]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-tdep.c
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 Boston, MA 02110-1301, USA. */
26
27 #include "defs.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
30 #include "frame.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "value.h"
34 #include "gdbcmd.h"
35 #include "language.h"
36 #include "gdbcore.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "gdbtypes.h"
40 #include "target.h"
41 #include "arch-utils.h"
42 #include "regcache.h"
43 #include "osabi.h"
44 #include "mips-tdep.h"
45 #include "block.h"
46 #include "reggroups.h"
47 #include "opcode/mips.h"
48 #include "elf/mips.h"
49 #include "elf-bfd.h"
50 #include "symcat.h"
51 #include "sim-regno.h"
52 #include "dis-asm.h"
53 #include "frame-unwind.h"
54 #include "frame-base.h"
55 #include "trad-frame.h"
56 #include "infcall.h"
57 #include "floatformat.h"
58 #include "remote.h"
59 #include "target-descriptions.h"
60
61 static const struct objfile_data *mips_pdr_data;
62
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
66 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
67 #define ST0_FR (1 << 26)
68
69 /* The sizes of floating point registers. */
70
71 enum
72 {
73 MIPS_FPU_SINGLE_REGSIZE = 4,
74 MIPS_FPU_DOUBLE_REGSIZE = 8
75 };
76
77
78 static const char *mips_abi_string;
79
80 static const char *mips_abi_strings[] = {
81 "auto",
82 "n32",
83 "o32",
84 "n64",
85 "o64",
86 "eabi32",
87 "eabi64",
88 NULL
89 };
90
91 /* Various MIPS ISA options (related to stack analysis) can be
92 overridden dynamically. Establish an enum/array for managing
93 them. */
94
95 static const char size_auto[] = "auto";
96 static const char size_32[] = "32";
97 static const char size_64[] = "64";
98
99 static const char *size_enums[] = {
100 size_auto,
101 size_32,
102 size_64,
103 0
104 };
105
106 /* Some MIPS boards don't support floating point while others only
107 support single-precision floating-point operations. */
108
109 enum mips_fpu_type
110 {
111 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
112 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
113 MIPS_FPU_NONE /* No floating point. */
114 };
115
116 #ifndef MIPS_DEFAULT_FPU_TYPE
117 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
118 #endif
119 static int mips_fpu_type_auto = 1;
120 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
121
122 static int mips_debug = 0;
123
124 /* Properties (for struct target_desc) describing the g/G packet
125 layout. */
126 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
127 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
128
129 /* MIPS specific per-architecture information */
130 struct gdbarch_tdep
131 {
132 /* from the elf header */
133 int elf_flags;
134
135 /* mips options */
136 enum mips_abi mips_abi;
137 enum mips_abi found_abi;
138 enum mips_fpu_type mips_fpu_type;
139 int mips_last_arg_regnum;
140 int mips_last_fp_arg_regnum;
141 int default_mask_address_p;
142 /* Is the target using 64-bit raw integer registers but only
143 storing a left-aligned 32-bit value in each? */
144 int mips64_transfers_32bit_regs_p;
145 /* Indexes for various registers. IRIX and embedded have
146 different values. This contains the "public" fields. Don't
147 add any that do not need to be public. */
148 const struct mips_regnum *regnum;
149 /* Register names table for the current register set. */
150 const char **mips_processor_reg_names;
151
152 /* The size of register data available from the target, if known.
153 This doesn't quite obsolete the manual
154 mips64_transfers_32bit_regs_p, since that is documented to force
155 left alignment even for big endian (very strange). */
156 int register_size_valid_p;
157 int register_size;
158 };
159
160 static int
161 n32n64_floatformat_always_valid (const struct floatformat *fmt,
162 const void *from)
163 {
164 return 1;
165 }
166
167 /* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
168 They are implemented as a pair of 64bit doubles where the high
169 part holds the result of the operation rounded to double, and
170 the low double holds the difference between the exact result and
171 the rounded result. So "high" + "low" contains the result with
172 added precision. Unfortunately, the floatformat structure used
173 by GDB is not powerful enough to describe this format. As a temporary
174 measure, we define a 128bit floatformat that only uses the high part.
175 We lose a bit of precision but that's probably the best we can do
176 for now with the current infrastructure. */
177
178 static const struct floatformat floatformat_n32n64_long_double_big =
179 {
180 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
181 floatformat_intbit_no,
182 "floatformat_ieee_double_big",
183 n32n64_floatformat_always_valid
184 };
185
186 const struct mips_regnum *
187 mips_regnum (struct gdbarch *gdbarch)
188 {
189 return gdbarch_tdep (gdbarch)->regnum;
190 }
191
192 static int
193 mips_fpa0_regnum (struct gdbarch *gdbarch)
194 {
195 return mips_regnum (gdbarch)->fp0 + 12;
196 }
197
198 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
199 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
200
201 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
202
203 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
204
205 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
206
207 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
208 functions to test, set, or clear bit 0 of addresses. */
209
210 static CORE_ADDR
211 is_mips16_addr (CORE_ADDR addr)
212 {
213 return ((addr) & 1);
214 }
215
216 static CORE_ADDR
217 unmake_mips16_addr (CORE_ADDR addr)
218 {
219 return ((addr) & ~(CORE_ADDR) 1);
220 }
221
222 /* Return the contents of register REGNUM as a signed integer. */
223
224 static LONGEST
225 read_signed_register (int regnum)
226 {
227 LONGEST val;
228 regcache_cooked_read_signed (current_regcache, regnum, &val);
229 return val;
230 }
231
232 static LONGEST
233 read_signed_register_pid (int regnum, ptid_t ptid)
234 {
235 ptid_t save_ptid;
236 LONGEST retval;
237
238 if (ptid_equal (ptid, inferior_ptid))
239 return read_signed_register (regnum);
240
241 save_ptid = inferior_ptid;
242
243 inferior_ptid = ptid;
244
245 retval = read_signed_register (regnum);
246
247 inferior_ptid = save_ptid;
248
249 return retval;
250 }
251
252 /* Return the MIPS ABI associated with GDBARCH. */
253 enum mips_abi
254 mips_abi (struct gdbarch *gdbarch)
255 {
256 return gdbarch_tdep (gdbarch)->mips_abi;
257 }
258
259 int
260 mips_isa_regsize (struct gdbarch *gdbarch)
261 {
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263
264 /* If we know how big the registers are, use that size. */
265 if (tdep->register_size_valid_p)
266 return tdep->register_size;
267
268 /* Fall back to the previous behavior. */
269 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
270 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
271 }
272
273 /* Return the currently configured (or set) saved register size. */
274
275 static const char *mips_abi_regsize_string = size_auto;
276
277 unsigned int
278 mips_abi_regsize (struct gdbarch *gdbarch)
279 {
280 if (mips_abi_regsize_string == size_auto)
281 switch (mips_abi (gdbarch))
282 {
283 case MIPS_ABI_EABI32:
284 case MIPS_ABI_O32:
285 return 4;
286 case MIPS_ABI_N32:
287 case MIPS_ABI_N64:
288 case MIPS_ABI_O64:
289 case MIPS_ABI_EABI64:
290 return 8;
291 case MIPS_ABI_UNKNOWN:
292 case MIPS_ABI_LAST:
293 default:
294 internal_error (__FILE__, __LINE__, _("bad switch"));
295 }
296 else if (mips_abi_regsize_string == size_64)
297 return 8;
298 else /* if (mips_abi_regsize_string == size_32) */
299 return 4;
300 }
301
302 /* Functions for setting and testing a bit in a minimal symbol that
303 marks it as 16-bit function. The MSB of the minimal symbol's
304 "info" field is used for this purpose.
305
306 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
307 i.e. refers to a 16-bit function, and sets a "special" bit in a
308 minimal symbol to mark it as a 16-bit function
309
310 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
311
312 static void
313 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
314 {
315 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
316 {
317 MSYMBOL_INFO (msym) = (char *)
318 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
319 SYMBOL_VALUE_ADDRESS (msym) |= 1;
320 }
321 }
322
323 static int
324 msymbol_is_special (struct minimal_symbol *msym)
325 {
326 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
327 }
328
329 /* XFER a value from the big/little/left end of the register.
330 Depending on the size of the value it might occupy the entire
331 register or just part of it. Make an allowance for this, aligning
332 things accordingly. */
333
334 static void
335 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
336 enum bfd_endian endian, gdb_byte *in,
337 const gdb_byte *out, int buf_offset)
338 {
339 int reg_offset = 0;
340 gdb_assert (reg_num >= NUM_REGS);
341 /* Need to transfer the left or right part of the register, based on
342 the targets byte order. */
343 switch (endian)
344 {
345 case BFD_ENDIAN_BIG:
346 reg_offset = register_size (current_gdbarch, reg_num) - length;
347 break;
348 case BFD_ENDIAN_LITTLE:
349 reg_offset = 0;
350 break;
351 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
352 reg_offset = 0;
353 break;
354 default:
355 internal_error (__FILE__, __LINE__, _("bad switch"));
356 }
357 if (mips_debug)
358 fprintf_unfiltered (gdb_stderr,
359 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
360 reg_num, reg_offset, buf_offset, length);
361 if (mips_debug && out != NULL)
362 {
363 int i;
364 fprintf_unfiltered (gdb_stdlog, "out ");
365 for (i = 0; i < length; i++)
366 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
367 }
368 if (in != NULL)
369 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
370 in + buf_offset);
371 if (out != NULL)
372 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
373 out + buf_offset);
374 if (mips_debug && in != NULL)
375 {
376 int i;
377 fprintf_unfiltered (gdb_stdlog, "in ");
378 for (i = 0; i < length; i++)
379 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
380 }
381 if (mips_debug)
382 fprintf_unfiltered (gdb_stdlog, "\n");
383 }
384
385 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
386 compatiblity mode. A return value of 1 means that we have
387 physical 64-bit registers, but should treat them as 32-bit registers. */
388
389 static int
390 mips2_fp_compat (void)
391 {
392 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
393 meaningful. */
394 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
395 4)
396 return 0;
397
398 #if 0
399 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
400 in all the places we deal with FP registers. PR gdb/413. */
401 /* Otherwise check the FR bit in the status register - it controls
402 the FP compatiblity mode. If it is clear we are in compatibility
403 mode. */
404 if ((read_register (MIPS_PS_REGNUM) & ST0_FR) == 0)
405 return 1;
406 #endif
407
408 return 0;
409 }
410
411 /* The amount of space reserved on the stack for registers. This is
412 different to MIPS_ABI_REGSIZE as it determines the alignment of
413 data allocated after the registers have run out. */
414
415 static const char *mips_stack_argsize_string = size_auto;
416
417 static unsigned int
418 mips_stack_argsize (struct gdbarch *gdbarch)
419 {
420 if (mips_stack_argsize_string == size_auto)
421 return mips_abi_regsize (gdbarch);
422 else if (mips_stack_argsize_string == size_64)
423 return 8;
424 else /* if (mips_stack_argsize_string == size_32) */
425 return 4;
426 }
427
428 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
429
430 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
431
432 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
433
434 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
435
436 static struct type *mips_float_register_type (void);
437 static struct type *mips_double_register_type (void);
438
439 /* The list of available "set mips " and "show mips " commands */
440
441 static struct cmd_list_element *setmipscmdlist = NULL;
442 static struct cmd_list_element *showmipscmdlist = NULL;
443
444 /* Integer registers 0 thru 31 are handled explicitly by
445 mips_register_name(). Processor specific registers 32 and above
446 are listed in the followign tables. */
447
448 enum
449 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
450
451 /* Generic MIPS. */
452
453 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
454 "sr", "lo", "hi", "bad", "cause", "pc",
455 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
456 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
457 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
458 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
459 "fsr", "fir", "" /*"fp" */ , "",
460 "", "", "", "", "", "", "", "",
461 "", "", "", "", "", "", "", "",
462 };
463
464 /* Names of IDT R3041 registers. */
465
466 static const char *mips_r3041_reg_names[] = {
467 "sr", "lo", "hi", "bad", "cause", "pc",
468 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
469 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
470 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
471 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
472 "fsr", "fir", "", /*"fp" */ "",
473 "", "", "bus", "ccfg", "", "", "", "",
474 "", "", "port", "cmp", "", "", "epc", "prid",
475 };
476
477 /* Names of tx39 registers. */
478
479 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
480 "sr", "lo", "hi", "bad", "cause", "pc",
481 "", "", "", "", "", "", "", "",
482 "", "", "", "", "", "", "", "",
483 "", "", "", "", "", "", "", "",
484 "", "", "", "", "", "", "", "",
485 "", "", "", "",
486 "", "", "", "", "", "", "", "",
487 "", "", "config", "cache", "debug", "depc", "epc", ""
488 };
489
490 /* Names of IRIX registers. */
491 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
492 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
493 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
494 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
495 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
496 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
497 };
498
499
500 /* Return the name of the register corresponding to REGNO. */
501 static const char *
502 mips_register_name (int regno)
503 {
504 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
505 /* GPR names for all ABIs other than n32/n64. */
506 static char *mips_gpr_names[] = {
507 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
508 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
509 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
510 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
511 };
512
513 /* GPR names for n32 and n64 ABIs. */
514 static char *mips_n32_n64_gpr_names[] = {
515 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
516 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
517 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
518 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
519 };
520
521 enum mips_abi abi = mips_abi (current_gdbarch);
522
523 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
524 don't make the raw register names visible. */
525 int rawnum = regno % NUM_REGS;
526 if (regno < NUM_REGS)
527 return "";
528
529 /* The MIPS integer registers are always mapped from 0 to 31. The
530 names of the registers (which reflects the conventions regarding
531 register use) vary depending on the ABI. */
532 if (0 <= rawnum && rawnum < 32)
533 {
534 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
535 return mips_n32_n64_gpr_names[rawnum];
536 else
537 return mips_gpr_names[rawnum];
538 }
539 else if (32 <= rawnum && rawnum < NUM_REGS)
540 {
541 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
542 return tdep->mips_processor_reg_names[rawnum - 32];
543 }
544 else
545 internal_error (__FILE__, __LINE__,
546 _("mips_register_name: bad register number %d"), rawnum);
547 }
548
549 /* Return the groups that a MIPS register can be categorised into. */
550
551 static int
552 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
553 struct reggroup *reggroup)
554 {
555 int vector_p;
556 int float_p;
557 int raw_p;
558 int rawnum = regnum % NUM_REGS;
559 int pseudo = regnum / NUM_REGS;
560 if (reggroup == all_reggroup)
561 return pseudo;
562 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
563 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
564 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
565 (gdbarch), as not all architectures are multi-arch. */
566 raw_p = rawnum < NUM_REGS;
567 if (REGISTER_NAME (regnum) == NULL || REGISTER_NAME (regnum)[0] == '\0')
568 return 0;
569 if (reggroup == float_reggroup)
570 return float_p && pseudo;
571 if (reggroup == vector_reggroup)
572 return vector_p && pseudo;
573 if (reggroup == general_reggroup)
574 return (!vector_p && !float_p) && pseudo;
575 /* Save the pseudo registers. Need to make certain that any code
576 extracting register values from a saved register cache also uses
577 pseudo registers. */
578 if (reggroup == save_reggroup)
579 return raw_p && pseudo;
580 /* Restore the same pseudo register. */
581 if (reggroup == restore_reggroup)
582 return raw_p && pseudo;
583 return 0;
584 }
585
586 /* Map the symbol table registers which live in the range [1 *
587 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
588 registers. Take care of alignment and size problems. */
589
590 static void
591 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
592 int cookednum, gdb_byte *buf)
593 {
594 int rawnum = cookednum % NUM_REGS;
595 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
596 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
597 regcache_raw_read (regcache, rawnum, buf);
598 else if (register_size (gdbarch, rawnum) >
599 register_size (gdbarch, cookednum))
600 {
601 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
602 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
603 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
604 else
605 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
606 }
607 else
608 internal_error (__FILE__, __LINE__, _("bad register size"));
609 }
610
611 static void
612 mips_pseudo_register_write (struct gdbarch *gdbarch,
613 struct regcache *regcache, int cookednum,
614 const gdb_byte *buf)
615 {
616 int rawnum = cookednum % NUM_REGS;
617 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
618 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
619 regcache_raw_write (regcache, rawnum, buf);
620 else if (register_size (gdbarch, rawnum) >
621 register_size (gdbarch, cookednum))
622 {
623 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
624 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
625 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
626 else
627 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
628 }
629 else
630 internal_error (__FILE__, __LINE__, _("bad register size"));
631 }
632
633 /* Table to translate MIPS16 register field to actual register number. */
634 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
635
636 /* Heuristic_proc_start may hunt through the text section for a long
637 time across a 2400 baud serial line. Allows the user to limit this
638 search. */
639
640 static unsigned int heuristic_fence_post = 0;
641
642 /* Number of bytes of storage in the actual machine representation for
643 register N. NOTE: This defines the pseudo register type so need to
644 rebuild the architecture vector. */
645
646 static int mips64_transfers_32bit_regs_p = 0;
647
648 static void
649 set_mips64_transfers_32bit_regs (char *args, int from_tty,
650 struct cmd_list_element *c)
651 {
652 struct gdbarch_info info;
653 gdbarch_info_init (&info);
654 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
655 instead of relying on globals. Doing that would let generic code
656 handle the search for this specific architecture. */
657 if (!gdbarch_update_p (info))
658 {
659 mips64_transfers_32bit_regs_p = 0;
660 error (_("32-bit compatibility mode not supported"));
661 }
662 }
663
664 /* Convert to/from a register and the corresponding memory value. */
665
666 static int
667 mips_convert_register_p (int regnum, struct type *type)
668 {
669 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
670 && register_size (current_gdbarch, regnum) == 4
671 && (regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
672 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32
673 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
674 }
675
676 static void
677 mips_register_to_value (struct frame_info *frame, int regnum,
678 struct type *type, gdb_byte *to)
679 {
680 get_frame_register (frame, regnum + 0, to + 4);
681 get_frame_register (frame, regnum + 1, to + 0);
682 }
683
684 static void
685 mips_value_to_register (struct frame_info *frame, int regnum,
686 struct type *type, const gdb_byte *from)
687 {
688 put_frame_register (frame, regnum + 0, from + 4);
689 put_frame_register (frame, regnum + 1, from + 0);
690 }
691
692 /* Return the GDB type object for the "standard" data type of data in
693 register REG. */
694
695 static struct type *
696 mips_register_type (struct gdbarch *gdbarch, int regnum)
697 {
698 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
699 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
700 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
701 {
702 /* The floating-point registers raw, or cooked, always match
703 mips_isa_regsize(), and also map 1:1, byte for byte. */
704 switch (gdbarch_byte_order (gdbarch))
705 {
706 case BFD_ENDIAN_BIG:
707 if (mips_isa_regsize (gdbarch) == 4)
708 return builtin_type_ieee_single_big;
709 else
710 return builtin_type_ieee_double_big;
711 case BFD_ENDIAN_LITTLE:
712 if (mips_isa_regsize (gdbarch) == 4)
713 return builtin_type_ieee_single_little;
714 else
715 return builtin_type_ieee_double_little;
716 case BFD_ENDIAN_UNKNOWN:
717 default:
718 internal_error (__FILE__, __LINE__, _("bad switch"));
719 }
720 }
721 else if (regnum < NUM_REGS)
722 {
723 /* The raw or ISA registers. These are all sized according to
724 the ISA regsize. */
725 if (mips_isa_regsize (gdbarch) == 4)
726 return builtin_type_int32;
727 else
728 return builtin_type_int64;
729 }
730 else
731 {
732 /* The cooked or ABI registers. These are sized according to
733 the ABI (with a few complications). */
734 if (regnum >= (NUM_REGS
735 + mips_regnum (current_gdbarch)->fp_control_status)
736 && regnum <= NUM_REGS + MIPS_LAST_EMBED_REGNUM)
737 /* The pseudo/cooked view of the embedded registers is always
738 32-bit. The raw view is handled below. */
739 return builtin_type_int32;
740 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
741 /* The target, while possibly using a 64-bit register buffer,
742 is only transfering 32-bits of each integer register.
743 Reflect this in the cooked/pseudo (ABI) register value. */
744 return builtin_type_int32;
745 else if (mips_abi_regsize (gdbarch) == 4)
746 /* The ABI is restricted to 32-bit registers (the ISA could be
747 32- or 64-bit). */
748 return builtin_type_int32;
749 else
750 /* 64-bit ABI. */
751 return builtin_type_int64;
752 }
753 }
754
755 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
756
757 static CORE_ADDR
758 mips_read_sp (void)
759 {
760 return read_signed_register (MIPS_SP_REGNUM);
761 }
762
763 /* Should the upper word of 64-bit addresses be zeroed? */
764 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
765
766 static int
767 mips_mask_address_p (struct gdbarch_tdep *tdep)
768 {
769 switch (mask_address_var)
770 {
771 case AUTO_BOOLEAN_TRUE:
772 return 1;
773 case AUTO_BOOLEAN_FALSE:
774 return 0;
775 break;
776 case AUTO_BOOLEAN_AUTO:
777 return tdep->default_mask_address_p;
778 default:
779 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
780 return -1;
781 }
782 }
783
784 static void
785 show_mask_address (struct ui_file *file, int from_tty,
786 struct cmd_list_element *c, const char *value)
787 {
788 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
789
790 deprecated_show_value_hack (file, from_tty, c, value);
791 switch (mask_address_var)
792 {
793 case AUTO_BOOLEAN_TRUE:
794 printf_filtered ("The 32 bit mips address mask is enabled\n");
795 break;
796 case AUTO_BOOLEAN_FALSE:
797 printf_filtered ("The 32 bit mips address mask is disabled\n");
798 break;
799 case AUTO_BOOLEAN_AUTO:
800 printf_filtered
801 ("The 32 bit address mask is set automatically. Currently %s\n",
802 mips_mask_address_p (tdep) ? "enabled" : "disabled");
803 break;
804 default:
805 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
806 break;
807 }
808 }
809
810 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
811
812 int
813 mips_pc_is_mips16 (CORE_ADDR memaddr)
814 {
815 struct minimal_symbol *sym;
816
817 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
818 if (is_mips16_addr (memaddr))
819 return 1;
820
821 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
822 the high bit of the info field. Use this to decide if the function is
823 MIPS16 or normal MIPS. */
824 sym = lookup_minimal_symbol_by_pc (memaddr);
825 if (sym)
826 return msymbol_is_special (sym);
827 else
828 return 0;
829 }
830
831 /* MIPS believes that the PC has a sign extended value. Perhaps the
832 all registers should be sign extended for simplicity? */
833
834 static CORE_ADDR
835 mips_read_pc (ptid_t ptid)
836 {
837 return read_signed_register_pid (mips_regnum (current_gdbarch)->pc, ptid);
838 }
839
840 static CORE_ADDR
841 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
842 {
843 return frame_unwind_register_signed (next_frame,
844 NUM_REGS + mips_regnum (gdbarch)->pc);
845 }
846
847 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
848 dummy frame. The frame ID's base needs to match the TOS value
849 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
850 breakpoint. */
851
852 static struct frame_id
853 mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
854 {
855 return frame_id_build (frame_unwind_register_signed (next_frame, NUM_REGS + MIPS_SP_REGNUM),
856 frame_pc_unwind (next_frame));
857 }
858
859 static void
860 mips_write_pc (CORE_ADDR pc, ptid_t ptid)
861 {
862 write_register_pid (mips_regnum (current_gdbarch)->pc, pc, ptid);
863 }
864
865 /* Fetch and return instruction from the specified location. If the PC
866 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
867
868 static ULONGEST
869 mips_fetch_instruction (CORE_ADDR addr)
870 {
871 gdb_byte buf[MIPS_INSN32_SIZE];
872 int instlen;
873 int status;
874
875 if (mips_pc_is_mips16 (addr))
876 {
877 instlen = MIPS_INSN16_SIZE;
878 addr = unmake_mips16_addr (addr);
879 }
880 else
881 instlen = MIPS_INSN32_SIZE;
882 status = read_memory_nobpt (addr, buf, instlen);
883 if (status)
884 memory_error (status, addr);
885 return extract_unsigned_integer (buf, instlen);
886 }
887
888 /* These the fields of 32 bit mips instructions */
889 #define mips32_op(x) (x >> 26)
890 #define itype_op(x) (x >> 26)
891 #define itype_rs(x) ((x >> 21) & 0x1f)
892 #define itype_rt(x) ((x >> 16) & 0x1f)
893 #define itype_immediate(x) (x & 0xffff)
894
895 #define jtype_op(x) (x >> 26)
896 #define jtype_target(x) (x & 0x03ffffff)
897
898 #define rtype_op(x) (x >> 26)
899 #define rtype_rs(x) ((x >> 21) & 0x1f)
900 #define rtype_rt(x) ((x >> 16) & 0x1f)
901 #define rtype_rd(x) ((x >> 11) & 0x1f)
902 #define rtype_shamt(x) ((x >> 6) & 0x1f)
903 #define rtype_funct(x) (x & 0x3f)
904
905 static LONGEST
906 mips32_relative_offset (ULONGEST inst)
907 {
908 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
909 }
910
911 /* Determine where to set a single step breakpoint while considering
912 branch prediction. */
913 static CORE_ADDR
914 mips32_next_pc (CORE_ADDR pc)
915 {
916 unsigned long inst;
917 int op;
918 inst = mips_fetch_instruction (pc);
919 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
920 {
921 if (itype_op (inst) >> 2 == 5)
922 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
923 {
924 op = (itype_op (inst) & 0x03);
925 switch (op)
926 {
927 case 0: /* BEQL */
928 goto equal_branch;
929 case 1: /* BNEL */
930 goto neq_branch;
931 case 2: /* BLEZL */
932 goto less_branch;
933 case 3: /* BGTZ */
934 goto greater_branch;
935 default:
936 pc += 4;
937 }
938 }
939 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
940 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
941 {
942 int tf = itype_rt (inst) & 0x01;
943 int cnum = itype_rt (inst) >> 2;
944 int fcrcs =
945 read_signed_register (mips_regnum (current_gdbarch)->
946 fp_control_status);
947 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
948
949 if (((cond >> cnum) & 0x01) == tf)
950 pc += mips32_relative_offset (inst) + 4;
951 else
952 pc += 8;
953 }
954 else
955 pc += 4; /* Not a branch, next instruction is easy */
956 }
957 else
958 { /* This gets way messy */
959
960 /* Further subdivide into SPECIAL, REGIMM and other */
961 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
962 {
963 case 0: /* SPECIAL */
964 op = rtype_funct (inst);
965 switch (op)
966 {
967 case 8: /* JR */
968 case 9: /* JALR */
969 /* Set PC to that address */
970 pc = read_signed_register (rtype_rs (inst));
971 break;
972 default:
973 pc += 4;
974 }
975
976 break; /* end SPECIAL */
977 case 1: /* REGIMM */
978 {
979 op = itype_rt (inst); /* branch condition */
980 switch (op)
981 {
982 case 0: /* BLTZ */
983 case 2: /* BLTZL */
984 case 16: /* BLTZAL */
985 case 18: /* BLTZALL */
986 less_branch:
987 if (read_signed_register (itype_rs (inst)) < 0)
988 pc += mips32_relative_offset (inst) + 4;
989 else
990 pc += 8; /* after the delay slot */
991 break;
992 case 1: /* BGEZ */
993 case 3: /* BGEZL */
994 case 17: /* BGEZAL */
995 case 19: /* BGEZALL */
996 if (read_signed_register (itype_rs (inst)) >= 0)
997 pc += mips32_relative_offset (inst) + 4;
998 else
999 pc += 8; /* after the delay slot */
1000 break;
1001 /* All of the other instructions in the REGIMM category */
1002 default:
1003 pc += 4;
1004 }
1005 }
1006 break; /* end REGIMM */
1007 case 2: /* J */
1008 case 3: /* JAL */
1009 {
1010 unsigned long reg;
1011 reg = jtype_target (inst) << 2;
1012 /* Upper four bits get never changed... */
1013 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1014 }
1015 break;
1016 /* FIXME case JALX : */
1017 {
1018 unsigned long reg;
1019 reg = jtype_target (inst) << 2;
1020 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
1021 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1022 }
1023 break; /* The new PC will be alternate mode */
1024 case 4: /* BEQ, BEQL */
1025 equal_branch:
1026 if (read_signed_register (itype_rs (inst)) ==
1027 read_signed_register (itype_rt (inst)))
1028 pc += mips32_relative_offset (inst) + 4;
1029 else
1030 pc += 8;
1031 break;
1032 case 5: /* BNE, BNEL */
1033 neq_branch:
1034 if (read_signed_register (itype_rs (inst)) !=
1035 read_signed_register (itype_rt (inst)))
1036 pc += mips32_relative_offset (inst) + 4;
1037 else
1038 pc += 8;
1039 break;
1040 case 6: /* BLEZ, BLEZL */
1041 if (read_signed_register (itype_rs (inst)) <= 0)
1042 pc += mips32_relative_offset (inst) + 4;
1043 else
1044 pc += 8;
1045 break;
1046 case 7:
1047 default:
1048 greater_branch: /* BGTZ, BGTZL */
1049 if (read_signed_register (itype_rs (inst)) > 0)
1050 pc += mips32_relative_offset (inst) + 4;
1051 else
1052 pc += 8;
1053 break;
1054 } /* switch */
1055 } /* else */
1056 return pc;
1057 } /* mips32_next_pc */
1058
1059 /* Decoding the next place to set a breakpoint is irregular for the
1060 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1061 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1062 We dont want to set a single step instruction on the extend instruction
1063 either.
1064 */
1065
1066 /* Lots of mips16 instruction formats */
1067 /* Predicting jumps requires itype,ritype,i8type
1068 and their extensions extItype,extritype,extI8type
1069 */
1070 enum mips16_inst_fmts
1071 {
1072 itype, /* 0 immediate 5,10 */
1073 ritype, /* 1 5,3,8 */
1074 rrtype, /* 2 5,3,3,5 */
1075 rritype, /* 3 5,3,3,5 */
1076 rrrtype, /* 4 5,3,3,3,2 */
1077 rriatype, /* 5 5,3,3,1,4 */
1078 shifttype, /* 6 5,3,3,3,2 */
1079 i8type, /* 7 5,3,8 */
1080 i8movtype, /* 8 5,3,3,5 */
1081 i8mov32rtype, /* 9 5,3,5,3 */
1082 i64type, /* 10 5,3,8 */
1083 ri64type, /* 11 5,3,3,5 */
1084 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1085 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1086 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1087 extRRItype, /* 15 5,5,5,5,3,3,5 */
1088 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1089 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1090 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1091 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1092 extRi64type, /* 20 5,6,5,5,3,3,5 */
1093 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1094 };
1095 /* I am heaping all the fields of the formats into one structure and
1096 then, only the fields which are involved in instruction extension */
1097 struct upk_mips16
1098 {
1099 CORE_ADDR offset;
1100 unsigned int regx; /* Function in i8 type */
1101 unsigned int regy;
1102 };
1103
1104
1105 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1106 for the bits which make up the immediatate extension. */
1107
1108 static CORE_ADDR
1109 extended_offset (unsigned int extension)
1110 {
1111 CORE_ADDR value;
1112 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1113 value = value << 6;
1114 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1115 value = value << 5;
1116 value |= extension & 0x01f; /* extract 4:0 */
1117 return value;
1118 }
1119
1120 /* Only call this function if you know that this is an extendable
1121 instruction, It wont malfunction, but why make excess remote memory references?
1122 If the immediate operands get sign extended or somthing, do it after
1123 the extension is performed.
1124 */
1125 /* FIXME: Every one of these cases needs to worry about sign extension
1126 when the offset is to be used in relative addressing */
1127
1128
1129 static unsigned int
1130 fetch_mips_16 (CORE_ADDR pc)
1131 {
1132 gdb_byte buf[8];
1133 pc &= 0xfffffffe; /* clear the low order bit */
1134 target_read_memory (pc, buf, 2);
1135 return extract_unsigned_integer (buf, 2);
1136 }
1137
1138 static void
1139 unpack_mips16 (CORE_ADDR pc,
1140 unsigned int extension,
1141 unsigned int inst,
1142 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1143 {
1144 CORE_ADDR offset;
1145 int regx;
1146 int regy;
1147 switch (insn_format)
1148 {
1149 case itype:
1150 {
1151 CORE_ADDR value;
1152 if (extension)
1153 {
1154 value = extended_offset (extension);
1155 value = value << 11; /* rom for the original value */
1156 value |= inst & 0x7ff; /* eleven bits from instruction */
1157 }
1158 else
1159 {
1160 value = inst & 0x7ff;
1161 /* FIXME : Consider sign extension */
1162 }
1163 offset = value;
1164 regx = -1;
1165 regy = -1;
1166 }
1167 break;
1168 case ritype:
1169 case i8type:
1170 { /* A register identifier and an offset */
1171 /* Most of the fields are the same as I type but the
1172 immediate value is of a different length */
1173 CORE_ADDR value;
1174 if (extension)
1175 {
1176 value = extended_offset (extension);
1177 value = value << 8; /* from the original instruction */
1178 value |= inst & 0xff; /* eleven bits from instruction */
1179 regx = (extension >> 8) & 0x07; /* or i8 funct */
1180 if (value & 0x4000) /* test the sign bit , bit 26 */
1181 {
1182 value &= ~0x3fff; /* remove the sign bit */
1183 value = -value;
1184 }
1185 }
1186 else
1187 {
1188 value = inst & 0xff; /* 8 bits */
1189 regx = (inst >> 8) & 0x07; /* or i8 funct */
1190 /* FIXME: Do sign extension , this format needs it */
1191 if (value & 0x80) /* THIS CONFUSES ME */
1192 {
1193 value &= 0xef; /* remove the sign bit */
1194 value = -value;
1195 }
1196 }
1197 offset = value;
1198 regy = -1;
1199 break;
1200 }
1201 case jalxtype:
1202 {
1203 unsigned long value;
1204 unsigned int nexthalf;
1205 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1206 value = value << 16;
1207 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1208 value |= nexthalf;
1209 offset = value;
1210 regx = -1;
1211 regy = -1;
1212 break;
1213 }
1214 default:
1215 internal_error (__FILE__, __LINE__, _("bad switch"));
1216 }
1217 upk->offset = offset;
1218 upk->regx = regx;
1219 upk->regy = regy;
1220 }
1221
1222
1223 static CORE_ADDR
1224 add_offset_16 (CORE_ADDR pc, int offset)
1225 {
1226 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
1227 }
1228
1229 static CORE_ADDR
1230 extended_mips16_next_pc (CORE_ADDR pc,
1231 unsigned int extension, unsigned int insn)
1232 {
1233 int op = (insn >> 11);
1234 switch (op)
1235 {
1236 case 2: /* Branch */
1237 {
1238 CORE_ADDR offset;
1239 struct upk_mips16 upk;
1240 unpack_mips16 (pc, extension, insn, itype, &upk);
1241 offset = upk.offset;
1242 if (offset & 0x800)
1243 {
1244 offset &= 0xeff;
1245 offset = -offset;
1246 }
1247 pc += (offset << 1) + 2;
1248 break;
1249 }
1250 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1251 {
1252 struct upk_mips16 upk;
1253 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1254 pc = add_offset_16 (pc, upk.offset);
1255 if ((insn >> 10) & 0x01) /* Exchange mode */
1256 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1257 else
1258 pc |= 0x01;
1259 break;
1260 }
1261 case 4: /* beqz */
1262 {
1263 struct upk_mips16 upk;
1264 int reg;
1265 unpack_mips16 (pc, extension, insn, ritype, &upk);
1266 reg = read_signed_register (upk.regx);
1267 if (reg == 0)
1268 pc += (upk.offset << 1) + 2;
1269 else
1270 pc += 2;
1271 break;
1272 }
1273 case 5: /* bnez */
1274 {
1275 struct upk_mips16 upk;
1276 int reg;
1277 unpack_mips16 (pc, extension, insn, ritype, &upk);
1278 reg = read_signed_register (upk.regx);
1279 if (reg != 0)
1280 pc += (upk.offset << 1) + 2;
1281 else
1282 pc += 2;
1283 break;
1284 }
1285 case 12: /* I8 Formats btez btnez */
1286 {
1287 struct upk_mips16 upk;
1288 int reg;
1289 unpack_mips16 (pc, extension, insn, i8type, &upk);
1290 /* upk.regx contains the opcode */
1291 reg = read_signed_register (24); /* Test register is 24 */
1292 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1293 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1294 /* pc = add_offset_16(pc,upk.offset) ; */
1295 pc += (upk.offset << 1) + 2;
1296 else
1297 pc += 2;
1298 break;
1299 }
1300 case 29: /* RR Formats JR, JALR, JALR-RA */
1301 {
1302 struct upk_mips16 upk;
1303 /* upk.fmt = rrtype; */
1304 op = insn & 0x1f;
1305 if (op == 0)
1306 {
1307 int reg;
1308 upk.regx = (insn >> 8) & 0x07;
1309 upk.regy = (insn >> 5) & 0x07;
1310 switch (upk.regy)
1311 {
1312 case 0:
1313 reg = upk.regx;
1314 break;
1315 case 1:
1316 reg = 31;
1317 break; /* Function return instruction */
1318 case 2:
1319 reg = upk.regx;
1320 break;
1321 default:
1322 reg = 31;
1323 break; /* BOGUS Guess */
1324 }
1325 pc = read_signed_register (reg);
1326 }
1327 else
1328 pc += 2;
1329 break;
1330 }
1331 case 30:
1332 /* This is an instruction extension. Fetch the real instruction
1333 (which follows the extension) and decode things based on
1334 that. */
1335 {
1336 pc += 2;
1337 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1338 break;
1339 }
1340 default:
1341 {
1342 pc += 2;
1343 break;
1344 }
1345 }
1346 return pc;
1347 }
1348
1349 static CORE_ADDR
1350 mips16_next_pc (CORE_ADDR pc)
1351 {
1352 unsigned int insn = fetch_mips_16 (pc);
1353 return extended_mips16_next_pc (pc, 0, insn);
1354 }
1355
1356 /* The mips_next_pc function supports single_step when the remote
1357 target monitor or stub is not developed enough to do a single_step.
1358 It works by decoding the current instruction and predicting where a
1359 branch will go. This isnt hard because all the data is available.
1360 The MIPS32 and MIPS16 variants are quite different */
1361 CORE_ADDR
1362 mips_next_pc (CORE_ADDR pc)
1363 {
1364 if (pc & 0x01)
1365 return mips16_next_pc (pc);
1366 else
1367 return mips32_next_pc (pc);
1368 }
1369
1370 struct mips_frame_cache
1371 {
1372 CORE_ADDR base;
1373 struct trad_frame_saved_reg *saved_regs;
1374 };
1375
1376 /* Set a register's saved stack address in temp_saved_regs. If an
1377 address has already been set for this register, do nothing; this
1378 way we will only recognize the first save of a given register in a
1379 function prologue.
1380
1381 For simplicity, save the address in both [0 .. NUM_REGS) and
1382 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1383 is used as it is only second range (the ABI instead of ISA
1384 registers) that comes into play when finding saved registers in a
1385 frame. */
1386
1387 static void
1388 set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1389 CORE_ADDR offset)
1390 {
1391 if (this_cache != NULL
1392 && this_cache->saved_regs[regnum].addr == -1)
1393 {
1394 this_cache->saved_regs[regnum + 0 * NUM_REGS].addr = offset;
1395 this_cache->saved_regs[regnum + 1 * NUM_REGS].addr = offset;
1396 }
1397 }
1398
1399
1400 /* Fetch the immediate value from a MIPS16 instruction.
1401 If the previous instruction was an EXTEND, use it to extend
1402 the upper bits of the immediate value. This is a helper function
1403 for mips16_scan_prologue. */
1404
1405 static int
1406 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1407 unsigned short inst, /* current instruction */
1408 int nbits, /* number of bits in imm field */
1409 int scale, /* scale factor to be applied to imm */
1410 int is_signed) /* is the imm field signed? */
1411 {
1412 int offset;
1413
1414 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1415 {
1416 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1417 if (offset & 0x8000) /* check for negative extend */
1418 offset = 0 - (0x10000 - (offset & 0xffff));
1419 return offset | (inst & 0x1f);
1420 }
1421 else
1422 {
1423 int max_imm = 1 << nbits;
1424 int mask = max_imm - 1;
1425 int sign_bit = max_imm >> 1;
1426
1427 offset = inst & mask;
1428 if (is_signed && (offset & sign_bit))
1429 offset = 0 - (max_imm - offset);
1430 return offset * scale;
1431 }
1432 }
1433
1434
1435 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1436 the associated FRAME_CACHE if not null.
1437 Return the address of the first instruction past the prologue. */
1438
1439 static CORE_ADDR
1440 mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1441 struct frame_info *next_frame,
1442 struct mips_frame_cache *this_cache)
1443 {
1444 CORE_ADDR cur_pc;
1445 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1446 CORE_ADDR sp;
1447 long frame_offset = 0; /* Size of stack frame. */
1448 long frame_adjust = 0; /* Offset of FP from SP. */
1449 int frame_reg = MIPS_SP_REGNUM;
1450 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1451 unsigned inst = 0; /* current instruction */
1452 unsigned entry_inst = 0; /* the entry instruction */
1453 int reg, offset;
1454
1455 int extend_bytes = 0;
1456 int prev_extend_bytes;
1457 CORE_ADDR end_prologue_addr = 0;
1458
1459 /* Can be called when there's no process, and hence when there's no
1460 NEXT_FRAME. */
1461 if (next_frame != NULL)
1462 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1463 else
1464 sp = 0;
1465
1466 if (limit_pc > start_pc + 200)
1467 limit_pc = start_pc + 200;
1468
1469 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1470 {
1471 /* Save the previous instruction. If it's an EXTEND, we'll extract
1472 the immediate offset extension from it in mips16_get_imm. */
1473 prev_inst = inst;
1474
1475 /* Fetch and decode the instruction. */
1476 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1477
1478 /* Normally we ignore extend instructions. However, if it is
1479 not followed by a valid prologue instruction, then this
1480 instruction is not part of the prologue either. We must
1481 remember in this case to adjust the end_prologue_addr back
1482 over the extend. */
1483 if ((inst & 0xf800) == 0xf000) /* extend */
1484 {
1485 extend_bytes = MIPS_INSN16_SIZE;
1486 continue;
1487 }
1488
1489 prev_extend_bytes = extend_bytes;
1490 extend_bytes = 0;
1491
1492 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1493 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1494 {
1495 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1496 if (offset < 0) /* negative stack adjustment? */
1497 frame_offset -= offset;
1498 else
1499 /* Exit loop if a positive stack adjustment is found, which
1500 usually means that the stack cleanup code in the function
1501 epilogue is reached. */
1502 break;
1503 }
1504 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1505 {
1506 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1507 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1508 set_reg_offset (this_cache, reg, sp + offset);
1509 }
1510 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1511 {
1512 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1513 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1514 set_reg_offset (this_cache, reg, sp + offset);
1515 }
1516 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1517 {
1518 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1519 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1520 }
1521 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1522 {
1523 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1524 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1525 }
1526 else if (inst == 0x673d) /* move $s1, $sp */
1527 {
1528 frame_addr = sp;
1529 frame_reg = 17;
1530 }
1531 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1532 {
1533 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1534 frame_addr = sp + offset;
1535 frame_reg = 17;
1536 frame_adjust = offset;
1537 }
1538 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1539 {
1540 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1541 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1542 set_reg_offset (this_cache, reg, frame_addr + offset);
1543 }
1544 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1545 {
1546 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1547 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1548 set_reg_offset (this_cache, reg, frame_addr + offset);
1549 }
1550 else if ((inst & 0xf81f) == 0xe809
1551 && (inst & 0x700) != 0x700) /* entry */
1552 entry_inst = inst; /* save for later processing */
1553 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1554 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1555 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1556 {
1557 /* This instruction is part of the prologue, but we don't
1558 need to do anything special to handle it. */
1559 }
1560 else
1561 {
1562 /* This instruction is not an instruction typically found
1563 in a prologue, so we must have reached the end of the
1564 prologue. */
1565 if (end_prologue_addr == 0)
1566 end_prologue_addr = cur_pc - prev_extend_bytes;
1567 }
1568 }
1569
1570 /* The entry instruction is typically the first instruction in a function,
1571 and it stores registers at offsets relative to the value of the old SP
1572 (before the prologue). But the value of the sp parameter to this
1573 function is the new SP (after the prologue has been executed). So we
1574 can't calculate those offsets until we've seen the entire prologue,
1575 and can calculate what the old SP must have been. */
1576 if (entry_inst != 0)
1577 {
1578 int areg_count = (entry_inst >> 8) & 7;
1579 int sreg_count = (entry_inst >> 6) & 3;
1580
1581 /* The entry instruction always subtracts 32 from the SP. */
1582 frame_offset += 32;
1583
1584 /* Now we can calculate what the SP must have been at the
1585 start of the function prologue. */
1586 sp += frame_offset;
1587
1588 /* Check if a0-a3 were saved in the caller's argument save area. */
1589 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1590 {
1591 set_reg_offset (this_cache, reg, sp + offset);
1592 offset += mips_abi_regsize (current_gdbarch);
1593 }
1594
1595 /* Check if the ra register was pushed on the stack. */
1596 offset = -4;
1597 if (entry_inst & 0x20)
1598 {
1599 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1600 offset -= mips_abi_regsize (current_gdbarch);
1601 }
1602
1603 /* Check if the s0 and s1 registers were pushed on the stack. */
1604 for (reg = 16; reg < sreg_count + 16; reg++)
1605 {
1606 set_reg_offset (this_cache, reg, sp + offset);
1607 offset -= mips_abi_regsize (current_gdbarch);
1608 }
1609 }
1610
1611 if (this_cache != NULL)
1612 {
1613 this_cache->base =
1614 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1615 + frame_offset - frame_adjust);
1616 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1617 be able to get rid of the assignment below, evetually. But it's
1618 still needed for now. */
1619 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1620 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1621 }
1622
1623 /* If we didn't reach the end of the prologue when scanning the function
1624 instructions, then set end_prologue_addr to the address of the
1625 instruction immediately after the last one we scanned. */
1626 if (end_prologue_addr == 0)
1627 end_prologue_addr = cur_pc;
1628
1629 return end_prologue_addr;
1630 }
1631
1632 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1633 Procedures that use the 32-bit instruction set are handled by the
1634 mips_insn32 unwinder. */
1635
1636 static struct mips_frame_cache *
1637 mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
1638 {
1639 struct mips_frame_cache *cache;
1640
1641 if ((*this_cache) != NULL)
1642 return (*this_cache);
1643 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1644 (*this_cache) = cache;
1645 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1646
1647 /* Analyze the function prologue. */
1648 {
1649 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1650 CORE_ADDR start_addr;
1651
1652 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1653 if (start_addr == 0)
1654 start_addr = heuristic_proc_start (pc);
1655 /* We can't analyze the prologue if we couldn't find the begining
1656 of the function. */
1657 if (start_addr == 0)
1658 return cache;
1659
1660 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1661 }
1662
1663 /* SP_REGNUM, contains the value and not the address. */
1664 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1665
1666 return (*this_cache);
1667 }
1668
1669 static void
1670 mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1671 struct frame_id *this_id)
1672 {
1673 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1674 this_cache);
1675 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1676 }
1677
1678 static void
1679 mips_insn16_frame_prev_register (struct frame_info *next_frame,
1680 void **this_cache,
1681 int regnum, int *optimizedp,
1682 enum lval_type *lvalp, CORE_ADDR *addrp,
1683 int *realnump, gdb_byte *valuep)
1684 {
1685 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1686 this_cache);
1687 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1688 optimizedp, lvalp, addrp, realnump, valuep);
1689 }
1690
1691 static const struct frame_unwind mips_insn16_frame_unwind =
1692 {
1693 NORMAL_FRAME,
1694 mips_insn16_frame_this_id,
1695 mips_insn16_frame_prev_register
1696 };
1697
1698 static const struct frame_unwind *
1699 mips_insn16_frame_sniffer (struct frame_info *next_frame)
1700 {
1701 CORE_ADDR pc = frame_pc_unwind (next_frame);
1702 if (mips_pc_is_mips16 (pc))
1703 return &mips_insn16_frame_unwind;
1704 return NULL;
1705 }
1706
1707 static CORE_ADDR
1708 mips_insn16_frame_base_address (struct frame_info *next_frame,
1709 void **this_cache)
1710 {
1711 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1712 this_cache);
1713 return info->base;
1714 }
1715
1716 static const struct frame_base mips_insn16_frame_base =
1717 {
1718 &mips_insn16_frame_unwind,
1719 mips_insn16_frame_base_address,
1720 mips_insn16_frame_base_address,
1721 mips_insn16_frame_base_address
1722 };
1723
1724 static const struct frame_base *
1725 mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
1726 {
1727 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1728 return &mips_insn16_frame_base;
1729 else
1730 return NULL;
1731 }
1732
1733 /* Mark all the registers as unset in the saved_regs array
1734 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1735
1736 void
1737 reset_saved_regs (struct mips_frame_cache *this_cache)
1738 {
1739 if (this_cache == NULL || this_cache->saved_regs == NULL)
1740 return;
1741
1742 {
1743 const int num_regs = NUM_REGS;
1744 int i;
1745
1746 for (i = 0; i < num_regs; i++)
1747 {
1748 this_cache->saved_regs[i].addr = -1;
1749 }
1750 }
1751 }
1752
1753 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1754 the associated FRAME_CACHE if not null.
1755 Return the address of the first instruction past the prologue. */
1756
1757 static CORE_ADDR
1758 mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1759 struct frame_info *next_frame,
1760 struct mips_frame_cache *this_cache)
1761 {
1762 CORE_ADDR cur_pc;
1763 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1764 CORE_ADDR sp;
1765 long frame_offset;
1766 int frame_reg = MIPS_SP_REGNUM;
1767
1768 CORE_ADDR end_prologue_addr = 0;
1769 int seen_sp_adjust = 0;
1770 int load_immediate_bytes = 0;
1771
1772 /* Can be called when there's no process, and hence when there's no
1773 NEXT_FRAME. */
1774 if (next_frame != NULL)
1775 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1776 else
1777 sp = 0;
1778
1779 if (limit_pc > start_pc + 200)
1780 limit_pc = start_pc + 200;
1781
1782 restart:
1783
1784 frame_offset = 0;
1785 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1786 {
1787 unsigned long inst, high_word, low_word;
1788 int reg;
1789
1790 /* Fetch the instruction. */
1791 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1792
1793 /* Save some code by pre-extracting some useful fields. */
1794 high_word = (inst >> 16) & 0xffff;
1795 low_word = inst & 0xffff;
1796 reg = high_word & 0x1f;
1797
1798 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1799 || high_word == 0x23bd /* addi $sp,$sp,-i */
1800 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1801 {
1802 if (low_word & 0x8000) /* negative stack adjustment? */
1803 frame_offset += 0x10000 - low_word;
1804 else
1805 /* Exit loop if a positive stack adjustment is found, which
1806 usually means that the stack cleanup code in the function
1807 epilogue is reached. */
1808 break;
1809 seen_sp_adjust = 1;
1810 }
1811 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1812 {
1813 set_reg_offset (this_cache, reg, sp + low_word);
1814 }
1815 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1816 {
1817 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1818 set_reg_offset (this_cache, reg, sp + low_word);
1819 }
1820 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1821 {
1822 /* Old gcc frame, r30 is virtual frame pointer. */
1823 if ((long) low_word != frame_offset)
1824 frame_addr = sp + low_word;
1825 else if (frame_reg == MIPS_SP_REGNUM)
1826 {
1827 unsigned alloca_adjust;
1828
1829 frame_reg = 30;
1830 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1831 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1832 if (alloca_adjust > 0)
1833 {
1834 /* FP > SP + frame_size. This may be because of
1835 an alloca or somethings similar. Fix sp to
1836 "pre-alloca" value, and try again. */
1837 sp += alloca_adjust;
1838 /* Need to reset the status of all registers. Otherwise,
1839 we will hit a guard that prevents the new address
1840 for each register to be recomputed during the second
1841 pass. */
1842 reset_saved_regs (this_cache);
1843 goto restart;
1844 }
1845 }
1846 }
1847 /* move $30,$sp. With different versions of gas this will be either
1848 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1849 Accept any one of these. */
1850 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1851 {
1852 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1853 if (frame_reg == MIPS_SP_REGNUM)
1854 {
1855 unsigned alloca_adjust;
1856
1857 frame_reg = 30;
1858 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1859 alloca_adjust = (unsigned) (frame_addr - sp);
1860 if (alloca_adjust > 0)
1861 {
1862 /* FP > SP + frame_size. This may be because of
1863 an alloca or somethings similar. Fix sp to
1864 "pre-alloca" value, and try again. */
1865 sp = frame_addr;
1866 /* Need to reset the status of all registers. Otherwise,
1867 we will hit a guard that prevents the new address
1868 for each register to be recomputed during the second
1869 pass. */
1870 reset_saved_regs (this_cache);
1871 goto restart;
1872 }
1873 }
1874 }
1875 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1876 {
1877 set_reg_offset (this_cache, reg, frame_addr + low_word);
1878 }
1879 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1880 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1881 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1882 || high_word == 0x3c1c /* lui $gp,n */
1883 || high_word == 0x279c /* addiu $gp,$gp,n */
1884 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1885 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1886 )
1887 {
1888 /* These instructions are part of the prologue, but we don't
1889 need to do anything special to handle them. */
1890 }
1891 /* The instructions below load $at or $t0 with an immediate
1892 value in preparation for a stack adjustment via
1893 subu $sp,$sp,[$at,$t0]. These instructions could also
1894 initialize a local variable, so we accept them only before
1895 a stack adjustment instruction was seen. */
1896 else if (!seen_sp_adjust
1897 && (high_word == 0x3c01 /* lui $at,n */
1898 || high_word == 0x3c08 /* lui $t0,n */
1899 || high_word == 0x3421 /* ori $at,$at,n */
1900 || high_word == 0x3508 /* ori $t0,$t0,n */
1901 || high_word == 0x3401 /* ori $at,$zero,n */
1902 || high_word == 0x3408 /* ori $t0,$zero,n */
1903 ))
1904 {
1905 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
1906 }
1907 else
1908 {
1909 /* This instruction is not an instruction typically found
1910 in a prologue, so we must have reached the end of the
1911 prologue. */
1912 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
1913 loop now? Why would we need to continue scanning the function
1914 instructions? */
1915 if (end_prologue_addr == 0)
1916 end_prologue_addr = cur_pc;
1917 }
1918 }
1919
1920 if (this_cache != NULL)
1921 {
1922 this_cache->base =
1923 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1924 + frame_offset);
1925 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
1926 this assignment below, eventually. But it's still needed
1927 for now. */
1928 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1929 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1930 }
1931
1932 /* If we didn't reach the end of the prologue when scanning the function
1933 instructions, then set end_prologue_addr to the address of the
1934 instruction immediately after the last one we scanned. */
1935 /* brobecker/2004-10-10: I don't think this would ever happen, but
1936 we may as well be careful and do our best if we have a null
1937 end_prologue_addr. */
1938 if (end_prologue_addr == 0)
1939 end_prologue_addr = cur_pc;
1940
1941 /* In a frameless function, we might have incorrectly
1942 skipped some load immediate instructions. Undo the skipping
1943 if the load immediate was not followed by a stack adjustment. */
1944 if (load_immediate_bytes && !seen_sp_adjust)
1945 end_prologue_addr -= load_immediate_bytes;
1946
1947 return end_prologue_addr;
1948 }
1949
1950 /* Heuristic unwinder for procedures using 32-bit instructions (covers
1951 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
1952 instructions (a.k.a. MIPS16) are handled by the mips_insn16
1953 unwinder. */
1954
1955 static struct mips_frame_cache *
1956 mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
1957 {
1958 struct mips_frame_cache *cache;
1959
1960 if ((*this_cache) != NULL)
1961 return (*this_cache);
1962
1963 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1964 (*this_cache) = cache;
1965 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1966
1967 /* Analyze the function prologue. */
1968 {
1969 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1970 CORE_ADDR start_addr;
1971
1972 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1973 if (start_addr == 0)
1974 start_addr = heuristic_proc_start (pc);
1975 /* We can't analyze the prologue if we couldn't find the begining
1976 of the function. */
1977 if (start_addr == 0)
1978 return cache;
1979
1980 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
1981 }
1982
1983 /* SP_REGNUM, contains the value and not the address. */
1984 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1985
1986 return (*this_cache);
1987 }
1988
1989 static void
1990 mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
1991 struct frame_id *this_id)
1992 {
1993 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1994 this_cache);
1995 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1996 }
1997
1998 static void
1999 mips_insn32_frame_prev_register (struct frame_info *next_frame,
2000 void **this_cache,
2001 int regnum, int *optimizedp,
2002 enum lval_type *lvalp, CORE_ADDR *addrp,
2003 int *realnump, gdb_byte *valuep)
2004 {
2005 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2006 this_cache);
2007 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2008 optimizedp, lvalp, addrp, realnump, valuep);
2009 }
2010
2011 static const struct frame_unwind mips_insn32_frame_unwind =
2012 {
2013 NORMAL_FRAME,
2014 mips_insn32_frame_this_id,
2015 mips_insn32_frame_prev_register
2016 };
2017
2018 static const struct frame_unwind *
2019 mips_insn32_frame_sniffer (struct frame_info *next_frame)
2020 {
2021 CORE_ADDR pc = frame_pc_unwind (next_frame);
2022 if (! mips_pc_is_mips16 (pc))
2023 return &mips_insn32_frame_unwind;
2024 return NULL;
2025 }
2026
2027 static CORE_ADDR
2028 mips_insn32_frame_base_address (struct frame_info *next_frame,
2029 void **this_cache)
2030 {
2031 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2032 this_cache);
2033 return info->base;
2034 }
2035
2036 static const struct frame_base mips_insn32_frame_base =
2037 {
2038 &mips_insn32_frame_unwind,
2039 mips_insn32_frame_base_address,
2040 mips_insn32_frame_base_address,
2041 mips_insn32_frame_base_address
2042 };
2043
2044 static const struct frame_base *
2045 mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2046 {
2047 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2048 return &mips_insn32_frame_base;
2049 else
2050 return NULL;
2051 }
2052
2053 static struct trad_frame_cache *
2054 mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2055 {
2056 CORE_ADDR pc;
2057 CORE_ADDR start_addr;
2058 CORE_ADDR stack_addr;
2059 struct trad_frame_cache *this_trad_cache;
2060
2061 if ((*this_cache) != NULL)
2062 return (*this_cache);
2063 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2064 (*this_cache) = this_trad_cache;
2065
2066 /* The return address is in the link register. */
2067 trad_frame_set_reg_realreg (this_trad_cache, PC_REGNUM, MIPS_RA_REGNUM);
2068
2069 /* Frame ID, since it's a frameless / stackless function, no stack
2070 space is allocated and SP on entry is the current SP. */
2071 pc = frame_pc_unwind (next_frame);
2072 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2073 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
2074 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2075
2076 /* Assume that the frame's base is the same as the
2077 stack-pointer. */
2078 trad_frame_set_this_base (this_trad_cache, stack_addr);
2079
2080 return this_trad_cache;
2081 }
2082
2083 static void
2084 mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2085 struct frame_id *this_id)
2086 {
2087 struct trad_frame_cache *this_trad_cache
2088 = mips_stub_frame_cache (next_frame, this_cache);
2089 trad_frame_get_id (this_trad_cache, this_id);
2090 }
2091
2092 static void
2093 mips_stub_frame_prev_register (struct frame_info *next_frame,
2094 void **this_cache,
2095 int regnum, int *optimizedp,
2096 enum lval_type *lvalp, CORE_ADDR *addrp,
2097 int *realnump, gdb_byte *valuep)
2098 {
2099 struct trad_frame_cache *this_trad_cache
2100 = mips_stub_frame_cache (next_frame, this_cache);
2101 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2102 lvalp, addrp, realnump, valuep);
2103 }
2104
2105 static const struct frame_unwind mips_stub_frame_unwind =
2106 {
2107 NORMAL_FRAME,
2108 mips_stub_frame_this_id,
2109 mips_stub_frame_prev_register
2110 };
2111
2112 static const struct frame_unwind *
2113 mips_stub_frame_sniffer (struct frame_info *next_frame)
2114 {
2115 struct obj_section *s;
2116 CORE_ADDR pc = frame_pc_unwind (next_frame);
2117
2118 if (in_plt_section (pc, NULL))
2119 return &mips_stub_frame_unwind;
2120
2121 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2122 s = find_pc_section (pc);
2123
2124 if (s != NULL
2125 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2126 ".MIPS.stubs") == 0)
2127 return &mips_stub_frame_unwind;
2128
2129 return NULL;
2130 }
2131
2132 static CORE_ADDR
2133 mips_stub_frame_base_address (struct frame_info *next_frame,
2134 void **this_cache)
2135 {
2136 struct trad_frame_cache *this_trad_cache
2137 = mips_stub_frame_cache (next_frame, this_cache);
2138 return trad_frame_get_this_base (this_trad_cache);
2139 }
2140
2141 static const struct frame_base mips_stub_frame_base =
2142 {
2143 &mips_stub_frame_unwind,
2144 mips_stub_frame_base_address,
2145 mips_stub_frame_base_address,
2146 mips_stub_frame_base_address
2147 };
2148
2149 static const struct frame_base *
2150 mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2151 {
2152 if (mips_stub_frame_sniffer (next_frame) != NULL)
2153 return &mips_stub_frame_base;
2154 else
2155 return NULL;
2156 }
2157
2158 static CORE_ADDR
2159 read_next_frame_reg (struct frame_info *fi, int regno)
2160 {
2161 /* Always a pseudo. */
2162 gdb_assert (regno >= NUM_REGS);
2163 if (fi == NULL)
2164 {
2165 LONGEST val;
2166 regcache_cooked_read_signed (current_regcache, regno, &val);
2167 return val;
2168 }
2169 else
2170 return frame_unwind_register_signed (fi, regno);
2171
2172 }
2173
2174 /* mips_addr_bits_remove - remove useless address bits */
2175
2176 static CORE_ADDR
2177 mips_addr_bits_remove (CORE_ADDR addr)
2178 {
2179 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2180 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2181 /* This hack is a work-around for existing boards using PMON, the
2182 simulator, and any other 64-bit targets that doesn't have true
2183 64-bit addressing. On these targets, the upper 32 bits of
2184 addresses are ignored by the hardware. Thus, the PC or SP are
2185 likely to have been sign extended to all 1s by instruction
2186 sequences that load 32-bit addresses. For example, a typical
2187 piece of code that loads an address is this:
2188
2189 lui $r2, <upper 16 bits>
2190 ori $r2, <lower 16 bits>
2191
2192 But the lui sign-extends the value such that the upper 32 bits
2193 may be all 1s. The workaround is simply to mask off these
2194 bits. In the future, gcc may be changed to support true 64-bit
2195 addressing, and this masking will have to be disabled. */
2196 return addr &= 0xffffffffUL;
2197 else
2198 return addr;
2199 }
2200
2201 /* mips_software_single_step() is called just before we want to resume
2202 the inferior, if we want to single-step it but there is no hardware
2203 or kernel single-step support (MIPS on GNU/Linux for example). We find
2204 the target of the coming instruction and breakpoint it.
2205
2206 single_step is also called just after the inferior stops. If we had
2207 set up a simulated single-step, we undo our damage. */
2208
2209 void
2210 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
2211 {
2212 CORE_ADDR pc, next_pc;
2213
2214 if (insert_breakpoints_p)
2215 {
2216 pc = read_register (mips_regnum (current_gdbarch)->pc);
2217 next_pc = mips_next_pc (pc);
2218
2219 insert_single_step_breakpoint (next_pc);
2220 }
2221 else
2222 remove_single_step_breakpoints ();
2223 }
2224
2225 /* Test whether the PC points to the return instruction at the
2226 end of a function. */
2227
2228 static int
2229 mips_about_to_return (CORE_ADDR pc)
2230 {
2231 if (mips_pc_is_mips16 (pc))
2232 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2233 generates a "jr $ra"; other times it generates code to load
2234 the return address from the stack to an accessible register (such
2235 as $a3), then a "jr" using that register. This second case
2236 is almost impossible to distinguish from an indirect jump
2237 used for switch statements, so we don't even try. */
2238 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2239 else
2240 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2241 }
2242
2243
2244 /* This fencepost looks highly suspicious to me. Removing it also
2245 seems suspicious as it could affect remote debugging across serial
2246 lines. */
2247
2248 static CORE_ADDR
2249 heuristic_proc_start (CORE_ADDR pc)
2250 {
2251 CORE_ADDR start_pc;
2252 CORE_ADDR fence;
2253 int instlen;
2254 int seen_adjsp = 0;
2255
2256 pc = ADDR_BITS_REMOVE (pc);
2257 start_pc = pc;
2258 fence = start_pc - heuristic_fence_post;
2259 if (start_pc == 0)
2260 return 0;
2261
2262 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2263 fence = VM_MIN_ADDRESS;
2264
2265 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2266
2267 /* search back for previous return */
2268 for (start_pc -= instlen;; start_pc -= instlen)
2269 if (start_pc < fence)
2270 {
2271 /* It's not clear to me why we reach this point when
2272 stop_soon, but with this test, at least we
2273 don't print out warnings for every child forked (eg, on
2274 decstation). 22apr93 rich@cygnus.com. */
2275 if (stop_soon == NO_STOP_QUIETLY)
2276 {
2277 static int blurb_printed = 0;
2278
2279 warning (_("GDB can't find the start of the function at 0x%s."),
2280 paddr_nz (pc));
2281
2282 if (!blurb_printed)
2283 {
2284 /* This actually happens frequently in embedded
2285 development, when you first connect to a board
2286 and your stack pointer and pc are nowhere in
2287 particular. This message needs to give people
2288 in that situation enough information to
2289 determine that it's no big deal. */
2290 printf_filtered ("\n\
2291 GDB is unable to find the start of the function at 0x%s\n\
2292 and thus can't determine the size of that function's stack frame.\n\
2293 This means that GDB may be unable to access that stack frame, or\n\
2294 the frames below it.\n\
2295 This problem is most likely caused by an invalid program counter or\n\
2296 stack pointer.\n\
2297 However, if you think GDB should simply search farther back\n\
2298 from 0x%s for code which looks like the beginning of a\n\
2299 function, you can increase the range of the search using the `set\n\
2300 heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2301 blurb_printed = 1;
2302 }
2303 }
2304
2305 return 0;
2306 }
2307 else if (mips_pc_is_mips16 (start_pc))
2308 {
2309 unsigned short inst;
2310
2311 /* On MIPS16, any one of the following is likely to be the
2312 start of a function:
2313 entry
2314 addiu sp,-n
2315 daddiu sp,-n
2316 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2317 inst = mips_fetch_instruction (start_pc);
2318 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2319 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2320 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2321 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2322 break;
2323 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2324 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2325 seen_adjsp = 1;
2326 else
2327 seen_adjsp = 0;
2328 }
2329 else if (mips_about_to_return (start_pc))
2330 {
2331 /* Skip return and its delay slot. */
2332 start_pc += 2 * MIPS_INSN32_SIZE;
2333 break;
2334 }
2335
2336 return start_pc;
2337 }
2338
2339 struct mips_objfile_private
2340 {
2341 bfd_size_type size;
2342 char *contents;
2343 };
2344
2345 /* According to the current ABI, should the type be passed in a
2346 floating-point register (assuming that there is space)? When there
2347 is no FPU, FP are not even considered as possible candidates for
2348 FP registers and, consequently this returns false - forces FP
2349 arguments into integer registers. */
2350
2351 static int
2352 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2353 {
2354 return ((typecode == TYPE_CODE_FLT
2355 || (MIPS_EABI
2356 && (typecode == TYPE_CODE_STRUCT
2357 || typecode == TYPE_CODE_UNION)
2358 && TYPE_NFIELDS (arg_type) == 1
2359 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2360 == TYPE_CODE_FLT))
2361 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2362 }
2363
2364 /* On o32, argument passing in GPRs depends on the alignment of the type being
2365 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2366
2367 static int
2368 mips_type_needs_double_align (struct type *type)
2369 {
2370 enum type_code typecode = TYPE_CODE (type);
2371
2372 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2373 return 1;
2374 else if (typecode == TYPE_CODE_STRUCT)
2375 {
2376 if (TYPE_NFIELDS (type) < 1)
2377 return 0;
2378 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2379 }
2380 else if (typecode == TYPE_CODE_UNION)
2381 {
2382 int i, n;
2383
2384 n = TYPE_NFIELDS (type);
2385 for (i = 0; i < n; i++)
2386 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2387 return 1;
2388 return 0;
2389 }
2390 return 0;
2391 }
2392
2393 /* Adjust the address downward (direction of stack growth) so that it
2394 is correctly aligned for a new stack frame. */
2395 static CORE_ADDR
2396 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2397 {
2398 return align_down (addr, 16);
2399 }
2400
2401 static CORE_ADDR
2402 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2403 struct regcache *regcache, CORE_ADDR bp_addr,
2404 int nargs, struct value **args, CORE_ADDR sp,
2405 int struct_return, CORE_ADDR struct_addr)
2406 {
2407 int argreg;
2408 int float_argreg;
2409 int argnum;
2410 int len = 0;
2411 int stack_offset = 0;
2412 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2413 CORE_ADDR func_addr = find_function_addr (function, NULL);
2414
2415 /* For shared libraries, "t9" needs to point at the function
2416 address. */
2417 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2418
2419 /* Set the return address register to point to the entry point of
2420 the program, where a breakpoint lies in wait. */
2421 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2422
2423 /* First ensure that the stack and structure return address (if any)
2424 are properly aligned. The stack has to be at least 64-bit
2425 aligned even on 32-bit machines, because doubles must be 64-bit
2426 aligned. For n32 and n64, stack frames need to be 128-bit
2427 aligned, so we round to this widest known alignment. */
2428
2429 sp = align_down (sp, 16);
2430 struct_addr = align_down (struct_addr, 16);
2431
2432 /* Now make space on the stack for the args. We allocate more
2433 than necessary for EABI, because the first few arguments are
2434 passed in registers, but that's OK. */
2435 for (argnum = 0; argnum < nargs; argnum++)
2436 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
2437 mips_stack_argsize (gdbarch));
2438 sp -= align_up (len, 16);
2439
2440 if (mips_debug)
2441 fprintf_unfiltered (gdb_stdlog,
2442 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2443 paddr_nz (sp), (long) align_up (len, 16));
2444
2445 /* Initialize the integer and float register pointers. */
2446 argreg = MIPS_A0_REGNUM;
2447 float_argreg = mips_fpa0_regnum (current_gdbarch);
2448
2449 /* The struct_return pointer occupies the first parameter-passing reg. */
2450 if (struct_return)
2451 {
2452 if (mips_debug)
2453 fprintf_unfiltered (gdb_stdlog,
2454 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2455 argreg, paddr_nz (struct_addr));
2456 write_register (argreg++, struct_addr);
2457 }
2458
2459 /* Now load as many as possible of the first arguments into
2460 registers, and push the rest onto the stack. Loop thru args
2461 from first to last. */
2462 for (argnum = 0; argnum < nargs; argnum++)
2463 {
2464 const gdb_byte *val;
2465 gdb_byte valbuf[MAX_REGISTER_SIZE];
2466 struct value *arg = args[argnum];
2467 struct type *arg_type = check_typedef (value_type (arg));
2468 int len = TYPE_LENGTH (arg_type);
2469 enum type_code typecode = TYPE_CODE (arg_type);
2470
2471 if (mips_debug)
2472 fprintf_unfiltered (gdb_stdlog,
2473 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2474 argnum + 1, len, (int) typecode);
2475
2476 /* The EABI passes structures that do not fit in a register by
2477 reference. */
2478 if (len > mips_abi_regsize (gdbarch)
2479 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2480 {
2481 store_unsigned_integer (valbuf, mips_abi_regsize (gdbarch),
2482 VALUE_ADDRESS (arg));
2483 typecode = TYPE_CODE_PTR;
2484 len = mips_abi_regsize (gdbarch);
2485 val = valbuf;
2486 if (mips_debug)
2487 fprintf_unfiltered (gdb_stdlog, " push");
2488 }
2489 else
2490 val = value_contents (arg);
2491
2492 /* 32-bit ABIs always start floating point arguments in an
2493 even-numbered floating point register. Round the FP register
2494 up before the check to see if there are any FP registers
2495 left. Non MIPS_EABI targets also pass the FP in the integer
2496 registers so also round up normal registers. */
2497 if (mips_abi_regsize (gdbarch) < 8
2498 && fp_register_arg_p (typecode, arg_type))
2499 {
2500 if ((float_argreg & 1))
2501 float_argreg++;
2502 }
2503
2504 /* Floating point arguments passed in registers have to be
2505 treated specially. On 32-bit architectures, doubles
2506 are passed in register pairs; the even register gets
2507 the low word, and the odd register gets the high word.
2508 On non-EABI processors, the first two floating point arguments are
2509 also copied to general registers, because MIPS16 functions
2510 don't use float registers for arguments. This duplication of
2511 arguments in general registers can't hurt non-MIPS16 functions
2512 because those registers are normally skipped. */
2513 /* MIPS_EABI squeezes a struct that contains a single floating
2514 point value into an FP register instead of pushing it onto the
2515 stack. */
2516 if (fp_register_arg_p (typecode, arg_type)
2517 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2518 {
2519 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
2520 {
2521 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2522 unsigned long regval;
2523
2524 /* Write the low word of the double to the even register(s). */
2525 regval = extract_unsigned_integer (val + low_offset, 4);
2526 if (mips_debug)
2527 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2528 float_argreg, phex (regval, 4));
2529 write_register (float_argreg++, regval);
2530
2531 /* Write the high word of the double to the odd register(s). */
2532 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2533 if (mips_debug)
2534 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2535 float_argreg, phex (regval, 4));
2536 write_register (float_argreg++, regval);
2537 }
2538 else
2539 {
2540 /* This is a floating point value that fits entirely
2541 in a single register. */
2542 /* On 32 bit ABI's the float_argreg is further adjusted
2543 above to ensure that it is even register aligned. */
2544 LONGEST regval = extract_unsigned_integer (val, len);
2545 if (mips_debug)
2546 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2547 float_argreg, phex (regval, len));
2548 write_register (float_argreg++, regval);
2549 }
2550 }
2551 else
2552 {
2553 /* Copy the argument to general registers or the stack in
2554 register-sized pieces. Large arguments are split between
2555 registers and stack. */
2556 /* Note: structs whose size is not a multiple of
2557 mips_abi_regsize() are treated specially: Irix cc passes
2558 them in registers where gcc sometimes puts them on the
2559 stack. For maximum compatibility, we will put them in
2560 both places. */
2561 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2562 && (len % mips_abi_regsize (gdbarch) != 0));
2563
2564 /* Note: Floating-point values that didn't fit into an FP
2565 register are only written to memory. */
2566 while (len > 0)
2567 {
2568 /* Remember if the argument was written to the stack. */
2569 int stack_used_p = 0;
2570 int partial_len = (len < mips_abi_regsize (gdbarch)
2571 ? len : mips_abi_regsize (gdbarch));
2572
2573 if (mips_debug)
2574 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2575 partial_len);
2576
2577 /* Write this portion of the argument to the stack. */
2578 if (argreg > MIPS_LAST_ARG_REGNUM
2579 || odd_sized_struct
2580 || fp_register_arg_p (typecode, arg_type))
2581 {
2582 /* Should shorter than int integer values be
2583 promoted to int before being stored? */
2584 int longword_offset = 0;
2585 CORE_ADDR addr;
2586 stack_used_p = 1;
2587 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2588 {
2589 if (mips_stack_argsize (gdbarch) == 8
2590 && (typecode == TYPE_CODE_INT
2591 || typecode == TYPE_CODE_PTR
2592 || typecode == TYPE_CODE_FLT) && len <= 4)
2593 longword_offset = mips_stack_argsize (gdbarch) - len;
2594 else if ((typecode == TYPE_CODE_STRUCT
2595 || typecode == TYPE_CODE_UNION)
2596 && (TYPE_LENGTH (arg_type)
2597 < mips_stack_argsize (gdbarch)))
2598 longword_offset = mips_stack_argsize (gdbarch) - len;
2599 }
2600
2601 if (mips_debug)
2602 {
2603 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2604 paddr_nz (stack_offset));
2605 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2606 paddr_nz (longword_offset));
2607 }
2608
2609 addr = sp + stack_offset + longword_offset;
2610
2611 if (mips_debug)
2612 {
2613 int i;
2614 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2615 paddr_nz (addr));
2616 for (i = 0; i < partial_len; i++)
2617 {
2618 fprintf_unfiltered (gdb_stdlog, "%02x",
2619 val[i] & 0xff);
2620 }
2621 }
2622 write_memory (addr, val, partial_len);
2623 }
2624
2625 /* Note!!! This is NOT an else clause. Odd sized
2626 structs may go thru BOTH paths. Floating point
2627 arguments will not. */
2628 /* Write this portion of the argument to a general
2629 purpose register. */
2630 if (argreg <= MIPS_LAST_ARG_REGNUM
2631 && !fp_register_arg_p (typecode, arg_type))
2632 {
2633 LONGEST regval =
2634 extract_unsigned_integer (val, partial_len);
2635
2636 if (mips_debug)
2637 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2638 argreg,
2639 phex (regval,
2640 mips_abi_regsize (gdbarch)));
2641 write_register (argreg, regval);
2642 argreg++;
2643 }
2644
2645 len -= partial_len;
2646 val += partial_len;
2647
2648 /* Compute the the offset into the stack at which we
2649 will copy the next parameter.
2650
2651 In the new EABI (and the NABI32), the stack_offset
2652 only needs to be adjusted when it has been used. */
2653
2654 if (stack_used_p)
2655 stack_offset += align_up (partial_len,
2656 mips_stack_argsize (gdbarch));
2657 }
2658 }
2659 if (mips_debug)
2660 fprintf_unfiltered (gdb_stdlog, "\n");
2661 }
2662
2663 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2664
2665 /* Return adjusted stack pointer. */
2666 return sp;
2667 }
2668
2669 /* Determine the return value convention being used. */
2670
2671 static enum return_value_convention
2672 mips_eabi_return_value (struct gdbarch *gdbarch,
2673 struct type *type, struct regcache *regcache,
2674 gdb_byte *readbuf, const gdb_byte *writebuf)
2675 {
2676 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2677 return RETURN_VALUE_STRUCT_CONVENTION;
2678 if (readbuf)
2679 memset (readbuf, 0, TYPE_LENGTH (type));
2680 return RETURN_VALUE_REGISTER_CONVENTION;
2681 }
2682
2683
2684 /* N32/N64 ABI stuff. */
2685
2686 static CORE_ADDR
2687 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2688 struct regcache *regcache, CORE_ADDR bp_addr,
2689 int nargs, struct value **args, CORE_ADDR sp,
2690 int struct_return, CORE_ADDR struct_addr)
2691 {
2692 int argreg;
2693 int float_argreg;
2694 int argnum;
2695 int len = 0;
2696 int stack_offset = 0;
2697 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2698 CORE_ADDR func_addr = find_function_addr (function, NULL);
2699
2700 /* For shared libraries, "t9" needs to point at the function
2701 address. */
2702 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2703
2704 /* Set the return address register to point to the entry point of
2705 the program, where a breakpoint lies in wait. */
2706 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2707
2708 /* First ensure that the stack and structure return address (if any)
2709 are properly aligned. The stack has to be at least 64-bit
2710 aligned even on 32-bit machines, because doubles must be 64-bit
2711 aligned. For n32 and n64, stack frames need to be 128-bit
2712 aligned, so we round to this widest known alignment. */
2713
2714 sp = align_down (sp, 16);
2715 struct_addr = align_down (struct_addr, 16);
2716
2717 /* Now make space on the stack for the args. */
2718 for (argnum = 0; argnum < nargs; argnum++)
2719 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
2720 mips_stack_argsize (gdbarch));
2721 sp -= align_up (len, 16);
2722
2723 if (mips_debug)
2724 fprintf_unfiltered (gdb_stdlog,
2725 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2726 paddr_nz (sp), (long) align_up (len, 16));
2727
2728 /* Initialize the integer and float register pointers. */
2729 argreg = MIPS_A0_REGNUM;
2730 float_argreg = mips_fpa0_regnum (current_gdbarch);
2731
2732 /* The struct_return pointer occupies the first parameter-passing reg. */
2733 if (struct_return)
2734 {
2735 if (mips_debug)
2736 fprintf_unfiltered (gdb_stdlog,
2737 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
2738 argreg, paddr_nz (struct_addr));
2739 write_register (argreg++, struct_addr);
2740 }
2741
2742 /* Now load as many as possible of the first arguments into
2743 registers, and push the rest onto the stack. Loop thru args
2744 from first to last. */
2745 for (argnum = 0; argnum < nargs; argnum++)
2746 {
2747 const gdb_byte *val;
2748 struct value *arg = args[argnum];
2749 struct type *arg_type = check_typedef (value_type (arg));
2750 int len = TYPE_LENGTH (arg_type);
2751 enum type_code typecode = TYPE_CODE (arg_type);
2752
2753 if (mips_debug)
2754 fprintf_unfiltered (gdb_stdlog,
2755 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
2756 argnum + 1, len, (int) typecode);
2757
2758 val = value_contents (arg);
2759
2760 if (fp_register_arg_p (typecode, arg_type)
2761 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2762 {
2763 /* This is a floating point value that fits entirely
2764 in a single register. */
2765 /* On 32 bit ABI's the float_argreg is further adjusted
2766 above to ensure that it is even register aligned. */
2767 LONGEST regval = extract_unsigned_integer (val, len);
2768 if (mips_debug)
2769 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2770 float_argreg, phex (regval, len));
2771 write_register (float_argreg++, regval);
2772
2773 if (mips_debug)
2774 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2775 argreg, phex (regval, len));
2776 write_register (argreg, regval);
2777 argreg += 1;
2778 }
2779 else
2780 {
2781 /* Copy the argument to general registers or the stack in
2782 register-sized pieces. Large arguments are split between
2783 registers and stack. */
2784 /* Note: structs whose size is not a multiple of
2785 mips_abi_regsize() are treated specially: Irix cc passes
2786 them in registers where gcc sometimes puts them on the
2787 stack. For maximum compatibility, we will put them in
2788 both places. */
2789 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2790 && (len % mips_abi_regsize (gdbarch) != 0));
2791 /* Note: Floating-point values that didn't fit into an FP
2792 register are only written to memory. */
2793 while (len > 0)
2794 {
2795 /* Rememer if the argument was written to the stack. */
2796 int stack_used_p = 0;
2797 int partial_len = (len < mips_abi_regsize (gdbarch)
2798 ? len : mips_abi_regsize (gdbarch));
2799
2800 if (mips_debug)
2801 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2802 partial_len);
2803
2804 /* Write this portion of the argument to the stack. */
2805 if (argreg > MIPS_LAST_ARG_REGNUM
2806 || odd_sized_struct
2807 || fp_register_arg_p (typecode, arg_type))
2808 {
2809 /* Should shorter than int integer values be
2810 promoted to int before being stored? */
2811 int longword_offset = 0;
2812 CORE_ADDR addr;
2813 stack_used_p = 1;
2814 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2815 {
2816 if (mips_stack_argsize (gdbarch) == 8
2817 && (typecode == TYPE_CODE_INT
2818 || typecode == TYPE_CODE_PTR
2819 || typecode == TYPE_CODE_FLT) && len <= 4)
2820 longword_offset = mips_stack_argsize (gdbarch) - len;
2821 }
2822
2823 if (mips_debug)
2824 {
2825 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2826 paddr_nz (stack_offset));
2827 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2828 paddr_nz (longword_offset));
2829 }
2830
2831 addr = sp + stack_offset + longword_offset;
2832
2833 if (mips_debug)
2834 {
2835 int i;
2836 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2837 paddr_nz (addr));
2838 for (i = 0; i < partial_len; i++)
2839 {
2840 fprintf_unfiltered (gdb_stdlog, "%02x",
2841 val[i] & 0xff);
2842 }
2843 }
2844 write_memory (addr, val, partial_len);
2845 }
2846
2847 /* Note!!! This is NOT an else clause. Odd sized
2848 structs may go thru BOTH paths. Floating point
2849 arguments will not. */
2850 /* Write this portion of the argument to a general
2851 purpose register. */
2852 if (argreg <= MIPS_LAST_ARG_REGNUM
2853 && !fp_register_arg_p (typecode, arg_type))
2854 {
2855 LONGEST regval =
2856 extract_unsigned_integer (val, partial_len);
2857
2858 /* A non-floating-point argument being passed in a
2859 general register. If a struct or union, and if
2860 the remaining length is smaller than the register
2861 size, we have to adjust the register value on
2862 big endian targets.
2863
2864 It does not seem to be necessary to do the
2865 same for integral types.
2866
2867 cagney/2001-07-23: gdb/179: Also, GCC, when
2868 outputting LE O32 with sizeof (struct) <
2869 mips_abi_regsize(), generates a left shift as
2870 part of storing the argument in a register a
2871 register (the left shift isn't generated when
2872 sizeof (struct) >= mips_abi_regsize()). Since
2873 it is quite possible that this is GCC
2874 contradicting the LE/O32 ABI, GDB has not been
2875 adjusted to accommodate this. Either someone
2876 needs to demonstrate that the LE/O32 ABI
2877 specifies such a left shift OR this new ABI gets
2878 identified as such and GDB gets tweaked
2879 accordingly. */
2880
2881 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
2882 && partial_len < mips_abi_regsize (gdbarch)
2883 && (typecode == TYPE_CODE_STRUCT ||
2884 typecode == TYPE_CODE_UNION))
2885 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
2886 TARGET_CHAR_BIT);
2887
2888 if (mips_debug)
2889 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2890 argreg,
2891 phex (regval,
2892 mips_abi_regsize (gdbarch)));
2893 write_register (argreg, regval);
2894 argreg++;
2895 }
2896
2897 len -= partial_len;
2898 val += partial_len;
2899
2900 /* Compute the the offset into the stack at which we
2901 will copy the next parameter.
2902
2903 In N32 (N64?), the stack_offset only needs to be
2904 adjusted when it has been used. */
2905
2906 if (stack_used_p)
2907 stack_offset += align_up (partial_len,
2908 mips_stack_argsize (gdbarch));
2909 }
2910 }
2911 if (mips_debug)
2912 fprintf_unfiltered (gdb_stdlog, "\n");
2913 }
2914
2915 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2916
2917 /* Return adjusted stack pointer. */
2918 return sp;
2919 }
2920
2921 static enum return_value_convention
2922 mips_n32n64_return_value (struct gdbarch *gdbarch,
2923 struct type *type, struct regcache *regcache,
2924 gdb_byte *readbuf, const gdb_byte *writebuf)
2925 {
2926 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2927 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2928 || TYPE_CODE (type) == TYPE_CODE_UNION
2929 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2930 || TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2931 return RETURN_VALUE_STRUCT_CONVENTION;
2932 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2933 && TYPE_LENGTH (type) == 16
2934 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2935 {
2936 /* A 128-bit floating-point value fills both $f0 and $f2. The
2937 two registers are used in the same as memory order, so the
2938 eight bytes with the lower memory address are in $f0. */
2939 if (mips_debug)
2940 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
2941 mips_xfer_register (regcache,
2942 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2943 8, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2944 mips_xfer_register (regcache,
2945 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 2,
2946 8, TARGET_BYTE_ORDER, readbuf ? readbuf + 8 : readbuf,
2947 writebuf ? writebuf + 8 : writebuf, 0);
2948 return RETURN_VALUE_REGISTER_CONVENTION;
2949 }
2950 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2951 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2952 {
2953 /* A floating-point value belongs in the least significant part
2954 of FP0. */
2955 if (mips_debug)
2956 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
2957 mips_xfer_register (regcache,
2958 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2959 TYPE_LENGTH (type),
2960 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2961 return RETURN_VALUE_REGISTER_CONVENTION;
2962 }
2963 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2964 && TYPE_NFIELDS (type) <= 2
2965 && TYPE_NFIELDS (type) >= 1
2966 && ((TYPE_NFIELDS (type) == 1
2967 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2968 == TYPE_CODE_FLT))
2969 || (TYPE_NFIELDS (type) == 2
2970 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2971 == TYPE_CODE_FLT)
2972 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
2973 == TYPE_CODE_FLT)))
2974 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2975 {
2976 /* A struct that contains one or two floats. Each value is part
2977 in the least significant part of their floating point
2978 register.. */
2979 int regnum;
2980 int field;
2981 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
2982 field < TYPE_NFIELDS (type); field++, regnum += 2)
2983 {
2984 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
2985 / TARGET_CHAR_BIT);
2986 if (mips_debug)
2987 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
2988 offset);
2989 mips_xfer_register (regcache, NUM_REGS + regnum,
2990 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
2991 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2992 }
2993 return RETURN_VALUE_REGISTER_CONVENTION;
2994 }
2995 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2996 || TYPE_CODE (type) == TYPE_CODE_UNION)
2997 {
2998 /* A structure or union. Extract the left justified value,
2999 regardless of the byte order. I.e. DO NOT USE
3000 mips_xfer_lower. */
3001 int offset;
3002 int regnum;
3003 for (offset = 0, regnum = MIPS_V0_REGNUM;
3004 offset < TYPE_LENGTH (type);
3005 offset += register_size (current_gdbarch, regnum), regnum++)
3006 {
3007 int xfer = register_size (current_gdbarch, regnum);
3008 if (offset + xfer > TYPE_LENGTH (type))
3009 xfer = TYPE_LENGTH (type) - offset;
3010 if (mips_debug)
3011 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3012 offset, xfer, regnum);
3013 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3014 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3015 }
3016 return RETURN_VALUE_REGISTER_CONVENTION;
3017 }
3018 else
3019 {
3020 /* A scalar extract each part but least-significant-byte
3021 justified. */
3022 int offset;
3023 int regnum;
3024 for (offset = 0, regnum = MIPS_V0_REGNUM;
3025 offset < TYPE_LENGTH (type);
3026 offset += register_size (current_gdbarch, regnum), regnum++)
3027 {
3028 int xfer = register_size (current_gdbarch, regnum);
3029 if (offset + xfer > TYPE_LENGTH (type))
3030 xfer = TYPE_LENGTH (type) - offset;
3031 if (mips_debug)
3032 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3033 offset, xfer, regnum);
3034 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3035 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3036 }
3037 return RETURN_VALUE_REGISTER_CONVENTION;
3038 }
3039 }
3040
3041 /* O32 ABI stuff. */
3042
3043 static CORE_ADDR
3044 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3045 struct regcache *regcache, CORE_ADDR bp_addr,
3046 int nargs, struct value **args, CORE_ADDR sp,
3047 int struct_return, CORE_ADDR struct_addr)
3048 {
3049 int argreg;
3050 int float_argreg;
3051 int argnum;
3052 int len = 0;
3053 int stack_offset = 0;
3054 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3055 CORE_ADDR func_addr = find_function_addr (function, NULL);
3056
3057 /* For shared libraries, "t9" needs to point at the function
3058 address. */
3059 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3060
3061 /* Set the return address register to point to the entry point of
3062 the program, where a breakpoint lies in wait. */
3063 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3064
3065 /* First ensure that the stack and structure return address (if any)
3066 are properly aligned. The stack has to be at least 64-bit
3067 aligned even on 32-bit machines, because doubles must be 64-bit
3068 aligned. For n32 and n64, stack frames need to be 128-bit
3069 aligned, so we round to this widest known alignment. */
3070
3071 sp = align_down (sp, 16);
3072 struct_addr = align_down (struct_addr, 16);
3073
3074 /* Now make space on the stack for the args. */
3075 for (argnum = 0; argnum < nargs; argnum++)
3076 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
3077 mips_stack_argsize (gdbarch));
3078 sp -= align_up (len, 16);
3079
3080 if (mips_debug)
3081 fprintf_unfiltered (gdb_stdlog,
3082 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3083 paddr_nz (sp), (long) align_up (len, 16));
3084
3085 /* Initialize the integer and float register pointers. */
3086 argreg = MIPS_A0_REGNUM;
3087 float_argreg = mips_fpa0_regnum (current_gdbarch);
3088
3089 /* The struct_return pointer occupies the first parameter-passing reg. */
3090 if (struct_return)
3091 {
3092 if (mips_debug)
3093 fprintf_unfiltered (gdb_stdlog,
3094 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3095 argreg, paddr_nz (struct_addr));
3096 write_register (argreg++, struct_addr);
3097 stack_offset += mips_stack_argsize (gdbarch);
3098 }
3099
3100 /* Now load as many as possible of the first arguments into
3101 registers, and push the rest onto the stack. Loop thru args
3102 from first to last. */
3103 for (argnum = 0; argnum < nargs; argnum++)
3104 {
3105 const gdb_byte *val;
3106 struct value *arg = args[argnum];
3107 struct type *arg_type = check_typedef (value_type (arg));
3108 int len = TYPE_LENGTH (arg_type);
3109 enum type_code typecode = TYPE_CODE (arg_type);
3110
3111 if (mips_debug)
3112 fprintf_unfiltered (gdb_stdlog,
3113 "mips_o32_push_dummy_call: %d len=%d type=%d",
3114 argnum + 1, len, (int) typecode);
3115
3116 val = value_contents (arg);
3117
3118 /* 32-bit ABIs always start floating point arguments in an
3119 even-numbered floating point register. Round the FP register
3120 up before the check to see if there are any FP registers
3121 left. O32/O64 targets also pass the FP in the integer
3122 registers so also round up normal registers. */
3123 if (mips_abi_regsize (gdbarch) < 8
3124 && fp_register_arg_p (typecode, arg_type))
3125 {
3126 if ((float_argreg & 1))
3127 float_argreg++;
3128 }
3129
3130 /* Floating point arguments passed in registers have to be
3131 treated specially. On 32-bit architectures, doubles
3132 are passed in register pairs; the even register gets
3133 the low word, and the odd register gets the high word.
3134 On O32/O64, the first two floating point arguments are
3135 also copied to general registers, because MIPS16 functions
3136 don't use float registers for arguments. This duplication of
3137 arguments in general registers can't hurt non-MIPS16 functions
3138 because those registers are normally skipped. */
3139
3140 if (fp_register_arg_p (typecode, arg_type)
3141 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3142 {
3143 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
3144 {
3145 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3146 unsigned long regval;
3147
3148 /* Write the low word of the double to the even register(s). */
3149 regval = extract_unsigned_integer (val + low_offset, 4);
3150 if (mips_debug)
3151 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3152 float_argreg, phex (regval, 4));
3153 write_register (float_argreg++, regval);
3154 if (mips_debug)
3155 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3156 argreg, phex (regval, 4));
3157 write_register (argreg++, regval);
3158
3159 /* Write the high word of the double to the odd register(s). */
3160 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3161 if (mips_debug)
3162 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3163 float_argreg, phex (regval, 4));
3164 write_register (float_argreg++, regval);
3165
3166 if (mips_debug)
3167 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3168 argreg, phex (regval, 4));
3169 write_register (argreg++, regval);
3170 }
3171 else
3172 {
3173 /* This is a floating point value that fits entirely
3174 in a single register. */
3175 /* On 32 bit ABI's the float_argreg is further adjusted
3176 above to ensure that it is even register aligned. */
3177 LONGEST regval = extract_unsigned_integer (val, len);
3178 if (mips_debug)
3179 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3180 float_argreg, phex (regval, len));
3181 write_register (float_argreg++, regval);
3182 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3183 registers for each argument. The below is (my
3184 guess) to ensure that the corresponding integer
3185 register has reserved the same space. */
3186 if (mips_debug)
3187 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3188 argreg, phex (regval, len));
3189 write_register (argreg, regval);
3190 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3191 }
3192 /* Reserve space for the FP register. */
3193 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3194 }
3195 else
3196 {
3197 /* Copy the argument to general registers or the stack in
3198 register-sized pieces. Large arguments are split between
3199 registers and stack. */
3200 /* Note: structs whose size is not a multiple of
3201 mips_abi_regsize() are treated specially: Irix cc passes
3202 them in registers where gcc sometimes puts them on the
3203 stack. For maximum compatibility, we will put them in
3204 both places. */
3205 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3206 && (len % mips_abi_regsize (gdbarch) != 0));
3207 /* Structures should be aligned to eight bytes (even arg registers)
3208 on MIPS_ABI_O32, if their first member has double precision. */
3209 if (mips_abi_regsize (gdbarch) < 8
3210 && mips_type_needs_double_align (arg_type))
3211 {
3212 if ((argreg & 1))
3213 argreg++;
3214 }
3215 /* Note: Floating-point values that didn't fit into an FP
3216 register are only written to memory. */
3217 while (len > 0)
3218 {
3219 /* Remember if the argument was written to the stack. */
3220 int stack_used_p = 0;
3221 int partial_len = (len < mips_abi_regsize (gdbarch)
3222 ? len : mips_abi_regsize (gdbarch));
3223
3224 if (mips_debug)
3225 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3226 partial_len);
3227
3228 /* Write this portion of the argument to the stack. */
3229 if (argreg > MIPS_LAST_ARG_REGNUM
3230 || odd_sized_struct
3231 || fp_register_arg_p (typecode, arg_type))
3232 {
3233 /* Should shorter than int integer values be
3234 promoted to int before being stored? */
3235 int longword_offset = 0;
3236 CORE_ADDR addr;
3237 stack_used_p = 1;
3238 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3239 {
3240 if (mips_stack_argsize (gdbarch) == 8
3241 && (typecode == TYPE_CODE_INT
3242 || typecode == TYPE_CODE_PTR
3243 || typecode == TYPE_CODE_FLT) && len <= 4)
3244 longword_offset = mips_stack_argsize (gdbarch) - len;
3245 }
3246
3247 if (mips_debug)
3248 {
3249 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3250 paddr_nz (stack_offset));
3251 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3252 paddr_nz (longword_offset));
3253 }
3254
3255 addr = sp + stack_offset + longword_offset;
3256
3257 if (mips_debug)
3258 {
3259 int i;
3260 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3261 paddr_nz (addr));
3262 for (i = 0; i < partial_len; i++)
3263 {
3264 fprintf_unfiltered (gdb_stdlog, "%02x",
3265 val[i] & 0xff);
3266 }
3267 }
3268 write_memory (addr, val, partial_len);
3269 }
3270
3271 /* Note!!! This is NOT an else clause. Odd sized
3272 structs may go thru BOTH paths. Floating point
3273 arguments will not. */
3274 /* Write this portion of the argument to a general
3275 purpose register. */
3276 if (argreg <= MIPS_LAST_ARG_REGNUM
3277 && !fp_register_arg_p (typecode, arg_type))
3278 {
3279 LONGEST regval = extract_signed_integer (val, partial_len);
3280 /* Value may need to be sign extended, because
3281 mips_isa_regsize() != mips_abi_regsize(). */
3282
3283 /* A non-floating-point argument being passed in a
3284 general register. If a struct or union, and if
3285 the remaining length is smaller than the register
3286 size, we have to adjust the register value on
3287 big endian targets.
3288
3289 It does not seem to be necessary to do the
3290 same for integral types.
3291
3292 Also don't do this adjustment on O64 binaries.
3293
3294 cagney/2001-07-23: gdb/179: Also, GCC, when
3295 outputting LE O32 with sizeof (struct) <
3296 mips_abi_regsize(), generates a left shift as
3297 part of storing the argument in a register a
3298 register (the left shift isn't generated when
3299 sizeof (struct) >= mips_abi_regsize()). Since
3300 it is quite possible that this is GCC
3301 contradicting the LE/O32 ABI, GDB has not been
3302 adjusted to accommodate this. Either someone
3303 needs to demonstrate that the LE/O32 ABI
3304 specifies such a left shift OR this new ABI gets
3305 identified as such and GDB gets tweaked
3306 accordingly. */
3307
3308 if (mips_abi_regsize (gdbarch) < 8
3309 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3310 && partial_len < mips_abi_regsize (gdbarch)
3311 && (typecode == TYPE_CODE_STRUCT ||
3312 typecode == TYPE_CODE_UNION))
3313 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3314 TARGET_CHAR_BIT);
3315
3316 if (mips_debug)
3317 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3318 argreg,
3319 phex (regval,
3320 mips_abi_regsize (gdbarch)));
3321 write_register (argreg, regval);
3322 argreg++;
3323
3324 /* Prevent subsequent floating point arguments from
3325 being passed in floating point registers. */
3326 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3327 }
3328
3329 len -= partial_len;
3330 val += partial_len;
3331
3332 /* Compute the the offset into the stack at which we
3333 will copy the next parameter.
3334
3335 In older ABIs, the caller reserved space for
3336 registers that contained arguments. This was loosely
3337 refered to as their "home". Consequently, space is
3338 always allocated. */
3339
3340 stack_offset += align_up (partial_len,
3341 mips_stack_argsize (gdbarch));
3342 }
3343 }
3344 if (mips_debug)
3345 fprintf_unfiltered (gdb_stdlog, "\n");
3346 }
3347
3348 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3349
3350 /* Return adjusted stack pointer. */
3351 return sp;
3352 }
3353
3354 static enum return_value_convention
3355 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3356 struct regcache *regcache,
3357 gdb_byte *readbuf, const gdb_byte *writebuf)
3358 {
3359 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3360
3361 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3362 || TYPE_CODE (type) == TYPE_CODE_UNION
3363 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3364 return RETURN_VALUE_STRUCT_CONVENTION;
3365 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3366 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3367 {
3368 /* A single-precision floating-point value. It fits in the
3369 least significant part of FP0. */
3370 if (mips_debug)
3371 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3372 mips_xfer_register (regcache,
3373 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3374 TYPE_LENGTH (type),
3375 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3376 return RETURN_VALUE_REGISTER_CONVENTION;
3377 }
3378 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3379 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3380 {
3381 /* A double-precision floating-point value. The most
3382 significant part goes in FP1, and the least significant in
3383 FP0. */
3384 if (mips_debug)
3385 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3386 switch (TARGET_BYTE_ORDER)
3387 {
3388 case BFD_ENDIAN_LITTLE:
3389 mips_xfer_register (regcache,
3390 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3391 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3392 mips_xfer_register (regcache,
3393 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3394 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3395 break;
3396 case BFD_ENDIAN_BIG:
3397 mips_xfer_register (regcache,
3398 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3399 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3400 mips_xfer_register (regcache,
3401 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3402 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3403 break;
3404 default:
3405 internal_error (__FILE__, __LINE__, _("bad switch"));
3406 }
3407 return RETURN_VALUE_REGISTER_CONVENTION;
3408 }
3409 #if 0
3410 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3411 && TYPE_NFIELDS (type) <= 2
3412 && TYPE_NFIELDS (type) >= 1
3413 && ((TYPE_NFIELDS (type) == 1
3414 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3415 == TYPE_CODE_FLT))
3416 || (TYPE_NFIELDS (type) == 2
3417 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3418 == TYPE_CODE_FLT)
3419 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3420 == TYPE_CODE_FLT)))
3421 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3422 {
3423 /* A struct that contains one or two floats. Each value is part
3424 in the least significant part of their floating point
3425 register.. */
3426 gdb_byte reg[MAX_REGISTER_SIZE];
3427 int regnum;
3428 int field;
3429 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3430 field < TYPE_NFIELDS (type); field++, regnum += 2)
3431 {
3432 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3433 / TARGET_CHAR_BIT);
3434 if (mips_debug)
3435 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3436 offset);
3437 mips_xfer_register (regcache, NUM_REGS + regnum,
3438 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3439 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3440 }
3441 return RETURN_VALUE_REGISTER_CONVENTION;
3442 }
3443 #endif
3444 #if 0
3445 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3446 || TYPE_CODE (type) == TYPE_CODE_UNION)
3447 {
3448 /* A structure or union. Extract the left justified value,
3449 regardless of the byte order. I.e. DO NOT USE
3450 mips_xfer_lower. */
3451 int offset;
3452 int regnum;
3453 for (offset = 0, regnum = MIPS_V0_REGNUM;
3454 offset < TYPE_LENGTH (type);
3455 offset += register_size (current_gdbarch, regnum), regnum++)
3456 {
3457 int xfer = register_size (current_gdbarch, regnum);
3458 if (offset + xfer > TYPE_LENGTH (type))
3459 xfer = TYPE_LENGTH (type) - offset;
3460 if (mips_debug)
3461 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3462 offset, xfer, regnum);
3463 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3464 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3465 }
3466 return RETURN_VALUE_REGISTER_CONVENTION;
3467 }
3468 #endif
3469 else
3470 {
3471 /* A scalar extract each part but least-significant-byte
3472 justified. o32 thinks registers are 4 byte, regardless of
3473 the ISA. mips_stack_argsize controls this. */
3474 int offset;
3475 int regnum;
3476 for (offset = 0, regnum = MIPS_V0_REGNUM;
3477 offset < TYPE_LENGTH (type);
3478 offset += mips_stack_argsize (gdbarch), regnum++)
3479 {
3480 int xfer = mips_stack_argsize (gdbarch);
3481 if (offset + xfer > TYPE_LENGTH (type))
3482 xfer = TYPE_LENGTH (type) - offset;
3483 if (mips_debug)
3484 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3485 offset, xfer, regnum);
3486 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3487 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3488 }
3489 return RETURN_VALUE_REGISTER_CONVENTION;
3490 }
3491 }
3492
3493 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3494 ABI. */
3495
3496 static CORE_ADDR
3497 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3498 struct regcache *regcache, CORE_ADDR bp_addr,
3499 int nargs,
3500 struct value **args, CORE_ADDR sp,
3501 int struct_return, CORE_ADDR struct_addr)
3502 {
3503 int argreg;
3504 int float_argreg;
3505 int argnum;
3506 int len = 0;
3507 int stack_offset = 0;
3508 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3509 CORE_ADDR func_addr = find_function_addr (function, NULL);
3510
3511 /* For shared libraries, "t9" needs to point at the function
3512 address. */
3513 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3514
3515 /* Set the return address register to point to the entry point of
3516 the program, where a breakpoint lies in wait. */
3517 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3518
3519 /* First ensure that the stack and structure return address (if any)
3520 are properly aligned. The stack has to be at least 64-bit
3521 aligned even on 32-bit machines, because doubles must be 64-bit
3522 aligned. For n32 and n64, stack frames need to be 128-bit
3523 aligned, so we round to this widest known alignment. */
3524
3525 sp = align_down (sp, 16);
3526 struct_addr = align_down (struct_addr, 16);
3527
3528 /* Now make space on the stack for the args. */
3529 for (argnum = 0; argnum < nargs; argnum++)
3530 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
3531 mips_stack_argsize (gdbarch));
3532 sp -= align_up (len, 16);
3533
3534 if (mips_debug)
3535 fprintf_unfiltered (gdb_stdlog,
3536 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3537 paddr_nz (sp), (long) align_up (len, 16));
3538
3539 /* Initialize the integer and float register pointers. */
3540 argreg = MIPS_A0_REGNUM;
3541 float_argreg = mips_fpa0_regnum (current_gdbarch);
3542
3543 /* The struct_return pointer occupies the first parameter-passing reg. */
3544 if (struct_return)
3545 {
3546 if (mips_debug)
3547 fprintf_unfiltered (gdb_stdlog,
3548 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3549 argreg, paddr_nz (struct_addr));
3550 write_register (argreg++, struct_addr);
3551 stack_offset += mips_stack_argsize (gdbarch);
3552 }
3553
3554 /* Now load as many as possible of the first arguments into
3555 registers, and push the rest onto the stack. Loop thru args
3556 from first to last. */
3557 for (argnum = 0; argnum < nargs; argnum++)
3558 {
3559 const gdb_byte *val;
3560 struct value *arg = args[argnum];
3561 struct type *arg_type = check_typedef (value_type (arg));
3562 int len = TYPE_LENGTH (arg_type);
3563 enum type_code typecode = TYPE_CODE (arg_type);
3564
3565 if (mips_debug)
3566 fprintf_unfiltered (gdb_stdlog,
3567 "mips_o64_push_dummy_call: %d len=%d type=%d",
3568 argnum + 1, len, (int) typecode);
3569
3570 val = value_contents (arg);
3571
3572 /* 32-bit ABIs always start floating point arguments in an
3573 even-numbered floating point register. Round the FP register
3574 up before the check to see if there are any FP registers
3575 left. O32/O64 targets also pass the FP in the integer
3576 registers so also round up normal registers. */
3577 if (mips_abi_regsize (gdbarch) < 8
3578 && fp_register_arg_p (typecode, arg_type))
3579 {
3580 if ((float_argreg & 1))
3581 float_argreg++;
3582 }
3583
3584 /* Floating point arguments passed in registers have to be
3585 treated specially. On 32-bit architectures, doubles
3586 are passed in register pairs; the even register gets
3587 the low word, and the odd register gets the high word.
3588 On O32/O64, the first two floating point arguments are
3589 also copied to general registers, because MIPS16 functions
3590 don't use float registers for arguments. This duplication of
3591 arguments in general registers can't hurt non-MIPS16 functions
3592 because those registers are normally skipped. */
3593
3594 if (fp_register_arg_p (typecode, arg_type)
3595 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3596 {
3597 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
3598 {
3599 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3600 unsigned long regval;
3601
3602 /* Write the low word of the double to the even register(s). */
3603 regval = extract_unsigned_integer (val + low_offset, 4);
3604 if (mips_debug)
3605 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3606 float_argreg, phex (regval, 4));
3607 write_register (float_argreg++, regval);
3608 if (mips_debug)
3609 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3610 argreg, phex (regval, 4));
3611 write_register (argreg++, regval);
3612
3613 /* Write the high word of the double to the odd register(s). */
3614 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3615 if (mips_debug)
3616 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3617 float_argreg, phex (regval, 4));
3618 write_register (float_argreg++, regval);
3619
3620 if (mips_debug)
3621 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3622 argreg, phex (regval, 4));
3623 write_register (argreg++, regval);
3624 }
3625 else
3626 {
3627 /* This is a floating point value that fits entirely
3628 in a single register. */
3629 /* On 32 bit ABI's the float_argreg is further adjusted
3630 above to ensure that it is even register aligned. */
3631 LONGEST regval = extract_unsigned_integer (val, len);
3632 if (mips_debug)
3633 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3634 float_argreg, phex (regval, len));
3635 write_register (float_argreg++, regval);
3636 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3637 registers for each argument. The below is (my
3638 guess) to ensure that the corresponding integer
3639 register has reserved the same space. */
3640 if (mips_debug)
3641 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3642 argreg, phex (regval, len));
3643 write_register (argreg, regval);
3644 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3645 }
3646 /* Reserve space for the FP register. */
3647 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3648 }
3649 else
3650 {
3651 /* Copy the argument to general registers or the stack in
3652 register-sized pieces. Large arguments are split between
3653 registers and stack. */
3654 /* Note: structs whose size is not a multiple of
3655 mips_abi_regsize() are treated specially: Irix cc passes
3656 them in registers where gcc sometimes puts them on the
3657 stack. For maximum compatibility, we will put them in
3658 both places. */
3659 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3660 && (len % mips_abi_regsize (gdbarch) != 0));
3661 /* Structures should be aligned to eight bytes (even arg registers)
3662 on MIPS_ABI_O32, if their first member has double precision. */
3663 if (mips_abi_regsize (gdbarch) < 8
3664 && mips_type_needs_double_align (arg_type))
3665 {
3666 if ((argreg & 1))
3667 argreg++;
3668 }
3669 /* Note: Floating-point values that didn't fit into an FP
3670 register are only written to memory. */
3671 while (len > 0)
3672 {
3673 /* Remember if the argument was written to the stack. */
3674 int stack_used_p = 0;
3675 int partial_len = (len < mips_abi_regsize (gdbarch)
3676 ? len : mips_abi_regsize (gdbarch));
3677
3678 if (mips_debug)
3679 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3680 partial_len);
3681
3682 /* Write this portion of the argument to the stack. */
3683 if (argreg > MIPS_LAST_ARG_REGNUM
3684 || odd_sized_struct
3685 || fp_register_arg_p (typecode, arg_type))
3686 {
3687 /* Should shorter than int integer values be
3688 promoted to int before being stored? */
3689 int longword_offset = 0;
3690 CORE_ADDR addr;
3691 stack_used_p = 1;
3692 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3693 {
3694 if (mips_stack_argsize (gdbarch) == 8
3695 && (typecode == TYPE_CODE_INT
3696 || typecode == TYPE_CODE_PTR
3697 || typecode == TYPE_CODE_FLT) && len <= 4)
3698 longword_offset = mips_stack_argsize (gdbarch) - len;
3699 }
3700
3701 if (mips_debug)
3702 {
3703 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3704 paddr_nz (stack_offset));
3705 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3706 paddr_nz (longword_offset));
3707 }
3708
3709 addr = sp + stack_offset + longword_offset;
3710
3711 if (mips_debug)
3712 {
3713 int i;
3714 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3715 paddr_nz (addr));
3716 for (i = 0; i < partial_len; i++)
3717 {
3718 fprintf_unfiltered (gdb_stdlog, "%02x",
3719 val[i] & 0xff);
3720 }
3721 }
3722 write_memory (addr, val, partial_len);
3723 }
3724
3725 /* Note!!! This is NOT an else clause. Odd sized
3726 structs may go thru BOTH paths. Floating point
3727 arguments will not. */
3728 /* Write this portion of the argument to a general
3729 purpose register. */
3730 if (argreg <= MIPS_LAST_ARG_REGNUM
3731 && !fp_register_arg_p (typecode, arg_type))
3732 {
3733 LONGEST regval = extract_signed_integer (val, partial_len);
3734 /* Value may need to be sign extended, because
3735 mips_isa_regsize() != mips_abi_regsize(). */
3736
3737 /* A non-floating-point argument being passed in a
3738 general register. If a struct or union, and if
3739 the remaining length is smaller than the register
3740 size, we have to adjust the register value on
3741 big endian targets.
3742
3743 It does not seem to be necessary to do the
3744 same for integral types. */
3745
3746 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3747 && partial_len < mips_abi_regsize (gdbarch)
3748 && (typecode == TYPE_CODE_STRUCT ||
3749 typecode == TYPE_CODE_UNION))
3750 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3751 TARGET_CHAR_BIT);
3752
3753 if (mips_debug)
3754 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3755 argreg,
3756 phex (regval,
3757 mips_abi_regsize (gdbarch)));
3758 write_register (argreg, regval);
3759 argreg++;
3760
3761 /* Prevent subsequent floating point arguments from
3762 being passed in floating point registers. */
3763 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3764 }
3765
3766 len -= partial_len;
3767 val += partial_len;
3768
3769 /* Compute the the offset into the stack at which we
3770 will copy the next parameter.
3771
3772 In older ABIs, the caller reserved space for
3773 registers that contained arguments. This was loosely
3774 refered to as their "home". Consequently, space is
3775 always allocated. */
3776
3777 stack_offset += align_up (partial_len,
3778 mips_stack_argsize (gdbarch));
3779 }
3780 }
3781 if (mips_debug)
3782 fprintf_unfiltered (gdb_stdlog, "\n");
3783 }
3784
3785 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3786
3787 /* Return adjusted stack pointer. */
3788 return sp;
3789 }
3790
3791 static enum return_value_convention
3792 mips_o64_return_value (struct gdbarch *gdbarch,
3793 struct type *type, struct regcache *regcache,
3794 gdb_byte *readbuf, const gdb_byte *writebuf)
3795 {
3796 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3797
3798 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3799 || TYPE_CODE (type) == TYPE_CODE_UNION
3800 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3801 return RETURN_VALUE_STRUCT_CONVENTION;
3802 else if (fp_register_arg_p (TYPE_CODE (type), type))
3803 {
3804 /* A floating-point value. It fits in the least significant
3805 part of FP0. */
3806 if (mips_debug)
3807 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3808 mips_xfer_register (regcache,
3809 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3810 TYPE_LENGTH (type),
3811 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3812 return RETURN_VALUE_REGISTER_CONVENTION;
3813 }
3814 else
3815 {
3816 /* A scalar extract each part but least-significant-byte
3817 justified. */
3818 int offset;
3819 int regnum;
3820 for (offset = 0, regnum = MIPS_V0_REGNUM;
3821 offset < TYPE_LENGTH (type);
3822 offset += mips_stack_argsize (gdbarch), regnum++)
3823 {
3824 int xfer = mips_stack_argsize (gdbarch);
3825 if (offset + xfer > TYPE_LENGTH (type))
3826 xfer = TYPE_LENGTH (type) - offset;
3827 if (mips_debug)
3828 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3829 offset, xfer, regnum);
3830 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3831 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3832 }
3833 return RETURN_VALUE_REGISTER_CONVENTION;
3834 }
3835 }
3836
3837 /* Floating point register management.
3838
3839 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3840 64bit operations, these early MIPS cpus treat fp register pairs
3841 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3842 registers and offer a compatibility mode that emulates the MIPS2 fp
3843 model. When operating in MIPS2 fp compat mode, later cpu's split
3844 double precision floats into two 32-bit chunks and store them in
3845 consecutive fp regs. To display 64-bit floats stored in this
3846 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3847 Throw in user-configurable endianness and you have a real mess.
3848
3849 The way this works is:
3850 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3851 double-precision value will be split across two logical registers.
3852 The lower-numbered logical register will hold the low-order bits,
3853 regardless of the processor's endianness.
3854 - If we are on a 64-bit processor, and we are looking for a
3855 single-precision value, it will be in the low ordered bits
3856 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3857 save slot in memory.
3858 - If we are in 64-bit mode, everything is straightforward.
3859
3860 Note that this code only deals with "live" registers at the top of the
3861 stack. We will attempt to deal with saved registers later, when
3862 the raw/cooked register interface is in place. (We need a general
3863 interface that can deal with dynamic saved register sizes -- fp
3864 regs could be 32 bits wide in one frame and 64 on the frame above
3865 and below). */
3866
3867 static struct type *
3868 mips_float_register_type (void)
3869 {
3870 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3871 return builtin_type_ieee_single_big;
3872 else
3873 return builtin_type_ieee_single_little;
3874 }
3875
3876 static struct type *
3877 mips_double_register_type (void)
3878 {
3879 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3880 return builtin_type_ieee_double_big;
3881 else
3882 return builtin_type_ieee_double_little;
3883 }
3884
3885 /* Copy a 32-bit single-precision value from the current frame
3886 into rare_buffer. */
3887
3888 static void
3889 mips_read_fp_register_single (struct frame_info *frame, int regno,
3890 gdb_byte *rare_buffer)
3891 {
3892 int raw_size = register_size (current_gdbarch, regno);
3893 gdb_byte *raw_buffer = alloca (raw_size);
3894
3895 if (!frame_register_read (frame, regno, raw_buffer))
3896 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
3897 if (raw_size == 8)
3898 {
3899 /* We have a 64-bit value for this register. Find the low-order
3900 32 bits. */
3901 int offset;
3902
3903 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3904 offset = 4;
3905 else
3906 offset = 0;
3907
3908 memcpy (rare_buffer, raw_buffer + offset, 4);
3909 }
3910 else
3911 {
3912 memcpy (rare_buffer, raw_buffer, 4);
3913 }
3914 }
3915
3916 /* Copy a 64-bit double-precision value from the current frame into
3917 rare_buffer. This may include getting half of it from the next
3918 register. */
3919
3920 static void
3921 mips_read_fp_register_double (struct frame_info *frame, int regno,
3922 gdb_byte *rare_buffer)
3923 {
3924 int raw_size = register_size (current_gdbarch, regno);
3925
3926 if (raw_size == 8 && !mips2_fp_compat ())
3927 {
3928 /* We have a 64-bit value for this register, and we should use
3929 all 64 bits. */
3930 if (!frame_register_read (frame, regno, rare_buffer))
3931 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
3932 }
3933 else
3934 {
3935 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
3936 internal_error (__FILE__, __LINE__,
3937 _("mips_read_fp_register_double: bad access to "
3938 "odd-numbered FP register"));
3939
3940 /* mips_read_fp_register_single will find the correct 32 bits from
3941 each register. */
3942 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3943 {
3944 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3945 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
3946 }
3947 else
3948 {
3949 mips_read_fp_register_single (frame, regno, rare_buffer);
3950 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
3951 }
3952 }
3953 }
3954
3955 static void
3956 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
3957 int regnum)
3958 { /* do values for FP (float) regs */
3959 gdb_byte *raw_buffer;
3960 double doub, flt1; /* doubles extracted from raw hex data */
3961 int inv1, inv2;
3962
3963 raw_buffer = alloca (2 * register_size (current_gdbarch,
3964 mips_regnum (current_gdbarch)->fp0));
3965
3966 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
3967 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
3968 "");
3969
3970 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
3971 {
3972 /* 4-byte registers: Print hex and floating. Also print even
3973 numbered registers as doubles. */
3974 mips_read_fp_register_single (frame, regnum, raw_buffer);
3975 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3976
3977 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
3978 file);
3979
3980 fprintf_filtered (file, " flt: ");
3981 if (inv1)
3982 fprintf_filtered (file, " <invalid float> ");
3983 else
3984 fprintf_filtered (file, "%-17.9g", flt1);
3985
3986 if (regnum % 2 == 0)
3987 {
3988 mips_read_fp_register_double (frame, regnum, raw_buffer);
3989 doub = unpack_double (mips_double_register_type (), raw_buffer,
3990 &inv2);
3991
3992 fprintf_filtered (file, " dbl: ");
3993 if (inv2)
3994 fprintf_filtered (file, "<invalid double>");
3995 else
3996 fprintf_filtered (file, "%-24.17g", doub);
3997 }
3998 }
3999 else
4000 {
4001 /* Eight byte registers: print each one as hex, float and double. */
4002 mips_read_fp_register_single (frame, regnum, raw_buffer);
4003 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4004
4005 mips_read_fp_register_double (frame, regnum, raw_buffer);
4006 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4007
4008
4009 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4010 file);
4011
4012 fprintf_filtered (file, " flt: ");
4013 if (inv1)
4014 fprintf_filtered (file, "<invalid float>");
4015 else
4016 fprintf_filtered (file, "%-17.9g", flt1);
4017
4018 fprintf_filtered (file, " dbl: ");
4019 if (inv2)
4020 fprintf_filtered (file, "<invalid double>");
4021 else
4022 fprintf_filtered (file, "%-24.17g", doub);
4023 }
4024 }
4025
4026 static void
4027 mips_print_register (struct ui_file *file, struct frame_info *frame,
4028 int regnum, int all)
4029 {
4030 struct gdbarch *gdbarch = get_frame_arch (frame);
4031 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4032 int offset;
4033
4034 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4035 {
4036 mips_print_fp_register (file, frame, regnum);
4037 return;
4038 }
4039
4040 /* Get the data in raw format. */
4041 if (!frame_register_read (frame, regnum, raw_buffer))
4042 {
4043 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
4044 return;
4045 }
4046
4047 fputs_filtered (REGISTER_NAME (regnum), file);
4048
4049 /* The problem with printing numeric register names (r26, etc.) is that
4050 the user can't use them on input. Probably the best solution is to
4051 fix it so that either the numeric or the funky (a2, etc.) names
4052 are accepted on input. */
4053 if (regnum < MIPS_NUMREGS)
4054 fprintf_filtered (file, "(r%d): ", regnum);
4055 else
4056 fprintf_filtered (file, ": ");
4057
4058 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4059 offset =
4060 register_size (current_gdbarch,
4061 regnum) - register_size (current_gdbarch, regnum);
4062 else
4063 offset = 0;
4064
4065 print_scalar_formatted (raw_buffer + offset,
4066 gdbarch_register_type (gdbarch, regnum), 'x', 0,
4067 file);
4068 }
4069
4070 /* Replacement for generic do_registers_info.
4071 Print regs in pretty columns. */
4072
4073 static int
4074 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4075 int regnum)
4076 {
4077 fprintf_filtered (file, " ");
4078 mips_print_fp_register (file, frame, regnum);
4079 fprintf_filtered (file, "\n");
4080 return regnum + 1;
4081 }
4082
4083
4084 /* Print a row's worth of GP (int) registers, with name labels above */
4085
4086 static int
4087 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4088 int start_regnum)
4089 {
4090 struct gdbarch *gdbarch = get_frame_arch (frame);
4091 /* do values for GP (int) regs */
4092 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4093 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4094 int col, byte;
4095 int regnum;
4096
4097 /* For GP registers, we print a separate row of names above the vals */
4098 for (col = 0, regnum = start_regnum;
4099 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4100 {
4101 if (*REGISTER_NAME (regnum) == '\0')
4102 continue; /* unused register */
4103 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4104 TYPE_CODE_FLT)
4105 break; /* end the row: reached FP register */
4106 if (col == 0)
4107 fprintf_filtered (file, " ");
4108 fprintf_filtered (file,
4109 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4110 REGISTER_NAME (regnum));
4111 col++;
4112 }
4113
4114 if (col == 0)
4115 return regnum;
4116
4117 /* print the R0 to R31 names */
4118 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4119 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4120 else
4121 fprintf_filtered (file, "\n ");
4122
4123 /* now print the values in hex, 4 or 8 to the row */
4124 for (col = 0, regnum = start_regnum;
4125 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4126 {
4127 if (*REGISTER_NAME (regnum) == '\0')
4128 continue; /* unused register */
4129 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4130 TYPE_CODE_FLT)
4131 break; /* end row: reached FP register */
4132 /* OK: get the data in raw format. */
4133 if (!frame_register_read (frame, regnum, raw_buffer))
4134 error (_("can't read register %d (%s)"), regnum, REGISTER_NAME (regnum));
4135 /* pad small registers */
4136 for (byte = 0;
4137 byte < (mips_abi_regsize (current_gdbarch)
4138 - register_size (current_gdbarch, regnum)); byte++)
4139 printf_filtered (" ");
4140 /* Now print the register value in hex, endian order. */
4141 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4142 for (byte =
4143 register_size (current_gdbarch,
4144 regnum) - register_size (current_gdbarch, regnum);
4145 byte < register_size (current_gdbarch, regnum); byte++)
4146 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4147 else
4148 for (byte = register_size (current_gdbarch, regnum) - 1;
4149 byte >= 0; byte--)
4150 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4151 fprintf_filtered (file, " ");
4152 col++;
4153 }
4154 if (col > 0) /* ie. if we actually printed anything... */
4155 fprintf_filtered (file, "\n");
4156
4157 return regnum;
4158 }
4159
4160 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4161
4162 static void
4163 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4164 struct frame_info *frame, int regnum, int all)
4165 {
4166 if (regnum != -1) /* do one specified register */
4167 {
4168 gdb_assert (regnum >= NUM_REGS);
4169 if (*(REGISTER_NAME (regnum)) == '\0')
4170 error (_("Not a valid register for the current processor type"));
4171
4172 mips_print_register (file, frame, regnum, 0);
4173 fprintf_filtered (file, "\n");
4174 }
4175 else
4176 /* do all (or most) registers */
4177 {
4178 regnum = NUM_REGS;
4179 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
4180 {
4181 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4182 TYPE_CODE_FLT)
4183 {
4184 if (all) /* true for "INFO ALL-REGISTERS" command */
4185 regnum = print_fp_register_row (file, frame, regnum);
4186 else
4187 regnum += MIPS_NUMREGS; /* skip floating point regs */
4188 }
4189 else
4190 regnum = print_gp_register_row (file, frame, regnum);
4191 }
4192 }
4193 }
4194
4195 /* Is this a branch with a delay slot? */
4196
4197 static int
4198 is_delayed (unsigned long insn)
4199 {
4200 int i;
4201 for (i = 0; i < NUMOPCODES; ++i)
4202 if (mips_opcodes[i].pinfo != INSN_MACRO
4203 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4204 break;
4205 return (i < NUMOPCODES
4206 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4207 | INSN_COND_BRANCH_DELAY
4208 | INSN_COND_BRANCH_LIKELY)));
4209 }
4210
4211 int
4212 mips_single_step_through_delay (struct gdbarch *gdbarch,
4213 struct frame_info *frame)
4214 {
4215 CORE_ADDR pc = get_frame_pc (frame);
4216 gdb_byte buf[MIPS_INSN32_SIZE];
4217
4218 /* There is no branch delay slot on MIPS16. */
4219 if (mips_pc_is_mips16 (pc))
4220 return 0;
4221
4222 if (!breakpoint_here_p (pc + 4))
4223 return 0;
4224
4225 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4226 /* If error reading memory, guess that it is not a delayed
4227 branch. */
4228 return 0;
4229 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
4230 }
4231
4232 /* To skip prologues, I use this predicate. Returns either PC itself
4233 if the code at PC does not look like a function prologue; otherwise
4234 returns an address that (if we're lucky) follows the prologue. If
4235 LENIENT, then we must skip everything which is involved in setting
4236 up the frame (it's OK to skip more, just so long as we don't skip
4237 anything which might clobber the registers which are being saved.
4238 We must skip more in the case where part of the prologue is in the
4239 delay slot of a non-prologue instruction). */
4240
4241 static CORE_ADDR
4242 mips_skip_prologue (CORE_ADDR pc)
4243 {
4244 CORE_ADDR limit_pc;
4245 CORE_ADDR func_addr;
4246
4247 /* See if we can determine the end of the prologue via the symbol table.
4248 If so, then return either PC, or the PC after the prologue, whichever
4249 is greater. */
4250 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4251 {
4252 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4253 if (post_prologue_pc != 0)
4254 return max (pc, post_prologue_pc);
4255 }
4256
4257 /* Can't determine prologue from the symbol table, need to examine
4258 instructions. */
4259
4260 /* Find an upper limit on the function prologue using the debug
4261 information. If the debug information could not be used to provide
4262 that bound, then use an arbitrary large number as the upper bound. */
4263 limit_pc = skip_prologue_using_sal (pc);
4264 if (limit_pc == 0)
4265 limit_pc = pc + 100; /* Magic. */
4266
4267 if (mips_pc_is_mips16 (pc))
4268 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
4269 else
4270 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
4271 }
4272
4273 /* Root of all "set mips "/"show mips " commands. This will eventually be
4274 used for all MIPS-specific commands. */
4275
4276 static void
4277 show_mips_command (char *args, int from_tty)
4278 {
4279 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4280 }
4281
4282 static void
4283 set_mips_command (char *args, int from_tty)
4284 {
4285 printf_unfiltered
4286 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4287 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4288 }
4289
4290 /* Commands to show/set the MIPS FPU type. */
4291
4292 static void
4293 show_mipsfpu_command (char *args, int from_tty)
4294 {
4295 char *fpu;
4296 switch (MIPS_FPU_TYPE)
4297 {
4298 case MIPS_FPU_SINGLE:
4299 fpu = "single-precision";
4300 break;
4301 case MIPS_FPU_DOUBLE:
4302 fpu = "double-precision";
4303 break;
4304 case MIPS_FPU_NONE:
4305 fpu = "absent (none)";
4306 break;
4307 default:
4308 internal_error (__FILE__, __LINE__, _("bad switch"));
4309 }
4310 if (mips_fpu_type_auto)
4311 printf_unfiltered
4312 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4313 fpu);
4314 else
4315 printf_unfiltered
4316 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4317 }
4318
4319
4320 static void
4321 set_mipsfpu_command (char *args, int from_tty)
4322 {
4323 printf_unfiltered
4324 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4325 show_mipsfpu_command (args, from_tty);
4326 }
4327
4328 static void
4329 set_mipsfpu_single_command (char *args, int from_tty)
4330 {
4331 struct gdbarch_info info;
4332 gdbarch_info_init (&info);
4333 mips_fpu_type = MIPS_FPU_SINGLE;
4334 mips_fpu_type_auto = 0;
4335 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4336 instead of relying on globals. Doing that would let generic code
4337 handle the search for this specific architecture. */
4338 if (!gdbarch_update_p (info))
4339 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4340 }
4341
4342 static void
4343 set_mipsfpu_double_command (char *args, int from_tty)
4344 {
4345 struct gdbarch_info info;
4346 gdbarch_info_init (&info);
4347 mips_fpu_type = MIPS_FPU_DOUBLE;
4348 mips_fpu_type_auto = 0;
4349 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4350 instead of relying on globals. Doing that would let generic code
4351 handle the search for this specific architecture. */
4352 if (!gdbarch_update_p (info))
4353 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4354 }
4355
4356 static void
4357 set_mipsfpu_none_command (char *args, int from_tty)
4358 {
4359 struct gdbarch_info info;
4360 gdbarch_info_init (&info);
4361 mips_fpu_type = MIPS_FPU_NONE;
4362 mips_fpu_type_auto = 0;
4363 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4364 instead of relying on globals. Doing that would let generic code
4365 handle the search for this specific architecture. */
4366 if (!gdbarch_update_p (info))
4367 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4368 }
4369
4370 static void
4371 set_mipsfpu_auto_command (char *args, int from_tty)
4372 {
4373 mips_fpu_type_auto = 1;
4374 }
4375
4376 /* Attempt to identify the particular processor model by reading the
4377 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4378 the relevant processor still exists (it dates back to '94) and
4379 secondly this is not the way to do this. The processor type should
4380 be set by forcing an architecture change. */
4381
4382 void
4383 deprecated_mips_set_processor_regs_hack (void)
4384 {
4385 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4386 CORE_ADDR prid;
4387
4388 prid = read_register (MIPS_PRID_REGNUM);
4389
4390 if ((prid & ~0xf) == 0x700)
4391 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4392 }
4393
4394 /* Just like reinit_frame_cache, but with the right arguments to be
4395 callable as an sfunc. */
4396
4397 static void
4398 reinit_frame_cache_sfunc (char *args, int from_tty,
4399 struct cmd_list_element *c)
4400 {
4401 reinit_frame_cache ();
4402 }
4403
4404 static int
4405 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4406 {
4407 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4408
4409 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4410 disassembler needs to be able to locally determine the ISA, and
4411 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4412 work. */
4413 if (mips_pc_is_mips16 (memaddr))
4414 info->mach = bfd_mach_mips16;
4415
4416 /* Round down the instruction address to the appropriate boundary. */
4417 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4418
4419 /* Set the disassembler options. */
4420 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
4421 {
4422 /* Set up the disassembler info, so that we get the right
4423 register names from libopcodes. */
4424 if (tdep->mips_abi == MIPS_ABI_N32)
4425 info->disassembler_options = "gpr-names=n32";
4426 else
4427 info->disassembler_options = "gpr-names=64";
4428 info->flavour = bfd_target_elf_flavour;
4429 }
4430 else
4431 /* This string is not recognized explicitly by the disassembler,
4432 but it tells the disassembler to not try to guess the ABI from
4433 the bfd elf headers, such that, if the user overrides the ABI
4434 of a program linked as NewABI, the disassembly will follow the
4435 register naming conventions specified by the user. */
4436 info->disassembler_options = "gpr-names=32";
4437
4438 /* Call the appropriate disassembler based on the target endian-ness. */
4439 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4440 return print_insn_big_mips (memaddr, info);
4441 else
4442 return print_insn_little_mips (memaddr, info);
4443 }
4444
4445 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
4446 counter value to determine whether a 16- or 32-bit breakpoint should be
4447 used. It returns a pointer to a string of bytes that encode a breakpoint
4448 instruction, stores the length of the string to *lenptr, and adjusts pc
4449 (if necessary) to point to the actual memory location where the
4450 breakpoint should be inserted. */
4451
4452 static const gdb_byte *
4453 mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
4454 {
4455 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4456 {
4457 if (mips_pc_is_mips16 (*pcptr))
4458 {
4459 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4460 *pcptr = unmake_mips16_addr (*pcptr);
4461 *lenptr = sizeof (mips16_big_breakpoint);
4462 return mips16_big_breakpoint;
4463 }
4464 else
4465 {
4466 /* The IDT board uses an unusual breakpoint value, and
4467 sometimes gets confused when it sees the usual MIPS
4468 breakpoint instruction. */
4469 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4470 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4471 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
4472
4473 *lenptr = sizeof (big_breakpoint);
4474
4475 if (strcmp (target_shortname, "mips") == 0)
4476 return idt_big_breakpoint;
4477 else if (strcmp (target_shortname, "ddb") == 0
4478 || strcmp (target_shortname, "pmon") == 0
4479 || strcmp (target_shortname, "lsi") == 0)
4480 return pmon_big_breakpoint;
4481 else
4482 return big_breakpoint;
4483 }
4484 }
4485 else
4486 {
4487 if (mips_pc_is_mips16 (*pcptr))
4488 {
4489 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4490 *pcptr = unmake_mips16_addr (*pcptr);
4491 *lenptr = sizeof (mips16_little_breakpoint);
4492 return mips16_little_breakpoint;
4493 }
4494 else
4495 {
4496 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4497 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4498 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
4499
4500 *lenptr = sizeof (little_breakpoint);
4501
4502 if (strcmp (target_shortname, "mips") == 0)
4503 return idt_little_breakpoint;
4504 else if (strcmp (target_shortname, "ddb") == 0
4505 || strcmp (target_shortname, "pmon") == 0
4506 || strcmp (target_shortname, "lsi") == 0)
4507 return pmon_little_breakpoint;
4508 else
4509 return little_breakpoint;
4510 }
4511 }
4512 }
4513
4514 /* If PC is in a mips16 call or return stub, return the address of the target
4515 PC, which is either the callee or the caller. There are several
4516 cases which must be handled:
4517
4518 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4519 target PC is in $31 ($ra).
4520 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4521 and the target PC is in $2.
4522 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4523 before the jal instruction, this is effectively a call stub
4524 and the the target PC is in $2. Otherwise this is effectively
4525 a return stub and the target PC is in $18.
4526
4527 See the source code for the stubs in gcc/config/mips/mips16.S for
4528 gory details. */
4529
4530 static CORE_ADDR
4531 mips_skip_trampoline_code (CORE_ADDR pc)
4532 {
4533 char *name;
4534 CORE_ADDR start_addr;
4535
4536 /* Find the starting address and name of the function containing the PC. */
4537 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4538 return 0;
4539
4540 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4541 target PC is in $31 ($ra). */
4542 if (strcmp (name, "__mips16_ret_sf") == 0
4543 || strcmp (name, "__mips16_ret_df") == 0)
4544 return read_signed_register (MIPS_RA_REGNUM);
4545
4546 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4547 {
4548 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4549 and the target PC is in $2. */
4550 if (name[19] >= '0' && name[19] <= '9')
4551 return read_signed_register (2);
4552
4553 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4554 before the jal instruction, this is effectively a call stub
4555 and the the target PC is in $2. Otherwise this is effectively
4556 a return stub and the target PC is in $18. */
4557 else if (name[19] == 's' || name[19] == 'd')
4558 {
4559 if (pc == start_addr)
4560 {
4561 /* Check if the target of the stub is a compiler-generated
4562 stub. Such a stub for a function bar might have a name
4563 like __fn_stub_bar, and might look like this:
4564 mfc1 $4,$f13
4565 mfc1 $5,$f12
4566 mfc1 $6,$f15
4567 mfc1 $7,$f14
4568 la $1,bar (becomes a lui/addiu pair)
4569 jr $1
4570 So scan down to the lui/addi and extract the target
4571 address from those two instructions. */
4572
4573 CORE_ADDR target_pc = read_signed_register (2);
4574 ULONGEST inst;
4575 int i;
4576
4577 /* See if the name of the target function is __fn_stub_*. */
4578 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4579 0)
4580 return target_pc;
4581 if (strncmp (name, "__fn_stub_", 10) != 0
4582 && strcmp (name, "etext") != 0
4583 && strcmp (name, "_etext") != 0)
4584 return target_pc;
4585
4586 /* Scan through this _fn_stub_ code for the lui/addiu pair.
4587 The limit on the search is arbitrarily set to 20
4588 instructions. FIXME. */
4589 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
4590 {
4591 inst = mips_fetch_instruction (target_pc);
4592 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4593 pc = (inst << 16) & 0xffff0000; /* high word */
4594 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4595 return pc | (inst & 0xffff); /* low word */
4596 }
4597
4598 /* Couldn't find the lui/addui pair, so return stub address. */
4599 return target_pc;
4600 }
4601 else
4602 /* This is the 'return' part of a call stub. The return
4603 address is in $r18. */
4604 return read_signed_register (18);
4605 }
4606 }
4607 return 0; /* not a stub */
4608 }
4609
4610 /* Convert a dbx stab register number (from `r' declaration) to a GDB
4611 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4612
4613 static int
4614 mips_stab_reg_to_regnum (int num)
4615 {
4616 int regnum;
4617 if (num >= 0 && num < 32)
4618 regnum = num;
4619 else if (num >= 38 && num < 70)
4620 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
4621 else if (num == 70)
4622 regnum = mips_regnum (current_gdbarch)->hi;
4623 else if (num == 71)
4624 regnum = mips_regnum (current_gdbarch)->lo;
4625 else
4626 /* This will hopefully (eventually) provoke a warning. Should
4627 we be calling complaint() here? */
4628 return NUM_REGS + NUM_PSEUDO_REGS;
4629 return NUM_REGS + regnum;
4630 }
4631
4632
4633 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4634 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4635
4636 static int
4637 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
4638 {
4639 int regnum;
4640 if (num >= 0 && num < 32)
4641 regnum = num;
4642 else if (num >= 32 && num < 64)
4643 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
4644 else if (num == 64)
4645 regnum = mips_regnum (current_gdbarch)->hi;
4646 else if (num == 65)
4647 regnum = mips_regnum (current_gdbarch)->lo;
4648 else
4649 /* This will hopefully (eventually) provoke a warning. Should we
4650 be calling complaint() here? */
4651 return NUM_REGS + NUM_PSEUDO_REGS;
4652 return NUM_REGS + regnum;
4653 }
4654
4655 static int
4656 mips_register_sim_regno (int regnum)
4657 {
4658 /* Only makes sense to supply raw registers. */
4659 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
4660 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4661 decide if it is valid. Should instead define a standard sim/gdb
4662 register numbering scheme. */
4663 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
4664 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
4665 return regnum;
4666 else
4667 return LEGACY_SIM_REGNO_IGNORE;
4668 }
4669
4670
4671 /* Convert an integer into an address. Extracting the value signed
4672 guarantees a correctly sign extended address. */
4673
4674 static CORE_ADDR
4675 mips_integer_to_address (struct gdbarch *gdbarch,
4676 struct type *type, const gdb_byte *buf)
4677 {
4678 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
4679 }
4680
4681 static void
4682 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4683 {
4684 enum mips_abi *abip = (enum mips_abi *) obj;
4685 const char *name = bfd_get_section_name (abfd, sect);
4686
4687 if (*abip != MIPS_ABI_UNKNOWN)
4688 return;
4689
4690 if (strncmp (name, ".mdebug.", 8) != 0)
4691 return;
4692
4693 if (strcmp (name, ".mdebug.abi32") == 0)
4694 *abip = MIPS_ABI_O32;
4695 else if (strcmp (name, ".mdebug.abiN32") == 0)
4696 *abip = MIPS_ABI_N32;
4697 else if (strcmp (name, ".mdebug.abi64") == 0)
4698 *abip = MIPS_ABI_N64;
4699 else if (strcmp (name, ".mdebug.abiO64") == 0)
4700 *abip = MIPS_ABI_O64;
4701 else if (strcmp (name, ".mdebug.eabi32") == 0)
4702 *abip = MIPS_ABI_EABI32;
4703 else if (strcmp (name, ".mdebug.eabi64") == 0)
4704 *abip = MIPS_ABI_EABI64;
4705 else
4706 warning (_("unsupported ABI %s."), name + 8);
4707 }
4708
4709 static void
4710 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
4711 {
4712 int *lbp = (int *) obj;
4713 const char *name = bfd_get_section_name (abfd, sect);
4714
4715 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
4716 *lbp = 32;
4717 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
4718 *lbp = 64;
4719 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
4720 warning (_("unrecognized .gcc_compiled_longXX"));
4721 }
4722
4723 static enum mips_abi
4724 global_mips_abi (void)
4725 {
4726 int i;
4727
4728 for (i = 0; mips_abi_strings[i] != NULL; i++)
4729 if (mips_abi_strings[i] == mips_abi_string)
4730 return (enum mips_abi) i;
4731
4732 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
4733 }
4734
4735 static void
4736 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
4737 {
4738 static struct target_desc *tdesc_gp32, *tdesc_gp64;
4739
4740 if (tdesc_gp32 == NULL)
4741 {
4742 /* Create feature sets with the appropriate properties. The values
4743 are not important. */
4744
4745 tdesc_gp32 = allocate_target_description ();
4746 set_tdesc_property (tdesc_gp32, PROPERTY_GP32, "");
4747
4748 tdesc_gp64 = allocate_target_description ();
4749 set_tdesc_property (tdesc_gp64, PROPERTY_GP64, "");
4750 }
4751
4752 /* If the size matches the set of 32-bit or 64-bit integer registers,
4753 assume that's what we've got. */
4754 register_remote_g_packet_guess (gdbarch, 38 * 4, tdesc_gp32);
4755 register_remote_g_packet_guess (gdbarch, 38 * 8, tdesc_gp64);
4756
4757 /* If the size matches the full set of registers GDB traditionally
4758 knows about, including floating point, for either 32-bit or
4759 64-bit, assume that's what we've got. */
4760 register_remote_g_packet_guess (gdbarch, 90 * 4, tdesc_gp32);
4761 register_remote_g_packet_guess (gdbarch, 90 * 8, tdesc_gp64);
4762
4763 /* Otherwise we don't have a useful guess. */
4764 }
4765
4766 static struct gdbarch *
4767 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4768 {
4769 struct gdbarch *gdbarch;
4770 struct gdbarch_tdep *tdep;
4771 int elf_flags;
4772 enum mips_abi mips_abi, found_abi, wanted_abi;
4773 int num_regs;
4774 enum mips_fpu_type fpu_type;
4775
4776 /* First of all, extract the elf_flags, if available. */
4777 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4778 elf_flags = elf_elfheader (info.abfd)->e_flags;
4779 else if (arches != NULL)
4780 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
4781 else
4782 elf_flags = 0;
4783 if (gdbarch_debug)
4784 fprintf_unfiltered (gdb_stdlog,
4785 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
4786
4787 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
4788 switch ((elf_flags & EF_MIPS_ABI))
4789 {
4790 case E_MIPS_ABI_O32:
4791 found_abi = MIPS_ABI_O32;
4792 break;
4793 case E_MIPS_ABI_O64:
4794 found_abi = MIPS_ABI_O64;
4795 break;
4796 case E_MIPS_ABI_EABI32:
4797 found_abi = MIPS_ABI_EABI32;
4798 break;
4799 case E_MIPS_ABI_EABI64:
4800 found_abi = MIPS_ABI_EABI64;
4801 break;
4802 default:
4803 if ((elf_flags & EF_MIPS_ABI2))
4804 found_abi = MIPS_ABI_N32;
4805 else
4806 found_abi = MIPS_ABI_UNKNOWN;
4807 break;
4808 }
4809
4810 /* GCC creates a pseudo-section whose name describes the ABI. */
4811 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
4812 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
4813
4814 /* If we have no useful BFD information, use the ABI from the last
4815 MIPS architecture (if there is one). */
4816 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
4817 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
4818
4819 /* Try the architecture for any hint of the correct ABI. */
4820 if (found_abi == MIPS_ABI_UNKNOWN
4821 && info.bfd_arch_info != NULL
4822 && info.bfd_arch_info->arch == bfd_arch_mips)
4823 {
4824 switch (info.bfd_arch_info->mach)
4825 {
4826 case bfd_mach_mips3900:
4827 found_abi = MIPS_ABI_EABI32;
4828 break;
4829 case bfd_mach_mips4100:
4830 case bfd_mach_mips5000:
4831 found_abi = MIPS_ABI_EABI64;
4832 break;
4833 case bfd_mach_mips8000:
4834 case bfd_mach_mips10000:
4835 /* On Irix, ELF64 executables use the N64 ABI. The
4836 pseudo-sections which describe the ABI aren't present
4837 on IRIX. (Even for executables created by gcc.) */
4838 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4839 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4840 found_abi = MIPS_ABI_N64;
4841 else
4842 found_abi = MIPS_ABI_N32;
4843 break;
4844 }
4845 }
4846
4847 /* Default 64-bit objects to N64 instead of O32. */
4848 if (found_abi == MIPS_ABI_UNKNOWN
4849 && info.abfd != NULL
4850 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4851 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4852 found_abi = MIPS_ABI_N64;
4853
4854 if (gdbarch_debug)
4855 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
4856 found_abi);
4857
4858 /* What has the user specified from the command line? */
4859 wanted_abi = global_mips_abi ();
4860 if (gdbarch_debug)
4861 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
4862 wanted_abi);
4863
4864 /* Now that we have found what the ABI for this binary would be,
4865 check whether the user is overriding it. */
4866 if (wanted_abi != MIPS_ABI_UNKNOWN)
4867 mips_abi = wanted_abi;
4868 else if (found_abi != MIPS_ABI_UNKNOWN)
4869 mips_abi = found_abi;
4870 else
4871 mips_abi = MIPS_ABI_O32;
4872 if (gdbarch_debug)
4873 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
4874 mips_abi);
4875
4876 /* Also used when doing an architecture lookup. */
4877 if (gdbarch_debug)
4878 fprintf_unfiltered (gdb_stdlog,
4879 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
4880 mips64_transfers_32bit_regs_p);
4881
4882 /* Determine the MIPS FPU type. */
4883 if (!mips_fpu_type_auto)
4884 fpu_type = mips_fpu_type;
4885 else if (info.bfd_arch_info != NULL
4886 && info.bfd_arch_info->arch == bfd_arch_mips)
4887 switch (info.bfd_arch_info->mach)
4888 {
4889 case bfd_mach_mips3900:
4890 case bfd_mach_mips4100:
4891 case bfd_mach_mips4111:
4892 case bfd_mach_mips4120:
4893 fpu_type = MIPS_FPU_NONE;
4894 break;
4895 case bfd_mach_mips4650:
4896 fpu_type = MIPS_FPU_SINGLE;
4897 break;
4898 default:
4899 fpu_type = MIPS_FPU_DOUBLE;
4900 break;
4901 }
4902 else if (arches != NULL)
4903 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
4904 else
4905 fpu_type = MIPS_FPU_DOUBLE;
4906 if (gdbarch_debug)
4907 fprintf_unfiltered (gdb_stdlog,
4908 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
4909
4910 /* Check for blatant incompatibilities. */
4911
4912 /* If we have only 32-bit registers, then we can't debug a 64-bit
4913 ABI. */
4914 if (info.target_desc
4915 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
4916 && mips_abi != MIPS_ABI_EABI32
4917 && mips_abi != MIPS_ABI_O32)
4918 return NULL;
4919
4920 /* try to find a pre-existing architecture */
4921 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4922 arches != NULL;
4923 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4924 {
4925 /* MIPS needs to be pedantic about which ABI the object is
4926 using. */
4927 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
4928 continue;
4929 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
4930 continue;
4931 /* Need to be pedantic about which register virtual size is
4932 used. */
4933 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
4934 != mips64_transfers_32bit_regs_p)
4935 continue;
4936 /* Be pedantic about which FPU is selected. */
4937 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
4938 continue;
4939 return arches->gdbarch;
4940 }
4941
4942 /* Need a new architecture. Fill in a target specific vector. */
4943 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4944 gdbarch = gdbarch_alloc (&info, tdep);
4945 tdep->elf_flags = elf_flags;
4946 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
4947 tdep->found_abi = found_abi;
4948 tdep->mips_abi = mips_abi;
4949 tdep->mips_fpu_type = fpu_type;
4950 tdep->register_size_valid_p = 0;
4951 tdep->register_size = 0;
4952
4953 if (info.target_desc)
4954 {
4955 /* Some useful properties can be inferred from the target. */
4956 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
4957 {
4958 tdep->register_size_valid_p = 1;
4959 tdep->register_size = 4;
4960 }
4961 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
4962 {
4963 tdep->register_size_valid_p = 1;
4964 tdep->register_size = 8;
4965 }
4966 }
4967
4968 /* Initially set everything according to the default ABI/ISA. */
4969 set_gdbarch_short_bit (gdbarch, 16);
4970 set_gdbarch_int_bit (gdbarch, 32);
4971 set_gdbarch_float_bit (gdbarch, 32);
4972 set_gdbarch_double_bit (gdbarch, 64);
4973 set_gdbarch_long_double_bit (gdbarch, 64);
4974 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
4975 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
4976 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
4977
4978 set_gdbarch_elf_make_msymbol_special (gdbarch,
4979 mips_elf_make_msymbol_special);
4980
4981 /* Fill in the OS dependant register numbers and names. */
4982 {
4983 const char **reg_names;
4984 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
4985 struct mips_regnum);
4986 if (info.osabi == GDB_OSABI_IRIX)
4987 {
4988 regnum->fp0 = 32;
4989 regnum->pc = 64;
4990 regnum->cause = 65;
4991 regnum->badvaddr = 66;
4992 regnum->hi = 67;
4993 regnum->lo = 68;
4994 regnum->fp_control_status = 69;
4995 regnum->fp_implementation_revision = 70;
4996 num_regs = 71;
4997 reg_names = mips_irix_reg_names;
4998 }
4999 else
5000 {
5001 regnum->lo = MIPS_EMBED_LO_REGNUM;
5002 regnum->hi = MIPS_EMBED_HI_REGNUM;
5003 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5004 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5005 regnum->pc = MIPS_EMBED_PC_REGNUM;
5006 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5007 regnum->fp_control_status = 70;
5008 regnum->fp_implementation_revision = 71;
5009 num_regs = 90;
5010 if (info.bfd_arch_info != NULL
5011 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5012 reg_names = mips_tx39_reg_names;
5013 else
5014 reg_names = mips_generic_reg_names;
5015 }
5016 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
5017 replaced by read_pc? */
5018 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5019 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5020 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5021 set_gdbarch_num_regs (gdbarch, num_regs);
5022 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5023 set_gdbarch_register_name (gdbarch, mips_register_name);
5024 tdep->mips_processor_reg_names = reg_names;
5025 tdep->regnum = regnum;
5026 }
5027
5028 switch (mips_abi)
5029 {
5030 case MIPS_ABI_O32:
5031 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5032 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
5033 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5034 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5035 tdep->default_mask_address_p = 0;
5036 set_gdbarch_long_bit (gdbarch, 32);
5037 set_gdbarch_ptr_bit (gdbarch, 32);
5038 set_gdbarch_long_long_bit (gdbarch, 64);
5039 break;
5040 case MIPS_ABI_O64:
5041 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5042 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
5043 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5044 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5045 tdep->default_mask_address_p = 0;
5046 set_gdbarch_long_bit (gdbarch, 32);
5047 set_gdbarch_ptr_bit (gdbarch, 32);
5048 set_gdbarch_long_long_bit (gdbarch, 64);
5049 break;
5050 case MIPS_ABI_EABI32:
5051 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5052 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5053 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5054 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5055 tdep->default_mask_address_p = 0;
5056 set_gdbarch_long_bit (gdbarch, 32);
5057 set_gdbarch_ptr_bit (gdbarch, 32);
5058 set_gdbarch_long_long_bit (gdbarch, 64);
5059 break;
5060 case MIPS_ABI_EABI64:
5061 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5062 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5063 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5064 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5065 tdep->default_mask_address_p = 0;
5066 set_gdbarch_long_bit (gdbarch, 64);
5067 set_gdbarch_ptr_bit (gdbarch, 64);
5068 set_gdbarch_long_long_bit (gdbarch, 64);
5069 break;
5070 case MIPS_ABI_N32:
5071 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5072 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5073 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5074 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5075 tdep->default_mask_address_p = 0;
5076 set_gdbarch_long_bit (gdbarch, 32);
5077 set_gdbarch_ptr_bit (gdbarch, 32);
5078 set_gdbarch_long_long_bit (gdbarch, 64);
5079 set_gdbarch_long_double_bit (gdbarch, 128);
5080 set_gdbarch_long_double_format (gdbarch,
5081 &floatformat_n32n64_long_double_big);
5082 break;
5083 case MIPS_ABI_N64:
5084 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5085 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5086 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5087 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5088 tdep->default_mask_address_p = 0;
5089 set_gdbarch_long_bit (gdbarch, 64);
5090 set_gdbarch_ptr_bit (gdbarch, 64);
5091 set_gdbarch_long_long_bit (gdbarch, 64);
5092 set_gdbarch_long_double_bit (gdbarch, 128);
5093 set_gdbarch_long_double_format (gdbarch,
5094 &floatformat_n32n64_long_double_big);
5095 break;
5096 default:
5097 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5098 }
5099
5100 /* GCC creates a pseudo-section whose name specifies the size of
5101 longs, since -mlong32 or -mlong64 may be used independent of
5102 other options. How those options affect pointer sizes is ABI and
5103 architecture dependent, so use them to override the default sizes
5104 set by the ABI. This table shows the relationship between ABI,
5105 -mlongXX, and size of pointers:
5106
5107 ABI -mlongXX ptr bits
5108 --- -------- --------
5109 o32 32 32
5110 o32 64 32
5111 n32 32 32
5112 n32 64 64
5113 o64 32 32
5114 o64 64 64
5115 n64 32 32
5116 n64 64 64
5117 eabi32 32 32
5118 eabi32 64 32
5119 eabi64 32 32
5120 eabi64 64 64
5121
5122 Note that for o32 and eabi32, pointers are always 32 bits
5123 regardless of any -mlongXX option. For all others, pointers and
5124 longs are the same, as set by -mlongXX or set by defaults.
5125 */
5126
5127 if (info.abfd != NULL)
5128 {
5129 int long_bit = 0;
5130
5131 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5132 if (long_bit)
5133 {
5134 set_gdbarch_long_bit (gdbarch, long_bit);
5135 switch (mips_abi)
5136 {
5137 case MIPS_ABI_O32:
5138 case MIPS_ABI_EABI32:
5139 break;
5140 case MIPS_ABI_N32:
5141 case MIPS_ABI_O64:
5142 case MIPS_ABI_N64:
5143 case MIPS_ABI_EABI64:
5144 set_gdbarch_ptr_bit (gdbarch, long_bit);
5145 break;
5146 default:
5147 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5148 }
5149 }
5150 }
5151
5152 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5153 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5154 comment:
5155
5156 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5157 flag in object files because to do so would make it impossible to
5158 link with libraries compiled without "-gp32". This is
5159 unnecessarily restrictive.
5160
5161 We could solve this problem by adding "-gp32" multilibs to gcc,
5162 but to set this flag before gcc is built with such multilibs will
5163 break too many systems.''
5164
5165 But even more unhelpfully, the default linker output target for
5166 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5167 for 64-bit programs - you need to change the ABI to change this,
5168 and not all gcc targets support that currently. Therefore using
5169 this flag to detect 32-bit mode would do the wrong thing given
5170 the current gcc - it would make GDB treat these 64-bit programs
5171 as 32-bit programs by default. */
5172
5173 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5174 set_gdbarch_write_pc (gdbarch, mips_write_pc);
5175 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5176
5177 /* Add/remove bits from an address. The MIPS needs be careful to
5178 ensure that all 32 bit addresses are sign extended to 64 bits. */
5179 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5180
5181 /* Unwind the frame. */
5182 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
5183 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
5184
5185 /* Map debug register numbers onto internal register numbers. */
5186 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5187 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5188 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5189 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5190 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5191 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5192 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5193 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5194
5195 /* MIPS version of CALL_DUMMY */
5196
5197 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5198 replaced by a command, and all targets will default to on stack
5199 (regardless of the stack's execute status). */
5200 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5201 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5202
5203 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5204 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5205 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5206
5207 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5208 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5209
5210 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5211
5212 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5213 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5214 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5215
5216 set_gdbarch_register_type (gdbarch, mips_register_type);
5217
5218 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5219
5220 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5221
5222 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5223 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5224 need to all be folded into the target vector. Since they are
5225 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5226 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5227 is sitting on? */
5228 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5229
5230 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
5231
5232 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5233
5234 /* Virtual tables. */
5235 set_gdbarch_vbit_in_delta (gdbarch, 1);
5236
5237 mips_register_g_packet_guesses (gdbarch);
5238
5239 /* Hook in OS ABI-specific overrides, if they have been registered. */
5240 gdbarch_init_osabi (info, gdbarch);
5241
5242 /* Unwind the frame. */
5243 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
5244 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5245 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
5246 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
5247 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5248 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5249
5250 return gdbarch;
5251 }
5252
5253 static void
5254 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5255 {
5256 struct gdbarch_info info;
5257
5258 /* Force the architecture to update, and (if it's a MIPS architecture)
5259 mips_gdbarch_init will take care of the rest. */
5260 gdbarch_info_init (&info);
5261 gdbarch_update_p (info);
5262 }
5263
5264 /* Print out which MIPS ABI is in use. */
5265
5266 static void
5267 show_mips_abi (struct ui_file *file,
5268 int from_tty,
5269 struct cmd_list_element *ignored_cmd,
5270 const char *ignored_value)
5271 {
5272 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
5273 fprintf_filtered
5274 (file,
5275 "The MIPS ABI is unknown because the current architecture "
5276 "is not MIPS.\n");
5277 else
5278 {
5279 enum mips_abi global_abi = global_mips_abi ();
5280 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5281 const char *actual_abi_str = mips_abi_strings[actual_abi];
5282
5283 if (global_abi == MIPS_ABI_UNKNOWN)
5284 fprintf_filtered
5285 (file,
5286 "The MIPS ABI is set automatically (currently \"%s\").\n",
5287 actual_abi_str);
5288 else if (global_abi == actual_abi)
5289 fprintf_filtered
5290 (file,
5291 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5292 actual_abi_str);
5293 else
5294 {
5295 /* Probably shouldn't happen... */
5296 fprintf_filtered
5297 (file,
5298 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5299 actual_abi_str, mips_abi_strings[global_abi]);
5300 }
5301 }
5302 }
5303
5304 static void
5305 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5306 {
5307 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5308 if (tdep != NULL)
5309 {
5310 int ef_mips_arch;
5311 int ef_mips_32bitmode;
5312 /* Determine the ISA. */
5313 switch (tdep->elf_flags & EF_MIPS_ARCH)
5314 {
5315 case E_MIPS_ARCH_1:
5316 ef_mips_arch = 1;
5317 break;
5318 case E_MIPS_ARCH_2:
5319 ef_mips_arch = 2;
5320 break;
5321 case E_MIPS_ARCH_3:
5322 ef_mips_arch = 3;
5323 break;
5324 case E_MIPS_ARCH_4:
5325 ef_mips_arch = 4;
5326 break;
5327 default:
5328 ef_mips_arch = 0;
5329 break;
5330 }
5331 /* Determine the size of a pointer. */
5332 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
5333 fprintf_unfiltered (file,
5334 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5335 tdep->elf_flags);
5336 fprintf_unfiltered (file,
5337 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5338 ef_mips_32bitmode);
5339 fprintf_unfiltered (file,
5340 "mips_dump_tdep: ef_mips_arch = %d\n",
5341 ef_mips_arch);
5342 fprintf_unfiltered (file,
5343 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5344 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
5345 fprintf_unfiltered (file,
5346 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5347 mips_mask_address_p (tdep),
5348 tdep->default_mask_address_p);
5349 }
5350 fprintf_unfiltered (file,
5351 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5352 MIPS_DEFAULT_FPU_TYPE,
5353 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5354 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5355 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5356 : "???"));
5357 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
5358 fprintf_unfiltered (file,
5359 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5360 MIPS_FPU_TYPE,
5361 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5362 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5363 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5364 : "???"));
5365 fprintf_unfiltered (file,
5366 "mips_dump_tdep: mips_stack_argsize() = %d\n",
5367 mips_stack_argsize (current_gdbarch));
5368 }
5369
5370 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
5371
5372 void
5373 _initialize_mips_tdep (void)
5374 {
5375 static struct cmd_list_element *mipsfpulist = NULL;
5376 struct cmd_list_element *c;
5377
5378 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
5379 if (MIPS_ABI_LAST + 1
5380 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5381 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
5382
5383 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
5384
5385 mips_pdr_data = register_objfile_data ();
5386
5387 /* Add root prefix command for all "set mips"/"show mips" commands */
5388 add_prefix_cmd ("mips", no_class, set_mips_command,
5389 _("Various MIPS specific commands."),
5390 &setmipscmdlist, "set mips ", 0, &setlist);
5391
5392 add_prefix_cmd ("mips", no_class, show_mips_command,
5393 _("Various MIPS specific commands."),
5394 &showmipscmdlist, "show mips ", 0, &showlist);
5395
5396 /* Allow the user to override the saved register size. */
5397 add_setshow_enum_cmd ("saved-gpreg-size", class_obscure,
5398 size_enums, &mips_abi_regsize_string, _("\
5399 Set size of general purpose registers saved on the stack."), _("\
5400 Show size of general purpose registers saved on the stack."), _("\
5401 This option can be set to one of:\n\
5402 32 - Force GDB to treat saved GP registers as 32-bit\n\
5403 64 - Force GDB to treat saved GP registers as 64-bit\n\
5404 auto - Allow GDB to use the target's default setting or autodetect the\n\
5405 saved GP register size from information contained in the\n\
5406 executable (default)."),
5407 NULL,
5408 NULL, /* FIXME: i18n: Size of general purpose registers saved on the stack is %s. */
5409 &setmipscmdlist, &showmipscmdlist);
5410
5411 /* Allow the user to override the argument stack size. */
5412 add_setshow_enum_cmd ("stack-arg-size", class_obscure,
5413 size_enums, &mips_stack_argsize_string, _("\
5414 Set the amount of stack space reserved for each argument."), _("\
5415 Show the amount of stack space reserved for each argument."), _("\
5416 This option can be set to one of:\n\
5417 32 - Force GDB to allocate 32-bit chunks per argument\n\
5418 64 - Force GDB to allocate 64-bit chunks per argument\n\
5419 auto - Allow GDB to determine the correct setting from the current\n\
5420 target and executable (default)"),
5421 NULL,
5422 NULL, /* FIXME: i18n: The amount of stack space reserved for each argument is %s. */
5423 &setmipscmdlist, &showmipscmdlist);
5424
5425 /* Allow the user to override the ABI. */
5426 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5427 &mips_abi_string, _("\
5428 Set the MIPS ABI used by this program."), _("\
5429 Show the MIPS ABI used by this program."), _("\
5430 This option can be set to one of:\n\
5431 auto - the default ABI associated with the current binary\n\
5432 o32\n\
5433 o64\n\
5434 n32\n\
5435 n64\n\
5436 eabi32\n\
5437 eabi64"),
5438 mips_abi_update,
5439 show_mips_abi,
5440 &setmipscmdlist, &showmipscmdlist);
5441
5442 /* Let the user turn off floating point and set the fence post for
5443 heuristic_proc_start. */
5444
5445 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5446 _("Set use of MIPS floating-point coprocessor."),
5447 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5448 add_cmd ("single", class_support, set_mipsfpu_single_command,
5449 _("Select single-precision MIPS floating-point coprocessor."),
5450 &mipsfpulist);
5451 add_cmd ("double", class_support, set_mipsfpu_double_command,
5452 _("Select double-precision MIPS floating-point coprocessor."),
5453 &mipsfpulist);
5454 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5455 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5456 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5457 add_cmd ("none", class_support, set_mipsfpu_none_command,
5458 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
5459 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5460 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5461 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5462 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5463 _("Select MIPS floating-point coprocessor automatically."),
5464 &mipsfpulist);
5465 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5466 _("Show current use of MIPS floating-point coprocessor target."),
5467 &showlist);
5468
5469 /* We really would like to have both "0" and "unlimited" work, but
5470 command.c doesn't deal with that. So make it a var_zinteger
5471 because the user can always use "999999" or some such for unlimited. */
5472 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
5473 &heuristic_fence_post, _("\
5474 Set the distance searched for the start of a function."), _("\
5475 Show the distance searched for the start of a function."), _("\
5476 If you are debugging a stripped executable, GDB needs to search through the\n\
5477 program for the start of a function. This command sets the distance of the\n\
5478 search. The only need to set it is when debugging a stripped executable."),
5479 reinit_frame_cache_sfunc,
5480 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
5481 &setlist, &showlist);
5482
5483 /* Allow the user to control whether the upper bits of 64-bit
5484 addresses should be zeroed. */
5485 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5486 &mask_address_var, _("\
5487 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5488 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
5489 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5490 allow GDB to determine the correct value."),
5491 NULL, show_mask_address,
5492 &setmipscmdlist, &showmipscmdlist);
5493
5494 /* Allow the user to control the size of 32 bit registers within the
5495 raw remote packet. */
5496 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
5497 &mips64_transfers_32bit_regs_p, _("\
5498 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5499 _("\
5500 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5501 _("\
5502 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5503 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5504 64 bits for others. Use \"off\" to disable compatibility mode"),
5505 set_mips64_transfers_32bit_regs,
5506 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
5507 &setlist, &showlist);
5508
5509 /* Debug this files internals. */
5510 add_setshow_zinteger_cmd ("mips", class_maintenance,
5511 &mips_debug, _("\
5512 Set mips debugging."), _("\
5513 Show mips debugging."), _("\
5514 When non-zero, mips specific debugging is enabled."),
5515 NULL,
5516 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
5517 &setdebuglist, &showdebuglist);
5518 }