]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-tdep.c
microMIPS: Add SYSCALL instruction decoding
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "value.h"
28 #include "gdbcmd.h"
29 #include "language.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbtypes.h"
34 #include "target.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "osabi.h"
38 #include "mips-tdep.h"
39 #include "block.h"
40 #include "reggroups.h"
41 #include "opcode/mips.h"
42 #include "elf/mips.h"
43 #include "elf-bfd.h"
44 #include "symcat.h"
45 #include "sim-regno.h"
46 #include "dis-asm.h"
47 #include "disasm.h"
48 #include "frame-unwind.h"
49 #include "frame-base.h"
50 #include "trad-frame.h"
51 #include "infcall.h"
52 #include "remote.h"
53 #include "target-descriptions.h"
54 #include "dwarf2-frame.h"
55 #include "user-regs.h"
56 #include "valprint.h"
57 #include "ax.h"
58 #include "target-float.h"
59 #include <algorithm>
60
61 static const struct objfile_data *mips_pdr_data;
62
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65 static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
66 ULONGEST inst);
67 static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
68 static int mips16_instruction_has_delay_slot (unsigned short inst,
69 int mustbe32);
70
71 static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
72 CORE_ADDR addr);
73 static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
74 CORE_ADDR addr, int mustbe32);
75 static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
76 CORE_ADDR addr, int mustbe32);
77
78 static void mips_print_float_info (struct gdbarch *, struct ui_file *,
79 struct frame_info *, const char *);
80
81 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
82 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
83 #define ST0_FR (1 << 26)
84
85 /* The sizes of floating point registers. */
86
87 enum
88 {
89 MIPS_FPU_SINGLE_REGSIZE = 4,
90 MIPS_FPU_DOUBLE_REGSIZE = 8
91 };
92
93 enum
94 {
95 MIPS32_REGSIZE = 4,
96 MIPS64_REGSIZE = 8
97 };
98
99 static const char *mips_abi_string;
100
101 static const char *const mips_abi_strings[] = {
102 "auto",
103 "n32",
104 "o32",
105 "n64",
106 "o64",
107 "eabi32",
108 "eabi64",
109 NULL
110 };
111
112 /* Enum describing the different kinds of breakpoints. */
113
114 enum mips_breakpoint_kind
115 {
116 /* 16-bit MIPS16 mode breakpoint. */
117 MIPS_BP_KIND_MIPS16 = 2,
118
119 /* 16-bit microMIPS mode breakpoint. */
120 MIPS_BP_KIND_MICROMIPS16 = 3,
121
122 /* 32-bit standard MIPS mode breakpoint. */
123 MIPS_BP_KIND_MIPS32 = 4,
124
125 /* 32-bit microMIPS mode breakpoint. */
126 MIPS_BP_KIND_MICROMIPS32 = 5,
127 };
128
129 /* For backwards compatibility we default to MIPS16. This flag is
130 overridden as soon as unambiguous ELF file flags tell us the
131 compressed ISA encoding used. */
132 static const char mips_compression_mips16[] = "mips16";
133 static const char mips_compression_micromips[] = "micromips";
134 static const char *const mips_compression_strings[] =
135 {
136 mips_compression_mips16,
137 mips_compression_micromips,
138 NULL
139 };
140
141 static const char *mips_compression_string = mips_compression_mips16;
142
143 /* The standard register names, and all the valid aliases for them. */
144 struct register_alias
145 {
146 const char *name;
147 int regnum;
148 };
149
150 /* Aliases for o32 and most other ABIs. */
151 const struct register_alias mips_o32_aliases[] = {
152 { "ta0", 12 },
153 { "ta1", 13 },
154 { "ta2", 14 },
155 { "ta3", 15 }
156 };
157
158 /* Aliases for n32 and n64. */
159 const struct register_alias mips_n32_n64_aliases[] = {
160 { "ta0", 8 },
161 { "ta1", 9 },
162 { "ta2", 10 },
163 { "ta3", 11 }
164 };
165
166 /* Aliases for ABI-independent registers. */
167 const struct register_alias mips_register_aliases[] = {
168 /* The architecture manuals specify these ABI-independent names for
169 the GPRs. */
170 #define R(n) { "r" #n, n }
171 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
172 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
173 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
174 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
175 #undef R
176
177 /* k0 and k1 are sometimes called these instead (for "kernel
178 temp"). */
179 { "kt0", 26 },
180 { "kt1", 27 },
181
182 /* This is the traditional GDB name for the CP0 status register. */
183 { "sr", MIPS_PS_REGNUM },
184
185 /* This is the traditional GDB name for the CP0 BadVAddr register. */
186 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
187
188 /* This is the traditional GDB name for the FCSR. */
189 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
190 };
191
192 const struct register_alias mips_numeric_register_aliases[] = {
193 #define R(n) { #n, n }
194 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
195 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
196 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
197 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
198 #undef R
199 };
200
201 #ifndef MIPS_DEFAULT_FPU_TYPE
202 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
203 #endif
204 static int mips_fpu_type_auto = 1;
205 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
206
207 static unsigned int mips_debug = 0;
208
209 /* Properties (for struct target_desc) describing the g/G packet
210 layout. */
211 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
212 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
213
214 struct target_desc *mips_tdesc_gp32;
215 struct target_desc *mips_tdesc_gp64;
216
217 /* The current set of options to be passed to the disassembler. */
218 static char *mips_disassembler_options;
219
220 /* Implicit disassembler options for individual ABIs. These tell
221 libopcodes to use general-purpose register names corresponding
222 to the ABI we have selected, perhaps via a `set mips abi ...'
223 override, rather than ones inferred from the ABI set in the ELF
224 headers of the binary file selected for debugging. */
225 static const char mips_disassembler_options_o32[] = "gpr-names=32";
226 static const char mips_disassembler_options_n32[] = "gpr-names=n32";
227 static const char mips_disassembler_options_n64[] = "gpr-names=64";
228
229 const struct mips_regnum *
230 mips_regnum (struct gdbarch *gdbarch)
231 {
232 return gdbarch_tdep (gdbarch)->regnum;
233 }
234
235 static int
236 mips_fpa0_regnum (struct gdbarch *gdbarch)
237 {
238 return mips_regnum (gdbarch)->fp0 + 12;
239 }
240
241 /* Return 1 if REGNUM refers to a floating-point general register, raw
242 or cooked. Otherwise return 0. */
243
244 static int
245 mips_float_register_p (struct gdbarch *gdbarch, int regnum)
246 {
247 int rawnum = regnum % gdbarch_num_regs (gdbarch);
248
249 return (rawnum >= mips_regnum (gdbarch)->fp0
250 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
251 }
252
253 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
254 == MIPS_ABI_EABI32 \
255 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
256
257 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
258 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
259
260 #define MIPS_LAST_ARG_REGNUM(gdbarch) \
261 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
262
263 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
264
265 /* Return the MIPS ABI associated with GDBARCH. */
266 enum mips_abi
267 mips_abi (struct gdbarch *gdbarch)
268 {
269 return gdbarch_tdep (gdbarch)->mips_abi;
270 }
271
272 int
273 mips_isa_regsize (struct gdbarch *gdbarch)
274 {
275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
276
277 /* If we know how big the registers are, use that size. */
278 if (tdep->register_size_valid_p)
279 return tdep->register_size;
280
281 /* Fall back to the previous behavior. */
282 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
283 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
284 }
285
286 /* Max saved register size. */
287 #define MAX_MIPS_ABI_REGSIZE 8
288
289 /* Return the currently configured (or set) saved register size. */
290
291 unsigned int
292 mips_abi_regsize (struct gdbarch *gdbarch)
293 {
294 switch (mips_abi (gdbarch))
295 {
296 case MIPS_ABI_EABI32:
297 case MIPS_ABI_O32:
298 return 4;
299 case MIPS_ABI_N32:
300 case MIPS_ABI_N64:
301 case MIPS_ABI_O64:
302 case MIPS_ABI_EABI64:
303 return 8;
304 case MIPS_ABI_UNKNOWN:
305 case MIPS_ABI_LAST:
306 default:
307 internal_error (__FILE__, __LINE__, _("bad switch"));
308 }
309 }
310
311 /* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
312 are some functions to handle addresses associated with compressed
313 code including but not limited to testing, setting, or clearing
314 bit 0 of such addresses. */
315
316 /* Return one iff compressed code is the MIPS16 instruction set. */
317
318 static int
319 is_mips16_isa (struct gdbarch *gdbarch)
320 {
321 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
322 }
323
324 /* Return one iff compressed code is the microMIPS instruction set. */
325
326 static int
327 is_micromips_isa (struct gdbarch *gdbarch)
328 {
329 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
330 }
331
332 /* Return one iff ADDR denotes compressed code. */
333
334 static int
335 is_compact_addr (CORE_ADDR addr)
336 {
337 return ((addr) & 1);
338 }
339
340 /* Return one iff ADDR denotes standard ISA code. */
341
342 static int
343 is_mips_addr (CORE_ADDR addr)
344 {
345 return !is_compact_addr (addr);
346 }
347
348 /* Return one iff ADDR denotes MIPS16 code. */
349
350 static int
351 is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
352 {
353 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
354 }
355
356 /* Return one iff ADDR denotes microMIPS code. */
357
358 static int
359 is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
360 {
361 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
362 }
363
364 /* Strip the ISA (compression) bit off from ADDR. */
365
366 static CORE_ADDR
367 unmake_compact_addr (CORE_ADDR addr)
368 {
369 return ((addr) & ~(CORE_ADDR) 1);
370 }
371
372 /* Add the ISA (compression) bit to ADDR. */
373
374 static CORE_ADDR
375 make_compact_addr (CORE_ADDR addr)
376 {
377 return ((addr) | (CORE_ADDR) 1);
378 }
379
380 /* Extern version of unmake_compact_addr; we use a separate function
381 so that unmake_compact_addr can be inlined throughout this file. */
382
383 CORE_ADDR
384 mips_unmake_compact_addr (CORE_ADDR addr)
385 {
386 return unmake_compact_addr (addr);
387 }
388
389 /* Functions for setting and testing a bit in a minimal symbol that
390 marks it as MIPS16 or microMIPS function. The MSB of the minimal
391 symbol's "info" field is used for this purpose.
392
393 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
394 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
395 one of the "special" bits in a minimal symbol to mark it accordingly.
396 The test checks an ELF-private flag that is valid for true function
397 symbols only; for synthetic symbols such as for PLT stubs that have
398 no ELF-private part at all the MIPS BFD backend arranges for this
399 information to be carried in the asymbol's udata field instead.
400
401 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
402 in a minimal symbol. */
403
404 static void
405 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
406 {
407 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
408 unsigned char st_other;
409
410 if ((sym->flags & BSF_SYNTHETIC) == 0)
411 st_other = elfsym->internal_elf_sym.st_other;
412 else if ((sym->flags & BSF_FUNCTION) != 0)
413 st_other = sym->udata.i;
414 else
415 return;
416
417 if (ELF_ST_IS_MICROMIPS (st_other))
418 {
419 MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
420 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
421 }
422 else if (ELF_ST_IS_MIPS16 (st_other))
423 {
424 MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
425 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
426 }
427 }
428
429 /* Return one iff MSYM refers to standard ISA code. */
430
431 static int
432 msymbol_is_mips (struct minimal_symbol *msym)
433 {
434 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
435 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
436 }
437
438 /* Return one iff MSYM refers to MIPS16 code. */
439
440 static int
441 msymbol_is_mips16 (struct minimal_symbol *msym)
442 {
443 return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
444 }
445
446 /* Return one iff MSYM refers to microMIPS code. */
447
448 static int
449 msymbol_is_micromips (struct minimal_symbol *msym)
450 {
451 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
452 }
453
454 /* Set the ISA bit in the main symbol too, complementing the corresponding
455 minimal symbol setting and reflecting the run-time value of the symbol.
456 The need for comes from the ISA bit having been cleared as code in
457 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
458 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
459 of symbols referring to compressed code different in GDB to the values
460 used by actual code. That in turn makes them evaluate incorrectly in
461 expressions, producing results different to what the same expressions
462 yield when compiled into the program being debugged. */
463
464 static void
465 mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
466 {
467 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
468 {
469 /* We are in symbol reading so it is OK to cast away constness. */
470 struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
471 CORE_ADDR compact_block_start;
472 struct bound_minimal_symbol msym;
473
474 compact_block_start = BLOCK_START (block) | 1;
475 msym = lookup_minimal_symbol_by_pc (compact_block_start);
476 if (msym.minsym && !msymbol_is_mips (msym.minsym))
477 {
478 BLOCK_START (block) = compact_block_start;
479 }
480 }
481 }
482
483 /* XFER a value from the big/little/left end of the register.
484 Depending on the size of the value it might occupy the entire
485 register or just part of it. Make an allowance for this, aligning
486 things accordingly. */
487
488 static void
489 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
490 int reg_num, int length,
491 enum bfd_endian endian, gdb_byte *in,
492 const gdb_byte *out, int buf_offset)
493 {
494 int reg_offset = 0;
495
496 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
497 /* Need to transfer the left or right part of the register, based on
498 the targets byte order. */
499 switch (endian)
500 {
501 case BFD_ENDIAN_BIG:
502 reg_offset = register_size (gdbarch, reg_num) - length;
503 break;
504 case BFD_ENDIAN_LITTLE:
505 reg_offset = 0;
506 break;
507 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
508 reg_offset = 0;
509 break;
510 default:
511 internal_error (__FILE__, __LINE__, _("bad switch"));
512 }
513 if (mips_debug)
514 fprintf_unfiltered (gdb_stderr,
515 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
516 reg_num, reg_offset, buf_offset, length);
517 if (mips_debug && out != NULL)
518 {
519 int i;
520 fprintf_unfiltered (gdb_stdlog, "out ");
521 for (i = 0; i < length; i++)
522 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
523 }
524 if (in != NULL)
525 regcache->cooked_read_part (reg_num, reg_offset, length, in + buf_offset);
526 if (out != NULL)
527 regcache->cooked_write_part (reg_num, reg_offset, length, out + buf_offset);
528 if (mips_debug && in != NULL)
529 {
530 int i;
531 fprintf_unfiltered (gdb_stdlog, "in ");
532 for (i = 0; i < length; i++)
533 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
534 }
535 if (mips_debug)
536 fprintf_unfiltered (gdb_stdlog, "\n");
537 }
538
539 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
540 compatiblity mode. A return value of 1 means that we have
541 physical 64-bit registers, but should treat them as 32-bit registers. */
542
543 static int
544 mips2_fp_compat (struct frame_info *frame)
545 {
546 struct gdbarch *gdbarch = get_frame_arch (frame);
547 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
548 meaningful. */
549 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
550 return 0;
551
552 #if 0
553 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
554 in all the places we deal with FP registers. PR gdb/413. */
555 /* Otherwise check the FR bit in the status register - it controls
556 the FP compatiblity mode. If it is clear we are in compatibility
557 mode. */
558 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
559 return 1;
560 #endif
561
562 return 0;
563 }
564
565 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
566
567 static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
568
569 /* The list of available "set mips " and "show mips " commands. */
570
571 static struct cmd_list_element *setmipscmdlist = NULL;
572 static struct cmd_list_element *showmipscmdlist = NULL;
573
574 /* Integer registers 0 thru 31 are handled explicitly by
575 mips_register_name(). Processor specific registers 32 and above
576 are listed in the following tables. */
577
578 enum
579 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
580
581 /* Generic MIPS. */
582
583 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
584 "sr", "lo", "hi", "bad", "cause", "pc",
585 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
586 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
587 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
588 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
589 "fsr", "fir",
590 };
591
592 /* Names of tx39 registers. */
593
594 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
595 "sr", "lo", "hi", "bad", "cause", "pc",
596 "", "", "", "", "", "", "", "",
597 "", "", "", "", "", "", "", "",
598 "", "", "", "", "", "", "", "",
599 "", "", "", "", "", "", "", "",
600 "", "", "", "",
601 "", "", "", "", "", "", "", "",
602 "", "", "config", "cache", "debug", "depc", "epc",
603 };
604
605 /* Names of registers with Linux kernels. */
606 static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
607 "sr", "lo", "hi", "bad", "cause", "pc",
608 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
609 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
610 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
611 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
612 "fsr", "fir"
613 };
614
615
616 /* Return the name of the register corresponding to REGNO. */
617 static const char *
618 mips_register_name (struct gdbarch *gdbarch, int regno)
619 {
620 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
621 /* GPR names for all ABIs other than n32/n64. */
622 static const char *mips_gpr_names[] = {
623 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
624 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
625 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
626 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
627 };
628
629 /* GPR names for n32 and n64 ABIs. */
630 static const char *mips_n32_n64_gpr_names[] = {
631 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
632 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
633 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
634 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
635 };
636
637 enum mips_abi abi = mips_abi (gdbarch);
638
639 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
640 but then don't make the raw register names visible. This (upper)
641 range of user visible register numbers are the pseudo-registers.
642
643 This approach was adopted accommodate the following scenario:
644 It is possible to debug a 64-bit device using a 32-bit
645 programming model. In such instances, the raw registers are
646 configured to be 64-bits wide, while the pseudo registers are
647 configured to be 32-bits wide. The registers that the user
648 sees - the pseudo registers - match the users expectations
649 given the programming model being used. */
650 int rawnum = regno % gdbarch_num_regs (gdbarch);
651 if (regno < gdbarch_num_regs (gdbarch))
652 return "";
653
654 /* The MIPS integer registers are always mapped from 0 to 31. The
655 names of the registers (which reflects the conventions regarding
656 register use) vary depending on the ABI. */
657 if (0 <= rawnum && rawnum < 32)
658 {
659 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
660 return mips_n32_n64_gpr_names[rawnum];
661 else
662 return mips_gpr_names[rawnum];
663 }
664 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
665 return tdesc_register_name (gdbarch, rawnum);
666 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
667 {
668 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
669 if (tdep->mips_processor_reg_names[rawnum - 32])
670 return tdep->mips_processor_reg_names[rawnum - 32];
671 return "";
672 }
673 else
674 internal_error (__FILE__, __LINE__,
675 _("mips_register_name: bad register number %d"), rawnum);
676 }
677
678 /* Return the groups that a MIPS register can be categorised into. */
679
680 static int
681 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
682 struct reggroup *reggroup)
683 {
684 int vector_p;
685 int float_p;
686 int raw_p;
687 int rawnum = regnum % gdbarch_num_regs (gdbarch);
688 int pseudo = regnum / gdbarch_num_regs (gdbarch);
689 if (reggroup == all_reggroup)
690 return pseudo;
691 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
692 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
693 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
694 (gdbarch), as not all architectures are multi-arch. */
695 raw_p = rawnum < gdbarch_num_regs (gdbarch);
696 if (gdbarch_register_name (gdbarch, regnum) == NULL
697 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
698 return 0;
699 if (reggroup == float_reggroup)
700 return float_p && pseudo;
701 if (reggroup == vector_reggroup)
702 return vector_p && pseudo;
703 if (reggroup == general_reggroup)
704 return (!vector_p && !float_p) && pseudo;
705 /* Save the pseudo registers. Need to make certain that any code
706 extracting register values from a saved register cache also uses
707 pseudo registers. */
708 if (reggroup == save_reggroup)
709 return raw_p && pseudo;
710 /* Restore the same pseudo register. */
711 if (reggroup == restore_reggroup)
712 return raw_p && pseudo;
713 return 0;
714 }
715
716 /* Return the groups that a MIPS register can be categorised into.
717 This version is only used if we have a target description which
718 describes real registers (and their groups). */
719
720 static int
721 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
722 struct reggroup *reggroup)
723 {
724 int rawnum = regnum % gdbarch_num_regs (gdbarch);
725 int pseudo = regnum / gdbarch_num_regs (gdbarch);
726 int ret;
727
728 /* Only save, restore, and display the pseudo registers. Need to
729 make certain that any code extracting register values from a
730 saved register cache also uses pseudo registers.
731
732 Note: saving and restoring the pseudo registers is slightly
733 strange; if we have 64 bits, we should save and restore all
734 64 bits. But this is hard and has little benefit. */
735 if (!pseudo)
736 return 0;
737
738 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
739 if (ret != -1)
740 return ret;
741
742 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
743 }
744
745 /* Map the symbol table registers which live in the range [1 *
746 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
747 registers. Take care of alignment and size problems. */
748
749 static enum register_status
750 mips_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
751 int cookednum, gdb_byte *buf)
752 {
753 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
754 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
755 && cookednum < 2 * gdbarch_num_regs (gdbarch));
756 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
757 return regcache->raw_read (rawnum, buf);
758 else if (register_size (gdbarch, rawnum) >
759 register_size (gdbarch, cookednum))
760 {
761 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
762 return regcache->raw_read_part (rawnum, 0, 4, buf);
763 else
764 {
765 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
766 LONGEST regval;
767 enum register_status status;
768
769 status = regcache->raw_read (rawnum, &regval);
770 if (status == REG_VALID)
771 store_signed_integer (buf, 4, byte_order, regval);
772 return status;
773 }
774 }
775 else
776 internal_error (__FILE__, __LINE__, _("bad register size"));
777 }
778
779 static void
780 mips_pseudo_register_write (struct gdbarch *gdbarch,
781 struct regcache *regcache, int cookednum,
782 const gdb_byte *buf)
783 {
784 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
785 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
786 && cookednum < 2 * gdbarch_num_regs (gdbarch));
787 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
788 regcache->raw_write (rawnum, buf);
789 else if (register_size (gdbarch, rawnum) >
790 register_size (gdbarch, cookednum))
791 {
792 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
793 regcache->raw_write_part (rawnum, 0, 4, buf);
794 else
795 {
796 /* Sign extend the shortened version of the register prior
797 to placing it in the raw register. This is required for
798 some mips64 parts in order to avoid unpredictable behavior. */
799 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
800 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
801 regcache_raw_write_signed (regcache, rawnum, regval);
802 }
803 }
804 else
805 internal_error (__FILE__, __LINE__, _("bad register size"));
806 }
807
808 static int
809 mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
810 struct agent_expr *ax, int reg)
811 {
812 int rawnum = reg % gdbarch_num_regs (gdbarch);
813 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
814 && reg < 2 * gdbarch_num_regs (gdbarch));
815
816 ax_reg_mask (ax, rawnum);
817
818 return 0;
819 }
820
821 static int
822 mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
823 struct agent_expr *ax, int reg)
824 {
825 int rawnum = reg % gdbarch_num_regs (gdbarch);
826 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
827 && reg < 2 * gdbarch_num_regs (gdbarch));
828 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
829 {
830 ax_reg (ax, rawnum);
831
832 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
833 {
834 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
835 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
836 {
837 ax_const_l (ax, 32);
838 ax_simple (ax, aop_lsh);
839 }
840 ax_const_l (ax, 32);
841 ax_simple (ax, aop_rsh_signed);
842 }
843 }
844 else
845 internal_error (__FILE__, __LINE__, _("bad register size"));
846
847 return 0;
848 }
849
850 /* Table to translate 3-bit register field to actual register number. */
851 static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
852
853 /* Heuristic_proc_start may hunt through the text section for a long
854 time across a 2400 baud serial line. Allows the user to limit this
855 search. */
856
857 static int heuristic_fence_post = 0;
858
859 /* Number of bytes of storage in the actual machine representation for
860 register N. NOTE: This defines the pseudo register type so need to
861 rebuild the architecture vector. */
862
863 static int mips64_transfers_32bit_regs_p = 0;
864
865 static void
866 set_mips64_transfers_32bit_regs (const char *args, int from_tty,
867 struct cmd_list_element *c)
868 {
869 struct gdbarch_info info;
870 gdbarch_info_init (&info);
871 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
872 instead of relying on globals. Doing that would let generic code
873 handle the search for this specific architecture. */
874 if (!gdbarch_update_p (info))
875 {
876 mips64_transfers_32bit_regs_p = 0;
877 error (_("32-bit compatibility mode not supported"));
878 }
879 }
880
881 /* Convert to/from a register and the corresponding memory value. */
882
883 /* This predicate tests for the case of an 8 byte floating point
884 value that is being transferred to or from a pair of floating point
885 registers each of which are (or are considered to be) only 4 bytes
886 wide. */
887 static int
888 mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
889 struct type *type)
890 {
891 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
892 && register_size (gdbarch, regnum) == 4
893 && mips_float_register_p (gdbarch, regnum)
894 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
895 }
896
897 /* This predicate tests for the case of a value of less than 8
898 bytes in width that is being transfered to or from an 8 byte
899 general purpose register. */
900 static int
901 mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
902 struct type *type)
903 {
904 int num_regs = gdbarch_num_regs (gdbarch);
905
906 return (register_size (gdbarch, regnum) == 8
907 && regnum % num_regs > 0 && regnum % num_regs < 32
908 && TYPE_LENGTH (type) < 8);
909 }
910
911 static int
912 mips_convert_register_p (struct gdbarch *gdbarch,
913 int regnum, struct type *type)
914 {
915 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
916 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
917 }
918
919 static int
920 mips_register_to_value (struct frame_info *frame, int regnum,
921 struct type *type, gdb_byte *to,
922 int *optimizedp, int *unavailablep)
923 {
924 struct gdbarch *gdbarch = get_frame_arch (frame);
925
926 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
927 {
928 get_frame_register (frame, regnum + 0, to + 4);
929 get_frame_register (frame, regnum + 1, to + 0);
930
931 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
932 optimizedp, unavailablep))
933 return 0;
934
935 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
936 optimizedp, unavailablep))
937 return 0;
938 *optimizedp = *unavailablep = 0;
939 return 1;
940 }
941 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
942 {
943 int len = TYPE_LENGTH (type);
944 CORE_ADDR offset;
945
946 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
947 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
948 optimizedp, unavailablep))
949 return 0;
950
951 *optimizedp = *unavailablep = 0;
952 return 1;
953 }
954 else
955 {
956 internal_error (__FILE__, __LINE__,
957 _("mips_register_to_value: unrecognized case"));
958 }
959 }
960
961 static void
962 mips_value_to_register (struct frame_info *frame, int regnum,
963 struct type *type, const gdb_byte *from)
964 {
965 struct gdbarch *gdbarch = get_frame_arch (frame);
966
967 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
968 {
969 put_frame_register (frame, regnum + 0, from + 4);
970 put_frame_register (frame, regnum + 1, from + 0);
971 }
972 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
973 {
974 gdb_byte fill[8];
975 int len = TYPE_LENGTH (type);
976
977 /* Sign extend values, irrespective of type, that are stored to
978 a 64-bit general purpose register. (32-bit unsigned values
979 are stored as signed quantities within a 64-bit register.
980 When performing an operation, in compiled code, that combines
981 a 32-bit unsigned value with a signed 64-bit value, a type
982 conversion is first performed that zeroes out the high 32 bits.) */
983 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
984 {
985 if (from[0] & 0x80)
986 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
987 else
988 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
989 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
990 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
991 }
992 else
993 {
994 if (from[len-1] & 0x80)
995 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
996 else
997 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
998 put_frame_register_bytes (frame, regnum, 0, len, from);
999 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
1000 }
1001 }
1002 else
1003 {
1004 internal_error (__FILE__, __LINE__,
1005 _("mips_value_to_register: unrecognized case"));
1006 }
1007 }
1008
1009 /* Return the GDB type object for the "standard" data type of data in
1010 register REG. */
1011
1012 static struct type *
1013 mips_register_type (struct gdbarch *gdbarch, int regnum)
1014 {
1015 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
1016 if (mips_float_register_p (gdbarch, regnum))
1017 {
1018 /* The floating-point registers raw, or cooked, always match
1019 mips_isa_regsize(), and also map 1:1, byte for byte. */
1020 if (mips_isa_regsize (gdbarch) == 4)
1021 return builtin_type (gdbarch)->builtin_float;
1022 else
1023 return builtin_type (gdbarch)->builtin_double;
1024 }
1025 else if (regnum < gdbarch_num_regs (gdbarch))
1026 {
1027 /* The raw or ISA registers. These are all sized according to
1028 the ISA regsize. */
1029 if (mips_isa_regsize (gdbarch) == 4)
1030 return builtin_type (gdbarch)->builtin_int32;
1031 else
1032 return builtin_type (gdbarch)->builtin_int64;
1033 }
1034 else
1035 {
1036 int rawnum = regnum - gdbarch_num_regs (gdbarch);
1037
1038 /* The cooked or ABI registers. These are sized according to
1039 the ABI (with a few complications). */
1040 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1041 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1042 return builtin_type (gdbarch)->builtin_int32;
1043 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1044 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1045 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1046 /* The pseudo/cooked view of the embedded registers is always
1047 32-bit. The raw view is handled below. */
1048 return builtin_type (gdbarch)->builtin_int32;
1049 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
1050 /* The target, while possibly using a 64-bit register buffer,
1051 is only transfering 32-bits of each integer register.
1052 Reflect this in the cooked/pseudo (ABI) register value. */
1053 return builtin_type (gdbarch)->builtin_int32;
1054 else if (mips_abi_regsize (gdbarch) == 4)
1055 /* The ABI is restricted to 32-bit registers (the ISA could be
1056 32- or 64-bit). */
1057 return builtin_type (gdbarch)->builtin_int32;
1058 else
1059 /* 64-bit ABI. */
1060 return builtin_type (gdbarch)->builtin_int64;
1061 }
1062 }
1063
1064 /* Return the GDB type for the pseudo register REGNUM, which is the
1065 ABI-level view. This function is only called if there is a target
1066 description which includes registers, so we know precisely the
1067 types of hardware registers. */
1068
1069 static struct type *
1070 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1071 {
1072 const int num_regs = gdbarch_num_regs (gdbarch);
1073 int rawnum = regnum % num_regs;
1074 struct type *rawtype;
1075
1076 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1077
1078 /* Absent registers are still absent. */
1079 rawtype = gdbarch_register_type (gdbarch, rawnum);
1080 if (TYPE_LENGTH (rawtype) == 0)
1081 return rawtype;
1082
1083 /* Present the floating point registers however the hardware did;
1084 do not try to convert between FPU layouts. */
1085 if (mips_float_register_p (gdbarch, rawnum))
1086 return rawtype;
1087
1088 /* Floating-point control registers are always 32-bit even though for
1089 backwards compatibility reasons 64-bit targets will transfer them
1090 as 64-bit quantities even if using XML descriptions. */
1091 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1092 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1093 return builtin_type (gdbarch)->builtin_int32;
1094
1095 /* Use pointer types for registers if we can. For n32 we can not,
1096 since we do not have a 64-bit pointer type. */
1097 if (mips_abi_regsize (gdbarch)
1098 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
1099 {
1100 if (rawnum == MIPS_SP_REGNUM
1101 || rawnum == mips_regnum (gdbarch)->badvaddr)
1102 return builtin_type (gdbarch)->builtin_data_ptr;
1103 else if (rawnum == mips_regnum (gdbarch)->pc)
1104 return builtin_type (gdbarch)->builtin_func_ptr;
1105 }
1106
1107 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1108 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1109 || rawnum == mips_regnum (gdbarch)->lo
1110 || rawnum == mips_regnum (gdbarch)->hi
1111 || rawnum == mips_regnum (gdbarch)->badvaddr
1112 || rawnum == mips_regnum (gdbarch)->cause
1113 || rawnum == mips_regnum (gdbarch)->pc
1114 || (mips_regnum (gdbarch)->dspacc != -1
1115 && rawnum >= mips_regnum (gdbarch)->dspacc
1116 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
1117 return builtin_type (gdbarch)->builtin_int32;
1118
1119 /* The pseudo/cooked view of embedded registers is always
1120 32-bit, even if the target transfers 64-bit values for them.
1121 New targets relying on XML descriptions should only transfer
1122 the necessary 32 bits, but older versions of GDB expected 64,
1123 so allow the target to provide 64 bits without interfering
1124 with the displayed type. */
1125 if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1126 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1127 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1128 return builtin_type (gdbarch)->builtin_int32;
1129
1130 /* For all other registers, pass through the hardware type. */
1131 return rawtype;
1132 }
1133
1134 /* Should the upper word of 64-bit addresses be zeroed? */
1135 static enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
1136
1137 static int
1138 mips_mask_address_p (struct gdbarch_tdep *tdep)
1139 {
1140 switch (mask_address_var)
1141 {
1142 case AUTO_BOOLEAN_TRUE:
1143 return 1;
1144 case AUTO_BOOLEAN_FALSE:
1145 return 0;
1146 break;
1147 case AUTO_BOOLEAN_AUTO:
1148 return tdep->default_mask_address_p;
1149 default:
1150 internal_error (__FILE__, __LINE__,
1151 _("mips_mask_address_p: bad switch"));
1152 return -1;
1153 }
1154 }
1155
1156 static void
1157 show_mask_address (struct ui_file *file, int from_tty,
1158 struct cmd_list_element *c, const char *value)
1159 {
1160 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
1161
1162 deprecated_show_value_hack (file, from_tty, c, value);
1163 switch (mask_address_var)
1164 {
1165 case AUTO_BOOLEAN_TRUE:
1166 printf_filtered ("The 32 bit mips address mask is enabled\n");
1167 break;
1168 case AUTO_BOOLEAN_FALSE:
1169 printf_filtered ("The 32 bit mips address mask is disabled\n");
1170 break;
1171 case AUTO_BOOLEAN_AUTO:
1172 printf_filtered
1173 ("The 32 bit address mask is set automatically. Currently %s\n",
1174 mips_mask_address_p (tdep) ? "enabled" : "disabled");
1175 break;
1176 default:
1177 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
1178 break;
1179 }
1180 }
1181
1182 /* Tell if the program counter value in MEMADDR is in a standard ISA
1183 function. */
1184
1185 int
1186 mips_pc_is_mips (CORE_ADDR memaddr)
1187 {
1188 struct bound_minimal_symbol sym;
1189
1190 /* Flags indicating that this is a MIPS16 or microMIPS function is
1191 stored by elfread.c in the high bit of the info field. Use this
1192 to decide if the function is standard MIPS. Otherwise if bit 0
1193 of the address is clear, then this is a standard MIPS function. */
1194 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1195 if (sym.minsym)
1196 return msymbol_is_mips (sym.minsym);
1197 else
1198 return is_mips_addr (memaddr);
1199 }
1200
1201 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1202
1203 int
1204 mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1205 {
1206 struct bound_minimal_symbol sym;
1207
1208 /* A flag indicating that this is a MIPS16 function is stored by
1209 elfread.c in the high bit of the info field. Use this to decide
1210 if the function is MIPS16. Otherwise if bit 0 of the address is
1211 set, then ELF file flags will tell if this is a MIPS16 function. */
1212 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1213 if (sym.minsym)
1214 return msymbol_is_mips16 (sym.minsym);
1215 else
1216 return is_mips16_addr (gdbarch, memaddr);
1217 }
1218
1219 /* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1220
1221 int
1222 mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1223 {
1224 struct bound_minimal_symbol sym;
1225
1226 /* A flag indicating that this is a microMIPS function is stored by
1227 elfread.c in the high bit of the info field. Use this to decide
1228 if the function is microMIPS. Otherwise if bit 0 of the address
1229 is set, then ELF file flags will tell if this is a microMIPS
1230 function. */
1231 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1232 if (sym.minsym)
1233 return msymbol_is_micromips (sym.minsym);
1234 else
1235 return is_micromips_addr (gdbarch, memaddr);
1236 }
1237
1238 /* Tell the ISA type of the function the program counter value in MEMADDR
1239 is in. */
1240
1241 static enum mips_isa
1242 mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1243 {
1244 struct bound_minimal_symbol sym;
1245
1246 /* A flag indicating that this is a MIPS16 or a microMIPS function
1247 is stored by elfread.c in the high bit of the info field. Use
1248 this to decide if the function is MIPS16 or microMIPS or normal
1249 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1250 flags will tell if this is a MIPS16 or a microMIPS function. */
1251 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1252 if (sym.minsym)
1253 {
1254 if (msymbol_is_micromips (sym.minsym))
1255 return ISA_MICROMIPS;
1256 else if (msymbol_is_mips16 (sym.minsym))
1257 return ISA_MIPS16;
1258 else
1259 return ISA_MIPS;
1260 }
1261 else
1262 {
1263 if (is_mips_addr (memaddr))
1264 return ISA_MIPS;
1265 else if (is_micromips_addr (gdbarch, memaddr))
1266 return ISA_MICROMIPS;
1267 else
1268 return ISA_MIPS16;
1269 }
1270 }
1271
1272 /* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1273 The need for comes from the ISA bit having been cleared, making
1274 addresses in FDE, range records, etc. referring to compressed code
1275 different to those in line information, the symbol table and finally
1276 the PC register. That in turn confuses many operations. */
1277
1278 static CORE_ADDR
1279 mips_adjust_dwarf2_addr (CORE_ADDR pc)
1280 {
1281 pc = unmake_compact_addr (pc);
1282 return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
1283 }
1284
1285 /* Recalculate the line record requested so that the resulting PC has
1286 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1287 this adjustment comes from some records associated with compressed
1288 code having the ISA bit cleared, most notably at function prologue
1289 ends. The ISA bit is in this context retrieved from the minimal
1290 symbol covering the address requested, which in turn has been
1291 constructed from the binary's symbol table rather than DWARF-2
1292 information. The correct setting of the ISA bit is required for
1293 breakpoint addresses to correctly match against the stop PC.
1294
1295 As line entries can specify relative address adjustments we need to
1296 keep track of the absolute value of the last line address recorded
1297 in line information, so that we can calculate the actual address to
1298 apply the ISA bit adjustment to. We use PC for this tracking and
1299 keep the original address there.
1300
1301 As such relative address adjustments can be odd within compressed
1302 code we need to keep track of the last line address with the ISA
1303 bit adjustment applied too, as the original address may or may not
1304 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1305 the adjusted address there.
1306
1307 For relative address adjustments we then use these variables to
1308 calculate the address intended by line information, which will be
1309 PC-relative, and return an updated adjustment carrying ISA bit
1310 information, which will be ADJ_PC-relative. For absolute address
1311 adjustments we just return the same address that we store in ADJ_PC
1312 too.
1313
1314 As the first line entry can be relative to an implied address value
1315 of 0 we need to have the initial address set up that we store in PC
1316 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1317 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1318
1319 static CORE_ADDR
1320 mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
1321 {
1322 static CORE_ADDR adj_pc;
1323 static CORE_ADDR pc;
1324 CORE_ADDR isa_pc;
1325
1326 pc = rel ? pc + addr : addr;
1327 isa_pc = mips_adjust_dwarf2_addr (pc);
1328 addr = rel ? isa_pc - adj_pc : isa_pc;
1329 adj_pc = isa_pc;
1330 return addr;
1331 }
1332
1333 /* Various MIPS16 thunk (aka stub or trampoline) names. */
1334
1335 static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1336 static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1337 static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1338 static const char mips_str_call_stub[] = "__call_stub_";
1339 static const char mips_str_fn_stub[] = "__fn_stub_";
1340
1341 /* This is used as a PIC thunk prefix. */
1342
1343 static const char mips_str_pic[] = ".pic.";
1344
1345 /* Return non-zero if the PC is inside a call thunk (aka stub or
1346 trampoline) that should be treated as a temporary frame. */
1347
1348 static int
1349 mips_in_frame_stub (CORE_ADDR pc)
1350 {
1351 CORE_ADDR start_addr;
1352 const char *name;
1353
1354 /* Find the starting address of the function containing the PC. */
1355 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1356 return 0;
1357
1358 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
1359 if (startswith (name, mips_str_mips16_call_stub))
1360 return 1;
1361 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
1362 if (startswith (name, mips_str_call_stub))
1363 return 1;
1364 /* If the PC is in __fn_stub_*, this is a call stub. */
1365 if (startswith (name, mips_str_fn_stub))
1366 return 1;
1367
1368 return 0; /* Not a stub. */
1369 }
1370
1371 /* MIPS believes that the PC has a sign extended value. Perhaps the
1372 all registers should be sign extended for simplicity? */
1373
1374 static CORE_ADDR
1375 mips_read_pc (readable_regcache *regcache)
1376 {
1377 int regnum = gdbarch_pc_regnum (regcache->arch ());
1378 LONGEST pc;
1379
1380 regcache->cooked_read (regnum, &pc);
1381 return pc;
1382 }
1383
1384 static CORE_ADDR
1385 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1386 {
1387 CORE_ADDR pc;
1388
1389 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
1390 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1391 intermediate frames. In this case we can get the caller's address
1392 from $ra, or if $ra contains an address within a thunk as well, then
1393 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1394 and thus the caller's address is in $s2. */
1395 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1396 {
1397 pc = frame_unwind_register_signed
1398 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
1399 if (mips_in_frame_stub (pc))
1400 pc = frame_unwind_register_signed
1401 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
1402 }
1403 return pc;
1404 }
1405
1406 static CORE_ADDR
1407 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1408 {
1409 return frame_unwind_register_signed
1410 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
1411 }
1412
1413 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1414 dummy frame. The frame ID's base needs to match the TOS value
1415 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1416 breakpoint. */
1417
1418 static struct frame_id
1419 mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1420 {
1421 return frame_id_build
1422 (get_frame_register_signed (this_frame,
1423 gdbarch_num_regs (gdbarch)
1424 + MIPS_SP_REGNUM),
1425 get_frame_pc (this_frame));
1426 }
1427
1428 /* Implement the "write_pc" gdbarch method. */
1429
1430 void
1431 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
1432 {
1433 int regnum = gdbarch_pc_regnum (regcache->arch ());
1434
1435 regcache_cooked_write_unsigned (regcache, regnum, pc);
1436 }
1437
1438 /* Fetch and return instruction from the specified location. Handle
1439 MIPS16/microMIPS as appropriate. */
1440
1441 static ULONGEST
1442 mips_fetch_instruction (struct gdbarch *gdbarch,
1443 enum mips_isa isa, CORE_ADDR addr, int *errp)
1444 {
1445 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1446 gdb_byte buf[MIPS_INSN32_SIZE];
1447 int instlen;
1448 int err;
1449
1450 switch (isa)
1451 {
1452 case ISA_MICROMIPS:
1453 case ISA_MIPS16:
1454 instlen = MIPS_INSN16_SIZE;
1455 addr = unmake_compact_addr (addr);
1456 break;
1457 case ISA_MIPS:
1458 instlen = MIPS_INSN32_SIZE;
1459 break;
1460 default:
1461 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1462 break;
1463 }
1464 err = target_read_memory (addr, buf, instlen);
1465 if (errp != NULL)
1466 *errp = err;
1467 if (err != 0)
1468 {
1469 if (errp == NULL)
1470 memory_error (TARGET_XFER_E_IO, addr);
1471 return 0;
1472 }
1473 return extract_unsigned_integer (buf, instlen, byte_order);
1474 }
1475
1476 /* These are the fields of 32 bit mips instructions. */
1477 #define mips32_op(x) (x >> 26)
1478 #define itype_op(x) (x >> 26)
1479 #define itype_rs(x) ((x >> 21) & 0x1f)
1480 #define itype_rt(x) ((x >> 16) & 0x1f)
1481 #define itype_immediate(x) (x & 0xffff)
1482
1483 #define jtype_op(x) (x >> 26)
1484 #define jtype_target(x) (x & 0x03ffffff)
1485
1486 #define rtype_op(x) (x >> 26)
1487 #define rtype_rs(x) ((x >> 21) & 0x1f)
1488 #define rtype_rt(x) ((x >> 16) & 0x1f)
1489 #define rtype_rd(x) ((x >> 11) & 0x1f)
1490 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1491 #define rtype_funct(x) (x & 0x3f)
1492
1493 /* MicroMIPS instruction fields. */
1494 #define micromips_op(x) ((x) >> 10)
1495
1496 /* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1497 bit and the size respectively of the field extracted. */
1498 #define b0s4_imm(x) ((x) & 0xf)
1499 #define b0s5_imm(x) ((x) & 0x1f)
1500 #define b0s5_reg(x) ((x) & 0x1f)
1501 #define b0s7_imm(x) ((x) & 0x7f)
1502 #define b0s10_imm(x) ((x) & 0x3ff)
1503 #define b1s4_imm(x) (((x) >> 1) & 0xf)
1504 #define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1505 #define b2s3_cc(x) (((x) >> 2) & 0x7)
1506 #define b4s2_regl(x) (((x) >> 4) & 0x3)
1507 #define b5s5_op(x) (((x) >> 5) & 0x1f)
1508 #define b5s5_reg(x) (((x) >> 5) & 0x1f)
1509 #define b6s4_op(x) (((x) >> 6) & 0xf)
1510 #define b7s3_reg(x) (((x) >> 7) & 0x7)
1511
1512 /* 32-bit instruction formats, B and S refer to the lowest bit and the size
1513 respectively of the field extracted. */
1514 #define b0s6_op(x) ((x) & 0x3f)
1515 #define b0s11_op(x) ((x) & 0x7ff)
1516 #define b0s12_imm(x) ((x) & 0xfff)
1517 #define b0s16_imm(x) ((x) & 0xffff)
1518 #define b0s26_imm(x) ((x) & 0x3ffffff)
1519 #define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1520 #define b11s5_reg(x) (((x) >> 11) & 0x1f)
1521 #define b12s4_op(x) (((x) >> 12) & 0xf)
1522
1523 /* Return the size in bytes of the instruction INSN encoded in the ISA
1524 instruction set. */
1525
1526 static int
1527 mips_insn_size (enum mips_isa isa, ULONGEST insn)
1528 {
1529 switch (isa)
1530 {
1531 case ISA_MICROMIPS:
1532 if ((micromips_op (insn) & 0x4) == 0x4
1533 || (micromips_op (insn) & 0x7) == 0x0)
1534 return 2 * MIPS_INSN16_SIZE;
1535 else
1536 return MIPS_INSN16_SIZE;
1537 case ISA_MIPS16:
1538 if ((insn & 0xf800) == 0xf000)
1539 return 2 * MIPS_INSN16_SIZE;
1540 else
1541 return MIPS_INSN16_SIZE;
1542 case ISA_MIPS:
1543 return MIPS_INSN32_SIZE;
1544 }
1545 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1546 }
1547
1548 static LONGEST
1549 mips32_relative_offset (ULONGEST inst)
1550 {
1551 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
1552 }
1553
1554 /* Determine the address of the next instruction executed after the INST
1555 floating condition branch instruction at PC. COUNT specifies the
1556 number of the floating condition bits tested by the branch. */
1557
1558 static CORE_ADDR
1559 mips32_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
1560 ULONGEST inst, CORE_ADDR pc, int count)
1561 {
1562 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1563 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1564 int tf = itype_rt (inst) & 1;
1565 int mask = (1 << count) - 1;
1566 ULONGEST fcs;
1567 int cond;
1568
1569 if (fcsr == -1)
1570 /* No way to handle; it'll most likely trap anyway. */
1571 return pc;
1572
1573 fcs = regcache_raw_get_unsigned (regcache, fcsr);
1574 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1575
1576 if (((cond >> cnum) & mask) != mask * !tf)
1577 pc += mips32_relative_offset (inst);
1578 else
1579 pc += 4;
1580
1581 return pc;
1582 }
1583
1584 /* Return nonzero if the gdbarch is an Octeon series. */
1585
1586 static int
1587 is_octeon (struct gdbarch *gdbarch)
1588 {
1589 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1590
1591 return (info->mach == bfd_mach_mips_octeon
1592 || info->mach == bfd_mach_mips_octeonp
1593 || info->mach == bfd_mach_mips_octeon2);
1594 }
1595
1596 /* Return true if the OP represents the Octeon's BBIT instruction. */
1597
1598 static int
1599 is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1600 {
1601 if (!is_octeon (gdbarch))
1602 return 0;
1603 /* BBIT0 is encoded as LWC2: 110 010. */
1604 /* BBIT032 is encoded as LDC2: 110 110. */
1605 /* BBIT1 is encoded as SWC2: 111 010. */
1606 /* BBIT132 is encoded as SDC2: 111 110. */
1607 if (op == 50 || op == 54 || op == 58 || op == 62)
1608 return 1;
1609 return 0;
1610 }
1611
1612
1613 /* Determine where to set a single step breakpoint while considering
1614 branch prediction. */
1615
1616 static CORE_ADDR
1617 mips32_next_pc (struct regcache *regcache, CORE_ADDR pc)
1618 {
1619 struct gdbarch *gdbarch = regcache->arch ();
1620 unsigned long inst;
1621 int op;
1622 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
1623 op = itype_op (inst);
1624 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1625 instruction. */
1626 {
1627 if (op >> 2 == 5)
1628 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1629 {
1630 switch (op & 0x03)
1631 {
1632 case 0: /* BEQL */
1633 goto equal_branch;
1634 case 1: /* BNEL */
1635 goto neq_branch;
1636 case 2: /* BLEZL */
1637 goto less_branch;
1638 case 3: /* BGTZL */
1639 goto greater_branch;
1640 default:
1641 pc += 4;
1642 }
1643 }
1644 else if (op == 17 && itype_rs (inst) == 8)
1645 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1646 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 1);
1647 else if (op == 17 && itype_rs (inst) == 9
1648 && (itype_rt (inst) & 2) == 0)
1649 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1650 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 2);
1651 else if (op == 17 && itype_rs (inst) == 10
1652 && (itype_rt (inst) & 2) == 0)
1653 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1654 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 4);
1655 else if (op == 29)
1656 /* JALX: 011101 */
1657 /* The new PC will be alternate mode. */
1658 {
1659 unsigned long reg;
1660
1661 reg = jtype_target (inst) << 2;
1662 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1663 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1664 }
1665 else if (is_octeon_bbit_op (op, gdbarch))
1666 {
1667 int bit, branch_if;
1668
1669 branch_if = op == 58 || op == 62;
1670 bit = itype_rt (inst);
1671
1672 /* Take into account the *32 instructions. */
1673 if (op == 54 || op == 62)
1674 bit += 32;
1675
1676 if (((regcache_raw_get_signed (regcache,
1677 itype_rs (inst)) >> bit) & 1)
1678 == branch_if)
1679 pc += mips32_relative_offset (inst) + 4;
1680 else
1681 pc += 8; /* After the delay slot. */
1682 }
1683
1684 else
1685 pc += 4; /* Not a branch, next instruction is easy. */
1686 }
1687 else
1688 { /* This gets way messy. */
1689
1690 /* Further subdivide into SPECIAL, REGIMM and other. */
1691 switch (op & 0x07) /* Extract bits 28,27,26. */
1692 {
1693 case 0: /* SPECIAL */
1694 op = rtype_funct (inst);
1695 switch (op)
1696 {
1697 case 8: /* JR */
1698 case 9: /* JALR */
1699 /* Set PC to that address. */
1700 pc = regcache_raw_get_signed (regcache, rtype_rs (inst));
1701 break;
1702 case 12: /* SYSCALL */
1703 {
1704 struct gdbarch_tdep *tdep;
1705
1706 tdep = gdbarch_tdep (gdbarch);
1707 if (tdep->syscall_next_pc != NULL)
1708 pc = tdep->syscall_next_pc (get_current_frame ());
1709 else
1710 pc += 4;
1711 }
1712 break;
1713 default:
1714 pc += 4;
1715 }
1716
1717 break; /* end SPECIAL */
1718 case 1: /* REGIMM */
1719 {
1720 op = itype_rt (inst); /* branch condition */
1721 switch (op)
1722 {
1723 case 0: /* BLTZ */
1724 case 2: /* BLTZL */
1725 case 16: /* BLTZAL */
1726 case 18: /* BLTZALL */
1727 less_branch:
1728 if (regcache_raw_get_signed (regcache, itype_rs (inst)) < 0)
1729 pc += mips32_relative_offset (inst) + 4;
1730 else
1731 pc += 8; /* after the delay slot */
1732 break;
1733 case 1: /* BGEZ */
1734 case 3: /* BGEZL */
1735 case 17: /* BGEZAL */
1736 case 19: /* BGEZALL */
1737 if (regcache_raw_get_signed (regcache, itype_rs (inst)) >= 0)
1738 pc += mips32_relative_offset (inst) + 4;
1739 else
1740 pc += 8; /* after the delay slot */
1741 break;
1742 case 0x1c: /* BPOSGE32 */
1743 case 0x1e: /* BPOSGE64 */
1744 pc += 4;
1745 if (itype_rs (inst) == 0)
1746 {
1747 unsigned int pos = (op & 2) ? 64 : 32;
1748 int dspctl = mips_regnum (gdbarch)->dspctl;
1749
1750 if (dspctl == -1)
1751 /* No way to handle; it'll most likely trap anyway. */
1752 break;
1753
1754 if ((regcache_raw_get_unsigned (regcache,
1755 dspctl) & 0x7f) >= pos)
1756 pc += mips32_relative_offset (inst);
1757 else
1758 pc += 4;
1759 }
1760 break;
1761 /* All of the other instructions in the REGIMM category */
1762 default:
1763 pc += 4;
1764 }
1765 }
1766 break; /* end REGIMM */
1767 case 2: /* J */
1768 case 3: /* JAL */
1769 {
1770 unsigned long reg;
1771 reg = jtype_target (inst) << 2;
1772 /* Upper four bits get never changed... */
1773 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1774 }
1775 break;
1776 case 4: /* BEQ, BEQL */
1777 equal_branch:
1778 if (regcache_raw_get_signed (regcache, itype_rs (inst)) ==
1779 regcache_raw_get_signed (regcache, itype_rt (inst)))
1780 pc += mips32_relative_offset (inst) + 4;
1781 else
1782 pc += 8;
1783 break;
1784 case 5: /* BNE, BNEL */
1785 neq_branch:
1786 if (regcache_raw_get_signed (regcache, itype_rs (inst)) !=
1787 regcache_raw_get_signed (regcache, itype_rt (inst)))
1788 pc += mips32_relative_offset (inst) + 4;
1789 else
1790 pc += 8;
1791 break;
1792 case 6: /* BLEZ, BLEZL */
1793 if (regcache_raw_get_signed (regcache, itype_rs (inst)) <= 0)
1794 pc += mips32_relative_offset (inst) + 4;
1795 else
1796 pc += 8;
1797 break;
1798 case 7:
1799 default:
1800 greater_branch: /* BGTZ, BGTZL */
1801 if (regcache_raw_get_signed (regcache, itype_rs (inst)) > 0)
1802 pc += mips32_relative_offset (inst) + 4;
1803 else
1804 pc += 8;
1805 break;
1806 } /* switch */
1807 } /* else */
1808 return pc;
1809 } /* mips32_next_pc */
1810
1811 /* Extract the 7-bit signed immediate offset from the microMIPS instruction
1812 INSN. */
1813
1814 static LONGEST
1815 micromips_relative_offset7 (ULONGEST insn)
1816 {
1817 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1818 }
1819
1820 /* Extract the 10-bit signed immediate offset from the microMIPS instruction
1821 INSN. */
1822
1823 static LONGEST
1824 micromips_relative_offset10 (ULONGEST insn)
1825 {
1826 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1827 }
1828
1829 /* Extract the 16-bit signed immediate offset from the microMIPS instruction
1830 INSN. */
1831
1832 static LONGEST
1833 micromips_relative_offset16 (ULONGEST insn)
1834 {
1835 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1836 }
1837
1838 /* Return the size in bytes of the microMIPS instruction at the address PC. */
1839
1840 static int
1841 micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1842 {
1843 ULONGEST insn;
1844
1845 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1846 return mips_insn_size (ISA_MICROMIPS, insn);
1847 }
1848
1849 /* Calculate the address of the next microMIPS instruction to execute
1850 after the INSN coprocessor 1 conditional branch instruction at the
1851 address PC. COUNT denotes the number of coprocessor condition bits
1852 examined by the branch. */
1853
1854 static CORE_ADDR
1855 micromips_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
1856 ULONGEST insn, CORE_ADDR pc, int count)
1857 {
1858 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1859 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1860 int tf = b5s5_op (insn >> 16) & 1;
1861 int mask = (1 << count) - 1;
1862 ULONGEST fcs;
1863 int cond;
1864
1865 if (fcsr == -1)
1866 /* No way to handle; it'll most likely trap anyway. */
1867 return pc;
1868
1869 fcs = regcache_raw_get_unsigned (regcache, fcsr);
1870 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1871
1872 if (((cond >> cnum) & mask) != mask * !tf)
1873 pc += micromips_relative_offset16 (insn);
1874 else
1875 pc += micromips_pc_insn_size (gdbarch, pc);
1876
1877 return pc;
1878 }
1879
1880 /* Calculate the address of the next microMIPS instruction to execute
1881 after the instruction at the address PC. */
1882
1883 static CORE_ADDR
1884 micromips_next_pc (struct regcache *regcache, CORE_ADDR pc)
1885 {
1886 struct gdbarch *gdbarch = regcache->arch ();
1887 ULONGEST insn;
1888
1889 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1890 pc += MIPS_INSN16_SIZE;
1891 switch (mips_insn_size (ISA_MICROMIPS, insn))
1892 {
1893 /* 32-bit instructions. */
1894 case 2 * MIPS_INSN16_SIZE:
1895 insn <<= 16;
1896 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1897 pc += MIPS_INSN16_SIZE;
1898 switch (micromips_op (insn >> 16))
1899 {
1900 case 0x00: /* POOL32A: bits 000000 */
1901 switch (b0s6_op (insn))
1902 {
1903 case 0x3c: /* POOL32Axf: bits 000000 ... 111100 */
1904 switch (b6s10_ext (insn))
1905 {
1906 case 0x3c: /* JALR: 000000 0000111100 111100 */
1907 case 0x7c: /* JALR.HB: 000000 0001111100 111100 */
1908 case 0x13c: /* JALRS: 000000 0100111100 111100 */
1909 case 0x17c: /* JALRS.HB: 000000 0101111100 111100 */
1910 pc = regcache_raw_get_signed (regcache,
1911 b0s5_reg (insn >> 16));
1912 break;
1913 case 0x22d: /* SYSCALL: 000000 1000101101 111100 */
1914 {
1915 struct gdbarch_tdep *tdep;
1916
1917 tdep = gdbarch_tdep (gdbarch);
1918 if (tdep->syscall_next_pc != NULL)
1919 pc = tdep->syscall_next_pc (get_current_frame ());
1920 }
1921 break;
1922 }
1923 break;
1924 }
1925 break;
1926
1927 case 0x10: /* POOL32I: bits 010000 */
1928 switch (b5s5_op (insn >> 16))
1929 {
1930 case 0x00: /* BLTZ: bits 010000 00000 */
1931 case 0x01: /* BLTZAL: bits 010000 00001 */
1932 case 0x11: /* BLTZALS: bits 010000 10001 */
1933 if (regcache_raw_get_signed (regcache,
1934 b0s5_reg (insn >> 16)) < 0)
1935 pc += micromips_relative_offset16 (insn);
1936 else
1937 pc += micromips_pc_insn_size (gdbarch, pc);
1938 break;
1939
1940 case 0x02: /* BGEZ: bits 010000 00010 */
1941 case 0x03: /* BGEZAL: bits 010000 00011 */
1942 case 0x13: /* BGEZALS: bits 010000 10011 */
1943 if (regcache_raw_get_signed (regcache,
1944 b0s5_reg (insn >> 16)) >= 0)
1945 pc += micromips_relative_offset16 (insn);
1946 else
1947 pc += micromips_pc_insn_size (gdbarch, pc);
1948 break;
1949
1950 case 0x04: /* BLEZ: bits 010000 00100 */
1951 if (regcache_raw_get_signed (regcache,
1952 b0s5_reg (insn >> 16)) <= 0)
1953 pc += micromips_relative_offset16 (insn);
1954 else
1955 pc += micromips_pc_insn_size (gdbarch, pc);
1956 break;
1957
1958 case 0x05: /* BNEZC: bits 010000 00101 */
1959 if (regcache_raw_get_signed (regcache,
1960 b0s5_reg (insn >> 16)) != 0)
1961 pc += micromips_relative_offset16 (insn);
1962 break;
1963
1964 case 0x06: /* BGTZ: bits 010000 00110 */
1965 if (regcache_raw_get_signed (regcache,
1966 b0s5_reg (insn >> 16)) > 0)
1967 pc += micromips_relative_offset16 (insn);
1968 else
1969 pc += micromips_pc_insn_size (gdbarch, pc);
1970 break;
1971
1972 case 0x07: /* BEQZC: bits 010000 00111 */
1973 if (regcache_raw_get_signed (regcache,
1974 b0s5_reg (insn >> 16)) == 0)
1975 pc += micromips_relative_offset16 (insn);
1976 break;
1977
1978 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1979 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1980 if (((insn >> 16) & 0x3) == 0x0)
1981 /* BC2F, BC2T: don't know how to handle these. */
1982 break;
1983 break;
1984
1985 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1986 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1987 {
1988 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1989 int dspctl = mips_regnum (gdbarch)->dspctl;
1990
1991 if (dspctl == -1)
1992 /* No way to handle; it'll most likely trap anyway. */
1993 break;
1994
1995 if ((regcache_raw_get_unsigned (regcache,
1996 dspctl) & 0x7f) >= pos)
1997 pc += micromips_relative_offset16 (insn);
1998 else
1999 pc += micromips_pc_insn_size (gdbarch, pc);
2000 }
2001 break;
2002
2003 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
2004 /* BC1ANY2F: bits 010000 11100 xxx01 */
2005 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
2006 /* BC1ANY2T: bits 010000 11101 xxx01 */
2007 if (((insn >> 16) & 0x2) == 0x0)
2008 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc,
2009 ((insn >> 16) & 0x1) + 1);
2010 break;
2011
2012 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
2013 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
2014 if (((insn >> 16) & 0x3) == 0x1)
2015 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc, 4);
2016 break;
2017 }
2018 break;
2019
2020 case 0x1d: /* JALS: bits 011101 */
2021 case 0x35: /* J: bits 110101 */
2022 case 0x3d: /* JAL: bits 111101 */
2023 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
2024 break;
2025
2026 case 0x25: /* BEQ: bits 100101 */
2027 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2028 == regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
2029 pc += micromips_relative_offset16 (insn);
2030 else
2031 pc += micromips_pc_insn_size (gdbarch, pc);
2032 break;
2033
2034 case 0x2d: /* BNE: bits 101101 */
2035 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2036 != regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
2037 pc += micromips_relative_offset16 (insn);
2038 else
2039 pc += micromips_pc_insn_size (gdbarch, pc);
2040 break;
2041
2042 case 0x3c: /* JALX: bits 111100 */
2043 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
2044 break;
2045 }
2046 break;
2047
2048 /* 16-bit instructions. */
2049 case MIPS_INSN16_SIZE:
2050 switch (micromips_op (insn))
2051 {
2052 case 0x11: /* POOL16C: bits 010001 */
2053 if ((b5s5_op (insn) & 0x1c) == 0xc)
2054 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
2055 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn));
2056 else if (b5s5_op (insn) == 0x18)
2057 /* JRADDIUSP: bits 010001 11000 */
2058 pc = regcache_raw_get_signed (regcache, MIPS_RA_REGNUM);
2059 break;
2060
2061 case 0x23: /* BEQZ16: bits 100011 */
2062 {
2063 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2064
2065 if (regcache_raw_get_signed (regcache, rs) == 0)
2066 pc += micromips_relative_offset7 (insn);
2067 else
2068 pc += micromips_pc_insn_size (gdbarch, pc);
2069 }
2070 break;
2071
2072 case 0x2b: /* BNEZ16: bits 101011 */
2073 {
2074 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2075
2076 if (regcache_raw_get_signed (regcache, rs) != 0)
2077 pc += micromips_relative_offset7 (insn);
2078 else
2079 pc += micromips_pc_insn_size (gdbarch, pc);
2080 }
2081 break;
2082
2083 case 0x33: /* B16: bits 110011 */
2084 pc += micromips_relative_offset10 (insn);
2085 break;
2086 }
2087 break;
2088 }
2089
2090 return pc;
2091 }
2092
2093 /* Decoding the next place to set a breakpoint is irregular for the
2094 mips 16 variant, but fortunately, there fewer instructions. We have
2095 to cope ith extensions for 16 bit instructions and a pair of actual
2096 32 bit instructions. We dont want to set a single step instruction
2097 on the extend instruction either. */
2098
2099 /* Lots of mips16 instruction formats */
2100 /* Predicting jumps requires itype,ritype,i8type
2101 and their extensions extItype,extritype,extI8type. */
2102 enum mips16_inst_fmts
2103 {
2104 itype, /* 0 immediate 5,10 */
2105 ritype, /* 1 5,3,8 */
2106 rrtype, /* 2 5,3,3,5 */
2107 rritype, /* 3 5,3,3,5 */
2108 rrrtype, /* 4 5,3,3,3,2 */
2109 rriatype, /* 5 5,3,3,1,4 */
2110 shifttype, /* 6 5,3,3,3,2 */
2111 i8type, /* 7 5,3,8 */
2112 i8movtype, /* 8 5,3,3,5 */
2113 i8mov32rtype, /* 9 5,3,5,3 */
2114 i64type, /* 10 5,3,8 */
2115 ri64type, /* 11 5,3,3,5 */
2116 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
2117 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2118 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
2119 extRRItype, /* 15 5,5,5,5,3,3,5 */
2120 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2121 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2122 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2123 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2124 extRi64type, /* 20 5,6,5,5,3,3,5 */
2125 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2126 };
2127 /* I am heaping all the fields of the formats into one structure and
2128 then, only the fields which are involved in instruction extension. */
2129 struct upk_mips16
2130 {
2131 CORE_ADDR offset;
2132 unsigned int regx; /* Function in i8 type. */
2133 unsigned int regy;
2134 };
2135
2136
2137 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
2138 for the bits which make up the immediate extension. */
2139
2140 static CORE_ADDR
2141 extended_offset (unsigned int extension)
2142 {
2143 CORE_ADDR value;
2144
2145 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
2146 value = value << 6;
2147 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
2148 value = value << 5;
2149 value |= extension & 0x1f; /* Extract 4:0. */
2150
2151 return value;
2152 }
2153
2154 /* Only call this function if you know that this is an extendable
2155 instruction. It won't malfunction, but why make excess remote memory
2156 references? If the immediate operands get sign extended or something,
2157 do it after the extension is performed. */
2158 /* FIXME: Every one of these cases needs to worry about sign extension
2159 when the offset is to be used in relative addressing. */
2160
2161 static unsigned int
2162 fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
2163 {
2164 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2165 gdb_byte buf[8];
2166
2167 pc = unmake_compact_addr (pc); /* Clear the low order bit. */
2168 target_read_memory (pc, buf, 2);
2169 return extract_unsigned_integer (buf, 2, byte_order);
2170 }
2171
2172 static void
2173 unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
2174 unsigned int extension,
2175 unsigned int inst,
2176 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
2177 {
2178 CORE_ADDR offset;
2179 int regx;
2180 int regy;
2181 switch (insn_format)
2182 {
2183 case itype:
2184 {
2185 CORE_ADDR value;
2186 if (extension)
2187 {
2188 value = extended_offset ((extension << 16) | inst);
2189 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2190 }
2191 else
2192 {
2193 value = inst & 0x7ff;
2194 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
2195 }
2196 offset = value;
2197 regx = -1;
2198 regy = -1;
2199 }
2200 break;
2201 case ritype:
2202 case i8type:
2203 { /* A register identifier and an offset. */
2204 /* Most of the fields are the same as I type but the
2205 immediate value is of a different length. */
2206 CORE_ADDR value;
2207 if (extension)
2208 {
2209 value = extended_offset ((extension << 16) | inst);
2210 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2211 }
2212 else
2213 {
2214 value = inst & 0xff; /* 8 bits */
2215 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
2216 }
2217 offset = value;
2218 regx = (inst >> 8) & 0x07; /* i8 funct */
2219 regy = -1;
2220 break;
2221 }
2222 case jalxtype:
2223 {
2224 unsigned long value;
2225 unsigned int nexthalf;
2226 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
2227 value = value << 16;
2228 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2229 /* Low bit still set. */
2230 value |= nexthalf;
2231 offset = value;
2232 regx = -1;
2233 regy = -1;
2234 break;
2235 }
2236 default:
2237 internal_error (__FILE__, __LINE__, _("bad switch"));
2238 }
2239 upk->offset = offset;
2240 upk->regx = regx;
2241 upk->regy = regy;
2242 }
2243
2244
2245 /* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2246 and having a signed 16-bit OFFSET. */
2247
2248 static CORE_ADDR
2249 add_offset_16 (CORE_ADDR pc, int offset)
2250 {
2251 return pc + (offset << 1) + 2;
2252 }
2253
2254 static CORE_ADDR
2255 extended_mips16_next_pc (regcache *regcache, CORE_ADDR pc,
2256 unsigned int extension, unsigned int insn)
2257 {
2258 struct gdbarch *gdbarch = regcache->arch ();
2259 int op = (insn >> 11);
2260 switch (op)
2261 {
2262 case 2: /* Branch */
2263 {
2264 struct upk_mips16 upk;
2265 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
2266 pc = add_offset_16 (pc, upk.offset);
2267 break;
2268 }
2269 case 3: /* JAL , JALX - Watch out, these are 32 bit
2270 instructions. */
2271 {
2272 struct upk_mips16 upk;
2273 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
2274 pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
2275 if ((insn >> 10) & 0x01) /* Exchange mode */
2276 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
2277 else
2278 pc |= 0x01;
2279 break;
2280 }
2281 case 4: /* beqz */
2282 {
2283 struct upk_mips16 upk;
2284 int reg;
2285 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2286 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
2287 if (reg == 0)
2288 pc = add_offset_16 (pc, upk.offset);
2289 else
2290 pc += 2;
2291 break;
2292 }
2293 case 5: /* bnez */
2294 {
2295 struct upk_mips16 upk;
2296 int reg;
2297 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2298 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
2299 if (reg != 0)
2300 pc = add_offset_16 (pc, upk.offset);
2301 else
2302 pc += 2;
2303 break;
2304 }
2305 case 12: /* I8 Formats btez btnez */
2306 {
2307 struct upk_mips16 upk;
2308 int reg;
2309 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
2310 /* upk.regx contains the opcode */
2311 /* Test register is 24 */
2312 reg = regcache_raw_get_signed (regcache, 24);
2313 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2314 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
2315 pc = add_offset_16 (pc, upk.offset);
2316 else
2317 pc += 2;
2318 break;
2319 }
2320 case 29: /* RR Formats JR, JALR, JALR-RA */
2321 {
2322 struct upk_mips16 upk;
2323 /* upk.fmt = rrtype; */
2324 op = insn & 0x1f;
2325 if (op == 0)
2326 {
2327 int reg;
2328 upk.regx = (insn >> 8) & 0x07;
2329 upk.regy = (insn >> 5) & 0x07;
2330 if ((upk.regy & 1) == 0)
2331 reg = mips_reg3_to_reg[upk.regx];
2332 else
2333 reg = 31; /* Function return instruction. */
2334 pc = regcache_raw_get_signed (regcache, reg);
2335 }
2336 else
2337 pc += 2;
2338 break;
2339 }
2340 case 30:
2341 /* This is an instruction extension. Fetch the real instruction
2342 (which follows the extension) and decode things based on
2343 that. */
2344 {
2345 pc += 2;
2346 pc = extended_mips16_next_pc (regcache, pc, insn,
2347 fetch_mips_16 (gdbarch, pc));
2348 break;
2349 }
2350 default:
2351 {
2352 pc += 2;
2353 break;
2354 }
2355 }
2356 return pc;
2357 }
2358
2359 static CORE_ADDR
2360 mips16_next_pc (struct regcache *regcache, CORE_ADDR pc)
2361 {
2362 struct gdbarch *gdbarch = regcache->arch ();
2363 unsigned int insn = fetch_mips_16 (gdbarch, pc);
2364 return extended_mips16_next_pc (regcache, pc, 0, insn);
2365 }
2366
2367 /* The mips_next_pc function supports single_step when the remote
2368 target monitor or stub is not developed enough to do a single_step.
2369 It works by decoding the current instruction and predicting where a
2370 branch will go. This isn't hard because all the data is available.
2371 The MIPS32, MIPS16 and microMIPS variants are quite different. */
2372 static CORE_ADDR
2373 mips_next_pc (struct regcache *regcache, CORE_ADDR pc)
2374 {
2375 struct gdbarch *gdbarch = regcache->arch ();
2376
2377 if (mips_pc_is_mips16 (gdbarch, pc))
2378 return mips16_next_pc (regcache, pc);
2379 else if (mips_pc_is_micromips (gdbarch, pc))
2380 return micromips_next_pc (regcache, pc);
2381 else
2382 return mips32_next_pc (regcache, pc);
2383 }
2384
2385 /* Return non-zero if the MIPS16 instruction INSN is a compact branch
2386 or jump. */
2387
2388 static int
2389 mips16_instruction_is_compact_branch (unsigned short insn)
2390 {
2391 switch (insn & 0xf800)
2392 {
2393 case 0xe800:
2394 return (insn & 0x009f) == 0x80; /* JALRC/JRC */
2395 case 0x6000:
2396 return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
2397 case 0x2800: /* BNEZ */
2398 case 0x2000: /* BEQZ */
2399 case 0x1000: /* B */
2400 return 1;
2401 default:
2402 return 0;
2403 }
2404 }
2405
2406 /* Return non-zero if the microMIPS instruction INSN is a compact branch
2407 or jump. */
2408
2409 static int
2410 micromips_instruction_is_compact_branch (unsigned short insn)
2411 {
2412 switch (micromips_op (insn))
2413 {
2414 case 0x11: /* POOL16C: bits 010001 */
2415 return (b5s5_op (insn) == 0x18
2416 /* JRADDIUSP: bits 010001 11000 */
2417 || b5s5_op (insn) == 0xd);
2418 /* JRC: bits 010011 01101 */
2419 case 0x10: /* POOL32I: bits 010000 */
2420 return (b5s5_op (insn) & 0x1d) == 0x5;
2421 /* BEQZC/BNEZC: bits 010000 001x1 */
2422 default:
2423 return 0;
2424 }
2425 }
2426
2427 struct mips_frame_cache
2428 {
2429 CORE_ADDR base;
2430 struct trad_frame_saved_reg *saved_regs;
2431 };
2432
2433 /* Set a register's saved stack address in temp_saved_regs. If an
2434 address has already been set for this register, do nothing; this
2435 way we will only recognize the first save of a given register in a
2436 function prologue.
2437
2438 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2439 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2440 Strictly speaking, only the second range is used as it is only second
2441 range (the ABI instead of ISA registers) that comes into play when finding
2442 saved registers in a frame. */
2443
2444 static void
2445 set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2446 int regnum, CORE_ADDR offset)
2447 {
2448 if (this_cache != NULL
2449 && this_cache->saved_regs[regnum].addr == -1)
2450 {
2451 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2452 = offset;
2453 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2454 = offset;
2455 }
2456 }
2457
2458
2459 /* Fetch the immediate value from a MIPS16 instruction.
2460 If the previous instruction was an EXTEND, use it to extend
2461 the upper bits of the immediate value. This is a helper function
2462 for mips16_scan_prologue. */
2463
2464 static int
2465 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2466 unsigned short inst, /* current instruction */
2467 int nbits, /* number of bits in imm field */
2468 int scale, /* scale factor to be applied to imm */
2469 int is_signed) /* is the imm field signed? */
2470 {
2471 int offset;
2472
2473 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2474 {
2475 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2476 if (offset & 0x8000) /* check for negative extend */
2477 offset = 0 - (0x10000 - (offset & 0xffff));
2478 return offset | (inst & 0x1f);
2479 }
2480 else
2481 {
2482 int max_imm = 1 << nbits;
2483 int mask = max_imm - 1;
2484 int sign_bit = max_imm >> 1;
2485
2486 offset = inst & mask;
2487 if (is_signed && (offset & sign_bit))
2488 offset = 0 - (max_imm - offset);
2489 return offset * scale;
2490 }
2491 }
2492
2493
2494 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2495 the associated FRAME_CACHE if not null.
2496 Return the address of the first instruction past the prologue. */
2497
2498 static CORE_ADDR
2499 mips16_scan_prologue (struct gdbarch *gdbarch,
2500 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2501 struct frame_info *this_frame,
2502 struct mips_frame_cache *this_cache)
2503 {
2504 int prev_non_prologue_insn = 0;
2505 int this_non_prologue_insn;
2506 int non_prologue_insns = 0;
2507 CORE_ADDR prev_pc;
2508 CORE_ADDR cur_pc;
2509 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
2510 CORE_ADDR sp;
2511 long frame_offset = 0; /* Size of stack frame. */
2512 long frame_adjust = 0; /* Offset of FP from SP. */
2513 int frame_reg = MIPS_SP_REGNUM;
2514 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
2515 unsigned inst = 0; /* current instruction */
2516 unsigned entry_inst = 0; /* the entry instruction */
2517 unsigned save_inst = 0; /* the save instruction */
2518 int prev_delay_slot = 0;
2519 int in_delay_slot;
2520 int reg, offset;
2521
2522 int extend_bytes = 0;
2523 int prev_extend_bytes = 0;
2524 CORE_ADDR end_prologue_addr;
2525
2526 /* Can be called when there's no process, and hence when there's no
2527 THIS_FRAME. */
2528 if (this_frame != NULL)
2529 sp = get_frame_register_signed (this_frame,
2530 gdbarch_num_regs (gdbarch)
2531 + MIPS_SP_REGNUM);
2532 else
2533 sp = 0;
2534
2535 if (limit_pc > start_pc + 200)
2536 limit_pc = start_pc + 200;
2537 prev_pc = start_pc;
2538
2539 /* Permit at most one non-prologue non-control-transfer instruction
2540 in the middle which may have been reordered by the compiler for
2541 optimisation. */
2542 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
2543 {
2544 this_non_prologue_insn = 0;
2545 in_delay_slot = 0;
2546
2547 /* Save the previous instruction. If it's an EXTEND, we'll extract
2548 the immediate offset extension from it in mips16_get_imm. */
2549 prev_inst = inst;
2550
2551 /* Fetch and decode the instruction. */
2552 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2553 cur_pc, NULL);
2554
2555 /* Normally we ignore extend instructions. However, if it is
2556 not followed by a valid prologue instruction, then this
2557 instruction is not part of the prologue either. We must
2558 remember in this case to adjust the end_prologue_addr back
2559 over the extend. */
2560 if ((inst & 0xf800) == 0xf000) /* extend */
2561 {
2562 extend_bytes = MIPS_INSN16_SIZE;
2563 continue;
2564 }
2565
2566 prev_extend_bytes = extend_bytes;
2567 extend_bytes = 0;
2568
2569 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2570 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2571 {
2572 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2573 if (offset < 0) /* Negative stack adjustment? */
2574 frame_offset -= offset;
2575 else
2576 /* Exit loop if a positive stack adjustment is found, which
2577 usually means that the stack cleanup code in the function
2578 epilogue is reached. */
2579 break;
2580 }
2581 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2582 {
2583 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2584 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
2585 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2586 }
2587 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2588 {
2589 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2590 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2591 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2592 }
2593 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2594 {
2595 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2596 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2597 }
2598 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2599 {
2600 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2601 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2602 }
2603 else if (inst == 0x673d) /* move $s1, $sp */
2604 {
2605 frame_addr = sp;
2606 frame_reg = 17;
2607 }
2608 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2609 {
2610 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2611 frame_addr = sp + offset;
2612 frame_reg = 17;
2613 frame_adjust = offset;
2614 }
2615 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2616 {
2617 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2618 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2619 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2620 }
2621 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2622 {
2623 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2624 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2625 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2626 }
2627 else if ((inst & 0xf81f) == 0xe809
2628 && (inst & 0x700) != 0x700) /* entry */
2629 entry_inst = inst; /* Save for later processing. */
2630 else if ((inst & 0xff80) == 0x6480) /* save */
2631 {
2632 save_inst = inst; /* Save for later processing. */
2633 if (prev_extend_bytes) /* extend */
2634 save_inst |= prev_inst << 16;
2635 }
2636 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2637 {
2638 /* This instruction is part of the prologue, but we don't
2639 need to do anything special to handle it. */
2640 }
2641 else if (mips16_instruction_has_delay_slot (inst, 0))
2642 /* JAL/JALR/JALX/JR */
2643 {
2644 /* The instruction in the delay slot can be a part
2645 of the prologue, so move forward once more. */
2646 in_delay_slot = 1;
2647 if (mips16_instruction_has_delay_slot (inst, 1))
2648 /* JAL/JALX */
2649 {
2650 prev_extend_bytes = MIPS_INSN16_SIZE;
2651 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2652 }
2653 }
2654 else
2655 {
2656 this_non_prologue_insn = 1;
2657 }
2658
2659 non_prologue_insns += this_non_prologue_insn;
2660
2661 /* A jump or branch, or enough non-prologue insns seen? If so,
2662 then we must have reached the end of the prologue by now. */
2663 if (prev_delay_slot || non_prologue_insns > 1
2664 || mips16_instruction_is_compact_branch (inst))
2665 break;
2666
2667 prev_non_prologue_insn = this_non_prologue_insn;
2668 prev_delay_slot = in_delay_slot;
2669 prev_pc = cur_pc - prev_extend_bytes;
2670 }
2671
2672 /* The entry instruction is typically the first instruction in a function,
2673 and it stores registers at offsets relative to the value of the old SP
2674 (before the prologue). But the value of the sp parameter to this
2675 function is the new SP (after the prologue has been executed). So we
2676 can't calculate those offsets until we've seen the entire prologue,
2677 and can calculate what the old SP must have been. */
2678 if (entry_inst != 0)
2679 {
2680 int areg_count = (entry_inst >> 8) & 7;
2681 int sreg_count = (entry_inst >> 6) & 3;
2682
2683 /* The entry instruction always subtracts 32 from the SP. */
2684 frame_offset += 32;
2685
2686 /* Now we can calculate what the SP must have been at the
2687 start of the function prologue. */
2688 sp += frame_offset;
2689
2690 /* Check if a0-a3 were saved in the caller's argument save area. */
2691 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2692 {
2693 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2694 offset += mips_abi_regsize (gdbarch);
2695 }
2696
2697 /* Check if the ra register was pushed on the stack. */
2698 offset = -4;
2699 if (entry_inst & 0x20)
2700 {
2701 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2702 offset -= mips_abi_regsize (gdbarch);
2703 }
2704
2705 /* Check if the s0 and s1 registers were pushed on the stack. */
2706 for (reg = 16; reg < sreg_count + 16; reg++)
2707 {
2708 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2709 offset -= mips_abi_regsize (gdbarch);
2710 }
2711 }
2712
2713 /* The SAVE instruction is similar to ENTRY, except that defined by the
2714 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2715 size of the frame is specified as an immediate field of instruction
2716 and an extended variation exists which lets additional registers and
2717 frame space to be specified. The instruction always treats registers
2718 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2719 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2720 {
2721 static int args_table[16] = {
2722 0, 0, 0, 0, 1, 1, 1, 1,
2723 2, 2, 2, 0, 3, 3, 4, -1,
2724 };
2725 static int astatic_table[16] = {
2726 0, 1, 2, 3, 0, 1, 2, 3,
2727 0, 1, 2, 4, 0, 1, 0, -1,
2728 };
2729 int aregs = (save_inst >> 16) & 0xf;
2730 int xsregs = (save_inst >> 24) & 0x7;
2731 int args = args_table[aregs];
2732 int astatic = astatic_table[aregs];
2733 long frame_size;
2734
2735 if (args < 0)
2736 {
2737 warning (_("Invalid number of argument registers encoded in SAVE."));
2738 args = 0;
2739 }
2740 if (astatic < 0)
2741 {
2742 warning (_("Invalid number of static registers encoded in SAVE."));
2743 astatic = 0;
2744 }
2745
2746 /* For standard SAVE the frame size of 0 means 128. */
2747 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2748 if (frame_size == 0 && (save_inst >> 16) == 0)
2749 frame_size = 16;
2750 frame_size *= 8;
2751 frame_offset += frame_size;
2752
2753 /* Now we can calculate what the SP must have been at the
2754 start of the function prologue. */
2755 sp += frame_offset;
2756
2757 /* Check if A0-A3 were saved in the caller's argument save area. */
2758 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2759 {
2760 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2761 offset += mips_abi_regsize (gdbarch);
2762 }
2763
2764 offset = -4;
2765
2766 /* Check if the RA register was pushed on the stack. */
2767 if (save_inst & 0x40)
2768 {
2769 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2770 offset -= mips_abi_regsize (gdbarch);
2771 }
2772
2773 /* Check if the S8 register was pushed on the stack. */
2774 if (xsregs > 6)
2775 {
2776 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2777 offset -= mips_abi_regsize (gdbarch);
2778 xsregs--;
2779 }
2780 /* Check if S2-S7 were pushed on the stack. */
2781 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2782 {
2783 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2784 offset -= mips_abi_regsize (gdbarch);
2785 }
2786
2787 /* Check if the S1 register was pushed on the stack. */
2788 if (save_inst & 0x10)
2789 {
2790 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2791 offset -= mips_abi_regsize (gdbarch);
2792 }
2793 /* Check if the S0 register was pushed on the stack. */
2794 if (save_inst & 0x20)
2795 {
2796 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2797 offset -= mips_abi_regsize (gdbarch);
2798 }
2799
2800 /* Check if A0-A3 were pushed on the stack. */
2801 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2802 {
2803 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2804 offset -= mips_abi_regsize (gdbarch);
2805 }
2806 }
2807
2808 if (this_cache != NULL)
2809 {
2810 this_cache->base =
2811 (get_frame_register_signed (this_frame,
2812 gdbarch_num_regs (gdbarch) + frame_reg)
2813 + frame_offset - frame_adjust);
2814 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2815 be able to get rid of the assignment below, evetually. But it's
2816 still needed for now. */
2817 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2818 + mips_regnum (gdbarch)->pc]
2819 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2820 }
2821
2822 /* Set end_prologue_addr to the address of the instruction immediately
2823 after the last one we scanned. Unless the last one looked like a
2824 non-prologue instruction (and we looked ahead), in which case use
2825 its address instead. */
2826 end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
2827 ? prev_pc : cur_pc - prev_extend_bytes);
2828
2829 return end_prologue_addr;
2830 }
2831
2832 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2833 Procedures that use the 32-bit instruction set are handled by the
2834 mips_insn32 unwinder. */
2835
2836 static struct mips_frame_cache *
2837 mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2838 {
2839 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2840 struct mips_frame_cache *cache;
2841
2842 if ((*this_cache) != NULL)
2843 return (struct mips_frame_cache *) (*this_cache);
2844 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2845 (*this_cache) = cache;
2846 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2847
2848 /* Analyze the function prologue. */
2849 {
2850 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2851 CORE_ADDR start_addr;
2852
2853 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2854 if (start_addr == 0)
2855 start_addr = heuristic_proc_start (gdbarch, pc);
2856 /* We can't analyze the prologue if we couldn't find the begining
2857 of the function. */
2858 if (start_addr == 0)
2859 return cache;
2860
2861 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame,
2862 (struct mips_frame_cache *) *this_cache);
2863 }
2864
2865 /* gdbarch_sp_regnum contains the value and not the address. */
2866 trad_frame_set_value (cache->saved_regs,
2867 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2868 cache->base);
2869
2870 return (struct mips_frame_cache *) (*this_cache);
2871 }
2872
2873 static void
2874 mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2875 struct frame_id *this_id)
2876 {
2877 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2878 this_cache);
2879 /* This marks the outermost frame. */
2880 if (info->base == 0)
2881 return;
2882 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2883 }
2884
2885 static struct value *
2886 mips_insn16_frame_prev_register (struct frame_info *this_frame,
2887 void **this_cache, int regnum)
2888 {
2889 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2890 this_cache);
2891 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2892 }
2893
2894 static int
2895 mips_insn16_frame_sniffer (const struct frame_unwind *self,
2896 struct frame_info *this_frame, void **this_cache)
2897 {
2898 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2899 CORE_ADDR pc = get_frame_pc (this_frame);
2900 if (mips_pc_is_mips16 (gdbarch, pc))
2901 return 1;
2902 return 0;
2903 }
2904
2905 static const struct frame_unwind mips_insn16_frame_unwind =
2906 {
2907 NORMAL_FRAME,
2908 default_frame_unwind_stop_reason,
2909 mips_insn16_frame_this_id,
2910 mips_insn16_frame_prev_register,
2911 NULL,
2912 mips_insn16_frame_sniffer
2913 };
2914
2915 static CORE_ADDR
2916 mips_insn16_frame_base_address (struct frame_info *this_frame,
2917 void **this_cache)
2918 {
2919 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2920 this_cache);
2921 return info->base;
2922 }
2923
2924 static const struct frame_base mips_insn16_frame_base =
2925 {
2926 &mips_insn16_frame_unwind,
2927 mips_insn16_frame_base_address,
2928 mips_insn16_frame_base_address,
2929 mips_insn16_frame_base_address
2930 };
2931
2932 static const struct frame_base *
2933 mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2934 {
2935 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2936 CORE_ADDR pc = get_frame_pc (this_frame);
2937 if (mips_pc_is_mips16 (gdbarch, pc))
2938 return &mips_insn16_frame_base;
2939 else
2940 return NULL;
2941 }
2942
2943 /* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2944 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2945 interpreted directly, and then multiplied by 4. */
2946
2947 static int
2948 micromips_decode_imm9 (int imm)
2949 {
2950 imm = (imm ^ 0x100) - 0x100;
2951 if (imm > -3 && imm < 2)
2952 imm ^= 0x100;
2953 return imm << 2;
2954 }
2955
2956 /* Analyze the function prologue from START_PC to LIMIT_PC. Return
2957 the address of the first instruction past the prologue. */
2958
2959 static CORE_ADDR
2960 micromips_scan_prologue (struct gdbarch *gdbarch,
2961 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2962 struct frame_info *this_frame,
2963 struct mips_frame_cache *this_cache)
2964 {
2965 CORE_ADDR end_prologue_addr;
2966 int prev_non_prologue_insn = 0;
2967 int frame_reg = MIPS_SP_REGNUM;
2968 int this_non_prologue_insn;
2969 int non_prologue_insns = 0;
2970 long frame_offset = 0; /* Size of stack frame. */
2971 long frame_adjust = 0; /* Offset of FP from SP. */
2972 int prev_delay_slot = 0;
2973 int in_delay_slot;
2974 CORE_ADDR prev_pc;
2975 CORE_ADDR cur_pc;
2976 ULONGEST insn; /* current instruction */
2977 CORE_ADDR sp;
2978 long offset;
2979 long sp_adj;
2980 long v1_off = 0; /* The assumption is LUI will replace it. */
2981 int reglist;
2982 int breg;
2983 int dreg;
2984 int sreg;
2985 int treg;
2986 int loc;
2987 int op;
2988 int s;
2989 int i;
2990
2991 /* Can be called when there's no process, and hence when there's no
2992 THIS_FRAME. */
2993 if (this_frame != NULL)
2994 sp = get_frame_register_signed (this_frame,
2995 gdbarch_num_regs (gdbarch)
2996 + MIPS_SP_REGNUM);
2997 else
2998 sp = 0;
2999
3000 if (limit_pc > start_pc + 200)
3001 limit_pc = start_pc + 200;
3002 prev_pc = start_pc;
3003
3004 /* Permit at most one non-prologue non-control-transfer instruction
3005 in the middle which may have been reordered by the compiler for
3006 optimisation. */
3007 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
3008 {
3009 this_non_prologue_insn = 0;
3010 in_delay_slot = 0;
3011 sp_adj = 0;
3012 loc = 0;
3013 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
3014 loc += MIPS_INSN16_SIZE;
3015 switch (mips_insn_size (ISA_MICROMIPS, insn))
3016 {
3017 /* 32-bit instructions. */
3018 case 2 * MIPS_INSN16_SIZE:
3019 insn <<= 16;
3020 insn |= mips_fetch_instruction (gdbarch,
3021 ISA_MICROMIPS, cur_pc + loc, NULL);
3022 loc += MIPS_INSN16_SIZE;
3023 switch (micromips_op (insn >> 16))
3024 {
3025 /* Record $sp/$fp adjustment. */
3026 /* Discard (D)ADDU $gp,$jp used for PIC code. */
3027 case 0x0: /* POOL32A: bits 000000 */
3028 case 0x16: /* POOL32S: bits 010110 */
3029 op = b0s11_op (insn);
3030 sreg = b0s5_reg (insn >> 16);
3031 treg = b5s5_reg (insn >> 16);
3032 dreg = b11s5_reg (insn);
3033 if (op == 0x1d0
3034 /* SUBU: bits 000000 00111010000 */
3035 /* DSUBU: bits 010110 00111010000 */
3036 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
3037 && treg == 3)
3038 /* (D)SUBU $sp, $v1 */
3039 sp_adj = v1_off;
3040 else if (op != 0x150
3041 /* ADDU: bits 000000 00101010000 */
3042 /* DADDU: bits 010110 00101010000 */
3043 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
3044 this_non_prologue_insn = 1;
3045 break;
3046
3047 case 0x8: /* POOL32B: bits 001000 */
3048 op = b12s4_op (insn);
3049 breg = b0s5_reg (insn >> 16);
3050 reglist = sreg = b5s5_reg (insn >> 16);
3051 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
3052 if ((op == 0x9 || op == 0xc)
3053 /* SWP: bits 001000 1001 */
3054 /* SDP: bits 001000 1100 */
3055 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
3056 /* S[DW]P reg,offset($sp) */
3057 {
3058 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
3059 set_reg_offset (gdbarch, this_cache,
3060 sreg, sp + offset);
3061 set_reg_offset (gdbarch, this_cache,
3062 sreg + 1, sp + offset + s);
3063 }
3064 else if ((op == 0xd || op == 0xf)
3065 /* SWM: bits 001000 1101 */
3066 /* SDM: bits 001000 1111 */
3067 && breg == MIPS_SP_REGNUM
3068 /* SWM reglist,offset($sp) */
3069 && ((reglist >= 1 && reglist <= 9)
3070 || (reglist >= 16 && reglist <= 25)))
3071 {
3072 int sreglist = std::min(reglist & 0xf, 8);
3073
3074 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
3075 for (i = 0; i < sreglist; i++)
3076 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
3077 if ((reglist & 0xf) > 8)
3078 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
3079 if ((reglist & 0x10) == 0x10)
3080 set_reg_offset (gdbarch, this_cache,
3081 MIPS_RA_REGNUM, sp + s * i++);
3082 }
3083 else
3084 this_non_prologue_insn = 1;
3085 break;
3086
3087 /* Record $sp/$fp adjustment. */
3088 /* Discard (D)ADDIU $gp used for PIC code. */
3089 case 0xc: /* ADDIU: bits 001100 */
3090 case 0x17: /* DADDIU: bits 010111 */
3091 sreg = b0s5_reg (insn >> 16);
3092 dreg = b5s5_reg (insn >> 16);
3093 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3094 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
3095 /* (D)ADDIU $sp, imm */
3096 sp_adj = offset;
3097 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
3098 /* (D)ADDIU $fp, $sp, imm */
3099 {
3100 frame_adjust = offset;
3101 frame_reg = 30;
3102 }
3103 else if (sreg != 28 || dreg != 28)
3104 /* (D)ADDIU $gp, imm */
3105 this_non_prologue_insn = 1;
3106 break;
3107
3108 /* LUI $v1 is used for larger $sp adjustments. */
3109 /* Discard LUI $gp used for PIC code. */
3110 case 0x10: /* POOL32I: bits 010000 */
3111 if (b5s5_op (insn >> 16) == 0xd
3112 /* LUI: bits 010000 001101 */
3113 && b0s5_reg (insn >> 16) == 3)
3114 /* LUI $v1, imm */
3115 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
3116 else if (b5s5_op (insn >> 16) != 0xd
3117 /* LUI: bits 010000 001101 */
3118 || b0s5_reg (insn >> 16) != 28)
3119 /* LUI $gp, imm */
3120 this_non_prologue_insn = 1;
3121 break;
3122
3123 /* ORI $v1 is used for larger $sp adjustments. */
3124 case 0x14: /* ORI: bits 010100 */
3125 sreg = b0s5_reg (insn >> 16);
3126 dreg = b5s5_reg (insn >> 16);
3127 if (sreg == 3 && dreg == 3)
3128 /* ORI $v1, imm */
3129 v1_off |= b0s16_imm (insn);
3130 else
3131 this_non_prologue_insn = 1;
3132 break;
3133
3134 case 0x26: /* SWC1: bits 100110 */
3135 case 0x2e: /* SDC1: bits 101110 */
3136 breg = b0s5_reg (insn >> 16);
3137 if (breg != MIPS_SP_REGNUM)
3138 /* S[DW]C1 reg,offset($sp) */
3139 this_non_prologue_insn = 1;
3140 break;
3141
3142 case 0x36: /* SD: bits 110110 */
3143 case 0x3e: /* SW: bits 111110 */
3144 breg = b0s5_reg (insn >> 16);
3145 sreg = b5s5_reg (insn >> 16);
3146 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3147 if (breg == MIPS_SP_REGNUM)
3148 /* S[DW] reg,offset($sp) */
3149 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3150 else
3151 this_non_prologue_insn = 1;
3152 break;
3153
3154 default:
3155 /* The instruction in the delay slot can be a part
3156 of the prologue, so move forward once more. */
3157 if (micromips_instruction_has_delay_slot (insn, 0))
3158 in_delay_slot = 1;
3159 else
3160 this_non_prologue_insn = 1;
3161 break;
3162 }
3163 insn >>= 16;
3164 break;
3165
3166 /* 16-bit instructions. */
3167 case MIPS_INSN16_SIZE:
3168 switch (micromips_op (insn))
3169 {
3170 case 0x3: /* MOVE: bits 000011 */
3171 sreg = b0s5_reg (insn);
3172 dreg = b5s5_reg (insn);
3173 if (sreg == MIPS_SP_REGNUM && dreg == 30)
3174 /* MOVE $fp, $sp */
3175 frame_reg = 30;
3176 else if ((sreg & 0x1c) != 0x4)
3177 /* MOVE reg, $a0-$a3 */
3178 this_non_prologue_insn = 1;
3179 break;
3180
3181 case 0x11: /* POOL16C: bits 010001 */
3182 if (b6s4_op (insn) == 0x5)
3183 /* SWM: bits 010001 0101 */
3184 {
3185 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
3186 reglist = b4s2_regl (insn);
3187 for (i = 0; i <= reglist; i++)
3188 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
3189 set_reg_offset (gdbarch, this_cache,
3190 MIPS_RA_REGNUM, sp + 4 * i++);
3191 }
3192 else
3193 this_non_prologue_insn = 1;
3194 break;
3195
3196 case 0x13: /* POOL16D: bits 010011 */
3197 if ((insn & 0x1) == 0x1)
3198 /* ADDIUSP: bits 010011 1 */
3199 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3200 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3201 /* ADDIUS5: bits 010011 0 */
3202 /* ADDIUS5 $sp, imm */
3203 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3204 else
3205 this_non_prologue_insn = 1;
3206 break;
3207
3208 case 0x32: /* SWSP: bits 110010 */
3209 offset = b0s5_imm (insn) << 2;
3210 sreg = b5s5_reg (insn);
3211 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3212 break;
3213
3214 default:
3215 /* The instruction in the delay slot can be a part
3216 of the prologue, so move forward once more. */
3217 if (micromips_instruction_has_delay_slot (insn << 16, 0))
3218 in_delay_slot = 1;
3219 else
3220 this_non_prologue_insn = 1;
3221 break;
3222 }
3223 break;
3224 }
3225 if (sp_adj < 0)
3226 frame_offset -= sp_adj;
3227
3228 non_prologue_insns += this_non_prologue_insn;
3229
3230 /* A jump or branch, enough non-prologue insns seen or positive
3231 stack adjustment? If so, then we must have reached the end
3232 of the prologue by now. */
3233 if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
3234 || micromips_instruction_is_compact_branch (insn))
3235 break;
3236
3237 prev_non_prologue_insn = this_non_prologue_insn;
3238 prev_delay_slot = in_delay_slot;
3239 prev_pc = cur_pc;
3240 }
3241
3242 if (this_cache != NULL)
3243 {
3244 this_cache->base =
3245 (get_frame_register_signed (this_frame,
3246 gdbarch_num_regs (gdbarch) + frame_reg)
3247 + frame_offset - frame_adjust);
3248 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
3249 be able to get rid of the assignment below, evetually. But it's
3250 still needed for now. */
3251 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3252 + mips_regnum (gdbarch)->pc]
3253 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
3254 }
3255
3256 /* Set end_prologue_addr to the address of the instruction immediately
3257 after the last one we scanned. Unless the last one looked like a
3258 non-prologue instruction (and we looked ahead), in which case use
3259 its address instead. */
3260 end_prologue_addr
3261 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3262
3263 return end_prologue_addr;
3264 }
3265
3266 /* Heuristic unwinder for procedures using microMIPS instructions.
3267 Procedures that use the 32-bit instruction set are handled by the
3268 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
3269
3270 static struct mips_frame_cache *
3271 mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
3272 {
3273 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3274 struct mips_frame_cache *cache;
3275
3276 if ((*this_cache) != NULL)
3277 return (struct mips_frame_cache *) (*this_cache);
3278
3279 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3280 (*this_cache) = cache;
3281 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3282
3283 /* Analyze the function prologue. */
3284 {
3285 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3286 CORE_ADDR start_addr;
3287
3288 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3289 if (start_addr == 0)
3290 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
3291 /* We can't analyze the prologue if we couldn't find the begining
3292 of the function. */
3293 if (start_addr == 0)
3294 return cache;
3295
3296 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame,
3297 (struct mips_frame_cache *) *this_cache);
3298 }
3299
3300 /* gdbarch_sp_regnum contains the value and not the address. */
3301 trad_frame_set_value (cache->saved_regs,
3302 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3303 cache->base);
3304
3305 return (struct mips_frame_cache *) (*this_cache);
3306 }
3307
3308 static void
3309 mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3310 struct frame_id *this_id)
3311 {
3312 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3313 this_cache);
3314 /* This marks the outermost frame. */
3315 if (info->base == 0)
3316 return;
3317 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3318 }
3319
3320 static struct value *
3321 mips_micro_frame_prev_register (struct frame_info *this_frame,
3322 void **this_cache, int regnum)
3323 {
3324 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3325 this_cache);
3326 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3327 }
3328
3329 static int
3330 mips_micro_frame_sniffer (const struct frame_unwind *self,
3331 struct frame_info *this_frame, void **this_cache)
3332 {
3333 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3334 CORE_ADDR pc = get_frame_pc (this_frame);
3335
3336 if (mips_pc_is_micromips (gdbarch, pc))
3337 return 1;
3338 return 0;
3339 }
3340
3341 static const struct frame_unwind mips_micro_frame_unwind =
3342 {
3343 NORMAL_FRAME,
3344 default_frame_unwind_stop_reason,
3345 mips_micro_frame_this_id,
3346 mips_micro_frame_prev_register,
3347 NULL,
3348 mips_micro_frame_sniffer
3349 };
3350
3351 static CORE_ADDR
3352 mips_micro_frame_base_address (struct frame_info *this_frame,
3353 void **this_cache)
3354 {
3355 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3356 this_cache);
3357 return info->base;
3358 }
3359
3360 static const struct frame_base mips_micro_frame_base =
3361 {
3362 &mips_micro_frame_unwind,
3363 mips_micro_frame_base_address,
3364 mips_micro_frame_base_address,
3365 mips_micro_frame_base_address
3366 };
3367
3368 static const struct frame_base *
3369 mips_micro_frame_base_sniffer (struct frame_info *this_frame)
3370 {
3371 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3372 CORE_ADDR pc = get_frame_pc (this_frame);
3373
3374 if (mips_pc_is_micromips (gdbarch, pc))
3375 return &mips_micro_frame_base;
3376 else
3377 return NULL;
3378 }
3379
3380 /* Mark all the registers as unset in the saved_regs array
3381 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3382
3383 static void
3384 reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
3385 {
3386 if (this_cache == NULL || this_cache->saved_regs == NULL)
3387 return;
3388
3389 {
3390 const int num_regs = gdbarch_num_regs (gdbarch);
3391 int i;
3392
3393 for (i = 0; i < num_regs; i++)
3394 {
3395 this_cache->saved_regs[i].addr = -1;
3396 }
3397 }
3398 }
3399
3400 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
3401 the associated FRAME_CACHE if not null.
3402 Return the address of the first instruction past the prologue. */
3403
3404 static CORE_ADDR
3405 mips32_scan_prologue (struct gdbarch *gdbarch,
3406 CORE_ADDR start_pc, CORE_ADDR limit_pc,
3407 struct frame_info *this_frame,
3408 struct mips_frame_cache *this_cache)
3409 {
3410 int prev_non_prologue_insn;
3411 int this_non_prologue_insn;
3412 int non_prologue_insns;
3413 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3414 frame-pointer. */
3415 int prev_delay_slot;
3416 CORE_ADDR prev_pc;
3417 CORE_ADDR cur_pc;
3418 CORE_ADDR sp;
3419 long frame_offset;
3420 int frame_reg = MIPS_SP_REGNUM;
3421
3422 CORE_ADDR end_prologue_addr;
3423 int seen_sp_adjust = 0;
3424 int load_immediate_bytes = 0;
3425 int in_delay_slot;
3426 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
3427
3428 /* Can be called when there's no process, and hence when there's no
3429 THIS_FRAME. */
3430 if (this_frame != NULL)
3431 sp = get_frame_register_signed (this_frame,
3432 gdbarch_num_regs (gdbarch)
3433 + MIPS_SP_REGNUM);
3434 else
3435 sp = 0;
3436
3437 if (limit_pc > start_pc + 200)
3438 limit_pc = start_pc + 200;
3439
3440 restart:
3441 prev_non_prologue_insn = 0;
3442 non_prologue_insns = 0;
3443 prev_delay_slot = 0;
3444 prev_pc = start_pc;
3445
3446 /* Permit at most one non-prologue non-control-transfer instruction
3447 in the middle which may have been reordered by the compiler for
3448 optimisation. */
3449 frame_offset = 0;
3450 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
3451 {
3452 unsigned long inst, high_word;
3453 long offset;
3454 int reg;
3455
3456 this_non_prologue_insn = 0;
3457 in_delay_slot = 0;
3458
3459 /* Fetch the instruction. */
3460 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3461 cur_pc, NULL);
3462
3463 /* Save some code by pre-extracting some useful fields. */
3464 high_word = (inst >> 16) & 0xffff;
3465 offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
3466 reg = high_word & 0x1f;
3467
3468 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
3469 || high_word == 0x23bd /* addi $sp,$sp,-i */
3470 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3471 {
3472 if (offset < 0) /* Negative stack adjustment? */
3473 frame_offset -= offset;
3474 else
3475 /* Exit loop if a positive stack adjustment is found, which
3476 usually means that the stack cleanup code in the function
3477 epilogue is reached. */
3478 break;
3479 seen_sp_adjust = 1;
3480 }
3481 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3482 && !regsize_is_64_bits)
3483 {
3484 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3485 }
3486 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3487 && regsize_is_64_bits)
3488 {
3489 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
3490 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3491 }
3492 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3493 {
3494 /* Old gcc frame, r30 is virtual frame pointer. */
3495 if (offset != frame_offset)
3496 frame_addr = sp + offset;
3497 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
3498 {
3499 unsigned alloca_adjust;
3500
3501 frame_reg = 30;
3502 frame_addr = get_frame_register_signed
3503 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3504 frame_offset = 0;
3505
3506 alloca_adjust = (unsigned) (frame_addr - (sp + offset));
3507 if (alloca_adjust > 0)
3508 {
3509 /* FP > SP + frame_size. This may be because of
3510 an alloca or somethings similar. Fix sp to
3511 "pre-alloca" value, and try again. */
3512 sp += alloca_adjust;
3513 /* Need to reset the status of all registers. Otherwise,
3514 we will hit a guard that prevents the new address
3515 for each register to be recomputed during the second
3516 pass. */
3517 reset_saved_regs (gdbarch, this_cache);
3518 goto restart;
3519 }
3520 }
3521 }
3522 /* move $30,$sp. With different versions of gas this will be either
3523 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3524 Accept any one of these. */
3525 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3526 {
3527 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
3528 if (this_frame && frame_reg == MIPS_SP_REGNUM)
3529 {
3530 unsigned alloca_adjust;
3531
3532 frame_reg = 30;
3533 frame_addr = get_frame_register_signed
3534 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3535
3536 alloca_adjust = (unsigned) (frame_addr - sp);
3537 if (alloca_adjust > 0)
3538 {
3539 /* FP > SP + frame_size. This may be because of
3540 an alloca or somethings similar. Fix sp to
3541 "pre-alloca" value, and try again. */
3542 sp = frame_addr;
3543 /* Need to reset the status of all registers. Otherwise,
3544 we will hit a guard that prevents the new address
3545 for each register to be recomputed during the second
3546 pass. */
3547 reset_saved_regs (gdbarch, this_cache);
3548 goto restart;
3549 }
3550 }
3551 }
3552 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3553 && !regsize_is_64_bits)
3554 {
3555 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
3556 }
3557 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3558 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3559 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3560 || high_word == 0x3c1c /* lui $gp,n */
3561 || high_word == 0x279c /* addiu $gp,$gp,n */
3562 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3563 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3564 )
3565 {
3566 /* These instructions are part of the prologue, but we don't
3567 need to do anything special to handle them. */
3568 }
3569 /* The instructions below load $at or $t0 with an immediate
3570 value in preparation for a stack adjustment via
3571 subu $sp,$sp,[$at,$t0]. These instructions could also
3572 initialize a local variable, so we accept them only before
3573 a stack adjustment instruction was seen. */
3574 else if (!seen_sp_adjust
3575 && !prev_delay_slot
3576 && (high_word == 0x3c01 /* lui $at,n */
3577 || high_word == 0x3c08 /* lui $t0,n */
3578 || high_word == 0x3421 /* ori $at,$at,n */
3579 || high_word == 0x3508 /* ori $t0,$t0,n */
3580 || high_word == 0x3401 /* ori $at,$zero,n */
3581 || high_word == 0x3408 /* ori $t0,$zero,n */
3582 ))
3583 {
3584 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
3585 }
3586 /* Check for branches and jumps. The instruction in the delay
3587 slot can be a part of the prologue, so move forward once more. */
3588 else if (mips32_instruction_has_delay_slot (gdbarch, inst))
3589 {
3590 in_delay_slot = 1;
3591 }
3592 /* This instruction is not an instruction typically found
3593 in a prologue, so we must have reached the end of the
3594 prologue. */
3595 else
3596 {
3597 this_non_prologue_insn = 1;
3598 }
3599
3600 non_prologue_insns += this_non_prologue_insn;
3601
3602 /* A jump or branch, or enough non-prologue insns seen? If so,
3603 then we must have reached the end of the prologue by now. */
3604 if (prev_delay_slot || non_prologue_insns > 1)
3605 break;
3606
3607 prev_non_prologue_insn = this_non_prologue_insn;
3608 prev_delay_slot = in_delay_slot;
3609 prev_pc = cur_pc;
3610 }
3611
3612 if (this_cache != NULL)
3613 {
3614 this_cache->base =
3615 (get_frame_register_signed (this_frame,
3616 gdbarch_num_regs (gdbarch) + frame_reg)
3617 + frame_offset);
3618 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3619 this assignment below, eventually. But it's still needed
3620 for now. */
3621 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3622 + mips_regnum (gdbarch)->pc]
3623 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3624 + MIPS_RA_REGNUM];
3625 }
3626
3627 /* Set end_prologue_addr to the address of the instruction immediately
3628 after the last one we scanned. Unless the last one looked like a
3629 non-prologue instruction (and we looked ahead), in which case use
3630 its address instead. */
3631 end_prologue_addr
3632 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3633
3634 /* In a frameless function, we might have incorrectly
3635 skipped some load immediate instructions. Undo the skipping
3636 if the load immediate was not followed by a stack adjustment. */
3637 if (load_immediate_bytes && !seen_sp_adjust)
3638 end_prologue_addr -= load_immediate_bytes;
3639
3640 return end_prologue_addr;
3641 }
3642
3643 /* Heuristic unwinder for procedures using 32-bit instructions (covers
3644 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3645 instructions (a.k.a. MIPS16) are handled by the mips_insn16
3646 unwinder. Likewise microMIPS and the mips_micro unwinder. */
3647
3648 static struct mips_frame_cache *
3649 mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
3650 {
3651 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3652 struct mips_frame_cache *cache;
3653
3654 if ((*this_cache) != NULL)
3655 return (struct mips_frame_cache *) (*this_cache);
3656
3657 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3658 (*this_cache) = cache;
3659 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3660
3661 /* Analyze the function prologue. */
3662 {
3663 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3664 CORE_ADDR start_addr;
3665
3666 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3667 if (start_addr == 0)
3668 start_addr = heuristic_proc_start (gdbarch, pc);
3669 /* We can't analyze the prologue if we couldn't find the begining
3670 of the function. */
3671 if (start_addr == 0)
3672 return cache;
3673
3674 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame,
3675 (struct mips_frame_cache *) *this_cache);
3676 }
3677
3678 /* gdbarch_sp_regnum contains the value and not the address. */
3679 trad_frame_set_value (cache->saved_regs,
3680 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3681 cache->base);
3682
3683 return (struct mips_frame_cache *) (*this_cache);
3684 }
3685
3686 static void
3687 mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
3688 struct frame_id *this_id)
3689 {
3690 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3691 this_cache);
3692 /* This marks the outermost frame. */
3693 if (info->base == 0)
3694 return;
3695 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3696 }
3697
3698 static struct value *
3699 mips_insn32_frame_prev_register (struct frame_info *this_frame,
3700 void **this_cache, int regnum)
3701 {
3702 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3703 this_cache);
3704 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3705 }
3706
3707 static int
3708 mips_insn32_frame_sniffer (const struct frame_unwind *self,
3709 struct frame_info *this_frame, void **this_cache)
3710 {
3711 CORE_ADDR pc = get_frame_pc (this_frame);
3712 if (mips_pc_is_mips (pc))
3713 return 1;
3714 return 0;
3715 }
3716
3717 static const struct frame_unwind mips_insn32_frame_unwind =
3718 {
3719 NORMAL_FRAME,
3720 default_frame_unwind_stop_reason,
3721 mips_insn32_frame_this_id,
3722 mips_insn32_frame_prev_register,
3723 NULL,
3724 mips_insn32_frame_sniffer
3725 };
3726
3727 static CORE_ADDR
3728 mips_insn32_frame_base_address (struct frame_info *this_frame,
3729 void **this_cache)
3730 {
3731 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3732 this_cache);
3733 return info->base;
3734 }
3735
3736 static const struct frame_base mips_insn32_frame_base =
3737 {
3738 &mips_insn32_frame_unwind,
3739 mips_insn32_frame_base_address,
3740 mips_insn32_frame_base_address,
3741 mips_insn32_frame_base_address
3742 };
3743
3744 static const struct frame_base *
3745 mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
3746 {
3747 CORE_ADDR pc = get_frame_pc (this_frame);
3748 if (mips_pc_is_mips (pc))
3749 return &mips_insn32_frame_base;
3750 else
3751 return NULL;
3752 }
3753
3754 static struct trad_frame_cache *
3755 mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
3756 {
3757 CORE_ADDR pc;
3758 CORE_ADDR start_addr;
3759 CORE_ADDR stack_addr;
3760 struct trad_frame_cache *this_trad_cache;
3761 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3762 int num_regs = gdbarch_num_regs (gdbarch);
3763
3764 if ((*this_cache) != NULL)
3765 return (struct trad_frame_cache *) (*this_cache);
3766 this_trad_cache = trad_frame_cache_zalloc (this_frame);
3767 (*this_cache) = this_trad_cache;
3768
3769 /* The return address is in the link register. */
3770 trad_frame_set_reg_realreg (this_trad_cache,
3771 gdbarch_pc_regnum (gdbarch),
3772 num_regs + MIPS_RA_REGNUM);
3773
3774 /* Frame ID, since it's a frameless / stackless function, no stack
3775 space is allocated and SP on entry is the current SP. */
3776 pc = get_frame_pc (this_frame);
3777 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3778 stack_addr = get_frame_register_signed (this_frame,
3779 num_regs + MIPS_SP_REGNUM);
3780 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
3781
3782 /* Assume that the frame's base is the same as the
3783 stack-pointer. */
3784 trad_frame_set_this_base (this_trad_cache, stack_addr);
3785
3786 return this_trad_cache;
3787 }
3788
3789 static void
3790 mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
3791 struct frame_id *this_id)
3792 {
3793 struct trad_frame_cache *this_trad_cache
3794 = mips_stub_frame_cache (this_frame, this_cache);
3795 trad_frame_get_id (this_trad_cache, this_id);
3796 }
3797
3798 static struct value *
3799 mips_stub_frame_prev_register (struct frame_info *this_frame,
3800 void **this_cache, int regnum)
3801 {
3802 struct trad_frame_cache *this_trad_cache
3803 = mips_stub_frame_cache (this_frame, this_cache);
3804 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
3805 }
3806
3807 static int
3808 mips_stub_frame_sniffer (const struct frame_unwind *self,
3809 struct frame_info *this_frame, void **this_cache)
3810 {
3811 gdb_byte dummy[4];
3812 CORE_ADDR pc = get_frame_address_in_block (this_frame);
3813 struct bound_minimal_symbol msym;
3814
3815 /* Use the stub unwinder for unreadable code. */
3816 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3817 return 1;
3818
3819 if (in_plt_section (pc) || in_mips_stubs_section (pc))
3820 return 1;
3821
3822 /* Calling a PIC function from a non-PIC function passes through a
3823 stub. The stub for foo is named ".pic.foo". */
3824 msym = lookup_minimal_symbol_by_pc (pc);
3825 if (msym.minsym != NULL
3826 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
3827 && startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
3828 return 1;
3829
3830 return 0;
3831 }
3832
3833 static const struct frame_unwind mips_stub_frame_unwind =
3834 {
3835 NORMAL_FRAME,
3836 default_frame_unwind_stop_reason,
3837 mips_stub_frame_this_id,
3838 mips_stub_frame_prev_register,
3839 NULL,
3840 mips_stub_frame_sniffer
3841 };
3842
3843 static CORE_ADDR
3844 mips_stub_frame_base_address (struct frame_info *this_frame,
3845 void **this_cache)
3846 {
3847 struct trad_frame_cache *this_trad_cache
3848 = mips_stub_frame_cache (this_frame, this_cache);
3849 return trad_frame_get_this_base (this_trad_cache);
3850 }
3851
3852 static const struct frame_base mips_stub_frame_base =
3853 {
3854 &mips_stub_frame_unwind,
3855 mips_stub_frame_base_address,
3856 mips_stub_frame_base_address,
3857 mips_stub_frame_base_address
3858 };
3859
3860 static const struct frame_base *
3861 mips_stub_frame_base_sniffer (struct frame_info *this_frame)
3862 {
3863 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
3864 return &mips_stub_frame_base;
3865 else
3866 return NULL;
3867 }
3868
3869 /* mips_addr_bits_remove - remove useless address bits */
3870
3871 static CORE_ADDR
3872 mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
3873 {
3874 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3875
3876 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3877 /* This hack is a work-around for existing boards using PMON, the
3878 simulator, and any other 64-bit targets that doesn't have true
3879 64-bit addressing. On these targets, the upper 32 bits of
3880 addresses are ignored by the hardware. Thus, the PC or SP are
3881 likely to have been sign extended to all 1s by instruction
3882 sequences that load 32-bit addresses. For example, a typical
3883 piece of code that loads an address is this:
3884
3885 lui $r2, <upper 16 bits>
3886 ori $r2, <lower 16 bits>
3887
3888 But the lui sign-extends the value such that the upper 32 bits
3889 may be all 1s. The workaround is simply to mask off these
3890 bits. In the future, gcc may be changed to support true 64-bit
3891 addressing, and this masking will have to be disabled. */
3892 return addr &= 0xffffffffUL;
3893 else
3894 return addr;
3895 }
3896
3897
3898 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
3899 instruction and ending with a SC/SCD instruction. If such a sequence
3900 is found, attempt to step through it. A breakpoint is placed at the end of
3901 the sequence. */
3902
3903 /* Instructions used during single-stepping of atomic sequences, standard
3904 ISA version. */
3905 #define LL_OPCODE 0x30
3906 #define LLD_OPCODE 0x34
3907 #define SC_OPCODE 0x38
3908 #define SCD_OPCODE 0x3c
3909
3910 static std::vector<CORE_ADDR>
3911 mips_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
3912 {
3913 CORE_ADDR breaks[2] = {-1, -1};
3914 CORE_ADDR loc = pc;
3915 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
3916 ULONGEST insn;
3917 int insn_count;
3918 int index;
3919 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3920 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3921
3922 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3923 /* Assume all atomic sequences start with a ll/lld instruction. */
3924 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
3925 return {};
3926
3927 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3928 instructions. */
3929 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3930 {
3931 int is_branch = 0;
3932 loc += MIPS_INSN32_SIZE;
3933 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3934
3935 /* Assume that there is at most one branch in the atomic
3936 sequence. If a branch is found, put a breakpoint in its
3937 destination address. */
3938 switch (itype_op (insn))
3939 {
3940 case 0: /* SPECIAL */
3941 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
3942 return {}; /* fallback to the standard single-step code. */
3943 break;
3944 case 1: /* REGIMM */
3945 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3946 || ((itype_rt (insn) & 0x1e) == 0
3947 && itype_rs (insn) == 0)); /* BPOSGE* */
3948 break;
3949 case 2: /* J */
3950 case 3: /* JAL */
3951 return {}; /* fallback to the standard single-step code. */
3952 case 4: /* BEQ */
3953 case 5: /* BNE */
3954 case 6: /* BLEZ */
3955 case 7: /* BGTZ */
3956 case 20: /* BEQL */
3957 case 21: /* BNEL */
3958 case 22: /* BLEZL */
3959 case 23: /* BGTTL */
3960 is_branch = 1;
3961 break;
3962 case 17: /* COP1 */
3963 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3964 && (itype_rt (insn) & 0x2) == 0);
3965 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3966 break;
3967 /* Fall through. */
3968 case 18: /* COP2 */
3969 case 19: /* COP3 */
3970 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3971 break;
3972 }
3973 if (is_branch)
3974 {
3975 branch_bp = loc + mips32_relative_offset (insn) + 4;
3976 if (last_breakpoint >= 1)
3977 return {}; /* More than one branch found, fallback to the
3978 standard single-step code. */
3979 breaks[1] = branch_bp;
3980 last_breakpoint++;
3981 }
3982
3983 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3984 break;
3985 }
3986
3987 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3988 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
3989 return {};
3990
3991 loc += MIPS_INSN32_SIZE;
3992
3993 /* Insert a breakpoint right after the end of the atomic sequence. */
3994 breaks[0] = loc;
3995
3996 /* Check for duplicated breakpoints. Check also for a breakpoint
3997 placed (branch instruction's destination) in the atomic sequence. */
3998 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3999 last_breakpoint = 0;
4000
4001 std::vector<CORE_ADDR> next_pcs;
4002
4003 /* Effectively inserts the breakpoints. */
4004 for (index = 0; index <= last_breakpoint; index++)
4005 next_pcs.push_back (breaks[index]);
4006
4007 return next_pcs;
4008 }
4009
4010 static std::vector<CORE_ADDR>
4011 micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
4012 CORE_ADDR pc)
4013 {
4014 const int atomic_sequence_length = 16; /* Instruction sequence length. */
4015 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
4016 CORE_ADDR breaks[2] = {-1, -1};
4017 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
4018 destination. */
4019 CORE_ADDR loc = pc;
4020 int sc_found = 0;
4021 ULONGEST insn;
4022 int insn_count;
4023 int index;
4024
4025 /* Assume all atomic sequences start with a ll/lld instruction. */
4026 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4027 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
4028 return {};
4029 loc += MIPS_INSN16_SIZE;
4030 insn <<= 16;
4031 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4032 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
4033 return {};
4034 loc += MIPS_INSN16_SIZE;
4035
4036 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4037 that no atomic sequence is longer than "atomic_sequence_length"
4038 instructions. */
4039 for (insn_count = 0;
4040 !sc_found && insn_count < atomic_sequence_length;
4041 ++insn_count)
4042 {
4043 int is_branch = 0;
4044
4045 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4046 loc += MIPS_INSN16_SIZE;
4047
4048 /* Assume that there is at most one conditional branch in the
4049 atomic sequence. If a branch is found, put a breakpoint in
4050 its destination address. */
4051 switch (mips_insn_size (ISA_MICROMIPS, insn))
4052 {
4053 /* 32-bit instructions. */
4054 case 2 * MIPS_INSN16_SIZE:
4055 switch (micromips_op (insn))
4056 {
4057 case 0x10: /* POOL32I: bits 010000 */
4058 if ((b5s5_op (insn) & 0x18) != 0x0
4059 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4060 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4061 && (b5s5_op (insn) & 0x1d) != 0x11
4062 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4063 && ((b5s5_op (insn) & 0x1e) != 0x14
4064 || (insn & 0x3) != 0x0)
4065 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4066 && (b5s5_op (insn) & 0x1e) != 0x1a
4067 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4068 && ((b5s5_op (insn) & 0x1e) != 0x1c
4069 || (insn & 0x3) != 0x0)
4070 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4071 && ((b5s5_op (insn) & 0x1c) != 0x1c
4072 || (insn & 0x3) != 0x1))
4073 /* BC1ANY*: bits 010000 111xx xxx01 */
4074 break;
4075 /* Fall through. */
4076
4077 case 0x25: /* BEQ: bits 100101 */
4078 case 0x2d: /* BNE: bits 101101 */
4079 insn <<= 16;
4080 insn |= mips_fetch_instruction (gdbarch,
4081 ISA_MICROMIPS, loc, NULL);
4082 branch_bp = (loc + MIPS_INSN16_SIZE
4083 + micromips_relative_offset16 (insn));
4084 is_branch = 1;
4085 break;
4086
4087 case 0x00: /* POOL32A: bits 000000 */
4088 insn <<= 16;
4089 insn |= mips_fetch_instruction (gdbarch,
4090 ISA_MICROMIPS, loc, NULL);
4091 if (b0s6_op (insn) != 0x3c
4092 /* POOL32Axf: bits 000000 ... 111100 */
4093 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
4094 /* JALR, JALR.HB: 000000 000x111100 111100 */
4095 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4096 break;
4097 /* Fall through. */
4098
4099 case 0x1d: /* JALS: bits 011101 */
4100 case 0x35: /* J: bits 110101 */
4101 case 0x3d: /* JAL: bits 111101 */
4102 case 0x3c: /* JALX: bits 111100 */
4103 return {}; /* Fall back to the standard single-step code. */
4104
4105 case 0x18: /* POOL32C: bits 011000 */
4106 if ((b12s4_op (insn) & 0xb) == 0xb)
4107 /* SC, SCD: bits 011000 1x11 */
4108 sc_found = 1;
4109 break;
4110 }
4111 loc += MIPS_INSN16_SIZE;
4112 break;
4113
4114 /* 16-bit instructions. */
4115 case MIPS_INSN16_SIZE:
4116 switch (micromips_op (insn))
4117 {
4118 case 0x23: /* BEQZ16: bits 100011 */
4119 case 0x2b: /* BNEZ16: bits 101011 */
4120 branch_bp = loc + micromips_relative_offset7 (insn);
4121 is_branch = 1;
4122 break;
4123
4124 case 0x11: /* POOL16C: bits 010001 */
4125 if ((b5s5_op (insn) & 0x1c) != 0xc
4126 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4127 && b5s5_op (insn) != 0x18)
4128 /* JRADDIUSP: bits 010001 11000 */
4129 break;
4130 return {}; /* Fall back to the standard single-step code. */
4131
4132 case 0x33: /* B16: bits 110011 */
4133 return {}; /* Fall back to the standard single-step code. */
4134 }
4135 break;
4136 }
4137 if (is_branch)
4138 {
4139 if (last_breakpoint >= 1)
4140 return {}; /* More than one branch found, fallback to the
4141 standard single-step code. */
4142 breaks[1] = branch_bp;
4143 last_breakpoint++;
4144 }
4145 }
4146 if (!sc_found)
4147 return {};
4148
4149 /* Insert a breakpoint right after the end of the atomic sequence. */
4150 breaks[0] = loc;
4151
4152 /* Check for duplicated breakpoints. Check also for a breakpoint
4153 placed (branch instruction's destination) in the atomic sequence */
4154 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
4155 last_breakpoint = 0;
4156
4157 std::vector<CORE_ADDR> next_pcs;
4158
4159 /* Effectively inserts the breakpoints. */
4160 for (index = 0; index <= last_breakpoint; index++)
4161 next_pcs.push_back (breaks[index]);
4162
4163 return next_pcs;
4164 }
4165
4166 static std::vector<CORE_ADDR>
4167 deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
4168 {
4169 if (mips_pc_is_mips (pc))
4170 return mips_deal_with_atomic_sequence (gdbarch, pc);
4171 else if (mips_pc_is_micromips (gdbarch, pc))
4172 return micromips_deal_with_atomic_sequence (gdbarch, pc);
4173 else
4174 return {};
4175 }
4176
4177 /* mips_software_single_step() is called just before we want to resume
4178 the inferior, if we want to single-step it but there is no hardware
4179 or kernel single-step support (MIPS on GNU/Linux for example). We find
4180 the target of the coming instruction and breakpoint it. */
4181
4182 std::vector<CORE_ADDR>
4183 mips_software_single_step (struct regcache *regcache)
4184 {
4185 struct gdbarch *gdbarch = regcache->arch ();
4186 CORE_ADDR pc, next_pc;
4187
4188 pc = regcache_read_pc (regcache);
4189 std::vector<CORE_ADDR> next_pcs = deal_with_atomic_sequence (gdbarch, pc);
4190
4191 if (!next_pcs.empty ())
4192 return next_pcs;
4193
4194 next_pc = mips_next_pc (regcache, pc);
4195
4196 return {next_pc};
4197 }
4198
4199 /* Test whether the PC points to the return instruction at the
4200 end of a function. */
4201
4202 static int
4203 mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
4204 {
4205 ULONGEST insn;
4206 ULONGEST hint;
4207
4208 /* This used to check for MIPS16, but this piece of code is never
4209 called for MIPS16 functions. And likewise microMIPS ones. */
4210 gdb_assert (mips_pc_is_mips (pc));
4211
4212 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4213 hint = 0x7c0;
4214 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
4215 }
4216
4217
4218 /* This fencepost looks highly suspicious to me. Removing it also
4219 seems suspicious as it could affect remote debugging across serial
4220 lines. */
4221
4222 static CORE_ADDR
4223 heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
4224 {
4225 CORE_ADDR start_pc;
4226 CORE_ADDR fence;
4227 int instlen;
4228 int seen_adjsp = 0;
4229 struct inferior *inf;
4230
4231 pc = gdbarch_addr_bits_remove (gdbarch, pc);
4232 start_pc = pc;
4233 fence = start_pc - heuristic_fence_post;
4234 if (start_pc == 0)
4235 return 0;
4236
4237 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
4238 fence = VM_MIN_ADDRESS;
4239
4240 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
4241
4242 inf = current_inferior ();
4243
4244 /* Search back for previous return. */
4245 for (start_pc -= instlen;; start_pc -= instlen)
4246 if (start_pc < fence)
4247 {
4248 /* It's not clear to me why we reach this point when
4249 stop_soon, but with this test, at least we
4250 don't print out warnings for every child forked (eg, on
4251 decstation). 22apr93 rich@cygnus.com. */
4252 if (inf->control.stop_soon == NO_STOP_QUIETLY)
4253 {
4254 static int blurb_printed = 0;
4255
4256 warning (_("GDB can't find the start of the function at %s."),
4257 paddress (gdbarch, pc));
4258
4259 if (!blurb_printed)
4260 {
4261 /* This actually happens frequently in embedded
4262 development, when you first connect to a board
4263 and your stack pointer and pc are nowhere in
4264 particular. This message needs to give people
4265 in that situation enough information to
4266 determine that it's no big deal. */
4267 printf_filtered ("\n\
4268 GDB is unable to find the start of the function at %s\n\
4269 and thus can't determine the size of that function's stack frame.\n\
4270 This means that GDB may be unable to access that stack frame, or\n\
4271 the frames below it.\n\
4272 This problem is most likely caused by an invalid program counter or\n\
4273 stack pointer.\n\
4274 However, if you think GDB should simply search farther back\n\
4275 from %s for code which looks like the beginning of a\n\
4276 function, you can increase the range of the search using the `set\n\
4277 heuristic-fence-post' command.\n",
4278 paddress (gdbarch, pc), paddress (gdbarch, pc));
4279 blurb_printed = 1;
4280 }
4281 }
4282
4283 return 0;
4284 }
4285 else if (mips_pc_is_mips16 (gdbarch, start_pc))
4286 {
4287 unsigned short inst;
4288
4289 /* On MIPS16, any one of the following is likely to be the
4290 start of a function:
4291 extend save
4292 save
4293 entry
4294 addiu sp,-n
4295 daddiu sp,-n
4296 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4297 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
4298 if ((inst & 0xff80) == 0x6480) /* save */
4299 {
4300 if (start_pc - instlen >= fence)
4301 {
4302 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4303 start_pc - instlen, NULL);
4304 if ((inst & 0xf800) == 0xf000) /* extend */
4305 start_pc -= instlen;
4306 }
4307 break;
4308 }
4309 else if (((inst & 0xf81f) == 0xe809
4310 && (inst & 0x700) != 0x700) /* entry */
4311 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4312 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4313 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
4314 break;
4315 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4316 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4317 seen_adjsp = 1;
4318 else
4319 seen_adjsp = 0;
4320 }
4321 else if (mips_pc_is_micromips (gdbarch, start_pc))
4322 {
4323 ULONGEST insn;
4324 int stop = 0;
4325 long offset;
4326 int dreg;
4327 int sreg;
4328
4329 /* On microMIPS, any one of the following is likely to be the
4330 start of a function:
4331 ADDIUSP -imm
4332 (D)ADDIU $sp, -imm
4333 LUI $gp, imm */
4334 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4335 switch (micromips_op (insn))
4336 {
4337 case 0xc: /* ADDIU: bits 001100 */
4338 case 0x17: /* DADDIU: bits 010111 */
4339 sreg = b0s5_reg (insn);
4340 dreg = b5s5_reg (insn);
4341 insn <<= 16;
4342 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4343 pc + MIPS_INSN16_SIZE, NULL);
4344 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4345 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4346 /* (D)ADDIU $sp, imm */
4347 && offset < 0)
4348 stop = 1;
4349 break;
4350
4351 case 0x10: /* POOL32I: bits 010000 */
4352 if (b5s5_op (insn) == 0xd
4353 /* LUI: bits 010000 001101 */
4354 && b0s5_reg (insn >> 16) == 28)
4355 /* LUI $gp, imm */
4356 stop = 1;
4357 break;
4358
4359 case 0x13: /* POOL16D: bits 010011 */
4360 if ((insn & 0x1) == 0x1)
4361 /* ADDIUSP: bits 010011 1 */
4362 {
4363 offset = micromips_decode_imm9 (b1s9_imm (insn));
4364 if (offset < 0)
4365 /* ADDIUSP -imm */
4366 stop = 1;
4367 }
4368 else
4369 /* ADDIUS5: bits 010011 0 */
4370 {
4371 dreg = b5s5_reg (insn);
4372 offset = (b1s4_imm (insn) ^ 8) - 8;
4373 if (dreg == MIPS_SP_REGNUM && offset < 0)
4374 /* ADDIUS5 $sp, -imm */
4375 stop = 1;
4376 }
4377 break;
4378 }
4379 if (stop)
4380 break;
4381 }
4382 else if (mips_about_to_return (gdbarch, start_pc))
4383 {
4384 /* Skip return and its delay slot. */
4385 start_pc += 2 * MIPS_INSN32_SIZE;
4386 break;
4387 }
4388
4389 return start_pc;
4390 }
4391
4392 struct mips_objfile_private
4393 {
4394 bfd_size_type size;
4395 char *contents;
4396 };
4397
4398 /* According to the current ABI, should the type be passed in a
4399 floating-point register (assuming that there is space)? When there
4400 is no FPU, FP are not even considered as possible candidates for
4401 FP registers and, consequently this returns false - forces FP
4402 arguments into integer registers. */
4403
4404 static int
4405 fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4406 struct type *arg_type)
4407 {
4408 return ((typecode == TYPE_CODE_FLT
4409 || (MIPS_EABI (gdbarch)
4410 && (typecode == TYPE_CODE_STRUCT
4411 || typecode == TYPE_CODE_UNION)
4412 && TYPE_NFIELDS (arg_type) == 1
4413 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4414 == TYPE_CODE_FLT))
4415 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
4416 }
4417
4418 /* On o32, argument passing in GPRs depends on the alignment of the type being
4419 passed. Return 1 if this type must be aligned to a doubleword boundary. */
4420
4421 static int
4422 mips_type_needs_double_align (struct type *type)
4423 {
4424 enum type_code typecode = TYPE_CODE (type);
4425
4426 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4427 return 1;
4428 else if (typecode == TYPE_CODE_STRUCT)
4429 {
4430 if (TYPE_NFIELDS (type) < 1)
4431 return 0;
4432 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4433 }
4434 else if (typecode == TYPE_CODE_UNION)
4435 {
4436 int i, n;
4437
4438 n = TYPE_NFIELDS (type);
4439 for (i = 0; i < n; i++)
4440 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4441 return 1;
4442 return 0;
4443 }
4444 return 0;
4445 }
4446
4447 /* Adjust the address downward (direction of stack growth) so that it
4448 is correctly aligned for a new stack frame. */
4449 static CORE_ADDR
4450 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4451 {
4452 return align_down (addr, 16);
4453 }
4454
4455 /* Implement the "push_dummy_code" gdbarch method. */
4456
4457 static CORE_ADDR
4458 mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4459 CORE_ADDR funaddr, struct value **args,
4460 int nargs, struct type *value_type,
4461 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4462 struct regcache *regcache)
4463 {
4464 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
4465 CORE_ADDR nop_addr;
4466 CORE_ADDR bp_slot;
4467
4468 /* Reserve enough room on the stack for our breakpoint instruction. */
4469 bp_slot = sp - sizeof (nop_insn);
4470
4471 /* Return to microMIPS mode if calling microMIPS code to avoid
4472 triggering an address error exception on processors that only
4473 support microMIPS execution. */
4474 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4475 ? make_compact_addr (bp_slot) : bp_slot);
4476
4477 /* The breakpoint layer automatically adjusts the address of
4478 breakpoints inserted in a branch delay slot. With enough
4479 bad luck, the 4 bytes located just before our breakpoint
4480 instruction could look like a branch instruction, and thus
4481 trigger the adjustement, and break the function call entirely.
4482 So, we reserve those 4 bytes and write a nop instruction
4483 to prevent that from happening. */
4484 nop_addr = bp_slot - sizeof (nop_insn);
4485 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4486 sp = mips_frame_align (gdbarch, nop_addr);
4487
4488 /* Inferior resumes at the function entry point. */
4489 *real_pc = funaddr;
4490
4491 return sp;
4492 }
4493
4494 static CORE_ADDR
4495 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4496 struct regcache *regcache, CORE_ADDR bp_addr,
4497 int nargs, struct value **args, CORE_ADDR sp,
4498 int struct_return, CORE_ADDR struct_addr)
4499 {
4500 int argreg;
4501 int float_argreg;
4502 int argnum;
4503 int len = 0;
4504 int stack_offset = 0;
4505 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4506 CORE_ADDR func_addr = find_function_addr (function, NULL);
4507 int abi_regsize = mips_abi_regsize (gdbarch);
4508
4509 /* For shared libraries, "t9" needs to point at the function
4510 address. */
4511 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4512
4513 /* Set the return address register to point to the entry point of
4514 the program, where a breakpoint lies in wait. */
4515 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4516
4517 /* First ensure that the stack and structure return address (if any)
4518 are properly aligned. The stack has to be at least 64-bit
4519 aligned even on 32-bit machines, because doubles must be 64-bit
4520 aligned. For n32 and n64, stack frames need to be 128-bit
4521 aligned, so we round to this widest known alignment. */
4522
4523 sp = align_down (sp, 16);
4524 struct_addr = align_down (struct_addr, 16);
4525
4526 /* Now make space on the stack for the args. We allocate more
4527 than necessary for EABI, because the first few arguments are
4528 passed in registers, but that's OK. */
4529 for (argnum = 0; argnum < nargs; argnum++)
4530 len += align_up (TYPE_LENGTH (value_type (args[argnum])), abi_regsize);
4531 sp -= align_up (len, 16);
4532
4533 if (mips_debug)
4534 fprintf_unfiltered (gdb_stdlog,
4535 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4536 paddress (gdbarch, sp), (long) align_up (len, 16));
4537
4538 /* Initialize the integer and float register pointers. */
4539 argreg = MIPS_A0_REGNUM;
4540 float_argreg = mips_fpa0_regnum (gdbarch);
4541
4542 /* The struct_return pointer occupies the first parameter-passing reg. */
4543 if (struct_return)
4544 {
4545 if (mips_debug)
4546 fprintf_unfiltered (gdb_stdlog,
4547 "mips_eabi_push_dummy_call: "
4548 "struct_return reg=%d %s\n",
4549 argreg, paddress (gdbarch, struct_addr));
4550 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4551 }
4552
4553 /* Now load as many as possible of the first arguments into
4554 registers, and push the rest onto the stack. Loop thru args
4555 from first to last. */
4556 for (argnum = 0; argnum < nargs; argnum++)
4557 {
4558 const gdb_byte *val;
4559 /* This holds the address of structures that are passed by
4560 reference. */
4561 gdb_byte ref_valbuf[MAX_MIPS_ABI_REGSIZE];
4562 struct value *arg = args[argnum];
4563 struct type *arg_type = check_typedef (value_type (arg));
4564 int len = TYPE_LENGTH (arg_type);
4565 enum type_code typecode = TYPE_CODE (arg_type);
4566
4567 if (mips_debug)
4568 fprintf_unfiltered (gdb_stdlog,
4569 "mips_eabi_push_dummy_call: %d len=%d type=%d",
4570 argnum + 1, len, (int) typecode);
4571
4572 /* The EABI passes structures that do not fit in a register by
4573 reference. */
4574 if (len > abi_regsize
4575 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
4576 {
4577 gdb_assert (abi_regsize <= ARRAY_SIZE (ref_valbuf));
4578 store_unsigned_integer (ref_valbuf, abi_regsize, byte_order,
4579 value_address (arg));
4580 typecode = TYPE_CODE_PTR;
4581 len = abi_regsize;
4582 val = ref_valbuf;
4583 if (mips_debug)
4584 fprintf_unfiltered (gdb_stdlog, " push");
4585 }
4586 else
4587 val = value_contents (arg);
4588
4589 /* 32-bit ABIs always start floating point arguments in an
4590 even-numbered floating point register. Round the FP register
4591 up before the check to see if there are any FP registers
4592 left. Non MIPS_EABI targets also pass the FP in the integer
4593 registers so also round up normal registers. */
4594 if (abi_regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
4595 {
4596 if ((float_argreg & 1))
4597 float_argreg++;
4598 }
4599
4600 /* Floating point arguments passed in registers have to be
4601 treated specially. On 32-bit architectures, doubles
4602 are passed in register pairs; the even register gets
4603 the low word, and the odd register gets the high word.
4604 On non-EABI processors, the first two floating point arguments are
4605 also copied to general registers, because MIPS16 functions
4606 don't use float registers for arguments. This duplication of
4607 arguments in general registers can't hurt non-MIPS16 functions
4608 because those registers are normally skipped. */
4609 /* MIPS_EABI squeezes a struct that contains a single floating
4610 point value into an FP register instead of pushing it onto the
4611 stack. */
4612 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4613 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4614 {
4615 /* EABI32 will pass doubles in consecutive registers, even on
4616 64-bit cores. At one time, we used to check the size of
4617 `float_argreg' to determine whether or not to pass doubles
4618 in consecutive registers, but this is not sufficient for
4619 making the ABI determination. */
4620 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
4621 {
4622 int low_offset = gdbarch_byte_order (gdbarch)
4623 == BFD_ENDIAN_BIG ? 4 : 0;
4624 long regval;
4625
4626 /* Write the low word of the double to the even register(s). */
4627 regval = extract_signed_integer (val + low_offset,
4628 4, byte_order);
4629 if (mips_debug)
4630 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4631 float_argreg, phex (regval, 4));
4632 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4633
4634 /* Write the high word of the double to the odd register(s). */
4635 regval = extract_signed_integer (val + 4 - low_offset,
4636 4, byte_order);
4637 if (mips_debug)
4638 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4639 float_argreg, phex (regval, 4));
4640 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4641 }
4642 else
4643 {
4644 /* This is a floating point value that fits entirely
4645 in a single register. */
4646 /* On 32 bit ABI's the float_argreg is further adjusted
4647 above to ensure that it is even register aligned. */
4648 LONGEST regval = extract_signed_integer (val, len, byte_order);
4649 if (mips_debug)
4650 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4651 float_argreg, phex (regval, len));
4652 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4653 }
4654 }
4655 else
4656 {
4657 /* Copy the argument to general registers or the stack in
4658 register-sized pieces. Large arguments are split between
4659 registers and stack. */
4660 /* Note: structs whose size is not a multiple of abi_regsize
4661 are treated specially: Irix cc passes
4662 them in registers where gcc sometimes puts them on the
4663 stack. For maximum compatibility, we will put them in
4664 both places. */
4665 int odd_sized_struct = (len > abi_regsize && len % abi_regsize != 0);
4666
4667 /* Note: Floating-point values that didn't fit into an FP
4668 register are only written to memory. */
4669 while (len > 0)
4670 {
4671 /* Remember if the argument was written to the stack. */
4672 int stack_used_p = 0;
4673 int partial_len = (len < abi_regsize ? len : abi_regsize);
4674
4675 if (mips_debug)
4676 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4677 partial_len);
4678
4679 /* Write this portion of the argument to the stack. */
4680 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4681 || odd_sized_struct
4682 || fp_register_arg_p (gdbarch, typecode, arg_type))
4683 {
4684 /* Should shorter than int integer values be
4685 promoted to int before being stored? */
4686 int longword_offset = 0;
4687 CORE_ADDR addr;
4688 stack_used_p = 1;
4689 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4690 {
4691 if (abi_regsize == 8
4692 && (typecode == TYPE_CODE_INT
4693 || typecode == TYPE_CODE_PTR
4694 || typecode == TYPE_CODE_FLT) && len <= 4)
4695 longword_offset = abi_regsize - len;
4696 else if ((typecode == TYPE_CODE_STRUCT
4697 || typecode == TYPE_CODE_UNION)
4698 && TYPE_LENGTH (arg_type) < abi_regsize)
4699 longword_offset = abi_regsize - len;
4700 }
4701
4702 if (mips_debug)
4703 {
4704 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4705 paddress (gdbarch, stack_offset));
4706 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4707 paddress (gdbarch, longword_offset));
4708 }
4709
4710 addr = sp + stack_offset + longword_offset;
4711
4712 if (mips_debug)
4713 {
4714 int i;
4715 fprintf_unfiltered (gdb_stdlog, " @%s ",
4716 paddress (gdbarch, addr));
4717 for (i = 0; i < partial_len; i++)
4718 {
4719 fprintf_unfiltered (gdb_stdlog, "%02x",
4720 val[i] & 0xff);
4721 }
4722 }
4723 write_memory (addr, val, partial_len);
4724 }
4725
4726 /* Note!!! This is NOT an else clause. Odd sized
4727 structs may go thru BOTH paths. Floating point
4728 arguments will not. */
4729 /* Write this portion of the argument to a general
4730 purpose register. */
4731 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4732 && !fp_register_arg_p (gdbarch, typecode, arg_type))
4733 {
4734 LONGEST regval =
4735 extract_signed_integer (val, partial_len, byte_order);
4736
4737 if (mips_debug)
4738 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4739 argreg,
4740 phex (regval, abi_regsize));
4741 regcache_cooked_write_signed (regcache, argreg, regval);
4742 argreg++;
4743 }
4744
4745 len -= partial_len;
4746 val += partial_len;
4747
4748 /* Compute the offset into the stack at which we will
4749 copy the next parameter.
4750
4751 In the new EABI (and the NABI32), the stack_offset
4752 only needs to be adjusted when it has been used. */
4753
4754 if (stack_used_p)
4755 stack_offset += align_up (partial_len, abi_regsize);
4756 }
4757 }
4758 if (mips_debug)
4759 fprintf_unfiltered (gdb_stdlog, "\n");
4760 }
4761
4762 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4763
4764 /* Return adjusted stack pointer. */
4765 return sp;
4766 }
4767
4768 /* Determine the return value convention being used. */
4769
4770 static enum return_value_convention
4771 mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
4772 struct type *type, struct regcache *regcache,
4773 gdb_byte *readbuf, const gdb_byte *writebuf)
4774 {
4775 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4776 int fp_return_type = 0;
4777 int offset, regnum, xfer;
4778
4779 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4780 return RETURN_VALUE_STRUCT_CONVENTION;
4781
4782 /* Floating point type? */
4783 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4784 {
4785 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4786 fp_return_type = 1;
4787 /* Structs with a single field of float type
4788 are returned in a floating point register. */
4789 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4790 || TYPE_CODE (type) == TYPE_CODE_UNION)
4791 && TYPE_NFIELDS (type) == 1)
4792 {
4793 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4794
4795 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4796 fp_return_type = 1;
4797 }
4798 }
4799
4800 if (fp_return_type)
4801 {
4802 /* A floating-point value belongs in the least significant part
4803 of FP0/FP1. */
4804 if (mips_debug)
4805 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4806 regnum = mips_regnum (gdbarch)->fp0;
4807 }
4808 else
4809 {
4810 /* An integer value goes in V0/V1. */
4811 if (mips_debug)
4812 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4813 regnum = MIPS_V0_REGNUM;
4814 }
4815 for (offset = 0;
4816 offset < TYPE_LENGTH (type);
4817 offset += mips_abi_regsize (gdbarch), regnum++)
4818 {
4819 xfer = mips_abi_regsize (gdbarch);
4820 if (offset + xfer > TYPE_LENGTH (type))
4821 xfer = TYPE_LENGTH (type) - offset;
4822 mips_xfer_register (gdbarch, regcache,
4823 gdbarch_num_regs (gdbarch) + regnum, xfer,
4824 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4825 offset);
4826 }
4827
4828 return RETURN_VALUE_REGISTER_CONVENTION;
4829 }
4830
4831
4832 /* N32/N64 ABI stuff. */
4833
4834 /* Search for a naturally aligned double at OFFSET inside a struct
4835 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4836 registers. */
4837
4838 static int
4839 mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4840 int offset)
4841 {
4842 int i;
4843
4844 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4845 return 0;
4846
4847 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
4848 return 0;
4849
4850 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4851 return 0;
4852
4853 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4854 {
4855 int pos;
4856 struct type *field_type;
4857
4858 /* We're only looking at normal fields. */
4859 if (field_is_static (&TYPE_FIELD (arg_type, i))
4860 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4861 continue;
4862
4863 /* If we have gone past the offset, there is no double to pass. */
4864 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4865 if (pos > offset)
4866 return 0;
4867
4868 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4869
4870 /* If this field is entirely before the requested offset, go
4871 on to the next one. */
4872 if (pos + TYPE_LENGTH (field_type) <= offset)
4873 continue;
4874
4875 /* If this is our special aligned double, we can stop. */
4876 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4877 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4878 return 1;
4879
4880 /* This field starts at or before the requested offset, and
4881 overlaps it. If it is a structure, recurse inwards. */
4882 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
4883 }
4884
4885 return 0;
4886 }
4887
4888 static CORE_ADDR
4889 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4890 struct regcache *regcache, CORE_ADDR bp_addr,
4891 int nargs, struct value **args, CORE_ADDR sp,
4892 int struct_return, CORE_ADDR struct_addr)
4893 {
4894 int argreg;
4895 int float_argreg;
4896 int argnum;
4897 int len = 0;
4898 int stack_offset = 0;
4899 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4900 CORE_ADDR func_addr = find_function_addr (function, NULL);
4901
4902 /* For shared libraries, "t9" needs to point at the function
4903 address. */
4904 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4905
4906 /* Set the return address register to point to the entry point of
4907 the program, where a breakpoint lies in wait. */
4908 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4909
4910 /* First ensure that the stack and structure return address (if any)
4911 are properly aligned. The stack has to be at least 64-bit
4912 aligned even on 32-bit machines, because doubles must be 64-bit
4913 aligned. For n32 and n64, stack frames need to be 128-bit
4914 aligned, so we round to this widest known alignment. */
4915
4916 sp = align_down (sp, 16);
4917 struct_addr = align_down (struct_addr, 16);
4918
4919 /* Now make space on the stack for the args. */
4920 for (argnum = 0; argnum < nargs; argnum++)
4921 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
4922 sp -= align_up (len, 16);
4923
4924 if (mips_debug)
4925 fprintf_unfiltered (gdb_stdlog,
4926 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4927 paddress (gdbarch, sp), (long) align_up (len, 16));
4928
4929 /* Initialize the integer and float register pointers. */
4930 argreg = MIPS_A0_REGNUM;
4931 float_argreg = mips_fpa0_regnum (gdbarch);
4932
4933 /* The struct_return pointer occupies the first parameter-passing reg. */
4934 if (struct_return)
4935 {
4936 if (mips_debug)
4937 fprintf_unfiltered (gdb_stdlog,
4938 "mips_n32n64_push_dummy_call: "
4939 "struct_return reg=%d %s\n",
4940 argreg, paddress (gdbarch, struct_addr));
4941 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4942 }
4943
4944 /* Now load as many as possible of the first arguments into
4945 registers, and push the rest onto the stack. Loop thru args
4946 from first to last. */
4947 for (argnum = 0; argnum < nargs; argnum++)
4948 {
4949 const gdb_byte *val;
4950 struct value *arg = args[argnum];
4951 struct type *arg_type = check_typedef (value_type (arg));
4952 int len = TYPE_LENGTH (arg_type);
4953 enum type_code typecode = TYPE_CODE (arg_type);
4954
4955 if (mips_debug)
4956 fprintf_unfiltered (gdb_stdlog,
4957 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
4958 argnum + 1, len, (int) typecode);
4959
4960 val = value_contents (arg);
4961
4962 /* A 128-bit long double value requires an even-odd pair of
4963 floating-point registers. */
4964 if (len == 16
4965 && fp_register_arg_p (gdbarch, typecode, arg_type)
4966 && (float_argreg & 1))
4967 {
4968 float_argreg++;
4969 argreg++;
4970 }
4971
4972 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4973 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4974 {
4975 /* This is a floating point value that fits entirely
4976 in a single register or a pair of registers. */
4977 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4978 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
4979 if (mips_debug)
4980 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4981 float_argreg, phex (regval, reglen));
4982 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4983
4984 if (mips_debug)
4985 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4986 argreg, phex (regval, reglen));
4987 regcache_cooked_write_unsigned (regcache, argreg, regval);
4988 float_argreg++;
4989 argreg++;
4990 if (len == 16)
4991 {
4992 regval = extract_unsigned_integer (val + reglen,
4993 reglen, byte_order);
4994 if (mips_debug)
4995 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4996 float_argreg, phex (regval, reglen));
4997 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4998
4999 if (mips_debug)
5000 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5001 argreg, phex (regval, reglen));
5002 regcache_cooked_write_unsigned (regcache, argreg, regval);
5003 float_argreg++;
5004 argreg++;
5005 }
5006 }
5007 else
5008 {
5009 /* Copy the argument to general registers or the stack in
5010 register-sized pieces. Large arguments are split between
5011 registers and stack. */
5012 /* For N32/N64, structs, unions, or other composite types are
5013 treated as a sequence of doublewords, and are passed in integer
5014 or floating point registers as though they were simple scalar
5015 parameters to the extent that they fit, with any excess on the
5016 stack packed according to the normal memory layout of the
5017 object.
5018 The caller does not reserve space for the register arguments;
5019 the callee is responsible for reserving it if required. */
5020 /* Note: Floating-point values that didn't fit into an FP
5021 register are only written to memory. */
5022 while (len > 0)
5023 {
5024 /* Remember if the argument was written to the stack. */
5025 int stack_used_p = 0;
5026 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5027
5028 if (mips_debug)
5029 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5030 partial_len);
5031
5032 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5033 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
5034
5035 /* Write this portion of the argument to the stack. */
5036 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
5037 {
5038 /* Should shorter than int integer values be
5039 promoted to int before being stored? */
5040 int longword_offset = 0;
5041 CORE_ADDR addr;
5042 stack_used_p = 1;
5043 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5044 {
5045 if ((typecode == TYPE_CODE_INT
5046 || typecode == TYPE_CODE_PTR)
5047 && len <= 4)
5048 longword_offset = MIPS64_REGSIZE - len;
5049 }
5050
5051 if (mips_debug)
5052 {
5053 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5054 paddress (gdbarch, stack_offset));
5055 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5056 paddress (gdbarch, longword_offset));
5057 }
5058
5059 addr = sp + stack_offset + longword_offset;
5060
5061 if (mips_debug)
5062 {
5063 int i;
5064 fprintf_unfiltered (gdb_stdlog, " @%s ",
5065 paddress (gdbarch, addr));
5066 for (i = 0; i < partial_len; i++)
5067 {
5068 fprintf_unfiltered (gdb_stdlog, "%02x",
5069 val[i] & 0xff);
5070 }
5071 }
5072 write_memory (addr, val, partial_len);
5073 }
5074
5075 /* Note!!! This is NOT an else clause. Odd sized
5076 structs may go thru BOTH paths. */
5077 /* Write this portion of the argument to a general
5078 purpose register. */
5079 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5080 {
5081 LONGEST regval;
5082
5083 /* Sign extend pointers, 32-bit integers and signed
5084 16-bit and 8-bit integers; everything else is taken
5085 as is. */
5086
5087 if ((partial_len == 4
5088 && (typecode == TYPE_CODE_PTR
5089 || typecode == TYPE_CODE_INT))
5090 || (partial_len < 4
5091 && typecode == TYPE_CODE_INT
5092 && !TYPE_UNSIGNED (arg_type)))
5093 regval = extract_signed_integer (val, partial_len,
5094 byte_order);
5095 else
5096 regval = extract_unsigned_integer (val, partial_len,
5097 byte_order);
5098
5099 /* A non-floating-point argument being passed in a
5100 general register. If a struct or union, and if
5101 the remaining length is smaller than the register
5102 size, we have to adjust the register value on
5103 big endian targets.
5104
5105 It does not seem to be necessary to do the
5106 same for integral types. */
5107
5108 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5109 && partial_len < MIPS64_REGSIZE
5110 && (typecode == TYPE_CODE_STRUCT
5111 || typecode == TYPE_CODE_UNION))
5112 regval <<= ((MIPS64_REGSIZE - partial_len)
5113 * TARGET_CHAR_BIT);
5114
5115 if (mips_debug)
5116 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5117 argreg,
5118 phex (regval, MIPS64_REGSIZE));
5119 regcache_cooked_write_unsigned (regcache, argreg, regval);
5120
5121 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
5122 TYPE_LENGTH (arg_type) - len))
5123 {
5124 if (mips_debug)
5125 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
5126 float_argreg,
5127 phex (regval, MIPS64_REGSIZE));
5128 regcache_cooked_write_unsigned (regcache, float_argreg,
5129 regval);
5130 }
5131
5132 float_argreg++;
5133 argreg++;
5134 }
5135
5136 len -= partial_len;
5137 val += partial_len;
5138
5139 /* Compute the offset into the stack at which we will
5140 copy the next parameter.
5141
5142 In N32 (N64?), the stack_offset only needs to be
5143 adjusted when it has been used. */
5144
5145 if (stack_used_p)
5146 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
5147 }
5148 }
5149 if (mips_debug)
5150 fprintf_unfiltered (gdb_stdlog, "\n");
5151 }
5152
5153 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5154
5155 /* Return adjusted stack pointer. */
5156 return sp;
5157 }
5158
5159 static enum return_value_convention
5160 mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
5161 struct type *type, struct regcache *regcache,
5162 gdb_byte *readbuf, const gdb_byte *writebuf)
5163 {
5164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5165
5166 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5167
5168 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5169 if needed), as appropriate for the type. Composite results (struct,
5170 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5171 following rules:
5172
5173 * A struct with only one or two floating point fields is returned in $f0
5174 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5175 case.
5176
5177 * Any other composite results of at most 128 bits are returned in
5178 $2 (first 64 bits) and $3 (remainder, if necessary).
5179
5180 * Larger composite results are handled by converting the function to a
5181 procedure with an implicit first parameter, which is a pointer to an area
5182 reserved by the caller to receive the result. [The o32-bit ABI requires
5183 that all composite results be handled by conversion to implicit first
5184 parameters. The MIPS/SGI Fortran implementation has always made a
5185 specific exception to return COMPLEX results in the floating point
5186 registers.] */
5187
5188 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
5189 return RETURN_VALUE_STRUCT_CONVENTION;
5190 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5191 && TYPE_LENGTH (type) == 16
5192 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5193 {
5194 /* A 128-bit floating-point value fills both $f0 and $f2. The
5195 two registers are used in the same as memory order, so the
5196 eight bytes with the lower memory address are in $f0. */
5197 if (mips_debug)
5198 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
5199 mips_xfer_register (gdbarch, regcache,
5200 (gdbarch_num_regs (gdbarch)
5201 + mips_regnum (gdbarch)->fp0),
5202 8, gdbarch_byte_order (gdbarch),
5203 readbuf, writebuf, 0);
5204 mips_xfer_register (gdbarch, regcache,
5205 (gdbarch_num_regs (gdbarch)
5206 + mips_regnum (gdbarch)->fp0 + 2),
5207 8, gdbarch_byte_order (gdbarch),
5208 readbuf ? readbuf + 8 : readbuf,
5209 writebuf ? writebuf + 8 : writebuf, 0);
5210 return RETURN_VALUE_REGISTER_CONVENTION;
5211 }
5212 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5213 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5214 {
5215 /* A single or double floating-point value that fits in FP0. */
5216 if (mips_debug)
5217 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5218 mips_xfer_register (gdbarch, regcache,
5219 (gdbarch_num_regs (gdbarch)
5220 + mips_regnum (gdbarch)->fp0),
5221 TYPE_LENGTH (type),
5222 gdbarch_byte_order (gdbarch),
5223 readbuf, writebuf, 0);
5224 return RETURN_VALUE_REGISTER_CONVENTION;
5225 }
5226 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5227 && TYPE_NFIELDS (type) <= 2
5228 && TYPE_NFIELDS (type) >= 1
5229 && ((TYPE_NFIELDS (type) == 1
5230 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5231 == TYPE_CODE_FLT))
5232 || (TYPE_NFIELDS (type) == 2
5233 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5234 == TYPE_CODE_FLT)
5235 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5236 == TYPE_CODE_FLT))))
5237 {
5238 /* A struct that contains one or two floats. Each value is part
5239 in the least significant part of their floating point
5240 register (or GPR, for soft float). */
5241 int regnum;
5242 int field;
5243 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5244 ? mips_regnum (gdbarch)->fp0
5245 : MIPS_V0_REGNUM);
5246 field < TYPE_NFIELDS (type); field++, regnum += 2)
5247 {
5248 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5249 / TARGET_CHAR_BIT);
5250 if (mips_debug)
5251 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5252 offset);
5253 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5254 {
5255 /* A 16-byte long double field goes in two consecutive
5256 registers. */
5257 mips_xfer_register (gdbarch, regcache,
5258 gdbarch_num_regs (gdbarch) + regnum,
5259 8,
5260 gdbarch_byte_order (gdbarch),
5261 readbuf, writebuf, offset);
5262 mips_xfer_register (gdbarch, regcache,
5263 gdbarch_num_regs (gdbarch) + regnum + 1,
5264 8,
5265 gdbarch_byte_order (gdbarch),
5266 readbuf, writebuf, offset + 8);
5267 }
5268 else
5269 mips_xfer_register (gdbarch, regcache,
5270 gdbarch_num_regs (gdbarch) + regnum,
5271 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5272 gdbarch_byte_order (gdbarch),
5273 readbuf, writebuf, offset);
5274 }
5275 return RETURN_VALUE_REGISTER_CONVENTION;
5276 }
5277 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5278 || TYPE_CODE (type) == TYPE_CODE_UNION
5279 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5280 {
5281 /* A composite type. Extract the left justified value,
5282 regardless of the byte order. I.e. DO NOT USE
5283 mips_xfer_lower. */
5284 int offset;
5285 int regnum;
5286 for (offset = 0, regnum = MIPS_V0_REGNUM;
5287 offset < TYPE_LENGTH (type);
5288 offset += register_size (gdbarch, regnum), regnum++)
5289 {
5290 int xfer = register_size (gdbarch, regnum);
5291 if (offset + xfer > TYPE_LENGTH (type))
5292 xfer = TYPE_LENGTH (type) - offset;
5293 if (mips_debug)
5294 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5295 offset, xfer, regnum);
5296 mips_xfer_register (gdbarch, regcache,
5297 gdbarch_num_regs (gdbarch) + regnum,
5298 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5299 offset);
5300 }
5301 return RETURN_VALUE_REGISTER_CONVENTION;
5302 }
5303 else
5304 {
5305 /* A scalar extract each part but least-significant-byte
5306 justified. */
5307 int offset;
5308 int regnum;
5309 for (offset = 0, regnum = MIPS_V0_REGNUM;
5310 offset < TYPE_LENGTH (type);
5311 offset += register_size (gdbarch, regnum), regnum++)
5312 {
5313 int xfer = register_size (gdbarch, regnum);
5314 if (offset + xfer > TYPE_LENGTH (type))
5315 xfer = TYPE_LENGTH (type) - offset;
5316 if (mips_debug)
5317 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5318 offset, xfer, regnum);
5319 mips_xfer_register (gdbarch, regcache,
5320 gdbarch_num_regs (gdbarch) + regnum,
5321 xfer, gdbarch_byte_order (gdbarch),
5322 readbuf, writebuf, offset);
5323 }
5324 return RETURN_VALUE_REGISTER_CONVENTION;
5325 }
5326 }
5327
5328 /* Which registers to use for passing floating-point values between
5329 function calls, one of floating-point, general and both kinds of
5330 registers. O32 and O64 use different register kinds for standard
5331 MIPS and MIPS16 code; to make the handling of cases where we may
5332 not know what kind of code is being used (e.g. no debug information)
5333 easier we sometimes use both kinds. */
5334
5335 enum mips_fval_reg
5336 {
5337 mips_fval_fpr,
5338 mips_fval_gpr,
5339 mips_fval_both
5340 };
5341
5342 /* O32 ABI stuff. */
5343
5344 static CORE_ADDR
5345 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5346 struct regcache *regcache, CORE_ADDR bp_addr,
5347 int nargs, struct value **args, CORE_ADDR sp,
5348 int struct_return, CORE_ADDR struct_addr)
5349 {
5350 int argreg;
5351 int float_argreg;
5352 int argnum;
5353 int len = 0;
5354 int stack_offset = 0;
5355 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5356 CORE_ADDR func_addr = find_function_addr (function, NULL);
5357
5358 /* For shared libraries, "t9" needs to point at the function
5359 address. */
5360 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5361
5362 /* Set the return address register to point to the entry point of
5363 the program, where a breakpoint lies in wait. */
5364 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5365
5366 /* First ensure that the stack and structure return address (if any)
5367 are properly aligned. The stack has to be at least 64-bit
5368 aligned even on 32-bit machines, because doubles must be 64-bit
5369 aligned. For n32 and n64, stack frames need to be 128-bit
5370 aligned, so we round to this widest known alignment. */
5371
5372 sp = align_down (sp, 16);
5373 struct_addr = align_down (struct_addr, 16);
5374
5375 /* Now make space on the stack for the args. */
5376 for (argnum = 0; argnum < nargs; argnum++)
5377 {
5378 struct type *arg_type = check_typedef (value_type (args[argnum]));
5379
5380 /* Align to double-word if necessary. */
5381 if (mips_type_needs_double_align (arg_type))
5382 len = align_up (len, MIPS32_REGSIZE * 2);
5383 /* Allocate space on the stack. */
5384 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
5385 }
5386 sp -= align_up (len, 16);
5387
5388 if (mips_debug)
5389 fprintf_unfiltered (gdb_stdlog,
5390 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5391 paddress (gdbarch, sp), (long) align_up (len, 16));
5392
5393 /* Initialize the integer and float register pointers. */
5394 argreg = MIPS_A0_REGNUM;
5395 float_argreg = mips_fpa0_regnum (gdbarch);
5396
5397 /* The struct_return pointer occupies the first parameter-passing reg. */
5398 if (struct_return)
5399 {
5400 if (mips_debug)
5401 fprintf_unfiltered (gdb_stdlog,
5402 "mips_o32_push_dummy_call: "
5403 "struct_return reg=%d %s\n",
5404 argreg, paddress (gdbarch, struct_addr));
5405 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5406 stack_offset += MIPS32_REGSIZE;
5407 }
5408
5409 /* Now load as many as possible of the first arguments into
5410 registers, and push the rest onto the stack. Loop thru args
5411 from first to last. */
5412 for (argnum = 0; argnum < nargs; argnum++)
5413 {
5414 const gdb_byte *val;
5415 struct value *arg = args[argnum];
5416 struct type *arg_type = check_typedef (value_type (arg));
5417 int len = TYPE_LENGTH (arg_type);
5418 enum type_code typecode = TYPE_CODE (arg_type);
5419
5420 if (mips_debug)
5421 fprintf_unfiltered (gdb_stdlog,
5422 "mips_o32_push_dummy_call: %d len=%d type=%d",
5423 argnum + 1, len, (int) typecode);
5424
5425 val = value_contents (arg);
5426
5427 /* 32-bit ABIs always start floating point arguments in an
5428 even-numbered floating point register. Round the FP register
5429 up before the check to see if there are any FP registers
5430 left. O32 targets also pass the FP in the integer registers
5431 so also round up normal registers. */
5432 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5433 {
5434 if ((float_argreg & 1))
5435 float_argreg++;
5436 }
5437
5438 /* Floating point arguments passed in registers have to be
5439 treated specially. On 32-bit architectures, doubles are
5440 passed in register pairs; the even FP register gets the
5441 low word, and the odd FP register gets the high word.
5442 On O32, the first two floating point arguments are also
5443 copied to general registers, following their memory order,
5444 because MIPS16 functions don't use float registers for
5445 arguments. This duplication of arguments in general
5446 registers can't hurt non-MIPS16 functions, because those
5447 registers are normally skipped. */
5448
5449 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5450 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5451 {
5452 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
5453 {
5454 int freg_offset = gdbarch_byte_order (gdbarch)
5455 == BFD_ENDIAN_BIG ? 1 : 0;
5456 unsigned long regval;
5457
5458 /* First word. */
5459 regval = extract_unsigned_integer (val, 4, byte_order);
5460 if (mips_debug)
5461 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5462 float_argreg + freg_offset,
5463 phex (regval, 4));
5464 regcache_cooked_write_unsigned (regcache,
5465 float_argreg++ + freg_offset,
5466 regval);
5467 if (mips_debug)
5468 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5469 argreg, phex (regval, 4));
5470 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5471
5472 /* Second word. */
5473 regval = extract_unsigned_integer (val + 4, 4, byte_order);
5474 if (mips_debug)
5475 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5476 float_argreg - freg_offset,
5477 phex (regval, 4));
5478 regcache_cooked_write_unsigned (regcache,
5479 float_argreg++ - freg_offset,
5480 regval);
5481 if (mips_debug)
5482 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5483 argreg, phex (regval, 4));
5484 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5485 }
5486 else
5487 {
5488 /* This is a floating point value that fits entirely
5489 in a single register. */
5490 /* On 32 bit ABI's the float_argreg is further adjusted
5491 above to ensure that it is even register aligned. */
5492 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5493 if (mips_debug)
5494 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5495 float_argreg, phex (regval, len));
5496 regcache_cooked_write_unsigned (regcache,
5497 float_argreg++, regval);
5498 /* Although two FP registers are reserved for each
5499 argument, only one corresponding integer register is
5500 reserved. */
5501 if (mips_debug)
5502 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5503 argreg, phex (regval, len));
5504 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5505 }
5506 /* Reserve space for the FP register. */
5507 stack_offset += align_up (len, MIPS32_REGSIZE);
5508 }
5509 else
5510 {
5511 /* Copy the argument to general registers or the stack in
5512 register-sized pieces. Large arguments are split between
5513 registers and stack. */
5514 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5515 are treated specially: Irix cc passes
5516 them in registers where gcc sometimes puts them on the
5517 stack. For maximum compatibility, we will put them in
5518 both places. */
5519 int odd_sized_struct = (len > MIPS32_REGSIZE
5520 && len % MIPS32_REGSIZE != 0);
5521 /* Structures should be aligned to eight bytes (even arg registers)
5522 on MIPS_ABI_O32, if their first member has double precision. */
5523 if (mips_type_needs_double_align (arg_type))
5524 {
5525 if ((argreg & 1))
5526 {
5527 argreg++;
5528 stack_offset += MIPS32_REGSIZE;
5529 }
5530 }
5531 while (len > 0)
5532 {
5533 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
5534
5535 if (mips_debug)
5536 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5537 partial_len);
5538
5539 /* Write this portion of the argument to the stack. */
5540 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5541 || odd_sized_struct)
5542 {
5543 /* Should shorter than int integer values be
5544 promoted to int before being stored? */
5545 int longword_offset = 0;
5546 CORE_ADDR addr;
5547
5548 if (mips_debug)
5549 {
5550 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5551 paddress (gdbarch, stack_offset));
5552 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5553 paddress (gdbarch, longword_offset));
5554 }
5555
5556 addr = sp + stack_offset + longword_offset;
5557
5558 if (mips_debug)
5559 {
5560 int i;
5561 fprintf_unfiltered (gdb_stdlog, " @%s ",
5562 paddress (gdbarch, addr));
5563 for (i = 0; i < partial_len; i++)
5564 {
5565 fprintf_unfiltered (gdb_stdlog, "%02x",
5566 val[i] & 0xff);
5567 }
5568 }
5569 write_memory (addr, val, partial_len);
5570 }
5571
5572 /* Note!!! This is NOT an else clause. Odd sized
5573 structs may go thru BOTH paths. */
5574 /* Write this portion of the argument to a general
5575 purpose register. */
5576 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5577 {
5578 LONGEST regval = extract_signed_integer (val, partial_len,
5579 byte_order);
5580 /* Value may need to be sign extended, because
5581 mips_isa_regsize() != mips_abi_regsize(). */
5582
5583 /* A non-floating-point argument being passed in a
5584 general register. If a struct or union, and if
5585 the remaining length is smaller than the register
5586 size, we have to adjust the register value on
5587 big endian targets.
5588
5589 It does not seem to be necessary to do the
5590 same for integral types.
5591
5592 Also don't do this adjustment on O64 binaries.
5593
5594 cagney/2001-07-23: gdb/179: Also, GCC, when
5595 outputting LE O32 with sizeof (struct) <
5596 mips_abi_regsize(), generates a left shift
5597 as part of storing the argument in a register
5598 (the left shift isn't generated when
5599 sizeof (struct) >= mips_abi_regsize()). Since
5600 it is quite possible that this is GCC
5601 contradicting the LE/O32 ABI, GDB has not been
5602 adjusted to accommodate this. Either someone
5603 needs to demonstrate that the LE/O32 ABI
5604 specifies such a left shift OR this new ABI gets
5605 identified as such and GDB gets tweaked
5606 accordingly. */
5607
5608 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5609 && partial_len < MIPS32_REGSIZE
5610 && (typecode == TYPE_CODE_STRUCT
5611 || typecode == TYPE_CODE_UNION))
5612 regval <<= ((MIPS32_REGSIZE - partial_len)
5613 * TARGET_CHAR_BIT);
5614
5615 if (mips_debug)
5616 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5617 argreg,
5618 phex (regval, MIPS32_REGSIZE));
5619 regcache_cooked_write_unsigned (regcache, argreg, regval);
5620 argreg++;
5621
5622 /* Prevent subsequent floating point arguments from
5623 being passed in floating point registers. */
5624 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
5625 }
5626
5627 len -= partial_len;
5628 val += partial_len;
5629
5630 /* Compute the offset into the stack at which we will
5631 copy the next parameter.
5632
5633 In older ABIs, the caller reserved space for
5634 registers that contained arguments. This was loosely
5635 refered to as their "home". Consequently, space is
5636 always allocated. */
5637
5638 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
5639 }
5640 }
5641 if (mips_debug)
5642 fprintf_unfiltered (gdb_stdlog, "\n");
5643 }
5644
5645 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5646
5647 /* Return adjusted stack pointer. */
5648 return sp;
5649 }
5650
5651 static enum return_value_convention
5652 mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
5653 struct type *type, struct regcache *regcache,
5654 gdb_byte *readbuf, const gdb_byte *writebuf)
5655 {
5656 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
5657 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
5658 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5659 enum mips_fval_reg fval_reg;
5660
5661 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
5662 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5663 || TYPE_CODE (type) == TYPE_CODE_UNION
5664 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5665 return RETURN_VALUE_STRUCT_CONVENTION;
5666 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5667 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5668 {
5669 /* A single-precision floating-point value. If reading in or copying,
5670 then we get it from/put it to FP0 for standard MIPS code or GPR2
5671 for MIPS16 code. If writing out only, then we put it to both FP0
5672 and GPR2. We do not support reading in with no function known, if
5673 this safety check ever triggers, then we'll have to try harder. */
5674 gdb_assert (function || !readbuf);
5675 if (mips_debug)
5676 switch (fval_reg)
5677 {
5678 case mips_fval_fpr:
5679 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5680 break;
5681 case mips_fval_gpr:
5682 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5683 break;
5684 case mips_fval_both:
5685 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5686 break;
5687 }
5688 if (fval_reg != mips_fval_gpr)
5689 mips_xfer_register (gdbarch, regcache,
5690 (gdbarch_num_regs (gdbarch)
5691 + mips_regnum (gdbarch)->fp0),
5692 TYPE_LENGTH (type),
5693 gdbarch_byte_order (gdbarch),
5694 readbuf, writebuf, 0);
5695 if (fval_reg != mips_fval_fpr)
5696 mips_xfer_register (gdbarch, regcache,
5697 gdbarch_num_regs (gdbarch) + 2,
5698 TYPE_LENGTH (type),
5699 gdbarch_byte_order (gdbarch),
5700 readbuf, writebuf, 0);
5701 return RETURN_VALUE_REGISTER_CONVENTION;
5702 }
5703 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5704 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5705 {
5706 /* A double-precision floating-point value. If reading in or copying,
5707 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5708 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5709 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5710 no function known, if this safety check ever triggers, then we'll
5711 have to try harder. */
5712 gdb_assert (function || !readbuf);
5713 if (mips_debug)
5714 switch (fval_reg)
5715 {
5716 case mips_fval_fpr:
5717 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5718 break;
5719 case mips_fval_gpr:
5720 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5721 break;
5722 case mips_fval_both:
5723 fprintf_unfiltered (gdb_stderr,
5724 "Return float in $fp1/$fp0 and $2/$3\n");
5725 break;
5726 }
5727 if (fval_reg != mips_fval_gpr)
5728 {
5729 /* The most significant part goes in FP1, and the least significant
5730 in FP0. */
5731 switch (gdbarch_byte_order (gdbarch))
5732 {
5733 case BFD_ENDIAN_LITTLE:
5734 mips_xfer_register (gdbarch, regcache,
5735 (gdbarch_num_regs (gdbarch)
5736 + mips_regnum (gdbarch)->fp0 + 0),
5737 4, gdbarch_byte_order (gdbarch),
5738 readbuf, writebuf, 0);
5739 mips_xfer_register (gdbarch, regcache,
5740 (gdbarch_num_regs (gdbarch)
5741 + mips_regnum (gdbarch)->fp0 + 1),
5742 4, gdbarch_byte_order (gdbarch),
5743 readbuf, writebuf, 4);
5744 break;
5745 case BFD_ENDIAN_BIG:
5746 mips_xfer_register (gdbarch, regcache,
5747 (gdbarch_num_regs (gdbarch)
5748 + mips_regnum (gdbarch)->fp0 + 1),
5749 4, gdbarch_byte_order (gdbarch),
5750 readbuf, writebuf, 0);
5751 mips_xfer_register (gdbarch, regcache,
5752 (gdbarch_num_regs (gdbarch)
5753 + mips_regnum (gdbarch)->fp0 + 0),
5754 4, gdbarch_byte_order (gdbarch),
5755 readbuf, writebuf, 4);
5756 break;
5757 default:
5758 internal_error (__FILE__, __LINE__, _("bad switch"));
5759 }
5760 }
5761 if (fval_reg != mips_fval_fpr)
5762 {
5763 /* The two 32-bit parts are always placed in GPR2 and GPR3
5764 following these registers' memory order. */
5765 mips_xfer_register (gdbarch, regcache,
5766 gdbarch_num_regs (gdbarch) + 2,
5767 4, gdbarch_byte_order (gdbarch),
5768 readbuf, writebuf, 0);
5769 mips_xfer_register (gdbarch, regcache,
5770 gdbarch_num_regs (gdbarch) + 3,
5771 4, gdbarch_byte_order (gdbarch),
5772 readbuf, writebuf, 4);
5773 }
5774 return RETURN_VALUE_REGISTER_CONVENTION;
5775 }
5776 #if 0
5777 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5778 && TYPE_NFIELDS (type) <= 2
5779 && TYPE_NFIELDS (type) >= 1
5780 && ((TYPE_NFIELDS (type) == 1
5781 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5782 == TYPE_CODE_FLT))
5783 || (TYPE_NFIELDS (type) == 2
5784 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5785 == TYPE_CODE_FLT)
5786 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5787 == TYPE_CODE_FLT)))
5788 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5789 {
5790 /* A struct that contains one or two floats. Each value is part
5791 in the least significant part of their floating point
5792 register.. */
5793 int regnum;
5794 int field;
5795 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
5796 field < TYPE_NFIELDS (type); field++, regnum += 2)
5797 {
5798 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5799 / TARGET_CHAR_BIT);
5800 if (mips_debug)
5801 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5802 offset);
5803 mips_xfer_register (gdbarch, regcache,
5804 gdbarch_num_regs (gdbarch) + regnum,
5805 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5806 gdbarch_byte_order (gdbarch),
5807 readbuf, writebuf, offset);
5808 }
5809 return RETURN_VALUE_REGISTER_CONVENTION;
5810 }
5811 #endif
5812 #if 0
5813 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5814 || TYPE_CODE (type) == TYPE_CODE_UNION)
5815 {
5816 /* A structure or union. Extract the left justified value,
5817 regardless of the byte order. I.e. DO NOT USE
5818 mips_xfer_lower. */
5819 int offset;
5820 int regnum;
5821 for (offset = 0, regnum = MIPS_V0_REGNUM;
5822 offset < TYPE_LENGTH (type);
5823 offset += register_size (gdbarch, regnum), regnum++)
5824 {
5825 int xfer = register_size (gdbarch, regnum);
5826 if (offset + xfer > TYPE_LENGTH (type))
5827 xfer = TYPE_LENGTH (type) - offset;
5828 if (mips_debug)
5829 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5830 offset, xfer, regnum);
5831 mips_xfer_register (gdbarch, regcache,
5832 gdbarch_num_regs (gdbarch) + regnum, xfer,
5833 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5834 }
5835 return RETURN_VALUE_REGISTER_CONVENTION;
5836 }
5837 #endif
5838 else
5839 {
5840 /* A scalar extract each part but least-significant-byte
5841 justified. o32 thinks registers are 4 byte, regardless of
5842 the ISA. */
5843 int offset;
5844 int regnum;
5845 for (offset = 0, regnum = MIPS_V0_REGNUM;
5846 offset < TYPE_LENGTH (type);
5847 offset += MIPS32_REGSIZE, regnum++)
5848 {
5849 int xfer = MIPS32_REGSIZE;
5850 if (offset + xfer > TYPE_LENGTH (type))
5851 xfer = TYPE_LENGTH (type) - offset;
5852 if (mips_debug)
5853 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5854 offset, xfer, regnum);
5855 mips_xfer_register (gdbarch, regcache,
5856 gdbarch_num_regs (gdbarch) + regnum, xfer,
5857 gdbarch_byte_order (gdbarch),
5858 readbuf, writebuf, offset);
5859 }
5860 return RETURN_VALUE_REGISTER_CONVENTION;
5861 }
5862 }
5863
5864 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5865 ABI. */
5866
5867 static CORE_ADDR
5868 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5869 struct regcache *regcache, CORE_ADDR bp_addr,
5870 int nargs,
5871 struct value **args, CORE_ADDR sp,
5872 int struct_return, CORE_ADDR struct_addr)
5873 {
5874 int argreg;
5875 int float_argreg;
5876 int argnum;
5877 int len = 0;
5878 int stack_offset = 0;
5879 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5880 CORE_ADDR func_addr = find_function_addr (function, NULL);
5881
5882 /* For shared libraries, "t9" needs to point at the function
5883 address. */
5884 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5885
5886 /* Set the return address register to point to the entry point of
5887 the program, where a breakpoint lies in wait. */
5888 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5889
5890 /* First ensure that the stack and structure return address (if any)
5891 are properly aligned. The stack has to be at least 64-bit
5892 aligned even on 32-bit machines, because doubles must be 64-bit
5893 aligned. For n32 and n64, stack frames need to be 128-bit
5894 aligned, so we round to this widest known alignment. */
5895
5896 sp = align_down (sp, 16);
5897 struct_addr = align_down (struct_addr, 16);
5898
5899 /* Now make space on the stack for the args. */
5900 for (argnum = 0; argnum < nargs; argnum++)
5901 {
5902 struct type *arg_type = check_typedef (value_type (args[argnum]));
5903
5904 /* Allocate space on the stack. */
5905 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
5906 }
5907 sp -= align_up (len, 16);
5908
5909 if (mips_debug)
5910 fprintf_unfiltered (gdb_stdlog,
5911 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5912 paddress (gdbarch, sp), (long) align_up (len, 16));
5913
5914 /* Initialize the integer and float register pointers. */
5915 argreg = MIPS_A0_REGNUM;
5916 float_argreg = mips_fpa0_regnum (gdbarch);
5917
5918 /* The struct_return pointer occupies the first parameter-passing reg. */
5919 if (struct_return)
5920 {
5921 if (mips_debug)
5922 fprintf_unfiltered (gdb_stdlog,
5923 "mips_o64_push_dummy_call: "
5924 "struct_return reg=%d %s\n",
5925 argreg, paddress (gdbarch, struct_addr));
5926 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5927 stack_offset += MIPS64_REGSIZE;
5928 }
5929
5930 /* Now load as many as possible of the first arguments into
5931 registers, and push the rest onto the stack. Loop thru args
5932 from first to last. */
5933 for (argnum = 0; argnum < nargs; argnum++)
5934 {
5935 const gdb_byte *val;
5936 struct value *arg = args[argnum];
5937 struct type *arg_type = check_typedef (value_type (arg));
5938 int len = TYPE_LENGTH (arg_type);
5939 enum type_code typecode = TYPE_CODE (arg_type);
5940
5941 if (mips_debug)
5942 fprintf_unfiltered (gdb_stdlog,
5943 "mips_o64_push_dummy_call: %d len=%d type=%d",
5944 argnum + 1, len, (int) typecode);
5945
5946 val = value_contents (arg);
5947
5948 /* Floating point arguments passed in registers have to be
5949 treated specially. On 32-bit architectures, doubles are
5950 passed in register pairs; the even FP register gets the
5951 low word, and the odd FP register gets the high word.
5952 On O64, the first two floating point arguments are also
5953 copied to general registers, because MIPS16 functions
5954 don't use float registers for arguments. This duplication
5955 of arguments in general registers can't hurt non-MIPS16
5956 functions because those registers are normally skipped. */
5957
5958 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5959 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5960 {
5961 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5962 if (mips_debug)
5963 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5964 float_argreg, phex (regval, len));
5965 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
5966 if (mips_debug)
5967 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5968 argreg, phex (regval, len));
5969 regcache_cooked_write_unsigned (regcache, argreg, regval);
5970 argreg++;
5971 /* Reserve space for the FP register. */
5972 stack_offset += align_up (len, MIPS64_REGSIZE);
5973 }
5974 else
5975 {
5976 /* Copy the argument to general registers or the stack in
5977 register-sized pieces. Large arguments are split between
5978 registers and stack. */
5979 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
5980 are treated specially: Irix cc passes them in registers
5981 where gcc sometimes puts them on the stack. For maximum
5982 compatibility, we will put them in both places. */
5983 int odd_sized_struct = (len > MIPS64_REGSIZE
5984 && len % MIPS64_REGSIZE != 0);
5985 while (len > 0)
5986 {
5987 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5988
5989 if (mips_debug)
5990 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5991 partial_len);
5992
5993 /* Write this portion of the argument to the stack. */
5994 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5995 || odd_sized_struct)
5996 {
5997 /* Should shorter than int integer values be
5998 promoted to int before being stored? */
5999 int longword_offset = 0;
6000 CORE_ADDR addr;
6001 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6002 {
6003 if ((typecode == TYPE_CODE_INT
6004 || typecode == TYPE_CODE_PTR
6005 || typecode == TYPE_CODE_FLT)
6006 && len <= 4)
6007 longword_offset = MIPS64_REGSIZE - len;
6008 }
6009
6010 if (mips_debug)
6011 {
6012 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
6013 paddress (gdbarch, stack_offset));
6014 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
6015 paddress (gdbarch, longword_offset));
6016 }
6017
6018 addr = sp + stack_offset + longword_offset;
6019
6020 if (mips_debug)
6021 {
6022 int i;
6023 fprintf_unfiltered (gdb_stdlog, " @%s ",
6024 paddress (gdbarch, addr));
6025 for (i = 0; i < partial_len; i++)
6026 {
6027 fprintf_unfiltered (gdb_stdlog, "%02x",
6028 val[i] & 0xff);
6029 }
6030 }
6031 write_memory (addr, val, partial_len);
6032 }
6033
6034 /* Note!!! This is NOT an else clause. Odd sized
6035 structs may go thru BOTH paths. */
6036 /* Write this portion of the argument to a general
6037 purpose register. */
6038 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
6039 {
6040 LONGEST regval = extract_signed_integer (val, partial_len,
6041 byte_order);
6042 /* Value may need to be sign extended, because
6043 mips_isa_regsize() != mips_abi_regsize(). */
6044
6045 /* A non-floating-point argument being passed in a
6046 general register. If a struct or union, and if
6047 the remaining length is smaller than the register
6048 size, we have to adjust the register value on
6049 big endian targets.
6050
6051 It does not seem to be necessary to do the
6052 same for integral types. */
6053
6054 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
6055 && partial_len < MIPS64_REGSIZE
6056 && (typecode == TYPE_CODE_STRUCT
6057 || typecode == TYPE_CODE_UNION))
6058 regval <<= ((MIPS64_REGSIZE - partial_len)
6059 * TARGET_CHAR_BIT);
6060
6061 if (mips_debug)
6062 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
6063 argreg,
6064 phex (regval, MIPS64_REGSIZE));
6065 regcache_cooked_write_unsigned (regcache, argreg, regval);
6066 argreg++;
6067
6068 /* Prevent subsequent floating point arguments from
6069 being passed in floating point registers. */
6070 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
6071 }
6072
6073 len -= partial_len;
6074 val += partial_len;
6075
6076 /* Compute the offset into the stack at which we will
6077 copy the next parameter.
6078
6079 In older ABIs, the caller reserved space for
6080 registers that contained arguments. This was loosely
6081 refered to as their "home". Consequently, space is
6082 always allocated. */
6083
6084 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
6085 }
6086 }
6087 if (mips_debug)
6088 fprintf_unfiltered (gdb_stdlog, "\n");
6089 }
6090
6091 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
6092
6093 /* Return adjusted stack pointer. */
6094 return sp;
6095 }
6096
6097 static enum return_value_convention
6098 mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
6099 struct type *type, struct regcache *regcache,
6100 gdb_byte *readbuf, const gdb_byte *writebuf)
6101 {
6102 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
6103 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
6104 enum mips_fval_reg fval_reg;
6105
6106 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6107 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
6108 || TYPE_CODE (type) == TYPE_CODE_UNION
6109 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6110 return RETURN_VALUE_STRUCT_CONVENTION;
6111 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
6112 {
6113 /* A floating-point value. If reading in or copying, then we get it
6114 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6115 If writing out only, then we put it to both FP0 and GPR2. We do
6116 not support reading in with no function known, if this safety
6117 check ever triggers, then we'll have to try harder. */
6118 gdb_assert (function || !readbuf);
6119 if (mips_debug)
6120 switch (fval_reg)
6121 {
6122 case mips_fval_fpr:
6123 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
6124 break;
6125 case mips_fval_gpr:
6126 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
6127 break;
6128 case mips_fval_both:
6129 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
6130 break;
6131 }
6132 if (fval_reg != mips_fval_gpr)
6133 mips_xfer_register (gdbarch, regcache,
6134 (gdbarch_num_regs (gdbarch)
6135 + mips_regnum (gdbarch)->fp0),
6136 TYPE_LENGTH (type),
6137 gdbarch_byte_order (gdbarch),
6138 readbuf, writebuf, 0);
6139 if (fval_reg != mips_fval_fpr)
6140 mips_xfer_register (gdbarch, regcache,
6141 gdbarch_num_regs (gdbarch) + 2,
6142 TYPE_LENGTH (type),
6143 gdbarch_byte_order (gdbarch),
6144 readbuf, writebuf, 0);
6145 return RETURN_VALUE_REGISTER_CONVENTION;
6146 }
6147 else
6148 {
6149 /* A scalar extract each part but least-significant-byte
6150 justified. */
6151 int offset;
6152 int regnum;
6153 for (offset = 0, regnum = MIPS_V0_REGNUM;
6154 offset < TYPE_LENGTH (type);
6155 offset += MIPS64_REGSIZE, regnum++)
6156 {
6157 int xfer = MIPS64_REGSIZE;
6158 if (offset + xfer > TYPE_LENGTH (type))
6159 xfer = TYPE_LENGTH (type) - offset;
6160 if (mips_debug)
6161 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
6162 offset, xfer, regnum);
6163 mips_xfer_register (gdbarch, regcache,
6164 gdbarch_num_regs (gdbarch) + regnum,
6165 xfer, gdbarch_byte_order (gdbarch),
6166 readbuf, writebuf, offset);
6167 }
6168 return RETURN_VALUE_REGISTER_CONVENTION;
6169 }
6170 }
6171
6172 /* Floating point register management.
6173
6174 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6175 64bit operations, these early MIPS cpus treat fp register pairs
6176 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6177 registers and offer a compatibility mode that emulates the MIPS2 fp
6178 model. When operating in MIPS2 fp compat mode, later cpu's split
6179 double precision floats into two 32-bit chunks and store them in
6180 consecutive fp regs. To display 64-bit floats stored in this
6181 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6182 Throw in user-configurable endianness and you have a real mess.
6183
6184 The way this works is:
6185 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6186 double-precision value will be split across two logical registers.
6187 The lower-numbered logical register will hold the low-order bits,
6188 regardless of the processor's endianness.
6189 - If we are on a 64-bit processor, and we are looking for a
6190 single-precision value, it will be in the low ordered bits
6191 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6192 save slot in memory.
6193 - If we are in 64-bit mode, everything is straightforward.
6194
6195 Note that this code only deals with "live" registers at the top of the
6196 stack. We will attempt to deal with saved registers later, when
6197 the raw/cooked register interface is in place. (We need a general
6198 interface that can deal with dynamic saved register sizes -- fp
6199 regs could be 32 bits wide in one frame and 64 on the frame above
6200 and below). */
6201
6202 /* Copy a 32-bit single-precision value from the current frame
6203 into rare_buffer. */
6204
6205 static void
6206 mips_read_fp_register_single (struct frame_info *frame, int regno,
6207 gdb_byte *rare_buffer)
6208 {
6209 struct gdbarch *gdbarch = get_frame_arch (frame);
6210 int raw_size = register_size (gdbarch, regno);
6211 gdb_byte *raw_buffer = (gdb_byte *) alloca (raw_size);
6212
6213 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
6214 error (_("can't read register %d (%s)"),
6215 regno, gdbarch_register_name (gdbarch, regno));
6216 if (raw_size == 8)
6217 {
6218 /* We have a 64-bit value for this register. Find the low-order
6219 32 bits. */
6220 int offset;
6221
6222 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6223 offset = 4;
6224 else
6225 offset = 0;
6226
6227 memcpy (rare_buffer, raw_buffer + offset, 4);
6228 }
6229 else
6230 {
6231 memcpy (rare_buffer, raw_buffer, 4);
6232 }
6233 }
6234
6235 /* Copy a 64-bit double-precision value from the current frame into
6236 rare_buffer. This may include getting half of it from the next
6237 register. */
6238
6239 static void
6240 mips_read_fp_register_double (struct frame_info *frame, int regno,
6241 gdb_byte *rare_buffer)
6242 {
6243 struct gdbarch *gdbarch = get_frame_arch (frame);
6244 int raw_size = register_size (gdbarch, regno);
6245
6246 if (raw_size == 8 && !mips2_fp_compat (frame))
6247 {
6248 /* We have a 64-bit value for this register, and we should use
6249 all 64 bits. */
6250 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
6251 error (_("can't read register %d (%s)"),
6252 regno, gdbarch_register_name (gdbarch, regno));
6253 }
6254 else
6255 {
6256 int rawnum = regno % gdbarch_num_regs (gdbarch);
6257
6258 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
6259 internal_error (__FILE__, __LINE__,
6260 _("mips_read_fp_register_double: bad access to "
6261 "odd-numbered FP register"));
6262
6263 /* mips_read_fp_register_single will find the correct 32 bits from
6264 each register. */
6265 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6266 {
6267 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6268 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
6269 }
6270 else
6271 {
6272 mips_read_fp_register_single (frame, regno, rare_buffer);
6273 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
6274 }
6275 }
6276 }
6277
6278 static void
6279 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6280 int regnum)
6281 { /* Do values for FP (float) regs. */
6282 struct gdbarch *gdbarch = get_frame_arch (frame);
6283 gdb_byte *raw_buffer;
6284 std::string flt_str, dbl_str;
6285
6286 const struct type *flt_type = builtin_type (gdbarch)->builtin_float;
6287 const struct type *dbl_type = builtin_type (gdbarch)->builtin_double;
6288
6289 raw_buffer
6290 = ((gdb_byte *)
6291 alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0)));
6292
6293 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
6294 fprintf_filtered (file, "%*s",
6295 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
6296 "");
6297
6298 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
6299 {
6300 struct value_print_options opts;
6301
6302 /* 4-byte registers: Print hex and floating. Also print even
6303 numbered registers as doubles. */
6304 mips_read_fp_register_single (frame, regnum, raw_buffer);
6305 flt_str = target_float_to_string (raw_buffer, flt_type, "%-17.9g");
6306
6307 get_formatted_print_options (&opts, 'x');
6308 print_scalar_formatted (raw_buffer,
6309 builtin_type (gdbarch)->builtin_uint32,
6310 &opts, 'w', file);
6311
6312 fprintf_filtered (file, " flt: %s", flt_str.c_str ());
6313
6314 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
6315 {
6316 mips_read_fp_register_double (frame, regnum, raw_buffer);
6317 dbl_str = target_float_to_string (raw_buffer, dbl_type, "%-24.17g");
6318
6319 fprintf_filtered (file, " dbl: %s", dbl_str.c_str ());
6320 }
6321 }
6322 else
6323 {
6324 struct value_print_options opts;
6325
6326 /* Eight byte registers: print each one as hex, float and double. */
6327 mips_read_fp_register_single (frame, regnum, raw_buffer);
6328 flt_str = target_float_to_string (raw_buffer, flt_type, "%-17.9g");
6329
6330 mips_read_fp_register_double (frame, regnum, raw_buffer);
6331 dbl_str = target_float_to_string (raw_buffer, dbl_type, "%-24.17g");
6332
6333 get_formatted_print_options (&opts, 'x');
6334 print_scalar_formatted (raw_buffer,
6335 builtin_type (gdbarch)->builtin_uint64,
6336 &opts, 'g', file);
6337
6338 fprintf_filtered (file, " flt: %s", flt_str.c_str ());
6339 fprintf_filtered (file, " dbl: %s", dbl_str.c_str ());
6340 }
6341 }
6342
6343 static void
6344 mips_print_register (struct ui_file *file, struct frame_info *frame,
6345 int regnum)
6346 {
6347 struct gdbarch *gdbarch = get_frame_arch (frame);
6348 struct value_print_options opts;
6349 struct value *val;
6350
6351 if (mips_float_register_p (gdbarch, regnum))
6352 {
6353 mips_print_fp_register (file, frame, regnum);
6354 return;
6355 }
6356
6357 val = get_frame_register_value (frame, regnum);
6358
6359 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
6360
6361 /* The problem with printing numeric register names (r26, etc.) is that
6362 the user can't use them on input. Probably the best solution is to
6363 fix it so that either the numeric or the funky (a2, etc.) names
6364 are accepted on input. */
6365 if (regnum < MIPS_NUMREGS)
6366 fprintf_filtered (file, "(r%d): ", regnum);
6367 else
6368 fprintf_filtered (file, ": ");
6369
6370 get_formatted_print_options (&opts, 'x');
6371 val_print_scalar_formatted (value_type (val),
6372 value_embedded_offset (val),
6373 val,
6374 &opts, 0, file);
6375 }
6376
6377 /* Print IEEE exception condition bits in FLAGS. */
6378
6379 static void
6380 print_fpu_flags (struct ui_file *file, int flags)
6381 {
6382 if (flags & (1 << 0))
6383 fputs_filtered (" inexact", file);
6384 if (flags & (1 << 1))
6385 fputs_filtered (" uflow", file);
6386 if (flags & (1 << 2))
6387 fputs_filtered (" oflow", file);
6388 if (flags & (1 << 3))
6389 fputs_filtered (" div0", file);
6390 if (flags & (1 << 4))
6391 fputs_filtered (" inval", file);
6392 if (flags & (1 << 5))
6393 fputs_filtered (" unimp", file);
6394 fputc_filtered ('\n', file);
6395 }
6396
6397 /* Print interesting information about the floating point processor
6398 (if present) or emulator. */
6399
6400 static void
6401 mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
6402 struct frame_info *frame, const char *args)
6403 {
6404 int fcsr = mips_regnum (gdbarch)->fp_control_status;
6405 enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
6406 ULONGEST fcs = 0;
6407 int i;
6408
6409 if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
6410 type = MIPS_FPU_NONE;
6411
6412 fprintf_filtered (file, "fpu type: %s\n",
6413 type == MIPS_FPU_DOUBLE ? "double-precision"
6414 : type == MIPS_FPU_SINGLE ? "single-precision"
6415 : "none / unused");
6416
6417 if (type == MIPS_FPU_NONE)
6418 return;
6419
6420 fprintf_filtered (file, "reg size: %d bits\n",
6421 register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
6422
6423 fputs_filtered ("cond :", file);
6424 if (fcs & (1 << 23))
6425 fputs_filtered (" 0", file);
6426 for (i = 1; i <= 7; i++)
6427 if (fcs & (1 << (24 + i)))
6428 fprintf_filtered (file, " %d", i);
6429 fputc_filtered ('\n', file);
6430
6431 fputs_filtered ("cause :", file);
6432 print_fpu_flags (file, (fcs >> 12) & 0x3f);
6433 fputs ("mask :", stdout);
6434 print_fpu_flags (file, (fcs >> 7) & 0x1f);
6435 fputs ("flags :", stdout);
6436 print_fpu_flags (file, (fcs >> 2) & 0x1f);
6437
6438 fputs_filtered ("rounding: ", file);
6439 switch (fcs & 3)
6440 {
6441 case 0: fputs_filtered ("nearest\n", file); break;
6442 case 1: fputs_filtered ("zero\n", file); break;
6443 case 2: fputs_filtered ("+inf\n", file); break;
6444 case 3: fputs_filtered ("-inf\n", file); break;
6445 }
6446
6447 fputs_filtered ("flush :", file);
6448 if (fcs & (1 << 21))
6449 fputs_filtered (" nearest", file);
6450 if (fcs & (1 << 22))
6451 fputs_filtered (" override", file);
6452 if (fcs & (1 << 24))
6453 fputs_filtered (" zero", file);
6454 if ((fcs & (0xb << 21)) == 0)
6455 fputs_filtered (" no", file);
6456 fputc_filtered ('\n', file);
6457
6458 fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
6459 fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
6460 fputc_filtered ('\n', file);
6461
6462 default_print_float_info (gdbarch, file, frame, args);
6463 }
6464
6465 /* Replacement for generic do_registers_info.
6466 Print regs in pretty columns. */
6467
6468 static int
6469 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6470 int regnum)
6471 {
6472 fprintf_filtered (file, " ");
6473 mips_print_fp_register (file, frame, regnum);
6474 fprintf_filtered (file, "\n");
6475 return regnum + 1;
6476 }
6477
6478
6479 /* Print a row's worth of GP (int) registers, with name labels above. */
6480
6481 static int
6482 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
6483 int start_regnum)
6484 {
6485 struct gdbarch *gdbarch = get_frame_arch (frame);
6486 /* Do values for GP (int) regs. */
6487 const gdb_byte *raw_buffer;
6488 struct value *value;
6489 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6490 per row. */
6491 int col, byte;
6492 int regnum;
6493
6494 /* For GP registers, we print a separate row of names above the vals. */
6495 for (col = 0, regnum = start_regnum;
6496 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6497 + gdbarch_num_pseudo_regs (gdbarch);
6498 regnum++)
6499 {
6500 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6501 continue; /* unused register */
6502 if (mips_float_register_p (gdbarch, regnum))
6503 break; /* End the row: reached FP register. */
6504 /* Large registers are handled separately. */
6505 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6506 {
6507 if (col > 0)
6508 break; /* End the row before this register. */
6509
6510 /* Print this register on a row by itself. */
6511 mips_print_register (file, frame, regnum);
6512 fprintf_filtered (file, "\n");
6513 return regnum + 1;
6514 }
6515 if (col == 0)
6516 fprintf_filtered (file, " ");
6517 fprintf_filtered (file,
6518 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6519 gdbarch_register_name (gdbarch, regnum));
6520 col++;
6521 }
6522
6523 if (col == 0)
6524 return regnum;
6525
6526 /* Print the R0 to R31 names. */
6527 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
6528 fprintf_filtered (file, "\n R%-4d",
6529 start_regnum % gdbarch_num_regs (gdbarch));
6530 else
6531 fprintf_filtered (file, "\n ");
6532
6533 /* Now print the values in hex, 4 or 8 to the row. */
6534 for (col = 0, regnum = start_regnum;
6535 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6536 + gdbarch_num_pseudo_regs (gdbarch);
6537 regnum++)
6538 {
6539 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6540 continue; /* unused register */
6541 if (mips_float_register_p (gdbarch, regnum))
6542 break; /* End row: reached FP register. */
6543 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6544 break; /* End row: large register. */
6545
6546 /* OK: get the data in raw format. */
6547 value = get_frame_register_value (frame, regnum);
6548 if (value_optimized_out (value)
6549 || !value_entirely_available (value))
6550 {
6551 fprintf_filtered (file, "%*s ",
6552 (int) mips_abi_regsize (gdbarch) * 2,
6553 (mips_abi_regsize (gdbarch) == 4 ? "<unavl>"
6554 : "<unavailable>"));
6555 col++;
6556 continue;
6557 }
6558 raw_buffer = value_contents_all (value);
6559 /* pad small registers */
6560 for (byte = 0;
6561 byte < (mips_abi_regsize (gdbarch)
6562 - register_size (gdbarch, regnum)); byte++)
6563 fprintf_filtered (file, " ");
6564 /* Now print the register value in hex, endian order. */
6565 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6566 for (byte =
6567 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6568 byte < register_size (gdbarch, regnum); byte++)
6569 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6570 else
6571 for (byte = register_size (gdbarch, regnum) - 1;
6572 byte >= 0; byte--)
6573 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6574 fprintf_filtered (file, " ");
6575 col++;
6576 }
6577 if (col > 0) /* ie. if we actually printed anything... */
6578 fprintf_filtered (file, "\n");
6579
6580 return regnum;
6581 }
6582
6583 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
6584
6585 static void
6586 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6587 struct frame_info *frame, int regnum, int all)
6588 {
6589 if (regnum != -1) /* Do one specified register. */
6590 {
6591 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6592 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
6593 error (_("Not a valid register for the current processor type"));
6594
6595 mips_print_register (file, frame, regnum);
6596 fprintf_filtered (file, "\n");
6597 }
6598 else
6599 /* Do all (or most) registers. */
6600 {
6601 regnum = gdbarch_num_regs (gdbarch);
6602 while (regnum < gdbarch_num_regs (gdbarch)
6603 + gdbarch_num_pseudo_regs (gdbarch))
6604 {
6605 if (mips_float_register_p (gdbarch, regnum))
6606 {
6607 if (all) /* True for "INFO ALL-REGISTERS" command. */
6608 regnum = print_fp_register_row (file, frame, regnum);
6609 else
6610 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
6611 }
6612 else
6613 regnum = print_gp_register_row (file, frame, regnum);
6614 }
6615 }
6616 }
6617
6618 static int
6619 mips_single_step_through_delay (struct gdbarch *gdbarch,
6620 struct frame_info *frame)
6621 {
6622 CORE_ADDR pc = get_frame_pc (frame);
6623 enum mips_isa isa;
6624 ULONGEST insn;
6625 int size;
6626
6627 if ((mips_pc_is_mips (pc)
6628 && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
6629 || (mips_pc_is_micromips (gdbarch, pc)
6630 && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
6631 || (mips_pc_is_mips16 (gdbarch, pc)
6632 && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
6633 return 0;
6634
6635 isa = mips_pc_isa (gdbarch, pc);
6636 /* _has_delay_slot above will have validated the read. */
6637 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6638 size = mips_insn_size (isa, insn);
6639
6640 const address_space *aspace = get_frame_address_space (frame);
6641
6642 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
6643 }
6644
6645 /* To skip prologues, I use this predicate. Returns either PC itself
6646 if the code at PC does not look like a function prologue; otherwise
6647 returns an address that (if we're lucky) follows the prologue. If
6648 LENIENT, then we must skip everything which is involved in setting
6649 up the frame (it's OK to skip more, just so long as we don't skip
6650 anything which might clobber the registers which are being saved.
6651 We must skip more in the case where part of the prologue is in the
6652 delay slot of a non-prologue instruction). */
6653
6654 static CORE_ADDR
6655 mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6656 {
6657 CORE_ADDR limit_pc;
6658 CORE_ADDR func_addr;
6659
6660 /* See if we can determine the end of the prologue via the symbol table.
6661 If so, then return either PC, or the PC after the prologue, whichever
6662 is greater. */
6663 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6664 {
6665 CORE_ADDR post_prologue_pc
6666 = skip_prologue_using_sal (gdbarch, func_addr);
6667 if (post_prologue_pc != 0)
6668 return std::max (pc, post_prologue_pc);
6669 }
6670
6671 /* Can't determine prologue from the symbol table, need to examine
6672 instructions. */
6673
6674 /* Find an upper limit on the function prologue using the debug
6675 information. If the debug information could not be used to provide
6676 that bound, then use an arbitrary large number as the upper bound. */
6677 limit_pc = skip_prologue_using_sal (gdbarch, pc);
6678 if (limit_pc == 0)
6679 limit_pc = pc + 100; /* Magic. */
6680
6681 if (mips_pc_is_mips16 (gdbarch, pc))
6682 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6683 else if (mips_pc_is_micromips (gdbarch, pc))
6684 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6685 else
6686 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6687 }
6688
6689 /* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
6690 This is a helper function for mips_stack_frame_destroyed_p. */
6691
6692 static int
6693 mips32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6694 {
6695 CORE_ADDR func_addr = 0, func_end = 0;
6696
6697 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6698 {
6699 /* The MIPS epilogue is max. 12 bytes long. */
6700 CORE_ADDR addr = func_end - 12;
6701
6702 if (addr < func_addr + 4)
6703 addr = func_addr + 4;
6704 if (pc < addr)
6705 return 0;
6706
6707 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6708 {
6709 unsigned long high_word;
6710 unsigned long inst;
6711
6712 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6713 high_word = (inst >> 16) & 0xffff;
6714
6715 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6716 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6717 && inst != 0x03e00008 /* jr $ra */
6718 && inst != 0x00000000) /* nop */
6719 return 0;
6720 }
6721
6722 return 1;
6723 }
6724
6725 return 0;
6726 }
6727
6728 /* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
6729 This is a helper function for mips_stack_frame_destroyed_p. */
6730
6731 static int
6732 micromips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6733 {
6734 CORE_ADDR func_addr = 0;
6735 CORE_ADDR func_end = 0;
6736 CORE_ADDR addr;
6737 ULONGEST insn;
6738 long offset;
6739 int dreg;
6740 int sreg;
6741 int loc;
6742
6743 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6744 return 0;
6745
6746 /* The microMIPS epilogue is max. 12 bytes long. */
6747 addr = func_end - 12;
6748
6749 if (addr < func_addr + 2)
6750 addr = func_addr + 2;
6751 if (pc < addr)
6752 return 0;
6753
6754 for (; pc < func_end; pc += loc)
6755 {
6756 loc = 0;
6757 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6758 loc += MIPS_INSN16_SIZE;
6759 switch (mips_insn_size (ISA_MICROMIPS, insn))
6760 {
6761 /* 32-bit instructions. */
6762 case 2 * MIPS_INSN16_SIZE:
6763 insn <<= 16;
6764 insn |= mips_fetch_instruction (gdbarch,
6765 ISA_MICROMIPS, pc + loc, NULL);
6766 loc += MIPS_INSN16_SIZE;
6767 switch (micromips_op (insn >> 16))
6768 {
6769 case 0xc: /* ADDIU: bits 001100 */
6770 case 0x17: /* DADDIU: bits 010111 */
6771 sreg = b0s5_reg (insn >> 16);
6772 dreg = b5s5_reg (insn >> 16);
6773 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6774 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6775 /* (D)ADDIU $sp, imm */
6776 && offset >= 0)
6777 break;
6778 return 0;
6779
6780 default:
6781 return 0;
6782 }
6783 break;
6784
6785 /* 16-bit instructions. */
6786 case MIPS_INSN16_SIZE:
6787 switch (micromips_op (insn))
6788 {
6789 case 0x3: /* MOVE: bits 000011 */
6790 sreg = b0s5_reg (insn);
6791 dreg = b5s5_reg (insn);
6792 if (sreg == 0 && dreg == 0)
6793 /* MOVE $zero, $zero aka NOP */
6794 break;
6795 return 0;
6796
6797 case 0x11: /* POOL16C: bits 010001 */
6798 if (b5s5_op (insn) == 0x18
6799 /* JRADDIUSP: bits 010011 11000 */
6800 || (b5s5_op (insn) == 0xd
6801 /* JRC: bits 010011 01101 */
6802 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6803 /* JRC $ra */
6804 break;
6805 return 0;
6806
6807 case 0x13: /* POOL16D: bits 010011 */
6808 offset = micromips_decode_imm9 (b1s9_imm (insn));
6809 if ((insn & 0x1) == 0x1
6810 /* ADDIUSP: bits 010011 1 */
6811 && offset > 0)
6812 break;
6813 return 0;
6814
6815 default:
6816 return 0;
6817 }
6818 }
6819 }
6820
6821 return 1;
6822 }
6823
6824 /* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
6825 This is a helper function for mips_stack_frame_destroyed_p. */
6826
6827 static int
6828 mips16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6829 {
6830 CORE_ADDR func_addr = 0, func_end = 0;
6831
6832 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6833 {
6834 /* The MIPS epilogue is max. 12 bytes long. */
6835 CORE_ADDR addr = func_end - 12;
6836
6837 if (addr < func_addr + 4)
6838 addr = func_addr + 4;
6839 if (pc < addr)
6840 return 0;
6841
6842 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6843 {
6844 unsigned short inst;
6845
6846 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
6847
6848 if ((inst & 0xf800) == 0xf000) /* extend */
6849 continue;
6850
6851 if (inst != 0x6300 /* addiu $sp,offset */
6852 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6853 && inst != 0xe820 /* jr $ra */
6854 && inst != 0xe8a0 /* jrc $ra */
6855 && inst != 0x6500) /* nop */
6856 return 0;
6857 }
6858
6859 return 1;
6860 }
6861
6862 return 0;
6863 }
6864
6865 /* Implement the stack_frame_destroyed_p gdbarch method.
6866
6867 The epilogue is defined here as the area at the end of a function,
6868 after an instruction which destroys the function's stack frame. */
6869
6870 static int
6871 mips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6872 {
6873 if (mips_pc_is_mips16 (gdbarch, pc))
6874 return mips16_stack_frame_destroyed_p (gdbarch, pc);
6875 else if (mips_pc_is_micromips (gdbarch, pc))
6876 return micromips_stack_frame_destroyed_p (gdbarch, pc);
6877 else
6878 return mips32_stack_frame_destroyed_p (gdbarch, pc);
6879 }
6880
6881 /* Root of all "set mips "/"show mips " commands. This will eventually be
6882 used for all MIPS-specific commands. */
6883
6884 static void
6885 show_mips_command (const char *args, int from_tty)
6886 {
6887 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6888 }
6889
6890 static void
6891 set_mips_command (const char *args, int from_tty)
6892 {
6893 printf_unfiltered
6894 ("\"set mips\" must be followed by an appropriate subcommand.\n");
6895 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6896 }
6897
6898 /* Commands to show/set the MIPS FPU type. */
6899
6900 static void
6901 show_mipsfpu_command (const char *args, int from_tty)
6902 {
6903 const char *fpu;
6904
6905 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6906 {
6907 printf_unfiltered
6908 ("The MIPS floating-point coprocessor is unknown "
6909 "because the current architecture is not MIPS.\n");
6910 return;
6911 }
6912
6913 switch (MIPS_FPU_TYPE (target_gdbarch ()))
6914 {
6915 case MIPS_FPU_SINGLE:
6916 fpu = "single-precision";
6917 break;
6918 case MIPS_FPU_DOUBLE:
6919 fpu = "double-precision";
6920 break;
6921 case MIPS_FPU_NONE:
6922 fpu = "absent (none)";
6923 break;
6924 default:
6925 internal_error (__FILE__, __LINE__, _("bad switch"));
6926 }
6927 if (mips_fpu_type_auto)
6928 printf_unfiltered ("The MIPS floating-point coprocessor "
6929 "is set automatically (currently %s)\n",
6930 fpu);
6931 else
6932 printf_unfiltered
6933 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
6934 }
6935
6936
6937 static void
6938 set_mipsfpu_command (const char *args, int from_tty)
6939 {
6940 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6941 "\"single\",\"none\" or \"auto\".\n");
6942 show_mipsfpu_command (args, from_tty);
6943 }
6944
6945 static void
6946 set_mipsfpu_single_command (const char *args, int from_tty)
6947 {
6948 struct gdbarch_info info;
6949 gdbarch_info_init (&info);
6950 mips_fpu_type = MIPS_FPU_SINGLE;
6951 mips_fpu_type_auto = 0;
6952 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6953 instead of relying on globals. Doing that would let generic code
6954 handle the search for this specific architecture. */
6955 if (!gdbarch_update_p (info))
6956 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6957 }
6958
6959 static void
6960 set_mipsfpu_double_command (const char *args, int from_tty)
6961 {
6962 struct gdbarch_info info;
6963 gdbarch_info_init (&info);
6964 mips_fpu_type = MIPS_FPU_DOUBLE;
6965 mips_fpu_type_auto = 0;
6966 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6967 instead of relying on globals. Doing that would let generic code
6968 handle the search for this specific architecture. */
6969 if (!gdbarch_update_p (info))
6970 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6971 }
6972
6973 static void
6974 set_mipsfpu_none_command (const char *args, int from_tty)
6975 {
6976 struct gdbarch_info info;
6977 gdbarch_info_init (&info);
6978 mips_fpu_type = MIPS_FPU_NONE;
6979 mips_fpu_type_auto = 0;
6980 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6981 instead of relying on globals. Doing that would let generic code
6982 handle the search for this specific architecture. */
6983 if (!gdbarch_update_p (info))
6984 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6985 }
6986
6987 static void
6988 set_mipsfpu_auto_command (const char *args, int from_tty)
6989 {
6990 mips_fpu_type_auto = 1;
6991 }
6992
6993 /* Just like reinit_frame_cache, but with the right arguments to be
6994 callable as an sfunc. */
6995
6996 static void
6997 reinit_frame_cache_sfunc (const char *args, int from_tty,
6998 struct cmd_list_element *c)
6999 {
7000 reinit_frame_cache ();
7001 }
7002
7003 static int
7004 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
7005 {
7006 gdb_disassembler *di
7007 = static_cast<gdb_disassembler *>(info->application_data);
7008 struct gdbarch *gdbarch = di->arch ();
7009
7010 /* FIXME: cagney/2003-06-26: Is this even necessary? The
7011 disassembler needs to be able to locally determine the ISA, and
7012 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
7013 work. */
7014 if (mips_pc_is_mips16 (gdbarch, memaddr))
7015 info->mach = bfd_mach_mips16;
7016 else if (mips_pc_is_micromips (gdbarch, memaddr))
7017 info->mach = bfd_mach_mips_micromips;
7018
7019 /* Round down the instruction address to the appropriate boundary. */
7020 memaddr &= (info->mach == bfd_mach_mips16
7021 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
7022
7023 return default_print_insn (memaddr, info);
7024 }
7025
7026 /* Implement the breakpoint_kind_from_pc gdbarch method. */
7027
7028 static int
7029 mips_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
7030 {
7031 CORE_ADDR pc = *pcptr;
7032
7033 if (mips_pc_is_mips16 (gdbarch, pc))
7034 {
7035 *pcptr = unmake_compact_addr (pc);
7036 return MIPS_BP_KIND_MIPS16;
7037 }
7038 else if (mips_pc_is_micromips (gdbarch, pc))
7039 {
7040 ULONGEST insn;
7041 int status;
7042
7043 *pcptr = unmake_compact_addr (pc);
7044 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7045 if (status || (mips_insn_size (ISA_MICROMIPS, insn) == 2))
7046 return MIPS_BP_KIND_MICROMIPS16;
7047 else
7048 return MIPS_BP_KIND_MICROMIPS32;
7049 }
7050 else
7051 return MIPS_BP_KIND_MIPS32;
7052 }
7053
7054 /* Implement the sw_breakpoint_from_kind gdbarch method. */
7055
7056 static const gdb_byte *
7057 mips_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7058 {
7059 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7060
7061 switch (kind)
7062 {
7063 case MIPS_BP_KIND_MIPS16:
7064 {
7065 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
7066 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
7067
7068 *size = 2;
7069 if (byte_order_for_code == BFD_ENDIAN_BIG)
7070 return mips16_big_breakpoint;
7071 else
7072 return mips16_little_breakpoint;
7073 }
7074 case MIPS_BP_KIND_MICROMIPS16:
7075 {
7076 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
7077 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
7078
7079 *size = 2;
7080
7081 if (byte_order_for_code == BFD_ENDIAN_BIG)
7082 return micromips16_big_breakpoint;
7083 else
7084 return micromips16_little_breakpoint;
7085 }
7086 case MIPS_BP_KIND_MICROMIPS32:
7087 {
7088 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
7089 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
7090
7091 *size = 4;
7092 if (byte_order_for_code == BFD_ENDIAN_BIG)
7093 return micromips32_big_breakpoint;
7094 else
7095 return micromips32_little_breakpoint;
7096 }
7097 case MIPS_BP_KIND_MIPS32:
7098 {
7099 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
7100 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
7101
7102 *size = 4;
7103 if (byte_order_for_code == BFD_ENDIAN_BIG)
7104 return big_breakpoint;
7105 else
7106 return little_breakpoint;
7107 }
7108 default:
7109 gdb_assert_not_reached ("unexpected mips breakpoint kind");
7110 };
7111 }
7112
7113 /* Return non-zero if the standard MIPS instruction INST has a branch
7114 delay slot (i.e. it is a jump or branch instruction). This function
7115 is based on mips32_next_pc. */
7116
7117 static int
7118 mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
7119 {
7120 int op;
7121 int rs;
7122 int rt;
7123
7124 op = itype_op (inst);
7125 if ((inst & 0xe0000000) != 0)
7126 {
7127 rs = itype_rs (inst);
7128 rt = itype_rt (inst);
7129 return (is_octeon_bbit_op (op, gdbarch)
7130 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
7131 || op == 29 /* JALX: bits 011101 */
7132 || (op == 17
7133 && (rs == 8
7134 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7135 || (rs == 9 && (rt & 0x2) == 0)
7136 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7137 || (rs == 10 && (rt & 0x2) == 0))));
7138 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7139 }
7140 else
7141 switch (op & 0x07) /* extract bits 28,27,26 */
7142 {
7143 case 0: /* SPECIAL */
7144 op = rtype_funct (inst);
7145 return (op == 8 /* JR */
7146 || op == 9); /* JALR */
7147 break; /* end SPECIAL */
7148 case 1: /* REGIMM */
7149 rs = itype_rs (inst);
7150 rt = itype_rt (inst); /* branch condition */
7151 return ((rt & 0xc) == 0
7152 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7153 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
7154 || ((rt & 0x1e) == 0x1c && rs == 0));
7155 /* BPOSGE32, BPOSGE64: bits 1110x */
7156 break; /* end REGIMM */
7157 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7158 return 1;
7159 break;
7160 }
7161 }
7162
7163 /* Return non-zero if a standard MIPS instruction at ADDR has a branch
7164 delay slot (i.e. it is a jump or branch instruction). */
7165
7166 static int
7167 mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
7168 {
7169 ULONGEST insn;
7170 int status;
7171
7172 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
7173 if (status)
7174 return 0;
7175
7176 return mips32_instruction_has_delay_slot (gdbarch, insn);
7177 }
7178
7179 /* Return non-zero if the microMIPS instruction INSN, comprising the
7180 16-bit major opcode word in the high 16 bits and any second word
7181 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7182 jump or branch instruction). The instruction must be 32-bit if
7183 MUSTBE32 is set or can be any instruction otherwise. */
7184
7185 static int
7186 micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
7187 {
7188 ULONGEST major = insn >> 16;
7189
7190 switch (micromips_op (major))
7191 {
7192 /* 16-bit instructions. */
7193 case 0x33: /* B16: bits 110011 */
7194 case 0x2b: /* BNEZ16: bits 101011 */
7195 case 0x23: /* BEQZ16: bits 100011 */
7196 return !mustbe32;
7197 case 0x11: /* POOL16C: bits 010001 */
7198 return (!mustbe32
7199 && ((b5s5_op (major) == 0xc
7200 /* JR16: bits 010001 01100 */
7201 || (b5s5_op (major) & 0x1e) == 0xe)));
7202 /* JALR16, JALRS16: bits 010001 0111x */
7203 /* 32-bit instructions. */
7204 case 0x3d: /* JAL: bits 111101 */
7205 case 0x3c: /* JALX: bits 111100 */
7206 case 0x35: /* J: bits 110101 */
7207 case 0x2d: /* BNE: bits 101101 */
7208 case 0x25: /* BEQ: bits 100101 */
7209 case 0x1d: /* JALS: bits 011101 */
7210 return 1;
7211 case 0x10: /* POOL32I: bits 010000 */
7212 return ((b5s5_op (major) & 0x1c) == 0x0
7213 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
7214 || (b5s5_op (major) & 0x1d) == 0x4
7215 /* BLEZ, BGTZ: bits 010000 001x0 */
7216 || (b5s5_op (major) & 0x1d) == 0x11
7217 /* BLTZALS, BGEZALS: bits 010000 100x1 */
7218 || ((b5s5_op (major) & 0x1e) == 0x14
7219 && (major & 0x3) == 0x0)
7220 /* BC2F, BC2T: bits 010000 1010x xxx00 */
7221 || (b5s5_op (major) & 0x1e) == 0x1a
7222 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
7223 || ((b5s5_op (major) & 0x1e) == 0x1c
7224 && (major & 0x3) == 0x0)
7225 /* BC1F, BC1T: bits 010000 1110x xxx00 */
7226 || ((b5s5_op (major) & 0x1c) == 0x1c
7227 && (major & 0x3) == 0x1));
7228 /* BC1ANY*: bits 010000 111xx xxx01 */
7229 case 0x0: /* POOL32A: bits 000000 */
7230 return (b0s6_op (insn) == 0x3c
7231 /* POOL32Axf: bits 000000 ... 111100 */
7232 && (b6s10_ext (insn) & 0x2bf) == 0x3c);
7233 /* JALR, JALR.HB: 000000 000x111100 111100 */
7234 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7235 default:
7236 return 0;
7237 }
7238 }
7239
7240 /* Return non-zero if a microMIPS instruction at ADDR has a branch delay
7241 slot (i.e. it is a non-compact jump instruction). The instruction
7242 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7243
7244 static int
7245 micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7246 CORE_ADDR addr, int mustbe32)
7247 {
7248 ULONGEST insn;
7249 int status;
7250 int size;
7251
7252 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7253 if (status)
7254 return 0;
7255 size = mips_insn_size (ISA_MICROMIPS, insn);
7256 insn <<= 16;
7257 if (size == 2 * MIPS_INSN16_SIZE)
7258 {
7259 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7260 if (status)
7261 return 0;
7262 }
7263
7264 return micromips_instruction_has_delay_slot (insn, mustbe32);
7265 }
7266
7267 /* Return non-zero if the MIPS16 instruction INST, which must be
7268 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7269 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7270 instruction). This function is based on mips16_next_pc. */
7271
7272 static int
7273 mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
7274 {
7275 if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7276 return !mustbe32;
7277 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7278 }
7279
7280 /* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7281 slot (i.e. it is a non-compact jump instruction). The instruction
7282 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7283
7284 static int
7285 mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7286 CORE_ADDR addr, int mustbe32)
7287 {
7288 unsigned short insn;
7289 int status;
7290
7291 insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7292 if (status)
7293 return 0;
7294
7295 return mips16_instruction_has_delay_slot (insn, mustbe32);
7296 }
7297
7298 /* Calculate the starting address of the MIPS memory segment BPADDR is in.
7299 This assumes KSSEG exists. */
7300
7301 static CORE_ADDR
7302 mips_segment_boundary (CORE_ADDR bpaddr)
7303 {
7304 CORE_ADDR mask = CORE_ADDR_MAX;
7305 int segsize;
7306
7307 if (sizeof (CORE_ADDR) == 8)
7308 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7309 a compiler warning produced where CORE_ADDR is a 32-bit type even
7310 though in that case this is dead code). */
7311 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7312 {
7313 case 3:
7314 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7315 segsize = 29; /* 32-bit compatibility segment */
7316 else
7317 segsize = 62; /* xkseg */
7318 break;
7319 case 2: /* xkphys */
7320 segsize = 59;
7321 break;
7322 default: /* xksseg (1), xkuseg/kuseg (0) */
7323 segsize = 62;
7324 break;
7325 }
7326 else if (bpaddr & 0x80000000) /* kernel segment */
7327 segsize = 29;
7328 else
7329 segsize = 31; /* user segment */
7330 mask <<= segsize;
7331 return bpaddr & mask;
7332 }
7333
7334 /* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7335 it backwards if necessary. Return the address of the new location. */
7336
7337 static CORE_ADDR
7338 mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7339 {
7340 CORE_ADDR prev_addr;
7341 CORE_ADDR boundary;
7342 CORE_ADDR func_addr;
7343
7344 /* If a breakpoint is set on the instruction in a branch delay slot,
7345 GDB gets confused. When the breakpoint is hit, the PC isn't on
7346 the instruction in the branch delay slot, the PC will point to
7347 the branch instruction. Since the PC doesn't match any known
7348 breakpoints, GDB reports a trap exception.
7349
7350 There are two possible fixes for this problem.
7351
7352 1) When the breakpoint gets hit, see if the BD bit is set in the
7353 Cause register (which indicates the last exception occurred in a
7354 branch delay slot). If the BD bit is set, fix the PC to point to
7355 the instruction in the branch delay slot.
7356
7357 2) When the user sets the breakpoint, don't allow him to set the
7358 breakpoint on the instruction in the branch delay slot. Instead
7359 move the breakpoint to the branch instruction (which will have
7360 the same result).
7361
7362 The problem with the first solution is that if the user then
7363 single-steps the processor, the branch instruction will get
7364 skipped (since GDB thinks the PC is on the instruction in the
7365 branch delay slot).
7366
7367 So, we'll use the second solution. To do this we need to know if
7368 the instruction we're trying to set the breakpoint on is in the
7369 branch delay slot. */
7370
7371 boundary = mips_segment_boundary (bpaddr);
7372
7373 /* Make sure we don't scan back before the beginning of the current
7374 function, since we may fetch constant data or insns that look like
7375 a jump. Of course we might do that anyway if the compiler has
7376 moved constants inline. :-( */
7377 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7378 && func_addr > boundary && func_addr <= bpaddr)
7379 boundary = func_addr;
7380
7381 if (mips_pc_is_mips (bpaddr))
7382 {
7383 if (bpaddr == boundary)
7384 return bpaddr;
7385
7386 /* If the previous instruction has a branch delay slot, we have
7387 to move the breakpoint to the branch instruction. */
7388 prev_addr = bpaddr - 4;
7389 if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
7390 bpaddr = prev_addr;
7391 }
7392 else
7393 {
7394 int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
7395 CORE_ADDR addr, jmpaddr;
7396 int i;
7397
7398 boundary = unmake_compact_addr (boundary);
7399
7400 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7401 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7402 so try for that first, then try the 2 byte JALR/JR.
7403 The microMIPS ASE has a whole range of jumps and branches
7404 with delay slots, some of which take 4 bytes and some take
7405 2 bytes, so the idea is the same.
7406 FIXME: We have to assume that bpaddr is not the second half
7407 of an extended instruction. */
7408 insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7409 ? micromips_insn_at_pc_has_delay_slot
7410 : mips16_insn_at_pc_has_delay_slot);
7411
7412 jmpaddr = 0;
7413 addr = bpaddr;
7414 for (i = 1; i < 4; i++)
7415 {
7416 if (unmake_compact_addr (addr) == boundary)
7417 break;
7418 addr -= MIPS_INSN16_SIZE;
7419 if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
7420 /* Looks like a JR/JALR at [target-1], but it could be
7421 the second word of a previous JAL/JALX, so record it
7422 and check back one more. */
7423 jmpaddr = addr;
7424 else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
7425 {
7426 if (i == 2)
7427 /* Looks like a JAL/JALX at [target-2], but it could also
7428 be the second word of a previous JAL/JALX, record it,
7429 and check back one more. */
7430 jmpaddr = addr;
7431 else
7432 /* Looks like a JAL/JALX at [target-3], so any previously
7433 recorded JAL/JALX or JR/JALR must be wrong, because:
7434
7435 >-3: JAL
7436 -2: JAL-ext (can't be JAL/JALX)
7437 -1: bdslot (can't be JR/JALR)
7438 0: target insn
7439
7440 Of course it could be another JAL-ext which looks
7441 like a JAL, but in that case we'd have broken out
7442 of this loop at [target-2]:
7443
7444 -4: JAL
7445 >-3: JAL-ext
7446 -2: bdslot (can't be jmp)
7447 -1: JR/JALR
7448 0: target insn */
7449 jmpaddr = 0;
7450 }
7451 else
7452 {
7453 /* Not a jump instruction: if we're at [target-1] this
7454 could be the second word of a JAL/JALX, so continue;
7455 otherwise we're done. */
7456 if (i > 1)
7457 break;
7458 }
7459 }
7460
7461 if (jmpaddr)
7462 bpaddr = jmpaddr;
7463 }
7464
7465 return bpaddr;
7466 }
7467
7468 /* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7469 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7470
7471 static int
7472 mips_is_stub_suffix (const char *suffix, int zero)
7473 {
7474 switch (suffix[0])
7475 {
7476 case '0':
7477 return zero && suffix[1] == '\0';
7478 case '1':
7479 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7480 case '2':
7481 case '5':
7482 case '6':
7483 case '9':
7484 return suffix[1] == '\0';
7485 default:
7486 return 0;
7487 }
7488 }
7489
7490 /* Return non-zero if MODE is one of the mode infixes used for MIPS16
7491 call stubs, one of sf, df, sc, or dc. */
7492
7493 static int
7494 mips_is_stub_mode (const char *mode)
7495 {
7496 return ((mode[0] == 's' || mode[0] == 'd')
7497 && (mode[1] == 'f' || mode[1] == 'c'));
7498 }
7499
7500 /* Code at PC is a compiler-generated stub. Such a stub for a function
7501 bar might have a name like __fn_stub_bar, and might look like this:
7502
7503 mfc1 $4, $f13
7504 mfc1 $5, $f12
7505 mfc1 $6, $f15
7506 mfc1 $7, $f14
7507
7508 followed by (or interspersed with):
7509
7510 j bar
7511
7512 or:
7513
7514 lui $25, %hi(bar)
7515 addiu $25, $25, %lo(bar)
7516 jr $25
7517
7518 ($1 may be used in old code; for robustness we accept any register)
7519 or, in PIC code:
7520
7521 lui $28, %hi(_gp_disp)
7522 addiu $28, $28, %lo(_gp_disp)
7523 addu $28, $28, $25
7524 lw $25, %got(bar)
7525 addiu $25, $25, %lo(bar)
7526 jr $25
7527
7528 In the case of a __call_stub_bar stub, the sequence to set up
7529 arguments might look like this:
7530
7531 mtc1 $4, $f13
7532 mtc1 $5, $f12
7533 mtc1 $6, $f15
7534 mtc1 $7, $f14
7535
7536 followed by (or interspersed with) one of the jump sequences above.
7537
7538 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7539 of J or JR, respectively, followed by:
7540
7541 mfc1 $2, $f0
7542 mfc1 $3, $f1
7543 jr $18
7544
7545 We are at the beginning of the stub here, and scan down and extract
7546 the target address from the jump immediate instruction or, if a jump
7547 register instruction is used, from the register referred. Return
7548 the value of PC calculated or 0 if inconclusive.
7549
7550 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7551
7552 static CORE_ADDR
7553 mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7554 {
7555 struct gdbarch *gdbarch = get_frame_arch (frame);
7556 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7557 int addrreg = MIPS_ZERO_REGNUM;
7558 CORE_ADDR start_pc = pc;
7559 CORE_ADDR target_pc = 0;
7560 CORE_ADDR addr = 0;
7561 CORE_ADDR gp = 0;
7562 int status = 0;
7563 int i;
7564
7565 for (i = 0;
7566 status == 0 && target_pc == 0 && i < 20;
7567 i++, pc += MIPS_INSN32_SIZE)
7568 {
7569 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
7570 CORE_ADDR imm;
7571 int rt;
7572 int rs;
7573 int rd;
7574
7575 switch (itype_op (inst))
7576 {
7577 case 0: /* SPECIAL */
7578 switch (rtype_funct (inst))
7579 {
7580 case 8: /* JR */
7581 case 9: /* JALR */
7582 rs = rtype_rs (inst);
7583 if (rs == MIPS_GP_REGNUM)
7584 target_pc = gp; /* Hmm... */
7585 else if (rs == addrreg)
7586 target_pc = addr;
7587 break;
7588
7589 case 0x21: /* ADDU */
7590 rt = rtype_rt (inst);
7591 rs = rtype_rs (inst);
7592 rd = rtype_rd (inst);
7593 if (rd == MIPS_GP_REGNUM
7594 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7595 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7596 gp += start_pc;
7597 break;
7598 }
7599 break;
7600
7601 case 2: /* J */
7602 case 3: /* JAL */
7603 target_pc = jtype_target (inst) << 2;
7604 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7605 break;
7606
7607 case 9: /* ADDIU */
7608 rt = itype_rt (inst);
7609 rs = itype_rs (inst);
7610 if (rt == rs)
7611 {
7612 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7613 if (rt == MIPS_GP_REGNUM)
7614 gp += imm;
7615 else if (rt == addrreg)
7616 addr += imm;
7617 }
7618 break;
7619
7620 case 0xf: /* LUI */
7621 rt = itype_rt (inst);
7622 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7623 if (rt == MIPS_GP_REGNUM)
7624 gp = imm;
7625 else if (rt != MIPS_ZERO_REGNUM)
7626 {
7627 addrreg = rt;
7628 addr = imm;
7629 }
7630 break;
7631
7632 case 0x23: /* LW */
7633 rt = itype_rt (inst);
7634 rs = itype_rs (inst);
7635 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7636 if (gp != 0 && rs == MIPS_GP_REGNUM)
7637 {
7638 gdb_byte buf[4];
7639
7640 memset (buf, 0, sizeof (buf));
7641 status = target_read_memory (gp + imm, buf, sizeof (buf));
7642 addrreg = rt;
7643 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7644 }
7645 break;
7646 }
7647 }
7648
7649 return target_pc;
7650 }
7651
7652 /* If PC is in a MIPS16 call or return stub, return the address of the
7653 target PC, which is either the callee or the caller. There are several
7654 cases which must be handled:
7655
7656 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7657 and the target PC is in $31 ($ra).
7658 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7659 and the target PC is in $2.
7660 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7661 i.e. before the JALR instruction, this is effectively a call stub
7662 and the target PC is in $2. Otherwise this is effectively
7663 a return stub and the target PC is in $18.
7664 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7665 JAL or JALR instruction, this is effectively a call stub and the
7666 target PC is buried in the instruction stream. Otherwise this
7667 is effectively a return stub and the target PC is in $18.
7668 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7669 stub and the target PC is buried in the instruction stream.
7670
7671 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7672 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
7673 gory details. */
7674
7675 static CORE_ADDR
7676 mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7677 {
7678 struct gdbarch *gdbarch = get_frame_arch (frame);
7679 CORE_ADDR start_addr;
7680 const char *name;
7681 size_t prefixlen;
7682
7683 /* Find the starting address and name of the function containing the PC. */
7684 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7685 return 0;
7686
7687 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7688 and the target PC is in $31 ($ra). */
7689 prefixlen = strlen (mips_str_mips16_ret_stub);
7690 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7691 && mips_is_stub_mode (name + prefixlen)
7692 && name[prefixlen + 2] == '\0')
7693 return get_frame_register_signed
7694 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7695
7696 /* If the PC is in __mips16_call_stub_*, this is one of the call
7697 call/return stubs. */
7698 prefixlen = strlen (mips_str_mips16_call_stub);
7699 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
7700 {
7701 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7702 and the target PC is in $2. */
7703 if (mips_is_stub_suffix (name + prefixlen, 0))
7704 return get_frame_register_signed
7705 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7706
7707 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7708 i.e. before the JALR instruction, this is effectively a call stub
7709 and the target PC is in $2. Otherwise this is effectively
7710 a return stub and the target PC is in $18. */
7711 else if (mips_is_stub_mode (name + prefixlen)
7712 && name[prefixlen + 2] == '_'
7713 && mips_is_stub_suffix (name + prefixlen + 3, 0))
7714 {
7715 if (pc == start_addr)
7716 /* This is the 'call' part of a call stub. The return
7717 address is in $2. */
7718 return get_frame_register_signed
7719 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7720 else
7721 /* This is the 'return' part of a call stub. The return
7722 address is in $18. */
7723 return get_frame_register_signed
7724 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7725 }
7726 else
7727 return 0; /* Not a stub. */
7728 }
7729
7730 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7731 compiler-generated call or call/return stubs. */
7732 if (startswith (name, mips_str_fn_stub)
7733 || startswith (name, mips_str_call_stub))
7734 {
7735 if (pc == start_addr)
7736 /* This is the 'call' part of a call stub. Call this helper
7737 to scan through this code for interesting instructions
7738 and determine the final PC. */
7739 return mips_get_mips16_fn_stub_pc (frame, pc);
7740 else
7741 /* This is the 'return' part of a call stub. The return address
7742 is in $18. */
7743 return get_frame_register_signed
7744 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7745 }
7746
7747 return 0; /* Not a stub. */
7748 }
7749
7750 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7751 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7752
7753 static int
7754 mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7755 {
7756 CORE_ADDR start_addr;
7757 size_t prefixlen;
7758
7759 /* Find the starting address of the function containing the PC. */
7760 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7761 return 0;
7762
7763 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7764 the start, i.e. after the JALR instruction, this is effectively
7765 a return stub. */
7766 prefixlen = strlen (mips_str_mips16_call_stub);
7767 if (pc != start_addr
7768 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7769 && mips_is_stub_mode (name + prefixlen)
7770 && name[prefixlen + 2] == '_'
7771 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7772 return 1;
7773
7774 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7775 the JAL or JALR instruction, this is effectively a return stub. */
7776 prefixlen = strlen (mips_str_call_fp_stub);
7777 if (pc != start_addr
7778 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7779 return 1;
7780
7781 /* Consume the .pic. prefix of any PIC stub, this function must return
7782 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7783 or the call stub path will trigger in handle_inferior_event causing
7784 it to go astray. */
7785 prefixlen = strlen (mips_str_pic);
7786 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7787 name += prefixlen;
7788
7789 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7790 prefixlen = strlen (mips_str_mips16_ret_stub);
7791 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7792 && mips_is_stub_mode (name + prefixlen)
7793 && name[prefixlen + 2] == '\0')
7794 return 1;
7795
7796 return 0; /* Not a stub. */
7797 }
7798
7799 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
7800 PC of the stub target. The stub just loads $t9 and jumps to it,
7801 so that $t9 has the correct value at function entry. */
7802
7803 static CORE_ADDR
7804 mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7805 {
7806 struct gdbarch *gdbarch = get_frame_arch (frame);
7807 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7808 struct bound_minimal_symbol msym;
7809 int i;
7810 gdb_byte stub_code[16];
7811 int32_t stub_words[4];
7812
7813 /* The stub for foo is named ".pic.foo", and is either two
7814 instructions inserted before foo or a three instruction sequence
7815 which jumps to foo. */
7816 msym = lookup_minimal_symbol_by_pc (pc);
7817 if (msym.minsym == NULL
7818 || BMSYMBOL_VALUE_ADDRESS (msym) != pc
7819 || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
7820 || !startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
7821 return 0;
7822
7823 /* A two-instruction header. */
7824 if (MSYMBOL_SIZE (msym.minsym) == 8)
7825 return pc + 8;
7826
7827 /* A three-instruction (plus delay slot) trampoline. */
7828 if (MSYMBOL_SIZE (msym.minsym) == 16)
7829 {
7830 if (target_read_memory (pc, stub_code, 16) != 0)
7831 return 0;
7832 for (i = 0; i < 4; i++)
7833 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7834 4, byte_order);
7835
7836 /* A stub contains these instructions:
7837 lui t9, %hi(target)
7838 j target
7839 addiu t9, t9, %lo(target)
7840 nop
7841
7842 This works even for N64, since stubs are only generated with
7843 -msym32. */
7844 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7845 && (stub_words[1] & 0xfc000000U) == 0x08000000
7846 && (stub_words[2] & 0xffff0000U) == 0x27390000
7847 && stub_words[3] == 0x00000000)
7848 return ((((stub_words[0] & 0x0000ffff) << 16)
7849 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
7850 }
7851
7852 /* Not a recognized stub. */
7853 return 0;
7854 }
7855
7856 static CORE_ADDR
7857 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7858 {
7859 CORE_ADDR requested_pc = pc;
7860 CORE_ADDR target_pc;
7861 CORE_ADDR new_pc;
7862
7863 do
7864 {
7865 target_pc = pc;
7866
7867 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7868 if (new_pc)
7869 pc = new_pc;
7870
7871 new_pc = find_solib_trampoline_target (frame, pc);
7872 if (new_pc)
7873 pc = new_pc;
7874
7875 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7876 if (new_pc)
7877 pc = new_pc;
7878 }
7879 while (pc != target_pc);
7880
7881 return pc != requested_pc ? pc : 0;
7882 }
7883
7884 /* Convert a dbx stab register number (from `r' declaration) to a GDB
7885 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7886
7887 static int
7888 mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
7889 {
7890 int regnum;
7891 if (num >= 0 && num < 32)
7892 regnum = num;
7893 else if (num >= 38 && num < 70)
7894 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
7895 else if (num == 70)
7896 regnum = mips_regnum (gdbarch)->hi;
7897 else if (num == 71)
7898 regnum = mips_regnum (gdbarch)->lo;
7899 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7900 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
7901 else
7902 return -1;
7903 return gdbarch_num_regs (gdbarch) + regnum;
7904 }
7905
7906
7907 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
7908 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7909
7910 static int
7911 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
7912 {
7913 int regnum;
7914 if (num >= 0 && num < 32)
7915 regnum = num;
7916 else if (num >= 32 && num < 64)
7917 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
7918 else if (num == 64)
7919 regnum = mips_regnum (gdbarch)->hi;
7920 else if (num == 65)
7921 regnum = mips_regnum (gdbarch)->lo;
7922 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7923 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
7924 else
7925 return -1;
7926 return gdbarch_num_regs (gdbarch) + regnum;
7927 }
7928
7929 static int
7930 mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
7931 {
7932 /* Only makes sense to supply raw registers. */
7933 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
7934 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7935 decide if it is valid. Should instead define a standard sim/gdb
7936 register numbering scheme. */
7937 if (gdbarch_register_name (gdbarch,
7938 gdbarch_num_regs (gdbarch) + regnum) != NULL
7939 && gdbarch_register_name (gdbarch,
7940 gdbarch_num_regs (gdbarch)
7941 + regnum)[0] != '\0')
7942 return regnum;
7943 else
7944 return LEGACY_SIM_REGNO_IGNORE;
7945 }
7946
7947
7948 /* Convert an integer into an address. Extracting the value signed
7949 guarantees a correctly sign extended address. */
7950
7951 static CORE_ADDR
7952 mips_integer_to_address (struct gdbarch *gdbarch,
7953 struct type *type, const gdb_byte *buf)
7954 {
7955 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7956 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
7957 }
7958
7959 /* Dummy virtual frame pointer method. This is no more or less accurate
7960 than most other architectures; we just need to be explicit about it,
7961 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7962 an assertion failure. */
7963
7964 static void
7965 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
7966 CORE_ADDR pc, int *reg, LONGEST *offset)
7967 {
7968 *reg = MIPS_SP_REGNUM;
7969 *offset = 0;
7970 }
7971
7972 static void
7973 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
7974 {
7975 enum mips_abi *abip = (enum mips_abi *) obj;
7976 const char *name = bfd_get_section_name (abfd, sect);
7977
7978 if (*abip != MIPS_ABI_UNKNOWN)
7979 return;
7980
7981 if (!startswith (name, ".mdebug."))
7982 return;
7983
7984 if (strcmp (name, ".mdebug.abi32") == 0)
7985 *abip = MIPS_ABI_O32;
7986 else if (strcmp (name, ".mdebug.abiN32") == 0)
7987 *abip = MIPS_ABI_N32;
7988 else if (strcmp (name, ".mdebug.abi64") == 0)
7989 *abip = MIPS_ABI_N64;
7990 else if (strcmp (name, ".mdebug.abiO64") == 0)
7991 *abip = MIPS_ABI_O64;
7992 else if (strcmp (name, ".mdebug.eabi32") == 0)
7993 *abip = MIPS_ABI_EABI32;
7994 else if (strcmp (name, ".mdebug.eabi64") == 0)
7995 *abip = MIPS_ABI_EABI64;
7996 else
7997 warning (_("unsupported ABI %s."), name + 8);
7998 }
7999
8000 static void
8001 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
8002 {
8003 int *lbp = (int *) obj;
8004 const char *name = bfd_get_section_name (abfd, sect);
8005
8006 if (startswith (name, ".gcc_compiled_long32"))
8007 *lbp = 32;
8008 else if (startswith (name, ".gcc_compiled_long64"))
8009 *lbp = 64;
8010 else if (startswith (name, ".gcc_compiled_long"))
8011 warning (_("unrecognized .gcc_compiled_longXX"));
8012 }
8013
8014 static enum mips_abi
8015 global_mips_abi (void)
8016 {
8017 int i;
8018
8019 for (i = 0; mips_abi_strings[i] != NULL; i++)
8020 if (mips_abi_strings[i] == mips_abi_string)
8021 return (enum mips_abi) i;
8022
8023 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
8024 }
8025
8026 /* Return the default compressed instruction set, either of MIPS16
8027 or microMIPS, selected when none could have been determined from
8028 the ELF header of the binary being executed (or no binary has been
8029 selected. */
8030
8031 static enum mips_isa
8032 global_mips_compression (void)
8033 {
8034 int i;
8035
8036 for (i = 0; mips_compression_strings[i] != NULL; i++)
8037 if (mips_compression_strings[i] == mips_compression_string)
8038 return (enum mips_isa) i;
8039
8040 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
8041 }
8042
8043 static void
8044 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
8045 {
8046 /* If the size matches the set of 32-bit or 64-bit integer registers,
8047 assume that's what we've got. */
8048 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
8049 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
8050
8051 /* If the size matches the full set of registers GDB traditionally
8052 knows about, including floating point, for either 32-bit or
8053 64-bit, assume that's what we've got. */
8054 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
8055 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
8056
8057 /* Otherwise we don't have a useful guess. */
8058 }
8059
8060 static struct value *
8061 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
8062 {
8063 const int *reg_p = (const int *) baton;
8064 return value_of_register (*reg_p, frame);
8065 }
8066
8067 static struct gdbarch *
8068 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8069 {
8070 struct gdbarch *gdbarch;
8071 struct gdbarch_tdep *tdep;
8072 int elf_flags;
8073 enum mips_abi mips_abi, found_abi, wanted_abi;
8074 int i, num_regs;
8075 enum mips_fpu_type fpu_type;
8076 struct tdesc_arch_data *tdesc_data = NULL;
8077 int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
8078 const char **reg_names;
8079 struct mips_regnum mips_regnum, *regnum;
8080 enum mips_isa mips_isa;
8081 int dspacc;
8082 int dspctl;
8083
8084 /* First of all, extract the elf_flags, if available. */
8085 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8086 elf_flags = elf_elfheader (info.abfd)->e_flags;
8087 else if (arches != NULL)
8088 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
8089 else
8090 elf_flags = 0;
8091 if (gdbarch_debug)
8092 fprintf_unfiltered (gdb_stdlog,
8093 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
8094
8095 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
8096 switch ((elf_flags & EF_MIPS_ABI))
8097 {
8098 case E_MIPS_ABI_O32:
8099 found_abi = MIPS_ABI_O32;
8100 break;
8101 case E_MIPS_ABI_O64:
8102 found_abi = MIPS_ABI_O64;
8103 break;
8104 case E_MIPS_ABI_EABI32:
8105 found_abi = MIPS_ABI_EABI32;
8106 break;
8107 case E_MIPS_ABI_EABI64:
8108 found_abi = MIPS_ABI_EABI64;
8109 break;
8110 default:
8111 if ((elf_flags & EF_MIPS_ABI2))
8112 found_abi = MIPS_ABI_N32;
8113 else
8114 found_abi = MIPS_ABI_UNKNOWN;
8115 break;
8116 }
8117
8118 /* GCC creates a pseudo-section whose name describes the ABI. */
8119 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8120 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
8121
8122 /* If we have no useful BFD information, use the ABI from the last
8123 MIPS architecture (if there is one). */
8124 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8125 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
8126
8127 /* Try the architecture for any hint of the correct ABI. */
8128 if (found_abi == MIPS_ABI_UNKNOWN
8129 && info.bfd_arch_info != NULL
8130 && info.bfd_arch_info->arch == bfd_arch_mips)
8131 {
8132 switch (info.bfd_arch_info->mach)
8133 {
8134 case bfd_mach_mips3900:
8135 found_abi = MIPS_ABI_EABI32;
8136 break;
8137 case bfd_mach_mips4100:
8138 case bfd_mach_mips5000:
8139 found_abi = MIPS_ABI_EABI64;
8140 break;
8141 case bfd_mach_mips8000:
8142 case bfd_mach_mips10000:
8143 /* On Irix, ELF64 executables use the N64 ABI. The
8144 pseudo-sections which describe the ABI aren't present
8145 on IRIX. (Even for executables created by gcc.) */
8146 if (info.abfd != NULL
8147 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8148 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8149 found_abi = MIPS_ABI_N64;
8150 else
8151 found_abi = MIPS_ABI_N32;
8152 break;
8153 }
8154 }
8155
8156 /* Default 64-bit objects to N64 instead of O32. */
8157 if (found_abi == MIPS_ABI_UNKNOWN
8158 && info.abfd != NULL
8159 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8160 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8161 found_abi = MIPS_ABI_N64;
8162
8163 if (gdbarch_debug)
8164 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8165 found_abi);
8166
8167 /* What has the user specified from the command line? */
8168 wanted_abi = global_mips_abi ();
8169 if (gdbarch_debug)
8170 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8171 wanted_abi);
8172
8173 /* Now that we have found what the ABI for this binary would be,
8174 check whether the user is overriding it. */
8175 if (wanted_abi != MIPS_ABI_UNKNOWN)
8176 mips_abi = wanted_abi;
8177 else if (found_abi != MIPS_ABI_UNKNOWN)
8178 mips_abi = found_abi;
8179 else
8180 mips_abi = MIPS_ABI_O32;
8181 if (gdbarch_debug)
8182 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8183 mips_abi);
8184
8185 /* Make sure we don't use a 32-bit architecture with a 64-bit ABI. */
8186 if (mips_abi != MIPS_ABI_EABI32
8187 && mips_abi != MIPS_ABI_O32
8188 && info.bfd_arch_info != NULL
8189 && info.bfd_arch_info->arch == bfd_arch_mips
8190 && info.bfd_arch_info->bits_per_word < 64)
8191 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_mips, bfd_mach_mips4000);
8192
8193 /* Determine the default compressed ISA. */
8194 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8195 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8196 mips_isa = ISA_MICROMIPS;
8197 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8198 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8199 mips_isa = ISA_MIPS16;
8200 else
8201 mips_isa = global_mips_compression ();
8202 mips_compression_string = mips_compression_strings[mips_isa];
8203
8204 /* Also used when doing an architecture lookup. */
8205 if (gdbarch_debug)
8206 fprintf_unfiltered (gdb_stdlog,
8207 "mips_gdbarch_init: "
8208 "mips64_transfers_32bit_regs_p = %d\n",
8209 mips64_transfers_32bit_regs_p);
8210
8211 /* Determine the MIPS FPU type. */
8212 #ifdef HAVE_ELF
8213 if (info.abfd
8214 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8215 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8216 Tag_GNU_MIPS_ABI_FP);
8217 #endif /* HAVE_ELF */
8218
8219 if (!mips_fpu_type_auto)
8220 fpu_type = mips_fpu_type;
8221 else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
8222 {
8223 switch (elf_fpu_type)
8224 {
8225 case Val_GNU_MIPS_ABI_FP_DOUBLE:
8226 fpu_type = MIPS_FPU_DOUBLE;
8227 break;
8228 case Val_GNU_MIPS_ABI_FP_SINGLE:
8229 fpu_type = MIPS_FPU_SINGLE;
8230 break;
8231 case Val_GNU_MIPS_ABI_FP_SOFT:
8232 default:
8233 /* Soft float or unknown. */
8234 fpu_type = MIPS_FPU_NONE;
8235 break;
8236 }
8237 }
8238 else if (info.bfd_arch_info != NULL
8239 && info.bfd_arch_info->arch == bfd_arch_mips)
8240 switch (info.bfd_arch_info->mach)
8241 {
8242 case bfd_mach_mips3900:
8243 case bfd_mach_mips4100:
8244 case bfd_mach_mips4111:
8245 case bfd_mach_mips4120:
8246 fpu_type = MIPS_FPU_NONE;
8247 break;
8248 case bfd_mach_mips4650:
8249 fpu_type = MIPS_FPU_SINGLE;
8250 break;
8251 default:
8252 fpu_type = MIPS_FPU_DOUBLE;
8253 break;
8254 }
8255 else if (arches != NULL)
8256 fpu_type = MIPS_FPU_TYPE (arches->gdbarch);
8257 else
8258 fpu_type = MIPS_FPU_DOUBLE;
8259 if (gdbarch_debug)
8260 fprintf_unfiltered (gdb_stdlog,
8261 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8262
8263 /* Check for blatant incompatibilities. */
8264
8265 /* If we have only 32-bit registers, then we can't debug a 64-bit
8266 ABI. */
8267 if (info.target_desc
8268 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8269 && mips_abi != MIPS_ABI_EABI32
8270 && mips_abi != MIPS_ABI_O32)
8271 return NULL;
8272
8273 /* Fill in the OS dependent register numbers and names. */
8274 if (info.osabi == GDB_OSABI_LINUX)
8275 {
8276 mips_regnum.fp0 = 38;
8277 mips_regnum.pc = 37;
8278 mips_regnum.cause = 36;
8279 mips_regnum.badvaddr = 35;
8280 mips_regnum.hi = 34;
8281 mips_regnum.lo = 33;
8282 mips_regnum.fp_control_status = 70;
8283 mips_regnum.fp_implementation_revision = 71;
8284 mips_regnum.dspacc = -1;
8285 mips_regnum.dspctl = -1;
8286 dspacc = 72;
8287 dspctl = 78;
8288 num_regs = 90;
8289 reg_names = mips_linux_reg_names;
8290 }
8291 else
8292 {
8293 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
8294 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
8295 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
8296 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
8297 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
8298 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
8299 mips_regnum.fp_control_status = 70;
8300 mips_regnum.fp_implementation_revision = 71;
8301 mips_regnum.dspacc = dspacc = -1;
8302 mips_regnum.dspctl = dspctl = -1;
8303 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
8304 if (info.bfd_arch_info != NULL
8305 && info.bfd_arch_info->mach == bfd_mach_mips3900)
8306 reg_names = mips_tx39_reg_names;
8307 else
8308 reg_names = mips_generic_reg_names;
8309 }
8310
8311 /* Check any target description for validity. */
8312 if (tdesc_has_registers (info.target_desc))
8313 {
8314 static const char *const mips_gprs[] = {
8315 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8316 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8317 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8318 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8319 };
8320 static const char *const mips_fprs[] = {
8321 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8322 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8323 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8324 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8325 };
8326
8327 const struct tdesc_feature *feature;
8328 int valid_p;
8329
8330 feature = tdesc_find_feature (info.target_desc,
8331 "org.gnu.gdb.mips.cpu");
8332 if (feature == NULL)
8333 return NULL;
8334
8335 tdesc_data = tdesc_data_alloc ();
8336
8337 valid_p = 1;
8338 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8339 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8340 mips_gprs[i]);
8341
8342
8343 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8344 mips_regnum.lo, "lo");
8345 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8346 mips_regnum.hi, "hi");
8347 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8348 mips_regnum.pc, "pc");
8349
8350 if (!valid_p)
8351 {
8352 tdesc_data_cleanup (tdesc_data);
8353 return NULL;
8354 }
8355
8356 feature = tdesc_find_feature (info.target_desc,
8357 "org.gnu.gdb.mips.cp0");
8358 if (feature == NULL)
8359 {
8360 tdesc_data_cleanup (tdesc_data);
8361 return NULL;
8362 }
8363
8364 valid_p = 1;
8365 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8366 mips_regnum.badvaddr, "badvaddr");
8367 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8368 MIPS_PS_REGNUM, "status");
8369 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8370 mips_regnum.cause, "cause");
8371
8372 if (!valid_p)
8373 {
8374 tdesc_data_cleanup (tdesc_data);
8375 return NULL;
8376 }
8377
8378 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8379 backend is not prepared for that, though. */
8380 feature = tdesc_find_feature (info.target_desc,
8381 "org.gnu.gdb.mips.fpu");
8382 if (feature == NULL)
8383 {
8384 tdesc_data_cleanup (tdesc_data);
8385 return NULL;
8386 }
8387
8388 valid_p = 1;
8389 for (i = 0; i < 32; i++)
8390 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8391 i + mips_regnum.fp0, mips_fprs[i]);
8392
8393 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8394 mips_regnum.fp_control_status,
8395 "fcsr");
8396 valid_p
8397 &= tdesc_numbered_register (feature, tdesc_data,
8398 mips_regnum.fp_implementation_revision,
8399 "fir");
8400
8401 if (!valid_p)
8402 {
8403 tdesc_data_cleanup (tdesc_data);
8404 return NULL;
8405 }
8406
8407 num_regs = mips_regnum.fp_implementation_revision + 1;
8408
8409 if (dspacc >= 0)
8410 {
8411 feature = tdesc_find_feature (info.target_desc,
8412 "org.gnu.gdb.mips.dsp");
8413 /* The DSP registers are optional; it's OK if they are absent. */
8414 if (feature != NULL)
8415 {
8416 i = 0;
8417 valid_p = 1;
8418 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8419 dspacc + i++, "hi1");
8420 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8421 dspacc + i++, "lo1");
8422 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8423 dspacc + i++, "hi2");
8424 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8425 dspacc + i++, "lo2");
8426 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8427 dspacc + i++, "hi3");
8428 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8429 dspacc + i++, "lo3");
8430
8431 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8432 dspctl, "dspctl");
8433
8434 if (!valid_p)
8435 {
8436 tdesc_data_cleanup (tdesc_data);
8437 return NULL;
8438 }
8439
8440 mips_regnum.dspacc = dspacc;
8441 mips_regnum.dspctl = dspctl;
8442
8443 num_regs = mips_regnum.dspctl + 1;
8444 }
8445 }
8446
8447 /* It would be nice to detect an attempt to use a 64-bit ABI
8448 when only 32-bit registers are provided. */
8449 reg_names = NULL;
8450 }
8451
8452 /* Try to find a pre-existing architecture. */
8453 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8454 arches != NULL;
8455 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8456 {
8457 /* MIPS needs to be pedantic about which ABI and the compressed
8458 ISA variation the object is using. */
8459 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
8460 continue;
8461 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
8462 continue;
8463 if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
8464 continue;
8465 /* Need to be pedantic about which register virtual size is
8466 used. */
8467 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8468 != mips64_transfers_32bit_regs_p)
8469 continue;
8470 /* Be pedantic about which FPU is selected. */
8471 if (MIPS_FPU_TYPE (arches->gdbarch) != fpu_type)
8472 continue;
8473
8474 if (tdesc_data != NULL)
8475 tdesc_data_cleanup (tdesc_data);
8476 return arches->gdbarch;
8477 }
8478
8479 /* Need a new architecture. Fill in a target specific vector. */
8480 tdep = XCNEW (struct gdbarch_tdep);
8481 gdbarch = gdbarch_alloc (&info, tdep);
8482 tdep->elf_flags = elf_flags;
8483 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
8484 tdep->found_abi = found_abi;
8485 tdep->mips_abi = mips_abi;
8486 tdep->mips_isa = mips_isa;
8487 tdep->mips_fpu_type = fpu_type;
8488 tdep->register_size_valid_p = 0;
8489 tdep->register_size = 0;
8490
8491 if (info.target_desc)
8492 {
8493 /* Some useful properties can be inferred from the target. */
8494 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8495 {
8496 tdep->register_size_valid_p = 1;
8497 tdep->register_size = 4;
8498 }
8499 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8500 {
8501 tdep->register_size_valid_p = 1;
8502 tdep->register_size = 8;
8503 }
8504 }
8505
8506 /* Initially set everything according to the default ABI/ISA. */
8507 set_gdbarch_short_bit (gdbarch, 16);
8508 set_gdbarch_int_bit (gdbarch, 32);
8509 set_gdbarch_float_bit (gdbarch, 32);
8510 set_gdbarch_double_bit (gdbarch, 64);
8511 set_gdbarch_long_double_bit (gdbarch, 64);
8512 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8513 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8514 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
8515
8516 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8517 mips_ax_pseudo_register_collect);
8518 set_gdbarch_ax_pseudo_register_push_stack
8519 (gdbarch, mips_ax_pseudo_register_push_stack);
8520
8521 set_gdbarch_elf_make_msymbol_special (gdbarch,
8522 mips_elf_make_msymbol_special);
8523 set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
8524 set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
8525 set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
8526
8527 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8528 *regnum = mips_regnum;
8529 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8530 set_gdbarch_num_regs (gdbarch, num_regs);
8531 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8532 set_gdbarch_register_name (gdbarch, mips_register_name);
8533 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8534 tdep->mips_processor_reg_names = reg_names;
8535 tdep->regnum = regnum;
8536
8537 switch (mips_abi)
8538 {
8539 case MIPS_ABI_O32:
8540 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
8541 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
8542 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8543 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8544 tdep->default_mask_address_p = 0;
8545 set_gdbarch_long_bit (gdbarch, 32);
8546 set_gdbarch_ptr_bit (gdbarch, 32);
8547 set_gdbarch_long_long_bit (gdbarch, 64);
8548 break;
8549 case MIPS_ABI_O64:
8550 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
8551 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
8552 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8553 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8554 tdep->default_mask_address_p = 0;
8555 set_gdbarch_long_bit (gdbarch, 32);
8556 set_gdbarch_ptr_bit (gdbarch, 32);
8557 set_gdbarch_long_long_bit (gdbarch, 64);
8558 break;
8559 case MIPS_ABI_EABI32:
8560 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8561 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8562 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8563 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8564 tdep->default_mask_address_p = 0;
8565 set_gdbarch_long_bit (gdbarch, 32);
8566 set_gdbarch_ptr_bit (gdbarch, 32);
8567 set_gdbarch_long_long_bit (gdbarch, 64);
8568 break;
8569 case MIPS_ABI_EABI64:
8570 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8571 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8572 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8573 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8574 tdep->default_mask_address_p = 0;
8575 set_gdbarch_long_bit (gdbarch, 64);
8576 set_gdbarch_ptr_bit (gdbarch, 64);
8577 set_gdbarch_long_long_bit (gdbarch, 64);
8578 break;
8579 case MIPS_ABI_N32:
8580 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8581 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8582 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8583 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8584 tdep->default_mask_address_p = 0;
8585 set_gdbarch_long_bit (gdbarch, 32);
8586 set_gdbarch_ptr_bit (gdbarch, 32);
8587 set_gdbarch_long_long_bit (gdbarch, 64);
8588 set_gdbarch_long_double_bit (gdbarch, 128);
8589 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8590 break;
8591 case MIPS_ABI_N64:
8592 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8593 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8594 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8595 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8596 tdep->default_mask_address_p = 0;
8597 set_gdbarch_long_bit (gdbarch, 64);
8598 set_gdbarch_ptr_bit (gdbarch, 64);
8599 set_gdbarch_long_long_bit (gdbarch, 64);
8600 set_gdbarch_long_double_bit (gdbarch, 128);
8601 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8602 break;
8603 default:
8604 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8605 }
8606
8607 /* GCC creates a pseudo-section whose name specifies the size of
8608 longs, since -mlong32 or -mlong64 may be used independent of
8609 other options. How those options affect pointer sizes is ABI and
8610 architecture dependent, so use them to override the default sizes
8611 set by the ABI. This table shows the relationship between ABI,
8612 -mlongXX, and size of pointers:
8613
8614 ABI -mlongXX ptr bits
8615 --- -------- --------
8616 o32 32 32
8617 o32 64 32
8618 n32 32 32
8619 n32 64 64
8620 o64 32 32
8621 o64 64 64
8622 n64 32 32
8623 n64 64 64
8624 eabi32 32 32
8625 eabi32 64 32
8626 eabi64 32 32
8627 eabi64 64 64
8628
8629 Note that for o32 and eabi32, pointers are always 32 bits
8630 regardless of any -mlongXX option. For all others, pointers and
8631 longs are the same, as set by -mlongXX or set by defaults. */
8632
8633 if (info.abfd != NULL)
8634 {
8635 int long_bit = 0;
8636
8637 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8638 if (long_bit)
8639 {
8640 set_gdbarch_long_bit (gdbarch, long_bit);
8641 switch (mips_abi)
8642 {
8643 case MIPS_ABI_O32:
8644 case MIPS_ABI_EABI32:
8645 break;
8646 case MIPS_ABI_N32:
8647 case MIPS_ABI_O64:
8648 case MIPS_ABI_N64:
8649 case MIPS_ABI_EABI64:
8650 set_gdbarch_ptr_bit (gdbarch, long_bit);
8651 break;
8652 default:
8653 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8654 }
8655 }
8656 }
8657
8658 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8659 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8660 comment:
8661
8662 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8663 flag in object files because to do so would make it impossible to
8664 link with libraries compiled without "-gp32". This is
8665 unnecessarily restrictive.
8666
8667 We could solve this problem by adding "-gp32" multilibs to gcc,
8668 but to set this flag before gcc is built with such multilibs will
8669 break too many systems.''
8670
8671 But even more unhelpfully, the default linker output target for
8672 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8673 for 64-bit programs - you need to change the ABI to change this,
8674 and not all gcc targets support that currently. Therefore using
8675 this flag to detect 32-bit mode would do the wrong thing given
8676 the current gcc - it would make GDB treat these 64-bit programs
8677 as 32-bit programs by default. */
8678
8679 set_gdbarch_read_pc (gdbarch, mips_read_pc);
8680 set_gdbarch_write_pc (gdbarch, mips_write_pc);
8681
8682 /* Add/remove bits from an address. The MIPS needs be careful to
8683 ensure that all 32 bit addresses are sign extended to 64 bits. */
8684 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8685
8686 /* Unwind the frame. */
8687 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
8688 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
8689 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
8690
8691 /* Map debug register numbers onto internal register numbers. */
8692 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
8693 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8694 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8695 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8696 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8697 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
8698
8699 /* MIPS version of CALL_DUMMY. */
8700
8701 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8702 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
8703 set_gdbarch_frame_align (gdbarch, mips_frame_align);
8704
8705 set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
8706
8707 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8708 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8709 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8710
8711 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8712 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mips_breakpoint_kind_from_pc);
8713 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mips_sw_breakpoint_from_kind);
8714 set_gdbarch_adjust_breakpoint_address (gdbarch,
8715 mips_adjust_breakpoint_address);
8716
8717 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
8718
8719 set_gdbarch_stack_frame_destroyed_p (gdbarch, mips_stack_frame_destroyed_p);
8720
8721 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8722 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8723 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
8724
8725 set_gdbarch_register_type (gdbarch, mips_register_type);
8726
8727 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
8728
8729 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
8730 if (mips_abi == MIPS_ABI_N64)
8731 set_gdbarch_disassembler_options_implicit
8732 (gdbarch, (const char *) mips_disassembler_options_n64);
8733 else if (mips_abi == MIPS_ABI_N32)
8734 set_gdbarch_disassembler_options_implicit
8735 (gdbarch, (const char *) mips_disassembler_options_n32);
8736 else
8737 set_gdbarch_disassembler_options_implicit
8738 (gdbarch, (const char *) mips_disassembler_options_o32);
8739 set_gdbarch_disassembler_options (gdbarch, &mips_disassembler_options);
8740 set_gdbarch_valid_disassembler_options (gdbarch,
8741 disassembler_options_mips ());
8742
8743 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8744 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
8745 need to all be folded into the target vector. Since they are
8746 being used as guards for target_stopped_by_watchpoint, why not have
8747 target_stopped_by_watchpoint return the type of watchpoint that the code
8748 is sitting on? */
8749 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8750
8751 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
8752
8753 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8754 to support MIPS16. This is a bad thing. Make sure not to do it
8755 if we have an OS ABI that actually supports shared libraries, since
8756 shared library support is more important. If we have an OS someday
8757 that supports both shared libraries and MIPS16, we'll have to find
8758 a better place for these.
8759 macro/2012-04-25: But that applies to return trampolines only and
8760 currently no MIPS OS ABI uses shared libraries that have them. */
8761 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8762
8763 set_gdbarch_single_step_through_delay (gdbarch,
8764 mips_single_step_through_delay);
8765
8766 /* Virtual tables. */
8767 set_gdbarch_vbit_in_delta (gdbarch, 1);
8768
8769 mips_register_g_packet_guesses (gdbarch);
8770
8771 /* Hook in OS ABI-specific overrides, if they have been registered. */
8772 info.tdesc_data = tdesc_data;
8773 gdbarch_init_osabi (info, gdbarch);
8774
8775 /* The hook may have adjusted num_regs, fetch the final value and
8776 set pc_regnum and sp_regnum now that it has been fixed. */
8777 num_regs = gdbarch_num_regs (gdbarch);
8778 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8779 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8780
8781 /* Unwind the frame. */
8782 dwarf2_append_unwinders (gdbarch);
8783 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8784 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
8785 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
8786 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
8787 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
8788 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
8789 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
8790 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
8791 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
8792
8793 if (tdesc_data)
8794 {
8795 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
8796 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8797
8798 /* Override the normal target description methods to handle our
8799 dual real and pseudo registers. */
8800 set_gdbarch_register_name (gdbarch, mips_register_name);
8801 set_gdbarch_register_reggroup_p (gdbarch,
8802 mips_tdesc_register_reggroup_p);
8803
8804 num_regs = gdbarch_num_regs (gdbarch);
8805 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8806 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8807 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8808 }
8809
8810 /* Add ABI-specific aliases for the registers. */
8811 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8812 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8813 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8814 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8815 else
8816 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8817 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8818 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8819
8820 /* Add some other standard aliases. */
8821 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8822 user_reg_add (gdbarch, mips_register_aliases[i].name,
8823 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8824
8825 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8826 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8827 value_of_mips_user_reg,
8828 &mips_numeric_register_aliases[i].regnum);
8829
8830 return gdbarch;
8831 }
8832
8833 static void
8834 mips_abi_update (const char *ignore_args,
8835 int from_tty, struct cmd_list_element *c)
8836 {
8837 struct gdbarch_info info;
8838
8839 /* Force the architecture to update, and (if it's a MIPS architecture)
8840 mips_gdbarch_init will take care of the rest. */
8841 gdbarch_info_init (&info);
8842 gdbarch_update_p (info);
8843 }
8844
8845 /* Print out which MIPS ABI is in use. */
8846
8847 static void
8848 show_mips_abi (struct ui_file *file,
8849 int from_tty,
8850 struct cmd_list_element *ignored_cmd,
8851 const char *ignored_value)
8852 {
8853 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
8854 fprintf_filtered
8855 (file,
8856 "The MIPS ABI is unknown because the current architecture "
8857 "is not MIPS.\n");
8858 else
8859 {
8860 enum mips_abi global_abi = global_mips_abi ();
8861 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
8862 const char *actual_abi_str = mips_abi_strings[actual_abi];
8863
8864 if (global_abi == MIPS_ABI_UNKNOWN)
8865 fprintf_filtered
8866 (file,
8867 "The MIPS ABI is set automatically (currently \"%s\").\n",
8868 actual_abi_str);
8869 else if (global_abi == actual_abi)
8870 fprintf_filtered
8871 (file,
8872 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
8873 actual_abi_str);
8874 else
8875 {
8876 /* Probably shouldn't happen... */
8877 fprintf_filtered (file,
8878 "The (auto detected) MIPS ABI \"%s\" is in use "
8879 "even though the user setting was \"%s\".\n",
8880 actual_abi_str, mips_abi_strings[global_abi]);
8881 }
8882 }
8883 }
8884
8885 /* Print out which MIPS compressed ISA encoding is used. */
8886
8887 static void
8888 show_mips_compression (struct ui_file *file, int from_tty,
8889 struct cmd_list_element *c, const char *value)
8890 {
8891 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8892 value);
8893 }
8894
8895 /* Return a textual name for MIPS FPU type FPU_TYPE. */
8896
8897 static const char *
8898 mips_fpu_type_str (enum mips_fpu_type fpu_type)
8899 {
8900 switch (fpu_type)
8901 {
8902 case MIPS_FPU_NONE:
8903 return "none";
8904 case MIPS_FPU_SINGLE:
8905 return "single";
8906 case MIPS_FPU_DOUBLE:
8907 return "double";
8908 default:
8909 return "???";
8910 }
8911 }
8912
8913 static void
8914 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
8915 {
8916 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8917 if (tdep != NULL)
8918 {
8919 int ef_mips_arch;
8920 int ef_mips_32bitmode;
8921 /* Determine the ISA. */
8922 switch (tdep->elf_flags & EF_MIPS_ARCH)
8923 {
8924 case E_MIPS_ARCH_1:
8925 ef_mips_arch = 1;
8926 break;
8927 case E_MIPS_ARCH_2:
8928 ef_mips_arch = 2;
8929 break;
8930 case E_MIPS_ARCH_3:
8931 ef_mips_arch = 3;
8932 break;
8933 case E_MIPS_ARCH_4:
8934 ef_mips_arch = 4;
8935 break;
8936 default:
8937 ef_mips_arch = 0;
8938 break;
8939 }
8940 /* Determine the size of a pointer. */
8941 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
8942 fprintf_unfiltered (file,
8943 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
8944 tdep->elf_flags);
8945 fprintf_unfiltered (file,
8946 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8947 ef_mips_32bitmode);
8948 fprintf_unfiltered (file,
8949 "mips_dump_tdep: ef_mips_arch = %d\n",
8950 ef_mips_arch);
8951 fprintf_unfiltered (file,
8952 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
8953 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
8954 fprintf_unfiltered (file,
8955 "mips_dump_tdep: "
8956 "mips_mask_address_p() %d (default %d)\n",
8957 mips_mask_address_p (tdep),
8958 tdep->default_mask_address_p);
8959 }
8960 fprintf_unfiltered (file,
8961 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8962 MIPS_DEFAULT_FPU_TYPE,
8963 mips_fpu_type_str (MIPS_DEFAULT_FPU_TYPE));
8964 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
8965 MIPS_EABI (gdbarch));
8966 fprintf_unfiltered (file,
8967 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
8968 MIPS_FPU_TYPE (gdbarch),
8969 mips_fpu_type_str (MIPS_FPU_TYPE (gdbarch)));
8970 }
8971
8972 void
8973 _initialize_mips_tdep (void)
8974 {
8975 static struct cmd_list_element *mipsfpulist = NULL;
8976
8977 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
8978 if (MIPS_ABI_LAST + 1
8979 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
8980 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
8981
8982 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
8983
8984 mips_pdr_data = register_objfile_data ();
8985
8986 /* Create feature sets with the appropriate properties. The values
8987 are not important. */
8988 mips_tdesc_gp32 = allocate_target_description ();
8989 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
8990
8991 mips_tdesc_gp64 = allocate_target_description ();
8992 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
8993
8994 /* Add root prefix command for all "set mips"/"show mips" commands. */
8995 add_prefix_cmd ("mips", no_class, set_mips_command,
8996 _("Various MIPS specific commands."),
8997 &setmipscmdlist, "set mips ", 0, &setlist);
8998
8999 add_prefix_cmd ("mips", no_class, show_mips_command,
9000 _("Various MIPS specific commands."),
9001 &showmipscmdlist, "show mips ", 0, &showlist);
9002
9003 /* Allow the user to override the ABI. */
9004 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
9005 &mips_abi_string, _("\
9006 Set the MIPS ABI used by this program."), _("\
9007 Show the MIPS ABI used by this program."), _("\
9008 This option can be set to one of:\n\
9009 auto - the default ABI associated with the current binary\n\
9010 o32\n\
9011 o64\n\
9012 n32\n\
9013 n64\n\
9014 eabi32\n\
9015 eabi64"),
9016 mips_abi_update,
9017 show_mips_abi,
9018 &setmipscmdlist, &showmipscmdlist);
9019
9020 /* Allow the user to set the ISA to assume for compressed code if ELF
9021 file flags don't tell or there is no program file selected. This
9022 setting is updated whenever unambiguous ELF file flags are interpreted,
9023 and carried over to subsequent sessions. */
9024 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
9025 &mips_compression_string, _("\
9026 Set the compressed ISA encoding used by MIPS code."), _("\
9027 Show the compressed ISA encoding used by MIPS code."), _("\
9028 Select the compressed ISA encoding used in functions that have no symbol\n\
9029 information available. The encoding can be set to either of:\n\
9030 mips16\n\
9031 micromips\n\
9032 and is updated automatically from ELF file flags if available."),
9033 mips_abi_update,
9034 show_mips_compression,
9035 &setmipscmdlist, &showmipscmdlist);
9036
9037 /* Let the user turn off floating point and set the fence post for
9038 heuristic_proc_start. */
9039
9040 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
9041 _("Set use of MIPS floating-point coprocessor."),
9042 &mipsfpulist, "set mipsfpu ", 0, &setlist);
9043 add_cmd ("single", class_support, set_mipsfpu_single_command,
9044 _("Select single-precision MIPS floating-point coprocessor."),
9045 &mipsfpulist);
9046 add_cmd ("double", class_support, set_mipsfpu_double_command,
9047 _("Select double-precision MIPS floating-point coprocessor."),
9048 &mipsfpulist);
9049 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
9050 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
9051 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
9052 add_cmd ("none", class_support, set_mipsfpu_none_command,
9053 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
9054 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
9055 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
9056 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
9057 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
9058 _("Select MIPS floating-point coprocessor automatically."),
9059 &mipsfpulist);
9060 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
9061 _("Show current use of MIPS floating-point coprocessor target."),
9062 &showlist);
9063
9064 /* We really would like to have both "0" and "unlimited" work, but
9065 command.c doesn't deal with that. So make it a var_zinteger
9066 because the user can always use "999999" or some such for unlimited. */
9067 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
9068 &heuristic_fence_post, _("\
9069 Set the distance searched for the start of a function."), _("\
9070 Show the distance searched for the start of a function."), _("\
9071 If you are debugging a stripped executable, GDB needs to search through the\n\
9072 program for the start of a function. This command sets the distance of the\n\
9073 search. The only need to set it is when debugging a stripped executable."),
9074 reinit_frame_cache_sfunc,
9075 NULL, /* FIXME: i18n: The distance searched for
9076 the start of a function is %s. */
9077 &setlist, &showlist);
9078
9079 /* Allow the user to control whether the upper bits of 64-bit
9080 addresses should be zeroed. */
9081 add_setshow_auto_boolean_cmd ("mask-address", no_class,
9082 &mask_address_var, _("\
9083 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9084 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
9085 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
9086 allow GDB to determine the correct value."),
9087 NULL, show_mask_address,
9088 &setmipscmdlist, &showmipscmdlist);
9089
9090 /* Allow the user to control the size of 32 bit registers within the
9091 raw remote packet. */
9092 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
9093 &mips64_transfers_32bit_regs_p, _("\
9094 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9095 _("\
9096 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9097 _("\
9098 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9099 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
9100 64 bits for others. Use \"off\" to disable compatibility mode"),
9101 set_mips64_transfers_32bit_regs,
9102 NULL, /* FIXME: i18n: Compatibility with 64-bit
9103 MIPS target that transfers 32-bit
9104 quantities is %s. */
9105 &setlist, &showlist);
9106
9107 /* Debug this files internals. */
9108 add_setshow_zuinteger_cmd ("mips", class_maintenance,
9109 &mips_debug, _("\
9110 Set mips debugging."), _("\
9111 Show mips debugging."), _("\
9112 When non-zero, mips specific debugging is enabled."),
9113 NULL,
9114 NULL, /* FIXME: i18n: Mips debugging is
9115 currently %s. */
9116 &setdebuglist, &showdebuglist);
9117 }