]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-tdep.c
Remove unused variables
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
4
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "value.h"
28 #include "gdbcmd.h"
29 #include "language.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbtypes.h"
34 #include "target.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "osabi.h"
38 #include "mips-tdep.h"
39 #include "block.h"
40 #include "reggroups.h"
41 #include "opcode/mips.h"
42 #include "elf/mips.h"
43 #include "elf-bfd.h"
44 #include "symcat.h"
45 #include "sim-regno.h"
46 #include "dis-asm.h"
47 #include "frame-unwind.h"
48 #include "frame-base.h"
49 #include "trad-frame.h"
50 #include "infcall.h"
51 #include "floatformat.h"
52 #include "remote.h"
53 #include "target-descriptions.h"
54 #include "dwarf2-frame.h"
55 #include "user-regs.h"
56 #include "valprint.h"
57 #include "ax.h"
58
59 static const struct objfile_data *mips_pdr_data;
60
61 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
62
63 static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
64 ULONGEST inst);
65 static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
66 static int mips16_instruction_has_delay_slot (unsigned short inst,
67 int mustbe32);
68
69 static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
70 CORE_ADDR addr);
71 static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
72 CORE_ADDR addr, int mustbe32);
73 static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
74 CORE_ADDR addr, int mustbe32);
75
76 static void mips_print_float_info (struct gdbarch *, struct ui_file *,
77 struct frame_info *, const char *);
78
79 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
80 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
81 #define ST0_FR (1 << 26)
82
83 /* The sizes of floating point registers. */
84
85 enum
86 {
87 MIPS_FPU_SINGLE_REGSIZE = 4,
88 MIPS_FPU_DOUBLE_REGSIZE = 8
89 };
90
91 enum
92 {
93 MIPS32_REGSIZE = 4,
94 MIPS64_REGSIZE = 8
95 };
96
97 static const char *mips_abi_string;
98
99 static const char *const mips_abi_strings[] = {
100 "auto",
101 "n32",
102 "o32",
103 "n64",
104 "o64",
105 "eabi32",
106 "eabi64",
107 NULL
108 };
109
110 /* For backwards compatibility we default to MIPS16. This flag is
111 overridden as soon as unambiguous ELF file flags tell us the
112 compressed ISA encoding used. */
113 static const char mips_compression_mips16[] = "mips16";
114 static const char mips_compression_micromips[] = "micromips";
115 static const char *const mips_compression_strings[] =
116 {
117 mips_compression_mips16,
118 mips_compression_micromips,
119 NULL
120 };
121
122 static const char *mips_compression_string = mips_compression_mips16;
123
124 /* The standard register names, and all the valid aliases for them. */
125 struct register_alias
126 {
127 const char *name;
128 int regnum;
129 };
130
131 /* Aliases for o32 and most other ABIs. */
132 const struct register_alias mips_o32_aliases[] = {
133 { "ta0", 12 },
134 { "ta1", 13 },
135 { "ta2", 14 },
136 { "ta3", 15 }
137 };
138
139 /* Aliases for n32 and n64. */
140 const struct register_alias mips_n32_n64_aliases[] = {
141 { "ta0", 8 },
142 { "ta1", 9 },
143 { "ta2", 10 },
144 { "ta3", 11 }
145 };
146
147 /* Aliases for ABI-independent registers. */
148 const struct register_alias mips_register_aliases[] = {
149 /* The architecture manuals specify these ABI-independent names for
150 the GPRs. */
151 #define R(n) { "r" #n, n }
152 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
153 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
154 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
155 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
156 #undef R
157
158 /* k0 and k1 are sometimes called these instead (for "kernel
159 temp"). */
160 { "kt0", 26 },
161 { "kt1", 27 },
162
163 /* This is the traditional GDB name for the CP0 status register. */
164 { "sr", MIPS_PS_REGNUM },
165
166 /* This is the traditional GDB name for the CP0 BadVAddr register. */
167 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
168
169 /* This is the traditional GDB name for the FCSR. */
170 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
171 };
172
173 const struct register_alias mips_numeric_register_aliases[] = {
174 #define R(n) { #n, n }
175 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
176 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
177 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
178 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
179 #undef R
180 };
181
182 #ifndef MIPS_DEFAULT_FPU_TYPE
183 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
184 #endif
185 static int mips_fpu_type_auto = 1;
186 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
187
188 static unsigned int mips_debug = 0;
189
190 /* Properties (for struct target_desc) describing the g/G packet
191 layout. */
192 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
193 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
194
195 struct target_desc *mips_tdesc_gp32;
196 struct target_desc *mips_tdesc_gp64;
197
198 const struct mips_regnum *
199 mips_regnum (struct gdbarch *gdbarch)
200 {
201 return gdbarch_tdep (gdbarch)->regnum;
202 }
203
204 static int
205 mips_fpa0_regnum (struct gdbarch *gdbarch)
206 {
207 return mips_regnum (gdbarch)->fp0 + 12;
208 }
209
210 /* Return 1 if REGNUM refers to a floating-point general register, raw
211 or cooked. Otherwise return 0. */
212
213 static int
214 mips_float_register_p (struct gdbarch *gdbarch, int regnum)
215 {
216 int rawnum = regnum % gdbarch_num_regs (gdbarch);
217
218 return (rawnum >= mips_regnum (gdbarch)->fp0
219 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
220 }
221
222 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
223 == MIPS_ABI_EABI32 \
224 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
225
226 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
227 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
228
229 #define MIPS_LAST_ARG_REGNUM(gdbarch) \
230 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
231
232 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
233
234 /* Return the MIPS ABI associated with GDBARCH. */
235 enum mips_abi
236 mips_abi (struct gdbarch *gdbarch)
237 {
238 return gdbarch_tdep (gdbarch)->mips_abi;
239 }
240
241 int
242 mips_isa_regsize (struct gdbarch *gdbarch)
243 {
244 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
245
246 /* If we know how big the registers are, use that size. */
247 if (tdep->register_size_valid_p)
248 return tdep->register_size;
249
250 /* Fall back to the previous behavior. */
251 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
252 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
253 }
254
255 /* Return the currently configured (or set) saved register size. */
256
257 unsigned int
258 mips_abi_regsize (struct gdbarch *gdbarch)
259 {
260 switch (mips_abi (gdbarch))
261 {
262 case MIPS_ABI_EABI32:
263 case MIPS_ABI_O32:
264 return 4;
265 case MIPS_ABI_N32:
266 case MIPS_ABI_N64:
267 case MIPS_ABI_O64:
268 case MIPS_ABI_EABI64:
269 return 8;
270 case MIPS_ABI_UNKNOWN:
271 case MIPS_ABI_LAST:
272 default:
273 internal_error (__FILE__, __LINE__, _("bad switch"));
274 }
275 }
276
277 /* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
278 are some functions to handle addresses associated with compressed
279 code including but not limited to testing, setting, or clearing
280 bit 0 of such addresses. */
281
282 /* Return one iff compressed code is the MIPS16 instruction set. */
283
284 static int
285 is_mips16_isa (struct gdbarch *gdbarch)
286 {
287 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
288 }
289
290 /* Return one iff compressed code is the microMIPS instruction set. */
291
292 static int
293 is_micromips_isa (struct gdbarch *gdbarch)
294 {
295 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
296 }
297
298 /* Return one iff ADDR denotes compressed code. */
299
300 static int
301 is_compact_addr (CORE_ADDR addr)
302 {
303 return ((addr) & 1);
304 }
305
306 /* Return one iff ADDR denotes standard ISA code. */
307
308 static int
309 is_mips_addr (CORE_ADDR addr)
310 {
311 return !is_compact_addr (addr);
312 }
313
314 /* Return one iff ADDR denotes MIPS16 code. */
315
316 static int
317 is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
318 {
319 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
320 }
321
322 /* Return one iff ADDR denotes microMIPS code. */
323
324 static int
325 is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
326 {
327 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
328 }
329
330 /* Strip the ISA (compression) bit off from ADDR. */
331
332 static CORE_ADDR
333 unmake_compact_addr (CORE_ADDR addr)
334 {
335 return ((addr) & ~(CORE_ADDR) 1);
336 }
337
338 /* Add the ISA (compression) bit to ADDR. */
339
340 static CORE_ADDR
341 make_compact_addr (CORE_ADDR addr)
342 {
343 return ((addr) | (CORE_ADDR) 1);
344 }
345
346 /* Extern version of unmake_compact_addr; we use a separate function
347 so that unmake_compact_addr can be inlined throughout this file. */
348
349 CORE_ADDR
350 mips_unmake_compact_addr (CORE_ADDR addr)
351 {
352 return unmake_compact_addr (addr);
353 }
354
355 /* Functions for setting and testing a bit in a minimal symbol that
356 marks it as MIPS16 or microMIPS function. The MSB of the minimal
357 symbol's "info" field is used for this purpose.
358
359 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
360 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
361 one of the "special" bits in a minimal symbol to mark it accordingly.
362 The test checks an ELF-private flag that is valid for true function
363 symbols only; for synthetic symbols such as for PLT stubs that have
364 no ELF-private part at all the MIPS BFD backend arranges for this
365 information to be carried in the asymbol's udata field instead.
366
367 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
368 in a minimal symbol. */
369
370 static void
371 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
372 {
373 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
374 unsigned char st_other;
375
376 if ((sym->flags & BSF_SYNTHETIC) == 0)
377 st_other = elfsym->internal_elf_sym.st_other;
378 else if ((sym->flags & BSF_FUNCTION) != 0)
379 st_other = sym->udata.i;
380 else
381 return;
382
383 if (ELF_ST_IS_MICROMIPS (st_other))
384 {
385 MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
386 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
387 }
388 else if (ELF_ST_IS_MIPS16 (st_other))
389 {
390 MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
391 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
392 }
393 }
394
395 /* Return one iff MSYM refers to standard ISA code. */
396
397 static int
398 msymbol_is_mips (struct minimal_symbol *msym)
399 {
400 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
401 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
402 }
403
404 /* Return one iff MSYM refers to MIPS16 code. */
405
406 static int
407 msymbol_is_mips16 (struct minimal_symbol *msym)
408 {
409 return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
410 }
411
412 /* Return one iff MSYM refers to microMIPS code. */
413
414 static int
415 msymbol_is_micromips (struct minimal_symbol *msym)
416 {
417 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
418 }
419
420 /* Set the ISA bit in the main symbol too, complementing the corresponding
421 minimal symbol setting and reflecting the run-time value of the symbol.
422 The need for comes from the ISA bit having been cleared as code in
423 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
424 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
425 of symbols referring to compressed code different in GDB to the values
426 used by actual code. That in turn makes them evaluate incorrectly in
427 expressions, producing results different to what the same expressions
428 yield when compiled into the program being debugged. */
429
430 static void
431 mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
432 {
433 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
434 {
435 /* We are in symbol reading so it is OK to cast away constness. */
436 struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
437 CORE_ADDR compact_block_start;
438 struct bound_minimal_symbol msym;
439
440 compact_block_start = BLOCK_START (block) | 1;
441 msym = lookup_minimal_symbol_by_pc (compact_block_start);
442 if (msym.minsym && !msymbol_is_mips (msym.minsym))
443 {
444 BLOCK_START (block) = compact_block_start;
445 }
446 }
447 }
448
449 /* XFER a value from the big/little/left end of the register.
450 Depending on the size of the value it might occupy the entire
451 register or just part of it. Make an allowance for this, aligning
452 things accordingly. */
453
454 static void
455 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
456 int reg_num, int length,
457 enum bfd_endian endian, gdb_byte *in,
458 const gdb_byte *out, int buf_offset)
459 {
460 int reg_offset = 0;
461
462 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
463 /* Need to transfer the left or right part of the register, based on
464 the targets byte order. */
465 switch (endian)
466 {
467 case BFD_ENDIAN_BIG:
468 reg_offset = register_size (gdbarch, reg_num) - length;
469 break;
470 case BFD_ENDIAN_LITTLE:
471 reg_offset = 0;
472 break;
473 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
474 reg_offset = 0;
475 break;
476 default:
477 internal_error (__FILE__, __LINE__, _("bad switch"));
478 }
479 if (mips_debug)
480 fprintf_unfiltered (gdb_stderr,
481 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
482 reg_num, reg_offset, buf_offset, length);
483 if (mips_debug && out != NULL)
484 {
485 int i;
486 fprintf_unfiltered (gdb_stdlog, "out ");
487 for (i = 0; i < length; i++)
488 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
489 }
490 if (in != NULL)
491 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
492 in + buf_offset);
493 if (out != NULL)
494 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
495 out + buf_offset);
496 if (mips_debug && in != NULL)
497 {
498 int i;
499 fprintf_unfiltered (gdb_stdlog, "in ");
500 for (i = 0; i < length; i++)
501 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
502 }
503 if (mips_debug)
504 fprintf_unfiltered (gdb_stdlog, "\n");
505 }
506
507 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
508 compatiblity mode. A return value of 1 means that we have
509 physical 64-bit registers, but should treat them as 32-bit registers. */
510
511 static int
512 mips2_fp_compat (struct frame_info *frame)
513 {
514 struct gdbarch *gdbarch = get_frame_arch (frame);
515 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
516 meaningful. */
517 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
518 return 0;
519
520 #if 0
521 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
522 in all the places we deal with FP registers. PR gdb/413. */
523 /* Otherwise check the FR bit in the status register - it controls
524 the FP compatiblity mode. If it is clear we are in compatibility
525 mode. */
526 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
527 return 1;
528 #endif
529
530 return 0;
531 }
532
533 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
534
535 static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
536
537 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
538
539 /* The list of available "set mips " and "show mips " commands. */
540
541 static struct cmd_list_element *setmipscmdlist = NULL;
542 static struct cmd_list_element *showmipscmdlist = NULL;
543
544 /* Integer registers 0 thru 31 are handled explicitly by
545 mips_register_name(). Processor specific registers 32 and above
546 are listed in the following tables. */
547
548 enum
549 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
550
551 /* Generic MIPS. */
552
553 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
554 "sr", "lo", "hi", "bad", "cause", "pc",
555 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
556 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
557 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
558 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
559 "fsr", "fir",
560 };
561
562 /* Names of IDT R3041 registers. */
563
564 static const char *mips_r3041_reg_names[] = {
565 "sr", "lo", "hi", "bad", "cause", "pc",
566 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
567 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
568 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
569 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
570 "fsr", "fir", "", /*"fp" */ "",
571 "", "", "bus", "ccfg", "", "", "", "",
572 "", "", "port", "cmp", "", "", "epc", "prid",
573 };
574
575 /* Names of tx39 registers. */
576
577 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
578 "sr", "lo", "hi", "bad", "cause", "pc",
579 "", "", "", "", "", "", "", "",
580 "", "", "", "", "", "", "", "",
581 "", "", "", "", "", "", "", "",
582 "", "", "", "", "", "", "", "",
583 "", "", "", "",
584 "", "", "", "", "", "", "", "",
585 "", "", "config", "cache", "debug", "depc", "epc",
586 };
587
588 /* Names of IRIX registers. */
589 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
590 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
591 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
592 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
593 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
594 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
595 };
596
597 /* Names of registers with Linux kernels. */
598 static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
599 "sr", "lo", "hi", "bad", "cause", "pc",
600 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
601 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
602 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
603 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
604 "fsr", "fir"
605 };
606
607
608 /* Return the name of the register corresponding to REGNO. */
609 static const char *
610 mips_register_name (struct gdbarch *gdbarch, int regno)
611 {
612 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
613 /* GPR names for all ABIs other than n32/n64. */
614 static char *mips_gpr_names[] = {
615 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
616 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
617 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
618 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
619 };
620
621 /* GPR names for n32 and n64 ABIs. */
622 static char *mips_n32_n64_gpr_names[] = {
623 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
624 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
625 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
626 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
627 };
628
629 enum mips_abi abi = mips_abi (gdbarch);
630
631 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
632 but then don't make the raw register names visible. This (upper)
633 range of user visible register numbers are the pseudo-registers.
634
635 This approach was adopted accommodate the following scenario:
636 It is possible to debug a 64-bit device using a 32-bit
637 programming model. In such instances, the raw registers are
638 configured to be 64-bits wide, while the pseudo registers are
639 configured to be 32-bits wide. The registers that the user
640 sees - the pseudo registers - match the users expectations
641 given the programming model being used. */
642 int rawnum = regno % gdbarch_num_regs (gdbarch);
643 if (regno < gdbarch_num_regs (gdbarch))
644 return "";
645
646 /* The MIPS integer registers are always mapped from 0 to 31. The
647 names of the registers (which reflects the conventions regarding
648 register use) vary depending on the ABI. */
649 if (0 <= rawnum && rawnum < 32)
650 {
651 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
652 return mips_n32_n64_gpr_names[rawnum];
653 else
654 return mips_gpr_names[rawnum];
655 }
656 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
657 return tdesc_register_name (gdbarch, rawnum);
658 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
659 {
660 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
661 if (tdep->mips_processor_reg_names[rawnum - 32])
662 return tdep->mips_processor_reg_names[rawnum - 32];
663 return "";
664 }
665 else
666 internal_error (__FILE__, __LINE__,
667 _("mips_register_name: bad register number %d"), rawnum);
668 }
669
670 /* Return the groups that a MIPS register can be categorised into. */
671
672 static int
673 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
674 struct reggroup *reggroup)
675 {
676 int vector_p;
677 int float_p;
678 int raw_p;
679 int rawnum = regnum % gdbarch_num_regs (gdbarch);
680 int pseudo = regnum / gdbarch_num_regs (gdbarch);
681 if (reggroup == all_reggroup)
682 return pseudo;
683 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
684 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
685 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
686 (gdbarch), as not all architectures are multi-arch. */
687 raw_p = rawnum < gdbarch_num_regs (gdbarch);
688 if (gdbarch_register_name (gdbarch, regnum) == NULL
689 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
690 return 0;
691 if (reggroup == float_reggroup)
692 return float_p && pseudo;
693 if (reggroup == vector_reggroup)
694 return vector_p && pseudo;
695 if (reggroup == general_reggroup)
696 return (!vector_p && !float_p) && pseudo;
697 /* Save the pseudo registers. Need to make certain that any code
698 extracting register values from a saved register cache also uses
699 pseudo registers. */
700 if (reggroup == save_reggroup)
701 return raw_p && pseudo;
702 /* Restore the same pseudo register. */
703 if (reggroup == restore_reggroup)
704 return raw_p && pseudo;
705 return 0;
706 }
707
708 /* Return the groups that a MIPS register can be categorised into.
709 This version is only used if we have a target description which
710 describes real registers (and their groups). */
711
712 static int
713 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
714 struct reggroup *reggroup)
715 {
716 int rawnum = regnum % gdbarch_num_regs (gdbarch);
717 int pseudo = regnum / gdbarch_num_regs (gdbarch);
718 int ret;
719
720 /* Only save, restore, and display the pseudo registers. Need to
721 make certain that any code extracting register values from a
722 saved register cache also uses pseudo registers.
723
724 Note: saving and restoring the pseudo registers is slightly
725 strange; if we have 64 bits, we should save and restore all
726 64 bits. But this is hard and has little benefit. */
727 if (!pseudo)
728 return 0;
729
730 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
731 if (ret != -1)
732 return ret;
733
734 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
735 }
736
737 /* Map the symbol table registers which live in the range [1 *
738 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
739 registers. Take care of alignment and size problems. */
740
741 static enum register_status
742 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
743 int cookednum, gdb_byte *buf)
744 {
745 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
746 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
747 && cookednum < 2 * gdbarch_num_regs (gdbarch));
748 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
749 return regcache_raw_read (regcache, rawnum, buf);
750 else if (register_size (gdbarch, rawnum) >
751 register_size (gdbarch, cookednum))
752 {
753 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
754 return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
755 else
756 {
757 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
758 LONGEST regval;
759 enum register_status status;
760
761 status = regcache_raw_read_signed (regcache, rawnum, &regval);
762 if (status == REG_VALID)
763 store_signed_integer (buf, 4, byte_order, regval);
764 return status;
765 }
766 }
767 else
768 internal_error (__FILE__, __LINE__, _("bad register size"));
769 }
770
771 static void
772 mips_pseudo_register_write (struct gdbarch *gdbarch,
773 struct regcache *regcache, int cookednum,
774 const gdb_byte *buf)
775 {
776 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
777 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
778 && cookednum < 2 * gdbarch_num_regs (gdbarch));
779 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
780 regcache_raw_write (regcache, rawnum, buf);
781 else if (register_size (gdbarch, rawnum) >
782 register_size (gdbarch, cookednum))
783 {
784 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
785 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
786 else
787 {
788 /* Sign extend the shortened version of the register prior
789 to placing it in the raw register. This is required for
790 some mips64 parts in order to avoid unpredictable behavior. */
791 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
792 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
793 regcache_raw_write_signed (regcache, rawnum, regval);
794 }
795 }
796 else
797 internal_error (__FILE__, __LINE__, _("bad register size"));
798 }
799
800 static int
801 mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
802 struct agent_expr *ax, int reg)
803 {
804 int rawnum = reg % gdbarch_num_regs (gdbarch);
805 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
806 && reg < 2 * gdbarch_num_regs (gdbarch));
807
808 ax_reg_mask (ax, rawnum);
809
810 return 0;
811 }
812
813 static int
814 mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
815 struct agent_expr *ax, int reg)
816 {
817 int rawnum = reg % gdbarch_num_regs (gdbarch);
818 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
819 && reg < 2 * gdbarch_num_regs (gdbarch));
820 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
821 {
822 ax_reg (ax, rawnum);
823
824 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
825 {
826 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
827 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
828 {
829 ax_const_l (ax, 32);
830 ax_simple (ax, aop_lsh);
831 }
832 ax_const_l (ax, 32);
833 ax_simple (ax, aop_rsh_signed);
834 }
835 }
836 else
837 internal_error (__FILE__, __LINE__, _("bad register size"));
838
839 return 0;
840 }
841
842 /* Table to translate 3-bit register field to actual register number. */
843 static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
844
845 /* Heuristic_proc_start may hunt through the text section for a long
846 time across a 2400 baud serial line. Allows the user to limit this
847 search. */
848
849 static int heuristic_fence_post = 0;
850
851 /* Number of bytes of storage in the actual machine representation for
852 register N. NOTE: This defines the pseudo register type so need to
853 rebuild the architecture vector. */
854
855 static int mips64_transfers_32bit_regs_p = 0;
856
857 static void
858 set_mips64_transfers_32bit_regs (char *args, int from_tty,
859 struct cmd_list_element *c)
860 {
861 struct gdbarch_info info;
862 gdbarch_info_init (&info);
863 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
864 instead of relying on globals. Doing that would let generic code
865 handle the search for this specific architecture. */
866 if (!gdbarch_update_p (info))
867 {
868 mips64_transfers_32bit_regs_p = 0;
869 error (_("32-bit compatibility mode not supported"));
870 }
871 }
872
873 /* Convert to/from a register and the corresponding memory value. */
874
875 /* This predicate tests for the case of an 8 byte floating point
876 value that is being transferred to or from a pair of floating point
877 registers each of which are (or are considered to be) only 4 bytes
878 wide. */
879 static int
880 mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
881 struct type *type)
882 {
883 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
884 && register_size (gdbarch, regnum) == 4
885 && mips_float_register_p (gdbarch, regnum)
886 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
887 }
888
889 /* This predicate tests for the case of a value of less than 8
890 bytes in width that is being transfered to or from an 8 byte
891 general purpose register. */
892 static int
893 mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
894 struct type *type)
895 {
896 int num_regs = gdbarch_num_regs (gdbarch);
897
898 return (register_size (gdbarch, regnum) == 8
899 && regnum % num_regs > 0 && regnum % num_regs < 32
900 && TYPE_LENGTH (type) < 8);
901 }
902
903 static int
904 mips_convert_register_p (struct gdbarch *gdbarch,
905 int regnum, struct type *type)
906 {
907 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
908 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
909 }
910
911 static int
912 mips_register_to_value (struct frame_info *frame, int regnum,
913 struct type *type, gdb_byte *to,
914 int *optimizedp, int *unavailablep)
915 {
916 struct gdbarch *gdbarch = get_frame_arch (frame);
917
918 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
919 {
920 get_frame_register (frame, regnum + 0, to + 4);
921 get_frame_register (frame, regnum + 1, to + 0);
922
923 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
924 optimizedp, unavailablep))
925 return 0;
926
927 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
928 optimizedp, unavailablep))
929 return 0;
930 *optimizedp = *unavailablep = 0;
931 return 1;
932 }
933 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
934 {
935 int len = TYPE_LENGTH (type);
936 CORE_ADDR offset;
937
938 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
939 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
940 optimizedp, unavailablep))
941 return 0;
942
943 *optimizedp = *unavailablep = 0;
944 return 1;
945 }
946 else
947 {
948 internal_error (__FILE__, __LINE__,
949 _("mips_register_to_value: unrecognized case"));
950 }
951 }
952
953 static void
954 mips_value_to_register (struct frame_info *frame, int regnum,
955 struct type *type, const gdb_byte *from)
956 {
957 struct gdbarch *gdbarch = get_frame_arch (frame);
958
959 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
960 {
961 put_frame_register (frame, regnum + 0, from + 4);
962 put_frame_register (frame, regnum + 1, from + 0);
963 }
964 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
965 {
966 gdb_byte fill[8];
967 int len = TYPE_LENGTH (type);
968
969 /* Sign extend values, irrespective of type, that are stored to
970 a 64-bit general purpose register. (32-bit unsigned values
971 are stored as signed quantities within a 64-bit register.
972 When performing an operation, in compiled code, that combines
973 a 32-bit unsigned value with a signed 64-bit value, a type
974 conversion is first performed that zeroes out the high 32 bits.) */
975 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
976 {
977 if (from[0] & 0x80)
978 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
979 else
980 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
981 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
982 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
983 }
984 else
985 {
986 if (from[len-1] & 0x80)
987 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
988 else
989 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
990 put_frame_register_bytes (frame, regnum, 0, len, from);
991 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
992 }
993 }
994 else
995 {
996 internal_error (__FILE__, __LINE__,
997 _("mips_value_to_register: unrecognized case"));
998 }
999 }
1000
1001 /* Return the GDB type object for the "standard" data type of data in
1002 register REG. */
1003
1004 static struct type *
1005 mips_register_type (struct gdbarch *gdbarch, int regnum)
1006 {
1007 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
1008 if (mips_float_register_p (gdbarch, regnum))
1009 {
1010 /* The floating-point registers raw, or cooked, always match
1011 mips_isa_regsize(), and also map 1:1, byte for byte. */
1012 if (mips_isa_regsize (gdbarch) == 4)
1013 return builtin_type (gdbarch)->builtin_float;
1014 else
1015 return builtin_type (gdbarch)->builtin_double;
1016 }
1017 else if (regnum < gdbarch_num_regs (gdbarch))
1018 {
1019 /* The raw or ISA registers. These are all sized according to
1020 the ISA regsize. */
1021 if (mips_isa_regsize (gdbarch) == 4)
1022 return builtin_type (gdbarch)->builtin_int32;
1023 else
1024 return builtin_type (gdbarch)->builtin_int64;
1025 }
1026 else
1027 {
1028 int rawnum = regnum - gdbarch_num_regs (gdbarch);
1029
1030 /* The cooked or ABI registers. These are sized according to
1031 the ABI (with a few complications). */
1032 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1033 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1034 return builtin_type (gdbarch)->builtin_int32;
1035 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
1036 && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1037 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1038 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1039 /* The pseudo/cooked view of the embedded registers is always
1040 32-bit. The raw view is handled below. */
1041 return builtin_type (gdbarch)->builtin_int32;
1042 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
1043 /* The target, while possibly using a 64-bit register buffer,
1044 is only transfering 32-bits of each integer register.
1045 Reflect this in the cooked/pseudo (ABI) register value. */
1046 return builtin_type (gdbarch)->builtin_int32;
1047 else if (mips_abi_regsize (gdbarch) == 4)
1048 /* The ABI is restricted to 32-bit registers (the ISA could be
1049 32- or 64-bit). */
1050 return builtin_type (gdbarch)->builtin_int32;
1051 else
1052 /* 64-bit ABI. */
1053 return builtin_type (gdbarch)->builtin_int64;
1054 }
1055 }
1056
1057 /* Return the GDB type for the pseudo register REGNUM, which is the
1058 ABI-level view. This function is only called if there is a target
1059 description which includes registers, so we know precisely the
1060 types of hardware registers. */
1061
1062 static struct type *
1063 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1064 {
1065 const int num_regs = gdbarch_num_regs (gdbarch);
1066 int rawnum = regnum % num_regs;
1067 struct type *rawtype;
1068
1069 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1070
1071 /* Absent registers are still absent. */
1072 rawtype = gdbarch_register_type (gdbarch, rawnum);
1073 if (TYPE_LENGTH (rawtype) == 0)
1074 return rawtype;
1075
1076 if (mips_float_register_p (gdbarch, rawnum))
1077 /* Present the floating point registers however the hardware did;
1078 do not try to convert between FPU layouts. */
1079 return rawtype;
1080
1081 /* Use pointer types for registers if we can. For n32 we can not,
1082 since we do not have a 64-bit pointer type. */
1083 if (mips_abi_regsize (gdbarch)
1084 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
1085 {
1086 if (rawnum == MIPS_SP_REGNUM
1087 || rawnum == mips_regnum (gdbarch)->badvaddr)
1088 return builtin_type (gdbarch)->builtin_data_ptr;
1089 else if (rawnum == mips_regnum (gdbarch)->pc)
1090 return builtin_type (gdbarch)->builtin_func_ptr;
1091 }
1092
1093 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1094 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1095 || rawnum == mips_regnum (gdbarch)->lo
1096 || rawnum == mips_regnum (gdbarch)->hi
1097 || rawnum == mips_regnum (gdbarch)->badvaddr
1098 || rawnum == mips_regnum (gdbarch)->cause
1099 || rawnum == mips_regnum (gdbarch)->pc
1100 || (mips_regnum (gdbarch)->dspacc != -1
1101 && rawnum >= mips_regnum (gdbarch)->dspacc
1102 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
1103 return builtin_type (gdbarch)->builtin_int32;
1104
1105 if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
1106 && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1107 && rawnum >= MIPS_EMBED_FP0_REGNUM + 32
1108 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1109 {
1110 /* The pseudo/cooked view of embedded registers is always
1111 32-bit, even if the target transfers 64-bit values for them.
1112 New targets relying on XML descriptions should only transfer
1113 the necessary 32 bits, but older versions of GDB expected 64,
1114 so allow the target to provide 64 bits without interfering
1115 with the displayed type. */
1116 return builtin_type (gdbarch)->builtin_int32;
1117 }
1118
1119 /* For all other registers, pass through the hardware type. */
1120 return rawtype;
1121 }
1122
1123 /* Should the upper word of 64-bit addresses be zeroed? */
1124 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
1125
1126 static int
1127 mips_mask_address_p (struct gdbarch_tdep *tdep)
1128 {
1129 switch (mask_address_var)
1130 {
1131 case AUTO_BOOLEAN_TRUE:
1132 return 1;
1133 case AUTO_BOOLEAN_FALSE:
1134 return 0;
1135 break;
1136 case AUTO_BOOLEAN_AUTO:
1137 return tdep->default_mask_address_p;
1138 default:
1139 internal_error (__FILE__, __LINE__,
1140 _("mips_mask_address_p: bad switch"));
1141 return -1;
1142 }
1143 }
1144
1145 static void
1146 show_mask_address (struct ui_file *file, int from_tty,
1147 struct cmd_list_element *c, const char *value)
1148 {
1149 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
1150
1151 deprecated_show_value_hack (file, from_tty, c, value);
1152 switch (mask_address_var)
1153 {
1154 case AUTO_BOOLEAN_TRUE:
1155 printf_filtered ("The 32 bit mips address mask is enabled\n");
1156 break;
1157 case AUTO_BOOLEAN_FALSE:
1158 printf_filtered ("The 32 bit mips address mask is disabled\n");
1159 break;
1160 case AUTO_BOOLEAN_AUTO:
1161 printf_filtered
1162 ("The 32 bit address mask is set automatically. Currently %s\n",
1163 mips_mask_address_p (tdep) ? "enabled" : "disabled");
1164 break;
1165 default:
1166 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
1167 break;
1168 }
1169 }
1170
1171 /* Tell if the program counter value in MEMADDR is in a standard ISA
1172 function. */
1173
1174 int
1175 mips_pc_is_mips (CORE_ADDR memaddr)
1176 {
1177 struct bound_minimal_symbol sym;
1178
1179 /* Flags indicating that this is a MIPS16 or microMIPS function is
1180 stored by elfread.c in the high bit of the info field. Use this
1181 to decide if the function is standard MIPS. Otherwise if bit 0
1182 of the address is clear, then this is a standard MIPS function. */
1183 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1184 if (sym.minsym)
1185 return msymbol_is_mips (sym.minsym);
1186 else
1187 return is_mips_addr (memaddr);
1188 }
1189
1190 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1191
1192 int
1193 mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1194 {
1195 struct bound_minimal_symbol sym;
1196
1197 /* A flag indicating that this is a MIPS16 function is stored by
1198 elfread.c in the high bit of the info field. Use this to decide
1199 if the function is MIPS16. Otherwise if bit 0 of the address is
1200 set, then ELF file flags will tell if this is a MIPS16 function. */
1201 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1202 if (sym.minsym)
1203 return msymbol_is_mips16 (sym.minsym);
1204 else
1205 return is_mips16_addr (gdbarch, memaddr);
1206 }
1207
1208 /* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1209
1210 int
1211 mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1212 {
1213 struct bound_minimal_symbol sym;
1214
1215 /* A flag indicating that this is a microMIPS function is stored by
1216 elfread.c in the high bit of the info field. Use this to decide
1217 if the function is microMIPS. Otherwise if bit 0 of the address
1218 is set, then ELF file flags will tell if this is a microMIPS
1219 function. */
1220 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1221 if (sym.minsym)
1222 return msymbol_is_micromips (sym.minsym);
1223 else
1224 return is_micromips_addr (gdbarch, memaddr);
1225 }
1226
1227 /* Tell the ISA type of the function the program counter value in MEMADDR
1228 is in. */
1229
1230 static enum mips_isa
1231 mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1232 {
1233 struct bound_minimal_symbol sym;
1234
1235 /* A flag indicating that this is a MIPS16 or a microMIPS function
1236 is stored by elfread.c in the high bit of the info field. Use
1237 this to decide if the function is MIPS16 or microMIPS or normal
1238 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1239 flags will tell if this is a MIPS16 or a microMIPS function. */
1240 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1241 if (sym.minsym)
1242 {
1243 if (msymbol_is_micromips (sym.minsym))
1244 return ISA_MICROMIPS;
1245 else if (msymbol_is_mips16 (sym.minsym))
1246 return ISA_MIPS16;
1247 else
1248 return ISA_MIPS;
1249 }
1250 else
1251 {
1252 if (is_mips_addr (memaddr))
1253 return ISA_MIPS;
1254 else if (is_micromips_addr (gdbarch, memaddr))
1255 return ISA_MICROMIPS;
1256 else
1257 return ISA_MIPS16;
1258 }
1259 }
1260
1261 /* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1262 The need for comes from the ISA bit having been cleared, making
1263 addresses in FDE, range records, etc. referring to compressed code
1264 different to those in line information, the symbol table and finally
1265 the PC register. That in turn confuses many operations. */
1266
1267 static CORE_ADDR
1268 mips_adjust_dwarf2_addr (CORE_ADDR pc)
1269 {
1270 pc = unmake_compact_addr (pc);
1271 return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
1272 }
1273
1274 /* Recalculate the line record requested so that the resulting PC has
1275 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1276 this adjustment comes from some records associated with compressed
1277 code having the ISA bit cleared, most notably at function prologue
1278 ends. The ISA bit is in this context retrieved from the minimal
1279 symbol covering the address requested, which in turn has been
1280 constructed from the binary's symbol table rather than DWARF-2
1281 information. The correct setting of the ISA bit is required for
1282 breakpoint addresses to correctly match against the stop PC.
1283
1284 As line entries can specify relative address adjustments we need to
1285 keep track of the absolute value of the last line address recorded
1286 in line information, so that we can calculate the actual address to
1287 apply the ISA bit adjustment to. We use PC for this tracking and
1288 keep the original address there.
1289
1290 As such relative address adjustments can be odd within compressed
1291 code we need to keep track of the last line address with the ISA
1292 bit adjustment applied too, as the original address may or may not
1293 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1294 the adjusted address there.
1295
1296 For relative address adjustments we then use these variables to
1297 calculate the address intended by line information, which will be
1298 PC-relative, and return an updated adjustment carrying ISA bit
1299 information, which will be ADJ_PC-relative. For absolute address
1300 adjustments we just return the same address that we store in ADJ_PC
1301 too.
1302
1303 As the first line entry can be relative to an implied address value
1304 of 0 we need to have the initial address set up that we store in PC
1305 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1306 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1307
1308 static CORE_ADDR
1309 mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
1310 {
1311 static CORE_ADDR adj_pc;
1312 static CORE_ADDR pc;
1313 CORE_ADDR isa_pc;
1314
1315 pc = rel ? pc + addr : addr;
1316 isa_pc = mips_adjust_dwarf2_addr (pc);
1317 addr = rel ? isa_pc - adj_pc : isa_pc;
1318 adj_pc = isa_pc;
1319 return addr;
1320 }
1321
1322 /* Various MIPS16 thunk (aka stub or trampoline) names. */
1323
1324 static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1325 static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1326 static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1327 static const char mips_str_call_stub[] = "__call_stub_";
1328 static const char mips_str_fn_stub[] = "__fn_stub_";
1329
1330 /* This is used as a PIC thunk prefix. */
1331
1332 static const char mips_str_pic[] = ".pic.";
1333
1334 /* Return non-zero if the PC is inside a call thunk (aka stub or
1335 trampoline) that should be treated as a temporary frame. */
1336
1337 static int
1338 mips_in_frame_stub (CORE_ADDR pc)
1339 {
1340 CORE_ADDR start_addr;
1341 const char *name;
1342
1343 /* Find the starting address of the function containing the PC. */
1344 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1345 return 0;
1346
1347 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
1348 if (startswith (name, mips_str_mips16_call_stub))
1349 return 1;
1350 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
1351 if (startswith (name, mips_str_call_stub))
1352 return 1;
1353 /* If the PC is in __fn_stub_*, this is a call stub. */
1354 if (startswith (name, mips_str_fn_stub))
1355 return 1;
1356
1357 return 0; /* Not a stub. */
1358 }
1359
1360 /* MIPS believes that the PC has a sign extended value. Perhaps the
1361 all registers should be sign extended for simplicity? */
1362
1363 static CORE_ADDR
1364 mips_read_pc (struct regcache *regcache)
1365 {
1366 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1367 LONGEST pc;
1368
1369 regcache_cooked_read_signed (regcache, regnum, &pc);
1370 return pc;
1371 }
1372
1373 static CORE_ADDR
1374 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1375 {
1376 CORE_ADDR pc;
1377
1378 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
1379 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1380 intermediate frames. In this case we can get the caller's address
1381 from $ra, or if $ra contains an address within a thunk as well, then
1382 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1383 and thus the caller's address is in $s2. */
1384 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1385 {
1386 pc = frame_unwind_register_signed
1387 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
1388 if (mips_in_frame_stub (pc))
1389 pc = frame_unwind_register_signed
1390 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
1391 }
1392 return pc;
1393 }
1394
1395 static CORE_ADDR
1396 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1397 {
1398 return frame_unwind_register_signed
1399 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
1400 }
1401
1402 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1403 dummy frame. The frame ID's base needs to match the TOS value
1404 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1405 breakpoint. */
1406
1407 static struct frame_id
1408 mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1409 {
1410 return frame_id_build
1411 (get_frame_register_signed (this_frame,
1412 gdbarch_num_regs (gdbarch)
1413 + MIPS_SP_REGNUM),
1414 get_frame_pc (this_frame));
1415 }
1416
1417 /* Implement the "write_pc" gdbarch method. */
1418
1419 void
1420 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
1421 {
1422 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1423
1424 regcache_cooked_write_unsigned (regcache, regnum, pc);
1425 }
1426
1427 /* Fetch and return instruction from the specified location. Handle
1428 MIPS16/microMIPS as appropriate. */
1429
1430 static ULONGEST
1431 mips_fetch_instruction (struct gdbarch *gdbarch,
1432 enum mips_isa isa, CORE_ADDR addr, int *errp)
1433 {
1434 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1435 gdb_byte buf[MIPS_INSN32_SIZE];
1436 int instlen;
1437 int err;
1438
1439 switch (isa)
1440 {
1441 case ISA_MICROMIPS:
1442 case ISA_MIPS16:
1443 instlen = MIPS_INSN16_SIZE;
1444 addr = unmake_compact_addr (addr);
1445 break;
1446 case ISA_MIPS:
1447 instlen = MIPS_INSN32_SIZE;
1448 break;
1449 default:
1450 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1451 break;
1452 }
1453 err = target_read_memory (addr, buf, instlen);
1454 if (errp != NULL)
1455 *errp = err;
1456 if (err != 0)
1457 {
1458 if (errp == NULL)
1459 memory_error (TARGET_XFER_E_IO, addr);
1460 return 0;
1461 }
1462 return extract_unsigned_integer (buf, instlen, byte_order);
1463 }
1464
1465 /* These are the fields of 32 bit mips instructions. */
1466 #define mips32_op(x) (x >> 26)
1467 #define itype_op(x) (x >> 26)
1468 #define itype_rs(x) ((x >> 21) & 0x1f)
1469 #define itype_rt(x) ((x >> 16) & 0x1f)
1470 #define itype_immediate(x) (x & 0xffff)
1471
1472 #define jtype_op(x) (x >> 26)
1473 #define jtype_target(x) (x & 0x03ffffff)
1474
1475 #define rtype_op(x) (x >> 26)
1476 #define rtype_rs(x) ((x >> 21) & 0x1f)
1477 #define rtype_rt(x) ((x >> 16) & 0x1f)
1478 #define rtype_rd(x) ((x >> 11) & 0x1f)
1479 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1480 #define rtype_funct(x) (x & 0x3f)
1481
1482 /* MicroMIPS instruction fields. */
1483 #define micromips_op(x) ((x) >> 10)
1484
1485 /* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1486 bit and the size respectively of the field extracted. */
1487 #define b0s4_imm(x) ((x) & 0xf)
1488 #define b0s5_imm(x) ((x) & 0x1f)
1489 #define b0s5_reg(x) ((x) & 0x1f)
1490 #define b0s7_imm(x) ((x) & 0x7f)
1491 #define b0s10_imm(x) ((x) & 0x3ff)
1492 #define b1s4_imm(x) (((x) >> 1) & 0xf)
1493 #define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1494 #define b2s3_cc(x) (((x) >> 2) & 0x7)
1495 #define b4s2_regl(x) (((x) >> 4) & 0x3)
1496 #define b5s5_op(x) (((x) >> 5) & 0x1f)
1497 #define b5s5_reg(x) (((x) >> 5) & 0x1f)
1498 #define b6s4_op(x) (((x) >> 6) & 0xf)
1499 #define b7s3_reg(x) (((x) >> 7) & 0x7)
1500
1501 /* 32-bit instruction formats, B and S refer to the lowest bit and the size
1502 respectively of the field extracted. */
1503 #define b0s6_op(x) ((x) & 0x3f)
1504 #define b0s11_op(x) ((x) & 0x7ff)
1505 #define b0s12_imm(x) ((x) & 0xfff)
1506 #define b0s16_imm(x) ((x) & 0xffff)
1507 #define b0s26_imm(x) ((x) & 0x3ffffff)
1508 #define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1509 #define b11s5_reg(x) (((x) >> 11) & 0x1f)
1510 #define b12s4_op(x) (((x) >> 12) & 0xf)
1511
1512 /* Return the size in bytes of the instruction INSN encoded in the ISA
1513 instruction set. */
1514
1515 static int
1516 mips_insn_size (enum mips_isa isa, ULONGEST insn)
1517 {
1518 switch (isa)
1519 {
1520 case ISA_MICROMIPS:
1521 if ((micromips_op (insn) & 0x4) == 0x4
1522 || (micromips_op (insn) & 0x7) == 0x0)
1523 return 2 * MIPS_INSN16_SIZE;
1524 else
1525 return MIPS_INSN16_SIZE;
1526 case ISA_MIPS16:
1527 if ((insn & 0xf800) == 0xf000)
1528 return 2 * MIPS_INSN16_SIZE;
1529 else
1530 return MIPS_INSN16_SIZE;
1531 case ISA_MIPS:
1532 return MIPS_INSN32_SIZE;
1533 }
1534 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1535 }
1536
1537 static LONGEST
1538 mips32_relative_offset (ULONGEST inst)
1539 {
1540 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
1541 }
1542
1543 /* Determine the address of the next instruction executed after the INST
1544 floating condition branch instruction at PC. COUNT specifies the
1545 number of the floating condition bits tested by the branch. */
1546
1547 static CORE_ADDR
1548 mips32_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1549 ULONGEST inst, CORE_ADDR pc, int count)
1550 {
1551 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1552 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1553 int tf = itype_rt (inst) & 1;
1554 int mask = (1 << count) - 1;
1555 ULONGEST fcs;
1556 int cond;
1557
1558 if (fcsr == -1)
1559 /* No way to handle; it'll most likely trap anyway. */
1560 return pc;
1561
1562 fcs = get_frame_register_unsigned (frame, fcsr);
1563 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1564
1565 if (((cond >> cnum) & mask) != mask * !tf)
1566 pc += mips32_relative_offset (inst);
1567 else
1568 pc += 4;
1569
1570 return pc;
1571 }
1572
1573 /* Return nonzero if the gdbarch is an Octeon series. */
1574
1575 static int
1576 is_octeon (struct gdbarch *gdbarch)
1577 {
1578 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1579
1580 return (info->mach == bfd_mach_mips_octeon
1581 || info->mach == bfd_mach_mips_octeonp
1582 || info->mach == bfd_mach_mips_octeon2);
1583 }
1584
1585 /* Return true if the OP represents the Octeon's BBIT instruction. */
1586
1587 static int
1588 is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1589 {
1590 if (!is_octeon (gdbarch))
1591 return 0;
1592 /* BBIT0 is encoded as LWC2: 110 010. */
1593 /* BBIT032 is encoded as LDC2: 110 110. */
1594 /* BBIT1 is encoded as SWC2: 111 010. */
1595 /* BBIT132 is encoded as SDC2: 111 110. */
1596 if (op == 50 || op == 54 || op == 58 || op == 62)
1597 return 1;
1598 return 0;
1599 }
1600
1601
1602 /* Determine where to set a single step breakpoint while considering
1603 branch prediction. */
1604
1605 static CORE_ADDR
1606 mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
1607 {
1608 struct gdbarch *gdbarch = get_frame_arch (frame);
1609 unsigned long inst;
1610 int op;
1611 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
1612 op = itype_op (inst);
1613 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1614 instruction. */
1615 {
1616 if (op >> 2 == 5)
1617 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1618 {
1619 switch (op & 0x03)
1620 {
1621 case 0: /* BEQL */
1622 goto equal_branch;
1623 case 1: /* BNEL */
1624 goto neq_branch;
1625 case 2: /* BLEZL */
1626 goto less_branch;
1627 case 3: /* BGTZL */
1628 goto greater_branch;
1629 default:
1630 pc += 4;
1631 }
1632 }
1633 else if (op == 17 && itype_rs (inst) == 8)
1634 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1635 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 1);
1636 else if (op == 17 && itype_rs (inst) == 9
1637 && (itype_rt (inst) & 2) == 0)
1638 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1639 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 2);
1640 else if (op == 17 && itype_rs (inst) == 10
1641 && (itype_rt (inst) & 2) == 0)
1642 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1643 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 4);
1644 else if (op == 29)
1645 /* JALX: 011101 */
1646 /* The new PC will be alternate mode. */
1647 {
1648 unsigned long reg;
1649
1650 reg = jtype_target (inst) << 2;
1651 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1652 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1653 }
1654 else if (is_octeon_bbit_op (op, gdbarch))
1655 {
1656 int bit, branch_if;
1657
1658 branch_if = op == 58 || op == 62;
1659 bit = itype_rt (inst);
1660
1661 /* Take into account the *32 instructions. */
1662 if (op == 54 || op == 62)
1663 bit += 32;
1664
1665 if (((get_frame_register_signed (frame,
1666 itype_rs (inst)) >> bit) & 1)
1667 == branch_if)
1668 pc += mips32_relative_offset (inst) + 4;
1669 else
1670 pc += 8; /* After the delay slot. */
1671 }
1672
1673 else
1674 pc += 4; /* Not a branch, next instruction is easy. */
1675 }
1676 else
1677 { /* This gets way messy. */
1678
1679 /* Further subdivide into SPECIAL, REGIMM and other. */
1680 switch (op & 0x07) /* Extract bits 28,27,26. */
1681 {
1682 case 0: /* SPECIAL */
1683 op = rtype_funct (inst);
1684 switch (op)
1685 {
1686 case 8: /* JR */
1687 case 9: /* JALR */
1688 /* Set PC to that address. */
1689 pc = get_frame_register_signed (frame, rtype_rs (inst));
1690 break;
1691 case 12: /* SYSCALL */
1692 {
1693 struct gdbarch_tdep *tdep;
1694
1695 tdep = gdbarch_tdep (get_frame_arch (frame));
1696 if (tdep->syscall_next_pc != NULL)
1697 pc = tdep->syscall_next_pc (frame);
1698 else
1699 pc += 4;
1700 }
1701 break;
1702 default:
1703 pc += 4;
1704 }
1705
1706 break; /* end SPECIAL */
1707 case 1: /* REGIMM */
1708 {
1709 op = itype_rt (inst); /* branch condition */
1710 switch (op)
1711 {
1712 case 0: /* BLTZ */
1713 case 2: /* BLTZL */
1714 case 16: /* BLTZAL */
1715 case 18: /* BLTZALL */
1716 less_branch:
1717 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1718 pc += mips32_relative_offset (inst) + 4;
1719 else
1720 pc += 8; /* after the delay slot */
1721 break;
1722 case 1: /* BGEZ */
1723 case 3: /* BGEZL */
1724 case 17: /* BGEZAL */
1725 case 19: /* BGEZALL */
1726 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1727 pc += mips32_relative_offset (inst) + 4;
1728 else
1729 pc += 8; /* after the delay slot */
1730 break;
1731 case 0x1c: /* BPOSGE32 */
1732 case 0x1e: /* BPOSGE64 */
1733 pc += 4;
1734 if (itype_rs (inst) == 0)
1735 {
1736 unsigned int pos = (op & 2) ? 64 : 32;
1737 int dspctl = mips_regnum (gdbarch)->dspctl;
1738
1739 if (dspctl == -1)
1740 /* No way to handle; it'll most likely trap anyway. */
1741 break;
1742
1743 if ((get_frame_register_unsigned (frame,
1744 dspctl) & 0x7f) >= pos)
1745 pc += mips32_relative_offset (inst);
1746 else
1747 pc += 4;
1748 }
1749 break;
1750 /* All of the other instructions in the REGIMM category */
1751 default:
1752 pc += 4;
1753 }
1754 }
1755 break; /* end REGIMM */
1756 case 2: /* J */
1757 case 3: /* JAL */
1758 {
1759 unsigned long reg;
1760 reg = jtype_target (inst) << 2;
1761 /* Upper four bits get never changed... */
1762 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1763 }
1764 break;
1765 case 4: /* BEQ, BEQL */
1766 equal_branch:
1767 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1768 get_frame_register_signed (frame, itype_rt (inst)))
1769 pc += mips32_relative_offset (inst) + 4;
1770 else
1771 pc += 8;
1772 break;
1773 case 5: /* BNE, BNEL */
1774 neq_branch:
1775 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1776 get_frame_register_signed (frame, itype_rt (inst)))
1777 pc += mips32_relative_offset (inst) + 4;
1778 else
1779 pc += 8;
1780 break;
1781 case 6: /* BLEZ, BLEZL */
1782 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1783 pc += mips32_relative_offset (inst) + 4;
1784 else
1785 pc += 8;
1786 break;
1787 case 7:
1788 default:
1789 greater_branch: /* BGTZ, BGTZL */
1790 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1791 pc += mips32_relative_offset (inst) + 4;
1792 else
1793 pc += 8;
1794 break;
1795 } /* switch */
1796 } /* else */
1797 return pc;
1798 } /* mips32_next_pc */
1799
1800 /* Extract the 7-bit signed immediate offset from the microMIPS instruction
1801 INSN. */
1802
1803 static LONGEST
1804 micromips_relative_offset7 (ULONGEST insn)
1805 {
1806 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1807 }
1808
1809 /* Extract the 10-bit signed immediate offset from the microMIPS instruction
1810 INSN. */
1811
1812 static LONGEST
1813 micromips_relative_offset10 (ULONGEST insn)
1814 {
1815 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1816 }
1817
1818 /* Extract the 16-bit signed immediate offset from the microMIPS instruction
1819 INSN. */
1820
1821 static LONGEST
1822 micromips_relative_offset16 (ULONGEST insn)
1823 {
1824 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1825 }
1826
1827 /* Return the size in bytes of the microMIPS instruction at the address PC. */
1828
1829 static int
1830 micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1831 {
1832 ULONGEST insn;
1833
1834 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1835 return mips_insn_size (ISA_MICROMIPS, insn);
1836 }
1837
1838 /* Calculate the address of the next microMIPS instruction to execute
1839 after the INSN coprocessor 1 conditional branch instruction at the
1840 address PC. COUNT denotes the number of coprocessor condition bits
1841 examined by the branch. */
1842
1843 static CORE_ADDR
1844 micromips_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1845 ULONGEST insn, CORE_ADDR pc, int count)
1846 {
1847 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1848 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1849 int tf = b5s5_op (insn >> 16) & 1;
1850 int mask = (1 << count) - 1;
1851 ULONGEST fcs;
1852 int cond;
1853
1854 if (fcsr == -1)
1855 /* No way to handle; it'll most likely trap anyway. */
1856 return pc;
1857
1858 fcs = get_frame_register_unsigned (frame, fcsr);
1859 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1860
1861 if (((cond >> cnum) & mask) != mask * !tf)
1862 pc += micromips_relative_offset16 (insn);
1863 else
1864 pc += micromips_pc_insn_size (gdbarch, pc);
1865
1866 return pc;
1867 }
1868
1869 /* Calculate the address of the next microMIPS instruction to execute
1870 after the instruction at the address PC. */
1871
1872 static CORE_ADDR
1873 micromips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1874 {
1875 struct gdbarch *gdbarch = get_frame_arch (frame);
1876 ULONGEST insn;
1877
1878 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1879 pc += MIPS_INSN16_SIZE;
1880 switch (mips_insn_size (ISA_MICROMIPS, insn))
1881 {
1882 /* 32-bit instructions. */
1883 case 2 * MIPS_INSN16_SIZE:
1884 insn <<= 16;
1885 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1886 pc += MIPS_INSN16_SIZE;
1887 switch (micromips_op (insn >> 16))
1888 {
1889 case 0x00: /* POOL32A: bits 000000 */
1890 if (b0s6_op (insn) == 0x3c
1891 /* POOL32Axf: bits 000000 ... 111100 */
1892 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1893 /* JALR, JALR.HB: 000000 000x111100 111100 */
1894 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
1895 pc = get_frame_register_signed (frame, b0s5_reg (insn >> 16));
1896 break;
1897
1898 case 0x10: /* POOL32I: bits 010000 */
1899 switch (b5s5_op (insn >> 16))
1900 {
1901 case 0x00: /* BLTZ: bits 010000 00000 */
1902 case 0x01: /* BLTZAL: bits 010000 00001 */
1903 case 0x11: /* BLTZALS: bits 010000 10001 */
1904 if (get_frame_register_signed (frame,
1905 b0s5_reg (insn >> 16)) < 0)
1906 pc += micromips_relative_offset16 (insn);
1907 else
1908 pc += micromips_pc_insn_size (gdbarch, pc);
1909 break;
1910
1911 case 0x02: /* BGEZ: bits 010000 00010 */
1912 case 0x03: /* BGEZAL: bits 010000 00011 */
1913 case 0x13: /* BGEZALS: bits 010000 10011 */
1914 if (get_frame_register_signed (frame,
1915 b0s5_reg (insn >> 16)) >= 0)
1916 pc += micromips_relative_offset16 (insn);
1917 else
1918 pc += micromips_pc_insn_size (gdbarch, pc);
1919 break;
1920
1921 case 0x04: /* BLEZ: bits 010000 00100 */
1922 if (get_frame_register_signed (frame,
1923 b0s5_reg (insn >> 16)) <= 0)
1924 pc += micromips_relative_offset16 (insn);
1925 else
1926 pc += micromips_pc_insn_size (gdbarch, pc);
1927 break;
1928
1929 case 0x05: /* BNEZC: bits 010000 00101 */
1930 if (get_frame_register_signed (frame,
1931 b0s5_reg (insn >> 16)) != 0)
1932 pc += micromips_relative_offset16 (insn);
1933 break;
1934
1935 case 0x06: /* BGTZ: bits 010000 00110 */
1936 if (get_frame_register_signed (frame,
1937 b0s5_reg (insn >> 16)) > 0)
1938 pc += micromips_relative_offset16 (insn);
1939 else
1940 pc += micromips_pc_insn_size (gdbarch, pc);
1941 break;
1942
1943 case 0x07: /* BEQZC: bits 010000 00111 */
1944 if (get_frame_register_signed (frame,
1945 b0s5_reg (insn >> 16)) == 0)
1946 pc += micromips_relative_offset16 (insn);
1947 break;
1948
1949 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1950 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1951 if (((insn >> 16) & 0x3) == 0x0)
1952 /* BC2F, BC2T: don't know how to handle these. */
1953 break;
1954 break;
1955
1956 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1957 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1958 {
1959 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1960 int dspctl = mips_regnum (gdbarch)->dspctl;
1961
1962 if (dspctl == -1)
1963 /* No way to handle; it'll most likely trap anyway. */
1964 break;
1965
1966 if ((get_frame_register_unsigned (frame,
1967 dspctl) & 0x7f) >= pos)
1968 pc += micromips_relative_offset16 (insn);
1969 else
1970 pc += micromips_pc_insn_size (gdbarch, pc);
1971 }
1972 break;
1973
1974 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1975 /* BC1ANY2F: bits 010000 11100 xxx01 */
1976 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1977 /* BC1ANY2T: bits 010000 11101 xxx01 */
1978 if (((insn >> 16) & 0x2) == 0x0)
1979 pc = micromips_bc1_pc (gdbarch, frame, insn, pc,
1980 ((insn >> 16) & 0x1) + 1);
1981 break;
1982
1983 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1984 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1985 if (((insn >> 16) & 0x3) == 0x1)
1986 pc = micromips_bc1_pc (gdbarch, frame, insn, pc, 4);
1987 break;
1988 }
1989 break;
1990
1991 case 0x1d: /* JALS: bits 011101 */
1992 case 0x35: /* J: bits 110101 */
1993 case 0x3d: /* JAL: bits 111101 */
1994 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
1995 break;
1996
1997 case 0x25: /* BEQ: bits 100101 */
1998 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
1999 == get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
2000 pc += micromips_relative_offset16 (insn);
2001 else
2002 pc += micromips_pc_insn_size (gdbarch, pc);
2003 break;
2004
2005 case 0x2d: /* BNE: bits 101101 */
2006 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
2007 != get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
2008 pc += micromips_relative_offset16 (insn);
2009 else
2010 pc += micromips_pc_insn_size (gdbarch, pc);
2011 break;
2012
2013 case 0x3c: /* JALX: bits 111100 */
2014 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
2015 break;
2016 }
2017 break;
2018
2019 /* 16-bit instructions. */
2020 case MIPS_INSN16_SIZE:
2021 switch (micromips_op (insn))
2022 {
2023 case 0x11: /* POOL16C: bits 010001 */
2024 if ((b5s5_op (insn) & 0x1c) == 0xc)
2025 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
2026 pc = get_frame_register_signed (frame, b0s5_reg (insn));
2027 else if (b5s5_op (insn) == 0x18)
2028 /* JRADDIUSP: bits 010001 11000 */
2029 pc = get_frame_register_signed (frame, MIPS_RA_REGNUM);
2030 break;
2031
2032 case 0x23: /* BEQZ16: bits 100011 */
2033 {
2034 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2035
2036 if (get_frame_register_signed (frame, rs) == 0)
2037 pc += micromips_relative_offset7 (insn);
2038 else
2039 pc += micromips_pc_insn_size (gdbarch, pc);
2040 }
2041 break;
2042
2043 case 0x2b: /* BNEZ16: bits 101011 */
2044 {
2045 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2046
2047 if (get_frame_register_signed (frame, rs) != 0)
2048 pc += micromips_relative_offset7 (insn);
2049 else
2050 pc += micromips_pc_insn_size (gdbarch, pc);
2051 }
2052 break;
2053
2054 case 0x33: /* B16: bits 110011 */
2055 pc += micromips_relative_offset10 (insn);
2056 break;
2057 }
2058 break;
2059 }
2060
2061 return pc;
2062 }
2063
2064 /* Decoding the next place to set a breakpoint is irregular for the
2065 mips 16 variant, but fortunately, there fewer instructions. We have
2066 to cope ith extensions for 16 bit instructions and a pair of actual
2067 32 bit instructions. We dont want to set a single step instruction
2068 on the extend instruction either. */
2069
2070 /* Lots of mips16 instruction formats */
2071 /* Predicting jumps requires itype,ritype,i8type
2072 and their extensions extItype,extritype,extI8type. */
2073 enum mips16_inst_fmts
2074 {
2075 itype, /* 0 immediate 5,10 */
2076 ritype, /* 1 5,3,8 */
2077 rrtype, /* 2 5,3,3,5 */
2078 rritype, /* 3 5,3,3,5 */
2079 rrrtype, /* 4 5,3,3,3,2 */
2080 rriatype, /* 5 5,3,3,1,4 */
2081 shifttype, /* 6 5,3,3,3,2 */
2082 i8type, /* 7 5,3,8 */
2083 i8movtype, /* 8 5,3,3,5 */
2084 i8mov32rtype, /* 9 5,3,5,3 */
2085 i64type, /* 10 5,3,8 */
2086 ri64type, /* 11 5,3,3,5 */
2087 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
2088 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2089 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
2090 extRRItype, /* 15 5,5,5,5,3,3,5 */
2091 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2092 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2093 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2094 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2095 extRi64type, /* 20 5,6,5,5,3,3,5 */
2096 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2097 };
2098 /* I am heaping all the fields of the formats into one structure and
2099 then, only the fields which are involved in instruction extension. */
2100 struct upk_mips16
2101 {
2102 CORE_ADDR offset;
2103 unsigned int regx; /* Function in i8 type. */
2104 unsigned int regy;
2105 };
2106
2107
2108 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
2109 for the bits which make up the immediate extension. */
2110
2111 static CORE_ADDR
2112 extended_offset (unsigned int extension)
2113 {
2114 CORE_ADDR value;
2115
2116 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
2117 value = value << 6;
2118 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
2119 value = value << 5;
2120 value |= extension & 0x1f; /* Extract 4:0. */
2121
2122 return value;
2123 }
2124
2125 /* Only call this function if you know that this is an extendable
2126 instruction. It won't malfunction, but why make excess remote memory
2127 references? If the immediate operands get sign extended or something,
2128 do it after the extension is performed. */
2129 /* FIXME: Every one of these cases needs to worry about sign extension
2130 when the offset is to be used in relative addressing. */
2131
2132 static unsigned int
2133 fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
2134 {
2135 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2136 gdb_byte buf[8];
2137
2138 pc = unmake_compact_addr (pc); /* Clear the low order bit. */
2139 target_read_memory (pc, buf, 2);
2140 return extract_unsigned_integer (buf, 2, byte_order);
2141 }
2142
2143 static void
2144 unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
2145 unsigned int extension,
2146 unsigned int inst,
2147 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
2148 {
2149 CORE_ADDR offset;
2150 int regx;
2151 int regy;
2152 switch (insn_format)
2153 {
2154 case itype:
2155 {
2156 CORE_ADDR value;
2157 if (extension)
2158 {
2159 value = extended_offset ((extension << 16) | inst);
2160 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2161 }
2162 else
2163 {
2164 value = inst & 0x7ff;
2165 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
2166 }
2167 offset = value;
2168 regx = -1;
2169 regy = -1;
2170 }
2171 break;
2172 case ritype:
2173 case i8type:
2174 { /* A register identifier and an offset. */
2175 /* Most of the fields are the same as I type but the
2176 immediate value is of a different length. */
2177 CORE_ADDR value;
2178 if (extension)
2179 {
2180 value = extended_offset ((extension << 16) | inst);
2181 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2182 }
2183 else
2184 {
2185 value = inst & 0xff; /* 8 bits */
2186 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
2187 }
2188 offset = value;
2189 regx = (inst >> 8) & 0x07; /* i8 funct */
2190 regy = -1;
2191 break;
2192 }
2193 case jalxtype:
2194 {
2195 unsigned long value;
2196 unsigned int nexthalf;
2197 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
2198 value = value << 16;
2199 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2200 /* Low bit still set. */
2201 value |= nexthalf;
2202 offset = value;
2203 regx = -1;
2204 regy = -1;
2205 break;
2206 }
2207 default:
2208 internal_error (__FILE__, __LINE__, _("bad switch"));
2209 }
2210 upk->offset = offset;
2211 upk->regx = regx;
2212 upk->regy = regy;
2213 }
2214
2215
2216 /* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2217 and having a signed 16-bit OFFSET. */
2218
2219 static CORE_ADDR
2220 add_offset_16 (CORE_ADDR pc, int offset)
2221 {
2222 return pc + (offset << 1) + 2;
2223 }
2224
2225 static CORE_ADDR
2226 extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
2227 unsigned int extension, unsigned int insn)
2228 {
2229 struct gdbarch *gdbarch = get_frame_arch (frame);
2230 int op = (insn >> 11);
2231 switch (op)
2232 {
2233 case 2: /* Branch */
2234 {
2235 struct upk_mips16 upk;
2236 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
2237 pc = add_offset_16 (pc, upk.offset);
2238 break;
2239 }
2240 case 3: /* JAL , JALX - Watch out, these are 32 bit
2241 instructions. */
2242 {
2243 struct upk_mips16 upk;
2244 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
2245 pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
2246 if ((insn >> 10) & 0x01) /* Exchange mode */
2247 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
2248 else
2249 pc |= 0x01;
2250 break;
2251 }
2252 case 4: /* beqz */
2253 {
2254 struct upk_mips16 upk;
2255 int reg;
2256 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2257 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
2258 if (reg == 0)
2259 pc = add_offset_16 (pc, upk.offset);
2260 else
2261 pc += 2;
2262 break;
2263 }
2264 case 5: /* bnez */
2265 {
2266 struct upk_mips16 upk;
2267 int reg;
2268 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2269 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
2270 if (reg != 0)
2271 pc = add_offset_16 (pc, upk.offset);
2272 else
2273 pc += 2;
2274 break;
2275 }
2276 case 12: /* I8 Formats btez btnez */
2277 {
2278 struct upk_mips16 upk;
2279 int reg;
2280 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
2281 /* upk.regx contains the opcode */
2282 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
2283 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2284 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
2285 pc = add_offset_16 (pc, upk.offset);
2286 else
2287 pc += 2;
2288 break;
2289 }
2290 case 29: /* RR Formats JR, JALR, JALR-RA */
2291 {
2292 struct upk_mips16 upk;
2293 /* upk.fmt = rrtype; */
2294 op = insn & 0x1f;
2295 if (op == 0)
2296 {
2297 int reg;
2298 upk.regx = (insn >> 8) & 0x07;
2299 upk.regy = (insn >> 5) & 0x07;
2300 if ((upk.regy & 1) == 0)
2301 reg = mips_reg3_to_reg[upk.regx];
2302 else
2303 reg = 31; /* Function return instruction. */
2304 pc = get_frame_register_signed (frame, reg);
2305 }
2306 else
2307 pc += 2;
2308 break;
2309 }
2310 case 30:
2311 /* This is an instruction extension. Fetch the real instruction
2312 (which follows the extension) and decode things based on
2313 that. */
2314 {
2315 pc += 2;
2316 pc = extended_mips16_next_pc (frame, pc, insn,
2317 fetch_mips_16 (gdbarch, pc));
2318 break;
2319 }
2320 default:
2321 {
2322 pc += 2;
2323 break;
2324 }
2325 }
2326 return pc;
2327 }
2328
2329 static CORE_ADDR
2330 mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
2331 {
2332 struct gdbarch *gdbarch = get_frame_arch (frame);
2333 unsigned int insn = fetch_mips_16 (gdbarch, pc);
2334 return extended_mips16_next_pc (frame, pc, 0, insn);
2335 }
2336
2337 /* The mips_next_pc function supports single_step when the remote
2338 target monitor or stub is not developed enough to do a single_step.
2339 It works by decoding the current instruction and predicting where a
2340 branch will go. This isn't hard because all the data is available.
2341 The MIPS32, MIPS16 and microMIPS variants are quite different. */
2342 static CORE_ADDR
2343 mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
2344 {
2345 struct gdbarch *gdbarch = get_frame_arch (frame);
2346
2347 if (mips_pc_is_mips16 (gdbarch, pc))
2348 return mips16_next_pc (frame, pc);
2349 else if (mips_pc_is_micromips (gdbarch, pc))
2350 return micromips_next_pc (frame, pc);
2351 else
2352 return mips32_next_pc (frame, pc);
2353 }
2354
2355 /* Return non-zero if the MIPS16 instruction INSN is a compact branch
2356 or jump. */
2357
2358 static int
2359 mips16_instruction_is_compact_branch (unsigned short insn)
2360 {
2361 switch (insn & 0xf800)
2362 {
2363 case 0xe800:
2364 return (insn & 0x009f) == 0x80; /* JALRC/JRC */
2365 case 0x6000:
2366 return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
2367 case 0x2800: /* BNEZ */
2368 case 0x2000: /* BEQZ */
2369 case 0x1000: /* B */
2370 return 1;
2371 default:
2372 return 0;
2373 }
2374 }
2375
2376 /* Return non-zero if the microMIPS instruction INSN is a compact branch
2377 or jump. */
2378
2379 static int
2380 micromips_instruction_is_compact_branch (unsigned short insn)
2381 {
2382 switch (micromips_op (insn))
2383 {
2384 case 0x11: /* POOL16C: bits 010001 */
2385 return (b5s5_op (insn) == 0x18
2386 /* JRADDIUSP: bits 010001 11000 */
2387 || b5s5_op (insn) == 0xd);
2388 /* JRC: bits 010011 01101 */
2389 case 0x10: /* POOL32I: bits 010000 */
2390 return (b5s5_op (insn) & 0x1d) == 0x5;
2391 /* BEQZC/BNEZC: bits 010000 001x1 */
2392 default:
2393 return 0;
2394 }
2395 }
2396
2397 struct mips_frame_cache
2398 {
2399 CORE_ADDR base;
2400 struct trad_frame_saved_reg *saved_regs;
2401 };
2402
2403 /* Set a register's saved stack address in temp_saved_regs. If an
2404 address has already been set for this register, do nothing; this
2405 way we will only recognize the first save of a given register in a
2406 function prologue.
2407
2408 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2409 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2410 Strictly speaking, only the second range is used as it is only second
2411 range (the ABI instead of ISA registers) that comes into play when finding
2412 saved registers in a frame. */
2413
2414 static void
2415 set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2416 int regnum, CORE_ADDR offset)
2417 {
2418 if (this_cache != NULL
2419 && this_cache->saved_regs[regnum].addr == -1)
2420 {
2421 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2422 = offset;
2423 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2424 = offset;
2425 }
2426 }
2427
2428
2429 /* Fetch the immediate value from a MIPS16 instruction.
2430 If the previous instruction was an EXTEND, use it to extend
2431 the upper bits of the immediate value. This is a helper function
2432 for mips16_scan_prologue. */
2433
2434 static int
2435 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2436 unsigned short inst, /* current instruction */
2437 int nbits, /* number of bits in imm field */
2438 int scale, /* scale factor to be applied to imm */
2439 int is_signed) /* is the imm field signed? */
2440 {
2441 int offset;
2442
2443 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2444 {
2445 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2446 if (offset & 0x8000) /* check for negative extend */
2447 offset = 0 - (0x10000 - (offset & 0xffff));
2448 return offset | (inst & 0x1f);
2449 }
2450 else
2451 {
2452 int max_imm = 1 << nbits;
2453 int mask = max_imm - 1;
2454 int sign_bit = max_imm >> 1;
2455
2456 offset = inst & mask;
2457 if (is_signed && (offset & sign_bit))
2458 offset = 0 - (max_imm - offset);
2459 return offset * scale;
2460 }
2461 }
2462
2463
2464 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2465 the associated FRAME_CACHE if not null.
2466 Return the address of the first instruction past the prologue. */
2467
2468 static CORE_ADDR
2469 mips16_scan_prologue (struct gdbarch *gdbarch,
2470 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2471 struct frame_info *this_frame,
2472 struct mips_frame_cache *this_cache)
2473 {
2474 int prev_non_prologue_insn = 0;
2475 int this_non_prologue_insn;
2476 int non_prologue_insns = 0;
2477 CORE_ADDR prev_pc;
2478 CORE_ADDR cur_pc;
2479 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
2480 CORE_ADDR sp;
2481 long frame_offset = 0; /* Size of stack frame. */
2482 long frame_adjust = 0; /* Offset of FP from SP. */
2483 int frame_reg = MIPS_SP_REGNUM;
2484 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
2485 unsigned inst = 0; /* current instruction */
2486 unsigned entry_inst = 0; /* the entry instruction */
2487 unsigned save_inst = 0; /* the save instruction */
2488 int prev_delay_slot = 0;
2489 int in_delay_slot;
2490 int reg, offset;
2491
2492 int extend_bytes = 0;
2493 int prev_extend_bytes = 0;
2494 CORE_ADDR end_prologue_addr;
2495
2496 /* Can be called when there's no process, and hence when there's no
2497 THIS_FRAME. */
2498 if (this_frame != NULL)
2499 sp = get_frame_register_signed (this_frame,
2500 gdbarch_num_regs (gdbarch)
2501 + MIPS_SP_REGNUM);
2502 else
2503 sp = 0;
2504
2505 if (limit_pc > start_pc + 200)
2506 limit_pc = start_pc + 200;
2507 prev_pc = start_pc;
2508
2509 /* Permit at most one non-prologue non-control-transfer instruction
2510 in the middle which may have been reordered by the compiler for
2511 optimisation. */
2512 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
2513 {
2514 this_non_prologue_insn = 0;
2515 in_delay_slot = 0;
2516
2517 /* Save the previous instruction. If it's an EXTEND, we'll extract
2518 the immediate offset extension from it in mips16_get_imm. */
2519 prev_inst = inst;
2520
2521 /* Fetch and decode the instruction. */
2522 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2523 cur_pc, NULL);
2524
2525 /* Normally we ignore extend instructions. However, if it is
2526 not followed by a valid prologue instruction, then this
2527 instruction is not part of the prologue either. We must
2528 remember in this case to adjust the end_prologue_addr back
2529 over the extend. */
2530 if ((inst & 0xf800) == 0xf000) /* extend */
2531 {
2532 extend_bytes = MIPS_INSN16_SIZE;
2533 continue;
2534 }
2535
2536 prev_extend_bytes = extend_bytes;
2537 extend_bytes = 0;
2538
2539 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2540 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2541 {
2542 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2543 if (offset < 0) /* Negative stack adjustment? */
2544 frame_offset -= offset;
2545 else
2546 /* Exit loop if a positive stack adjustment is found, which
2547 usually means that the stack cleanup code in the function
2548 epilogue is reached. */
2549 break;
2550 }
2551 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2552 {
2553 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2554 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
2555 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2556 }
2557 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2558 {
2559 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2560 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2561 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2562 }
2563 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2564 {
2565 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2566 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2567 }
2568 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2569 {
2570 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2571 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2572 }
2573 else if (inst == 0x673d) /* move $s1, $sp */
2574 {
2575 frame_addr = sp;
2576 frame_reg = 17;
2577 }
2578 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2579 {
2580 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2581 frame_addr = sp + offset;
2582 frame_reg = 17;
2583 frame_adjust = offset;
2584 }
2585 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2586 {
2587 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2588 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2589 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2590 }
2591 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2592 {
2593 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2594 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2595 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2596 }
2597 else if ((inst & 0xf81f) == 0xe809
2598 && (inst & 0x700) != 0x700) /* entry */
2599 entry_inst = inst; /* Save for later processing. */
2600 else if ((inst & 0xff80) == 0x6480) /* save */
2601 {
2602 save_inst = inst; /* Save for later processing. */
2603 if (prev_extend_bytes) /* extend */
2604 save_inst |= prev_inst << 16;
2605 }
2606 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2607 {
2608 /* This instruction is part of the prologue, but we don't
2609 need to do anything special to handle it. */
2610 }
2611 else if (mips16_instruction_has_delay_slot (inst, 0))
2612 /* JAL/JALR/JALX/JR */
2613 {
2614 /* The instruction in the delay slot can be a part
2615 of the prologue, so move forward once more. */
2616 in_delay_slot = 1;
2617 if (mips16_instruction_has_delay_slot (inst, 1))
2618 /* JAL/JALX */
2619 {
2620 prev_extend_bytes = MIPS_INSN16_SIZE;
2621 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2622 }
2623 }
2624 else
2625 {
2626 this_non_prologue_insn = 1;
2627 }
2628
2629 non_prologue_insns += this_non_prologue_insn;
2630
2631 /* A jump or branch, or enough non-prologue insns seen? If so,
2632 then we must have reached the end of the prologue by now. */
2633 if (prev_delay_slot || non_prologue_insns > 1
2634 || mips16_instruction_is_compact_branch (inst))
2635 break;
2636
2637 prev_non_prologue_insn = this_non_prologue_insn;
2638 prev_delay_slot = in_delay_slot;
2639 prev_pc = cur_pc - prev_extend_bytes;
2640 }
2641
2642 /* The entry instruction is typically the first instruction in a function,
2643 and it stores registers at offsets relative to the value of the old SP
2644 (before the prologue). But the value of the sp parameter to this
2645 function is the new SP (after the prologue has been executed). So we
2646 can't calculate those offsets until we've seen the entire prologue,
2647 and can calculate what the old SP must have been. */
2648 if (entry_inst != 0)
2649 {
2650 int areg_count = (entry_inst >> 8) & 7;
2651 int sreg_count = (entry_inst >> 6) & 3;
2652
2653 /* The entry instruction always subtracts 32 from the SP. */
2654 frame_offset += 32;
2655
2656 /* Now we can calculate what the SP must have been at the
2657 start of the function prologue. */
2658 sp += frame_offset;
2659
2660 /* Check if a0-a3 were saved in the caller's argument save area. */
2661 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2662 {
2663 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2664 offset += mips_abi_regsize (gdbarch);
2665 }
2666
2667 /* Check if the ra register was pushed on the stack. */
2668 offset = -4;
2669 if (entry_inst & 0x20)
2670 {
2671 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2672 offset -= mips_abi_regsize (gdbarch);
2673 }
2674
2675 /* Check if the s0 and s1 registers were pushed on the stack. */
2676 for (reg = 16; reg < sreg_count + 16; reg++)
2677 {
2678 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2679 offset -= mips_abi_regsize (gdbarch);
2680 }
2681 }
2682
2683 /* The SAVE instruction is similar to ENTRY, except that defined by the
2684 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2685 size of the frame is specified as an immediate field of instruction
2686 and an extended variation exists which lets additional registers and
2687 frame space to be specified. The instruction always treats registers
2688 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2689 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2690 {
2691 static int args_table[16] = {
2692 0, 0, 0, 0, 1, 1, 1, 1,
2693 2, 2, 2, 0, 3, 3, 4, -1,
2694 };
2695 static int astatic_table[16] = {
2696 0, 1, 2, 3, 0, 1, 2, 3,
2697 0, 1, 2, 4, 0, 1, 0, -1,
2698 };
2699 int aregs = (save_inst >> 16) & 0xf;
2700 int xsregs = (save_inst >> 24) & 0x7;
2701 int args = args_table[aregs];
2702 int astatic = astatic_table[aregs];
2703 long frame_size;
2704
2705 if (args < 0)
2706 {
2707 warning (_("Invalid number of argument registers encoded in SAVE."));
2708 args = 0;
2709 }
2710 if (astatic < 0)
2711 {
2712 warning (_("Invalid number of static registers encoded in SAVE."));
2713 astatic = 0;
2714 }
2715
2716 /* For standard SAVE the frame size of 0 means 128. */
2717 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2718 if (frame_size == 0 && (save_inst >> 16) == 0)
2719 frame_size = 16;
2720 frame_size *= 8;
2721 frame_offset += frame_size;
2722
2723 /* Now we can calculate what the SP must have been at the
2724 start of the function prologue. */
2725 sp += frame_offset;
2726
2727 /* Check if A0-A3 were saved in the caller's argument save area. */
2728 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2729 {
2730 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2731 offset += mips_abi_regsize (gdbarch);
2732 }
2733
2734 offset = -4;
2735
2736 /* Check if the RA register was pushed on the stack. */
2737 if (save_inst & 0x40)
2738 {
2739 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2740 offset -= mips_abi_regsize (gdbarch);
2741 }
2742
2743 /* Check if the S8 register was pushed on the stack. */
2744 if (xsregs > 6)
2745 {
2746 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2747 offset -= mips_abi_regsize (gdbarch);
2748 xsregs--;
2749 }
2750 /* Check if S2-S7 were pushed on the stack. */
2751 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2752 {
2753 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2754 offset -= mips_abi_regsize (gdbarch);
2755 }
2756
2757 /* Check if the S1 register was pushed on the stack. */
2758 if (save_inst & 0x10)
2759 {
2760 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2761 offset -= mips_abi_regsize (gdbarch);
2762 }
2763 /* Check if the S0 register was pushed on the stack. */
2764 if (save_inst & 0x20)
2765 {
2766 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2767 offset -= mips_abi_regsize (gdbarch);
2768 }
2769
2770 /* Check if A0-A3 were pushed on the stack. */
2771 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2772 {
2773 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2774 offset -= mips_abi_regsize (gdbarch);
2775 }
2776 }
2777
2778 if (this_cache != NULL)
2779 {
2780 this_cache->base =
2781 (get_frame_register_signed (this_frame,
2782 gdbarch_num_regs (gdbarch) + frame_reg)
2783 + frame_offset - frame_adjust);
2784 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2785 be able to get rid of the assignment below, evetually. But it's
2786 still needed for now. */
2787 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2788 + mips_regnum (gdbarch)->pc]
2789 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2790 }
2791
2792 /* Set end_prologue_addr to the address of the instruction immediately
2793 after the last one we scanned. Unless the last one looked like a
2794 non-prologue instruction (and we looked ahead), in which case use
2795 its address instead. */
2796 end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
2797 ? prev_pc : cur_pc - prev_extend_bytes);
2798
2799 return end_prologue_addr;
2800 }
2801
2802 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2803 Procedures that use the 32-bit instruction set are handled by the
2804 mips_insn32 unwinder. */
2805
2806 static struct mips_frame_cache *
2807 mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2808 {
2809 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2810 struct mips_frame_cache *cache;
2811
2812 if ((*this_cache) != NULL)
2813 return (struct mips_frame_cache *) (*this_cache);
2814 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2815 (*this_cache) = cache;
2816 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2817
2818 /* Analyze the function prologue. */
2819 {
2820 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2821 CORE_ADDR start_addr;
2822
2823 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2824 if (start_addr == 0)
2825 start_addr = heuristic_proc_start (gdbarch, pc);
2826 /* We can't analyze the prologue if we couldn't find the begining
2827 of the function. */
2828 if (start_addr == 0)
2829 return cache;
2830
2831 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame,
2832 (struct mips_frame_cache *) *this_cache);
2833 }
2834
2835 /* gdbarch_sp_regnum contains the value and not the address. */
2836 trad_frame_set_value (cache->saved_regs,
2837 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2838 cache->base);
2839
2840 return (struct mips_frame_cache *) (*this_cache);
2841 }
2842
2843 static void
2844 mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2845 struct frame_id *this_id)
2846 {
2847 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2848 this_cache);
2849 /* This marks the outermost frame. */
2850 if (info->base == 0)
2851 return;
2852 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2853 }
2854
2855 static struct value *
2856 mips_insn16_frame_prev_register (struct frame_info *this_frame,
2857 void **this_cache, int regnum)
2858 {
2859 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2860 this_cache);
2861 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2862 }
2863
2864 static int
2865 mips_insn16_frame_sniffer (const struct frame_unwind *self,
2866 struct frame_info *this_frame, void **this_cache)
2867 {
2868 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2869 CORE_ADDR pc = get_frame_pc (this_frame);
2870 if (mips_pc_is_mips16 (gdbarch, pc))
2871 return 1;
2872 return 0;
2873 }
2874
2875 static const struct frame_unwind mips_insn16_frame_unwind =
2876 {
2877 NORMAL_FRAME,
2878 default_frame_unwind_stop_reason,
2879 mips_insn16_frame_this_id,
2880 mips_insn16_frame_prev_register,
2881 NULL,
2882 mips_insn16_frame_sniffer
2883 };
2884
2885 static CORE_ADDR
2886 mips_insn16_frame_base_address (struct frame_info *this_frame,
2887 void **this_cache)
2888 {
2889 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2890 this_cache);
2891 return info->base;
2892 }
2893
2894 static const struct frame_base mips_insn16_frame_base =
2895 {
2896 &mips_insn16_frame_unwind,
2897 mips_insn16_frame_base_address,
2898 mips_insn16_frame_base_address,
2899 mips_insn16_frame_base_address
2900 };
2901
2902 static const struct frame_base *
2903 mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2904 {
2905 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2906 CORE_ADDR pc = get_frame_pc (this_frame);
2907 if (mips_pc_is_mips16 (gdbarch, pc))
2908 return &mips_insn16_frame_base;
2909 else
2910 return NULL;
2911 }
2912
2913 /* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2914 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2915 interpreted directly, and then multiplied by 4. */
2916
2917 static int
2918 micromips_decode_imm9 (int imm)
2919 {
2920 imm = (imm ^ 0x100) - 0x100;
2921 if (imm > -3 && imm < 2)
2922 imm ^= 0x100;
2923 return imm << 2;
2924 }
2925
2926 /* Analyze the function prologue from START_PC to LIMIT_PC. Return
2927 the address of the first instruction past the prologue. */
2928
2929 static CORE_ADDR
2930 micromips_scan_prologue (struct gdbarch *gdbarch,
2931 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2932 struct frame_info *this_frame,
2933 struct mips_frame_cache *this_cache)
2934 {
2935 CORE_ADDR end_prologue_addr;
2936 int prev_non_prologue_insn = 0;
2937 int frame_reg = MIPS_SP_REGNUM;
2938 int this_non_prologue_insn;
2939 int non_prologue_insns = 0;
2940 long frame_offset = 0; /* Size of stack frame. */
2941 long frame_adjust = 0; /* Offset of FP from SP. */
2942 int prev_delay_slot = 0;
2943 int in_delay_slot;
2944 CORE_ADDR prev_pc;
2945 CORE_ADDR cur_pc;
2946 ULONGEST insn; /* current instruction */
2947 CORE_ADDR sp;
2948 long offset;
2949 long sp_adj;
2950 long v1_off = 0; /* The assumption is LUI will replace it. */
2951 int reglist;
2952 int breg;
2953 int dreg;
2954 int sreg;
2955 int treg;
2956 int loc;
2957 int op;
2958 int s;
2959 int i;
2960
2961 /* Can be called when there's no process, and hence when there's no
2962 THIS_FRAME. */
2963 if (this_frame != NULL)
2964 sp = get_frame_register_signed (this_frame,
2965 gdbarch_num_regs (gdbarch)
2966 + MIPS_SP_REGNUM);
2967 else
2968 sp = 0;
2969
2970 if (limit_pc > start_pc + 200)
2971 limit_pc = start_pc + 200;
2972 prev_pc = start_pc;
2973
2974 /* Permit at most one non-prologue non-control-transfer instruction
2975 in the middle which may have been reordered by the compiler for
2976 optimisation. */
2977 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2978 {
2979 this_non_prologue_insn = 0;
2980 in_delay_slot = 0;
2981 sp_adj = 0;
2982 loc = 0;
2983 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2984 loc += MIPS_INSN16_SIZE;
2985 switch (mips_insn_size (ISA_MICROMIPS, insn))
2986 {
2987 /* 32-bit instructions. */
2988 case 2 * MIPS_INSN16_SIZE:
2989 insn <<= 16;
2990 insn |= mips_fetch_instruction (gdbarch,
2991 ISA_MICROMIPS, cur_pc + loc, NULL);
2992 loc += MIPS_INSN16_SIZE;
2993 switch (micromips_op (insn >> 16))
2994 {
2995 /* Record $sp/$fp adjustment. */
2996 /* Discard (D)ADDU $gp,$jp used for PIC code. */
2997 case 0x0: /* POOL32A: bits 000000 */
2998 case 0x16: /* POOL32S: bits 010110 */
2999 op = b0s11_op (insn);
3000 sreg = b0s5_reg (insn >> 16);
3001 treg = b5s5_reg (insn >> 16);
3002 dreg = b11s5_reg (insn);
3003 if (op == 0x1d0
3004 /* SUBU: bits 000000 00111010000 */
3005 /* DSUBU: bits 010110 00111010000 */
3006 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
3007 && treg == 3)
3008 /* (D)SUBU $sp, $v1 */
3009 sp_adj = v1_off;
3010 else if (op != 0x150
3011 /* ADDU: bits 000000 00101010000 */
3012 /* DADDU: bits 010110 00101010000 */
3013 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
3014 this_non_prologue_insn = 1;
3015 break;
3016
3017 case 0x8: /* POOL32B: bits 001000 */
3018 op = b12s4_op (insn);
3019 breg = b0s5_reg (insn >> 16);
3020 reglist = sreg = b5s5_reg (insn >> 16);
3021 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
3022 if ((op == 0x9 || op == 0xc)
3023 /* SWP: bits 001000 1001 */
3024 /* SDP: bits 001000 1100 */
3025 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
3026 /* S[DW]P reg,offset($sp) */
3027 {
3028 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
3029 set_reg_offset (gdbarch, this_cache,
3030 sreg, sp + offset);
3031 set_reg_offset (gdbarch, this_cache,
3032 sreg + 1, sp + offset + s);
3033 }
3034 else if ((op == 0xd || op == 0xf)
3035 /* SWM: bits 001000 1101 */
3036 /* SDM: bits 001000 1111 */
3037 && breg == MIPS_SP_REGNUM
3038 /* SWM reglist,offset($sp) */
3039 && ((reglist >= 1 && reglist <= 9)
3040 || (reglist >= 16 && reglist <= 25)))
3041 {
3042 int sreglist = min(reglist & 0xf, 8);
3043
3044 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
3045 for (i = 0; i < sreglist; i++)
3046 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
3047 if ((reglist & 0xf) > 8)
3048 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
3049 if ((reglist & 0x10) == 0x10)
3050 set_reg_offset (gdbarch, this_cache,
3051 MIPS_RA_REGNUM, sp + s * i++);
3052 }
3053 else
3054 this_non_prologue_insn = 1;
3055 break;
3056
3057 /* Record $sp/$fp adjustment. */
3058 /* Discard (D)ADDIU $gp used for PIC code. */
3059 case 0xc: /* ADDIU: bits 001100 */
3060 case 0x17: /* DADDIU: bits 010111 */
3061 sreg = b0s5_reg (insn >> 16);
3062 dreg = b5s5_reg (insn >> 16);
3063 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3064 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
3065 /* (D)ADDIU $sp, imm */
3066 sp_adj = offset;
3067 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
3068 /* (D)ADDIU $fp, $sp, imm */
3069 {
3070 frame_adjust = offset;
3071 frame_reg = 30;
3072 }
3073 else if (sreg != 28 || dreg != 28)
3074 /* (D)ADDIU $gp, imm */
3075 this_non_prologue_insn = 1;
3076 break;
3077
3078 /* LUI $v1 is used for larger $sp adjustments. */
3079 /* Discard LUI $gp used for PIC code. */
3080 case 0x10: /* POOL32I: bits 010000 */
3081 if (b5s5_op (insn >> 16) == 0xd
3082 /* LUI: bits 010000 001101 */
3083 && b0s5_reg (insn >> 16) == 3)
3084 /* LUI $v1, imm */
3085 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
3086 else if (b5s5_op (insn >> 16) != 0xd
3087 /* LUI: bits 010000 001101 */
3088 || b0s5_reg (insn >> 16) != 28)
3089 /* LUI $gp, imm */
3090 this_non_prologue_insn = 1;
3091 break;
3092
3093 /* ORI $v1 is used for larger $sp adjustments. */
3094 case 0x14: /* ORI: bits 010100 */
3095 sreg = b0s5_reg (insn >> 16);
3096 dreg = b5s5_reg (insn >> 16);
3097 if (sreg == 3 && dreg == 3)
3098 /* ORI $v1, imm */
3099 v1_off |= b0s16_imm (insn);
3100 else
3101 this_non_prologue_insn = 1;
3102 break;
3103
3104 case 0x26: /* SWC1: bits 100110 */
3105 case 0x2e: /* SDC1: bits 101110 */
3106 breg = b0s5_reg (insn >> 16);
3107 if (breg != MIPS_SP_REGNUM)
3108 /* S[DW]C1 reg,offset($sp) */
3109 this_non_prologue_insn = 1;
3110 break;
3111
3112 case 0x36: /* SD: bits 110110 */
3113 case 0x3e: /* SW: bits 111110 */
3114 breg = b0s5_reg (insn >> 16);
3115 sreg = b5s5_reg (insn >> 16);
3116 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3117 if (breg == MIPS_SP_REGNUM)
3118 /* S[DW] reg,offset($sp) */
3119 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3120 else
3121 this_non_prologue_insn = 1;
3122 break;
3123
3124 default:
3125 /* The instruction in the delay slot can be a part
3126 of the prologue, so move forward once more. */
3127 if (micromips_instruction_has_delay_slot (insn, 0))
3128 in_delay_slot = 1;
3129 else
3130 this_non_prologue_insn = 1;
3131 break;
3132 }
3133 insn >>= 16;
3134 break;
3135
3136 /* 16-bit instructions. */
3137 case MIPS_INSN16_SIZE:
3138 switch (micromips_op (insn))
3139 {
3140 case 0x3: /* MOVE: bits 000011 */
3141 sreg = b0s5_reg (insn);
3142 dreg = b5s5_reg (insn);
3143 if (sreg == MIPS_SP_REGNUM && dreg == 30)
3144 /* MOVE $fp, $sp */
3145 frame_reg = 30;
3146 else if ((sreg & 0x1c) != 0x4)
3147 /* MOVE reg, $a0-$a3 */
3148 this_non_prologue_insn = 1;
3149 break;
3150
3151 case 0x11: /* POOL16C: bits 010001 */
3152 if (b6s4_op (insn) == 0x5)
3153 /* SWM: bits 010001 0101 */
3154 {
3155 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
3156 reglist = b4s2_regl (insn);
3157 for (i = 0; i <= reglist; i++)
3158 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
3159 set_reg_offset (gdbarch, this_cache,
3160 MIPS_RA_REGNUM, sp + 4 * i++);
3161 }
3162 else
3163 this_non_prologue_insn = 1;
3164 break;
3165
3166 case 0x13: /* POOL16D: bits 010011 */
3167 if ((insn & 0x1) == 0x1)
3168 /* ADDIUSP: bits 010011 1 */
3169 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3170 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3171 /* ADDIUS5: bits 010011 0 */
3172 /* ADDIUS5 $sp, imm */
3173 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3174 else
3175 this_non_prologue_insn = 1;
3176 break;
3177
3178 case 0x32: /* SWSP: bits 110010 */
3179 offset = b0s5_imm (insn) << 2;
3180 sreg = b5s5_reg (insn);
3181 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3182 break;
3183
3184 default:
3185 /* The instruction in the delay slot can be a part
3186 of the prologue, so move forward once more. */
3187 if (micromips_instruction_has_delay_slot (insn << 16, 0))
3188 in_delay_slot = 1;
3189 else
3190 this_non_prologue_insn = 1;
3191 break;
3192 }
3193 break;
3194 }
3195 if (sp_adj < 0)
3196 frame_offset -= sp_adj;
3197
3198 non_prologue_insns += this_non_prologue_insn;
3199
3200 /* A jump or branch, enough non-prologue insns seen or positive
3201 stack adjustment? If so, then we must have reached the end
3202 of the prologue by now. */
3203 if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
3204 || micromips_instruction_is_compact_branch (insn))
3205 break;
3206
3207 prev_non_prologue_insn = this_non_prologue_insn;
3208 prev_delay_slot = in_delay_slot;
3209 prev_pc = cur_pc;
3210 }
3211
3212 if (this_cache != NULL)
3213 {
3214 this_cache->base =
3215 (get_frame_register_signed (this_frame,
3216 gdbarch_num_regs (gdbarch) + frame_reg)
3217 + frame_offset - frame_adjust);
3218 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
3219 be able to get rid of the assignment below, evetually. But it's
3220 still needed for now. */
3221 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3222 + mips_regnum (gdbarch)->pc]
3223 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
3224 }
3225
3226 /* Set end_prologue_addr to the address of the instruction immediately
3227 after the last one we scanned. Unless the last one looked like a
3228 non-prologue instruction (and we looked ahead), in which case use
3229 its address instead. */
3230 end_prologue_addr
3231 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3232
3233 return end_prologue_addr;
3234 }
3235
3236 /* Heuristic unwinder for procedures using microMIPS instructions.
3237 Procedures that use the 32-bit instruction set are handled by the
3238 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
3239
3240 static struct mips_frame_cache *
3241 mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
3242 {
3243 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3244 struct mips_frame_cache *cache;
3245
3246 if ((*this_cache) != NULL)
3247 return (struct mips_frame_cache *) (*this_cache);
3248
3249 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3250 (*this_cache) = cache;
3251 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3252
3253 /* Analyze the function prologue. */
3254 {
3255 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3256 CORE_ADDR start_addr;
3257
3258 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3259 if (start_addr == 0)
3260 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
3261 /* We can't analyze the prologue if we couldn't find the begining
3262 of the function. */
3263 if (start_addr == 0)
3264 return cache;
3265
3266 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame,
3267 (struct mips_frame_cache *) *this_cache);
3268 }
3269
3270 /* gdbarch_sp_regnum contains the value and not the address. */
3271 trad_frame_set_value (cache->saved_regs,
3272 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3273 cache->base);
3274
3275 return (struct mips_frame_cache *) (*this_cache);
3276 }
3277
3278 static void
3279 mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3280 struct frame_id *this_id)
3281 {
3282 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3283 this_cache);
3284 /* This marks the outermost frame. */
3285 if (info->base == 0)
3286 return;
3287 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3288 }
3289
3290 static struct value *
3291 mips_micro_frame_prev_register (struct frame_info *this_frame,
3292 void **this_cache, int regnum)
3293 {
3294 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3295 this_cache);
3296 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3297 }
3298
3299 static int
3300 mips_micro_frame_sniffer (const struct frame_unwind *self,
3301 struct frame_info *this_frame, void **this_cache)
3302 {
3303 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3304 CORE_ADDR pc = get_frame_pc (this_frame);
3305
3306 if (mips_pc_is_micromips (gdbarch, pc))
3307 return 1;
3308 return 0;
3309 }
3310
3311 static const struct frame_unwind mips_micro_frame_unwind =
3312 {
3313 NORMAL_FRAME,
3314 default_frame_unwind_stop_reason,
3315 mips_micro_frame_this_id,
3316 mips_micro_frame_prev_register,
3317 NULL,
3318 mips_micro_frame_sniffer
3319 };
3320
3321 static CORE_ADDR
3322 mips_micro_frame_base_address (struct frame_info *this_frame,
3323 void **this_cache)
3324 {
3325 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3326 this_cache);
3327 return info->base;
3328 }
3329
3330 static const struct frame_base mips_micro_frame_base =
3331 {
3332 &mips_micro_frame_unwind,
3333 mips_micro_frame_base_address,
3334 mips_micro_frame_base_address,
3335 mips_micro_frame_base_address
3336 };
3337
3338 static const struct frame_base *
3339 mips_micro_frame_base_sniffer (struct frame_info *this_frame)
3340 {
3341 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3342 CORE_ADDR pc = get_frame_pc (this_frame);
3343
3344 if (mips_pc_is_micromips (gdbarch, pc))
3345 return &mips_micro_frame_base;
3346 else
3347 return NULL;
3348 }
3349
3350 /* Mark all the registers as unset in the saved_regs array
3351 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3352
3353 static void
3354 reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
3355 {
3356 if (this_cache == NULL || this_cache->saved_regs == NULL)
3357 return;
3358
3359 {
3360 const int num_regs = gdbarch_num_regs (gdbarch);
3361 int i;
3362
3363 for (i = 0; i < num_regs; i++)
3364 {
3365 this_cache->saved_regs[i].addr = -1;
3366 }
3367 }
3368 }
3369
3370 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
3371 the associated FRAME_CACHE if not null.
3372 Return the address of the first instruction past the prologue. */
3373
3374 static CORE_ADDR
3375 mips32_scan_prologue (struct gdbarch *gdbarch,
3376 CORE_ADDR start_pc, CORE_ADDR limit_pc,
3377 struct frame_info *this_frame,
3378 struct mips_frame_cache *this_cache)
3379 {
3380 int prev_non_prologue_insn;
3381 int this_non_prologue_insn;
3382 int non_prologue_insns;
3383 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3384 frame-pointer. */
3385 int prev_delay_slot;
3386 CORE_ADDR prev_pc;
3387 CORE_ADDR cur_pc;
3388 CORE_ADDR sp;
3389 long frame_offset;
3390 int frame_reg = MIPS_SP_REGNUM;
3391
3392 CORE_ADDR end_prologue_addr;
3393 int seen_sp_adjust = 0;
3394 int load_immediate_bytes = 0;
3395 int in_delay_slot;
3396 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
3397
3398 /* Can be called when there's no process, and hence when there's no
3399 THIS_FRAME. */
3400 if (this_frame != NULL)
3401 sp = get_frame_register_signed (this_frame,
3402 gdbarch_num_regs (gdbarch)
3403 + MIPS_SP_REGNUM);
3404 else
3405 sp = 0;
3406
3407 if (limit_pc > start_pc + 200)
3408 limit_pc = start_pc + 200;
3409
3410 restart:
3411 prev_non_prologue_insn = 0;
3412 non_prologue_insns = 0;
3413 prev_delay_slot = 0;
3414 prev_pc = start_pc;
3415
3416 /* Permit at most one non-prologue non-control-transfer instruction
3417 in the middle which may have been reordered by the compiler for
3418 optimisation. */
3419 frame_offset = 0;
3420 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
3421 {
3422 unsigned long inst, high_word;
3423 long offset;
3424 int reg;
3425
3426 this_non_prologue_insn = 0;
3427 in_delay_slot = 0;
3428
3429 /* Fetch the instruction. */
3430 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3431 cur_pc, NULL);
3432
3433 /* Save some code by pre-extracting some useful fields. */
3434 high_word = (inst >> 16) & 0xffff;
3435 offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
3436 reg = high_word & 0x1f;
3437
3438 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
3439 || high_word == 0x23bd /* addi $sp,$sp,-i */
3440 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3441 {
3442 if (offset < 0) /* Negative stack adjustment? */
3443 frame_offset -= offset;
3444 else
3445 /* Exit loop if a positive stack adjustment is found, which
3446 usually means that the stack cleanup code in the function
3447 epilogue is reached. */
3448 break;
3449 seen_sp_adjust = 1;
3450 }
3451 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3452 && !regsize_is_64_bits)
3453 {
3454 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3455 }
3456 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3457 && regsize_is_64_bits)
3458 {
3459 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
3460 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3461 }
3462 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3463 {
3464 /* Old gcc frame, r30 is virtual frame pointer. */
3465 if (offset != frame_offset)
3466 frame_addr = sp + offset;
3467 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
3468 {
3469 unsigned alloca_adjust;
3470
3471 frame_reg = 30;
3472 frame_addr = get_frame_register_signed
3473 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3474 frame_offset = 0;
3475
3476 alloca_adjust = (unsigned) (frame_addr - (sp + offset));
3477 if (alloca_adjust > 0)
3478 {
3479 /* FP > SP + frame_size. This may be because of
3480 an alloca or somethings similar. Fix sp to
3481 "pre-alloca" value, and try again. */
3482 sp += alloca_adjust;
3483 /* Need to reset the status of all registers. Otherwise,
3484 we will hit a guard that prevents the new address
3485 for each register to be recomputed during the second
3486 pass. */
3487 reset_saved_regs (gdbarch, this_cache);
3488 goto restart;
3489 }
3490 }
3491 }
3492 /* move $30,$sp. With different versions of gas this will be either
3493 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3494 Accept any one of these. */
3495 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3496 {
3497 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
3498 if (this_frame && frame_reg == MIPS_SP_REGNUM)
3499 {
3500 unsigned alloca_adjust;
3501
3502 frame_reg = 30;
3503 frame_addr = get_frame_register_signed
3504 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3505
3506 alloca_adjust = (unsigned) (frame_addr - sp);
3507 if (alloca_adjust > 0)
3508 {
3509 /* FP > SP + frame_size. This may be because of
3510 an alloca or somethings similar. Fix sp to
3511 "pre-alloca" value, and try again. */
3512 sp = frame_addr;
3513 /* Need to reset the status of all registers. Otherwise,
3514 we will hit a guard that prevents the new address
3515 for each register to be recomputed during the second
3516 pass. */
3517 reset_saved_regs (gdbarch, this_cache);
3518 goto restart;
3519 }
3520 }
3521 }
3522 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3523 && !regsize_is_64_bits)
3524 {
3525 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
3526 }
3527 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3528 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3529 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3530 || high_word == 0x3c1c /* lui $gp,n */
3531 || high_word == 0x279c /* addiu $gp,$gp,n */
3532 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3533 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3534 )
3535 {
3536 /* These instructions are part of the prologue, but we don't
3537 need to do anything special to handle them. */
3538 }
3539 /* The instructions below load $at or $t0 with an immediate
3540 value in preparation for a stack adjustment via
3541 subu $sp,$sp,[$at,$t0]. These instructions could also
3542 initialize a local variable, so we accept them only before
3543 a stack adjustment instruction was seen. */
3544 else if (!seen_sp_adjust
3545 && !prev_delay_slot
3546 && (high_word == 0x3c01 /* lui $at,n */
3547 || high_word == 0x3c08 /* lui $t0,n */
3548 || high_word == 0x3421 /* ori $at,$at,n */
3549 || high_word == 0x3508 /* ori $t0,$t0,n */
3550 || high_word == 0x3401 /* ori $at,$zero,n */
3551 || high_word == 0x3408 /* ori $t0,$zero,n */
3552 ))
3553 {
3554 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
3555 }
3556 /* Check for branches and jumps. The instruction in the delay
3557 slot can be a part of the prologue, so move forward once more. */
3558 else if (mips32_instruction_has_delay_slot (gdbarch, inst))
3559 {
3560 in_delay_slot = 1;
3561 }
3562 /* This instruction is not an instruction typically found
3563 in a prologue, so we must have reached the end of the
3564 prologue. */
3565 else
3566 {
3567 this_non_prologue_insn = 1;
3568 }
3569
3570 non_prologue_insns += this_non_prologue_insn;
3571
3572 /* A jump or branch, or enough non-prologue insns seen? If so,
3573 then we must have reached the end of the prologue by now. */
3574 if (prev_delay_slot || non_prologue_insns > 1)
3575 break;
3576
3577 prev_non_prologue_insn = this_non_prologue_insn;
3578 prev_delay_slot = in_delay_slot;
3579 prev_pc = cur_pc;
3580 }
3581
3582 if (this_cache != NULL)
3583 {
3584 this_cache->base =
3585 (get_frame_register_signed (this_frame,
3586 gdbarch_num_regs (gdbarch) + frame_reg)
3587 + frame_offset);
3588 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3589 this assignment below, eventually. But it's still needed
3590 for now. */
3591 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3592 + mips_regnum (gdbarch)->pc]
3593 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3594 + MIPS_RA_REGNUM];
3595 }
3596
3597 /* Set end_prologue_addr to the address of the instruction immediately
3598 after the last one we scanned. Unless the last one looked like a
3599 non-prologue instruction (and we looked ahead), in which case use
3600 its address instead. */
3601 end_prologue_addr
3602 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3603
3604 /* In a frameless function, we might have incorrectly
3605 skipped some load immediate instructions. Undo the skipping
3606 if the load immediate was not followed by a stack adjustment. */
3607 if (load_immediate_bytes && !seen_sp_adjust)
3608 end_prologue_addr -= load_immediate_bytes;
3609
3610 return end_prologue_addr;
3611 }
3612
3613 /* Heuristic unwinder for procedures using 32-bit instructions (covers
3614 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3615 instructions (a.k.a. MIPS16) are handled by the mips_insn16
3616 unwinder. Likewise microMIPS and the mips_micro unwinder. */
3617
3618 static struct mips_frame_cache *
3619 mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
3620 {
3621 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3622 struct mips_frame_cache *cache;
3623
3624 if ((*this_cache) != NULL)
3625 return (struct mips_frame_cache *) (*this_cache);
3626
3627 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3628 (*this_cache) = cache;
3629 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3630
3631 /* Analyze the function prologue. */
3632 {
3633 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3634 CORE_ADDR start_addr;
3635
3636 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3637 if (start_addr == 0)
3638 start_addr = heuristic_proc_start (gdbarch, pc);
3639 /* We can't analyze the prologue if we couldn't find the begining
3640 of the function. */
3641 if (start_addr == 0)
3642 return cache;
3643
3644 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame,
3645 (struct mips_frame_cache *) *this_cache);
3646 }
3647
3648 /* gdbarch_sp_regnum contains the value and not the address. */
3649 trad_frame_set_value (cache->saved_regs,
3650 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3651 cache->base);
3652
3653 return (struct mips_frame_cache *) (*this_cache);
3654 }
3655
3656 static void
3657 mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
3658 struct frame_id *this_id)
3659 {
3660 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3661 this_cache);
3662 /* This marks the outermost frame. */
3663 if (info->base == 0)
3664 return;
3665 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3666 }
3667
3668 static struct value *
3669 mips_insn32_frame_prev_register (struct frame_info *this_frame,
3670 void **this_cache, int regnum)
3671 {
3672 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3673 this_cache);
3674 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3675 }
3676
3677 static int
3678 mips_insn32_frame_sniffer (const struct frame_unwind *self,
3679 struct frame_info *this_frame, void **this_cache)
3680 {
3681 CORE_ADDR pc = get_frame_pc (this_frame);
3682 if (mips_pc_is_mips (pc))
3683 return 1;
3684 return 0;
3685 }
3686
3687 static const struct frame_unwind mips_insn32_frame_unwind =
3688 {
3689 NORMAL_FRAME,
3690 default_frame_unwind_stop_reason,
3691 mips_insn32_frame_this_id,
3692 mips_insn32_frame_prev_register,
3693 NULL,
3694 mips_insn32_frame_sniffer
3695 };
3696
3697 static CORE_ADDR
3698 mips_insn32_frame_base_address (struct frame_info *this_frame,
3699 void **this_cache)
3700 {
3701 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3702 this_cache);
3703 return info->base;
3704 }
3705
3706 static const struct frame_base mips_insn32_frame_base =
3707 {
3708 &mips_insn32_frame_unwind,
3709 mips_insn32_frame_base_address,
3710 mips_insn32_frame_base_address,
3711 mips_insn32_frame_base_address
3712 };
3713
3714 static const struct frame_base *
3715 mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
3716 {
3717 CORE_ADDR pc = get_frame_pc (this_frame);
3718 if (mips_pc_is_mips (pc))
3719 return &mips_insn32_frame_base;
3720 else
3721 return NULL;
3722 }
3723
3724 static struct trad_frame_cache *
3725 mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
3726 {
3727 CORE_ADDR pc;
3728 CORE_ADDR start_addr;
3729 CORE_ADDR stack_addr;
3730 struct trad_frame_cache *this_trad_cache;
3731 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3732 int num_regs = gdbarch_num_regs (gdbarch);
3733
3734 if ((*this_cache) != NULL)
3735 return (struct trad_frame_cache *) (*this_cache);
3736 this_trad_cache = trad_frame_cache_zalloc (this_frame);
3737 (*this_cache) = this_trad_cache;
3738
3739 /* The return address is in the link register. */
3740 trad_frame_set_reg_realreg (this_trad_cache,
3741 gdbarch_pc_regnum (gdbarch),
3742 num_regs + MIPS_RA_REGNUM);
3743
3744 /* Frame ID, since it's a frameless / stackless function, no stack
3745 space is allocated and SP on entry is the current SP. */
3746 pc = get_frame_pc (this_frame);
3747 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3748 stack_addr = get_frame_register_signed (this_frame,
3749 num_regs + MIPS_SP_REGNUM);
3750 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
3751
3752 /* Assume that the frame's base is the same as the
3753 stack-pointer. */
3754 trad_frame_set_this_base (this_trad_cache, stack_addr);
3755
3756 return this_trad_cache;
3757 }
3758
3759 static void
3760 mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
3761 struct frame_id *this_id)
3762 {
3763 struct trad_frame_cache *this_trad_cache
3764 = mips_stub_frame_cache (this_frame, this_cache);
3765 trad_frame_get_id (this_trad_cache, this_id);
3766 }
3767
3768 static struct value *
3769 mips_stub_frame_prev_register (struct frame_info *this_frame,
3770 void **this_cache, int regnum)
3771 {
3772 struct trad_frame_cache *this_trad_cache
3773 = mips_stub_frame_cache (this_frame, this_cache);
3774 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
3775 }
3776
3777 static int
3778 mips_stub_frame_sniffer (const struct frame_unwind *self,
3779 struct frame_info *this_frame, void **this_cache)
3780 {
3781 gdb_byte dummy[4];
3782 struct obj_section *s;
3783 CORE_ADDR pc = get_frame_address_in_block (this_frame);
3784 struct bound_minimal_symbol msym;
3785
3786 /* Use the stub unwinder for unreadable code. */
3787 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3788 return 1;
3789
3790 if (in_plt_section (pc) || in_mips_stubs_section (pc))
3791 return 1;
3792
3793 /* Calling a PIC function from a non-PIC function passes through a
3794 stub. The stub for foo is named ".pic.foo". */
3795 msym = lookup_minimal_symbol_by_pc (pc);
3796 if (msym.minsym != NULL
3797 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
3798 && startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
3799 return 1;
3800
3801 return 0;
3802 }
3803
3804 static const struct frame_unwind mips_stub_frame_unwind =
3805 {
3806 NORMAL_FRAME,
3807 default_frame_unwind_stop_reason,
3808 mips_stub_frame_this_id,
3809 mips_stub_frame_prev_register,
3810 NULL,
3811 mips_stub_frame_sniffer
3812 };
3813
3814 static CORE_ADDR
3815 mips_stub_frame_base_address (struct frame_info *this_frame,
3816 void **this_cache)
3817 {
3818 struct trad_frame_cache *this_trad_cache
3819 = mips_stub_frame_cache (this_frame, this_cache);
3820 return trad_frame_get_this_base (this_trad_cache);
3821 }
3822
3823 static const struct frame_base mips_stub_frame_base =
3824 {
3825 &mips_stub_frame_unwind,
3826 mips_stub_frame_base_address,
3827 mips_stub_frame_base_address,
3828 mips_stub_frame_base_address
3829 };
3830
3831 static const struct frame_base *
3832 mips_stub_frame_base_sniffer (struct frame_info *this_frame)
3833 {
3834 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
3835 return &mips_stub_frame_base;
3836 else
3837 return NULL;
3838 }
3839
3840 /* mips_addr_bits_remove - remove useless address bits */
3841
3842 static CORE_ADDR
3843 mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
3844 {
3845 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3846
3847 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3848 /* This hack is a work-around for existing boards using PMON, the
3849 simulator, and any other 64-bit targets that doesn't have true
3850 64-bit addressing. On these targets, the upper 32 bits of
3851 addresses are ignored by the hardware. Thus, the PC or SP are
3852 likely to have been sign extended to all 1s by instruction
3853 sequences that load 32-bit addresses. For example, a typical
3854 piece of code that loads an address is this:
3855
3856 lui $r2, <upper 16 bits>
3857 ori $r2, <lower 16 bits>
3858
3859 But the lui sign-extends the value such that the upper 32 bits
3860 may be all 1s. The workaround is simply to mask off these
3861 bits. In the future, gcc may be changed to support true 64-bit
3862 addressing, and this masking will have to be disabled. */
3863 return addr &= 0xffffffffUL;
3864 else
3865 return addr;
3866 }
3867
3868
3869 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
3870 instruction and ending with a SC/SCD instruction. If such a sequence
3871 is found, attempt to step through it. A breakpoint is placed at the end of
3872 the sequence. */
3873
3874 /* Instructions used during single-stepping of atomic sequences, standard
3875 ISA version. */
3876 #define LL_OPCODE 0x30
3877 #define LLD_OPCODE 0x34
3878 #define SC_OPCODE 0x38
3879 #define SCD_OPCODE 0x3c
3880
3881 static int
3882 mips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3883 struct address_space *aspace, CORE_ADDR pc)
3884 {
3885 CORE_ADDR breaks[2] = {-1, -1};
3886 CORE_ADDR loc = pc;
3887 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
3888 ULONGEST insn;
3889 int insn_count;
3890 int index;
3891 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3892 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3893
3894 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3895 /* Assume all atomic sequences start with a ll/lld instruction. */
3896 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
3897 return 0;
3898
3899 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3900 instructions. */
3901 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3902 {
3903 int is_branch = 0;
3904 loc += MIPS_INSN32_SIZE;
3905 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3906
3907 /* Assume that there is at most one branch in the atomic
3908 sequence. If a branch is found, put a breakpoint in its
3909 destination address. */
3910 switch (itype_op (insn))
3911 {
3912 case 0: /* SPECIAL */
3913 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
3914 return 0; /* fallback to the standard single-step code. */
3915 break;
3916 case 1: /* REGIMM */
3917 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3918 || ((itype_rt (insn) & 0x1e) == 0
3919 && itype_rs (insn) == 0)); /* BPOSGE* */
3920 break;
3921 case 2: /* J */
3922 case 3: /* JAL */
3923 return 0; /* fallback to the standard single-step code. */
3924 case 4: /* BEQ */
3925 case 5: /* BNE */
3926 case 6: /* BLEZ */
3927 case 7: /* BGTZ */
3928 case 20: /* BEQL */
3929 case 21: /* BNEL */
3930 case 22: /* BLEZL */
3931 case 23: /* BGTTL */
3932 is_branch = 1;
3933 break;
3934 case 17: /* COP1 */
3935 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3936 && (itype_rt (insn) & 0x2) == 0);
3937 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3938 break;
3939 /* Fall through. */
3940 case 18: /* COP2 */
3941 case 19: /* COP3 */
3942 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3943 break;
3944 }
3945 if (is_branch)
3946 {
3947 branch_bp = loc + mips32_relative_offset (insn) + 4;
3948 if (last_breakpoint >= 1)
3949 return 0; /* More than one branch found, fallback to the
3950 standard single-step code. */
3951 breaks[1] = branch_bp;
3952 last_breakpoint++;
3953 }
3954
3955 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3956 break;
3957 }
3958
3959 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3960 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
3961 return 0;
3962
3963 loc += MIPS_INSN32_SIZE;
3964
3965 /* Insert a breakpoint right after the end of the atomic sequence. */
3966 breaks[0] = loc;
3967
3968 /* Check for duplicated breakpoints. Check also for a breakpoint
3969 placed (branch instruction's destination) in the atomic sequence. */
3970 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3971 last_breakpoint = 0;
3972
3973 /* Effectively inserts the breakpoints. */
3974 for (index = 0; index <= last_breakpoint; index++)
3975 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
3976
3977 return 1;
3978 }
3979
3980 static int
3981 micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3982 struct address_space *aspace,
3983 CORE_ADDR pc)
3984 {
3985 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3986 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3987 CORE_ADDR breaks[2] = {-1, -1};
3988 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
3989 destination. */
3990 CORE_ADDR loc = pc;
3991 int sc_found = 0;
3992 ULONGEST insn;
3993 int insn_count;
3994 int index;
3995
3996 /* Assume all atomic sequences start with a ll/lld instruction. */
3997 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3998 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
3999 return 0;
4000 loc += MIPS_INSN16_SIZE;
4001 insn <<= 16;
4002 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4003 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
4004 return 0;
4005 loc += MIPS_INSN16_SIZE;
4006
4007 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4008 that no atomic sequence is longer than "atomic_sequence_length"
4009 instructions. */
4010 for (insn_count = 0;
4011 !sc_found && insn_count < atomic_sequence_length;
4012 ++insn_count)
4013 {
4014 int is_branch = 0;
4015
4016 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4017 loc += MIPS_INSN16_SIZE;
4018
4019 /* Assume that there is at most one conditional branch in the
4020 atomic sequence. If a branch is found, put a breakpoint in
4021 its destination address. */
4022 switch (mips_insn_size (ISA_MICROMIPS, insn))
4023 {
4024 /* 32-bit instructions. */
4025 case 2 * MIPS_INSN16_SIZE:
4026 switch (micromips_op (insn))
4027 {
4028 case 0x10: /* POOL32I: bits 010000 */
4029 if ((b5s5_op (insn) & 0x18) != 0x0
4030 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4031 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4032 && (b5s5_op (insn) & 0x1d) != 0x11
4033 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4034 && ((b5s5_op (insn) & 0x1e) != 0x14
4035 || (insn & 0x3) != 0x0)
4036 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4037 && (b5s5_op (insn) & 0x1e) != 0x1a
4038 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4039 && ((b5s5_op (insn) & 0x1e) != 0x1c
4040 || (insn & 0x3) != 0x0)
4041 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4042 && ((b5s5_op (insn) & 0x1c) != 0x1c
4043 || (insn & 0x3) != 0x1))
4044 /* BC1ANY*: bits 010000 111xx xxx01 */
4045 break;
4046 /* Fall through. */
4047
4048 case 0x25: /* BEQ: bits 100101 */
4049 case 0x2d: /* BNE: bits 101101 */
4050 insn <<= 16;
4051 insn |= mips_fetch_instruction (gdbarch,
4052 ISA_MICROMIPS, loc, NULL);
4053 branch_bp = (loc + MIPS_INSN16_SIZE
4054 + micromips_relative_offset16 (insn));
4055 is_branch = 1;
4056 break;
4057
4058 case 0x00: /* POOL32A: bits 000000 */
4059 insn <<= 16;
4060 insn |= mips_fetch_instruction (gdbarch,
4061 ISA_MICROMIPS, loc, NULL);
4062 if (b0s6_op (insn) != 0x3c
4063 /* POOL32Axf: bits 000000 ... 111100 */
4064 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
4065 /* JALR, JALR.HB: 000000 000x111100 111100 */
4066 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4067 break;
4068 /* Fall through. */
4069
4070 case 0x1d: /* JALS: bits 011101 */
4071 case 0x35: /* J: bits 110101 */
4072 case 0x3d: /* JAL: bits 111101 */
4073 case 0x3c: /* JALX: bits 111100 */
4074 return 0; /* Fall back to the standard single-step code. */
4075
4076 case 0x18: /* POOL32C: bits 011000 */
4077 if ((b12s4_op (insn) & 0xb) == 0xb)
4078 /* SC, SCD: bits 011000 1x11 */
4079 sc_found = 1;
4080 break;
4081 }
4082 loc += MIPS_INSN16_SIZE;
4083 break;
4084
4085 /* 16-bit instructions. */
4086 case MIPS_INSN16_SIZE:
4087 switch (micromips_op (insn))
4088 {
4089 case 0x23: /* BEQZ16: bits 100011 */
4090 case 0x2b: /* BNEZ16: bits 101011 */
4091 branch_bp = loc + micromips_relative_offset7 (insn);
4092 is_branch = 1;
4093 break;
4094
4095 case 0x11: /* POOL16C: bits 010001 */
4096 if ((b5s5_op (insn) & 0x1c) != 0xc
4097 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4098 && b5s5_op (insn) != 0x18)
4099 /* JRADDIUSP: bits 010001 11000 */
4100 break;
4101 return 0; /* Fall back to the standard single-step code. */
4102
4103 case 0x33: /* B16: bits 110011 */
4104 return 0; /* Fall back to the standard single-step code. */
4105 }
4106 break;
4107 }
4108 if (is_branch)
4109 {
4110 if (last_breakpoint >= 1)
4111 return 0; /* More than one branch found, fallback to the
4112 standard single-step code. */
4113 breaks[1] = branch_bp;
4114 last_breakpoint++;
4115 }
4116 }
4117 if (!sc_found)
4118 return 0;
4119
4120 /* Insert a breakpoint right after the end of the atomic sequence. */
4121 breaks[0] = loc;
4122
4123 /* Check for duplicated breakpoints. Check also for a breakpoint
4124 placed (branch instruction's destination) in the atomic sequence */
4125 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
4126 last_breakpoint = 0;
4127
4128 /* Effectively inserts the breakpoints. */
4129 for (index = 0; index <= last_breakpoint; index++)
4130 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
4131
4132 return 1;
4133 }
4134
4135 static int
4136 deal_with_atomic_sequence (struct gdbarch *gdbarch,
4137 struct address_space *aspace, CORE_ADDR pc)
4138 {
4139 if (mips_pc_is_mips (pc))
4140 return mips_deal_with_atomic_sequence (gdbarch, aspace, pc);
4141 else if (mips_pc_is_micromips (gdbarch, pc))
4142 return micromips_deal_with_atomic_sequence (gdbarch, aspace, pc);
4143 else
4144 return 0;
4145 }
4146
4147 /* mips_software_single_step() is called just before we want to resume
4148 the inferior, if we want to single-step it but there is no hardware
4149 or kernel single-step support (MIPS on GNU/Linux for example). We find
4150 the target of the coming instruction and breakpoint it. */
4151
4152 int
4153 mips_software_single_step (struct frame_info *frame)
4154 {
4155 struct gdbarch *gdbarch = get_frame_arch (frame);
4156 struct address_space *aspace = get_frame_address_space (frame);
4157 CORE_ADDR pc, next_pc;
4158
4159 pc = get_frame_pc (frame);
4160 if (deal_with_atomic_sequence (gdbarch, aspace, pc))
4161 return 1;
4162
4163 next_pc = mips_next_pc (frame, pc);
4164
4165 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
4166 return 1;
4167 }
4168
4169 /* Test whether the PC points to the return instruction at the
4170 end of a function. */
4171
4172 static int
4173 mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
4174 {
4175 ULONGEST insn;
4176 ULONGEST hint;
4177
4178 /* This used to check for MIPS16, but this piece of code is never
4179 called for MIPS16 functions. And likewise microMIPS ones. */
4180 gdb_assert (mips_pc_is_mips (pc));
4181
4182 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4183 hint = 0x7c0;
4184 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
4185 }
4186
4187
4188 /* This fencepost looks highly suspicious to me. Removing it also
4189 seems suspicious as it could affect remote debugging across serial
4190 lines. */
4191
4192 static CORE_ADDR
4193 heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
4194 {
4195 CORE_ADDR start_pc;
4196 CORE_ADDR fence;
4197 int instlen;
4198 int seen_adjsp = 0;
4199 struct inferior *inf;
4200
4201 pc = gdbarch_addr_bits_remove (gdbarch, pc);
4202 start_pc = pc;
4203 fence = start_pc - heuristic_fence_post;
4204 if (start_pc == 0)
4205 return 0;
4206
4207 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
4208 fence = VM_MIN_ADDRESS;
4209
4210 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
4211
4212 inf = current_inferior ();
4213
4214 /* Search back for previous return. */
4215 for (start_pc -= instlen;; start_pc -= instlen)
4216 if (start_pc < fence)
4217 {
4218 /* It's not clear to me why we reach this point when
4219 stop_soon, but with this test, at least we
4220 don't print out warnings for every child forked (eg, on
4221 decstation). 22apr93 rich@cygnus.com. */
4222 if (inf->control.stop_soon == NO_STOP_QUIETLY)
4223 {
4224 static int blurb_printed = 0;
4225
4226 warning (_("GDB can't find the start of the function at %s."),
4227 paddress (gdbarch, pc));
4228
4229 if (!blurb_printed)
4230 {
4231 /* This actually happens frequently in embedded
4232 development, when you first connect to a board
4233 and your stack pointer and pc are nowhere in
4234 particular. This message needs to give people
4235 in that situation enough information to
4236 determine that it's no big deal. */
4237 printf_filtered ("\n\
4238 GDB is unable to find the start of the function at %s\n\
4239 and thus can't determine the size of that function's stack frame.\n\
4240 This means that GDB may be unable to access that stack frame, or\n\
4241 the frames below it.\n\
4242 This problem is most likely caused by an invalid program counter or\n\
4243 stack pointer.\n\
4244 However, if you think GDB should simply search farther back\n\
4245 from %s for code which looks like the beginning of a\n\
4246 function, you can increase the range of the search using the `set\n\
4247 heuristic-fence-post' command.\n",
4248 paddress (gdbarch, pc), paddress (gdbarch, pc));
4249 blurb_printed = 1;
4250 }
4251 }
4252
4253 return 0;
4254 }
4255 else if (mips_pc_is_mips16 (gdbarch, start_pc))
4256 {
4257 unsigned short inst;
4258
4259 /* On MIPS16, any one of the following is likely to be the
4260 start of a function:
4261 extend save
4262 save
4263 entry
4264 addiu sp,-n
4265 daddiu sp,-n
4266 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4267 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
4268 if ((inst & 0xff80) == 0x6480) /* save */
4269 {
4270 if (start_pc - instlen >= fence)
4271 {
4272 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4273 start_pc - instlen, NULL);
4274 if ((inst & 0xf800) == 0xf000) /* extend */
4275 start_pc -= instlen;
4276 }
4277 break;
4278 }
4279 else if (((inst & 0xf81f) == 0xe809
4280 && (inst & 0x700) != 0x700) /* entry */
4281 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4282 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4283 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
4284 break;
4285 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4286 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4287 seen_adjsp = 1;
4288 else
4289 seen_adjsp = 0;
4290 }
4291 else if (mips_pc_is_micromips (gdbarch, start_pc))
4292 {
4293 ULONGEST insn;
4294 int stop = 0;
4295 long offset;
4296 int dreg;
4297 int sreg;
4298
4299 /* On microMIPS, any one of the following is likely to be the
4300 start of a function:
4301 ADDIUSP -imm
4302 (D)ADDIU $sp, -imm
4303 LUI $gp, imm */
4304 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4305 switch (micromips_op (insn))
4306 {
4307 case 0xc: /* ADDIU: bits 001100 */
4308 case 0x17: /* DADDIU: bits 010111 */
4309 sreg = b0s5_reg (insn);
4310 dreg = b5s5_reg (insn);
4311 insn <<= 16;
4312 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4313 pc + MIPS_INSN16_SIZE, NULL);
4314 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4315 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4316 /* (D)ADDIU $sp, imm */
4317 && offset < 0)
4318 stop = 1;
4319 break;
4320
4321 case 0x10: /* POOL32I: bits 010000 */
4322 if (b5s5_op (insn) == 0xd
4323 /* LUI: bits 010000 001101 */
4324 && b0s5_reg (insn >> 16) == 28)
4325 /* LUI $gp, imm */
4326 stop = 1;
4327 break;
4328
4329 case 0x13: /* POOL16D: bits 010011 */
4330 if ((insn & 0x1) == 0x1)
4331 /* ADDIUSP: bits 010011 1 */
4332 {
4333 offset = micromips_decode_imm9 (b1s9_imm (insn));
4334 if (offset < 0)
4335 /* ADDIUSP -imm */
4336 stop = 1;
4337 }
4338 else
4339 /* ADDIUS5: bits 010011 0 */
4340 {
4341 dreg = b5s5_reg (insn);
4342 offset = (b1s4_imm (insn) ^ 8) - 8;
4343 if (dreg == MIPS_SP_REGNUM && offset < 0)
4344 /* ADDIUS5 $sp, -imm */
4345 stop = 1;
4346 }
4347 break;
4348 }
4349 if (stop)
4350 break;
4351 }
4352 else if (mips_about_to_return (gdbarch, start_pc))
4353 {
4354 /* Skip return and its delay slot. */
4355 start_pc += 2 * MIPS_INSN32_SIZE;
4356 break;
4357 }
4358
4359 return start_pc;
4360 }
4361
4362 struct mips_objfile_private
4363 {
4364 bfd_size_type size;
4365 char *contents;
4366 };
4367
4368 /* According to the current ABI, should the type be passed in a
4369 floating-point register (assuming that there is space)? When there
4370 is no FPU, FP are not even considered as possible candidates for
4371 FP registers and, consequently this returns false - forces FP
4372 arguments into integer registers. */
4373
4374 static int
4375 fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4376 struct type *arg_type)
4377 {
4378 return ((typecode == TYPE_CODE_FLT
4379 || (MIPS_EABI (gdbarch)
4380 && (typecode == TYPE_CODE_STRUCT
4381 || typecode == TYPE_CODE_UNION)
4382 && TYPE_NFIELDS (arg_type) == 1
4383 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4384 == TYPE_CODE_FLT))
4385 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
4386 }
4387
4388 /* On o32, argument passing in GPRs depends on the alignment of the type being
4389 passed. Return 1 if this type must be aligned to a doubleword boundary. */
4390
4391 static int
4392 mips_type_needs_double_align (struct type *type)
4393 {
4394 enum type_code typecode = TYPE_CODE (type);
4395
4396 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4397 return 1;
4398 else if (typecode == TYPE_CODE_STRUCT)
4399 {
4400 if (TYPE_NFIELDS (type) < 1)
4401 return 0;
4402 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4403 }
4404 else if (typecode == TYPE_CODE_UNION)
4405 {
4406 int i, n;
4407
4408 n = TYPE_NFIELDS (type);
4409 for (i = 0; i < n; i++)
4410 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4411 return 1;
4412 return 0;
4413 }
4414 return 0;
4415 }
4416
4417 /* Adjust the address downward (direction of stack growth) so that it
4418 is correctly aligned for a new stack frame. */
4419 static CORE_ADDR
4420 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4421 {
4422 return align_down (addr, 16);
4423 }
4424
4425 /* Implement the "push_dummy_code" gdbarch method. */
4426
4427 static CORE_ADDR
4428 mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4429 CORE_ADDR funaddr, struct value **args,
4430 int nargs, struct type *value_type,
4431 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4432 struct regcache *regcache)
4433 {
4434 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
4435 CORE_ADDR nop_addr;
4436 CORE_ADDR bp_slot;
4437
4438 /* Reserve enough room on the stack for our breakpoint instruction. */
4439 bp_slot = sp - sizeof (nop_insn);
4440
4441 /* Return to microMIPS mode if calling microMIPS code to avoid
4442 triggering an address error exception on processors that only
4443 support microMIPS execution. */
4444 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4445 ? make_compact_addr (bp_slot) : bp_slot);
4446
4447 /* The breakpoint layer automatically adjusts the address of
4448 breakpoints inserted in a branch delay slot. With enough
4449 bad luck, the 4 bytes located just before our breakpoint
4450 instruction could look like a branch instruction, and thus
4451 trigger the adjustement, and break the function call entirely.
4452 So, we reserve those 4 bytes and write a nop instruction
4453 to prevent that from happening. */
4454 nop_addr = bp_slot - sizeof (nop_insn);
4455 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4456 sp = mips_frame_align (gdbarch, nop_addr);
4457
4458 /* Inferior resumes at the function entry point. */
4459 *real_pc = funaddr;
4460
4461 return sp;
4462 }
4463
4464 static CORE_ADDR
4465 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4466 struct regcache *regcache, CORE_ADDR bp_addr,
4467 int nargs, struct value **args, CORE_ADDR sp,
4468 int struct_return, CORE_ADDR struct_addr)
4469 {
4470 int argreg;
4471 int float_argreg;
4472 int argnum;
4473 int len = 0;
4474 int stack_offset = 0;
4475 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4476 CORE_ADDR func_addr = find_function_addr (function, NULL);
4477 int regsize = mips_abi_regsize (gdbarch);
4478
4479 /* For shared libraries, "t9" needs to point at the function
4480 address. */
4481 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4482
4483 /* Set the return address register to point to the entry point of
4484 the program, where a breakpoint lies in wait. */
4485 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4486
4487 /* First ensure that the stack and structure return address (if any)
4488 are properly aligned. The stack has to be at least 64-bit
4489 aligned even on 32-bit machines, because doubles must be 64-bit
4490 aligned. For n32 and n64, stack frames need to be 128-bit
4491 aligned, so we round to this widest known alignment. */
4492
4493 sp = align_down (sp, 16);
4494 struct_addr = align_down (struct_addr, 16);
4495
4496 /* Now make space on the stack for the args. We allocate more
4497 than necessary for EABI, because the first few arguments are
4498 passed in registers, but that's OK. */
4499 for (argnum = 0; argnum < nargs; argnum++)
4500 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
4501 sp -= align_up (len, 16);
4502
4503 if (mips_debug)
4504 fprintf_unfiltered (gdb_stdlog,
4505 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4506 paddress (gdbarch, sp), (long) align_up (len, 16));
4507
4508 /* Initialize the integer and float register pointers. */
4509 argreg = MIPS_A0_REGNUM;
4510 float_argreg = mips_fpa0_regnum (gdbarch);
4511
4512 /* The struct_return pointer occupies the first parameter-passing reg. */
4513 if (struct_return)
4514 {
4515 if (mips_debug)
4516 fprintf_unfiltered (gdb_stdlog,
4517 "mips_eabi_push_dummy_call: "
4518 "struct_return reg=%d %s\n",
4519 argreg, paddress (gdbarch, struct_addr));
4520 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4521 }
4522
4523 /* Now load as many as possible of the first arguments into
4524 registers, and push the rest onto the stack. Loop thru args
4525 from first to last. */
4526 for (argnum = 0; argnum < nargs; argnum++)
4527 {
4528 const gdb_byte *val;
4529 gdb_byte valbuf[MAX_REGISTER_SIZE];
4530 struct value *arg = args[argnum];
4531 struct type *arg_type = check_typedef (value_type (arg));
4532 int len = TYPE_LENGTH (arg_type);
4533 enum type_code typecode = TYPE_CODE (arg_type);
4534
4535 if (mips_debug)
4536 fprintf_unfiltered (gdb_stdlog,
4537 "mips_eabi_push_dummy_call: %d len=%d type=%d",
4538 argnum + 1, len, (int) typecode);
4539
4540 /* The EABI passes structures that do not fit in a register by
4541 reference. */
4542 if (len > regsize
4543 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
4544 {
4545 store_unsigned_integer (valbuf, regsize, byte_order,
4546 value_address (arg));
4547 typecode = TYPE_CODE_PTR;
4548 len = regsize;
4549 val = valbuf;
4550 if (mips_debug)
4551 fprintf_unfiltered (gdb_stdlog, " push");
4552 }
4553 else
4554 val = value_contents (arg);
4555
4556 /* 32-bit ABIs always start floating point arguments in an
4557 even-numbered floating point register. Round the FP register
4558 up before the check to see if there are any FP registers
4559 left. Non MIPS_EABI targets also pass the FP in the integer
4560 registers so also round up normal registers. */
4561 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
4562 {
4563 if ((float_argreg & 1))
4564 float_argreg++;
4565 }
4566
4567 /* Floating point arguments passed in registers have to be
4568 treated specially. On 32-bit architectures, doubles
4569 are passed in register pairs; the even register gets
4570 the low word, and the odd register gets the high word.
4571 On non-EABI processors, the first two floating point arguments are
4572 also copied to general registers, because MIPS16 functions
4573 don't use float registers for arguments. This duplication of
4574 arguments in general registers can't hurt non-MIPS16 functions
4575 because those registers are normally skipped. */
4576 /* MIPS_EABI squeezes a struct that contains a single floating
4577 point value into an FP register instead of pushing it onto the
4578 stack. */
4579 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4580 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4581 {
4582 /* EABI32 will pass doubles in consecutive registers, even on
4583 64-bit cores. At one time, we used to check the size of
4584 `float_argreg' to determine whether or not to pass doubles
4585 in consecutive registers, but this is not sufficient for
4586 making the ABI determination. */
4587 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
4588 {
4589 int low_offset = gdbarch_byte_order (gdbarch)
4590 == BFD_ENDIAN_BIG ? 4 : 0;
4591 long regval;
4592
4593 /* Write the low word of the double to the even register(s). */
4594 regval = extract_signed_integer (val + low_offset,
4595 4, byte_order);
4596 if (mips_debug)
4597 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4598 float_argreg, phex (regval, 4));
4599 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4600
4601 /* Write the high word of the double to the odd register(s). */
4602 regval = extract_signed_integer (val + 4 - low_offset,
4603 4, byte_order);
4604 if (mips_debug)
4605 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4606 float_argreg, phex (regval, 4));
4607 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4608 }
4609 else
4610 {
4611 /* This is a floating point value that fits entirely
4612 in a single register. */
4613 /* On 32 bit ABI's the float_argreg is further adjusted
4614 above to ensure that it is even register aligned. */
4615 LONGEST regval = extract_signed_integer (val, len, byte_order);
4616 if (mips_debug)
4617 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4618 float_argreg, phex (regval, len));
4619 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4620 }
4621 }
4622 else
4623 {
4624 /* Copy the argument to general registers or the stack in
4625 register-sized pieces. Large arguments are split between
4626 registers and stack. */
4627 /* Note: structs whose size is not a multiple of regsize
4628 are treated specially: Irix cc passes
4629 them in registers where gcc sometimes puts them on the
4630 stack. For maximum compatibility, we will put them in
4631 both places. */
4632 int odd_sized_struct = (len > regsize && len % regsize != 0);
4633
4634 /* Note: Floating-point values that didn't fit into an FP
4635 register are only written to memory. */
4636 while (len > 0)
4637 {
4638 /* Remember if the argument was written to the stack. */
4639 int stack_used_p = 0;
4640 int partial_len = (len < regsize ? len : regsize);
4641
4642 if (mips_debug)
4643 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4644 partial_len);
4645
4646 /* Write this portion of the argument to the stack. */
4647 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4648 || odd_sized_struct
4649 || fp_register_arg_p (gdbarch, typecode, arg_type))
4650 {
4651 /* Should shorter than int integer values be
4652 promoted to int before being stored? */
4653 int longword_offset = 0;
4654 CORE_ADDR addr;
4655 stack_used_p = 1;
4656 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4657 {
4658 if (regsize == 8
4659 && (typecode == TYPE_CODE_INT
4660 || typecode == TYPE_CODE_PTR
4661 || typecode == TYPE_CODE_FLT) && len <= 4)
4662 longword_offset = regsize - len;
4663 else if ((typecode == TYPE_CODE_STRUCT
4664 || typecode == TYPE_CODE_UNION)
4665 && TYPE_LENGTH (arg_type) < regsize)
4666 longword_offset = regsize - len;
4667 }
4668
4669 if (mips_debug)
4670 {
4671 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4672 paddress (gdbarch, stack_offset));
4673 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4674 paddress (gdbarch, longword_offset));
4675 }
4676
4677 addr = sp + stack_offset + longword_offset;
4678
4679 if (mips_debug)
4680 {
4681 int i;
4682 fprintf_unfiltered (gdb_stdlog, " @%s ",
4683 paddress (gdbarch, addr));
4684 for (i = 0; i < partial_len; i++)
4685 {
4686 fprintf_unfiltered (gdb_stdlog, "%02x",
4687 val[i] & 0xff);
4688 }
4689 }
4690 write_memory (addr, val, partial_len);
4691 }
4692
4693 /* Note!!! This is NOT an else clause. Odd sized
4694 structs may go thru BOTH paths. Floating point
4695 arguments will not. */
4696 /* Write this portion of the argument to a general
4697 purpose register. */
4698 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4699 && !fp_register_arg_p (gdbarch, typecode, arg_type))
4700 {
4701 LONGEST regval =
4702 extract_signed_integer (val, partial_len, byte_order);
4703
4704 if (mips_debug)
4705 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4706 argreg,
4707 phex (regval, regsize));
4708 regcache_cooked_write_signed (regcache, argreg, regval);
4709 argreg++;
4710 }
4711
4712 len -= partial_len;
4713 val += partial_len;
4714
4715 /* Compute the offset into the stack at which we will
4716 copy the next parameter.
4717
4718 In the new EABI (and the NABI32), the stack_offset
4719 only needs to be adjusted when it has been used. */
4720
4721 if (stack_used_p)
4722 stack_offset += align_up (partial_len, regsize);
4723 }
4724 }
4725 if (mips_debug)
4726 fprintf_unfiltered (gdb_stdlog, "\n");
4727 }
4728
4729 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4730
4731 /* Return adjusted stack pointer. */
4732 return sp;
4733 }
4734
4735 /* Determine the return value convention being used. */
4736
4737 static enum return_value_convention
4738 mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
4739 struct type *type, struct regcache *regcache,
4740 gdb_byte *readbuf, const gdb_byte *writebuf)
4741 {
4742 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4743 int fp_return_type = 0;
4744 int offset, regnum, xfer;
4745
4746 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4747 return RETURN_VALUE_STRUCT_CONVENTION;
4748
4749 /* Floating point type? */
4750 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4751 {
4752 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4753 fp_return_type = 1;
4754 /* Structs with a single field of float type
4755 are returned in a floating point register. */
4756 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4757 || TYPE_CODE (type) == TYPE_CODE_UNION)
4758 && TYPE_NFIELDS (type) == 1)
4759 {
4760 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4761
4762 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4763 fp_return_type = 1;
4764 }
4765 }
4766
4767 if (fp_return_type)
4768 {
4769 /* A floating-point value belongs in the least significant part
4770 of FP0/FP1. */
4771 if (mips_debug)
4772 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4773 regnum = mips_regnum (gdbarch)->fp0;
4774 }
4775 else
4776 {
4777 /* An integer value goes in V0/V1. */
4778 if (mips_debug)
4779 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4780 regnum = MIPS_V0_REGNUM;
4781 }
4782 for (offset = 0;
4783 offset < TYPE_LENGTH (type);
4784 offset += mips_abi_regsize (gdbarch), regnum++)
4785 {
4786 xfer = mips_abi_regsize (gdbarch);
4787 if (offset + xfer > TYPE_LENGTH (type))
4788 xfer = TYPE_LENGTH (type) - offset;
4789 mips_xfer_register (gdbarch, regcache,
4790 gdbarch_num_regs (gdbarch) + regnum, xfer,
4791 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4792 offset);
4793 }
4794
4795 return RETURN_VALUE_REGISTER_CONVENTION;
4796 }
4797
4798
4799 /* N32/N64 ABI stuff. */
4800
4801 /* Search for a naturally aligned double at OFFSET inside a struct
4802 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4803 registers. */
4804
4805 static int
4806 mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4807 int offset)
4808 {
4809 int i;
4810
4811 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4812 return 0;
4813
4814 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
4815 return 0;
4816
4817 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4818 return 0;
4819
4820 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4821 {
4822 int pos;
4823 struct type *field_type;
4824
4825 /* We're only looking at normal fields. */
4826 if (field_is_static (&TYPE_FIELD (arg_type, i))
4827 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4828 continue;
4829
4830 /* If we have gone past the offset, there is no double to pass. */
4831 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4832 if (pos > offset)
4833 return 0;
4834
4835 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4836
4837 /* If this field is entirely before the requested offset, go
4838 on to the next one. */
4839 if (pos + TYPE_LENGTH (field_type) <= offset)
4840 continue;
4841
4842 /* If this is our special aligned double, we can stop. */
4843 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4844 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4845 return 1;
4846
4847 /* This field starts at or before the requested offset, and
4848 overlaps it. If it is a structure, recurse inwards. */
4849 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
4850 }
4851
4852 return 0;
4853 }
4854
4855 static CORE_ADDR
4856 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4857 struct regcache *regcache, CORE_ADDR bp_addr,
4858 int nargs, struct value **args, CORE_ADDR sp,
4859 int struct_return, CORE_ADDR struct_addr)
4860 {
4861 int argreg;
4862 int float_argreg;
4863 int argnum;
4864 int len = 0;
4865 int stack_offset = 0;
4866 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4867 CORE_ADDR func_addr = find_function_addr (function, NULL);
4868
4869 /* For shared libraries, "t9" needs to point at the function
4870 address. */
4871 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4872
4873 /* Set the return address register to point to the entry point of
4874 the program, where a breakpoint lies in wait. */
4875 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4876
4877 /* First ensure that the stack and structure return address (if any)
4878 are properly aligned. The stack has to be at least 64-bit
4879 aligned even on 32-bit machines, because doubles must be 64-bit
4880 aligned. For n32 and n64, stack frames need to be 128-bit
4881 aligned, so we round to this widest known alignment. */
4882
4883 sp = align_down (sp, 16);
4884 struct_addr = align_down (struct_addr, 16);
4885
4886 /* Now make space on the stack for the args. */
4887 for (argnum = 0; argnum < nargs; argnum++)
4888 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
4889 sp -= align_up (len, 16);
4890
4891 if (mips_debug)
4892 fprintf_unfiltered (gdb_stdlog,
4893 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4894 paddress (gdbarch, sp), (long) align_up (len, 16));
4895
4896 /* Initialize the integer and float register pointers. */
4897 argreg = MIPS_A0_REGNUM;
4898 float_argreg = mips_fpa0_regnum (gdbarch);
4899
4900 /* The struct_return pointer occupies the first parameter-passing reg. */
4901 if (struct_return)
4902 {
4903 if (mips_debug)
4904 fprintf_unfiltered (gdb_stdlog,
4905 "mips_n32n64_push_dummy_call: "
4906 "struct_return reg=%d %s\n",
4907 argreg, paddress (gdbarch, struct_addr));
4908 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4909 }
4910
4911 /* Now load as many as possible of the first arguments into
4912 registers, and push the rest onto the stack. Loop thru args
4913 from first to last. */
4914 for (argnum = 0; argnum < nargs; argnum++)
4915 {
4916 const gdb_byte *val;
4917 struct value *arg = args[argnum];
4918 struct type *arg_type = check_typedef (value_type (arg));
4919 int len = TYPE_LENGTH (arg_type);
4920 enum type_code typecode = TYPE_CODE (arg_type);
4921
4922 if (mips_debug)
4923 fprintf_unfiltered (gdb_stdlog,
4924 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
4925 argnum + 1, len, (int) typecode);
4926
4927 val = value_contents (arg);
4928
4929 /* A 128-bit long double value requires an even-odd pair of
4930 floating-point registers. */
4931 if (len == 16
4932 && fp_register_arg_p (gdbarch, typecode, arg_type)
4933 && (float_argreg & 1))
4934 {
4935 float_argreg++;
4936 argreg++;
4937 }
4938
4939 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4940 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4941 {
4942 /* This is a floating point value that fits entirely
4943 in a single register or a pair of registers. */
4944 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4945 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
4946 if (mips_debug)
4947 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4948 float_argreg, phex (regval, reglen));
4949 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4950
4951 if (mips_debug)
4952 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4953 argreg, phex (regval, reglen));
4954 regcache_cooked_write_unsigned (regcache, argreg, regval);
4955 float_argreg++;
4956 argreg++;
4957 if (len == 16)
4958 {
4959 regval = extract_unsigned_integer (val + reglen,
4960 reglen, byte_order);
4961 if (mips_debug)
4962 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4963 float_argreg, phex (regval, reglen));
4964 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4965
4966 if (mips_debug)
4967 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4968 argreg, phex (regval, reglen));
4969 regcache_cooked_write_unsigned (regcache, argreg, regval);
4970 float_argreg++;
4971 argreg++;
4972 }
4973 }
4974 else
4975 {
4976 /* Copy the argument to general registers or the stack in
4977 register-sized pieces. Large arguments are split between
4978 registers and stack. */
4979 /* For N32/N64, structs, unions, or other composite types are
4980 treated as a sequence of doublewords, and are passed in integer
4981 or floating point registers as though they were simple scalar
4982 parameters to the extent that they fit, with any excess on the
4983 stack packed according to the normal memory layout of the
4984 object.
4985 The caller does not reserve space for the register arguments;
4986 the callee is responsible for reserving it if required. */
4987 /* Note: Floating-point values that didn't fit into an FP
4988 register are only written to memory. */
4989 while (len > 0)
4990 {
4991 /* Remember if the argument was written to the stack. */
4992 int stack_used_p = 0;
4993 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4994
4995 if (mips_debug)
4996 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4997 partial_len);
4998
4999 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5000 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
5001
5002 /* Write this portion of the argument to the stack. */
5003 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
5004 {
5005 /* Should shorter than int integer values be
5006 promoted to int before being stored? */
5007 int longword_offset = 0;
5008 CORE_ADDR addr;
5009 stack_used_p = 1;
5010 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5011 {
5012 if ((typecode == TYPE_CODE_INT
5013 || typecode == TYPE_CODE_PTR)
5014 && len <= 4)
5015 longword_offset = MIPS64_REGSIZE - len;
5016 }
5017
5018 if (mips_debug)
5019 {
5020 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5021 paddress (gdbarch, stack_offset));
5022 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5023 paddress (gdbarch, longword_offset));
5024 }
5025
5026 addr = sp + stack_offset + longword_offset;
5027
5028 if (mips_debug)
5029 {
5030 int i;
5031 fprintf_unfiltered (gdb_stdlog, " @%s ",
5032 paddress (gdbarch, addr));
5033 for (i = 0; i < partial_len; i++)
5034 {
5035 fprintf_unfiltered (gdb_stdlog, "%02x",
5036 val[i] & 0xff);
5037 }
5038 }
5039 write_memory (addr, val, partial_len);
5040 }
5041
5042 /* Note!!! This is NOT an else clause. Odd sized
5043 structs may go thru BOTH paths. */
5044 /* Write this portion of the argument to a general
5045 purpose register. */
5046 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5047 {
5048 LONGEST regval;
5049
5050 /* Sign extend pointers, 32-bit integers and signed
5051 16-bit and 8-bit integers; everything else is taken
5052 as is. */
5053
5054 if ((partial_len == 4
5055 && (typecode == TYPE_CODE_PTR
5056 || typecode == TYPE_CODE_INT))
5057 || (partial_len < 4
5058 && typecode == TYPE_CODE_INT
5059 && !TYPE_UNSIGNED (arg_type)))
5060 regval = extract_signed_integer (val, partial_len,
5061 byte_order);
5062 else
5063 regval = extract_unsigned_integer (val, partial_len,
5064 byte_order);
5065
5066 /* A non-floating-point argument being passed in a
5067 general register. If a struct or union, and if
5068 the remaining length is smaller than the register
5069 size, we have to adjust the register value on
5070 big endian targets.
5071
5072 It does not seem to be necessary to do the
5073 same for integral types. */
5074
5075 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5076 && partial_len < MIPS64_REGSIZE
5077 && (typecode == TYPE_CODE_STRUCT
5078 || typecode == TYPE_CODE_UNION))
5079 regval <<= ((MIPS64_REGSIZE - partial_len)
5080 * TARGET_CHAR_BIT);
5081
5082 if (mips_debug)
5083 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5084 argreg,
5085 phex (regval, MIPS64_REGSIZE));
5086 regcache_cooked_write_unsigned (regcache, argreg, regval);
5087
5088 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
5089 TYPE_LENGTH (arg_type) - len))
5090 {
5091 if (mips_debug)
5092 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
5093 float_argreg,
5094 phex (regval, MIPS64_REGSIZE));
5095 regcache_cooked_write_unsigned (regcache, float_argreg,
5096 regval);
5097 }
5098
5099 float_argreg++;
5100 argreg++;
5101 }
5102
5103 len -= partial_len;
5104 val += partial_len;
5105
5106 /* Compute the offset into the stack at which we will
5107 copy the next parameter.
5108
5109 In N32 (N64?), the stack_offset only needs to be
5110 adjusted when it has been used. */
5111
5112 if (stack_used_p)
5113 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
5114 }
5115 }
5116 if (mips_debug)
5117 fprintf_unfiltered (gdb_stdlog, "\n");
5118 }
5119
5120 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5121
5122 /* Return adjusted stack pointer. */
5123 return sp;
5124 }
5125
5126 static enum return_value_convention
5127 mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
5128 struct type *type, struct regcache *regcache,
5129 gdb_byte *readbuf, const gdb_byte *writebuf)
5130 {
5131 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5132
5133 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5134
5135 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5136 if needed), as appropriate for the type. Composite results (struct,
5137 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5138 following rules:
5139
5140 * A struct with only one or two floating point fields is returned in $f0
5141 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5142 case.
5143
5144 * Any other composite results of at most 128 bits are returned in
5145 $2 (first 64 bits) and $3 (remainder, if necessary).
5146
5147 * Larger composite results are handled by converting the function to a
5148 procedure with an implicit first parameter, which is a pointer to an area
5149 reserved by the caller to receive the result. [The o32-bit ABI requires
5150 that all composite results be handled by conversion to implicit first
5151 parameters. The MIPS/SGI Fortran implementation has always made a
5152 specific exception to return COMPLEX results in the floating point
5153 registers.] */
5154
5155 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
5156 return RETURN_VALUE_STRUCT_CONVENTION;
5157 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5158 && TYPE_LENGTH (type) == 16
5159 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5160 {
5161 /* A 128-bit floating-point value fills both $f0 and $f2. The
5162 two registers are used in the same as memory order, so the
5163 eight bytes with the lower memory address are in $f0. */
5164 if (mips_debug)
5165 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
5166 mips_xfer_register (gdbarch, regcache,
5167 (gdbarch_num_regs (gdbarch)
5168 + mips_regnum (gdbarch)->fp0),
5169 8, gdbarch_byte_order (gdbarch),
5170 readbuf, writebuf, 0);
5171 mips_xfer_register (gdbarch, regcache,
5172 (gdbarch_num_regs (gdbarch)
5173 + mips_regnum (gdbarch)->fp0 + 2),
5174 8, gdbarch_byte_order (gdbarch),
5175 readbuf ? readbuf + 8 : readbuf,
5176 writebuf ? writebuf + 8 : writebuf, 0);
5177 return RETURN_VALUE_REGISTER_CONVENTION;
5178 }
5179 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5180 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5181 {
5182 /* A single or double floating-point value that fits in FP0. */
5183 if (mips_debug)
5184 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5185 mips_xfer_register (gdbarch, regcache,
5186 (gdbarch_num_regs (gdbarch)
5187 + mips_regnum (gdbarch)->fp0),
5188 TYPE_LENGTH (type),
5189 gdbarch_byte_order (gdbarch),
5190 readbuf, writebuf, 0);
5191 return RETURN_VALUE_REGISTER_CONVENTION;
5192 }
5193 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5194 && TYPE_NFIELDS (type) <= 2
5195 && TYPE_NFIELDS (type) >= 1
5196 && ((TYPE_NFIELDS (type) == 1
5197 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5198 == TYPE_CODE_FLT))
5199 || (TYPE_NFIELDS (type) == 2
5200 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5201 == TYPE_CODE_FLT)
5202 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5203 == TYPE_CODE_FLT))))
5204 {
5205 /* A struct that contains one or two floats. Each value is part
5206 in the least significant part of their floating point
5207 register (or GPR, for soft float). */
5208 int regnum;
5209 int field;
5210 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5211 ? mips_regnum (gdbarch)->fp0
5212 : MIPS_V0_REGNUM);
5213 field < TYPE_NFIELDS (type); field++, regnum += 2)
5214 {
5215 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5216 / TARGET_CHAR_BIT);
5217 if (mips_debug)
5218 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5219 offset);
5220 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5221 {
5222 /* A 16-byte long double field goes in two consecutive
5223 registers. */
5224 mips_xfer_register (gdbarch, regcache,
5225 gdbarch_num_regs (gdbarch) + regnum,
5226 8,
5227 gdbarch_byte_order (gdbarch),
5228 readbuf, writebuf, offset);
5229 mips_xfer_register (gdbarch, regcache,
5230 gdbarch_num_regs (gdbarch) + regnum + 1,
5231 8,
5232 gdbarch_byte_order (gdbarch),
5233 readbuf, writebuf, offset + 8);
5234 }
5235 else
5236 mips_xfer_register (gdbarch, regcache,
5237 gdbarch_num_regs (gdbarch) + regnum,
5238 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5239 gdbarch_byte_order (gdbarch),
5240 readbuf, writebuf, offset);
5241 }
5242 return RETURN_VALUE_REGISTER_CONVENTION;
5243 }
5244 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5245 || TYPE_CODE (type) == TYPE_CODE_UNION
5246 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5247 {
5248 /* A composite type. Extract the left justified value,
5249 regardless of the byte order. I.e. DO NOT USE
5250 mips_xfer_lower. */
5251 int offset;
5252 int regnum;
5253 for (offset = 0, regnum = MIPS_V0_REGNUM;
5254 offset < TYPE_LENGTH (type);
5255 offset += register_size (gdbarch, regnum), regnum++)
5256 {
5257 int xfer = register_size (gdbarch, regnum);
5258 if (offset + xfer > TYPE_LENGTH (type))
5259 xfer = TYPE_LENGTH (type) - offset;
5260 if (mips_debug)
5261 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5262 offset, xfer, regnum);
5263 mips_xfer_register (gdbarch, regcache,
5264 gdbarch_num_regs (gdbarch) + regnum,
5265 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5266 offset);
5267 }
5268 return RETURN_VALUE_REGISTER_CONVENTION;
5269 }
5270 else
5271 {
5272 /* A scalar extract each part but least-significant-byte
5273 justified. */
5274 int offset;
5275 int regnum;
5276 for (offset = 0, regnum = MIPS_V0_REGNUM;
5277 offset < TYPE_LENGTH (type);
5278 offset += register_size (gdbarch, regnum), regnum++)
5279 {
5280 int xfer = register_size (gdbarch, regnum);
5281 if (offset + xfer > TYPE_LENGTH (type))
5282 xfer = TYPE_LENGTH (type) - offset;
5283 if (mips_debug)
5284 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5285 offset, xfer, regnum);
5286 mips_xfer_register (gdbarch, regcache,
5287 gdbarch_num_regs (gdbarch) + regnum,
5288 xfer, gdbarch_byte_order (gdbarch),
5289 readbuf, writebuf, offset);
5290 }
5291 return RETURN_VALUE_REGISTER_CONVENTION;
5292 }
5293 }
5294
5295 /* Which registers to use for passing floating-point values between
5296 function calls, one of floating-point, general and both kinds of
5297 registers. O32 and O64 use different register kinds for standard
5298 MIPS and MIPS16 code; to make the handling of cases where we may
5299 not know what kind of code is being used (e.g. no debug information)
5300 easier we sometimes use both kinds. */
5301
5302 enum mips_fval_reg
5303 {
5304 mips_fval_fpr,
5305 mips_fval_gpr,
5306 mips_fval_both
5307 };
5308
5309 /* O32 ABI stuff. */
5310
5311 static CORE_ADDR
5312 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5313 struct regcache *regcache, CORE_ADDR bp_addr,
5314 int nargs, struct value **args, CORE_ADDR sp,
5315 int struct_return, CORE_ADDR struct_addr)
5316 {
5317 int argreg;
5318 int float_argreg;
5319 int argnum;
5320 int len = 0;
5321 int stack_offset = 0;
5322 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5323 CORE_ADDR func_addr = find_function_addr (function, NULL);
5324
5325 /* For shared libraries, "t9" needs to point at the function
5326 address. */
5327 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5328
5329 /* Set the return address register to point to the entry point of
5330 the program, where a breakpoint lies in wait. */
5331 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5332
5333 /* First ensure that the stack and structure return address (if any)
5334 are properly aligned. The stack has to be at least 64-bit
5335 aligned even on 32-bit machines, because doubles must be 64-bit
5336 aligned. For n32 and n64, stack frames need to be 128-bit
5337 aligned, so we round to this widest known alignment. */
5338
5339 sp = align_down (sp, 16);
5340 struct_addr = align_down (struct_addr, 16);
5341
5342 /* Now make space on the stack for the args. */
5343 for (argnum = 0; argnum < nargs; argnum++)
5344 {
5345 struct type *arg_type = check_typedef (value_type (args[argnum]));
5346
5347 /* Align to double-word if necessary. */
5348 if (mips_type_needs_double_align (arg_type))
5349 len = align_up (len, MIPS32_REGSIZE * 2);
5350 /* Allocate space on the stack. */
5351 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
5352 }
5353 sp -= align_up (len, 16);
5354
5355 if (mips_debug)
5356 fprintf_unfiltered (gdb_stdlog,
5357 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5358 paddress (gdbarch, sp), (long) align_up (len, 16));
5359
5360 /* Initialize the integer and float register pointers. */
5361 argreg = MIPS_A0_REGNUM;
5362 float_argreg = mips_fpa0_regnum (gdbarch);
5363
5364 /* The struct_return pointer occupies the first parameter-passing reg. */
5365 if (struct_return)
5366 {
5367 if (mips_debug)
5368 fprintf_unfiltered (gdb_stdlog,
5369 "mips_o32_push_dummy_call: "
5370 "struct_return reg=%d %s\n",
5371 argreg, paddress (gdbarch, struct_addr));
5372 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5373 stack_offset += MIPS32_REGSIZE;
5374 }
5375
5376 /* Now load as many as possible of the first arguments into
5377 registers, and push the rest onto the stack. Loop thru args
5378 from first to last. */
5379 for (argnum = 0; argnum < nargs; argnum++)
5380 {
5381 const gdb_byte *val;
5382 struct value *arg = args[argnum];
5383 struct type *arg_type = check_typedef (value_type (arg));
5384 int len = TYPE_LENGTH (arg_type);
5385 enum type_code typecode = TYPE_CODE (arg_type);
5386
5387 if (mips_debug)
5388 fprintf_unfiltered (gdb_stdlog,
5389 "mips_o32_push_dummy_call: %d len=%d type=%d",
5390 argnum + 1, len, (int) typecode);
5391
5392 val = value_contents (arg);
5393
5394 /* 32-bit ABIs always start floating point arguments in an
5395 even-numbered floating point register. Round the FP register
5396 up before the check to see if there are any FP registers
5397 left. O32 targets also pass the FP in the integer registers
5398 so also round up normal registers. */
5399 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5400 {
5401 if ((float_argreg & 1))
5402 float_argreg++;
5403 }
5404
5405 /* Floating point arguments passed in registers have to be
5406 treated specially. On 32-bit architectures, doubles are
5407 passed in register pairs; the even FP register gets the
5408 low word, and the odd FP register gets the high word.
5409 On O32, the first two floating point arguments are also
5410 copied to general registers, following their memory order,
5411 because MIPS16 functions don't use float registers for
5412 arguments. This duplication of arguments in general
5413 registers can't hurt non-MIPS16 functions, because those
5414 registers are normally skipped. */
5415
5416 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5417 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5418 {
5419 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
5420 {
5421 int freg_offset = gdbarch_byte_order (gdbarch)
5422 == BFD_ENDIAN_BIG ? 1 : 0;
5423 unsigned long regval;
5424
5425 /* First word. */
5426 regval = extract_unsigned_integer (val, 4, byte_order);
5427 if (mips_debug)
5428 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5429 float_argreg + freg_offset,
5430 phex (regval, 4));
5431 regcache_cooked_write_unsigned (regcache,
5432 float_argreg++ + freg_offset,
5433 regval);
5434 if (mips_debug)
5435 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5436 argreg, phex (regval, 4));
5437 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5438
5439 /* Second word. */
5440 regval = extract_unsigned_integer (val + 4, 4, byte_order);
5441 if (mips_debug)
5442 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5443 float_argreg - freg_offset,
5444 phex (regval, 4));
5445 regcache_cooked_write_unsigned (regcache,
5446 float_argreg++ - freg_offset,
5447 regval);
5448 if (mips_debug)
5449 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5450 argreg, phex (regval, 4));
5451 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5452 }
5453 else
5454 {
5455 /* This is a floating point value that fits entirely
5456 in a single register. */
5457 /* On 32 bit ABI's the float_argreg is further adjusted
5458 above to ensure that it is even register aligned. */
5459 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5460 if (mips_debug)
5461 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5462 float_argreg, phex (regval, len));
5463 regcache_cooked_write_unsigned (regcache,
5464 float_argreg++, regval);
5465 /* Although two FP registers are reserved for each
5466 argument, only one corresponding integer register is
5467 reserved. */
5468 if (mips_debug)
5469 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5470 argreg, phex (regval, len));
5471 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5472 }
5473 /* Reserve space for the FP register. */
5474 stack_offset += align_up (len, MIPS32_REGSIZE);
5475 }
5476 else
5477 {
5478 /* Copy the argument to general registers or the stack in
5479 register-sized pieces. Large arguments are split between
5480 registers and stack. */
5481 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5482 are treated specially: Irix cc passes
5483 them in registers where gcc sometimes puts them on the
5484 stack. For maximum compatibility, we will put them in
5485 both places. */
5486 int odd_sized_struct = (len > MIPS32_REGSIZE
5487 && len % MIPS32_REGSIZE != 0);
5488 /* Structures should be aligned to eight bytes (even arg registers)
5489 on MIPS_ABI_O32, if their first member has double precision. */
5490 if (mips_type_needs_double_align (arg_type))
5491 {
5492 if ((argreg & 1))
5493 {
5494 argreg++;
5495 stack_offset += MIPS32_REGSIZE;
5496 }
5497 }
5498 while (len > 0)
5499 {
5500 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
5501
5502 if (mips_debug)
5503 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5504 partial_len);
5505
5506 /* Write this portion of the argument to the stack. */
5507 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5508 || odd_sized_struct)
5509 {
5510 /* Should shorter than int integer values be
5511 promoted to int before being stored? */
5512 int longword_offset = 0;
5513 CORE_ADDR addr;
5514
5515 if (mips_debug)
5516 {
5517 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5518 paddress (gdbarch, stack_offset));
5519 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5520 paddress (gdbarch, longword_offset));
5521 }
5522
5523 addr = sp + stack_offset + longword_offset;
5524
5525 if (mips_debug)
5526 {
5527 int i;
5528 fprintf_unfiltered (gdb_stdlog, " @%s ",
5529 paddress (gdbarch, addr));
5530 for (i = 0; i < partial_len; i++)
5531 {
5532 fprintf_unfiltered (gdb_stdlog, "%02x",
5533 val[i] & 0xff);
5534 }
5535 }
5536 write_memory (addr, val, partial_len);
5537 }
5538
5539 /* Note!!! This is NOT an else clause. Odd sized
5540 structs may go thru BOTH paths. */
5541 /* Write this portion of the argument to a general
5542 purpose register. */
5543 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5544 {
5545 LONGEST regval = extract_signed_integer (val, partial_len,
5546 byte_order);
5547 /* Value may need to be sign extended, because
5548 mips_isa_regsize() != mips_abi_regsize(). */
5549
5550 /* A non-floating-point argument being passed in a
5551 general register. If a struct or union, and if
5552 the remaining length is smaller than the register
5553 size, we have to adjust the register value on
5554 big endian targets.
5555
5556 It does not seem to be necessary to do the
5557 same for integral types.
5558
5559 Also don't do this adjustment on O64 binaries.
5560
5561 cagney/2001-07-23: gdb/179: Also, GCC, when
5562 outputting LE O32 with sizeof (struct) <
5563 mips_abi_regsize(), generates a left shift
5564 as part of storing the argument in a register
5565 (the left shift isn't generated when
5566 sizeof (struct) >= mips_abi_regsize()). Since
5567 it is quite possible that this is GCC
5568 contradicting the LE/O32 ABI, GDB has not been
5569 adjusted to accommodate this. Either someone
5570 needs to demonstrate that the LE/O32 ABI
5571 specifies such a left shift OR this new ABI gets
5572 identified as such and GDB gets tweaked
5573 accordingly. */
5574
5575 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5576 && partial_len < MIPS32_REGSIZE
5577 && (typecode == TYPE_CODE_STRUCT
5578 || typecode == TYPE_CODE_UNION))
5579 regval <<= ((MIPS32_REGSIZE - partial_len)
5580 * TARGET_CHAR_BIT);
5581
5582 if (mips_debug)
5583 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5584 argreg,
5585 phex (regval, MIPS32_REGSIZE));
5586 regcache_cooked_write_unsigned (regcache, argreg, regval);
5587 argreg++;
5588
5589 /* Prevent subsequent floating point arguments from
5590 being passed in floating point registers. */
5591 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
5592 }
5593
5594 len -= partial_len;
5595 val += partial_len;
5596
5597 /* Compute the offset into the stack at which we will
5598 copy the next parameter.
5599
5600 In older ABIs, the caller reserved space for
5601 registers that contained arguments. This was loosely
5602 refered to as their "home". Consequently, space is
5603 always allocated. */
5604
5605 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
5606 }
5607 }
5608 if (mips_debug)
5609 fprintf_unfiltered (gdb_stdlog, "\n");
5610 }
5611
5612 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5613
5614 /* Return adjusted stack pointer. */
5615 return sp;
5616 }
5617
5618 static enum return_value_convention
5619 mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
5620 struct type *type, struct regcache *regcache,
5621 gdb_byte *readbuf, const gdb_byte *writebuf)
5622 {
5623 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
5624 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
5625 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5626 enum mips_fval_reg fval_reg;
5627
5628 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
5629 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5630 || TYPE_CODE (type) == TYPE_CODE_UNION
5631 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5632 return RETURN_VALUE_STRUCT_CONVENTION;
5633 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5634 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5635 {
5636 /* A single-precision floating-point value. If reading in or copying,
5637 then we get it from/put it to FP0 for standard MIPS code or GPR2
5638 for MIPS16 code. If writing out only, then we put it to both FP0
5639 and GPR2. We do not support reading in with no function known, if
5640 this safety check ever triggers, then we'll have to try harder. */
5641 gdb_assert (function || !readbuf);
5642 if (mips_debug)
5643 switch (fval_reg)
5644 {
5645 case mips_fval_fpr:
5646 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5647 break;
5648 case mips_fval_gpr:
5649 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5650 break;
5651 case mips_fval_both:
5652 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5653 break;
5654 }
5655 if (fval_reg != mips_fval_gpr)
5656 mips_xfer_register (gdbarch, regcache,
5657 (gdbarch_num_regs (gdbarch)
5658 + mips_regnum (gdbarch)->fp0),
5659 TYPE_LENGTH (type),
5660 gdbarch_byte_order (gdbarch),
5661 readbuf, writebuf, 0);
5662 if (fval_reg != mips_fval_fpr)
5663 mips_xfer_register (gdbarch, regcache,
5664 gdbarch_num_regs (gdbarch) + 2,
5665 TYPE_LENGTH (type),
5666 gdbarch_byte_order (gdbarch),
5667 readbuf, writebuf, 0);
5668 return RETURN_VALUE_REGISTER_CONVENTION;
5669 }
5670 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5671 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5672 {
5673 /* A double-precision floating-point value. If reading in or copying,
5674 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5675 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5676 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5677 no function known, if this safety check ever triggers, then we'll
5678 have to try harder. */
5679 gdb_assert (function || !readbuf);
5680 if (mips_debug)
5681 switch (fval_reg)
5682 {
5683 case mips_fval_fpr:
5684 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5685 break;
5686 case mips_fval_gpr:
5687 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5688 break;
5689 case mips_fval_both:
5690 fprintf_unfiltered (gdb_stderr,
5691 "Return float in $fp1/$fp0 and $2/$3\n");
5692 break;
5693 }
5694 if (fval_reg != mips_fval_gpr)
5695 {
5696 /* The most significant part goes in FP1, and the least significant
5697 in FP0. */
5698 switch (gdbarch_byte_order (gdbarch))
5699 {
5700 case BFD_ENDIAN_LITTLE:
5701 mips_xfer_register (gdbarch, regcache,
5702 (gdbarch_num_regs (gdbarch)
5703 + mips_regnum (gdbarch)->fp0 + 0),
5704 4, gdbarch_byte_order (gdbarch),
5705 readbuf, writebuf, 0);
5706 mips_xfer_register (gdbarch, regcache,
5707 (gdbarch_num_regs (gdbarch)
5708 + mips_regnum (gdbarch)->fp0 + 1),
5709 4, gdbarch_byte_order (gdbarch),
5710 readbuf, writebuf, 4);
5711 break;
5712 case BFD_ENDIAN_BIG:
5713 mips_xfer_register (gdbarch, regcache,
5714 (gdbarch_num_regs (gdbarch)
5715 + mips_regnum (gdbarch)->fp0 + 1),
5716 4, gdbarch_byte_order (gdbarch),
5717 readbuf, writebuf, 0);
5718 mips_xfer_register (gdbarch, regcache,
5719 (gdbarch_num_regs (gdbarch)
5720 + mips_regnum (gdbarch)->fp0 + 0),
5721 4, gdbarch_byte_order (gdbarch),
5722 readbuf, writebuf, 4);
5723 break;
5724 default:
5725 internal_error (__FILE__, __LINE__, _("bad switch"));
5726 }
5727 }
5728 if (fval_reg != mips_fval_fpr)
5729 {
5730 /* The two 32-bit parts are always placed in GPR2 and GPR3
5731 following these registers' memory order. */
5732 mips_xfer_register (gdbarch, regcache,
5733 gdbarch_num_regs (gdbarch) + 2,
5734 4, gdbarch_byte_order (gdbarch),
5735 readbuf, writebuf, 0);
5736 mips_xfer_register (gdbarch, regcache,
5737 gdbarch_num_regs (gdbarch) + 3,
5738 4, gdbarch_byte_order (gdbarch),
5739 readbuf, writebuf, 4);
5740 }
5741 return RETURN_VALUE_REGISTER_CONVENTION;
5742 }
5743 #if 0
5744 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5745 && TYPE_NFIELDS (type) <= 2
5746 && TYPE_NFIELDS (type) >= 1
5747 && ((TYPE_NFIELDS (type) == 1
5748 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5749 == TYPE_CODE_FLT))
5750 || (TYPE_NFIELDS (type) == 2
5751 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5752 == TYPE_CODE_FLT)
5753 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5754 == TYPE_CODE_FLT)))
5755 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5756 {
5757 /* A struct that contains one or two floats. Each value is part
5758 in the least significant part of their floating point
5759 register.. */
5760 gdb_byte reg[MAX_REGISTER_SIZE];
5761 int regnum;
5762 int field;
5763 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
5764 field < TYPE_NFIELDS (type); field++, regnum += 2)
5765 {
5766 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5767 / TARGET_CHAR_BIT);
5768 if (mips_debug)
5769 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5770 offset);
5771 mips_xfer_register (gdbarch, regcache,
5772 gdbarch_num_regs (gdbarch) + regnum,
5773 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5774 gdbarch_byte_order (gdbarch),
5775 readbuf, writebuf, offset);
5776 }
5777 return RETURN_VALUE_REGISTER_CONVENTION;
5778 }
5779 #endif
5780 #if 0
5781 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5782 || TYPE_CODE (type) == TYPE_CODE_UNION)
5783 {
5784 /* A structure or union. Extract the left justified value,
5785 regardless of the byte order. I.e. DO NOT USE
5786 mips_xfer_lower. */
5787 int offset;
5788 int regnum;
5789 for (offset = 0, regnum = MIPS_V0_REGNUM;
5790 offset < TYPE_LENGTH (type);
5791 offset += register_size (gdbarch, regnum), regnum++)
5792 {
5793 int xfer = register_size (gdbarch, regnum);
5794 if (offset + xfer > TYPE_LENGTH (type))
5795 xfer = TYPE_LENGTH (type) - offset;
5796 if (mips_debug)
5797 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5798 offset, xfer, regnum);
5799 mips_xfer_register (gdbarch, regcache,
5800 gdbarch_num_regs (gdbarch) + regnum, xfer,
5801 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5802 }
5803 return RETURN_VALUE_REGISTER_CONVENTION;
5804 }
5805 #endif
5806 else
5807 {
5808 /* A scalar extract each part but least-significant-byte
5809 justified. o32 thinks registers are 4 byte, regardless of
5810 the ISA. */
5811 int offset;
5812 int regnum;
5813 for (offset = 0, regnum = MIPS_V0_REGNUM;
5814 offset < TYPE_LENGTH (type);
5815 offset += MIPS32_REGSIZE, regnum++)
5816 {
5817 int xfer = MIPS32_REGSIZE;
5818 if (offset + xfer > TYPE_LENGTH (type))
5819 xfer = TYPE_LENGTH (type) - offset;
5820 if (mips_debug)
5821 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5822 offset, xfer, regnum);
5823 mips_xfer_register (gdbarch, regcache,
5824 gdbarch_num_regs (gdbarch) + regnum, xfer,
5825 gdbarch_byte_order (gdbarch),
5826 readbuf, writebuf, offset);
5827 }
5828 return RETURN_VALUE_REGISTER_CONVENTION;
5829 }
5830 }
5831
5832 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5833 ABI. */
5834
5835 static CORE_ADDR
5836 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5837 struct regcache *regcache, CORE_ADDR bp_addr,
5838 int nargs,
5839 struct value **args, CORE_ADDR sp,
5840 int struct_return, CORE_ADDR struct_addr)
5841 {
5842 int argreg;
5843 int float_argreg;
5844 int argnum;
5845 int len = 0;
5846 int stack_offset = 0;
5847 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5848 CORE_ADDR func_addr = find_function_addr (function, NULL);
5849
5850 /* For shared libraries, "t9" needs to point at the function
5851 address. */
5852 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5853
5854 /* Set the return address register to point to the entry point of
5855 the program, where a breakpoint lies in wait. */
5856 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5857
5858 /* First ensure that the stack and structure return address (if any)
5859 are properly aligned. The stack has to be at least 64-bit
5860 aligned even on 32-bit machines, because doubles must be 64-bit
5861 aligned. For n32 and n64, stack frames need to be 128-bit
5862 aligned, so we round to this widest known alignment. */
5863
5864 sp = align_down (sp, 16);
5865 struct_addr = align_down (struct_addr, 16);
5866
5867 /* Now make space on the stack for the args. */
5868 for (argnum = 0; argnum < nargs; argnum++)
5869 {
5870 struct type *arg_type = check_typedef (value_type (args[argnum]));
5871
5872 /* Allocate space on the stack. */
5873 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
5874 }
5875 sp -= align_up (len, 16);
5876
5877 if (mips_debug)
5878 fprintf_unfiltered (gdb_stdlog,
5879 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5880 paddress (gdbarch, sp), (long) align_up (len, 16));
5881
5882 /* Initialize the integer and float register pointers. */
5883 argreg = MIPS_A0_REGNUM;
5884 float_argreg = mips_fpa0_regnum (gdbarch);
5885
5886 /* The struct_return pointer occupies the first parameter-passing reg. */
5887 if (struct_return)
5888 {
5889 if (mips_debug)
5890 fprintf_unfiltered (gdb_stdlog,
5891 "mips_o64_push_dummy_call: "
5892 "struct_return reg=%d %s\n",
5893 argreg, paddress (gdbarch, struct_addr));
5894 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5895 stack_offset += MIPS64_REGSIZE;
5896 }
5897
5898 /* Now load as many as possible of the first arguments into
5899 registers, and push the rest onto the stack. Loop thru args
5900 from first to last. */
5901 for (argnum = 0; argnum < nargs; argnum++)
5902 {
5903 const gdb_byte *val;
5904 struct value *arg = args[argnum];
5905 struct type *arg_type = check_typedef (value_type (arg));
5906 int len = TYPE_LENGTH (arg_type);
5907 enum type_code typecode = TYPE_CODE (arg_type);
5908
5909 if (mips_debug)
5910 fprintf_unfiltered (gdb_stdlog,
5911 "mips_o64_push_dummy_call: %d len=%d type=%d",
5912 argnum + 1, len, (int) typecode);
5913
5914 val = value_contents (arg);
5915
5916 /* Floating point arguments passed in registers have to be
5917 treated specially. On 32-bit architectures, doubles are
5918 passed in register pairs; the even FP register gets the
5919 low word, and the odd FP register gets the high word.
5920 On O64, the first two floating point arguments are also
5921 copied to general registers, because MIPS16 functions
5922 don't use float registers for arguments. This duplication
5923 of arguments in general registers can't hurt non-MIPS16
5924 functions because those registers are normally skipped. */
5925
5926 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5927 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5928 {
5929 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5930 if (mips_debug)
5931 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5932 float_argreg, phex (regval, len));
5933 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
5934 if (mips_debug)
5935 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5936 argreg, phex (regval, len));
5937 regcache_cooked_write_unsigned (regcache, argreg, regval);
5938 argreg++;
5939 /* Reserve space for the FP register. */
5940 stack_offset += align_up (len, MIPS64_REGSIZE);
5941 }
5942 else
5943 {
5944 /* Copy the argument to general registers or the stack in
5945 register-sized pieces. Large arguments are split between
5946 registers and stack. */
5947 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
5948 are treated specially: Irix cc passes them in registers
5949 where gcc sometimes puts them on the stack. For maximum
5950 compatibility, we will put them in both places. */
5951 int odd_sized_struct = (len > MIPS64_REGSIZE
5952 && len % MIPS64_REGSIZE != 0);
5953 while (len > 0)
5954 {
5955 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5956
5957 if (mips_debug)
5958 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5959 partial_len);
5960
5961 /* Write this portion of the argument to the stack. */
5962 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5963 || odd_sized_struct)
5964 {
5965 /* Should shorter than int integer values be
5966 promoted to int before being stored? */
5967 int longword_offset = 0;
5968 CORE_ADDR addr;
5969 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5970 {
5971 if ((typecode == TYPE_CODE_INT
5972 || typecode == TYPE_CODE_PTR
5973 || typecode == TYPE_CODE_FLT)
5974 && len <= 4)
5975 longword_offset = MIPS64_REGSIZE - len;
5976 }
5977
5978 if (mips_debug)
5979 {
5980 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5981 paddress (gdbarch, stack_offset));
5982 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5983 paddress (gdbarch, longword_offset));
5984 }
5985
5986 addr = sp + stack_offset + longword_offset;
5987
5988 if (mips_debug)
5989 {
5990 int i;
5991 fprintf_unfiltered (gdb_stdlog, " @%s ",
5992 paddress (gdbarch, addr));
5993 for (i = 0; i < partial_len; i++)
5994 {
5995 fprintf_unfiltered (gdb_stdlog, "%02x",
5996 val[i] & 0xff);
5997 }
5998 }
5999 write_memory (addr, val, partial_len);
6000 }
6001
6002 /* Note!!! This is NOT an else clause. Odd sized
6003 structs may go thru BOTH paths. */
6004 /* Write this portion of the argument to a general
6005 purpose register. */
6006 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
6007 {
6008 LONGEST regval = extract_signed_integer (val, partial_len,
6009 byte_order);
6010 /* Value may need to be sign extended, because
6011 mips_isa_regsize() != mips_abi_regsize(). */
6012
6013 /* A non-floating-point argument being passed in a
6014 general register. If a struct or union, and if
6015 the remaining length is smaller than the register
6016 size, we have to adjust the register value on
6017 big endian targets.
6018
6019 It does not seem to be necessary to do the
6020 same for integral types. */
6021
6022 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
6023 && partial_len < MIPS64_REGSIZE
6024 && (typecode == TYPE_CODE_STRUCT
6025 || typecode == TYPE_CODE_UNION))
6026 regval <<= ((MIPS64_REGSIZE - partial_len)
6027 * TARGET_CHAR_BIT);
6028
6029 if (mips_debug)
6030 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
6031 argreg,
6032 phex (regval, MIPS64_REGSIZE));
6033 regcache_cooked_write_unsigned (regcache, argreg, regval);
6034 argreg++;
6035
6036 /* Prevent subsequent floating point arguments from
6037 being passed in floating point registers. */
6038 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
6039 }
6040
6041 len -= partial_len;
6042 val += partial_len;
6043
6044 /* Compute the offset into the stack at which we will
6045 copy the next parameter.
6046
6047 In older ABIs, the caller reserved space for
6048 registers that contained arguments. This was loosely
6049 refered to as their "home". Consequently, space is
6050 always allocated. */
6051
6052 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
6053 }
6054 }
6055 if (mips_debug)
6056 fprintf_unfiltered (gdb_stdlog, "\n");
6057 }
6058
6059 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
6060
6061 /* Return adjusted stack pointer. */
6062 return sp;
6063 }
6064
6065 static enum return_value_convention
6066 mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
6067 struct type *type, struct regcache *regcache,
6068 gdb_byte *readbuf, const gdb_byte *writebuf)
6069 {
6070 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
6071 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
6072 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6073 enum mips_fval_reg fval_reg;
6074
6075 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6076 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
6077 || TYPE_CODE (type) == TYPE_CODE_UNION
6078 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6079 return RETURN_VALUE_STRUCT_CONVENTION;
6080 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
6081 {
6082 /* A floating-point value. If reading in or copying, then we get it
6083 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6084 If writing out only, then we put it to both FP0 and GPR2. We do
6085 not support reading in with no function known, if this safety
6086 check ever triggers, then we'll have to try harder. */
6087 gdb_assert (function || !readbuf);
6088 if (mips_debug)
6089 switch (fval_reg)
6090 {
6091 case mips_fval_fpr:
6092 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
6093 break;
6094 case mips_fval_gpr:
6095 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
6096 break;
6097 case mips_fval_both:
6098 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
6099 break;
6100 }
6101 if (fval_reg != mips_fval_gpr)
6102 mips_xfer_register (gdbarch, regcache,
6103 (gdbarch_num_regs (gdbarch)
6104 + mips_regnum (gdbarch)->fp0),
6105 TYPE_LENGTH (type),
6106 gdbarch_byte_order (gdbarch),
6107 readbuf, writebuf, 0);
6108 if (fval_reg != mips_fval_fpr)
6109 mips_xfer_register (gdbarch, regcache,
6110 gdbarch_num_regs (gdbarch) + 2,
6111 TYPE_LENGTH (type),
6112 gdbarch_byte_order (gdbarch),
6113 readbuf, writebuf, 0);
6114 return RETURN_VALUE_REGISTER_CONVENTION;
6115 }
6116 else
6117 {
6118 /* A scalar extract each part but least-significant-byte
6119 justified. */
6120 int offset;
6121 int regnum;
6122 for (offset = 0, regnum = MIPS_V0_REGNUM;
6123 offset < TYPE_LENGTH (type);
6124 offset += MIPS64_REGSIZE, regnum++)
6125 {
6126 int xfer = MIPS64_REGSIZE;
6127 if (offset + xfer > TYPE_LENGTH (type))
6128 xfer = TYPE_LENGTH (type) - offset;
6129 if (mips_debug)
6130 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
6131 offset, xfer, regnum);
6132 mips_xfer_register (gdbarch, regcache,
6133 gdbarch_num_regs (gdbarch) + regnum,
6134 xfer, gdbarch_byte_order (gdbarch),
6135 readbuf, writebuf, offset);
6136 }
6137 return RETURN_VALUE_REGISTER_CONVENTION;
6138 }
6139 }
6140
6141 /* Floating point register management.
6142
6143 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6144 64bit operations, these early MIPS cpus treat fp register pairs
6145 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6146 registers and offer a compatibility mode that emulates the MIPS2 fp
6147 model. When operating in MIPS2 fp compat mode, later cpu's split
6148 double precision floats into two 32-bit chunks and store them in
6149 consecutive fp regs. To display 64-bit floats stored in this
6150 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6151 Throw in user-configurable endianness and you have a real mess.
6152
6153 The way this works is:
6154 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6155 double-precision value will be split across two logical registers.
6156 The lower-numbered logical register will hold the low-order bits,
6157 regardless of the processor's endianness.
6158 - If we are on a 64-bit processor, and we are looking for a
6159 single-precision value, it will be in the low ordered bits
6160 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6161 save slot in memory.
6162 - If we are in 64-bit mode, everything is straightforward.
6163
6164 Note that this code only deals with "live" registers at the top of the
6165 stack. We will attempt to deal with saved registers later, when
6166 the raw/cooked register interface is in place. (We need a general
6167 interface that can deal with dynamic saved register sizes -- fp
6168 regs could be 32 bits wide in one frame and 64 on the frame above
6169 and below). */
6170
6171 /* Copy a 32-bit single-precision value from the current frame
6172 into rare_buffer. */
6173
6174 static void
6175 mips_read_fp_register_single (struct frame_info *frame, int regno,
6176 gdb_byte *rare_buffer)
6177 {
6178 struct gdbarch *gdbarch = get_frame_arch (frame);
6179 int raw_size = register_size (gdbarch, regno);
6180 gdb_byte *raw_buffer = (gdb_byte *) alloca (raw_size);
6181
6182 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
6183 error (_("can't read register %d (%s)"),
6184 regno, gdbarch_register_name (gdbarch, regno));
6185 if (raw_size == 8)
6186 {
6187 /* We have a 64-bit value for this register. Find the low-order
6188 32 bits. */
6189 int offset;
6190
6191 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6192 offset = 4;
6193 else
6194 offset = 0;
6195
6196 memcpy (rare_buffer, raw_buffer + offset, 4);
6197 }
6198 else
6199 {
6200 memcpy (rare_buffer, raw_buffer, 4);
6201 }
6202 }
6203
6204 /* Copy a 64-bit double-precision value from the current frame into
6205 rare_buffer. This may include getting half of it from the next
6206 register. */
6207
6208 static void
6209 mips_read_fp_register_double (struct frame_info *frame, int regno,
6210 gdb_byte *rare_buffer)
6211 {
6212 struct gdbarch *gdbarch = get_frame_arch (frame);
6213 int raw_size = register_size (gdbarch, regno);
6214
6215 if (raw_size == 8 && !mips2_fp_compat (frame))
6216 {
6217 /* We have a 64-bit value for this register, and we should use
6218 all 64 bits. */
6219 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
6220 error (_("can't read register %d (%s)"),
6221 regno, gdbarch_register_name (gdbarch, regno));
6222 }
6223 else
6224 {
6225 int rawnum = regno % gdbarch_num_regs (gdbarch);
6226
6227 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
6228 internal_error (__FILE__, __LINE__,
6229 _("mips_read_fp_register_double: bad access to "
6230 "odd-numbered FP register"));
6231
6232 /* mips_read_fp_register_single will find the correct 32 bits from
6233 each register. */
6234 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6235 {
6236 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6237 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
6238 }
6239 else
6240 {
6241 mips_read_fp_register_single (frame, regno, rare_buffer);
6242 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
6243 }
6244 }
6245 }
6246
6247 static void
6248 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6249 int regnum)
6250 { /* Do values for FP (float) regs. */
6251 struct gdbarch *gdbarch = get_frame_arch (frame);
6252 gdb_byte *raw_buffer;
6253 double doub, flt1; /* Doubles extracted from raw hex data. */
6254 int inv1, inv2;
6255
6256 raw_buffer
6257 = ((gdb_byte *)
6258 alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0)));
6259
6260 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
6261 fprintf_filtered (file, "%*s",
6262 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
6263 "");
6264
6265 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
6266 {
6267 struct value_print_options opts;
6268
6269 /* 4-byte registers: Print hex and floating. Also print even
6270 numbered registers as doubles. */
6271 mips_read_fp_register_single (frame, regnum, raw_buffer);
6272 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6273 raw_buffer, &inv1);
6274
6275 get_formatted_print_options (&opts, 'x');
6276 print_scalar_formatted (raw_buffer,
6277 builtin_type (gdbarch)->builtin_uint32,
6278 &opts, 'w', file);
6279
6280 fprintf_filtered (file, " flt: ");
6281 if (inv1)
6282 fprintf_filtered (file, " <invalid float> ");
6283 else
6284 fprintf_filtered (file, "%-17.9g", flt1);
6285
6286 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
6287 {
6288 mips_read_fp_register_double (frame, regnum, raw_buffer);
6289 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6290 raw_buffer, &inv2);
6291
6292 fprintf_filtered (file, " dbl: ");
6293 if (inv2)
6294 fprintf_filtered (file, "<invalid double>");
6295 else
6296 fprintf_filtered (file, "%-24.17g", doub);
6297 }
6298 }
6299 else
6300 {
6301 struct value_print_options opts;
6302
6303 /* Eight byte registers: print each one as hex, float and double. */
6304 mips_read_fp_register_single (frame, regnum, raw_buffer);
6305 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6306 raw_buffer, &inv1);
6307
6308 mips_read_fp_register_double (frame, regnum, raw_buffer);
6309 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6310 raw_buffer, &inv2);
6311
6312 get_formatted_print_options (&opts, 'x');
6313 print_scalar_formatted (raw_buffer,
6314 builtin_type (gdbarch)->builtin_uint64,
6315 &opts, 'g', file);
6316
6317 fprintf_filtered (file, " flt: ");
6318 if (inv1)
6319 fprintf_filtered (file, "<invalid float>");
6320 else
6321 fprintf_filtered (file, "%-17.9g", flt1);
6322
6323 fprintf_filtered (file, " dbl: ");
6324 if (inv2)
6325 fprintf_filtered (file, "<invalid double>");
6326 else
6327 fprintf_filtered (file, "%-24.17g", doub);
6328 }
6329 }
6330
6331 static void
6332 mips_print_register (struct ui_file *file, struct frame_info *frame,
6333 int regnum)
6334 {
6335 struct gdbarch *gdbarch = get_frame_arch (frame);
6336 struct value_print_options opts;
6337 struct value *val;
6338
6339 if (mips_float_register_p (gdbarch, regnum))
6340 {
6341 mips_print_fp_register (file, frame, regnum);
6342 return;
6343 }
6344
6345 val = get_frame_register_value (frame, regnum);
6346
6347 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
6348
6349 /* The problem with printing numeric register names (r26, etc.) is that
6350 the user can't use them on input. Probably the best solution is to
6351 fix it so that either the numeric or the funky (a2, etc.) names
6352 are accepted on input. */
6353 if (regnum < MIPS_NUMREGS)
6354 fprintf_filtered (file, "(r%d): ", regnum);
6355 else
6356 fprintf_filtered (file, ": ");
6357
6358 get_formatted_print_options (&opts, 'x');
6359 val_print_scalar_formatted (value_type (val),
6360 value_contents_for_printing (val),
6361 value_embedded_offset (val),
6362 val,
6363 &opts, 0, file);
6364 }
6365
6366 /* Print IEEE exception condition bits in FLAGS. */
6367
6368 static void
6369 print_fpu_flags (struct ui_file *file, int flags)
6370 {
6371 if (flags & (1 << 0))
6372 fputs_filtered (" inexact", file);
6373 if (flags & (1 << 1))
6374 fputs_filtered (" uflow", file);
6375 if (flags & (1 << 2))
6376 fputs_filtered (" oflow", file);
6377 if (flags & (1 << 3))
6378 fputs_filtered (" div0", file);
6379 if (flags & (1 << 4))
6380 fputs_filtered (" inval", file);
6381 if (flags & (1 << 5))
6382 fputs_filtered (" unimp", file);
6383 fputc_filtered ('\n', file);
6384 }
6385
6386 /* Print interesting information about the floating point processor
6387 (if present) or emulator. */
6388
6389 static void
6390 mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
6391 struct frame_info *frame, const char *args)
6392 {
6393 int fcsr = mips_regnum (gdbarch)->fp_control_status;
6394 enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
6395 ULONGEST fcs = 0;
6396 int i;
6397
6398 if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
6399 type = MIPS_FPU_NONE;
6400
6401 fprintf_filtered (file, "fpu type: %s\n",
6402 type == MIPS_FPU_DOUBLE ? "double-precision"
6403 : type == MIPS_FPU_SINGLE ? "single-precision"
6404 : "none / unused");
6405
6406 if (type == MIPS_FPU_NONE)
6407 return;
6408
6409 fprintf_filtered (file, "reg size: %d bits\n",
6410 register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
6411
6412 fputs_filtered ("cond :", file);
6413 if (fcs & (1 << 23))
6414 fputs_filtered (" 0", file);
6415 for (i = 1; i <= 7; i++)
6416 if (fcs & (1 << (24 + i)))
6417 fprintf_filtered (file, " %d", i);
6418 fputc_filtered ('\n', file);
6419
6420 fputs_filtered ("cause :", file);
6421 print_fpu_flags (file, (fcs >> 12) & 0x3f);
6422 fputs ("mask :", stdout);
6423 print_fpu_flags (file, (fcs >> 7) & 0x1f);
6424 fputs ("flags :", stdout);
6425 print_fpu_flags (file, (fcs >> 2) & 0x1f);
6426
6427 fputs_filtered ("rounding: ", file);
6428 switch (fcs & 3)
6429 {
6430 case 0: fputs_filtered ("nearest\n", file); break;
6431 case 1: fputs_filtered ("zero\n", file); break;
6432 case 2: fputs_filtered ("+inf\n", file); break;
6433 case 3: fputs_filtered ("-inf\n", file); break;
6434 }
6435
6436 fputs_filtered ("flush :", file);
6437 if (fcs & (1 << 21))
6438 fputs_filtered (" nearest", file);
6439 if (fcs & (1 << 22))
6440 fputs_filtered (" override", file);
6441 if (fcs & (1 << 24))
6442 fputs_filtered (" zero", file);
6443 if ((fcs & (0xb << 21)) == 0)
6444 fputs_filtered (" no", file);
6445 fputc_filtered ('\n', file);
6446
6447 fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
6448 fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
6449 fputc_filtered ('\n', file);
6450
6451 default_print_float_info (gdbarch, file, frame, args);
6452 }
6453
6454 /* Replacement for generic do_registers_info.
6455 Print regs in pretty columns. */
6456
6457 static int
6458 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6459 int regnum)
6460 {
6461 fprintf_filtered (file, " ");
6462 mips_print_fp_register (file, frame, regnum);
6463 fprintf_filtered (file, "\n");
6464 return regnum + 1;
6465 }
6466
6467
6468 /* Print a row's worth of GP (int) registers, with name labels above. */
6469
6470 static int
6471 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
6472 int start_regnum)
6473 {
6474 struct gdbarch *gdbarch = get_frame_arch (frame);
6475 /* Do values for GP (int) regs. */
6476 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
6477 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6478 per row. */
6479 int col, byte;
6480 int regnum;
6481
6482 /* For GP registers, we print a separate row of names above the vals. */
6483 for (col = 0, regnum = start_regnum;
6484 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6485 + gdbarch_num_pseudo_regs (gdbarch);
6486 regnum++)
6487 {
6488 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6489 continue; /* unused register */
6490 if (mips_float_register_p (gdbarch, regnum))
6491 break; /* End the row: reached FP register. */
6492 /* Large registers are handled separately. */
6493 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6494 {
6495 if (col > 0)
6496 break; /* End the row before this register. */
6497
6498 /* Print this register on a row by itself. */
6499 mips_print_register (file, frame, regnum);
6500 fprintf_filtered (file, "\n");
6501 return regnum + 1;
6502 }
6503 if (col == 0)
6504 fprintf_filtered (file, " ");
6505 fprintf_filtered (file,
6506 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6507 gdbarch_register_name (gdbarch, regnum));
6508 col++;
6509 }
6510
6511 if (col == 0)
6512 return regnum;
6513
6514 /* Print the R0 to R31 names. */
6515 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
6516 fprintf_filtered (file, "\n R%-4d",
6517 start_regnum % gdbarch_num_regs (gdbarch));
6518 else
6519 fprintf_filtered (file, "\n ");
6520
6521 /* Now print the values in hex, 4 or 8 to the row. */
6522 for (col = 0, regnum = start_regnum;
6523 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6524 + gdbarch_num_pseudo_regs (gdbarch);
6525 regnum++)
6526 {
6527 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6528 continue; /* unused register */
6529 if (mips_float_register_p (gdbarch, regnum))
6530 break; /* End row: reached FP register. */
6531 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6532 break; /* End row: large register. */
6533
6534 /* OK: get the data in raw format. */
6535 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
6536 error (_("can't read register %d (%s)"),
6537 regnum, gdbarch_register_name (gdbarch, regnum));
6538 /* pad small registers */
6539 for (byte = 0;
6540 byte < (mips_abi_regsize (gdbarch)
6541 - register_size (gdbarch, regnum)); byte++)
6542 printf_filtered (" ");
6543 /* Now print the register value in hex, endian order. */
6544 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6545 for (byte =
6546 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6547 byte < register_size (gdbarch, regnum); byte++)
6548 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6549 else
6550 for (byte = register_size (gdbarch, regnum) - 1;
6551 byte >= 0; byte--)
6552 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6553 fprintf_filtered (file, " ");
6554 col++;
6555 }
6556 if (col > 0) /* ie. if we actually printed anything... */
6557 fprintf_filtered (file, "\n");
6558
6559 return regnum;
6560 }
6561
6562 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
6563
6564 static void
6565 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6566 struct frame_info *frame, int regnum, int all)
6567 {
6568 if (regnum != -1) /* Do one specified register. */
6569 {
6570 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6571 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
6572 error (_("Not a valid register for the current processor type"));
6573
6574 mips_print_register (file, frame, regnum);
6575 fprintf_filtered (file, "\n");
6576 }
6577 else
6578 /* Do all (or most) registers. */
6579 {
6580 regnum = gdbarch_num_regs (gdbarch);
6581 while (regnum < gdbarch_num_regs (gdbarch)
6582 + gdbarch_num_pseudo_regs (gdbarch))
6583 {
6584 if (mips_float_register_p (gdbarch, regnum))
6585 {
6586 if (all) /* True for "INFO ALL-REGISTERS" command. */
6587 regnum = print_fp_register_row (file, frame, regnum);
6588 else
6589 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
6590 }
6591 else
6592 regnum = print_gp_register_row (file, frame, regnum);
6593 }
6594 }
6595 }
6596
6597 static int
6598 mips_single_step_through_delay (struct gdbarch *gdbarch,
6599 struct frame_info *frame)
6600 {
6601 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6602 CORE_ADDR pc = get_frame_pc (frame);
6603 struct address_space *aspace;
6604 enum mips_isa isa;
6605 ULONGEST insn;
6606 int status;
6607 int size;
6608
6609 if ((mips_pc_is_mips (pc)
6610 && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
6611 || (mips_pc_is_micromips (gdbarch, pc)
6612 && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
6613 || (mips_pc_is_mips16 (gdbarch, pc)
6614 && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
6615 return 0;
6616
6617 isa = mips_pc_isa (gdbarch, pc);
6618 /* _has_delay_slot above will have validated the read. */
6619 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6620 size = mips_insn_size (isa, insn);
6621 aspace = get_frame_address_space (frame);
6622 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
6623 }
6624
6625 /* To skip prologues, I use this predicate. Returns either PC itself
6626 if the code at PC does not look like a function prologue; otherwise
6627 returns an address that (if we're lucky) follows the prologue. If
6628 LENIENT, then we must skip everything which is involved in setting
6629 up the frame (it's OK to skip more, just so long as we don't skip
6630 anything which might clobber the registers which are being saved.
6631 We must skip more in the case where part of the prologue is in the
6632 delay slot of a non-prologue instruction). */
6633
6634 static CORE_ADDR
6635 mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6636 {
6637 CORE_ADDR limit_pc;
6638 CORE_ADDR func_addr;
6639
6640 /* See if we can determine the end of the prologue via the symbol table.
6641 If so, then return either PC, or the PC after the prologue, whichever
6642 is greater. */
6643 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6644 {
6645 CORE_ADDR post_prologue_pc
6646 = skip_prologue_using_sal (gdbarch, func_addr);
6647 if (post_prologue_pc != 0)
6648 return max (pc, post_prologue_pc);
6649 }
6650
6651 /* Can't determine prologue from the symbol table, need to examine
6652 instructions. */
6653
6654 /* Find an upper limit on the function prologue using the debug
6655 information. If the debug information could not be used to provide
6656 that bound, then use an arbitrary large number as the upper bound. */
6657 limit_pc = skip_prologue_using_sal (gdbarch, pc);
6658 if (limit_pc == 0)
6659 limit_pc = pc + 100; /* Magic. */
6660
6661 if (mips_pc_is_mips16 (gdbarch, pc))
6662 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6663 else if (mips_pc_is_micromips (gdbarch, pc))
6664 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6665 else
6666 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6667 }
6668
6669 /* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
6670 This is a helper function for mips_stack_frame_destroyed_p. */
6671
6672 static int
6673 mips32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6674 {
6675 CORE_ADDR func_addr = 0, func_end = 0;
6676
6677 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6678 {
6679 /* The MIPS epilogue is max. 12 bytes long. */
6680 CORE_ADDR addr = func_end - 12;
6681
6682 if (addr < func_addr + 4)
6683 addr = func_addr + 4;
6684 if (pc < addr)
6685 return 0;
6686
6687 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6688 {
6689 unsigned long high_word;
6690 unsigned long inst;
6691
6692 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6693 high_word = (inst >> 16) & 0xffff;
6694
6695 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6696 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6697 && inst != 0x03e00008 /* jr $ra */
6698 && inst != 0x00000000) /* nop */
6699 return 0;
6700 }
6701
6702 return 1;
6703 }
6704
6705 return 0;
6706 }
6707
6708 /* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
6709 This is a helper function for mips_stack_frame_destroyed_p. */
6710
6711 static int
6712 micromips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6713 {
6714 CORE_ADDR func_addr = 0;
6715 CORE_ADDR func_end = 0;
6716 CORE_ADDR addr;
6717 ULONGEST insn;
6718 long offset;
6719 int dreg;
6720 int sreg;
6721 int loc;
6722
6723 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6724 return 0;
6725
6726 /* The microMIPS epilogue is max. 12 bytes long. */
6727 addr = func_end - 12;
6728
6729 if (addr < func_addr + 2)
6730 addr = func_addr + 2;
6731 if (pc < addr)
6732 return 0;
6733
6734 for (; pc < func_end; pc += loc)
6735 {
6736 loc = 0;
6737 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6738 loc += MIPS_INSN16_SIZE;
6739 switch (mips_insn_size (ISA_MICROMIPS, insn))
6740 {
6741 /* 32-bit instructions. */
6742 case 2 * MIPS_INSN16_SIZE:
6743 insn <<= 16;
6744 insn |= mips_fetch_instruction (gdbarch,
6745 ISA_MICROMIPS, pc + loc, NULL);
6746 loc += MIPS_INSN16_SIZE;
6747 switch (micromips_op (insn >> 16))
6748 {
6749 case 0xc: /* ADDIU: bits 001100 */
6750 case 0x17: /* DADDIU: bits 010111 */
6751 sreg = b0s5_reg (insn >> 16);
6752 dreg = b5s5_reg (insn >> 16);
6753 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6754 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6755 /* (D)ADDIU $sp, imm */
6756 && offset >= 0)
6757 break;
6758 return 0;
6759
6760 default:
6761 return 0;
6762 }
6763 break;
6764
6765 /* 16-bit instructions. */
6766 case MIPS_INSN16_SIZE:
6767 switch (micromips_op (insn))
6768 {
6769 case 0x3: /* MOVE: bits 000011 */
6770 sreg = b0s5_reg (insn);
6771 dreg = b5s5_reg (insn);
6772 if (sreg == 0 && dreg == 0)
6773 /* MOVE $zero, $zero aka NOP */
6774 break;
6775 return 0;
6776
6777 case 0x11: /* POOL16C: bits 010001 */
6778 if (b5s5_op (insn) == 0x18
6779 /* JRADDIUSP: bits 010011 11000 */
6780 || (b5s5_op (insn) == 0xd
6781 /* JRC: bits 010011 01101 */
6782 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6783 /* JRC $ra */
6784 break;
6785 return 0;
6786
6787 case 0x13: /* POOL16D: bits 010011 */
6788 offset = micromips_decode_imm9 (b1s9_imm (insn));
6789 if ((insn & 0x1) == 0x1
6790 /* ADDIUSP: bits 010011 1 */
6791 && offset > 0)
6792 break;
6793 return 0;
6794
6795 default:
6796 return 0;
6797 }
6798 }
6799 }
6800
6801 return 1;
6802 }
6803
6804 /* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
6805 This is a helper function for mips_stack_frame_destroyed_p. */
6806
6807 static int
6808 mips16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6809 {
6810 CORE_ADDR func_addr = 0, func_end = 0;
6811
6812 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6813 {
6814 /* The MIPS epilogue is max. 12 bytes long. */
6815 CORE_ADDR addr = func_end - 12;
6816
6817 if (addr < func_addr + 4)
6818 addr = func_addr + 4;
6819 if (pc < addr)
6820 return 0;
6821
6822 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6823 {
6824 unsigned short inst;
6825
6826 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
6827
6828 if ((inst & 0xf800) == 0xf000) /* extend */
6829 continue;
6830
6831 if (inst != 0x6300 /* addiu $sp,offset */
6832 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6833 && inst != 0xe820 /* jr $ra */
6834 && inst != 0xe8a0 /* jrc $ra */
6835 && inst != 0x6500) /* nop */
6836 return 0;
6837 }
6838
6839 return 1;
6840 }
6841
6842 return 0;
6843 }
6844
6845 /* Implement the stack_frame_destroyed_p gdbarch method.
6846
6847 The epilogue is defined here as the area at the end of a function,
6848 after an instruction which destroys the function's stack frame. */
6849
6850 static int
6851 mips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6852 {
6853 if (mips_pc_is_mips16 (gdbarch, pc))
6854 return mips16_stack_frame_destroyed_p (gdbarch, pc);
6855 else if (mips_pc_is_micromips (gdbarch, pc))
6856 return micromips_stack_frame_destroyed_p (gdbarch, pc);
6857 else
6858 return mips32_stack_frame_destroyed_p (gdbarch, pc);
6859 }
6860
6861 /* Root of all "set mips "/"show mips " commands. This will eventually be
6862 used for all MIPS-specific commands. */
6863
6864 static void
6865 show_mips_command (char *args, int from_tty)
6866 {
6867 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6868 }
6869
6870 static void
6871 set_mips_command (char *args, int from_tty)
6872 {
6873 printf_unfiltered
6874 ("\"set mips\" must be followed by an appropriate subcommand.\n");
6875 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6876 }
6877
6878 /* Commands to show/set the MIPS FPU type. */
6879
6880 static void
6881 show_mipsfpu_command (char *args, int from_tty)
6882 {
6883 char *fpu;
6884
6885 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6886 {
6887 printf_unfiltered
6888 ("The MIPS floating-point coprocessor is unknown "
6889 "because the current architecture is not MIPS.\n");
6890 return;
6891 }
6892
6893 switch (MIPS_FPU_TYPE (target_gdbarch ()))
6894 {
6895 case MIPS_FPU_SINGLE:
6896 fpu = "single-precision";
6897 break;
6898 case MIPS_FPU_DOUBLE:
6899 fpu = "double-precision";
6900 break;
6901 case MIPS_FPU_NONE:
6902 fpu = "absent (none)";
6903 break;
6904 default:
6905 internal_error (__FILE__, __LINE__, _("bad switch"));
6906 }
6907 if (mips_fpu_type_auto)
6908 printf_unfiltered ("The MIPS floating-point coprocessor "
6909 "is set automatically (currently %s)\n",
6910 fpu);
6911 else
6912 printf_unfiltered
6913 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
6914 }
6915
6916
6917 static void
6918 set_mipsfpu_command (char *args, int from_tty)
6919 {
6920 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6921 "\"single\",\"none\" or \"auto\".\n");
6922 show_mipsfpu_command (args, from_tty);
6923 }
6924
6925 static void
6926 set_mipsfpu_single_command (char *args, int from_tty)
6927 {
6928 struct gdbarch_info info;
6929 gdbarch_info_init (&info);
6930 mips_fpu_type = MIPS_FPU_SINGLE;
6931 mips_fpu_type_auto = 0;
6932 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6933 instead of relying on globals. Doing that would let generic code
6934 handle the search for this specific architecture. */
6935 if (!gdbarch_update_p (info))
6936 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6937 }
6938
6939 static void
6940 set_mipsfpu_double_command (char *args, int from_tty)
6941 {
6942 struct gdbarch_info info;
6943 gdbarch_info_init (&info);
6944 mips_fpu_type = MIPS_FPU_DOUBLE;
6945 mips_fpu_type_auto = 0;
6946 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6947 instead of relying on globals. Doing that would let generic code
6948 handle the search for this specific architecture. */
6949 if (!gdbarch_update_p (info))
6950 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6951 }
6952
6953 static void
6954 set_mipsfpu_none_command (char *args, int from_tty)
6955 {
6956 struct gdbarch_info info;
6957 gdbarch_info_init (&info);
6958 mips_fpu_type = MIPS_FPU_NONE;
6959 mips_fpu_type_auto = 0;
6960 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6961 instead of relying on globals. Doing that would let generic code
6962 handle the search for this specific architecture. */
6963 if (!gdbarch_update_p (info))
6964 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6965 }
6966
6967 static void
6968 set_mipsfpu_auto_command (char *args, int from_tty)
6969 {
6970 mips_fpu_type_auto = 1;
6971 }
6972
6973 /* Just like reinit_frame_cache, but with the right arguments to be
6974 callable as an sfunc. */
6975
6976 static void
6977 reinit_frame_cache_sfunc (char *args, int from_tty,
6978 struct cmd_list_element *c)
6979 {
6980 reinit_frame_cache ();
6981 }
6982
6983 static int
6984 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
6985 {
6986 struct gdbarch *gdbarch = (struct gdbarch *) info->application_data;
6987
6988 /* FIXME: cagney/2003-06-26: Is this even necessary? The
6989 disassembler needs to be able to locally determine the ISA, and
6990 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
6991 work. */
6992 if (mips_pc_is_mips16 (gdbarch, memaddr))
6993 info->mach = bfd_mach_mips16;
6994 else if (mips_pc_is_micromips (gdbarch, memaddr))
6995 info->mach = bfd_mach_mips_micromips;
6996
6997 /* Round down the instruction address to the appropriate boundary. */
6998 memaddr &= (info->mach == bfd_mach_mips16
6999 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
7000
7001 /* Set the disassembler options. */
7002 if (!info->disassembler_options)
7003 /* This string is not recognized explicitly by the disassembler,
7004 but it tells the disassembler to not try to guess the ABI from
7005 the bfd elf headers, such that, if the user overrides the ABI
7006 of a program linked as NewABI, the disassembly will follow the
7007 register naming conventions specified by the user. */
7008 info->disassembler_options = "gpr-names=32";
7009
7010 /* Call the appropriate disassembler based on the target endian-ness. */
7011 if (info->endian == BFD_ENDIAN_BIG)
7012 return print_insn_big_mips (memaddr, info);
7013 else
7014 return print_insn_little_mips (memaddr, info);
7015 }
7016
7017 static int
7018 gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
7019 {
7020 /* Set up the disassembler info, so that we get the right
7021 register names from libopcodes. */
7022 info->disassembler_options = "gpr-names=n32";
7023 info->flavour = bfd_target_elf_flavour;
7024
7025 return gdb_print_insn_mips (memaddr, info);
7026 }
7027
7028 static int
7029 gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
7030 {
7031 /* Set up the disassembler info, so that we get the right
7032 register names from libopcodes. */
7033 info->disassembler_options = "gpr-names=64";
7034 info->flavour = bfd_target_elf_flavour;
7035
7036 return gdb_print_insn_mips (memaddr, info);
7037 }
7038
7039 /* This function implements gdbarch_breakpoint_from_pc. It uses the
7040 program counter value to determine whether a 16- or 32-bit breakpoint
7041 should be used. It returns a pointer to a string of bytes that encode a
7042 breakpoint instruction, stores the length of the string to *lenptr, and
7043 adjusts pc (if necessary) to point to the actual memory location where
7044 the breakpoint should be inserted. */
7045
7046 static const gdb_byte *
7047 mips_breakpoint_from_pc (struct gdbarch *gdbarch,
7048 CORE_ADDR *pcptr, int *lenptr)
7049 {
7050 CORE_ADDR pc = *pcptr;
7051
7052 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7053 {
7054 if (mips_pc_is_mips16 (gdbarch, pc))
7055 {
7056 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
7057 *pcptr = unmake_compact_addr (pc);
7058 *lenptr = sizeof (mips16_big_breakpoint);
7059 return mips16_big_breakpoint;
7060 }
7061 else if (mips_pc_is_micromips (gdbarch, pc))
7062 {
7063 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
7064 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
7065 ULONGEST insn;
7066 int err;
7067 int size;
7068
7069 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &err);
7070 size = err ? 2 : mips_insn_size (ISA_MICROMIPS, insn);
7071 *pcptr = unmake_compact_addr (pc);
7072 *lenptr = size;
7073 return (size == 2) ? micromips16_big_breakpoint
7074 : micromips32_big_breakpoint;
7075 }
7076 else
7077 {
7078 /* The IDT board uses an unusual breakpoint value, and
7079 sometimes gets confused when it sees the usual MIPS
7080 breakpoint instruction. */
7081 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
7082 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
7083 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
7084 /* Likewise, IRIX appears to expect a different breakpoint,
7085 although this is not apparent until you try to use pthreads. */
7086 static gdb_byte irix_big_breakpoint[] = { 0, 0, 0, 0xd };
7087
7088 *lenptr = sizeof (big_breakpoint);
7089
7090 if (strcmp (target_shortname, "mips") == 0)
7091 return idt_big_breakpoint;
7092 else if (strcmp (target_shortname, "ddb") == 0
7093 || strcmp (target_shortname, "pmon") == 0
7094 || strcmp (target_shortname, "lsi") == 0)
7095 return pmon_big_breakpoint;
7096 else if (gdbarch_osabi (gdbarch) == GDB_OSABI_IRIX)
7097 return irix_big_breakpoint;
7098 else
7099 return big_breakpoint;
7100 }
7101 }
7102 else
7103 {
7104 if (mips_pc_is_mips16 (gdbarch, pc))
7105 {
7106 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
7107 *pcptr = unmake_compact_addr (pc);
7108 *lenptr = sizeof (mips16_little_breakpoint);
7109 return mips16_little_breakpoint;
7110 }
7111 else if (mips_pc_is_micromips (gdbarch, pc))
7112 {
7113 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
7114 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
7115 ULONGEST insn;
7116 int err;
7117 int size;
7118
7119 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &err);
7120 size = err ? 2 : mips_insn_size (ISA_MICROMIPS, insn);
7121 *pcptr = unmake_compact_addr (pc);
7122 *lenptr = size;
7123 return (size == 2) ? micromips16_little_breakpoint
7124 : micromips32_little_breakpoint;
7125 }
7126 else
7127 {
7128 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
7129 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
7130 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
7131
7132 *lenptr = sizeof (little_breakpoint);
7133
7134 if (strcmp (target_shortname, "mips") == 0)
7135 return idt_little_breakpoint;
7136 else if (strcmp (target_shortname, "ddb") == 0
7137 || strcmp (target_shortname, "pmon") == 0
7138 || strcmp (target_shortname, "lsi") == 0)
7139 return pmon_little_breakpoint;
7140 else
7141 return little_breakpoint;
7142 }
7143 }
7144 }
7145
7146 /* Determine the remote breakpoint kind suitable for the PC. The following
7147 kinds are used:
7148
7149 * 2 -- 16-bit MIPS16 mode breakpoint,
7150
7151 * 3 -- 16-bit microMIPS mode breakpoint,
7152
7153 * 4 -- 32-bit standard MIPS mode breakpoint,
7154
7155 * 5 -- 32-bit microMIPS mode breakpoint. */
7156
7157 static void
7158 mips_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
7159 int *kindptr)
7160 {
7161 CORE_ADDR pc = *pcptr;
7162
7163 if (mips_pc_is_mips16 (gdbarch, pc))
7164 {
7165 *pcptr = unmake_compact_addr (pc);
7166 *kindptr = 2;
7167 }
7168 else if (mips_pc_is_micromips (gdbarch, pc))
7169 {
7170 ULONGEST insn;
7171 int status;
7172 int size;
7173
7174 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7175 size = status ? 2 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
7176 *pcptr = unmake_compact_addr (pc);
7177 *kindptr = size | 1;
7178 }
7179 else
7180 *kindptr = 4;
7181 }
7182
7183 /* Return non-zero if the standard MIPS instruction INST has a branch
7184 delay slot (i.e. it is a jump or branch instruction). This function
7185 is based on mips32_next_pc. */
7186
7187 static int
7188 mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
7189 {
7190 int op;
7191 int rs;
7192 int rt;
7193
7194 op = itype_op (inst);
7195 if ((inst & 0xe0000000) != 0)
7196 {
7197 rs = itype_rs (inst);
7198 rt = itype_rt (inst);
7199 return (is_octeon_bbit_op (op, gdbarch)
7200 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
7201 || op == 29 /* JALX: bits 011101 */
7202 || (op == 17
7203 && (rs == 8
7204 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7205 || (rs == 9 && (rt & 0x2) == 0)
7206 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7207 || (rs == 10 && (rt & 0x2) == 0))));
7208 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7209 }
7210 else
7211 switch (op & 0x07) /* extract bits 28,27,26 */
7212 {
7213 case 0: /* SPECIAL */
7214 op = rtype_funct (inst);
7215 return (op == 8 /* JR */
7216 || op == 9); /* JALR */
7217 break; /* end SPECIAL */
7218 case 1: /* REGIMM */
7219 rs = itype_rs (inst);
7220 rt = itype_rt (inst); /* branch condition */
7221 return ((rt & 0xc) == 0
7222 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7223 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
7224 || ((rt & 0x1e) == 0x1c && rs == 0));
7225 /* BPOSGE32, BPOSGE64: bits 1110x */
7226 break; /* end REGIMM */
7227 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7228 return 1;
7229 break;
7230 }
7231 }
7232
7233 /* Return non-zero if a standard MIPS instruction at ADDR has a branch
7234 delay slot (i.e. it is a jump or branch instruction). */
7235
7236 static int
7237 mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
7238 {
7239 ULONGEST insn;
7240 int status;
7241
7242 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
7243 if (status)
7244 return 0;
7245
7246 return mips32_instruction_has_delay_slot (gdbarch, insn);
7247 }
7248
7249 /* Return non-zero if the microMIPS instruction INSN, comprising the
7250 16-bit major opcode word in the high 16 bits and any second word
7251 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7252 jump or branch instruction). The instruction must be 32-bit if
7253 MUSTBE32 is set or can be any instruction otherwise. */
7254
7255 static int
7256 micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
7257 {
7258 ULONGEST major = insn >> 16;
7259
7260 switch (micromips_op (major))
7261 {
7262 /* 16-bit instructions. */
7263 case 0x33: /* B16: bits 110011 */
7264 case 0x2b: /* BNEZ16: bits 101011 */
7265 case 0x23: /* BEQZ16: bits 100011 */
7266 return !mustbe32;
7267 case 0x11: /* POOL16C: bits 010001 */
7268 return (!mustbe32
7269 && ((b5s5_op (major) == 0xc
7270 /* JR16: bits 010001 01100 */
7271 || (b5s5_op (major) & 0x1e) == 0xe)));
7272 /* JALR16, JALRS16: bits 010001 0111x */
7273 /* 32-bit instructions. */
7274 case 0x3d: /* JAL: bits 111101 */
7275 case 0x3c: /* JALX: bits 111100 */
7276 case 0x35: /* J: bits 110101 */
7277 case 0x2d: /* BNE: bits 101101 */
7278 case 0x25: /* BEQ: bits 100101 */
7279 case 0x1d: /* JALS: bits 011101 */
7280 return 1;
7281 case 0x10: /* POOL32I: bits 010000 */
7282 return ((b5s5_op (major) & 0x1c) == 0x0
7283 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
7284 || (b5s5_op (major) & 0x1d) == 0x4
7285 /* BLEZ, BGTZ: bits 010000 001x0 */
7286 || (b5s5_op (major) & 0x1d) == 0x11
7287 /* BLTZALS, BGEZALS: bits 010000 100x1 */
7288 || ((b5s5_op (major) & 0x1e) == 0x14
7289 && (major & 0x3) == 0x0)
7290 /* BC2F, BC2T: bits 010000 1010x xxx00 */
7291 || (b5s5_op (major) & 0x1e) == 0x1a
7292 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
7293 || ((b5s5_op (major) & 0x1e) == 0x1c
7294 && (major & 0x3) == 0x0)
7295 /* BC1F, BC1T: bits 010000 1110x xxx00 */
7296 || ((b5s5_op (major) & 0x1c) == 0x1c
7297 && (major & 0x3) == 0x1));
7298 /* BC1ANY*: bits 010000 111xx xxx01 */
7299 case 0x0: /* POOL32A: bits 000000 */
7300 return (b0s6_op (insn) == 0x3c
7301 /* POOL32Axf: bits 000000 ... 111100 */
7302 && (b6s10_ext (insn) & 0x2bf) == 0x3c);
7303 /* JALR, JALR.HB: 000000 000x111100 111100 */
7304 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7305 default:
7306 return 0;
7307 }
7308 }
7309
7310 /* Return non-zero if a microMIPS instruction at ADDR has a branch delay
7311 slot (i.e. it is a non-compact jump instruction). The instruction
7312 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7313
7314 static int
7315 micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7316 CORE_ADDR addr, int mustbe32)
7317 {
7318 ULONGEST insn;
7319 int status;
7320 int size;
7321
7322 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7323 if (status)
7324 return 0;
7325 size = mips_insn_size (ISA_MICROMIPS, insn);
7326 insn <<= 16;
7327 if (size == 2 * MIPS_INSN16_SIZE)
7328 {
7329 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7330 if (status)
7331 return 0;
7332 }
7333
7334 return micromips_instruction_has_delay_slot (insn, mustbe32);
7335 }
7336
7337 /* Return non-zero if the MIPS16 instruction INST, which must be
7338 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7339 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7340 instruction). This function is based on mips16_next_pc. */
7341
7342 static int
7343 mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
7344 {
7345 if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7346 return !mustbe32;
7347 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7348 }
7349
7350 /* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7351 slot (i.e. it is a non-compact jump instruction). The instruction
7352 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7353
7354 static int
7355 mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7356 CORE_ADDR addr, int mustbe32)
7357 {
7358 unsigned short insn;
7359 int status;
7360
7361 insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7362 if (status)
7363 return 0;
7364
7365 return mips16_instruction_has_delay_slot (insn, mustbe32);
7366 }
7367
7368 /* Calculate the starting address of the MIPS memory segment BPADDR is in.
7369 This assumes KSSEG exists. */
7370
7371 static CORE_ADDR
7372 mips_segment_boundary (CORE_ADDR bpaddr)
7373 {
7374 CORE_ADDR mask = CORE_ADDR_MAX;
7375 int segsize;
7376
7377 if (sizeof (CORE_ADDR) == 8)
7378 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7379 a compiler warning produced where CORE_ADDR is a 32-bit type even
7380 though in that case this is dead code). */
7381 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7382 {
7383 case 3:
7384 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7385 segsize = 29; /* 32-bit compatibility segment */
7386 else
7387 segsize = 62; /* xkseg */
7388 break;
7389 case 2: /* xkphys */
7390 segsize = 59;
7391 break;
7392 default: /* xksseg (1), xkuseg/kuseg (0) */
7393 segsize = 62;
7394 break;
7395 }
7396 else if (bpaddr & 0x80000000) /* kernel segment */
7397 segsize = 29;
7398 else
7399 segsize = 31; /* user segment */
7400 mask <<= segsize;
7401 return bpaddr & mask;
7402 }
7403
7404 /* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7405 it backwards if necessary. Return the address of the new location. */
7406
7407 static CORE_ADDR
7408 mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7409 {
7410 CORE_ADDR prev_addr;
7411 CORE_ADDR boundary;
7412 CORE_ADDR func_addr;
7413
7414 /* If a breakpoint is set on the instruction in a branch delay slot,
7415 GDB gets confused. When the breakpoint is hit, the PC isn't on
7416 the instruction in the branch delay slot, the PC will point to
7417 the branch instruction. Since the PC doesn't match any known
7418 breakpoints, GDB reports a trap exception.
7419
7420 There are two possible fixes for this problem.
7421
7422 1) When the breakpoint gets hit, see if the BD bit is set in the
7423 Cause register (which indicates the last exception occurred in a
7424 branch delay slot). If the BD bit is set, fix the PC to point to
7425 the instruction in the branch delay slot.
7426
7427 2) When the user sets the breakpoint, don't allow him to set the
7428 breakpoint on the instruction in the branch delay slot. Instead
7429 move the breakpoint to the branch instruction (which will have
7430 the same result).
7431
7432 The problem with the first solution is that if the user then
7433 single-steps the processor, the branch instruction will get
7434 skipped (since GDB thinks the PC is on the instruction in the
7435 branch delay slot).
7436
7437 So, we'll use the second solution. To do this we need to know if
7438 the instruction we're trying to set the breakpoint on is in the
7439 branch delay slot. */
7440
7441 boundary = mips_segment_boundary (bpaddr);
7442
7443 /* Make sure we don't scan back before the beginning of the current
7444 function, since we may fetch constant data or insns that look like
7445 a jump. Of course we might do that anyway if the compiler has
7446 moved constants inline. :-( */
7447 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7448 && func_addr > boundary && func_addr <= bpaddr)
7449 boundary = func_addr;
7450
7451 if (mips_pc_is_mips (bpaddr))
7452 {
7453 if (bpaddr == boundary)
7454 return bpaddr;
7455
7456 /* If the previous instruction has a branch delay slot, we have
7457 to move the breakpoint to the branch instruction. */
7458 prev_addr = bpaddr - 4;
7459 if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
7460 bpaddr = prev_addr;
7461 }
7462 else
7463 {
7464 int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
7465 CORE_ADDR addr, jmpaddr;
7466 int i;
7467
7468 boundary = unmake_compact_addr (boundary);
7469
7470 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7471 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7472 so try for that first, then try the 2 byte JALR/JR.
7473 The microMIPS ASE has a whole range of jumps and branches
7474 with delay slots, some of which take 4 bytes and some take
7475 2 bytes, so the idea is the same.
7476 FIXME: We have to assume that bpaddr is not the second half
7477 of an extended instruction. */
7478 insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7479 ? micromips_insn_at_pc_has_delay_slot
7480 : mips16_insn_at_pc_has_delay_slot);
7481
7482 jmpaddr = 0;
7483 addr = bpaddr;
7484 for (i = 1; i < 4; i++)
7485 {
7486 if (unmake_compact_addr (addr) == boundary)
7487 break;
7488 addr -= MIPS_INSN16_SIZE;
7489 if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
7490 /* Looks like a JR/JALR at [target-1], but it could be
7491 the second word of a previous JAL/JALX, so record it
7492 and check back one more. */
7493 jmpaddr = addr;
7494 else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
7495 {
7496 if (i == 2)
7497 /* Looks like a JAL/JALX at [target-2], but it could also
7498 be the second word of a previous JAL/JALX, record it,
7499 and check back one more. */
7500 jmpaddr = addr;
7501 else
7502 /* Looks like a JAL/JALX at [target-3], so any previously
7503 recorded JAL/JALX or JR/JALR must be wrong, because:
7504
7505 >-3: JAL
7506 -2: JAL-ext (can't be JAL/JALX)
7507 -1: bdslot (can't be JR/JALR)
7508 0: target insn
7509
7510 Of course it could be another JAL-ext which looks
7511 like a JAL, but in that case we'd have broken out
7512 of this loop at [target-2]:
7513
7514 -4: JAL
7515 >-3: JAL-ext
7516 -2: bdslot (can't be jmp)
7517 -1: JR/JALR
7518 0: target insn */
7519 jmpaddr = 0;
7520 }
7521 else
7522 {
7523 /* Not a jump instruction: if we're at [target-1] this
7524 could be the second word of a JAL/JALX, so continue;
7525 otherwise we're done. */
7526 if (i > 1)
7527 break;
7528 }
7529 }
7530
7531 if (jmpaddr)
7532 bpaddr = jmpaddr;
7533 }
7534
7535 return bpaddr;
7536 }
7537
7538 /* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7539 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7540
7541 static int
7542 mips_is_stub_suffix (const char *suffix, int zero)
7543 {
7544 switch (suffix[0])
7545 {
7546 case '0':
7547 return zero && suffix[1] == '\0';
7548 case '1':
7549 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7550 case '2':
7551 case '5':
7552 case '6':
7553 case '9':
7554 return suffix[1] == '\0';
7555 default:
7556 return 0;
7557 }
7558 }
7559
7560 /* Return non-zero if MODE is one of the mode infixes used for MIPS16
7561 call stubs, one of sf, df, sc, or dc. */
7562
7563 static int
7564 mips_is_stub_mode (const char *mode)
7565 {
7566 return ((mode[0] == 's' || mode[0] == 'd')
7567 && (mode[1] == 'f' || mode[1] == 'c'));
7568 }
7569
7570 /* Code at PC is a compiler-generated stub. Such a stub for a function
7571 bar might have a name like __fn_stub_bar, and might look like this:
7572
7573 mfc1 $4, $f13
7574 mfc1 $5, $f12
7575 mfc1 $6, $f15
7576 mfc1 $7, $f14
7577
7578 followed by (or interspersed with):
7579
7580 j bar
7581
7582 or:
7583
7584 lui $25, %hi(bar)
7585 addiu $25, $25, %lo(bar)
7586 jr $25
7587
7588 ($1 may be used in old code; for robustness we accept any register)
7589 or, in PIC code:
7590
7591 lui $28, %hi(_gp_disp)
7592 addiu $28, $28, %lo(_gp_disp)
7593 addu $28, $28, $25
7594 lw $25, %got(bar)
7595 addiu $25, $25, %lo(bar)
7596 jr $25
7597
7598 In the case of a __call_stub_bar stub, the sequence to set up
7599 arguments might look like this:
7600
7601 mtc1 $4, $f13
7602 mtc1 $5, $f12
7603 mtc1 $6, $f15
7604 mtc1 $7, $f14
7605
7606 followed by (or interspersed with) one of the jump sequences above.
7607
7608 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7609 of J or JR, respectively, followed by:
7610
7611 mfc1 $2, $f0
7612 mfc1 $3, $f1
7613 jr $18
7614
7615 We are at the beginning of the stub here, and scan down and extract
7616 the target address from the jump immediate instruction or, if a jump
7617 register instruction is used, from the register referred. Return
7618 the value of PC calculated or 0 if inconclusive.
7619
7620 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7621
7622 static CORE_ADDR
7623 mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7624 {
7625 struct gdbarch *gdbarch = get_frame_arch (frame);
7626 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7627 int addrreg = MIPS_ZERO_REGNUM;
7628 CORE_ADDR start_pc = pc;
7629 CORE_ADDR target_pc = 0;
7630 CORE_ADDR addr = 0;
7631 CORE_ADDR gp = 0;
7632 int status = 0;
7633 int i;
7634
7635 for (i = 0;
7636 status == 0 && target_pc == 0 && i < 20;
7637 i++, pc += MIPS_INSN32_SIZE)
7638 {
7639 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
7640 CORE_ADDR imm;
7641 int rt;
7642 int rs;
7643 int rd;
7644
7645 switch (itype_op (inst))
7646 {
7647 case 0: /* SPECIAL */
7648 switch (rtype_funct (inst))
7649 {
7650 case 8: /* JR */
7651 case 9: /* JALR */
7652 rs = rtype_rs (inst);
7653 if (rs == MIPS_GP_REGNUM)
7654 target_pc = gp; /* Hmm... */
7655 else if (rs == addrreg)
7656 target_pc = addr;
7657 break;
7658
7659 case 0x21: /* ADDU */
7660 rt = rtype_rt (inst);
7661 rs = rtype_rs (inst);
7662 rd = rtype_rd (inst);
7663 if (rd == MIPS_GP_REGNUM
7664 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7665 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7666 gp += start_pc;
7667 break;
7668 }
7669 break;
7670
7671 case 2: /* J */
7672 case 3: /* JAL */
7673 target_pc = jtype_target (inst) << 2;
7674 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7675 break;
7676
7677 case 9: /* ADDIU */
7678 rt = itype_rt (inst);
7679 rs = itype_rs (inst);
7680 if (rt == rs)
7681 {
7682 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7683 if (rt == MIPS_GP_REGNUM)
7684 gp += imm;
7685 else if (rt == addrreg)
7686 addr += imm;
7687 }
7688 break;
7689
7690 case 0xf: /* LUI */
7691 rt = itype_rt (inst);
7692 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7693 if (rt == MIPS_GP_REGNUM)
7694 gp = imm;
7695 else if (rt != MIPS_ZERO_REGNUM)
7696 {
7697 addrreg = rt;
7698 addr = imm;
7699 }
7700 break;
7701
7702 case 0x23: /* LW */
7703 rt = itype_rt (inst);
7704 rs = itype_rs (inst);
7705 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7706 if (gp != 0 && rs == MIPS_GP_REGNUM)
7707 {
7708 gdb_byte buf[4];
7709
7710 memset (buf, 0, sizeof (buf));
7711 status = target_read_memory (gp + imm, buf, sizeof (buf));
7712 addrreg = rt;
7713 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7714 }
7715 break;
7716 }
7717 }
7718
7719 return target_pc;
7720 }
7721
7722 /* If PC is in a MIPS16 call or return stub, return the address of the
7723 target PC, which is either the callee or the caller. There are several
7724 cases which must be handled:
7725
7726 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7727 and the target PC is in $31 ($ra).
7728 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7729 and the target PC is in $2.
7730 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7731 i.e. before the JALR instruction, this is effectively a call stub
7732 and the target PC is in $2. Otherwise this is effectively
7733 a return stub and the target PC is in $18.
7734 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7735 JAL or JALR instruction, this is effectively a call stub and the
7736 target PC is buried in the instruction stream. Otherwise this
7737 is effectively a return stub and the target PC is in $18.
7738 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7739 stub and the target PC is buried in the instruction stream.
7740
7741 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7742 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
7743 gory details. */
7744
7745 static CORE_ADDR
7746 mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7747 {
7748 struct gdbarch *gdbarch = get_frame_arch (frame);
7749 CORE_ADDR start_addr;
7750 const char *name;
7751 size_t prefixlen;
7752
7753 /* Find the starting address and name of the function containing the PC. */
7754 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7755 return 0;
7756
7757 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7758 and the target PC is in $31 ($ra). */
7759 prefixlen = strlen (mips_str_mips16_ret_stub);
7760 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7761 && mips_is_stub_mode (name + prefixlen)
7762 && name[prefixlen + 2] == '\0')
7763 return get_frame_register_signed
7764 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7765
7766 /* If the PC is in __mips16_call_stub_*, this is one of the call
7767 call/return stubs. */
7768 prefixlen = strlen (mips_str_mips16_call_stub);
7769 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
7770 {
7771 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7772 and the target PC is in $2. */
7773 if (mips_is_stub_suffix (name + prefixlen, 0))
7774 return get_frame_register_signed
7775 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7776
7777 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7778 i.e. before the JALR instruction, this is effectively a call stub
7779 and the target PC is in $2. Otherwise this is effectively
7780 a return stub and the target PC is in $18. */
7781 else if (mips_is_stub_mode (name + prefixlen)
7782 && name[prefixlen + 2] == '_'
7783 && mips_is_stub_suffix (name + prefixlen + 3, 0))
7784 {
7785 if (pc == start_addr)
7786 /* This is the 'call' part of a call stub. The return
7787 address is in $2. */
7788 return get_frame_register_signed
7789 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7790 else
7791 /* This is the 'return' part of a call stub. The return
7792 address is in $18. */
7793 return get_frame_register_signed
7794 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7795 }
7796 else
7797 return 0; /* Not a stub. */
7798 }
7799
7800 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7801 compiler-generated call or call/return stubs. */
7802 if (startswith (name, mips_str_fn_stub)
7803 || startswith (name, mips_str_call_stub))
7804 {
7805 if (pc == start_addr)
7806 /* This is the 'call' part of a call stub. Call this helper
7807 to scan through this code for interesting instructions
7808 and determine the final PC. */
7809 return mips_get_mips16_fn_stub_pc (frame, pc);
7810 else
7811 /* This is the 'return' part of a call stub. The return address
7812 is in $18. */
7813 return get_frame_register_signed
7814 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7815 }
7816
7817 return 0; /* Not a stub. */
7818 }
7819
7820 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7821 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7822
7823 static int
7824 mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7825 {
7826 CORE_ADDR start_addr;
7827 size_t prefixlen;
7828
7829 /* Find the starting address of the function containing the PC. */
7830 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7831 return 0;
7832
7833 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7834 the start, i.e. after the JALR instruction, this is effectively
7835 a return stub. */
7836 prefixlen = strlen (mips_str_mips16_call_stub);
7837 if (pc != start_addr
7838 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7839 && mips_is_stub_mode (name + prefixlen)
7840 && name[prefixlen + 2] == '_'
7841 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7842 return 1;
7843
7844 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7845 the JAL or JALR instruction, this is effectively a return stub. */
7846 prefixlen = strlen (mips_str_call_fp_stub);
7847 if (pc != start_addr
7848 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7849 return 1;
7850
7851 /* Consume the .pic. prefix of any PIC stub, this function must return
7852 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7853 or the call stub path will trigger in handle_inferior_event causing
7854 it to go astray. */
7855 prefixlen = strlen (mips_str_pic);
7856 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7857 name += prefixlen;
7858
7859 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7860 prefixlen = strlen (mips_str_mips16_ret_stub);
7861 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7862 && mips_is_stub_mode (name + prefixlen)
7863 && name[prefixlen + 2] == '\0')
7864 return 1;
7865
7866 return 0; /* Not a stub. */
7867 }
7868
7869 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
7870 PC of the stub target. The stub just loads $t9 and jumps to it,
7871 so that $t9 has the correct value at function entry. */
7872
7873 static CORE_ADDR
7874 mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7875 {
7876 struct gdbarch *gdbarch = get_frame_arch (frame);
7877 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7878 struct bound_minimal_symbol msym;
7879 int i;
7880 gdb_byte stub_code[16];
7881 int32_t stub_words[4];
7882
7883 /* The stub for foo is named ".pic.foo", and is either two
7884 instructions inserted before foo or a three instruction sequence
7885 which jumps to foo. */
7886 msym = lookup_minimal_symbol_by_pc (pc);
7887 if (msym.minsym == NULL
7888 || BMSYMBOL_VALUE_ADDRESS (msym) != pc
7889 || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
7890 || !startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
7891 return 0;
7892
7893 /* A two-instruction header. */
7894 if (MSYMBOL_SIZE (msym.minsym) == 8)
7895 return pc + 8;
7896
7897 /* A three-instruction (plus delay slot) trampoline. */
7898 if (MSYMBOL_SIZE (msym.minsym) == 16)
7899 {
7900 if (target_read_memory (pc, stub_code, 16) != 0)
7901 return 0;
7902 for (i = 0; i < 4; i++)
7903 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7904 4, byte_order);
7905
7906 /* A stub contains these instructions:
7907 lui t9, %hi(target)
7908 j target
7909 addiu t9, t9, %lo(target)
7910 nop
7911
7912 This works even for N64, since stubs are only generated with
7913 -msym32. */
7914 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7915 && (stub_words[1] & 0xfc000000U) == 0x08000000
7916 && (stub_words[2] & 0xffff0000U) == 0x27390000
7917 && stub_words[3] == 0x00000000)
7918 return ((((stub_words[0] & 0x0000ffff) << 16)
7919 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
7920 }
7921
7922 /* Not a recognized stub. */
7923 return 0;
7924 }
7925
7926 static CORE_ADDR
7927 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7928 {
7929 CORE_ADDR requested_pc = pc;
7930 CORE_ADDR target_pc;
7931 CORE_ADDR new_pc;
7932
7933 do
7934 {
7935 target_pc = pc;
7936
7937 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7938 if (new_pc)
7939 pc = new_pc;
7940
7941 new_pc = find_solib_trampoline_target (frame, pc);
7942 if (new_pc)
7943 pc = new_pc;
7944
7945 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7946 if (new_pc)
7947 pc = new_pc;
7948 }
7949 while (pc != target_pc);
7950
7951 return pc != requested_pc ? pc : 0;
7952 }
7953
7954 /* Convert a dbx stab register number (from `r' declaration) to a GDB
7955 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7956
7957 static int
7958 mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
7959 {
7960 int regnum;
7961 if (num >= 0 && num < 32)
7962 regnum = num;
7963 else if (num >= 38 && num < 70)
7964 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
7965 else if (num == 70)
7966 regnum = mips_regnum (gdbarch)->hi;
7967 else if (num == 71)
7968 regnum = mips_regnum (gdbarch)->lo;
7969 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7970 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
7971 else
7972 return -1;
7973 return gdbarch_num_regs (gdbarch) + regnum;
7974 }
7975
7976
7977 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
7978 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7979
7980 static int
7981 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
7982 {
7983 int regnum;
7984 if (num >= 0 && num < 32)
7985 regnum = num;
7986 else if (num >= 32 && num < 64)
7987 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
7988 else if (num == 64)
7989 regnum = mips_regnum (gdbarch)->hi;
7990 else if (num == 65)
7991 regnum = mips_regnum (gdbarch)->lo;
7992 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7993 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
7994 else
7995 return -1;
7996 return gdbarch_num_regs (gdbarch) + regnum;
7997 }
7998
7999 static int
8000 mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
8001 {
8002 /* Only makes sense to supply raw registers. */
8003 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
8004 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
8005 decide if it is valid. Should instead define a standard sim/gdb
8006 register numbering scheme. */
8007 if (gdbarch_register_name (gdbarch,
8008 gdbarch_num_regs (gdbarch) + regnum) != NULL
8009 && gdbarch_register_name (gdbarch,
8010 gdbarch_num_regs (gdbarch)
8011 + regnum)[0] != '\0')
8012 return regnum;
8013 else
8014 return LEGACY_SIM_REGNO_IGNORE;
8015 }
8016
8017
8018 /* Convert an integer into an address. Extracting the value signed
8019 guarantees a correctly sign extended address. */
8020
8021 static CORE_ADDR
8022 mips_integer_to_address (struct gdbarch *gdbarch,
8023 struct type *type, const gdb_byte *buf)
8024 {
8025 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8026 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
8027 }
8028
8029 /* Dummy virtual frame pointer method. This is no more or less accurate
8030 than most other architectures; we just need to be explicit about it,
8031 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
8032 an assertion failure. */
8033
8034 static void
8035 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
8036 CORE_ADDR pc, int *reg, LONGEST *offset)
8037 {
8038 *reg = MIPS_SP_REGNUM;
8039 *offset = 0;
8040 }
8041
8042 static void
8043 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
8044 {
8045 enum mips_abi *abip = (enum mips_abi *) obj;
8046 const char *name = bfd_get_section_name (abfd, sect);
8047
8048 if (*abip != MIPS_ABI_UNKNOWN)
8049 return;
8050
8051 if (!startswith (name, ".mdebug."))
8052 return;
8053
8054 if (strcmp (name, ".mdebug.abi32") == 0)
8055 *abip = MIPS_ABI_O32;
8056 else if (strcmp (name, ".mdebug.abiN32") == 0)
8057 *abip = MIPS_ABI_N32;
8058 else if (strcmp (name, ".mdebug.abi64") == 0)
8059 *abip = MIPS_ABI_N64;
8060 else if (strcmp (name, ".mdebug.abiO64") == 0)
8061 *abip = MIPS_ABI_O64;
8062 else if (strcmp (name, ".mdebug.eabi32") == 0)
8063 *abip = MIPS_ABI_EABI32;
8064 else if (strcmp (name, ".mdebug.eabi64") == 0)
8065 *abip = MIPS_ABI_EABI64;
8066 else
8067 warning (_("unsupported ABI %s."), name + 8);
8068 }
8069
8070 static void
8071 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
8072 {
8073 int *lbp = (int *) obj;
8074 const char *name = bfd_get_section_name (abfd, sect);
8075
8076 if (startswith (name, ".gcc_compiled_long32"))
8077 *lbp = 32;
8078 else if (startswith (name, ".gcc_compiled_long64"))
8079 *lbp = 64;
8080 else if (startswith (name, ".gcc_compiled_long"))
8081 warning (_("unrecognized .gcc_compiled_longXX"));
8082 }
8083
8084 static enum mips_abi
8085 global_mips_abi (void)
8086 {
8087 int i;
8088
8089 for (i = 0; mips_abi_strings[i] != NULL; i++)
8090 if (mips_abi_strings[i] == mips_abi_string)
8091 return (enum mips_abi) i;
8092
8093 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
8094 }
8095
8096 /* Return the default compressed instruction set, either of MIPS16
8097 or microMIPS, selected when none could have been determined from
8098 the ELF header of the binary being executed (or no binary has been
8099 selected. */
8100
8101 static enum mips_isa
8102 global_mips_compression (void)
8103 {
8104 int i;
8105
8106 for (i = 0; mips_compression_strings[i] != NULL; i++)
8107 if (mips_compression_strings[i] == mips_compression_string)
8108 return (enum mips_isa) i;
8109
8110 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
8111 }
8112
8113 static void
8114 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
8115 {
8116 /* If the size matches the set of 32-bit or 64-bit integer registers,
8117 assume that's what we've got. */
8118 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
8119 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
8120
8121 /* If the size matches the full set of registers GDB traditionally
8122 knows about, including floating point, for either 32-bit or
8123 64-bit, assume that's what we've got. */
8124 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
8125 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
8126
8127 /* Otherwise we don't have a useful guess. */
8128 }
8129
8130 static struct value *
8131 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
8132 {
8133 const int *reg_p = (const int *) baton;
8134 return value_of_register (*reg_p, frame);
8135 }
8136
8137 static struct gdbarch *
8138 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8139 {
8140 struct gdbarch *gdbarch;
8141 struct gdbarch_tdep *tdep;
8142 int elf_flags;
8143 enum mips_abi mips_abi, found_abi, wanted_abi;
8144 int i, num_regs;
8145 enum mips_fpu_type fpu_type;
8146 struct tdesc_arch_data *tdesc_data = NULL;
8147 int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
8148 const char **reg_names;
8149 struct mips_regnum mips_regnum, *regnum;
8150 enum mips_isa mips_isa;
8151 int dspacc;
8152 int dspctl;
8153
8154 /* Fill in the OS dependent register numbers and names. */
8155 if (info.osabi == GDB_OSABI_IRIX)
8156 {
8157 mips_regnum.fp0 = 32;
8158 mips_regnum.pc = 64;
8159 mips_regnum.cause = 65;
8160 mips_regnum.badvaddr = 66;
8161 mips_regnum.hi = 67;
8162 mips_regnum.lo = 68;
8163 mips_regnum.fp_control_status = 69;
8164 mips_regnum.fp_implementation_revision = 70;
8165 mips_regnum.dspacc = dspacc = -1;
8166 mips_regnum.dspctl = dspctl = -1;
8167 num_regs = 71;
8168 reg_names = mips_irix_reg_names;
8169 }
8170 else if (info.osabi == GDB_OSABI_LINUX)
8171 {
8172 mips_regnum.fp0 = 38;
8173 mips_regnum.pc = 37;
8174 mips_regnum.cause = 36;
8175 mips_regnum.badvaddr = 35;
8176 mips_regnum.hi = 34;
8177 mips_regnum.lo = 33;
8178 mips_regnum.fp_control_status = 70;
8179 mips_regnum.fp_implementation_revision = 71;
8180 mips_regnum.dspacc = -1;
8181 mips_regnum.dspctl = -1;
8182 dspacc = 72;
8183 dspctl = 78;
8184 num_regs = 90;
8185 reg_names = mips_linux_reg_names;
8186 }
8187 else
8188 {
8189 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
8190 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
8191 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
8192 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
8193 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
8194 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
8195 mips_regnum.fp_control_status = 70;
8196 mips_regnum.fp_implementation_revision = 71;
8197 mips_regnum.dspacc = dspacc = -1;
8198 mips_regnum.dspctl = dspctl = -1;
8199 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
8200 if (info.bfd_arch_info != NULL
8201 && info.bfd_arch_info->mach == bfd_mach_mips3900)
8202 reg_names = mips_tx39_reg_names;
8203 else
8204 reg_names = mips_generic_reg_names;
8205 }
8206
8207 /* Check any target description for validity. */
8208 if (tdesc_has_registers (info.target_desc))
8209 {
8210 static const char *const mips_gprs[] = {
8211 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8212 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8213 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8214 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8215 };
8216 static const char *const mips_fprs[] = {
8217 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8218 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8219 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8220 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8221 };
8222
8223 const struct tdesc_feature *feature;
8224 int valid_p;
8225
8226 feature = tdesc_find_feature (info.target_desc,
8227 "org.gnu.gdb.mips.cpu");
8228 if (feature == NULL)
8229 return NULL;
8230
8231 tdesc_data = tdesc_data_alloc ();
8232
8233 valid_p = 1;
8234 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8235 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8236 mips_gprs[i]);
8237
8238
8239 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8240 mips_regnum.lo, "lo");
8241 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8242 mips_regnum.hi, "hi");
8243 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8244 mips_regnum.pc, "pc");
8245
8246 if (!valid_p)
8247 {
8248 tdesc_data_cleanup (tdesc_data);
8249 return NULL;
8250 }
8251
8252 feature = tdesc_find_feature (info.target_desc,
8253 "org.gnu.gdb.mips.cp0");
8254 if (feature == NULL)
8255 {
8256 tdesc_data_cleanup (tdesc_data);
8257 return NULL;
8258 }
8259
8260 valid_p = 1;
8261 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8262 mips_regnum.badvaddr, "badvaddr");
8263 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8264 MIPS_PS_REGNUM, "status");
8265 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8266 mips_regnum.cause, "cause");
8267
8268 if (!valid_p)
8269 {
8270 tdesc_data_cleanup (tdesc_data);
8271 return NULL;
8272 }
8273
8274 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8275 backend is not prepared for that, though. */
8276 feature = tdesc_find_feature (info.target_desc,
8277 "org.gnu.gdb.mips.fpu");
8278 if (feature == NULL)
8279 {
8280 tdesc_data_cleanup (tdesc_data);
8281 return NULL;
8282 }
8283
8284 valid_p = 1;
8285 for (i = 0; i < 32; i++)
8286 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8287 i + mips_regnum.fp0, mips_fprs[i]);
8288
8289 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8290 mips_regnum.fp_control_status,
8291 "fcsr");
8292 valid_p
8293 &= tdesc_numbered_register (feature, tdesc_data,
8294 mips_regnum.fp_implementation_revision,
8295 "fir");
8296
8297 if (!valid_p)
8298 {
8299 tdesc_data_cleanup (tdesc_data);
8300 return NULL;
8301 }
8302
8303 num_regs = mips_regnum.fp_implementation_revision + 1;
8304
8305 if (dspacc >= 0)
8306 {
8307 feature = tdesc_find_feature (info.target_desc,
8308 "org.gnu.gdb.mips.dsp");
8309 /* The DSP registers are optional; it's OK if they are absent. */
8310 if (feature != NULL)
8311 {
8312 i = 0;
8313 valid_p = 1;
8314 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8315 dspacc + i++, "hi1");
8316 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8317 dspacc + i++, "lo1");
8318 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8319 dspacc + i++, "hi2");
8320 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8321 dspacc + i++, "lo2");
8322 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8323 dspacc + i++, "hi3");
8324 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8325 dspacc + i++, "lo3");
8326
8327 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8328 dspctl, "dspctl");
8329
8330 if (!valid_p)
8331 {
8332 tdesc_data_cleanup (tdesc_data);
8333 return NULL;
8334 }
8335
8336 mips_regnum.dspacc = dspacc;
8337 mips_regnum.dspctl = dspctl;
8338
8339 num_regs = mips_regnum.dspctl + 1;
8340 }
8341 }
8342
8343 /* It would be nice to detect an attempt to use a 64-bit ABI
8344 when only 32-bit registers are provided. */
8345 reg_names = NULL;
8346 }
8347
8348 /* First of all, extract the elf_flags, if available. */
8349 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8350 elf_flags = elf_elfheader (info.abfd)->e_flags;
8351 else if (arches != NULL)
8352 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
8353 else
8354 elf_flags = 0;
8355 if (gdbarch_debug)
8356 fprintf_unfiltered (gdb_stdlog,
8357 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
8358
8359 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
8360 switch ((elf_flags & EF_MIPS_ABI))
8361 {
8362 case E_MIPS_ABI_O32:
8363 found_abi = MIPS_ABI_O32;
8364 break;
8365 case E_MIPS_ABI_O64:
8366 found_abi = MIPS_ABI_O64;
8367 break;
8368 case E_MIPS_ABI_EABI32:
8369 found_abi = MIPS_ABI_EABI32;
8370 break;
8371 case E_MIPS_ABI_EABI64:
8372 found_abi = MIPS_ABI_EABI64;
8373 break;
8374 default:
8375 if ((elf_flags & EF_MIPS_ABI2))
8376 found_abi = MIPS_ABI_N32;
8377 else
8378 found_abi = MIPS_ABI_UNKNOWN;
8379 break;
8380 }
8381
8382 /* GCC creates a pseudo-section whose name describes the ABI. */
8383 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8384 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
8385
8386 /* If we have no useful BFD information, use the ABI from the last
8387 MIPS architecture (if there is one). */
8388 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8389 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
8390
8391 /* Try the architecture for any hint of the correct ABI. */
8392 if (found_abi == MIPS_ABI_UNKNOWN
8393 && info.bfd_arch_info != NULL
8394 && info.bfd_arch_info->arch == bfd_arch_mips)
8395 {
8396 switch (info.bfd_arch_info->mach)
8397 {
8398 case bfd_mach_mips3900:
8399 found_abi = MIPS_ABI_EABI32;
8400 break;
8401 case bfd_mach_mips4100:
8402 case bfd_mach_mips5000:
8403 found_abi = MIPS_ABI_EABI64;
8404 break;
8405 case bfd_mach_mips8000:
8406 case bfd_mach_mips10000:
8407 /* On Irix, ELF64 executables use the N64 ABI. The
8408 pseudo-sections which describe the ABI aren't present
8409 on IRIX. (Even for executables created by gcc.) */
8410 if (info.abfd != NULL
8411 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8412 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8413 found_abi = MIPS_ABI_N64;
8414 else
8415 found_abi = MIPS_ABI_N32;
8416 break;
8417 }
8418 }
8419
8420 /* Default 64-bit objects to N64 instead of O32. */
8421 if (found_abi == MIPS_ABI_UNKNOWN
8422 && info.abfd != NULL
8423 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8424 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8425 found_abi = MIPS_ABI_N64;
8426
8427 if (gdbarch_debug)
8428 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8429 found_abi);
8430
8431 /* What has the user specified from the command line? */
8432 wanted_abi = global_mips_abi ();
8433 if (gdbarch_debug)
8434 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8435 wanted_abi);
8436
8437 /* Now that we have found what the ABI for this binary would be,
8438 check whether the user is overriding it. */
8439 if (wanted_abi != MIPS_ABI_UNKNOWN)
8440 mips_abi = wanted_abi;
8441 else if (found_abi != MIPS_ABI_UNKNOWN)
8442 mips_abi = found_abi;
8443 else
8444 mips_abi = MIPS_ABI_O32;
8445 if (gdbarch_debug)
8446 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8447 mips_abi);
8448
8449 /* Determine the default compressed ISA. */
8450 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8451 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8452 mips_isa = ISA_MICROMIPS;
8453 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8454 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8455 mips_isa = ISA_MIPS16;
8456 else
8457 mips_isa = global_mips_compression ();
8458 mips_compression_string = mips_compression_strings[mips_isa];
8459
8460 /* Also used when doing an architecture lookup. */
8461 if (gdbarch_debug)
8462 fprintf_unfiltered (gdb_stdlog,
8463 "mips_gdbarch_init: "
8464 "mips64_transfers_32bit_regs_p = %d\n",
8465 mips64_transfers_32bit_regs_p);
8466
8467 /* Determine the MIPS FPU type. */
8468 #ifdef HAVE_ELF
8469 if (info.abfd
8470 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8471 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8472 Tag_GNU_MIPS_ABI_FP);
8473 #endif /* HAVE_ELF */
8474
8475 if (!mips_fpu_type_auto)
8476 fpu_type = mips_fpu_type;
8477 else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
8478 {
8479 switch (elf_fpu_type)
8480 {
8481 case Val_GNU_MIPS_ABI_FP_DOUBLE:
8482 fpu_type = MIPS_FPU_DOUBLE;
8483 break;
8484 case Val_GNU_MIPS_ABI_FP_SINGLE:
8485 fpu_type = MIPS_FPU_SINGLE;
8486 break;
8487 case Val_GNU_MIPS_ABI_FP_SOFT:
8488 default:
8489 /* Soft float or unknown. */
8490 fpu_type = MIPS_FPU_NONE;
8491 break;
8492 }
8493 }
8494 else if (info.bfd_arch_info != NULL
8495 && info.bfd_arch_info->arch == bfd_arch_mips)
8496 switch (info.bfd_arch_info->mach)
8497 {
8498 case bfd_mach_mips3900:
8499 case bfd_mach_mips4100:
8500 case bfd_mach_mips4111:
8501 case bfd_mach_mips4120:
8502 fpu_type = MIPS_FPU_NONE;
8503 break;
8504 case bfd_mach_mips4650:
8505 fpu_type = MIPS_FPU_SINGLE;
8506 break;
8507 default:
8508 fpu_type = MIPS_FPU_DOUBLE;
8509 break;
8510 }
8511 else if (arches != NULL)
8512 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
8513 else
8514 fpu_type = MIPS_FPU_DOUBLE;
8515 if (gdbarch_debug)
8516 fprintf_unfiltered (gdb_stdlog,
8517 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8518
8519 /* Check for blatant incompatibilities. */
8520
8521 /* If we have only 32-bit registers, then we can't debug a 64-bit
8522 ABI. */
8523 if (info.target_desc
8524 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8525 && mips_abi != MIPS_ABI_EABI32
8526 && mips_abi != MIPS_ABI_O32)
8527 {
8528 if (tdesc_data != NULL)
8529 tdesc_data_cleanup (tdesc_data);
8530 return NULL;
8531 }
8532
8533 /* Try to find a pre-existing architecture. */
8534 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8535 arches != NULL;
8536 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8537 {
8538 /* MIPS needs to be pedantic about which ABI and the compressed
8539 ISA variation the object is using. */
8540 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
8541 continue;
8542 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
8543 continue;
8544 if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
8545 continue;
8546 /* Need to be pedantic about which register virtual size is
8547 used. */
8548 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8549 != mips64_transfers_32bit_regs_p)
8550 continue;
8551 /* Be pedantic about which FPU is selected. */
8552 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
8553 continue;
8554
8555 if (tdesc_data != NULL)
8556 tdesc_data_cleanup (tdesc_data);
8557 return arches->gdbarch;
8558 }
8559
8560 /* Need a new architecture. Fill in a target specific vector. */
8561 tdep = XNEW (struct gdbarch_tdep);
8562 gdbarch = gdbarch_alloc (&info, tdep);
8563 tdep->elf_flags = elf_flags;
8564 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
8565 tdep->found_abi = found_abi;
8566 tdep->mips_abi = mips_abi;
8567 tdep->mips_isa = mips_isa;
8568 tdep->mips_fpu_type = fpu_type;
8569 tdep->register_size_valid_p = 0;
8570 tdep->register_size = 0;
8571
8572 if (info.target_desc)
8573 {
8574 /* Some useful properties can be inferred from the target. */
8575 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8576 {
8577 tdep->register_size_valid_p = 1;
8578 tdep->register_size = 4;
8579 }
8580 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8581 {
8582 tdep->register_size_valid_p = 1;
8583 tdep->register_size = 8;
8584 }
8585 }
8586
8587 /* Initially set everything according to the default ABI/ISA. */
8588 set_gdbarch_short_bit (gdbarch, 16);
8589 set_gdbarch_int_bit (gdbarch, 32);
8590 set_gdbarch_float_bit (gdbarch, 32);
8591 set_gdbarch_double_bit (gdbarch, 64);
8592 set_gdbarch_long_double_bit (gdbarch, 64);
8593 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8594 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8595 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
8596
8597 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8598 mips_ax_pseudo_register_collect);
8599 set_gdbarch_ax_pseudo_register_push_stack
8600 (gdbarch, mips_ax_pseudo_register_push_stack);
8601
8602 set_gdbarch_elf_make_msymbol_special (gdbarch,
8603 mips_elf_make_msymbol_special);
8604 set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
8605 set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
8606 set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
8607
8608 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8609 *regnum = mips_regnum;
8610 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8611 set_gdbarch_num_regs (gdbarch, num_regs);
8612 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8613 set_gdbarch_register_name (gdbarch, mips_register_name);
8614 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8615 tdep->mips_processor_reg_names = reg_names;
8616 tdep->regnum = regnum;
8617
8618 switch (mips_abi)
8619 {
8620 case MIPS_ABI_O32:
8621 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
8622 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
8623 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8624 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8625 tdep->default_mask_address_p = 0;
8626 set_gdbarch_long_bit (gdbarch, 32);
8627 set_gdbarch_ptr_bit (gdbarch, 32);
8628 set_gdbarch_long_long_bit (gdbarch, 64);
8629 break;
8630 case MIPS_ABI_O64:
8631 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
8632 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
8633 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8634 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8635 tdep->default_mask_address_p = 0;
8636 set_gdbarch_long_bit (gdbarch, 32);
8637 set_gdbarch_ptr_bit (gdbarch, 32);
8638 set_gdbarch_long_long_bit (gdbarch, 64);
8639 break;
8640 case MIPS_ABI_EABI32:
8641 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8642 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8643 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8644 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8645 tdep->default_mask_address_p = 0;
8646 set_gdbarch_long_bit (gdbarch, 32);
8647 set_gdbarch_ptr_bit (gdbarch, 32);
8648 set_gdbarch_long_long_bit (gdbarch, 64);
8649 break;
8650 case MIPS_ABI_EABI64:
8651 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8652 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8653 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8654 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8655 tdep->default_mask_address_p = 0;
8656 set_gdbarch_long_bit (gdbarch, 64);
8657 set_gdbarch_ptr_bit (gdbarch, 64);
8658 set_gdbarch_long_long_bit (gdbarch, 64);
8659 break;
8660 case MIPS_ABI_N32:
8661 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8662 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8663 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8664 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8665 tdep->default_mask_address_p = 0;
8666 set_gdbarch_long_bit (gdbarch, 32);
8667 set_gdbarch_ptr_bit (gdbarch, 32);
8668 set_gdbarch_long_long_bit (gdbarch, 64);
8669 set_gdbarch_long_double_bit (gdbarch, 128);
8670 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8671 break;
8672 case MIPS_ABI_N64:
8673 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8674 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8675 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8676 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8677 tdep->default_mask_address_p = 0;
8678 set_gdbarch_long_bit (gdbarch, 64);
8679 set_gdbarch_ptr_bit (gdbarch, 64);
8680 set_gdbarch_long_long_bit (gdbarch, 64);
8681 set_gdbarch_long_double_bit (gdbarch, 128);
8682 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8683 break;
8684 default:
8685 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8686 }
8687
8688 /* GCC creates a pseudo-section whose name specifies the size of
8689 longs, since -mlong32 or -mlong64 may be used independent of
8690 other options. How those options affect pointer sizes is ABI and
8691 architecture dependent, so use them to override the default sizes
8692 set by the ABI. This table shows the relationship between ABI,
8693 -mlongXX, and size of pointers:
8694
8695 ABI -mlongXX ptr bits
8696 --- -------- --------
8697 o32 32 32
8698 o32 64 32
8699 n32 32 32
8700 n32 64 64
8701 o64 32 32
8702 o64 64 64
8703 n64 32 32
8704 n64 64 64
8705 eabi32 32 32
8706 eabi32 64 32
8707 eabi64 32 32
8708 eabi64 64 64
8709
8710 Note that for o32 and eabi32, pointers are always 32 bits
8711 regardless of any -mlongXX option. For all others, pointers and
8712 longs are the same, as set by -mlongXX or set by defaults. */
8713
8714 if (info.abfd != NULL)
8715 {
8716 int long_bit = 0;
8717
8718 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8719 if (long_bit)
8720 {
8721 set_gdbarch_long_bit (gdbarch, long_bit);
8722 switch (mips_abi)
8723 {
8724 case MIPS_ABI_O32:
8725 case MIPS_ABI_EABI32:
8726 break;
8727 case MIPS_ABI_N32:
8728 case MIPS_ABI_O64:
8729 case MIPS_ABI_N64:
8730 case MIPS_ABI_EABI64:
8731 set_gdbarch_ptr_bit (gdbarch, long_bit);
8732 break;
8733 default:
8734 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8735 }
8736 }
8737 }
8738
8739 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8740 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8741 comment:
8742
8743 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8744 flag in object files because to do so would make it impossible to
8745 link with libraries compiled without "-gp32". This is
8746 unnecessarily restrictive.
8747
8748 We could solve this problem by adding "-gp32" multilibs to gcc,
8749 but to set this flag before gcc is built with such multilibs will
8750 break too many systems.''
8751
8752 But even more unhelpfully, the default linker output target for
8753 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8754 for 64-bit programs - you need to change the ABI to change this,
8755 and not all gcc targets support that currently. Therefore using
8756 this flag to detect 32-bit mode would do the wrong thing given
8757 the current gcc - it would make GDB treat these 64-bit programs
8758 as 32-bit programs by default. */
8759
8760 set_gdbarch_read_pc (gdbarch, mips_read_pc);
8761 set_gdbarch_write_pc (gdbarch, mips_write_pc);
8762
8763 /* Add/remove bits from an address. The MIPS needs be careful to
8764 ensure that all 32 bit addresses are sign extended to 64 bits. */
8765 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8766
8767 /* Unwind the frame. */
8768 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
8769 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
8770 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
8771
8772 /* Map debug register numbers onto internal register numbers. */
8773 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
8774 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8775 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8776 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8777 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8778 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
8779
8780 /* MIPS version of CALL_DUMMY. */
8781
8782 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8783 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
8784 set_gdbarch_frame_align (gdbarch, mips_frame_align);
8785
8786 set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
8787
8788 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8789 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8790 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8791
8792 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8793 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
8794 set_gdbarch_remote_breakpoint_from_pc (gdbarch,
8795 mips_remote_breakpoint_from_pc);
8796 set_gdbarch_adjust_breakpoint_address (gdbarch,
8797 mips_adjust_breakpoint_address);
8798
8799 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
8800
8801 set_gdbarch_stack_frame_destroyed_p (gdbarch, mips_stack_frame_destroyed_p);
8802
8803 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8804 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8805 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
8806
8807 set_gdbarch_register_type (gdbarch, mips_register_type);
8808
8809 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
8810
8811 if (mips_abi == MIPS_ABI_N32)
8812 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8813 else if (mips_abi == MIPS_ABI_N64)
8814 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8815 else
8816 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
8817
8818 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8819 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
8820 need to all be folded into the target vector. Since they are
8821 being used as guards for target_stopped_by_watchpoint, why not have
8822 target_stopped_by_watchpoint return the type of watchpoint that the code
8823 is sitting on? */
8824 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8825
8826 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
8827
8828 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8829 to support MIPS16. This is a bad thing. Make sure not to do it
8830 if we have an OS ABI that actually supports shared libraries, since
8831 shared library support is more important. If we have an OS someday
8832 that supports both shared libraries and MIPS16, we'll have to find
8833 a better place for these.
8834 macro/2012-04-25: But that applies to return trampolines only and
8835 currently no MIPS OS ABI uses shared libraries that have them. */
8836 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8837
8838 set_gdbarch_single_step_through_delay (gdbarch,
8839 mips_single_step_through_delay);
8840
8841 /* Virtual tables. */
8842 set_gdbarch_vbit_in_delta (gdbarch, 1);
8843
8844 mips_register_g_packet_guesses (gdbarch);
8845
8846 /* Hook in OS ABI-specific overrides, if they have been registered. */
8847 info.tdep_info = tdesc_data;
8848 gdbarch_init_osabi (info, gdbarch);
8849
8850 /* The hook may have adjusted num_regs, fetch the final value and
8851 set pc_regnum and sp_regnum now that it has been fixed. */
8852 num_regs = gdbarch_num_regs (gdbarch);
8853 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8854 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8855
8856 /* Unwind the frame. */
8857 dwarf2_append_unwinders (gdbarch);
8858 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8859 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
8860 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
8861 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
8862 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
8863 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
8864 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
8865 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
8866 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
8867
8868 if (tdesc_data)
8869 {
8870 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
8871 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8872
8873 /* Override the normal target description methods to handle our
8874 dual real and pseudo registers. */
8875 set_gdbarch_register_name (gdbarch, mips_register_name);
8876 set_gdbarch_register_reggroup_p (gdbarch,
8877 mips_tdesc_register_reggroup_p);
8878
8879 num_regs = gdbarch_num_regs (gdbarch);
8880 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8881 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8882 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8883 }
8884
8885 /* Add ABI-specific aliases for the registers. */
8886 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8887 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8888 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8889 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8890 else
8891 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8892 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8893 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8894
8895 /* Add some other standard aliases. */
8896 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8897 user_reg_add (gdbarch, mips_register_aliases[i].name,
8898 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8899
8900 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8901 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8902 value_of_mips_user_reg,
8903 &mips_numeric_register_aliases[i].regnum);
8904
8905 return gdbarch;
8906 }
8907
8908 static void
8909 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
8910 {
8911 struct gdbarch_info info;
8912
8913 /* Force the architecture to update, and (if it's a MIPS architecture)
8914 mips_gdbarch_init will take care of the rest. */
8915 gdbarch_info_init (&info);
8916 gdbarch_update_p (info);
8917 }
8918
8919 /* Print out which MIPS ABI is in use. */
8920
8921 static void
8922 show_mips_abi (struct ui_file *file,
8923 int from_tty,
8924 struct cmd_list_element *ignored_cmd,
8925 const char *ignored_value)
8926 {
8927 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
8928 fprintf_filtered
8929 (file,
8930 "The MIPS ABI is unknown because the current architecture "
8931 "is not MIPS.\n");
8932 else
8933 {
8934 enum mips_abi global_abi = global_mips_abi ();
8935 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
8936 const char *actual_abi_str = mips_abi_strings[actual_abi];
8937
8938 if (global_abi == MIPS_ABI_UNKNOWN)
8939 fprintf_filtered
8940 (file,
8941 "The MIPS ABI is set automatically (currently \"%s\").\n",
8942 actual_abi_str);
8943 else if (global_abi == actual_abi)
8944 fprintf_filtered
8945 (file,
8946 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
8947 actual_abi_str);
8948 else
8949 {
8950 /* Probably shouldn't happen... */
8951 fprintf_filtered (file,
8952 "The (auto detected) MIPS ABI \"%s\" is in use "
8953 "even though the user setting was \"%s\".\n",
8954 actual_abi_str, mips_abi_strings[global_abi]);
8955 }
8956 }
8957 }
8958
8959 /* Print out which MIPS compressed ISA encoding is used. */
8960
8961 static void
8962 show_mips_compression (struct ui_file *file, int from_tty,
8963 struct cmd_list_element *c, const char *value)
8964 {
8965 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8966 value);
8967 }
8968
8969 static void
8970 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
8971 {
8972 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8973 if (tdep != NULL)
8974 {
8975 int ef_mips_arch;
8976 int ef_mips_32bitmode;
8977 /* Determine the ISA. */
8978 switch (tdep->elf_flags & EF_MIPS_ARCH)
8979 {
8980 case E_MIPS_ARCH_1:
8981 ef_mips_arch = 1;
8982 break;
8983 case E_MIPS_ARCH_2:
8984 ef_mips_arch = 2;
8985 break;
8986 case E_MIPS_ARCH_3:
8987 ef_mips_arch = 3;
8988 break;
8989 case E_MIPS_ARCH_4:
8990 ef_mips_arch = 4;
8991 break;
8992 default:
8993 ef_mips_arch = 0;
8994 break;
8995 }
8996 /* Determine the size of a pointer. */
8997 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
8998 fprintf_unfiltered (file,
8999 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
9000 tdep->elf_flags);
9001 fprintf_unfiltered (file,
9002 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
9003 ef_mips_32bitmode);
9004 fprintf_unfiltered (file,
9005 "mips_dump_tdep: ef_mips_arch = %d\n",
9006 ef_mips_arch);
9007 fprintf_unfiltered (file,
9008 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
9009 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
9010 fprintf_unfiltered (file,
9011 "mips_dump_tdep: "
9012 "mips_mask_address_p() %d (default %d)\n",
9013 mips_mask_address_p (tdep),
9014 tdep->default_mask_address_p);
9015 }
9016 fprintf_unfiltered (file,
9017 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
9018 MIPS_DEFAULT_FPU_TYPE,
9019 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
9020 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
9021 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
9022 : "???"));
9023 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
9024 MIPS_EABI (gdbarch));
9025 fprintf_unfiltered (file,
9026 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
9027 MIPS_FPU_TYPE (gdbarch),
9028 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
9029 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
9030 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
9031 : "???"));
9032 }
9033
9034 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
9035
9036 void
9037 _initialize_mips_tdep (void)
9038 {
9039 static struct cmd_list_element *mipsfpulist = NULL;
9040 struct cmd_list_element *c;
9041
9042 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
9043 if (MIPS_ABI_LAST + 1
9044 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
9045 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
9046
9047 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
9048
9049 mips_pdr_data = register_objfile_data ();
9050
9051 /* Create feature sets with the appropriate properties. The values
9052 are not important. */
9053 mips_tdesc_gp32 = allocate_target_description ();
9054 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
9055
9056 mips_tdesc_gp64 = allocate_target_description ();
9057 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
9058
9059 /* Add root prefix command for all "set mips"/"show mips" commands. */
9060 add_prefix_cmd ("mips", no_class, set_mips_command,
9061 _("Various MIPS specific commands."),
9062 &setmipscmdlist, "set mips ", 0, &setlist);
9063
9064 add_prefix_cmd ("mips", no_class, show_mips_command,
9065 _("Various MIPS specific commands."),
9066 &showmipscmdlist, "show mips ", 0, &showlist);
9067
9068 /* Allow the user to override the ABI. */
9069 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
9070 &mips_abi_string, _("\
9071 Set the MIPS ABI used by this program."), _("\
9072 Show the MIPS ABI used by this program."), _("\
9073 This option can be set to one of:\n\
9074 auto - the default ABI associated with the current binary\n\
9075 o32\n\
9076 o64\n\
9077 n32\n\
9078 n64\n\
9079 eabi32\n\
9080 eabi64"),
9081 mips_abi_update,
9082 show_mips_abi,
9083 &setmipscmdlist, &showmipscmdlist);
9084
9085 /* Allow the user to set the ISA to assume for compressed code if ELF
9086 file flags don't tell or there is no program file selected. This
9087 setting is updated whenever unambiguous ELF file flags are interpreted,
9088 and carried over to subsequent sessions. */
9089 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
9090 &mips_compression_string, _("\
9091 Set the compressed ISA encoding used by MIPS code."), _("\
9092 Show the compressed ISA encoding used by MIPS code."), _("\
9093 Select the compressed ISA encoding used in functions that have no symbol\n\
9094 information available. The encoding can be set to either of:\n\
9095 mips16\n\
9096 micromips\n\
9097 and is updated automatically from ELF file flags if available."),
9098 mips_abi_update,
9099 show_mips_compression,
9100 &setmipscmdlist, &showmipscmdlist);
9101
9102 /* Let the user turn off floating point and set the fence post for
9103 heuristic_proc_start. */
9104
9105 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
9106 _("Set use of MIPS floating-point coprocessor."),
9107 &mipsfpulist, "set mipsfpu ", 0, &setlist);
9108 add_cmd ("single", class_support, set_mipsfpu_single_command,
9109 _("Select single-precision MIPS floating-point coprocessor."),
9110 &mipsfpulist);
9111 add_cmd ("double", class_support, set_mipsfpu_double_command,
9112 _("Select double-precision MIPS floating-point coprocessor."),
9113 &mipsfpulist);
9114 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
9115 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
9116 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
9117 add_cmd ("none", class_support, set_mipsfpu_none_command,
9118 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
9119 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
9120 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
9121 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
9122 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
9123 _("Select MIPS floating-point coprocessor automatically."),
9124 &mipsfpulist);
9125 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
9126 _("Show current use of MIPS floating-point coprocessor target."),
9127 &showlist);
9128
9129 /* We really would like to have both "0" and "unlimited" work, but
9130 command.c doesn't deal with that. So make it a var_zinteger
9131 because the user can always use "999999" or some such for unlimited. */
9132 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
9133 &heuristic_fence_post, _("\
9134 Set the distance searched for the start of a function."), _("\
9135 Show the distance searched for the start of a function."), _("\
9136 If you are debugging a stripped executable, GDB needs to search through the\n\
9137 program for the start of a function. This command sets the distance of the\n\
9138 search. The only need to set it is when debugging a stripped executable."),
9139 reinit_frame_cache_sfunc,
9140 NULL, /* FIXME: i18n: The distance searched for
9141 the start of a function is %s. */
9142 &setlist, &showlist);
9143
9144 /* Allow the user to control whether the upper bits of 64-bit
9145 addresses should be zeroed. */
9146 add_setshow_auto_boolean_cmd ("mask-address", no_class,
9147 &mask_address_var, _("\
9148 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9149 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
9150 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
9151 allow GDB to determine the correct value."),
9152 NULL, show_mask_address,
9153 &setmipscmdlist, &showmipscmdlist);
9154
9155 /* Allow the user to control the size of 32 bit registers within the
9156 raw remote packet. */
9157 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
9158 &mips64_transfers_32bit_regs_p, _("\
9159 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9160 _("\
9161 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9162 _("\
9163 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9164 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
9165 64 bits for others. Use \"off\" to disable compatibility mode"),
9166 set_mips64_transfers_32bit_regs,
9167 NULL, /* FIXME: i18n: Compatibility with 64-bit
9168 MIPS target that transfers 32-bit
9169 quantities is %s. */
9170 &setlist, &showlist);
9171
9172 /* Debug this files internals. */
9173 add_setshow_zuinteger_cmd ("mips", class_maintenance,
9174 &mips_debug, _("\
9175 Set mips debugging."), _("\
9176 Show mips debugging."), _("\
9177 When non-zero, mips specific debugging is enabled."),
9178 NULL,
9179 NULL, /* FIXME: i18n: Mips debugging is
9180 currently %s. */
9181 &setdebuglist, &showdebuglist);
9182 }