bit ABI's the float_argreg is further adjusted
2653 above to ensure that it is even register aligned. */
2654 LONGEST regval = extract_unsigned_integer (val, len);
2655 if (mips_debug)
2656 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2657 float_argreg, phex (regval, len));
2658 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2659 }
2660 }
2661 else
2662 {
2663 /* Copy the argument to general registers or the stack in
2664 register-sized pieces. Large arguments are split between
2665 registers and stack. */
2666 /* Note: structs whose size is not a multiple of regsize
2667 are treated specially: Irix cc passes
2668 them in registers where gcc sometimes puts them on the
2669 stack. For maximum compatibility, we will put them in
2670 both places. */
2671 int odd_sized_struct = (len > regsize && len % regsize != 0);
2672
2673 /* Note: Floating-point values that didn't fit into an FP
2674 register are only written to memory. */
2675 while (len > 0)
2676 {
2677 /* Remember if the argument was written to the stack. */
2678 int stack_used_p = 0;
2679 int partial_len = (len < regsize ? len : regsize);
2680
2681 if (mips_debug)
2682 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2683 partial_len);
2684
2685 /* Write this portion of the argument to the stack. */
2686 if (argreg > MIPS_LAST_ARG_REGNUM
2687 || odd_sized_struct
2688 || fp_register_arg_p (typecode, arg_type))
2689 {
2690 /* Should shorter than int integer values be
2691 promoted to int before being stored? */
2692 int longword_offset = 0;
2693 CORE_ADDR addr;
2694 stack_used_p = 1;
2695 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
2696 {
2697 if (regsize == 8
2698 && (typecode == TYPE_CODE_INT
2699 || typecode == TYPE_CODE_PTR
2700 || typecode == TYPE_CODE_FLT) && len <= 4)
2701 longword_offset = regsize - len;
2702 else if ((typecode == TYPE_CODE_STRUCT
2703 || typecode == TYPE_CODE_UNION)
2704 && TYPE_LENGTH (arg_type) < regsize)
2705 longword_offset = regsize - len;
2706 }
2707
2708 if (mips_debug)
2709 {
2710 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2711 paddr_nz (stack_offset));
2712 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2713 paddr_nz (longword_offset));
2714 }
2715
2716 addr = sp + stack_offset + longword_offset;
2717
2718 if (mips_debug)
2719 {
2720 int i;
2721 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2722 paddr_nz (addr));
2723 for (i = 0; i < partial_len; i++)
2724 {
2725 fprintf_unfiltered (gdb_stdlog, "%02x",
2726 val[i] & 0xff);
2727 }
2728 }
2729 write_memory (addr, val, partial_len);
2730 }
2731
2732 /* Note!!! This is NOT an else clause. Odd sized
2733 structs may go thru BOTH paths. Floating point
2734 arguments will not. */
2735 /* Write this portion of the argument to a general
2736 purpose register. */
2737 if (argreg <= MIPS_LAST_ARG_REGNUM
2738 && !fp_register_arg_p (typecode, arg_type))
2739 {
2740 LONGEST regval =
2741 extract_unsigned_integer (val, partial_len);
2742
2743 if (mips_debug)
2744 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2745 argreg,
2746 phex (regval, regsize));
2747 regcache_cooked_write_unsigned (regcache, argreg, regval);
2748 argreg++;
2749 }
2750
2751 len -= partial_len;
2752 val += partial_len;
2753
2754 /* Compute the the offset into the stack at which we
2755 will copy the next parameter.
2756
2757 In the new EABI (and the NABI32), the stack_offset
2758 only needs to be adjusted when it has been used. */
2759
2760 if (stack_used_p)
2761 stack_offset += align_up (partial_len, regsize);
2762 }
2763 }
2764 if (mips_debug)
2765 fprintf_unfiltered (gdb_stdlog, "\n");
2766 }
2767
2768 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2769
2770 /* Return adjusted stack pointer. */
2771 return sp;
2772 }
2773
2774 /* Determine the return value convention being used. */
2775
2776 static enum return_value_convention
2777 mips_eabi_return_value (struct gdbarch *gdbarch,
2778 struct type *type, struct regcache *regcache,
2779 gdb_byte *readbuf, const gdb_byte *writebuf)
2780 {
2781 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2782 return RETURN_VALUE_STRUCT_CONVENTION;
2783 if (readbuf)
2784 memset (readbuf, 0, TYPE_LENGTH (type));
2785 return RETURN_VALUE_REGISTER_CONVENTION;
2786 }
2787
2788
2789 /* N32/N64 ABI stuff. */
2790
2791 /* Search for a naturally aligned double at OFFSET inside a struct
2792 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
2793 registers. */
2794
2795 static int
2796 mips_n32n64_fp_arg_chunk_p (struct type *arg_type, int offset)
2797 {
2798 int i;
2799
2800 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
2801 return 0;
2802
2803 if (MIPS_FPU_TYPE != MIPS_FPU_DOUBLE)
2804 return 0;
2805
2806 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
2807 return 0;
2808
2809 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
2810 {
2811 int pos;
2812 struct type *field_type;
2813
2814 /* We're only looking at normal fields. */
2815 if (TYPE_FIELD_STATIC (arg_type, i)
2816 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
2817 continue;
2818
2819 /* If we have gone past the offset, there is no double to pass. */
2820 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
2821 if (pos > offset)
2822 return 0;
2823
2824 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
2825
2826 /* If this field is entirely before the requested offset, go
2827 on to the next one. */
2828 if (pos + TYPE_LENGTH (field_type) <= offset)
2829 continue;
2830
2831 /* If this is our special aligned double, we can stop. */
2832 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
2833 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
2834 return 1;
2835
2836 /* This field starts at or before the requested offset, and
2837 overlaps it. If it is a structure, recurse inwards. */
2838 return mips_n32n64_fp_arg_chunk_p (field_type, offset - pos);
2839 }
2840
2841 return 0;
2842 }
2843
2844 static CORE_ADDR
2845 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2846 struct regcache *regcache, CORE_ADDR bp_addr,
2847 int nargs, struct value **args, CORE_ADDR sp,
2848 int struct_return, CORE_ADDR struct_addr)
2849 {
2850 int argreg;
2851 int float_argreg;
2852 int argnum;
2853 int len = 0;
2854 int stack_offset = 0;
2855 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2856 CORE_ADDR func_addr = find_function_addr (function, NULL);
2857
2858 /* For shared libraries, "t9" needs to point at the function
2859 address. */
2860 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2861
2862 /* Set the return address register to point to the entry point of
2863 the program, where a breakpoint lies in wait. */
2864 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2865
2866 /* First ensure that the stack and structure return address (if any)
2867 are properly aligned. The stack has to be at least 64-bit
2868 aligned even on 32-bit machines, because doubles must be 64-bit
2869 aligned. For n32 and n64, stack frames need to be 128-bit
2870 aligned, so we round to this widest known alignment. */
2871
2872 sp = align_down (sp, 16);
2873 struct_addr = align_down (struct_addr, 16);
2874
2875 /* Now make space on the stack for the args. */
2876 for (argnum = 0; argnum < nargs; argnum++)
2877 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
2878 sp -= align_up (len, 16);
2879
2880 if (mips_debug)
2881 fprintf_unfiltered (gdb_stdlog,
2882 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2883 paddr_nz (sp), (long) align_up (len, 16));
2884
2885 /* Initialize the integer and float register pointers. */
2886 argreg = MIPS_A0_REGNUM;
2887 float_argreg = mips_fpa0_regnum (current_gdbarch);
2888
2889 /* The struct_return pointer occupies the first parameter-passing reg. */
2890 if (struct_return)
2891 {
2892 if (mips_debug)
2893 fprintf_unfiltered (gdb_stdlog,
2894 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
2895 argreg, paddr_nz (struct_addr));
2896 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2897 }
2898
2899 /* Now load as many as possible of the first arguments into
2900 registers, and push the rest onto the stack. Loop thru args
2901 from first to last. */
2902 for (argnum = 0; argnum < nargs; argnum++)
2903 {
2904 const gdb_byte *val;
2905 struct value *arg = args[argnum];
2906 struct type *arg_type = check_typedef (value_type (arg));
2907 int len = TYPE_LENGTH (arg_type);
2908 enum type_code typecode = TYPE_CODE (arg_type);
2909
2910 if (mips_debug)
2911 fprintf_unfiltered (gdb_stdlog,
2912 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
2913 argnum + 1, len, (int) typecode);
2914
2915 val = value_contents (arg);
2916
2917 if (fp_register_arg_p (typecode, arg_type)
2918 && argreg <= MIPS_LAST_ARG_REGNUM)
2919 {
2920 /* This is a floating point value that fits entirely
2921 in a single register. */
2922 LONGEST regval = extract_unsigned_integer (val, len);
2923 if (mips_debug)
2924 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2925 float_argreg, phex (regval, len));
2926 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
2927
2928 if (mips_debug)
2929 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2930 argreg, phex (regval, len));
2931 regcache_cooked_write_unsigned (regcache, argreg, regval);
2932 float_argreg++;
2933 argreg++;
2934 }
2935 else
2936 {
2937 /* Copy the argument to general registers or the stack in
2938 register-sized pieces. Large arguments are split between
2939 registers and stack. */
2940 /* For N32/N64, structs, unions, or other composite types are
2941 treated as a sequence of doublewords, and are passed in integer
2942 or floating point registers as though they were simple scalar
2943 parameters to the extent that they fit, with any excess on the
2944 stack packed according to the normal memory layout of the
2945 object.
2946 The caller does not reserve space for the register arguments;
2947 the callee is responsible for reserving it if required. */
2948 /* Note: Floating-point values that didn't fit into an FP
2949 register are only written to memory. */
2950 while (len > 0)
2951 {
2952 /* Remember if the argument was written to the stack. */
2953 int stack_used_p = 0;
2954 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
2955
2956 if (mips_debug)
2957 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2958 partial_len);
2959
2960 if (fp_register_arg_p (typecode, arg_type))
2961 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM);
2962
2963 /* Write this portion of the argument to the stack. */
2964 if (argreg > MIPS_LAST_ARG_REGNUM)
2965 {
2966 /* Should shorter than int integer values be
2967 promoted to int before being stored? */
2968 int longword_offset = 0;
2969 CORE_ADDR addr;
2970 stack_used_p = 1;
2971 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
2972 {
2973 if ((typecode == TYPE_CODE_INT
2974 || typecode == TYPE_CODE_PTR
2975 || typecode == TYPE_CODE_FLT)
2976 && len <= 4)
2977 longword_offset = MIPS64_REGSIZE - len;
2978 }
2979
2980 if (mips_debug)
2981 {
2982 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2983 paddr_nz (stack_offset));
2984 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2985 paddr_nz (longword_offset));
2986 }
2987
2988 addr = sp + stack_offset + longword_offset;
2989
2990 if (mips_debug)
2991 {
2992 int i;
2993 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2994 paddr_nz (addr));
2995 for (i = 0; i < partial_len; i++)
2996 {
2997 fprintf_unfiltered (gdb_stdlog, "%02x",
2998 val[i] & 0xff);
2999 }
3000 }
3001 write_memory (addr, val, partial_len);
3002 }
3003
3004 /* Note!!! This is NOT an else clause. Odd sized
3005 structs may go thru BOTH paths. */
3006 /* Write this portion of the argument to a general
3007 purpose register. */
3008 if (argreg <= MIPS_LAST_ARG_REGNUM)
3009 {
3010 LONGEST regval =
3011 extract_unsigned_integer (val, partial_len);
3012
3013 /* A non-floating-point argument being passed in a
3014 general register. If a struct or union, and if
3015 the remaining length is smaller than the register
3016 size, we have to adjust the register value on
3017 big endian targets.
3018
3019 It does not seem to be necessary to do the
3020 same for integral types. */
3021
3022 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
3023 && partial_len < MIPS64_REGSIZE
3024 && (typecode == TYPE_CODE_STRUCT
3025 || typecode == TYPE_CODE_UNION))
3026 regval <<= ((MIPS64_REGSIZE - partial_len)
3027 * TARGET_CHAR_BIT);
3028
3029 if (mips_debug)
3030 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3031 argreg,
3032 phex (regval, MIPS64_REGSIZE));
3033 regcache_cooked_write_unsigned (regcache, argreg, regval);
3034
3035 if (mips_n32n64_fp_arg_chunk_p (arg_type,
3036 TYPE_LENGTH (arg_type) - len))
3037 {
3038 if (mips_debug)
3039 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
3040 float_argreg,
3041 phex (regval, MIPS64_REGSIZE));
3042 regcache_cooked_write_unsigned (regcache, float_argreg,
3043 regval);
3044 }
3045
3046 float_argreg++;
3047 argreg++;
3048 }
3049
3050 len -= partial_len;
3051 val += partial_len;
3052
3053 /* Compute the the offset into the stack at which we
3054 will copy the next parameter.
3055
3056 In N32 (N64?), the stack_offset only needs to be
3057 adjusted when it has been used. */
3058
3059 if (stack_used_p)
3060 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3061 }
3062 }
3063 if (mips_debug)
3064 fprintf_unfiltered (gdb_stdlog, "\n");
3065 }
3066
3067 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3068
3069 /* Return adjusted stack pointer. */
3070 return sp;
3071 }
3072
3073 static enum return_value_convention
3074 mips_n32n64_return_value (struct gdbarch *gdbarch,
3075 struct type *type, struct regcache *regcache,
3076 gdb_byte *readbuf, const gdb_byte *writebuf)
3077 {
3078 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3079
3080 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
3081
3082 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
3083 if needed), as appropriate for the type. Composite results (struct,
3084 union, or array) are returned in $2/$f0 and $3/$f2 according to the
3085 following rules:
3086
3087 * A struct with only one or two floating point fields is returned in $f0
3088 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
3089 case.
3090
3091 * Any other struct or union results of at most 128 bits are returned in
3092 $2 (first 64 bits) and $3 (remainder, if necessary).
3093
3094 * Larger composite results are handled by converting the function to a
3095 procedure with an implicit first parameter, which is a pointer to an area
3096 reserved by the caller to receive the result. [The o32-bit ABI requires
3097 that all composite results be handled by conversion to implicit first
3098 parameters. The MIPS/SGI Fortran implementation has always made a
3099 specific exception to return COMPLEX results in the floating point
3100 registers.] */
3101
3102 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3103 || TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
3104 return RETURN_VALUE_STRUCT_CONVENTION;
3105 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3106 && TYPE_LENGTH (type) == 16
3107 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3108 {
3109 /* A 128-bit floating-point value fills both $f0 and $f2. The
3110 two registers are used in the same as memory order, so the
3111 eight bytes with the lower memory address are in $f0. */
3112 if (mips_debug)
3113 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
3114 mips_xfer_register (regcache,
3115 gdbarch_num_regs (current_gdbarch)
3116 + mips_regnum (current_gdbarch)->fp0,
3117 8, gdbarch_byte_order (current_gdbarch),
3118 readbuf, writebuf, 0);
3119 mips_xfer_register (regcache,
3120 gdbarch_num_regs (current_gdbarch)
3121 + mips_regnum (current_gdbarch)->fp0 + 2,
3122 8, gdbarch_byte_order (current_gdbarch),
3123 readbuf ? readbuf + 8 : readbuf,
3124 writebuf ? writebuf + 8 : writebuf, 0);
3125 return RETURN_VALUE_REGISTER_CONVENTION;
3126 }
3127 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3128 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3129 {
3130 /* A single or double floating-point value that fits in FP0. */
3131 if (mips_debug)
3132 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3133 mips_xfer_register (regcache,
3134 gdbarch_num_regs (current_gdbarch)
3135 + mips_regnum (current_gdbarch)->fp0,
3136 TYPE_LENGTH (type),
3137 gdbarch_byte_order (current_gdbarch),
3138 readbuf, writebuf, 0);
3139 return RETURN_VALUE_REGISTER_CONVENTION;
3140 }
3141 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3142 && TYPE_NFIELDS (type) <= 2
3143 && TYPE_NFIELDS (type) >= 1
3144 && ((TYPE_NFIELDS (type) == 1
3145 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
3146 == TYPE_CODE_FLT))
3147 || (TYPE_NFIELDS (type) == 2
3148 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
3149 == TYPE_CODE_FLT)
3150 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
3151 == TYPE_CODE_FLT)))
3152 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3153 {
3154 /* A struct that contains one or two floats. Each value is part
3155 in the least significant part of their floating point
3156 register.. */
3157 int regnum;
3158 int field;
3159 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3160 field < TYPE_NFIELDS (type); field++, regnum += 2)
3161 {
3162 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3163 / TARGET_CHAR_BIT);
3164 if (mips_debug)
3165 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3166 offset);
3167 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3168 + regnum,
3169 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3170 gdbarch_byte_order (current_gdbarch),
3171 readbuf, writebuf, offset);
3172 }
3173 return RETURN_VALUE_REGISTER_CONVENTION;
3174 }
3175 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3176 || TYPE_CODE (type) == TYPE_CODE_UNION)
3177 {
3178 /* A structure or union. Extract the left justified value,
3179 regardless of the byte order. I.e. DO NOT USE
3180 mips_xfer_lower. */
3181 int offset;
3182 int regnum;
3183 for (offset = 0, regnum = MIPS_V0_REGNUM;
3184 offset < TYPE_LENGTH (type);
3185 offset += register_size (current_gdbarch, regnum), regnum++)
3186 {
3187 int xfer = register_size (current_gdbarch, regnum);
3188 if (offset + xfer > TYPE_LENGTH (type))
3189 xfer = TYPE_LENGTH (type) - offset;
3190 if (mips_debug)
3191 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3192 offset, xfer, regnum);
3193 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3194 + regnum, xfer,
3195 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3196 }
3197 return RETURN_VALUE_REGISTER_CONVENTION;
3198 }
3199 else
3200 {
3201 /* A scalar extract each part but least-significant-byte
3202 justified. */
3203 int offset;
3204 int regnum;
3205 for (offset = 0, regnum = MIPS_V0_REGNUM;
3206 offset < TYPE_LENGTH (type);
3207 offset += register_size (current_gdbarch, regnum), regnum++)
3208 {
3209 int xfer = register_size (current_gdbarch, regnum);
3210 if (offset + xfer > TYPE_LENGTH (type))
3211 xfer = TYPE_LENGTH (type) - offset;
3212 if (mips_debug)
3213 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3214 offset, xfer, regnum);
3215 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3216 + regnum, xfer,
3217 gdbarch_byte_order (current_gdbarch),
3218 readbuf, writebuf, offset);
3219 }
3220 return RETURN_VALUE_REGISTER_CONVENTION;
3221 }
3222 }
3223
3224 /* O32 ABI stuff. */
3225
3226 static CORE_ADDR
3227 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3228 struct regcache *regcache, CORE_ADDR bp_addr,
3229 int nargs, struct value **args, CORE_ADDR sp,
3230 int struct_return, CORE_ADDR struct_addr)
3231 {
3232 int argreg;
3233 int float_argreg;
3234 int argnum;
3235 int len = 0;
3236 int stack_offset = 0;
3237 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3238 CORE_ADDR func_addr = find_function_addr (function, NULL);
3239
3240 /* For shared libraries, "t9" needs to point at the function
3241 address. */
3242 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3243
3244 /* Set the return address register to point to the entry point of
3245 the program, where a breakpoint lies in wait. */
3246 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3247
3248 /* First ensure that the stack and structure return address (if any)
3249 are properly aligned. The stack has to be at least 64-bit
3250 aligned even on 32-bit machines, because doubles must be 64-bit
3251 aligned. For n32 and n64, stack frames need to be 128-bit
3252 aligned, so we round to this widest known alignment. */
3253
3254 sp = align_down (sp, 16);
3255 struct_addr = align_down (struct_addr, 16);
3256
3257 /* Now make space on the stack for the args. */
3258 for (argnum = 0; argnum < nargs; argnum++)
3259 {
3260 struct type *arg_type = check_typedef (value_type (args[argnum]));
3261 int arglen = TYPE_LENGTH (arg_type);
3262
3263 /* Align to double-word if necessary. */
3264 if (mips_type_needs_double_align (arg_type))
3265 len = align_up (len, MIPS32_REGSIZE * 2);
3266 /* Allocate space on the stack. */
3267 len += align_up (arglen, MIPS32_REGSIZE);
3268 }
3269 sp -= align_up (len, 16);
3270
3271 if (mips_debug)
3272 fprintf_unfiltered (gdb_stdlog,
3273 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3274 paddr_nz (sp), (long) align_up (len, 16));
3275
3276 /* Initialize the integer and float register pointers. */
3277 argreg = MIPS_A0_REGNUM;
3278 float_argreg = mips_fpa0_regnum (current_gdbarch);
3279
3280 /* The struct_return pointer occupies the first parameter-passing reg. */
3281 if (struct_return)
3282 {
3283 if (mips_debug)
3284 fprintf_unfiltered (gdb_stdlog,
3285 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3286 argreg, paddr_nz (struct_addr));
3287 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3288 stack_offset += MIPS32_REGSIZE;
3289 }
3290
3291 /* Now load as many as possible of the first arguments into
3292 registers, and push the rest onto the stack. Loop thru args
3293 from first to last. */
3294 for (argnum = 0; argnum < nargs; argnum++)
3295 {
3296 const gdb_byte *val;
3297 struct value *arg = args[argnum];
3298 struct type *arg_type = check_typedef (value_type (arg));
3299 int len = TYPE_LENGTH (arg_type);
3300 enum type_code typecode = TYPE_CODE (arg_type);
3301
3302 if (mips_debug)
3303 fprintf_unfiltered (gdb_stdlog,
3304 "mips_o32_push_dummy_call: %d len=%d type=%d",
3305 argnum + 1, len, (int) typecode);
3306
3307 val = value_contents (arg);
3308
3309 /* 32-bit ABIs always start floating point arguments in an
3310 even-numbered floating point register. Round the FP register
3311 up before the check to see if there are any FP registers
3312 left. O32/O64 targets also pass the FP in the integer
3313 registers so also round up normal registers. */
3314 if (fp_register_arg_p (typecode, arg_type))
3315 {
3316 if ((float_argreg & 1))
3317 float_argreg++;
3318 }
3319
3320 /* Floating point arguments passed in registers have to be
3321 treated specially. On 32-bit architectures, doubles
3322 are passed in register pairs; the even register gets
3323 the low word, and the odd register gets the high word.
3324 On O32/O64, the first two floating point arguments are
3325 also copied to general registers, because MIPS16 functions
3326 don't use float registers for arguments. This duplication of
3327 arguments in general registers can't hurt non-MIPS16 functions
3328 because those registers are normally skipped. */
3329
3330 if (fp_register_arg_p (typecode, arg_type)
3331 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3332 {
3333 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
3334 {
3335 int low_offset = gdbarch_byte_order (current_gdbarch)
3336 == BFD_ENDIAN_BIG ? 4 : 0;
3337 unsigned long regval;
3338
3339 /* Write the low word of the double to the even register(s). */
3340 regval = extract_unsigned_integer (val + low_offset, 4);
3341 if (mips_debug)
3342 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3343 float_argreg, phex (regval, 4));
3344 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3345 if (mips_debug)
3346 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3347 argreg, phex (regval, 4));
3348 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3349
3350 /* Write the high word of the double to the odd register(s). */
3351 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3352 if (mips_debug)
3353 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3354 float_argreg, phex (regval, 4));
3355 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3356
3357 if (mips_debug)
3358 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3359 argreg, phex (regval, 4));
3360 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3361 }
3362 else
3363 {
3364 /* This is a floating point value that fits entirely
3365 in a single register. */
3366 /* On 32 bit ABI's the float_argreg is further adjusted
3367 above to ensure that it is even register aligned. */
3368 LONGEST regval = extract_unsigned_integer (val, len);
3369 if (mips_debug)
3370 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3371 float_argreg, phex (regval, len));
3372 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3373 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3374 registers for each argument. The below is (my
3375 guess) to ensure that the corresponding integer
3376 register has reserved the same space. */
3377 if (mips_debug)
3378 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3379 argreg, phex (regval, len));
3380 regcache_cooked_write_unsigned (regcache, argreg, regval);
3381 argreg += 2;
3382 }
3383 /* Reserve space for the FP register. */
3384 stack_offset += align_up (len, MIPS32_REGSIZE);
3385 }
3386 else
3387 {
3388 /* Copy the argument to general registers or the stack in
3389 register-sized pieces. Large arguments are split between
3390 registers and stack. */
3391 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
3392 are treated specially: Irix cc passes
3393 them in registers where gcc sometimes puts them on the
3394 stack. For maximum compatibility, we will put them in
3395 both places. */
3396 int odd_sized_struct = (len > MIPS32_REGSIZE
3397 && len % MIPS32_REGSIZE != 0);
3398 /* Structures should be aligned to eight bytes (even arg registers)
3399 on MIPS_ABI_O32, if their first member has double precision. */
3400 if (mips_type_needs_double_align (arg_type))
3401 {
3402 if ((argreg & 1))
3403 {
3404 argreg++;
3405 stack_offset += MIPS32_REGSIZE;
3406 }
3407 }
3408 while (len > 0)
3409 {
3410 /* Remember if the argument was written to the stack. */
3411 int stack_used_p = 0;
3412 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
3413
3414 if (mips_debug)
3415 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3416 partial_len);
3417
3418 /* Write this portion of the argument to the stack. */
3419 if (argreg > MIPS_LAST_ARG_REGNUM
3420 || odd_sized_struct)
3421 {
3422 /* Should shorter than int integer values be
3423 promoted to int before being stored? */
3424 int longword_offset = 0;
3425 CORE_ADDR addr;
3426 stack_used_p = 1;
3427
3428 if (mips_debug)
3429 {
3430 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3431 paddr_nz (stack_offset));
3432 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3433 paddr_nz (longword_offset));
3434 }
3435
3436 addr = sp + stack_offset + longword_offset;
3437
3438 if (mips_debug)
3439 {
3440 int i;
3441 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3442 paddr_nz (addr));
3443 for (i = 0; i < partial_len; i++)
3444 {
3445 fprintf_unfiltered (gdb_stdlog, "%02x",
3446 val[i] & 0xff);
3447 }
3448 }
3449 write_memory (addr, val, partial_len);
3450 }
3451
3452 /* Note!!! This is NOT an else clause. Odd sized
3453 structs may go thru BOTH paths. */
3454 /* Write this portion of the argument to a general
3455 purpose register. */
3456 if (argreg <= MIPS_LAST_ARG_REGNUM)
3457 {
3458 LONGEST regval = extract_signed_integer (val, partial_len);
3459 /* Value may need to be sign extended, because
3460 mips_isa_regsize() != mips_abi_regsize(). */
3461
3462 /* A non-floating-point argument being passed in a
3463 general register. If a struct or union, and if
3464 the remaining length is smaller than the register
3465 size, we have to adjust the register value on
3466 big endian targets.
3467
3468 It does not seem to be necessary to do the
3469 same for integral types.
3470
3471 Also don't do this adjustment on O64 binaries.
3472
3473 cagney/2001-07-23: gdb/179: Also, GCC, when
3474 outputting LE O32 with sizeof (struct) <
3475 mips_abi_regsize(), generates a left shift
3476 as part of storing the argument in a register
3477 (the left shift isn't generated when
3478 sizeof (struct) >= mips_abi_regsize()). Since
3479 it is quite possible that this is GCC
3480 contradicting the LE/O32 ABI, GDB has not been
3481 adjusted to accommodate this. Either someone
3482 needs to demonstrate that the LE/O32 ABI
3483 specifies such a left shift OR this new ABI gets
3484 identified as such and GDB gets tweaked
3485 accordingly. */
3486
3487 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
3488 && partial_len < MIPS32_REGSIZE
3489 && (typecode == TYPE_CODE_STRUCT
3490 || typecode == TYPE_CODE_UNION))
3491 regval <<= ((MIPS32_REGSIZE - partial_len)
3492 * TARGET_CHAR_BIT);
3493
3494 if (mips_debug)
3495 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3496 argreg,
3497 phex (regval, MIPS32_REGSIZE));
3498 regcache_cooked_write_unsigned (regcache, argreg, regval);
3499 argreg++;
3500
3501 /* Prevent subsequent floating point arguments from
3502 being passed in floating point registers. */
3503 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3504 }
3505
3506 len -= partial_len;
3507 val += partial_len;
3508
3509 /* Compute the the offset into the stack at which we
3510 will copy the next parameter.
3511
3512 In older ABIs, the caller reserved space for
3513 registers that contained arguments. This was loosely
3514 refered to as their "home". Consequently, space is
3515 always allocated. */
3516
3517 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
3518 }
3519 }
3520 if (mips_debug)
3521 fprintf_unfiltered (gdb_stdlog, "\n");
3522 }
3523
3524 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3525
3526 /* Return adjusted stack pointer. */
3527 return sp;
3528 }
3529
3530 static enum return_value_convention
3531 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3532 struct regcache *regcache,
3533 gdb_byte *readbuf, const gdb_byte *writebuf)
3534 {
3535 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3536
3537 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3538 || TYPE_CODE (type) == TYPE_CODE_UNION
3539 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3540 return RETURN_VALUE_STRUCT_CONVENTION;
3541 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3542 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3543 {
3544 /* A single-precision floating-point value. It fits in the
3545 least significant part of FP0. */
3546 if (mips_debug)
3547 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3548 mips_xfer_register (regcache,
3549 gdbarch_num_regs (current_gdbarch)
3550 + mips_regnum (current_gdbarch)->fp0,
3551 TYPE_LENGTH (type),
3552 gdbarch_byte_order (current_gdbarch),
3553 readbuf, writebuf, 0);
3554 return RETURN_VALUE_REGISTER_CONVENTION;
3555 }
3556 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3557 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3558 {
3559 /* A double-precision floating-point value. The most
3560 significant part goes in FP1, and the least significant in
3561 FP0. */
3562 if (mips_debug)
3563 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3564 switch (gdbarch_byte_order (current_gdbarch))
3565 {
3566 case BFD_ENDIAN_LITTLE:
3567 mips_xfer_register (regcache,
3568 gdbarch_num_regs (current_gdbarch)
3569 + mips_regnum (current_gdbarch)->fp0 +
3570 0, 4, gdbarch_byte_order (current_gdbarch),
3571 readbuf, writebuf, 0);
3572 mips_xfer_register (regcache,
3573 gdbarch_num_regs (current_gdbarch)
3574 + mips_regnum (current_gdbarch)->fp0 + 1,
3575 4, gdbarch_byte_order (current_gdbarch),
3576 readbuf, writebuf, 4);
3577 break;
3578 case BFD_ENDIAN_BIG:
3579 mips_xfer_register (regcache,
3580 gdbarch_num_regs (current_gdbarch)
3581 + mips_regnum (current_gdbarch)->fp0 + 1,
3582 4, gdbarch_byte_order (current_gdbarch),
3583 readbuf, writebuf, 0);
3584 mips_xfer_register (regcache,
3585 gdbarch_num_regs (current_gdbarch)
3586 + mips_regnum (current_gdbarch)->fp0 + 0,
3587 4, gdbarch_byte_order (current_gdbarch),
3588 readbuf, writebuf, 4);
3589 break;
3590 default:
3591 internal_error (__FILE__, __LINE__, _("bad switch"));
3592 }
3593 return RETURN_VALUE_REGISTER_CONVENTION;
3594 }
3595 #if 0
3596 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3597 && TYPE_NFIELDS (type) <= 2
3598 && TYPE_NFIELDS (type) >= 1
3599 && ((TYPE_NFIELDS (type) == 1
3600 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3601 == TYPE_CODE_FLT))
3602 || (TYPE_NFIELDS (type) == 2
3603 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3604 == TYPE_CODE_FLT)
3605 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3606 == TYPE_CODE_FLT)))
3607 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3608 {
3609 /* A struct that contains one or two floats. Each value is part
3610 in the least significant part of their floating point
3611 register.. */
3612 gdb_byte reg[MAX_REGISTER_SIZE];
3613 int regnum;
3614 int field;
3615 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3616 field < TYPE_NFIELDS (type); field++, regnum += 2)
3617 {
3618 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3619 / TARGET_CHAR_BIT);
3620 if (mips_debug)
3621 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3622 offset);
3623 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3624 + regnum,
3625 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3626 gdbarch_byte_order (current_gdbarch),
3627 readbuf, writebuf, offset);
3628 }
3629 return RETURN_VALUE_REGISTER_CONVENTION;
3630 }
3631 #endif
3632 #if 0
3633 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3634 || TYPE_CODE (type) == TYPE_CODE_UNION)
3635 {
3636 /* A structure or union. Extract the left justified value,
3637 regardless of the byte order. I.e. DO NOT USE
3638 mips_xfer_lower. */
3639 int offset;
3640 int regnum;
3641 for (offset = 0, regnum = MIPS_V0_REGNUM;
3642 offset < TYPE_LENGTH (type);
3643 offset += register_size (current_gdbarch, regnum), regnum++)
3644 {
3645 int xfer = register_size (current_gdbarch, regnum);
3646 if (offset + xfer > TYPE_LENGTH (type))
3647 xfer = TYPE_LENGTH (type) - offset;
3648 if (mips_debug)
3649 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3650 offset, xfer, regnum);
3651 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3652 + regnum, xfer,
3653 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3654 }
3655 return RETURN_VALUE_REGISTER_CONVENTION;
3656 }
3657 #endif
3658 else
3659 {
3660 /* A scalar extract each part but least-significant-byte
3661 justified. o32 thinks registers are 4 byte, regardless of
3662 the ISA. */
3663 int offset;
3664 int regnum;
3665 for (offset = 0, regnum = MIPS_V0_REGNUM;
3666 offset < TYPE_LENGTH (type);
3667 offset += MIPS32_REGSIZE, regnum++)
3668 {
3669 int xfer = MIPS32_REGSIZE;
3670 if (offset + xfer > TYPE_LENGTH (type))
3671 xfer = TYPE_LENGTH (type) - offset;
3672 if (mips_debug)
3673 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3674 offset, xfer, regnum);
3675 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3676 + regnum, xfer,
3677 gdbarch_byte_order (current_gdbarch),
3678 readbuf, writebuf, offset);
3679 }
3680 return RETURN_VALUE_REGISTER_CONVENTION;
3681 }
3682 }
3683
3684 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3685 ABI. */
3686
3687 static CORE_ADDR
3688 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3689 struct regcache *regcache, CORE_ADDR bp_addr,
3690 int nargs,
3691 struct value **args, CORE_ADDR sp,
3692 int struct_return, CORE_ADDR struct_addr)
3693 {
3694 int argreg;
3695 int float_argreg;
3696 int argnum;
3697 int len = 0;
3698 int stack_offset = 0;
3699 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3700 CORE_ADDR func_addr = find_function_addr (function, NULL);
3701
3702 /* For shared libraries, "t9" needs to point at the function
3703 address. */
3704 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3705
3706 /* Set the return address register to point to the entry point of
3707 the program, where a breakpoint lies in wait. */
3708 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3709
3710 /* First ensure that the stack and structure return address (if any)
3711 are properly aligned. The stack has to be at least 64-bit
3712 aligned even on 32-bit machines, because doubles must be 64-bit
3713 aligned. For n32 and n64, stack frames need to be 128-bit
3714 aligned, so we round to this widest known alignment. */
3715
3716 sp = align_down (sp, 16);
3717 struct_addr = align_down (struct_addr, 16);
3718
3719 /* Now make space on the stack for the args. */
3720 for (argnum = 0; argnum < nargs; argnum++)
3721 {
3722 struct type *arg_type = check_typedef (value_type (args[argnum]));
3723 int arglen = TYPE_LENGTH (arg_type);
3724
3725 /* Allocate space on the stack. */
3726 len += align_up (arglen, MIPS64_REGSIZE);
3727 }
3728 sp -= align_up (len, 16);
3729
3730 if (mips_debug)
3731 fprintf_unfiltered (gdb_stdlog,
3732 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3733 paddr_nz (sp), (long) align_up (len, 16));
3734
3735 /* Initialize the integer and float register pointers. */
3736 argreg = MIPS_A0_REGNUM;
3737 float_argreg = mips_fpa0_regnum (current_gdbarch);
3738
3739 /* The struct_return pointer occupies the first parameter-passing reg. */
3740 if (struct_return)
3741 {
3742 if (mips_debug)
3743 fprintf_unfiltered (gdb_stdlog,
3744 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3745 argreg, paddr_nz (struct_addr));
3746 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3747 stack_offset += MIPS64_REGSIZE;
3748 }
3749
3750 /* Now load as many as possible of the first arguments into
3751 registers, and push the rest onto the stack. Loop thru args
3752 from first to last. */
3753 for (argnum = 0; argnum < nargs; argnum++)
3754 {
3755 const gdb_byte *val;
3756 struct value *arg = args[argnum];
3757 struct type *arg_type = check_typedef (value_type (arg));
3758 int len = TYPE_LENGTH (arg_type);
3759 enum type_code typecode = TYPE_CODE (arg_type);
3760
3761 if (mips_debug)
3762 fprintf_unfiltered (gdb_stdlog,
3763 "mips_o64_push_dummy_call: %d len=%d type=%d",
3764 argnum + 1, len, (int) typecode);
3765
3766 val = value_contents (arg);
3767
3768 /* Floating point arguments passed in registers have to be
3769 treated specially. On 32-bit architectures, doubles
3770 are passed in register pairs; the even register gets
3771 the low word, and the odd register gets the high word.
3772 On O32/O64, the first two floating point arguments are
3773 also copied to general registers, because MIPS16 functions
3774 don't use float registers for arguments. This duplication of
3775 arguments in general registers can't hurt non-MIPS16 functions
3776 because those registers are normally skipped. */
3777
3778 if (fp_register_arg_p (typecode, arg_type)
3779 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3780 {
3781 LONGEST regval = extract_unsigned_integer (val, len);
3782 if (mips_debug)
3783 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3784 float_argreg, phex (regval, len));
3785 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3786 if (mips_debug)
3787 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3788 argreg, phex (regval, len));
3789 regcache_cooked_write_unsigned (regcache, argreg, regval);
3790 argreg++;
3791 /* Reserve space for the FP register. */
3792 stack_offset += align_up (len, MIPS64_REGSIZE);
3793 }
3794 else
3795 {
3796 /* Copy the argument to general registers or the stack in
3797 register-sized pieces. Large arguments are split between
3798 registers and stack. */
3799 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
3800 are treated specially: Irix cc passes them in registers
3801 where gcc sometimes puts them on the stack. For maximum
3802 compatibility, we will put them in both places. */
3803 int odd_sized_struct = (len > MIPS64_REGSIZE
3804 && len % MIPS64_REGSIZE != 0);
3805 while (len > 0)
3806 {
3807 /* Remember if the argument was written to the stack. */
3808 int stack_used_p = 0;
3809 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
3810
3811 if (mips_debug)
3812 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3813 partial_len);
3814
3815 /* Write this portion of the argument to the stack. */
3816 if (argreg > MIPS_LAST_ARG_REGNUM
3817 || odd_sized_struct)
3818 {
3819 /* Should shorter than int integer values be
3820 promoted to int before being stored? */
3821 int longword_offset = 0;
3822 CORE_ADDR addr;
3823 stack_used_p = 1;
3824 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
3825 {
3826 if ((typecode == TYPE_CODE_INT
3827 || typecode == TYPE_CODE_PTR
3828 || typecode == TYPE_CODE_FLT)
3829 && len <= 4)
3830 longword_offset = MIPS64_REGSIZE - len;
3831 }
3832
3833 if (mips_debug)
3834 {
3835 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3836 paddr_nz (stack_offset));
3837 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3838 paddr_nz (longword_offset));
3839 }
3840
3841 addr = sp + stack_offset + longword_offset;
3842
3843 if (mips_debug)
3844 {
3845 int i;
3846 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3847 paddr_nz (addr));
3848 for (i = 0; i < partial_len; i++)
3849 {
3850 fprintf_unfiltered (gdb_stdlog, "%02x",
3851 val[i] & 0xff);
3852 }
3853 }
3854 write_memory (addr, val, partial_len);
3855 }
3856
3857 /* Note!!! This is NOT an else clause. Odd sized
3858 structs may go thru BOTH paths. */
3859 /* Write this portion of the argument to a general
3860 purpose register. */
3861 if (argreg <= MIPS_LAST_ARG_REGNUM)
3862 {
3863 LONGEST regval = extract_signed_integer (val, partial_len);
3864 /* Value may need to be sign extended, because
3865 mips_isa_regsize() != mips_abi_regsize(). */
3866
3867 /* A non-floating-point argument being passed in a
3868 general register. If a struct or union, and if
3869 the remaining length is smaller than the register
3870 size, we have to adjust the register value on
3871 big endian targets.
3872
3873 It does not seem to be necessary to do the
3874 same for integral types. */
3875
3876 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
3877 && partial_len < MIPS64_REGSIZE
3878 && (typecode == TYPE_CODE_STRUCT
3879 || typecode == TYPE_CODE_UNION))
3880 regval <<= ((MIPS64_REGSIZE - partial_len)
3881 * TARGET_CHAR_BIT);
3882
3883 if (mips_debug)
3884 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3885 argreg,
3886 phex (regval, MIPS64_REGSIZE));
3887 regcache_cooked_write_unsigned (regcache, argreg, regval);
3888 argreg++;
3889
3890 /* Prevent subsequent floating point arguments from
3891 being passed in floating point registers. */
3892 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3893 }
3894
3895 len -= partial_len;
3896 val += partial_len;
3897
3898 /* Compute the the offset into the stack at which we
3899 will copy the next parameter.
3900
3901 In older ABIs, the caller reserved space for
3902 registers that contained arguments. This was loosely
3903 refered to as their "home". Consequently, space is
3904 always allocated. */
3905
3906 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3907 }
3908 }
3909 if (mips_debug)
3910 fprintf_unfiltered (gdb_stdlog, "\n");
3911 }
3912
3913 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3914
3915 /* Return adjusted stack pointer. */
3916 return sp;
3917 }
3918
3919 static enum return_value_convention
3920 mips_o64_return_value (struct gdbarch *gdbarch,
3921 struct type *type, struct regcache *regcache,
3922 gdb_byte *readbuf, const gdb_byte *writebuf)
3923 {
3924 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3925
3926 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3927 || TYPE_CODE (type) == TYPE_CODE_UNION
3928 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3929 return RETURN_VALUE_STRUCT_CONVENTION;
3930 else if (fp_register_arg_p (TYPE_CODE (type), type))
3931 {
3932 /* A floating-point value. It fits in the least significant
3933 part of FP0. */
3934 if (mips_debug)
3935 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3936 mips_xfer_register (regcache,
3937 gdbarch_num_regs (current_gdbarch)
3938 + mips_regnum (current_gdbarch)->fp0,
3939 TYPE_LENGTH (type),
3940 gdbarch_byte_order (current_gdbarch),
3941 readbuf, writebuf, 0);
3942 return RETURN_VALUE_REGISTER_CONVENTION;
3943 }
3944 else
3945 {
3946 /* A scalar extract each part but least-significant-byte
3947 justified. */
3948 int offset;
3949 int regnum;
3950 for (offset = 0, regnum = MIPS_V0_REGNUM;
3951 offset < TYPE_LENGTH (type);
3952 offset += MIPS64_REGSIZE, regnum++)
3953 {
3954 int xfer = MIPS64_REGSIZE;
3955 if (offset + xfer > TYPE_LENGTH (type))
3956 xfer = TYPE_LENGTH (type) - offset;
3957 if (mips_debug)
3958 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3959 offset, xfer, regnum);
3960 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3961 + regnum, xfer,
3962 gdbarch_byte_order (current_gdbarch),
3963 readbuf, writebuf, offset);
3964 }
3965 return RETURN_VALUE_REGISTER_CONVENTION;
3966 }
3967 }
3968
3969 /* Floating point register management.
3970
3971 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3972 64bit operations, these early MIPS cpus treat fp register pairs
3973 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3974 registers and offer a compatibility mode that emulates the MIPS2 fp
3975 model. When operating in MIPS2 fp compat mode, later cpu's split
3976 double precision floats into two 32-bit chunks and store them in
3977 consecutive fp regs. To display 64-bit floats stored in this
3978 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3979 Throw in user-configurable endianness and you have a real mess.
3980
3981 The way this works is:
3982 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3983 double-precision value will be split across two logical registers.
3984 The lower-numbered logical register will hold the low-order bits,
3985 regardless of the processor's endianness.
3986 - If we are on a 64-bit processor, and we are looking for a
3987 single-precision value, it will be in the low ordered bits
3988 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3989 save slot in memory.
3990 - If we are in 64-bit mode, everything is straightforward.
3991
3992 Note that this code only deals with "live" registers at the top of the
3993 stack. We will attempt to deal with saved registers later, when
3994 the raw/cooked register interface is in place. (We need a general
3995 interface that can deal with dynamic saved register sizes -- fp
3996 regs could be 32 bits wide in one frame and 64 on the frame above
3997 and below). */
3998
3999 static struct type *
4000 mips_float_register_type (void)
4001 {
4002 return builtin_type_ieee_single;
4003 }
4004
4005 static struct type *
4006 mips_double_register_type (void)
4007 {
4008 return builtin_type_ieee_double;
4009 }
4010
4011 /* Copy a 32-bit single-precision value from the current frame
4012 into rare_buffer. */
4013
4014 static void
4015 mips_read_fp_register_single (struct frame_info *frame, int regno,
4016 gdb_byte *rare_buffer)
4017 {
4018 int raw_size = register_size (current_gdbarch, regno);
4019 gdb_byte *raw_buffer = alloca (raw_size);
4020
4021 if (!frame_register_read (frame, regno, raw_buffer))
4022 error (_("can't read register %d (%s)"),
4023 regno, gdbarch_register_name (current_gdbarch, regno));
4024 if (raw_size == 8)
4025 {
4026 /* We have a 64-bit value for this register. Find the low-order
4027 32 bits. */
4028 int offset;
4029
4030 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4031 offset = 4;
4032 else
4033 offset = 0;
4034
4035 memcpy (rare_buffer, raw_buffer + offset, 4);
4036 }
4037 else
4038 {
4039 memcpy (rare_buffer, raw_buffer, 4);
4040 }
4041 }
4042
4043 /* Copy a 64-bit double-precision value from the current frame into
4044 rare_buffer. This may include getting half of it from the next
4045 register. */
4046
4047 static void
4048 mips_read_fp_register_double (struct frame_info *frame, int regno,
4049 gdb_byte *rare_buffer)
4050 {
4051 int raw_size = register_size (current_gdbarch, regno);
4052
4053 if (raw_size == 8 && !mips2_fp_compat (frame))
4054 {
4055 /* We have a 64-bit value for this register, and we should use
4056 all 64 bits. */
4057 if (!frame_register_read (frame, regno, rare_buffer))
4058 error (_("can't read register %d (%s)"),
4059 regno, gdbarch_register_name (current_gdbarch, regno));
4060 }
4061 else
4062 {
4063 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
4064 internal_error (__FILE__, __LINE__,
4065 _("mips_read_fp_register_double: bad access to "
4066 "odd-numbered FP register"));
4067
4068 /* mips_read_fp_register_single will find the correct 32 bits from
4069 each register. */
4070 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4071 {
4072 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4073 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4074 }
4075 else
4076 {
4077 mips_read_fp_register_single (frame, regno, rare_buffer);
4078 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4079 }
4080 }
4081 }
4082
4083 static void
4084 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4085 int regnum)
4086 { /* do values for FP (float) regs */
4087 gdb_byte *raw_buffer;
4088 double doub, flt1; /* doubles extracted from raw hex data */
4089 int inv1, inv2;
4090
4091 raw_buffer = alloca (2 * register_size (current_gdbarch,
4092 mips_regnum (current_gdbarch)->fp0));
4093
4094 fprintf_filtered (file, "%s:",
4095 gdbarch_register_name (current_gdbarch, regnum));
4096 fprintf_filtered (file, "%*s",
4097 4 - (int) strlen (gdbarch_register_name
4098 (current_gdbarch, regnum)),
4099 "");
4100
4101 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat (frame))
4102 {
4103 /* 4-byte registers: Print hex and floating. Also print even
4104 numbered registers as doubles. */
4105 mips_read_fp_register_single (frame, regnum, raw_buffer);
4106 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4107
4108 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
4109 file);
4110
4111 fprintf_filtered (file, " flt: ");
4112 if (inv1)
4113 fprintf_filtered (file, " <invalid float> ");
4114 else
4115 fprintf_filtered (file, "%-17.9g", flt1);
4116
4117 if (regnum % 2 == 0)
4118 {
4119 mips_read_fp_register_double (frame, regnum, raw_buffer);
4120 doub = unpack_double (mips_double_register_type (), raw_buffer,
4121 &inv2);
4122
4123 fprintf_filtered (file, " dbl: ");
4124 if (inv2)
4125 fprintf_filtered (file, "<invalid double>");
4126 else
4127 fprintf_filtered (file, "%-24.17g", doub);
4128 }
4129 }
4130 else
4131 {
4132 /* Eight byte registers: print each one as hex, float and double. */
4133 mips_read_fp_register_single (frame, regnum, raw_buffer);
4134 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4135
4136 mips_read_fp_register_double (frame, regnum, raw_buffer);
4137 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4138
4139
4140 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4141 file);
4142
4143 fprintf_filtered (file, " flt: ");
4144 if (inv1)
4145 fprintf_filtered (file, "<invalid float>");
4146 else
4147 fprintf_filtered (file, "%-17.9g", flt1);
4148
4149 fprintf_filtered (file, " dbl: ");
4150 if (inv2)
4151 fprintf_filtered (file, "<invalid double>");
4152 else
4153 fprintf_filtered (file, "%-24.17g", doub);
4154 }
4155 }
4156
4157 static void
4158 mips_print_register (struct ui_file *file, struct frame_info *frame,
4159 int regnum)
4160 {
4161 struct gdbarch *gdbarch = get_frame_arch (frame);
4162 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4163 int offset;
4164
4165 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4166 {
4167 mips_print_fp_register (file, frame, regnum);
4168 return;
4169 }
4170
4171 /* Get the data in raw format. */
4172 if (!frame_register_read (frame, regnum, raw_buffer))
4173 {
4174 fprintf_filtered (file, "%s: [Invalid]",
4175 gdbarch_register_name (current_gdbarch, regnum));
4176 return;
4177 }
4178
4179 fputs_filtered (gdbarch_register_name (current_gdbarch, regnum), file);
4180
4181 /* The problem with printing numeric register names (r26, etc.) is that
4182 the user can't use them on input. Probably the best solution is to
4183 fix it so that either the numeric or the funky (a2, etc.) names
4184 are accepted on input. */
4185 if (regnum < MIPS_NUMREGS)
4186 fprintf_filtered (file, "(r%d): ", regnum);
4187 else
4188 fprintf_filtered (file, ": ");
4189
4190 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4191 offset =
4192 register_size (current_gdbarch,
4193 regnum) - register_size (current_gdbarch, regnum);
4194 else
4195 offset = 0;
4196
4197 print_scalar_formatted (raw_buffer + offset,
4198 register_type (gdbarch, regnum), 'x', 0,
4199 file);
4200 }
4201
4202 /* Replacement for generic do_registers_info.
4203 Print regs in pretty columns. */
4204
4205 static int
4206 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4207 int regnum)
4208 {
4209 fprintf_filtered (file, " ");
4210 mips_print_fp_register (file, frame, regnum);
4211 fprintf_filtered (file, "\n");
4212 return regnum + 1;
4213 }
4214
4215
4216 /* Print a row's worth of GP (int) registers, with name labels above */
4217
4218 static int
4219 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4220 int start_regnum)
4221 {
4222 struct gdbarch *gdbarch = get_frame_arch (frame);
4223 /* do values for GP (int) regs */
4224 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4225 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4226 int col, byte;
4227 int regnum;
4228
4229 /* For GP registers, we print a separate row of names above the vals */
4230 for (col = 0, regnum = start_regnum;
4231 col < ncols && regnum < gdbarch_num_regs (current_gdbarch)
4232 + gdbarch_num_pseudo_regs (current_gdbarch);
4233 regnum++)
4234 {
4235 if (*gdbarch_register_name (current_gdbarch, regnum) == '\0')
4236 continue; /* unused register */
4237 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4238 TYPE_CODE_FLT)
4239 break; /* end the row: reached FP register */
4240 /* Large registers are handled separately. */
4241 if (register_size (current_gdbarch, regnum)
4242 > mips_abi_regsize (current_gdbarch))
4243 {
4244 if (col > 0)
4245 break; /* End the row before this register. */
4246
4247 /* Print this register on a row by itself. */
4248 mips_print_register (file, frame, regnum);
4249 fprintf_filtered (file, "\n");
4250 return regnum + 1;
4251 }
4252 if (col == 0)
4253 fprintf_filtered (file, " ");
4254 fprintf_filtered (file,
4255 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4256 gdbarch_register_name (current_gdbarch, regnum));
4257 col++;
4258 }
4259
4260 if (col == 0)
4261 return regnum;
4262
4263 /* print the R0 to R31 names */
4264 if ((start_regnum % gdbarch_num_regs (current_gdbarch)) < MIPS_NUMREGS)
4265 fprintf_filtered (file, "\n R%-4d",
4266 start_regnum % gdbarch_num_regs (current_gdbarch));
4267 else
4268 fprintf_filtered (file, "\n ");
4269
4270 /* now print the values in hex, 4 or 8 to the row */
4271 for (col = 0, regnum = start_regnum;
4272 col < ncols && regnum < gdbarch_num_regs (current_gdbarch)
4273 + gdbarch_num_pseudo_regs (current_gdbarch);
4274 regnum++)
4275 {
4276 if (*gdbarch_register_name (current_gdbarch, regnum) == '\0')
4277 continue; /* unused register */
4278 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4279 TYPE_CODE_FLT)
4280 break; /* end row: reached FP register */
4281 if (register_size (current_gdbarch, regnum)
4282 > mips_abi_regsize (current_gdbarch))
4283 break; /* End row: large register. */
4284
4285 /* OK: get the data in raw format. */
4286 if (!frame_register_read (frame, regnum, raw_buffer))
4287 error (_("can't read register %d (%s)"),
4288 regnum, gdbarch_register_name (current_gdbarch, regnum));
4289 /* pad small registers */
4290 for (byte = 0;
4291 byte < (mips_abi_regsize (current_gdbarch)
4292 - register_size (current_gdbarch, regnum)); byte++)
4293 printf_filtered (" ");
4294 /* Now print the register value in hex, endian order. */
4295 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4296 for (byte =
4297 register_size (current_gdbarch,
4298 regnum) - register_size (current_gdbarch, regnum);
4299 byte < register_size (current_gdbarch, regnum); byte++)
4300 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4301 else
4302 for (byte = register_size (current_gdbarch, regnum) - 1;
4303 byte >= 0; byte--)
4304 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4305 fprintf_filtered (file, " ");
4306 col++;
4307 }
4308 if (col > 0) /* ie. if we actually printed anything... */
4309 fprintf_filtered (file, "\n");
4310
4311 return regnum;
4312 }
4313
4314 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4315
4316 static void
4317 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4318 struct frame_info *frame, int regnum, int all)
4319 {
4320 if (regnum != -1) /* do one specified register */
4321 {
4322 gdb_assert (regnum >= gdbarch_num_regs (current_gdbarch));
4323 if (*(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
4324 error (_("Not a valid register for the current processor type"));
4325
4326 mips_print_register (file, frame, regnum);
4327 fprintf_filtered (file, "\n");
4328 }
4329 else
4330 /* do all (or most) registers */
4331 {
4332 regnum = gdbarch_num_regs (current_gdbarch);
4333 while (regnum < gdbarch_num_regs (current_gdbarch)
4334 + gdbarch_num_pseudo_regs (current_gdbarch))
4335 {
4336 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4337 TYPE_CODE_FLT)
4338 {
4339 if (all) /* true for "INFO ALL-REGISTERS" command */
4340 regnum = print_fp_register_row (file, frame, regnum);
4341 else
4342 regnum += MIPS_NUMREGS; /* skip floating point regs */
4343 }
4344 else
4345 regnum = print_gp_register_row (file, frame, regnum);
4346 }
4347 }
4348 }
4349
4350 /* Is this a branch with a delay slot? */
4351
4352 static int
4353 is_delayed (unsigned long insn)
4354 {
4355 int i;
4356 for (i = 0; i < NUMOPCODES; ++i)
4357 if (mips_opcodes[i].pinfo != INSN_MACRO
4358 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4359 break;
4360 return (i < NUMOPCODES
4361 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4362 | INSN_COND_BRANCH_DELAY
4363 | INSN_COND_BRANCH_LIKELY)));
4364 }
4365
4366 int
4367 mips_single_step_through_delay (struct gdbarch *gdbarch,
4368 struct frame_info *frame)
4369 {
4370 CORE_ADDR pc = get_frame_pc (frame);
4371 gdb_byte buf[MIPS_INSN32_SIZE];
4372
4373 /* There is no branch delay slot on MIPS16. */
4374 if (mips_pc_is_mips16 (pc))
4375 return 0;
4376
4377 if (!breakpoint_here_p (pc + 4))
4378 return 0;
4379
4380 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4381 /* If error reading memory, guess that it is not a delayed
4382 branch. */
4383 return 0;
4384 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
4385 }
4386
4387 /* To skip prologues, I use this predicate. Returns either PC itself
4388 if the code at PC does not look like a function prologue; otherwise
4389 returns an address that (if we're lucky) follows the prologue. If
4390 LENIENT, then we must skip everything which is involved in setting
4391 up the frame (it's OK to skip more, just so long as we don't skip
4392 anything which might clobber the registers which are being saved.
4393 We must skip more in the case where part of the prologue is in the
4394 delay slot of a non-prologue instruction). */
4395
4396 static CORE_ADDR
4397 mips_skip_prologue (CORE_ADDR pc)
4398 {
4399 CORE_ADDR limit_pc;
4400 CORE_ADDR func_addr;
4401
4402 /* See if we can determine the end of the prologue via the symbol table.
4403 If so, then return either PC, or the PC after the prologue, whichever
4404 is greater. */
4405 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4406 {
4407 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4408 if (post_prologue_pc != 0)
4409 return max (pc, post_prologue_pc);
4410 }
4411
4412 /* Can't determine prologue from the symbol table, need to examine
4413 instructions. */
4414
4415 /* Find an upper limit on the function prologue using the debug
4416 information. If the debug information could not be used to provide
4417 that bound, then use an arbitrary large number as the upper bound. */
4418 limit_pc = skip_prologue_using_sal (pc);
4419 if (limit_pc == 0)
4420 limit_pc = pc + 100; /* Magic. */
4421
4422 if (mips_pc_is_mips16 (pc))
4423 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
4424 else
4425 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
4426 }
4427
4428 /* Check whether the PC is in a function epilogue (32-bit version).
4429 This is a helper function for mips_in_function_epilogue_p. */
4430 static int
4431 mips32_in_function_epilogue_p (CORE_ADDR pc)
4432 {
4433 CORE_ADDR func_addr = 0, func_end = 0;
4434
4435 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4436 {
4437 /* The MIPS epilogue is max. 12 bytes long. */
4438 CORE_ADDR addr = func_end - 12;
4439
4440 if (addr < func_addr + 4)
4441 addr = func_addr + 4;
4442 if (pc < addr)
4443 return 0;
4444
4445 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
4446 {
4447 unsigned long high_word;
4448 unsigned long inst;
4449
4450 inst = mips_fetch_instruction (pc);
4451 high_word = (inst >> 16) & 0xffff;
4452
4453 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
4454 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
4455 && inst != 0x03e00008 /* jr $ra */
4456 && inst != 0x00000000) /* nop */
4457 return 0;
4458 }
4459
4460 return 1;
4461 }
4462
4463 return 0;
4464 }
4465
4466 /* Check whether the PC is in a function epilogue (16-bit version).
4467 This is a helper function for mips_in_function_epilogue_p. */
4468 static int
4469 mips16_in_function_epilogue_p (CORE_ADDR pc)
4470 {
4471 CORE_ADDR func_addr = 0, func_end = 0;
4472
4473 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4474 {
4475 /* The MIPS epilogue is max. 12 bytes long. */
4476 CORE_ADDR addr = func_end - 12;
4477
4478 if (addr < func_addr + 4)
4479 addr = func_addr + 4;
4480 if (pc < addr)
4481 return 0;
4482
4483 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
4484 {
4485 unsigned short inst;
4486
4487 inst = mips_fetch_instruction (pc);
4488
4489 if ((inst & 0xf800) == 0xf000) /* extend */
4490 continue;
4491
4492 if (inst != 0x6300 /* addiu $sp,offset */
4493 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
4494 && inst != 0xe820 /* jr $ra */
4495 && inst != 0xe8a0 /* jrc $ra */
4496 && inst != 0x6500) /* nop */
4497 return 0;
4498 }
4499
4500 return 1;
4501 }
4502
4503 return 0;
4504 }
4505
4506 /* The epilogue is defined here as the area at the end of a function,
4507 after an instruction which destroys the function's stack frame. */
4508 static int
4509 mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4510 {
4511 if (mips_pc_is_mips16 (pc))
4512 return mips16_in_function_epilogue_p (pc);
4513 else
4514 return mips32_in_function_epilogue_p (pc);
4515 }
4516
4517 /* Root of all "set mips "/"show mips " commands. This will eventually be
4518 used for all MIPS-specific commands. */
4519
4520 static void
4521 show_mips_command (char *args, int from_tty)
4522 {
4523 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4524 }
4525
4526 static void
4527 set_mips_command (char *args, int from_tty)
4528 {
4529 printf_unfiltered
4530 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4531 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4532 }
4533
4534 /* Commands to show/set the MIPS FPU type. */
4535
4536 static void
4537 show_mipsfpu_command (char *args, int from_tty)
4538 {
4539 char *fpu;
4540 switch (MIPS_FPU_TYPE)
4541 {
4542 case MIPS_FPU_SINGLE:
4543 fpu = "single-precision";
4544 break;
4545 case MIPS_FPU_DOUBLE:
4546 fpu = "double-precision";
4547 break;
4548 case MIPS_FPU_NONE:
4549 fpu = "absent (none)";
4550 break;
4551 default:
4552 internal_error (__FILE__, __LINE__, _("bad switch"));
4553 }
4554 if (mips_fpu_type_auto)
4555 printf_unfiltered
4556 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4557 fpu);
4558 else
4559 printf_unfiltered
4560 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4561 }
4562
4563
4564 static void
4565 set_mipsfpu_command (char *args, int from_tty)
4566 {
4567 printf_unfiltered
4568 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4569 show_mipsfpu_command (args, from_tty);
4570 }
4571
4572 static void
4573 set_mipsfpu_single_command (char *args, int from_tty)
4574 {
4575 struct gdbarch_info info;
4576 gdbarch_info_init (&info);
4577 mips_fpu_type = MIPS_FPU_SINGLE;
4578 mips_fpu_type_auto = 0;
4579 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4580 instead of relying on globals. Doing that would let generic code
4581 handle the search for this specific architecture. */
4582 if (!gdbarch_update_p (info))
4583 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4584 }
4585
4586 static void
4587 set_mipsfpu_double_command (char *args, int from_tty)
4588 {
4589 struct gdbarch_info info;
4590 gdbarch_info_init (&info);
4591 mips_fpu_type = MIPS_FPU_DOUBLE;
4592 mips_fpu_type_auto = 0;
4593 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4594 instead of relying on globals. Doing that would let generic code
4595 handle the search for this specific architecture. */
4596 if (!gdbarch_update_p (info))
4597 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4598 }
4599
4600 static void
4601 set_mipsfpu_none_command (char *args, int from_tty)
4602 {
4603 struct gdbarch_info info;
4604 gdbarch_info_init (&info);
4605 mips_fpu_type = MIPS_FPU_NONE;
4606 mips_fpu_type_auto = 0;
4607 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4608 instead of relying on globals. Doing that would let generic code
4609 handle the search for this specific architecture. */
4610 if (!gdbarch_update_p (info))
4611 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4612 }
4613
4614 static void
4615 set_mipsfpu_auto_command (char *args, int from_tty)
4616 {
4617 mips_fpu_type_auto = 1;
4618 }
4619
4620 /* Attempt to identify the particular processor model by reading the
4621 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4622 the relevant processor still exists (it dates back to '94) and
4623 secondly this is not the way to do this. The processor type should
4624 be set by forcing an architecture change. */
4625
4626 void
4627 deprecated_mips_set_processor_regs_hack (void)
4628 {
4629 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4630 ULONGEST prid;
4631
4632 regcache_cooked_read_unsigned (get_current_regcache (),
4633 MIPS_PRID_REGNUM, &prid);
4634 if ((prid & ~0xf) == 0x700)
4635 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4636 }
4637
4638 /* Just like reinit_frame_cache, but with the right arguments to be
4639 callable as an sfunc. */
4640
4641 static void
4642 reinit_frame_cache_sfunc (char *args, int from_tty,
4643 struct cmd_list_element *c)
4644 {
4645 reinit_frame_cache ();
4646 }
4647
4648 static int
4649 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4650 {
4651 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4652
4653 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4654 disassembler needs to be able to locally determine the ISA, and
4655 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4656 work. */
4657 if (mips_pc_is_mips16 (memaddr))
4658 info->mach = bfd_mach_mips16;
4659
4660 /* Round down the instruction address to the appropriate boundary. */
4661 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4662
4663 /* Set the disassembler options. */
4664 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
4665 {
4666 /* Set up the disassembler info, so that we get the right
4667 register names from libopcodes. */
4668 if (tdep->mips_abi == MIPS_ABI_N32)
4669 info->disassembler_options = "gpr-names=n32";
4670 else
4671 info->disassembler_options = "gpr-names=64";
4672 info->flavour = bfd_target_elf_flavour;
4673 }
4674 else
4675 /* This string is not recognized explicitly by the disassembler,
4676 but it tells the disassembler to not try to guess the ABI from
4677 the bfd elf headers, such that, if the user overrides the ABI
4678 of a program linked as NewABI, the disassembly will follow the
4679 register naming conventions specified by the user. */
4680 info->disassembler_options = "gpr-names=32";
4681
4682 /* Call the appropriate disassembler based on the target endian-ness. */
4683 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4684 return print_insn_big_mips (memaddr, info);
4685 else
4686 return print_insn_little_mips (memaddr, info);
4687 }
4688
4689 /* This function implements gdbarch_breakpoint_from_pc. It uses the program
4690 counter value to determine whether a 16- or 32-bit breakpoint should be used.
4691 It returns a pointer to a string of bytes that encode a breakpoint
4692 instruction, stores the length of the string to *lenptr, and adjusts pc (if
4693 necessary) to point to the actual memory location where the breakpoint
4694 should be inserted. */
4695
4696 static const gdb_byte *
4697 mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
4698 {
4699 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4700 {
4701 if (mips_pc_is_mips16 (*pcptr))
4702 {
4703 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4704 *pcptr = unmake_mips16_addr (*pcptr);
4705 *lenptr = sizeof (mips16_big_breakpoint);
4706 return mips16_big_breakpoint;
4707 }
4708 else
4709 {
4710 /* The IDT board uses an unusual breakpoint value, and
4711 sometimes gets confused when it sees the usual MIPS
4712 breakpoint instruction. */
4713 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4714 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4715 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
4716
4717 *lenptr = sizeof (big_breakpoint);
4718
4719 if (strcmp (target_shortname, "mips") == 0)
4720 return idt_big_breakpoint;
4721 else if (strcmp (target_shortname, "ddb") == 0
4722 || strcmp (target_shortname, "pmon") == 0
4723 || strcmp (target_shortname, "lsi") == 0)
4724 return pmon_big_breakpoint;
4725 else
4726 return big_breakpoint;
4727 }
4728 }
4729 else
4730 {
4731 if (mips_pc_is_mips16 (*pcptr))
4732 {
4733 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4734 *pcptr = unmake_mips16_addr (*pcptr);
4735 *lenptr = sizeof (mips16_little_breakpoint);
4736 return mips16_little_breakpoint;
4737 }
4738 else
4739 {
4740 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4741 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4742 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
4743
4744 *lenptr = sizeof (little_breakpoint);
4745
4746 if (strcmp (target_shortname, "mips") == 0)
4747 return idt_little_breakpoint;
4748 else if (strcmp (target_shortname, "ddb") == 0
4749 || strcmp (target_shortname, "pmon") == 0
4750 || strcmp (target_shortname, "lsi") == 0)
4751 return pmon_little_breakpoint;
4752 else
4753 return little_breakpoint;
4754 }
4755 }
4756 }
4757
4758 /* If PC is in a mips16 call or return stub, return the address of the target
4759 PC, which is either the callee or the caller. There are several
4760 cases which must be handled:
4761
4762 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4763 target PC is in $31 ($ra).
4764 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4765 and the target PC is in $2.
4766 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4767 before the jal instruction, this is effectively a call stub
4768 and the the target PC is in $2. Otherwise this is effectively
4769 a return stub and the target PC is in $18.
4770
4771 See the source code for the stubs in gcc/config/mips/mips16.S for
4772 gory details. */
4773
4774 static CORE_ADDR
4775 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
4776 {
4777 char *name;
4778 CORE_ADDR start_addr;
4779
4780 /* Find the starting address and name of the function containing the PC. */
4781 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4782 return 0;
4783
4784 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4785 target PC is in $31 ($ra). */
4786 if (strcmp (name, "__mips16_ret_sf") == 0
4787 || strcmp (name, "__mips16_ret_df") == 0)
4788 return get_frame_register_signed (frame, MIPS_RA_REGNUM);
4789
4790 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4791 {
4792 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4793 and the target PC is in $2. */
4794 if (name[19] >= '0' && name[19] <= '9')
4795 return get_frame_register_signed (frame, 2);
4796
4797 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4798 before the jal instruction, this is effectively a call stub
4799 and the the target PC is in $2. Otherwise this is effectively
4800 a return stub and the target PC is in $18. */
4801 else if (name[19] == 's' || name[19] == 'd')
4802 {
4803 if (pc == start_addr)
4804 {
4805 /* Check if the target of the stub is a compiler-generated
4806 stub. Such a stub for a function bar might have a name
4807 like __fn_stub_bar, and might look like this:
4808 mfc1 $4,$f13
4809 mfc1 $5,$f12
4810 mfc1 $6,$f15
4811 mfc1 $7,$f14
4812 la $1,bar (becomes a lui/addiu pair)
4813 jr $1
4814 So scan down to the lui/addi and extract the target
4815 address from those two instructions. */
4816
4817 CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
4818 ULONGEST inst;
4819 int i;
4820
4821 /* See if the name of the target function is __fn_stub_*. */
4822 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4823 0)
4824 return target_pc;
4825 if (strncmp (name, "__fn_stub_", 10) != 0
4826 && strcmp (name, "etext") != 0
4827 && strcmp (name, "_etext") != 0)
4828 return target_pc;
4829
4830 /* Scan through this _fn_stub_ code for the lui/addiu pair.
4831 The limit on the search is arbitrarily set to 20
4832 instructions. FIXME. */
4833 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
4834 {
4835 inst = mips_fetch_instruction (target_pc);
4836 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4837 pc = (inst << 16) & 0xffff0000; /* high word */
4838 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4839 return pc | (inst & 0xffff); /* low word */
4840 }
4841
4842 /* Couldn't find the lui/addui pair, so return stub address. */
4843 return target_pc;
4844 }
4845 else
4846 /* This is the 'return' part of a call stub. The return
4847 address is in $r18. */
4848 return get_frame_register_signed (frame, 18);
4849 }
4850 }
4851 return 0; /* not a stub */
4852 }
4853
4854 /* Convert a dbx stab register number (from `r' declaration) to a GDB
4855 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
4856
4857 static int
4858 mips_stab_reg_to_regnum (int num)
4859 {
4860 int regnum;
4861 if (num >= 0 && num < 32)
4862 regnum = num;
4863 else if (num >= 38 && num < 70)
4864 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
4865 else if (num == 70)
4866 regnum = mips_regnum (current_gdbarch)->hi;
4867 else if (num == 71)
4868 regnum = mips_regnum (current_gdbarch)->lo;
4869 else
4870 /* This will hopefully (eventually) provoke a warning. Should
4871 we be calling complaint() here? */
4872 return gdbarch_num_regs (current_gdbarch)
4873 + gdbarch_num_pseudo_regs (current_gdbarch);
4874 return gdbarch_num_regs (current_gdbarch) + regnum;
4875 }
4876
4877
4878 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4879 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
4880
4881 static int
4882 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
4883 {
4884 int regnum;
4885 if (num >= 0 && num < 32)
4886 regnum = num;
4887 else if (num >= 32 && num < 64)
4888 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
4889 else if (num == 64)
4890 regnum = mips_regnum (current_gdbarch)->hi;
4891 else if (num == 65)
4892 regnum = mips_regnum (current_gdbarch)->lo;
4893 else
4894 /* This will hopefully (eventually) provoke a warning. Should we
4895 be calling complaint() here? */
4896 return gdbarch_num_regs (current_gdbarch)
4897 + gdbarch_num_pseudo_regs (current_gdbarch);
4898 return gdbarch_num_regs (current_gdbarch) + regnum;
4899 }
4900
4901 static int
4902 mips_register_sim_regno (int regnum)
4903 {
4904 /* Only makes sense to supply raw registers. */
4905 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (current_gdbarch));
4906 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4907 decide if it is valid. Should instead define a standard sim/gdb
4908 register numbering scheme. */
4909 if (gdbarch_register_name (current_gdbarch,
4910 gdbarch_num_regs
4911 (current_gdbarch) + regnum) != NULL
4912 && gdbarch_register_name (current_gdbarch,
4913 gdbarch_num_regs
4914 (current_gdbarch) + regnum)[0] != '\0')
4915 return regnum;
4916 else
4917 return LEGACY_SIM_REGNO_IGNORE;
4918 }
4919
4920
4921 /* Convert an integer into an address. Extracting the value signed
4922 guarantees a correctly sign extended address. */
4923
4924 static CORE_ADDR
4925 mips_integer_to_address (struct gdbarch *gdbarch,
4926 struct type *type, const gdb_byte *buf)
4927 {
4928 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
4929 }
4930
4931 static void
4932 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4933 {
4934 enum mips_abi *abip = (enum mips_abi *) obj;
4935 const char *name = bfd_get_section_name (abfd, sect);
4936
4937 if (*abip != MIPS_ABI_UNKNOWN)
4938 return;
4939
4940 if (strncmp (name, ".mdebug.", 8) != 0)
4941 return;
4942
4943 if (strcmp (name, ".mdebug.abi32") == 0)
4944 *abip = MIPS_ABI_O32;
4945 else if (strcmp (name, ".mdebug.abiN32") == 0)
4946 *abip = MIPS_ABI_N32;
4947 else if (strcmp (name, ".mdebug.abi64") == 0)
4948 *abip = MIPS_ABI_N64;
4949 else if (strcmp (name, ".mdebug.abiO64") == 0)
4950 *abip = MIPS_ABI_O64;
4951 else if (strcmp (name, ".mdebug.eabi32") == 0)
4952 *abip = MIPS_ABI_EABI32;
4953 else if (strcmp (name, ".mdebug.eabi64") == 0)
4954 *abip = MIPS_ABI_EABI64;
4955 else
4956 warning (_("unsupported ABI %s."), name + 8);
4957 }
4958
4959 static void
4960 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
4961 {
4962 int *lbp = (int *) obj;
4963 const char *name = bfd_get_section_name (abfd, sect);
4964
4965 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
4966 *lbp = 32;
4967 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
4968 *lbp = 64;
4969 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
4970 warning (_("unrecognized .gcc_compiled_longXX"));
4971 }
4972
4973 static enum mips_abi
4974 global_mips_abi (void)
4975 {
4976 int i;
4977
4978 for (i = 0; mips_abi_strings[i] != NULL; i++)
4979 if (mips_abi_strings[i] == mips_abi_string)
4980 return (enum mips_abi) i;
4981
4982 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
4983 }
4984
4985 static void
4986 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
4987 {
4988 /* If the size matches the set of 32-bit or 64-bit integer registers,
4989 assume that's what we've got. */
4990 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
4991 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
4992
4993 /* If the size matches the full set of registers GDB traditionally
4994 knows about, including floating point, for either 32-bit or
4995 64-bit, assume that's what we've got. */
4996 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
4997 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
4998
4999 /* Otherwise we don't have a useful guess. */
5000 }
5001
5002 static struct value *
5003 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
5004 {
5005 const int *reg_p = baton;
5006 return value_of_register (*reg_p, frame);
5007 }
5008
5009 static struct gdbarch *
5010 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5011 {
5012 struct gdbarch *gdbarch;
5013 struct gdbarch_tdep *tdep;
5014 int elf_flags;
5015 enum mips_abi mips_abi, found_abi, wanted_abi;
5016 int i, num_regs;
5017 enum mips_fpu_type fpu_type;
5018 struct tdesc_arch_data *tdesc_data = NULL;
5019 int elf_fpu_type = 0;
5020
5021 /* Check any target description for validity. */
5022 if (tdesc_has_registers (info.target_desc))
5023 {
5024 static const char *const mips_gprs[] = {
5025 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5026 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5027 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5028 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5029 };
5030 static const char *const mips_fprs[] = {
5031 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5032 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5033 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5034 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
5035 };
5036
5037 const struct tdesc_feature *feature;
5038 int valid_p;
5039
5040 feature = tdesc_find_feature (info.target_desc,
5041 "org.gnu.gdb.mips.cpu");
5042 if (feature == NULL)
5043 return NULL;
5044
5045 tdesc_data = tdesc_data_alloc ();
5046
5047 valid_p = 1;
5048 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
5049 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
5050 mips_gprs[i]);
5051
5052
5053 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5054 MIPS_EMBED_LO_REGNUM, "lo");
5055 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5056 MIPS_EMBED_HI_REGNUM, "hi");
5057 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5058 MIPS_EMBED_PC_REGNUM, "pc");
5059
5060 if (!valid_p)
5061 {
5062 tdesc_data_cleanup (tdesc_data);
5063 return NULL;
5064 }
5065
5066 feature = tdesc_find_feature (info.target_desc,
5067 "org.gnu.gdb.mips.cp0");
5068 if (feature == NULL)
5069 {
5070 tdesc_data_cleanup (tdesc_data);
5071 return NULL;
5072 }
5073
5074 valid_p = 1;
5075 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5076 MIPS_EMBED_BADVADDR_REGNUM,
5077 "badvaddr");
5078 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5079 MIPS_PS_REGNUM, "status");
5080 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5081 MIPS_EMBED_CAUSE_REGNUM, "cause");
5082
5083 if (!valid_p)
5084 {
5085 tdesc_data_cleanup (tdesc_data);
5086 return NULL;
5087 }
5088
5089 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
5090 backend is not prepared for that, though. */
5091 feature = tdesc_find_feature (info.target_desc,
5092 "org.gnu.gdb.mips.fpu");
5093 if (feature == NULL)
5094 {
5095 tdesc_data_cleanup (tdesc_data);
5096 return NULL;
5097 }
5098
5099 valid_p = 1;
5100 for (i = 0; i < 32; i++)
5101 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5102 i + MIPS_EMBED_FP0_REGNUM,
5103 mips_fprs[i]);
5104
5105 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5106 MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
5107 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5108 MIPS_EMBED_FP0_REGNUM + 33, "fir");
5109
5110 if (!valid_p)
5111 {
5112 tdesc_data_cleanup (tdesc_data);
5113 return NULL;
5114 }
5115
5116 /* It would be nice to detect an attempt to use a 64-bit ABI
5117 when only 32-bit registers are provided. */
5118 }
5119
5120 /* First of all, extract the elf_flags, if available. */
5121 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5122 elf_flags = elf_elfheader (info.abfd)->e_flags;
5123 else if (arches != NULL)
5124 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
5125 else
5126 elf_flags = 0;
5127 if (gdbarch_debug)
5128 fprintf_unfiltered (gdb_stdlog,
5129 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
5130
5131 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5132 switch ((elf_flags & EF_MIPS_ABI))
5133 {
5134 case E_MIPS_ABI_O32:
5135 found_abi = MIPS_ABI_O32;
5136 break;
5137 case E_MIPS_ABI_O64:
5138 found_abi = MIPS_ABI_O64;
5139 break;
5140 case E_MIPS_ABI_EABI32:
5141 found_abi = MIPS_ABI_EABI32;
5142 break;
5143 case E_MIPS_ABI_EABI64:
5144 found_abi = MIPS_ABI_EABI64;
5145 break;
5146 default:
5147 if ((elf_flags & EF_MIPS_ABI2))
5148 found_abi = MIPS_ABI_N32;
5149 else
5150 found_abi = MIPS_ABI_UNKNOWN;
5151 break;
5152 }
5153
5154 /* GCC creates a pseudo-section whose name describes the ABI. */
5155 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5156 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
5157
5158 /* If we have no useful BFD information, use the ABI from the last
5159 MIPS architecture (if there is one). */
5160 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5161 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5162
5163 /* Try the architecture for any hint of the correct ABI. */
5164 if (found_abi == MIPS_ABI_UNKNOWN
5165 && info.bfd_arch_info != NULL
5166 && info.bfd_arch_info->arch == bfd_arch_mips)
5167 {
5168 switch (info.bfd_arch_info->mach)
5169 {
5170 case bfd_mach_mips3900:
5171 found_abi = MIPS_ABI_EABI32;
5172 break;
5173 case bfd_mach_mips4100:
5174 case bfd_mach_mips5000:
5175 found_abi = MIPS_ABI_EABI64;
5176 break;
5177 case bfd_mach_mips8000:
5178 case bfd_mach_mips10000:
5179 /* On Irix, ELF64 executables use the N64 ABI. The
5180 pseudo-sections which describe the ABI aren't present
5181 on IRIX. (Even for executables created by gcc.) */
5182 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5183 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5184 found_abi = MIPS_ABI_N64;
5185 else
5186 found_abi = MIPS_ABI_N32;
5187 break;
5188 }
5189 }
5190
5191 /* Default 64-bit objects to N64 instead of O32. */
5192 if (found_abi == MIPS_ABI_UNKNOWN
5193 && info.abfd != NULL
5194 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5195 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5196 found_abi = MIPS_ABI_N64;
5197
5198 if (gdbarch_debug)
5199 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5200 found_abi);
5201
5202 /* What has the user specified from the command line? */
5203 wanted_abi = global_mips_abi ();
5204 if (gdbarch_debug)
5205 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5206 wanted_abi);
5207
5208 /* Now that we have found what the ABI for this binary would be,
5209 check whether the user is overriding it. */
5210 if (wanted_abi != MIPS_ABI_UNKNOWN)
5211 mips_abi = wanted_abi;
5212 else if (found_abi != MIPS_ABI_UNKNOWN)
5213 mips_abi = found_abi;
5214 else
5215 mips_abi = MIPS_ABI_O32;
5216 if (gdbarch_debug)
5217 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5218 mips_abi);
5219
5220 /* Also used when doing an architecture lookup. */
5221 if (gdbarch_debug)
5222 fprintf_unfiltered (gdb_stdlog,
5223 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5224 mips64_transfers_32bit_regs_p);
5225
5226 /* Determine the MIPS FPU type. */
5227 #ifdef HAVE_ELF
5228 if (info.abfd
5229 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5230 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5231 Tag_GNU_MIPS_ABI_FP);
5232 #endif /* HAVE_ELF */
5233
5234 if (!mips_fpu_type_auto)
5235 fpu_type = mips_fpu_type;
5236 else if (elf_fpu_type != 0)
5237 {
5238 switch (elf_fpu_type)
5239 {
5240 case 1:
5241 fpu_type = MIPS_FPU_DOUBLE;
5242 break;
5243 case 2:
5244 fpu_type = MIPS_FPU_SINGLE;
5245 break;
5246 case 3:
5247 default:
5248 /* Soft float or unknown. */
5249 fpu_type = MIPS_FPU_NONE;
5250 break;
5251 }
5252 }
5253 else if (info.bfd_arch_info != NULL
5254 && info.bfd_arch_info->arch == bfd_arch_mips)
5255 switch (info.bfd_arch_info->mach)
5256 {
5257 case bfd_mach_mips3900:
5258 case bfd_mach_mips4100:
5259 case bfd_mach_mips4111:
5260 case bfd_mach_mips4120:
5261 fpu_type = MIPS_FPU_NONE;
5262 break;
5263 case bfd_mach_mips4650:
5264 fpu_type = MIPS_FPU_SINGLE;
5265 break;
5266 default:
5267 fpu_type = MIPS_FPU_DOUBLE;
5268 break;
5269 }
5270 else if (arches != NULL)
5271 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5272 else
5273 fpu_type = MIPS_FPU_DOUBLE;
5274 if (gdbarch_debug)
5275 fprintf_unfiltered (gdb_stdlog,
5276 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
5277
5278 /* Check for blatant incompatibilities. */
5279
5280 /* If we have only 32-bit registers, then we can't debug a 64-bit
5281 ABI. */
5282 if (info.target_desc
5283 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
5284 && mips_abi != MIPS_ABI_EABI32
5285 && mips_abi != MIPS_ABI_O32)
5286 {
5287 if (tdesc_data != NULL)
5288 tdesc_data_cleanup (tdesc_data);
5289 return NULL;
5290 }
5291
5292 /* try to find a pre-existing architecture */
5293 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5294 arches != NULL;
5295 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5296 {
5297 /* MIPS needs to be pedantic about which ABI the object is
5298 using. */
5299 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5300 continue;
5301 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5302 continue;
5303 /* Need to be pedantic about which register virtual size is
5304 used. */
5305 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5306 != mips64_transfers_32bit_regs_p)
5307 continue;
5308 /* Be pedantic about which FPU is selected. */
5309 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5310 continue;
5311
5312 if (tdesc_data != NULL)
5313 tdesc_data_cleanup (tdesc_data);
5314 return arches->gdbarch;
5315 }
5316
5317 /* Need a new architecture. Fill in a target specific vector. */
5318 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5319 gdbarch = gdbarch_alloc (&info, tdep);
5320 tdep->elf_flags = elf_flags;
5321 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
5322 tdep->found_abi = found_abi;
5323 tdep->mips_abi = mips_abi;
5324 tdep->mips_fpu_type = fpu_type;
5325 tdep->register_size_valid_p = 0;
5326 tdep->register_size = 0;
5327
5328 if (info.target_desc)
5329 {
5330 /* Some useful properties can be inferred from the target. */
5331 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
5332 {
5333 tdep->register_size_valid_p = 1;
5334 tdep->register_size = 4;
5335 }
5336 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
5337 {
5338 tdep->register_size_valid_p = 1;
5339 tdep->register_size = 8;
5340 }
5341 }
5342
5343 /* Initially set everything according to the default ABI/ISA. */
5344 set_gdbarch_short_bit (gdbarch, 16);
5345 set_gdbarch_int_bit (gdbarch, 32);
5346 set_gdbarch_float_bit (gdbarch, 32);
5347 set_gdbarch_double_bit (gdbarch, 64);
5348 set_gdbarch_long_double_bit (gdbarch, 64);
5349 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5350 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5351 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5352
5353 set_gdbarch_elf_make_msymbol_special (gdbarch,
5354 mips_elf_make_msymbol_special);
5355
5356 /* Fill in the OS dependant register numbers and names. */
5357 {
5358 const char **reg_names;
5359 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5360 struct mips_regnum);
5361 if (tdesc_has_registers (info.target_desc))
5362 {
5363 regnum->lo = MIPS_EMBED_LO_REGNUM;
5364 regnum->hi = MIPS_EMBED_HI_REGNUM;
5365 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5366 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5367 regnum->pc = MIPS_EMBED_PC_REGNUM;
5368 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5369 regnum->fp_control_status = 70;
5370 regnum->fp_implementation_revision = 71;
5371 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
5372 reg_names = NULL;
5373 }
5374 else if (info.osabi == GDB_OSABI_IRIX)
5375 {
5376 regnum->fp0 = 32;
5377 regnum->pc = 64;
5378 regnum->cause = 65;
5379 regnum->badvaddr = 66;
5380 regnum->hi = 67;
5381 regnum->lo = 68;
5382 regnum->fp_control_status = 69;
5383 regnum->fp_implementation_revision = 70;
5384 num_regs = 71;
5385 reg_names = mips_irix_reg_names;
5386 }
5387 else
5388 {
5389 regnum->lo = MIPS_EMBED_LO_REGNUM;
5390 regnum->hi = MIPS_EMBED_HI_REGNUM;
5391 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5392 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5393 regnum->pc = MIPS_EMBED_PC_REGNUM;
5394 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5395 regnum->fp_control_status = 70;
5396 regnum->fp_implementation_revision = 71;
5397 num_regs = 90;
5398 if (info.bfd_arch_info != NULL
5399 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5400 reg_names = mips_tx39_reg_names;
5401 else
5402 reg_names = mips_generic_reg_names;
5403 }
5404 /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
5405 replaced by read_pc? */
5406 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5407 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5408 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5409 set_gdbarch_num_regs (gdbarch, num_regs);
5410 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5411 set_gdbarch_register_name (gdbarch, mips_register_name);
5412 tdep->mips_processor_reg_names = reg_names;
5413 tdep->regnum = regnum;
5414 }
5415
5416 switch (mips_abi)
5417 {
5418 case MIPS_ABI_O32:
5419 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5420 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
5421 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5422 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5423 tdep->default_mask_address_p = 0;
5424 set_gdbarch_long_bit (gdbarch, 32);
5425 set_gdbarch_ptr_bit (gdbarch, 32);
5426 set_gdbarch_long_long_bit (gdbarch, 64);
5427 break;
5428 case MIPS_ABI_O64:
5429 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5430 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
5431 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5432 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5433 tdep->default_mask_address_p = 0;
5434 set_gdbarch_long_bit (gdbarch, 32);
5435 set_gdbarch_ptr_bit (gdbarch, 32);
5436 set_gdbarch_long_long_bit (gdbarch, 64);
5437 break;
5438 case MIPS_ABI_EABI32:
5439 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5440 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5441 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5442 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5443 tdep->default_mask_address_p = 0;
5444 set_gdbarch_long_bit (gdbarch, 32);
5445 set_gdbarch_ptr_bit (gdbarch, 32);
5446 set_gdbarch_long_long_bit (gdbarch, 64);
5447 break;
5448 case MIPS_ABI_EABI64:
5449 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5450 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5451 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5452 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5453 tdep->default_mask_address_p = 0;
5454 set_gdbarch_long_bit (gdbarch, 64);
5455 set_gdbarch_ptr_bit (gdbarch, 64);
5456 set_gdbarch_long_long_bit (gdbarch, 64);
5457 break;
5458 case MIPS_ABI_N32:
5459 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5460 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5461 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5462 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5463 tdep->default_mask_address_p = 0;
5464 set_gdbarch_long_bit (gdbarch, 32);
5465 set_gdbarch_ptr_bit (gdbarch, 32);
5466 set_gdbarch_long_long_bit (gdbarch, 64);
5467 set_gdbarch_long_double_bit (gdbarch, 128);
5468 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
5469 break;
5470 case MIPS_ABI_N64:
5471 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5472 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5473 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5474 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5475 tdep->default_mask_address_p = 0;
5476 set_gdbarch_long_bit (gdbarch, 64);
5477 set_gdbarch_ptr_bit (gdbarch, 64);
5478 set_gdbarch_long_long_bit (gdbarch, 64);
5479 set_gdbarch_long_double_bit (gdbarch, 128);
5480 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
5481 break;
5482 default:
5483 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5484 }
5485
5486 /* GCC creates a pseudo-section whose name specifies the size of
5487 longs, since -mlong32 or -mlong64 may be used independent of
5488 other options. How those options affect pointer sizes is ABI and
5489 architecture dependent, so use them to override the default sizes
5490 set by the ABI. This table shows the relationship between ABI,
5491 -mlongXX, and size of pointers:
5492
5493 ABI -mlongXX ptr bits
5494 --- -------- --------
5495 o32 32 32
5496 o32 64 32
5497 n32 32 32
5498 n32 64 64
5499 o64 32 32
5500 o64 64 64
5501 n64 32 32
5502 n64 64 64
5503 eabi32 32 32
5504 eabi32 64 32
5505 eabi64 32 32
5506 eabi64 64 64
5507
5508 Note that for o32 and eabi32, pointers are always 32 bits
5509 regardless of any -mlongXX option. For all others, pointers and
5510 longs are the same, as set by -mlongXX or set by defaults.
5511 */
5512
5513 if (info.abfd != NULL)
5514 {
5515 int long_bit = 0;
5516
5517 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5518 if (long_bit)
5519 {
5520 set_gdbarch_long_bit (gdbarch, long_bit);
5521 switch (mips_abi)
5522 {
5523 case MIPS_ABI_O32:
5524 case MIPS_ABI_EABI32:
5525 break;
5526 case MIPS_ABI_N32:
5527 case MIPS_ABI_O64:
5528 case MIPS_ABI_N64:
5529 case MIPS_ABI_EABI64:
5530 set_gdbarch_ptr_bit (gdbarch, long_bit);
5531 break;
5532 default:
5533 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5534 }
5535 }
5536 }
5537
5538 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5539 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5540 comment:
5541
5542 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5543 flag in object files because to do so would make it impossible to
5544 link with libraries compiled without "-gp32". This is
5545 unnecessarily restrictive.
5546
5547 We could solve this problem by adding "-gp32" multilibs to gcc,
5548 but to set this flag before gcc is built with such multilibs will
5549 break too many systems.''
5550
5551 But even more unhelpfully, the default linker output target for
5552 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5553 for 64-bit programs - you need to change the ABI to change this,
5554 and not all gcc targets support that currently. Therefore using
5555 this flag to detect 32-bit mode would do the wrong thing given
5556 the current gcc - it would make GDB treat these 64-bit programs
5557 as 32-bit programs by default. */
5558
5559 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5560 set_gdbarch_write_pc (gdbarch, mips_write_pc);
5561
5562 /* Add/remove bits from an address. The MIPS needs be careful to
5563 ensure that all 32 bit addresses are sign extended to 64 bits. */
5564 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5565
5566 /* Unwind the frame. */
5567 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
5568 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
5569 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
5570
5571 /* Map debug register numbers onto internal register numbers. */
5572 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5573 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5574 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5575 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5576 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5577 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5578 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5579 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5580
5581 /* MIPS version of CALL_DUMMY */
5582
5583 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5584 replaced by a command, and all targets will default to on stack
5585 (regardless of the stack's execute status). */
5586 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5587 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5588
5589 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5590 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5591 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5592
5593 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5594 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5595
5596 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5597
5598 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
5599
5600 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5601 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5602 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5603
5604 set_gdbarch_register_type (gdbarch, mips_register_type);
5605
5606 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5607
5608 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5609
5610 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5611 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5612 need to all be folded into the target vector. Since they are
5613 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5614 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5615 is sitting on? */
5616 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5617
5618 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
5619
5620 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5621
5622 /* Virtual tables. */
5623 set_gdbarch_vbit_in_delta (gdbarch, 1);
5624
5625 mips_register_g_packet_guesses (gdbarch);
5626
5627 /* Hook in OS ABI-specific overrides, if they have been registered. */
5628 info.tdep_info = (void *) tdesc_data;
5629 gdbarch_init_osabi (info, gdbarch);
5630
5631 /* Unwind the frame. */
5632 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
5633 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
5634 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5635 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
5636 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
5637 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
5638 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5639 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5640
5641 if (tdesc_data)
5642 {
5643 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
5644 tdesc_use_registers (gdbarch, tdesc_data);
5645
5646 /* Override the normal target description methods to handle our
5647 dual real and pseudo registers. */
5648 set_gdbarch_register_name (gdbarch, mips_register_name);
5649 set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
5650
5651 num_regs = gdbarch_num_regs (gdbarch);
5652 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5653 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
5654 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5655 }
5656
5657 /* Add ABI-specific aliases for the registers. */
5658 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5659 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
5660 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
5661 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
5662 else
5663 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
5664 user_reg_add (gdbarch, mips_o32_aliases[i].name,
5665 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
5666
5667 /* Add some other standard aliases. */
5668 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
5669 user_reg_add (gdbarch, mips_register_aliases[i].name,
5670 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
5671
5672 return gdbarch;
5673 }
5674
5675 static void
5676 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5677 {
5678 struct gdbarch_info info;
5679
5680 /* Force the architecture to update, and (if it's a MIPS architecture)
5681 mips_gdbarch_init will take care of the rest. */
5682 gdbarch_info_init (&info);
5683 gdbarch_update_p (info);
5684 }
5685
5686 /* Print out which MIPS ABI is in use. */
5687
5688 static void
5689 show_mips_abi (struct ui_file *file,
5690 int from_tty,
5691 struct cmd_list_element *ignored_cmd,
5692 const char *ignored_value)
5693 {
5694 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
5695 fprintf_filtered
5696 (file,
5697 "The MIPS ABI is unknown because the current architecture "
5698 "is not MIPS.\n");
5699 else
5700 {
5701 enum mips_abi global_abi = global_mips_abi ();
5702 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5703 const char *actual_abi_str = mips_abi_strings[actual_abi];
5704
5705 if (global_abi == MIPS_ABI_UNKNOWN)
5706 fprintf_filtered
5707 (file,
5708 "The MIPS ABI is set automatically (currently \"%s\").\n",
5709 actual_abi_str);
5710 else if (global_abi == actual_abi)
5711 fprintf_filtered
5712 (file,
5713 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5714 actual_abi_str);
5715 else
5716 {
5717 /* Probably shouldn't happen... */
5718 fprintf_filtered
5719 (file,
5720 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5721 actual_abi_str, mips_abi_strings[global_abi]);
5722 }
5723 }
5724 }
5725
5726 static void
5727 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5728 {
5729 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5730 if (tdep != NULL)
5731 {
5732 int ef_mips_arch;
5733 int ef_mips_32bitmode;
5734 /* Determine the ISA. */
5735 switch (tdep->elf_flags & EF_MIPS_ARCH)
5736 {
5737 case E_MIPS_ARCH_1:
5738 ef_mips_arch = 1;
5739 break;
5740 case E_MIPS_ARCH_2:
5741 ef_mips_arch = 2;
5742 break;
5743 case E_MIPS_ARCH_3:
5744 ef_mips_arch = 3;
5745 break;
5746 case E_MIPS_ARCH_4:
5747 ef_mips_arch = 4;
5748 break;
5749 default:
5750 ef_mips_arch = 0;
5751 break;
5752 }
5753 /* Determine the size of a pointer. */
5754 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
5755 fprintf_unfiltered (file,
5756 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5757 tdep->elf_flags);
5758 fprintf_unfiltered (file,
5759 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5760 ef_mips_32bitmode);
5761 fprintf_unfiltered (file,
5762 "mips_dump_tdep: ef_mips_arch = %d\n",
5763 ef_mips_arch);
5764 fprintf_unfiltered (file,
5765 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5766 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
5767 fprintf_unfiltered (file,
5768 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5769 mips_mask_address_p (tdep),
5770 tdep->default_mask_address_p);
5771 }
5772 fprintf_unfiltered (file,
5773 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5774 MIPS_DEFAULT_FPU_TYPE,
5775 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5776 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5777 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5778 : "???"));
5779 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
5780 fprintf_unfiltered (file,
5781 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5782 MIPS_FPU_TYPE,
5783 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5784 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5785 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5786 : "???"));
5787 }
5788
5789 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
5790
5791 void
5792 _initialize_mips_tdep (void)
5793 {
5794 static struct cmd_list_element *mipsfpulist = NULL;
5795 struct cmd_list_element *c;
5796
5797 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
5798 if (MIPS_ABI_LAST + 1
5799 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5800 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
5801
5802 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
5803
5804 mips_pdr_data = register_objfile_data ();
5805
5806 /* Create feature sets with the appropriate properties. The values
5807 are not important. */
5808 mips_tdesc_gp32 = allocate_target_description ();
5809 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
5810
5811 mips_tdesc_gp64 = allocate_target_description ();
5812 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
5813
5814 /* Add root prefix command for all "set mips"/"show mips" commands */
5815 add_prefix_cmd ("mips", no_class, set_mips_command,
5816 _("Various MIPS specific commands."),
5817 &setmipscmdlist, "set mips ", 0, &setlist);
5818
5819 add_prefix_cmd ("mips", no_class, show_mips_command,
5820 _("Various MIPS specific commands."),
5821 &showmipscmdlist, "show mips ", 0, &showlist);
5822
5823 /* Allow the user to override the ABI. */
5824 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5825 &mips_abi_string, _("\
5826 Set the MIPS ABI used by this program."), _("\
5827 Show the MIPS ABI used by this program."), _("\
5828 This option can be set to one of:\n\
5829 auto - the default ABI associated with the current binary\n\
5830 o32\n\
5831 o64\n\
5832 n32\n\
5833 n64\n\
5834 eabi32\n\
5835 eabi64"),
5836 mips_abi_update,
5837 show_mips_abi,
5838 &setmipscmdlist, &showmipscmdlist);
5839
5840 /* Let the user turn off floating point and set the fence post for
5841 heuristic_proc_start. */
5842
5843 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5844 _("Set use of MIPS floating-point coprocessor."),
5845 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5846 add_cmd ("single", class_support, set_mipsfpu_single_command,
5847 _("Select single-precision MIPS floating-point coprocessor."),
5848 &mipsfpulist);
5849 add_cmd ("double", class_support, set_mipsfpu_double_command,
5850 _("Select double-precision MIPS floating-point coprocessor."),
5851 &mipsfpulist);
5852 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5853 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5854 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5855 add_cmd ("none", class_support, set_mipsfpu_none_command,
5856 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
5857 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5858 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5859 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5860 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5861 _("Select MIPS floating-point coprocessor automatically."),
5862 &mipsfpulist);
5863 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5864 _("Show current use of MIPS floating-point coprocessor target."),
5865 &showlist);
5866
5867 /* We really would like to have both "0" and "unlimited" work, but
5868 command.c doesn't deal with that. So make it a var_zinteger
5869 because the user can always use "999999" or some such for unlimited. */
5870 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
5871 &heuristic_fence_post, _("\
5872 Set the distance searched for the start of a function."), _("\
5873 Show the distance searched for the start of a function."), _("\
5874 If you are debugging a stripped executable, GDB needs to search through the\n\
5875 program for the start of a function. This command sets the distance of the\n\
5876 search. The only need to set it is when debugging a stripped executable."),
5877 reinit_frame_cache_sfunc,
5878 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
5879 &setlist, &showlist);
5880
5881 /* Allow the user to control whether the upper bits of 64-bit
5882 addresses should be zeroed. */
5883 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5884 &mask_address_var, _("\
5885 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5886 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
5887 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5888 allow GDB to determine the correct value."),
5889 NULL, show_mask_address,
5890 &setmipscmdlist, &showmipscmdlist);
5891
5892 /* Allow the user to control the size of 32 bit registers within the
5893 raw remote packet. */
5894 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
5895 &mips64_transfers_32bit_regs_p, _("\
5896 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5897 _("\
5898 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5899 _("\
5900 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5901 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5902 64 bits for others. Use \"off\" to disable compatibility mode"),
5903 set_mips64_transfers_32bit_regs,
5904 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
5905 &setlist, &showlist);
5906
5907 /* Debug this files internals. */
5908 add_setshow_zinteger_cmd ("mips", class_maintenance,
5909 &mips_debug, _("\
5910 Set mips debugging."), _("\
5911 Show mips debugging."), _("\
5912 When non-zero, mips specific debugging is enabled."),
5913 NULL,
5914 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
5915 &setdebuglist, &showdebuglist);
5916 }