]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-tdep.c
* mips-tdep.c: Comment typo.
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 Boston, MA 02110-1301, USA. */
26
27 #include "defs.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
30 #include "frame.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "value.h"
34 #include "gdbcmd.h"
35 #include "language.h"
36 #include "gdbcore.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "gdbtypes.h"
40 #include "target.h"
41 #include "arch-utils.h"
42 #include "regcache.h"
43 #include "osabi.h"
44 #include "mips-tdep.h"
45 #include "block.h"
46 #include "reggroups.h"
47 #include "opcode/mips.h"
48 #include "elf/mips.h"
49 #include "elf-bfd.h"
50 #include "symcat.h"
51 #include "sim-regno.h"
52 #include "dis-asm.h"
53 #include "frame-unwind.h"
54 #include "frame-base.h"
55 #include "trad-frame.h"
56 #include "infcall.h"
57 #include "floatformat.h"
58 #include "remote.h"
59 #include "target-descriptions.h"
60
61 static const struct objfile_data *mips_pdr_data;
62
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
66 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
67 #define ST0_FR (1 << 26)
68
69 /* The sizes of floating point registers. */
70
71 enum
72 {
73 MIPS_FPU_SINGLE_REGSIZE = 4,
74 MIPS_FPU_DOUBLE_REGSIZE = 8
75 };
76
77
78 static const char *mips_abi_string;
79
80 static const char *mips_abi_strings[] = {
81 "auto",
82 "n32",
83 "o32",
84 "n64",
85 "o64",
86 "eabi32",
87 "eabi64",
88 NULL
89 };
90
91 /* Various MIPS ISA options (related to stack analysis) can be
92 overridden dynamically. Establish an enum/array for managing
93 them. */
94
95 static const char size_auto[] = "auto";
96 static const char size_32[] = "32";
97 static const char size_64[] = "64";
98
99 static const char *size_enums[] = {
100 size_auto,
101 size_32,
102 size_64,
103 0
104 };
105
106 /* Some MIPS boards don't support floating point while others only
107 support single-precision floating-point operations. */
108
109 enum mips_fpu_type
110 {
111 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
112 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
113 MIPS_FPU_NONE /* No floating point. */
114 };
115
116 #ifndef MIPS_DEFAULT_FPU_TYPE
117 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
118 #endif
119 static int mips_fpu_type_auto = 1;
120 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
121
122 static int mips_debug = 0;
123
124 /* Properties (for struct target_desc) describing the g/G packet
125 layout. */
126 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
127 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
128
129 /* MIPS specific per-architecture information */
130 struct gdbarch_tdep
131 {
132 /* from the elf header */
133 int elf_flags;
134
135 /* mips options */
136 enum mips_abi mips_abi;
137 enum mips_abi found_abi;
138 enum mips_fpu_type mips_fpu_type;
139 int mips_last_arg_regnum;
140 int mips_last_fp_arg_regnum;
141 int default_mask_address_p;
142 /* Is the target using 64-bit raw integer registers but only
143 storing a left-aligned 32-bit value in each? */
144 int mips64_transfers_32bit_regs_p;
145 /* Indexes for various registers. IRIX and embedded have
146 different values. This contains the "public" fields. Don't
147 add any that do not need to be public. */
148 const struct mips_regnum *regnum;
149 /* Register names table for the current register set. */
150 const char **mips_processor_reg_names;
151
152 /* The size of register data available from the target, if known.
153 This doesn't quite obsolete the manual
154 mips64_transfers_32bit_regs_p, since that is documented to force
155 left alignment even for big endian (very strange). */
156 int register_size_valid_p;
157 int register_size;
158 };
159
160 static int
161 n32n64_floatformat_always_valid (const struct floatformat *fmt,
162 const void *from)
163 {
164 return 1;
165 }
166
167 /* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
168 They are implemented as a pair of 64bit doubles where the high
169 part holds the result of the operation rounded to double, and
170 the low double holds the difference between the exact result and
171 the rounded result. So "high" + "low" contains the result with
172 added precision. Unfortunately, the floatformat structure used
173 by GDB is not powerful enough to describe this format. As a temporary
174 measure, we define a 128bit floatformat that only uses the high part.
175 We lose a bit of precision but that's probably the best we can do
176 for now with the current infrastructure. */
177
178 static const struct floatformat floatformat_n32n64_long_double_big =
179 {
180 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
181 floatformat_intbit_no,
182 "floatformat_n32n64_long_double_big",
183 n32n64_floatformat_always_valid
184 };
185
186 static const struct floatformat *floatformats_n32n64_long[BFD_ENDIAN_UNKNOWN] =
187 {
188 &floatformat_n32n64_long_double_big,
189 &floatformat_n32n64_long_double_big
190 };
191
192 const struct mips_regnum *
193 mips_regnum (struct gdbarch *gdbarch)
194 {
195 return gdbarch_tdep (gdbarch)->regnum;
196 }
197
198 static int
199 mips_fpa0_regnum (struct gdbarch *gdbarch)
200 {
201 return mips_regnum (gdbarch)->fp0 + 12;
202 }
203
204 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
205 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
206
207 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
208
209 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
210
211 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
212
213 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
214 functions to test, set, or clear bit 0 of addresses. */
215
216 static CORE_ADDR
217 is_mips16_addr (CORE_ADDR addr)
218 {
219 return ((addr) & 1);
220 }
221
222 static CORE_ADDR
223 unmake_mips16_addr (CORE_ADDR addr)
224 {
225 return ((addr) & ~(CORE_ADDR) 1);
226 }
227
228 /* Return the contents of register REGNUM as a signed integer. */
229
230 static LONGEST
231 read_signed_register (int regnum)
232 {
233 LONGEST val;
234 regcache_cooked_read_signed (current_regcache, regnum, &val);
235 return val;
236 }
237
238 static LONGEST
239 read_signed_register_pid (int regnum, ptid_t ptid)
240 {
241 ptid_t save_ptid;
242 LONGEST retval;
243
244 if (ptid_equal (ptid, inferior_ptid))
245 return read_signed_register (regnum);
246
247 save_ptid = inferior_ptid;
248
249 inferior_ptid = ptid;
250
251 retval = read_signed_register (regnum);
252
253 inferior_ptid = save_ptid;
254
255 return retval;
256 }
257
258 /* Return the MIPS ABI associated with GDBARCH. */
259 enum mips_abi
260 mips_abi (struct gdbarch *gdbarch)
261 {
262 return gdbarch_tdep (gdbarch)->mips_abi;
263 }
264
265 int
266 mips_isa_regsize (struct gdbarch *gdbarch)
267 {
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269
270 /* If we know how big the registers are, use that size. */
271 if (tdep->register_size_valid_p)
272 return tdep->register_size;
273
274 /* Fall back to the previous behavior. */
275 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
276 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
277 }
278
279 /* Return the currently configured (or set) saved register size. */
280
281 static const char *mips_abi_regsize_string = size_auto;
282
283 unsigned int
284 mips_abi_regsize (struct gdbarch *gdbarch)
285 {
286 if (mips_abi_regsize_string == size_auto)
287 switch (mips_abi (gdbarch))
288 {
289 case MIPS_ABI_EABI32:
290 case MIPS_ABI_O32:
291 return 4;
292 case MIPS_ABI_N32:
293 case MIPS_ABI_N64:
294 case MIPS_ABI_O64:
295 case MIPS_ABI_EABI64:
296 return 8;
297 case MIPS_ABI_UNKNOWN:
298 case MIPS_ABI_LAST:
299 default:
300 internal_error (__FILE__, __LINE__, _("bad switch"));
301 }
302 else if (mips_abi_regsize_string == size_64)
303 return 8;
304 else /* if (mips_abi_regsize_string == size_32) */
305 return 4;
306 }
307
308 /* Functions for setting and testing a bit in a minimal symbol that
309 marks it as 16-bit function. The MSB of the minimal symbol's
310 "info" field is used for this purpose.
311
312 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
313 i.e. refers to a 16-bit function, and sets a "special" bit in a
314 minimal symbol to mark it as a 16-bit function
315
316 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
317
318 static void
319 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
320 {
321 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
322 {
323 MSYMBOL_INFO (msym) = (char *)
324 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
325 SYMBOL_VALUE_ADDRESS (msym) |= 1;
326 }
327 }
328
329 static int
330 msymbol_is_special (struct minimal_symbol *msym)
331 {
332 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
333 }
334
335 /* XFER a value from the big/little/left end of the register.
336 Depending on the size of the value it might occupy the entire
337 register or just part of it. Make an allowance for this, aligning
338 things accordingly. */
339
340 static void
341 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
342 enum bfd_endian endian, gdb_byte *in,
343 const gdb_byte *out, int buf_offset)
344 {
345 int reg_offset = 0;
346 gdb_assert (reg_num >= NUM_REGS);
347 /* Need to transfer the left or right part of the register, based on
348 the targets byte order. */
349 switch (endian)
350 {
351 case BFD_ENDIAN_BIG:
352 reg_offset = register_size (current_gdbarch, reg_num) - length;
353 break;
354 case BFD_ENDIAN_LITTLE:
355 reg_offset = 0;
356 break;
357 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
358 reg_offset = 0;
359 break;
360 default:
361 internal_error (__FILE__, __LINE__, _("bad switch"));
362 }
363 if (mips_debug)
364 fprintf_unfiltered (gdb_stderr,
365 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
366 reg_num, reg_offset, buf_offset, length);
367 if (mips_debug && out != NULL)
368 {
369 int i;
370 fprintf_unfiltered (gdb_stdlog, "out ");
371 for (i = 0; i < length; i++)
372 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
373 }
374 if (in != NULL)
375 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
376 in + buf_offset);
377 if (out != NULL)
378 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
379 out + buf_offset);
380 if (mips_debug && in != NULL)
381 {
382 int i;
383 fprintf_unfiltered (gdb_stdlog, "in ");
384 for (i = 0; i < length; i++)
385 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
386 }
387 if (mips_debug)
388 fprintf_unfiltered (gdb_stdlog, "\n");
389 }
390
391 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
392 compatiblity mode. A return value of 1 means that we have
393 physical 64-bit registers, but should treat them as 32-bit registers. */
394
395 static int
396 mips2_fp_compat (void)
397 {
398 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
399 meaningful. */
400 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
401 4)
402 return 0;
403
404 #if 0
405 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
406 in all the places we deal with FP registers. PR gdb/413. */
407 /* Otherwise check the FR bit in the status register - it controls
408 the FP compatiblity mode. If it is clear we are in compatibility
409 mode. */
410 if ((read_register (MIPS_PS_REGNUM) & ST0_FR) == 0)
411 return 1;
412 #endif
413
414 return 0;
415 }
416
417 /* The amount of space reserved on the stack for registers. This is
418 different to MIPS_ABI_REGSIZE as it determines the alignment of
419 data allocated after the registers have run out. */
420
421 static const char *mips_stack_argsize_string = size_auto;
422
423 static unsigned int
424 mips_stack_argsize (struct gdbarch *gdbarch)
425 {
426 if (mips_stack_argsize_string == size_auto)
427 return mips_abi_regsize (gdbarch);
428 else if (mips_stack_argsize_string == size_64)
429 return 8;
430 else /* if (mips_stack_argsize_string == size_32) */
431 return 4;
432 }
433
434 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
435
436 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
437
438 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
439
440 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
441
442 static struct type *mips_float_register_type (void);
443 static struct type *mips_double_register_type (void);
444
445 /* The list of available "set mips " and "show mips " commands */
446
447 static struct cmd_list_element *setmipscmdlist = NULL;
448 static struct cmd_list_element *showmipscmdlist = NULL;
449
450 /* Integer registers 0 thru 31 are handled explicitly by
451 mips_register_name(). Processor specific registers 32 and above
452 are listed in the following tables. */
453
454 enum
455 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
456
457 /* Generic MIPS. */
458
459 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
460 "sr", "lo", "hi", "bad", "cause", "pc",
461 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
462 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
463 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
464 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
465 "fsr", "fir", "" /*"fp" */ , "",
466 "", "", "", "", "", "", "", "",
467 "", "", "", "", "", "", "", "",
468 };
469
470 /* Names of IDT R3041 registers. */
471
472 static const char *mips_r3041_reg_names[] = {
473 "sr", "lo", "hi", "bad", "cause", "pc",
474 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
475 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
476 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
477 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
478 "fsr", "fir", "", /*"fp" */ "",
479 "", "", "bus", "ccfg", "", "", "", "",
480 "", "", "port", "cmp", "", "", "epc", "prid",
481 };
482
483 /* Names of tx39 registers. */
484
485 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
486 "sr", "lo", "hi", "bad", "cause", "pc",
487 "", "", "", "", "", "", "", "",
488 "", "", "", "", "", "", "", "",
489 "", "", "", "", "", "", "", "",
490 "", "", "", "", "", "", "", "",
491 "", "", "", "",
492 "", "", "", "", "", "", "", "",
493 "", "", "config", "cache", "debug", "depc", "epc", ""
494 };
495
496 /* Names of IRIX registers. */
497 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
498 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
499 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
500 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
501 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
502 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
503 };
504
505
506 /* Return the name of the register corresponding to REGNO. */
507 static const char *
508 mips_register_name (int regno)
509 {
510 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
511 /* GPR names for all ABIs other than n32/n64. */
512 static char *mips_gpr_names[] = {
513 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
514 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
515 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
516 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
517 };
518
519 /* GPR names for n32 and n64 ABIs. */
520 static char *mips_n32_n64_gpr_names[] = {
521 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
522 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
523 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
524 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
525 };
526
527 enum mips_abi abi = mips_abi (current_gdbarch);
528
529 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
530 don't make the raw register names visible. */
531 int rawnum = regno % NUM_REGS;
532 if (regno < NUM_REGS)
533 return "";
534
535 /* The MIPS integer registers are always mapped from 0 to 31. The
536 names of the registers (which reflects the conventions regarding
537 register use) vary depending on the ABI. */
538 if (0 <= rawnum && rawnum < 32)
539 {
540 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
541 return mips_n32_n64_gpr_names[rawnum];
542 else
543 return mips_gpr_names[rawnum];
544 }
545 else if (32 <= rawnum && rawnum < NUM_REGS)
546 {
547 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
548 return tdep->mips_processor_reg_names[rawnum - 32];
549 }
550 else
551 internal_error (__FILE__, __LINE__,
552 _("mips_register_name: bad register number %d"), rawnum);
553 }
554
555 /* Return the groups that a MIPS register can be categorised into. */
556
557 static int
558 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
559 struct reggroup *reggroup)
560 {
561 int vector_p;
562 int float_p;
563 int raw_p;
564 int rawnum = regnum % NUM_REGS;
565 int pseudo = regnum / NUM_REGS;
566 if (reggroup == all_reggroup)
567 return pseudo;
568 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
569 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
570 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
571 (gdbarch), as not all architectures are multi-arch. */
572 raw_p = rawnum < NUM_REGS;
573 if (REGISTER_NAME (regnum) == NULL || REGISTER_NAME (regnum)[0] == '\0')
574 return 0;
575 if (reggroup == float_reggroup)
576 return float_p && pseudo;
577 if (reggroup == vector_reggroup)
578 return vector_p && pseudo;
579 if (reggroup == general_reggroup)
580 return (!vector_p && !float_p) && pseudo;
581 /* Save the pseudo registers. Need to make certain that any code
582 extracting register values from a saved register cache also uses
583 pseudo registers. */
584 if (reggroup == save_reggroup)
585 return raw_p && pseudo;
586 /* Restore the same pseudo register. */
587 if (reggroup == restore_reggroup)
588 return raw_p && pseudo;
589 return 0;
590 }
591
592 /* Map the symbol table registers which live in the range [1 *
593 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
594 registers. Take care of alignment and size problems. */
595
596 static void
597 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
598 int cookednum, gdb_byte *buf)
599 {
600 int rawnum = cookednum % NUM_REGS;
601 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
602 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
603 regcache_raw_read (regcache, rawnum, buf);
604 else if (register_size (gdbarch, rawnum) >
605 register_size (gdbarch, cookednum))
606 {
607 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
608 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
609 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
610 else
611 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
612 }
613 else
614 internal_error (__FILE__, __LINE__, _("bad register size"));
615 }
616
617 static void
618 mips_pseudo_register_write (struct gdbarch *gdbarch,
619 struct regcache *regcache, int cookednum,
620 const gdb_byte *buf)
621 {
622 int rawnum = cookednum % NUM_REGS;
623 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
624 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
625 regcache_raw_write (regcache, rawnum, buf);
626 else if (register_size (gdbarch, rawnum) >
627 register_size (gdbarch, cookednum))
628 {
629 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
630 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
631 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
632 else
633 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
634 }
635 else
636 internal_error (__FILE__, __LINE__, _("bad register size"));
637 }
638
639 /* Table to translate MIPS16 register field to actual register number. */
640 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
641
642 /* Heuristic_proc_start may hunt through the text section for a long
643 time across a 2400 baud serial line. Allows the user to limit this
644 search. */
645
646 static unsigned int heuristic_fence_post = 0;
647
648 /* Number of bytes of storage in the actual machine representation for
649 register N. NOTE: This defines the pseudo register type so need to
650 rebuild the architecture vector. */
651
652 static int mips64_transfers_32bit_regs_p = 0;
653
654 static void
655 set_mips64_transfers_32bit_regs (char *args, int from_tty,
656 struct cmd_list_element *c)
657 {
658 struct gdbarch_info info;
659 gdbarch_info_init (&info);
660 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
661 instead of relying on globals. Doing that would let generic code
662 handle the search for this specific architecture. */
663 if (!gdbarch_update_p (info))
664 {
665 mips64_transfers_32bit_regs_p = 0;
666 error (_("32-bit compatibility mode not supported"));
667 }
668 }
669
670 /* Convert to/from a register and the corresponding memory value. */
671
672 static int
673 mips_convert_register_p (int regnum, struct type *type)
674 {
675 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
676 && register_size (current_gdbarch, regnum) == 4
677 && (regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
678 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32
679 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
680 }
681
682 static void
683 mips_register_to_value (struct frame_info *frame, int regnum,
684 struct type *type, gdb_byte *to)
685 {
686 get_frame_register (frame, regnum + 0, to + 4);
687 get_frame_register (frame, regnum + 1, to + 0);
688 }
689
690 static void
691 mips_value_to_register (struct frame_info *frame, int regnum,
692 struct type *type, const gdb_byte *from)
693 {
694 put_frame_register (frame, regnum + 0, from + 4);
695 put_frame_register (frame, regnum + 1, from + 0);
696 }
697
698 /* Return the GDB type object for the "standard" data type of data in
699 register REG. */
700
701 static struct type *
702 mips_register_type (struct gdbarch *gdbarch, int regnum)
703 {
704 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
705 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
706 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
707 {
708 /* The floating-point registers raw, or cooked, always match
709 mips_isa_regsize(), and also map 1:1, byte for byte. */
710 if (mips_isa_regsize (gdbarch) == 4)
711 return builtin_type_ieee_single;
712 else
713 return builtin_type_ieee_double;
714 }
715 else if (regnum < NUM_REGS)
716 {
717 /* The raw or ISA registers. These are all sized according to
718 the ISA regsize. */
719 if (mips_isa_regsize (gdbarch) == 4)
720 return builtin_type_int32;
721 else
722 return builtin_type_int64;
723 }
724 else
725 {
726 /* The cooked or ABI registers. These are sized according to
727 the ABI (with a few complications). */
728 if (regnum >= (NUM_REGS
729 + mips_regnum (current_gdbarch)->fp_control_status)
730 && regnum <= NUM_REGS + MIPS_LAST_EMBED_REGNUM)
731 /* The pseudo/cooked view of the embedded registers is always
732 32-bit. The raw view is handled below. */
733 return builtin_type_int32;
734 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
735 /* The target, while possibly using a 64-bit register buffer,
736 is only transfering 32-bits of each integer register.
737 Reflect this in the cooked/pseudo (ABI) register value. */
738 return builtin_type_int32;
739 else if (mips_abi_regsize (gdbarch) == 4)
740 /* The ABI is restricted to 32-bit registers (the ISA could be
741 32- or 64-bit). */
742 return builtin_type_int32;
743 else
744 /* 64-bit ABI. */
745 return builtin_type_int64;
746 }
747 }
748
749 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
750
751 static CORE_ADDR
752 mips_read_sp (void)
753 {
754 return read_signed_register (MIPS_SP_REGNUM);
755 }
756
757 /* Should the upper word of 64-bit addresses be zeroed? */
758 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
759
760 static int
761 mips_mask_address_p (struct gdbarch_tdep *tdep)
762 {
763 switch (mask_address_var)
764 {
765 case AUTO_BOOLEAN_TRUE:
766 return 1;
767 case AUTO_BOOLEAN_FALSE:
768 return 0;
769 break;
770 case AUTO_BOOLEAN_AUTO:
771 return tdep->default_mask_address_p;
772 default:
773 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
774 return -1;
775 }
776 }
777
778 static void
779 show_mask_address (struct ui_file *file, int from_tty,
780 struct cmd_list_element *c, const char *value)
781 {
782 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
783
784 deprecated_show_value_hack (file, from_tty, c, value);
785 switch (mask_address_var)
786 {
787 case AUTO_BOOLEAN_TRUE:
788 printf_filtered ("The 32 bit mips address mask is enabled\n");
789 break;
790 case AUTO_BOOLEAN_FALSE:
791 printf_filtered ("The 32 bit mips address mask is disabled\n");
792 break;
793 case AUTO_BOOLEAN_AUTO:
794 printf_filtered
795 ("The 32 bit address mask is set automatically. Currently %s\n",
796 mips_mask_address_p (tdep) ? "enabled" : "disabled");
797 break;
798 default:
799 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
800 break;
801 }
802 }
803
804 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
805
806 int
807 mips_pc_is_mips16 (CORE_ADDR memaddr)
808 {
809 struct minimal_symbol *sym;
810
811 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
812 if (is_mips16_addr (memaddr))
813 return 1;
814
815 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
816 the high bit of the info field. Use this to decide if the function is
817 MIPS16 or normal MIPS. */
818 sym = lookup_minimal_symbol_by_pc (memaddr);
819 if (sym)
820 return msymbol_is_special (sym);
821 else
822 return 0;
823 }
824
825 /* MIPS believes that the PC has a sign extended value. Perhaps the
826 all registers should be sign extended for simplicity? */
827
828 static CORE_ADDR
829 mips_read_pc (ptid_t ptid)
830 {
831 return read_signed_register_pid (mips_regnum (current_gdbarch)->pc, ptid);
832 }
833
834 static CORE_ADDR
835 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
836 {
837 return frame_unwind_register_signed (next_frame,
838 NUM_REGS + mips_regnum (gdbarch)->pc);
839 }
840
841 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
842 dummy frame. The frame ID's base needs to match the TOS value
843 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
844 breakpoint. */
845
846 static struct frame_id
847 mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
848 {
849 return frame_id_build (frame_unwind_register_signed (next_frame, NUM_REGS + MIPS_SP_REGNUM),
850 frame_pc_unwind (next_frame));
851 }
852
853 static void
854 mips_write_pc (CORE_ADDR pc, ptid_t ptid)
855 {
856 write_register_pid (mips_regnum (current_gdbarch)->pc, pc, ptid);
857 }
858
859 /* Fetch and return instruction from the specified location. If the PC
860 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
861
862 static ULONGEST
863 mips_fetch_instruction (CORE_ADDR addr)
864 {
865 gdb_byte buf[MIPS_INSN32_SIZE];
866 int instlen;
867 int status;
868
869 if (mips_pc_is_mips16 (addr))
870 {
871 instlen = MIPS_INSN16_SIZE;
872 addr = unmake_mips16_addr (addr);
873 }
874 else
875 instlen = MIPS_INSN32_SIZE;
876 status = read_memory_nobpt (addr, buf, instlen);
877 if (status)
878 memory_error (status, addr);
879 return extract_unsigned_integer (buf, instlen);
880 }
881
882 /* These the fields of 32 bit mips instructions */
883 #define mips32_op(x) (x >> 26)
884 #define itype_op(x) (x >> 26)
885 #define itype_rs(x) ((x >> 21) & 0x1f)
886 #define itype_rt(x) ((x >> 16) & 0x1f)
887 #define itype_immediate(x) (x & 0xffff)
888
889 #define jtype_op(x) (x >> 26)
890 #define jtype_target(x) (x & 0x03ffffff)
891
892 #define rtype_op(x) (x >> 26)
893 #define rtype_rs(x) ((x >> 21) & 0x1f)
894 #define rtype_rt(x) ((x >> 16) & 0x1f)
895 #define rtype_rd(x) ((x >> 11) & 0x1f)
896 #define rtype_shamt(x) ((x >> 6) & 0x1f)
897 #define rtype_funct(x) (x & 0x3f)
898
899 static LONGEST
900 mips32_relative_offset (ULONGEST inst)
901 {
902 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
903 }
904
905 /* Determine where to set a single step breakpoint while considering
906 branch prediction. */
907 static CORE_ADDR
908 mips32_next_pc (CORE_ADDR pc)
909 {
910 unsigned long inst;
911 int op;
912 inst = mips_fetch_instruction (pc);
913 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
914 {
915 if (itype_op (inst) >> 2 == 5)
916 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
917 {
918 op = (itype_op (inst) & 0x03);
919 switch (op)
920 {
921 case 0: /* BEQL */
922 goto equal_branch;
923 case 1: /* BNEL */
924 goto neq_branch;
925 case 2: /* BLEZL */
926 goto less_branch;
927 case 3: /* BGTZ */
928 goto greater_branch;
929 default:
930 pc += 4;
931 }
932 }
933 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
934 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
935 {
936 int tf = itype_rt (inst) & 0x01;
937 int cnum = itype_rt (inst) >> 2;
938 int fcrcs =
939 read_signed_register (mips_regnum (current_gdbarch)->
940 fp_control_status);
941 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
942
943 if (((cond >> cnum) & 0x01) == tf)
944 pc += mips32_relative_offset (inst) + 4;
945 else
946 pc += 8;
947 }
948 else
949 pc += 4; /* Not a branch, next instruction is easy */
950 }
951 else
952 { /* This gets way messy */
953
954 /* Further subdivide into SPECIAL, REGIMM and other */
955 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
956 {
957 case 0: /* SPECIAL */
958 op = rtype_funct (inst);
959 switch (op)
960 {
961 case 8: /* JR */
962 case 9: /* JALR */
963 /* Set PC to that address */
964 pc = read_signed_register (rtype_rs (inst));
965 break;
966 default:
967 pc += 4;
968 }
969
970 break; /* end SPECIAL */
971 case 1: /* REGIMM */
972 {
973 op = itype_rt (inst); /* branch condition */
974 switch (op)
975 {
976 case 0: /* BLTZ */
977 case 2: /* BLTZL */
978 case 16: /* BLTZAL */
979 case 18: /* BLTZALL */
980 less_branch:
981 if (read_signed_register (itype_rs (inst)) < 0)
982 pc += mips32_relative_offset (inst) + 4;
983 else
984 pc += 8; /* after the delay slot */
985 break;
986 case 1: /* BGEZ */
987 case 3: /* BGEZL */
988 case 17: /* BGEZAL */
989 case 19: /* BGEZALL */
990 if (read_signed_register (itype_rs (inst)) >= 0)
991 pc += mips32_relative_offset (inst) + 4;
992 else
993 pc += 8; /* after the delay slot */
994 break;
995 /* All of the other instructions in the REGIMM category */
996 default:
997 pc += 4;
998 }
999 }
1000 break; /* end REGIMM */
1001 case 2: /* J */
1002 case 3: /* JAL */
1003 {
1004 unsigned long reg;
1005 reg = jtype_target (inst) << 2;
1006 /* Upper four bits get never changed... */
1007 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1008 }
1009 break;
1010 /* FIXME case JALX : */
1011 {
1012 unsigned long reg;
1013 reg = jtype_target (inst) << 2;
1014 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
1015 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1016 }
1017 break; /* The new PC will be alternate mode */
1018 case 4: /* BEQ, BEQL */
1019 equal_branch:
1020 if (read_signed_register (itype_rs (inst)) ==
1021 read_signed_register (itype_rt (inst)))
1022 pc += mips32_relative_offset (inst) + 4;
1023 else
1024 pc += 8;
1025 break;
1026 case 5: /* BNE, BNEL */
1027 neq_branch:
1028 if (read_signed_register (itype_rs (inst)) !=
1029 read_signed_register (itype_rt (inst)))
1030 pc += mips32_relative_offset (inst) + 4;
1031 else
1032 pc += 8;
1033 break;
1034 case 6: /* BLEZ, BLEZL */
1035 if (read_signed_register (itype_rs (inst)) <= 0)
1036 pc += mips32_relative_offset (inst) + 4;
1037 else
1038 pc += 8;
1039 break;
1040 case 7:
1041 default:
1042 greater_branch: /* BGTZ, BGTZL */
1043 if (read_signed_register (itype_rs (inst)) > 0)
1044 pc += mips32_relative_offset (inst) + 4;
1045 else
1046 pc += 8;
1047 break;
1048 } /* switch */
1049 } /* else */
1050 return pc;
1051 } /* mips32_next_pc */
1052
1053 /* Decoding the next place to set a breakpoint is irregular for the
1054 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1055 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1056 We dont want to set a single step instruction on the extend instruction
1057 either.
1058 */
1059
1060 /* Lots of mips16 instruction formats */
1061 /* Predicting jumps requires itype,ritype,i8type
1062 and their extensions extItype,extritype,extI8type
1063 */
1064 enum mips16_inst_fmts
1065 {
1066 itype, /* 0 immediate 5,10 */
1067 ritype, /* 1 5,3,8 */
1068 rrtype, /* 2 5,3,3,5 */
1069 rritype, /* 3 5,3,3,5 */
1070 rrrtype, /* 4 5,3,3,3,2 */
1071 rriatype, /* 5 5,3,3,1,4 */
1072 shifttype, /* 6 5,3,3,3,2 */
1073 i8type, /* 7 5,3,8 */
1074 i8movtype, /* 8 5,3,3,5 */
1075 i8mov32rtype, /* 9 5,3,5,3 */
1076 i64type, /* 10 5,3,8 */
1077 ri64type, /* 11 5,3,3,5 */
1078 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1079 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1080 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1081 extRRItype, /* 15 5,5,5,5,3,3,5 */
1082 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1083 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1084 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1085 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1086 extRi64type, /* 20 5,6,5,5,3,3,5 */
1087 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1088 };
1089 /* I am heaping all the fields of the formats into one structure and
1090 then, only the fields which are involved in instruction extension */
1091 struct upk_mips16
1092 {
1093 CORE_ADDR offset;
1094 unsigned int regx; /* Function in i8 type */
1095 unsigned int regy;
1096 };
1097
1098
1099 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1100 for the bits which make up the immediatate extension. */
1101
1102 static CORE_ADDR
1103 extended_offset (unsigned int extension)
1104 {
1105 CORE_ADDR value;
1106 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1107 value = value << 6;
1108 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1109 value = value << 5;
1110 value |= extension & 0x01f; /* extract 4:0 */
1111 return value;
1112 }
1113
1114 /* Only call this function if you know that this is an extendable
1115 instruction, It wont malfunction, but why make excess remote memory references?
1116 If the immediate operands get sign extended or somthing, do it after
1117 the extension is performed.
1118 */
1119 /* FIXME: Every one of these cases needs to worry about sign extension
1120 when the offset is to be used in relative addressing */
1121
1122
1123 static unsigned int
1124 fetch_mips_16 (CORE_ADDR pc)
1125 {
1126 gdb_byte buf[8];
1127 pc &= 0xfffffffe; /* clear the low order bit */
1128 target_read_memory (pc, buf, 2);
1129 return extract_unsigned_integer (buf, 2);
1130 }
1131
1132 static void
1133 unpack_mips16 (CORE_ADDR pc,
1134 unsigned int extension,
1135 unsigned int inst,
1136 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1137 {
1138 CORE_ADDR offset;
1139 int regx;
1140 int regy;
1141 switch (insn_format)
1142 {
1143 case itype:
1144 {
1145 CORE_ADDR value;
1146 if (extension)
1147 {
1148 value = extended_offset (extension);
1149 value = value << 11; /* rom for the original value */
1150 value |= inst & 0x7ff; /* eleven bits from instruction */
1151 }
1152 else
1153 {
1154 value = inst & 0x7ff;
1155 /* FIXME : Consider sign extension */
1156 }
1157 offset = value;
1158 regx = -1;
1159 regy = -1;
1160 }
1161 break;
1162 case ritype:
1163 case i8type:
1164 { /* A register identifier and an offset */
1165 /* Most of the fields are the same as I type but the
1166 immediate value is of a different length */
1167 CORE_ADDR value;
1168 if (extension)
1169 {
1170 value = extended_offset (extension);
1171 value = value << 8; /* from the original instruction */
1172 value |= inst & 0xff; /* eleven bits from instruction */
1173 regx = (extension >> 8) & 0x07; /* or i8 funct */
1174 if (value & 0x4000) /* test the sign bit , bit 26 */
1175 {
1176 value &= ~0x3fff; /* remove the sign bit */
1177 value = -value;
1178 }
1179 }
1180 else
1181 {
1182 value = inst & 0xff; /* 8 bits */
1183 regx = (inst >> 8) & 0x07; /* or i8 funct */
1184 /* FIXME: Do sign extension , this format needs it */
1185 if (value & 0x80) /* THIS CONFUSES ME */
1186 {
1187 value &= 0xef; /* remove the sign bit */
1188 value = -value;
1189 }
1190 }
1191 offset = value;
1192 regy = -1;
1193 break;
1194 }
1195 case jalxtype:
1196 {
1197 unsigned long value;
1198 unsigned int nexthalf;
1199 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1200 value = value << 16;
1201 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1202 value |= nexthalf;
1203 offset = value;
1204 regx = -1;
1205 regy = -1;
1206 break;
1207 }
1208 default:
1209 internal_error (__FILE__, __LINE__, _("bad switch"));
1210 }
1211 upk->offset = offset;
1212 upk->regx = regx;
1213 upk->regy = regy;
1214 }
1215
1216
1217 static CORE_ADDR
1218 add_offset_16 (CORE_ADDR pc, int offset)
1219 {
1220 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
1221 }
1222
1223 static CORE_ADDR
1224 extended_mips16_next_pc (CORE_ADDR pc,
1225 unsigned int extension, unsigned int insn)
1226 {
1227 int op = (insn >> 11);
1228 switch (op)
1229 {
1230 case 2: /* Branch */
1231 {
1232 CORE_ADDR offset;
1233 struct upk_mips16 upk;
1234 unpack_mips16 (pc, extension, insn, itype, &upk);
1235 offset = upk.offset;
1236 if (offset & 0x800)
1237 {
1238 offset &= 0xeff;
1239 offset = -offset;
1240 }
1241 pc += (offset << 1) + 2;
1242 break;
1243 }
1244 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1245 {
1246 struct upk_mips16 upk;
1247 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1248 pc = add_offset_16 (pc, upk.offset);
1249 if ((insn >> 10) & 0x01) /* Exchange mode */
1250 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1251 else
1252 pc |= 0x01;
1253 break;
1254 }
1255 case 4: /* beqz */
1256 {
1257 struct upk_mips16 upk;
1258 int reg;
1259 unpack_mips16 (pc, extension, insn, ritype, &upk);
1260 reg = read_signed_register (upk.regx);
1261 if (reg == 0)
1262 pc += (upk.offset << 1) + 2;
1263 else
1264 pc += 2;
1265 break;
1266 }
1267 case 5: /* bnez */
1268 {
1269 struct upk_mips16 upk;
1270 int reg;
1271 unpack_mips16 (pc, extension, insn, ritype, &upk);
1272 reg = read_signed_register (upk.regx);
1273 if (reg != 0)
1274 pc += (upk.offset << 1) + 2;
1275 else
1276 pc += 2;
1277 break;
1278 }
1279 case 12: /* I8 Formats btez btnez */
1280 {
1281 struct upk_mips16 upk;
1282 int reg;
1283 unpack_mips16 (pc, extension, insn, i8type, &upk);
1284 /* upk.regx contains the opcode */
1285 reg = read_signed_register (24); /* Test register is 24 */
1286 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1287 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1288 /* pc = add_offset_16(pc,upk.offset) ; */
1289 pc += (upk.offset << 1) + 2;
1290 else
1291 pc += 2;
1292 break;
1293 }
1294 case 29: /* RR Formats JR, JALR, JALR-RA */
1295 {
1296 struct upk_mips16 upk;
1297 /* upk.fmt = rrtype; */
1298 op = insn & 0x1f;
1299 if (op == 0)
1300 {
1301 int reg;
1302 upk.regx = (insn >> 8) & 0x07;
1303 upk.regy = (insn >> 5) & 0x07;
1304 switch (upk.regy)
1305 {
1306 case 0:
1307 reg = upk.regx;
1308 break;
1309 case 1:
1310 reg = 31;
1311 break; /* Function return instruction */
1312 case 2:
1313 reg = upk.regx;
1314 break;
1315 default:
1316 reg = 31;
1317 break; /* BOGUS Guess */
1318 }
1319 pc = read_signed_register (reg);
1320 }
1321 else
1322 pc += 2;
1323 break;
1324 }
1325 case 30:
1326 /* This is an instruction extension. Fetch the real instruction
1327 (which follows the extension) and decode things based on
1328 that. */
1329 {
1330 pc += 2;
1331 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1332 break;
1333 }
1334 default:
1335 {
1336 pc += 2;
1337 break;
1338 }
1339 }
1340 return pc;
1341 }
1342
1343 static CORE_ADDR
1344 mips16_next_pc (CORE_ADDR pc)
1345 {
1346 unsigned int insn = fetch_mips_16 (pc);
1347 return extended_mips16_next_pc (pc, 0, insn);
1348 }
1349
1350 /* The mips_next_pc function supports single_step when the remote
1351 target monitor or stub is not developed enough to do a single_step.
1352 It works by decoding the current instruction and predicting where a
1353 branch will go. This isnt hard because all the data is available.
1354 The MIPS32 and MIPS16 variants are quite different */
1355 CORE_ADDR
1356 mips_next_pc (CORE_ADDR pc)
1357 {
1358 if (pc & 0x01)
1359 return mips16_next_pc (pc);
1360 else
1361 return mips32_next_pc (pc);
1362 }
1363
1364 struct mips_frame_cache
1365 {
1366 CORE_ADDR base;
1367 struct trad_frame_saved_reg *saved_regs;
1368 };
1369
1370 /* Set a register's saved stack address in temp_saved_regs. If an
1371 address has already been set for this register, do nothing; this
1372 way we will only recognize the first save of a given register in a
1373 function prologue.
1374
1375 For simplicity, save the address in both [0 .. NUM_REGS) and
1376 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1377 is used as it is only second range (the ABI instead of ISA
1378 registers) that comes into play when finding saved registers in a
1379 frame. */
1380
1381 static void
1382 set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1383 CORE_ADDR offset)
1384 {
1385 if (this_cache != NULL
1386 && this_cache->saved_regs[regnum].addr == -1)
1387 {
1388 this_cache->saved_regs[regnum + 0 * NUM_REGS].addr = offset;
1389 this_cache->saved_regs[regnum + 1 * NUM_REGS].addr = offset;
1390 }
1391 }
1392
1393
1394 /* Fetch the immediate value from a MIPS16 instruction.
1395 If the previous instruction was an EXTEND, use it to extend
1396 the upper bits of the immediate value. This is a helper function
1397 for mips16_scan_prologue. */
1398
1399 static int
1400 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1401 unsigned short inst, /* current instruction */
1402 int nbits, /* number of bits in imm field */
1403 int scale, /* scale factor to be applied to imm */
1404 int is_signed) /* is the imm field signed? */
1405 {
1406 int offset;
1407
1408 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1409 {
1410 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1411 if (offset & 0x8000) /* check for negative extend */
1412 offset = 0 - (0x10000 - (offset & 0xffff));
1413 return offset | (inst & 0x1f);
1414 }
1415 else
1416 {
1417 int max_imm = 1 << nbits;
1418 int mask = max_imm - 1;
1419 int sign_bit = max_imm >> 1;
1420
1421 offset = inst & mask;
1422 if (is_signed && (offset & sign_bit))
1423 offset = 0 - (max_imm - offset);
1424 return offset * scale;
1425 }
1426 }
1427
1428
1429 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1430 the associated FRAME_CACHE if not null.
1431 Return the address of the first instruction past the prologue. */
1432
1433 static CORE_ADDR
1434 mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1435 struct frame_info *next_frame,
1436 struct mips_frame_cache *this_cache)
1437 {
1438 CORE_ADDR cur_pc;
1439 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1440 CORE_ADDR sp;
1441 long frame_offset = 0; /* Size of stack frame. */
1442 long frame_adjust = 0; /* Offset of FP from SP. */
1443 int frame_reg = MIPS_SP_REGNUM;
1444 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1445 unsigned inst = 0; /* current instruction */
1446 unsigned entry_inst = 0; /* the entry instruction */
1447 int reg, offset;
1448
1449 int extend_bytes = 0;
1450 int prev_extend_bytes;
1451 CORE_ADDR end_prologue_addr = 0;
1452
1453 /* Can be called when there's no process, and hence when there's no
1454 NEXT_FRAME. */
1455 if (next_frame != NULL)
1456 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1457 else
1458 sp = 0;
1459
1460 if (limit_pc > start_pc + 200)
1461 limit_pc = start_pc + 200;
1462
1463 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1464 {
1465 /* Save the previous instruction. If it's an EXTEND, we'll extract
1466 the immediate offset extension from it in mips16_get_imm. */
1467 prev_inst = inst;
1468
1469 /* Fetch and decode the instruction. */
1470 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1471
1472 /* Normally we ignore extend instructions. However, if it is
1473 not followed by a valid prologue instruction, then this
1474 instruction is not part of the prologue either. We must
1475 remember in this case to adjust the end_prologue_addr back
1476 over the extend. */
1477 if ((inst & 0xf800) == 0xf000) /* extend */
1478 {
1479 extend_bytes = MIPS_INSN16_SIZE;
1480 continue;
1481 }
1482
1483 prev_extend_bytes = extend_bytes;
1484 extend_bytes = 0;
1485
1486 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1487 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1488 {
1489 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1490 if (offset < 0) /* negative stack adjustment? */
1491 frame_offset -= offset;
1492 else
1493 /* Exit loop if a positive stack adjustment is found, which
1494 usually means that the stack cleanup code in the function
1495 epilogue is reached. */
1496 break;
1497 }
1498 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1499 {
1500 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1501 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1502 set_reg_offset (this_cache, reg, sp + offset);
1503 }
1504 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1505 {
1506 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1507 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1508 set_reg_offset (this_cache, reg, sp + offset);
1509 }
1510 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1511 {
1512 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1513 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1514 }
1515 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1516 {
1517 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1518 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1519 }
1520 else if (inst == 0x673d) /* move $s1, $sp */
1521 {
1522 frame_addr = sp;
1523 frame_reg = 17;
1524 }
1525 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1526 {
1527 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1528 frame_addr = sp + offset;
1529 frame_reg = 17;
1530 frame_adjust = offset;
1531 }
1532 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1533 {
1534 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1535 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1536 set_reg_offset (this_cache, reg, frame_addr + offset);
1537 }
1538 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1539 {
1540 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1541 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1542 set_reg_offset (this_cache, reg, frame_addr + offset);
1543 }
1544 else if ((inst & 0xf81f) == 0xe809
1545 && (inst & 0x700) != 0x700) /* entry */
1546 entry_inst = inst; /* save for later processing */
1547 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1548 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1549 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1550 {
1551 /* This instruction is part of the prologue, but we don't
1552 need to do anything special to handle it. */
1553 }
1554 else
1555 {
1556 /* This instruction is not an instruction typically found
1557 in a prologue, so we must have reached the end of the
1558 prologue. */
1559 if (end_prologue_addr == 0)
1560 end_prologue_addr = cur_pc - prev_extend_bytes;
1561 }
1562 }
1563
1564 /* The entry instruction is typically the first instruction in a function,
1565 and it stores registers at offsets relative to the value of the old SP
1566 (before the prologue). But the value of the sp parameter to this
1567 function is the new SP (after the prologue has been executed). So we
1568 can't calculate those offsets until we've seen the entire prologue,
1569 and can calculate what the old SP must have been. */
1570 if (entry_inst != 0)
1571 {
1572 int areg_count = (entry_inst >> 8) & 7;
1573 int sreg_count = (entry_inst >> 6) & 3;
1574
1575 /* The entry instruction always subtracts 32 from the SP. */
1576 frame_offset += 32;
1577
1578 /* Now we can calculate what the SP must have been at the
1579 start of the function prologue. */
1580 sp += frame_offset;
1581
1582 /* Check if a0-a3 were saved in the caller's argument save area. */
1583 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1584 {
1585 set_reg_offset (this_cache, reg, sp + offset);
1586 offset += mips_abi_regsize (current_gdbarch);
1587 }
1588
1589 /* Check if the ra register was pushed on the stack. */
1590 offset = -4;
1591 if (entry_inst & 0x20)
1592 {
1593 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1594 offset -= mips_abi_regsize (current_gdbarch);
1595 }
1596
1597 /* Check if the s0 and s1 registers were pushed on the stack. */
1598 for (reg = 16; reg < sreg_count + 16; reg++)
1599 {
1600 set_reg_offset (this_cache, reg, sp + offset);
1601 offset -= mips_abi_regsize (current_gdbarch);
1602 }
1603 }
1604
1605 if (this_cache != NULL)
1606 {
1607 this_cache->base =
1608 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1609 + frame_offset - frame_adjust);
1610 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1611 be able to get rid of the assignment below, evetually. But it's
1612 still needed for now. */
1613 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1614 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1615 }
1616
1617 /* If we didn't reach the end of the prologue when scanning the function
1618 instructions, then set end_prologue_addr to the address of the
1619 instruction immediately after the last one we scanned. */
1620 if (end_prologue_addr == 0)
1621 end_prologue_addr = cur_pc;
1622
1623 return end_prologue_addr;
1624 }
1625
1626 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1627 Procedures that use the 32-bit instruction set are handled by the
1628 mips_insn32 unwinder. */
1629
1630 static struct mips_frame_cache *
1631 mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
1632 {
1633 struct mips_frame_cache *cache;
1634
1635 if ((*this_cache) != NULL)
1636 return (*this_cache);
1637 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1638 (*this_cache) = cache;
1639 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1640
1641 /* Analyze the function prologue. */
1642 {
1643 const CORE_ADDR pc =
1644 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1645 CORE_ADDR start_addr;
1646
1647 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1648 if (start_addr == 0)
1649 start_addr = heuristic_proc_start (pc);
1650 /* We can't analyze the prologue if we couldn't find the begining
1651 of the function. */
1652 if (start_addr == 0)
1653 return cache;
1654
1655 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1656 }
1657
1658 /* SP_REGNUM, contains the value and not the address. */
1659 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1660
1661 return (*this_cache);
1662 }
1663
1664 static void
1665 mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1666 struct frame_id *this_id)
1667 {
1668 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1669 this_cache);
1670 (*this_id) = frame_id_build (info->base,
1671 frame_func_unwind (next_frame, NORMAL_FRAME));
1672 }
1673
1674 static void
1675 mips_insn16_frame_prev_register (struct frame_info *next_frame,
1676 void **this_cache,
1677 int regnum, int *optimizedp,
1678 enum lval_type *lvalp, CORE_ADDR *addrp,
1679 int *realnump, gdb_byte *valuep)
1680 {
1681 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1682 this_cache);
1683 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1684 optimizedp, lvalp, addrp, realnump, valuep);
1685 }
1686
1687 static const struct frame_unwind mips_insn16_frame_unwind =
1688 {
1689 NORMAL_FRAME,
1690 mips_insn16_frame_this_id,
1691 mips_insn16_frame_prev_register
1692 };
1693
1694 static const struct frame_unwind *
1695 mips_insn16_frame_sniffer (struct frame_info *next_frame)
1696 {
1697 CORE_ADDR pc = frame_pc_unwind (next_frame);
1698 if (mips_pc_is_mips16 (pc))
1699 return &mips_insn16_frame_unwind;
1700 return NULL;
1701 }
1702
1703 static CORE_ADDR
1704 mips_insn16_frame_base_address (struct frame_info *next_frame,
1705 void **this_cache)
1706 {
1707 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1708 this_cache);
1709 return info->base;
1710 }
1711
1712 static const struct frame_base mips_insn16_frame_base =
1713 {
1714 &mips_insn16_frame_unwind,
1715 mips_insn16_frame_base_address,
1716 mips_insn16_frame_base_address,
1717 mips_insn16_frame_base_address
1718 };
1719
1720 static const struct frame_base *
1721 mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
1722 {
1723 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1724 return &mips_insn16_frame_base;
1725 else
1726 return NULL;
1727 }
1728
1729 /* Mark all the registers as unset in the saved_regs array
1730 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1731
1732 void
1733 reset_saved_regs (struct mips_frame_cache *this_cache)
1734 {
1735 if (this_cache == NULL || this_cache->saved_regs == NULL)
1736 return;
1737
1738 {
1739 const int num_regs = NUM_REGS;
1740 int i;
1741
1742 for (i = 0; i < num_regs; i++)
1743 {
1744 this_cache->saved_regs[i].addr = -1;
1745 }
1746 }
1747 }
1748
1749 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1750 the associated FRAME_CACHE if not null.
1751 Return the address of the first instruction past the prologue. */
1752
1753 static CORE_ADDR
1754 mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1755 struct frame_info *next_frame,
1756 struct mips_frame_cache *this_cache)
1757 {
1758 CORE_ADDR cur_pc;
1759 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1760 CORE_ADDR sp;
1761 long frame_offset;
1762 int frame_reg = MIPS_SP_REGNUM;
1763
1764 CORE_ADDR end_prologue_addr = 0;
1765 int seen_sp_adjust = 0;
1766 int load_immediate_bytes = 0;
1767
1768 /* Can be called when there's no process, and hence when there's no
1769 NEXT_FRAME. */
1770 if (next_frame != NULL)
1771 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1772 else
1773 sp = 0;
1774
1775 if (limit_pc > start_pc + 200)
1776 limit_pc = start_pc + 200;
1777
1778 restart:
1779
1780 frame_offset = 0;
1781 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1782 {
1783 unsigned long inst, high_word, low_word;
1784 int reg;
1785
1786 /* Fetch the instruction. */
1787 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1788
1789 /* Save some code by pre-extracting some useful fields. */
1790 high_word = (inst >> 16) & 0xffff;
1791 low_word = inst & 0xffff;
1792 reg = high_word & 0x1f;
1793
1794 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1795 || high_word == 0x23bd /* addi $sp,$sp,-i */
1796 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1797 {
1798 if (low_word & 0x8000) /* negative stack adjustment? */
1799 frame_offset += 0x10000 - low_word;
1800 else
1801 /* Exit loop if a positive stack adjustment is found, which
1802 usually means that the stack cleanup code in the function
1803 epilogue is reached. */
1804 break;
1805 seen_sp_adjust = 1;
1806 }
1807 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1808 {
1809 set_reg_offset (this_cache, reg, sp + low_word);
1810 }
1811 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1812 {
1813 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1814 set_reg_offset (this_cache, reg, sp + low_word);
1815 }
1816 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1817 {
1818 /* Old gcc frame, r30 is virtual frame pointer. */
1819 if ((long) low_word != frame_offset)
1820 frame_addr = sp + low_word;
1821 else if (frame_reg == MIPS_SP_REGNUM)
1822 {
1823 unsigned alloca_adjust;
1824
1825 frame_reg = 30;
1826 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1827 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1828 if (alloca_adjust > 0)
1829 {
1830 /* FP > SP + frame_size. This may be because of
1831 an alloca or somethings similar. Fix sp to
1832 "pre-alloca" value, and try again. */
1833 sp += alloca_adjust;
1834 /* Need to reset the status of all registers. Otherwise,
1835 we will hit a guard that prevents the new address
1836 for each register to be recomputed during the second
1837 pass. */
1838 reset_saved_regs (this_cache);
1839 goto restart;
1840 }
1841 }
1842 }
1843 /* move $30,$sp. With different versions of gas this will be either
1844 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1845 Accept any one of these. */
1846 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1847 {
1848 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1849 if (frame_reg == MIPS_SP_REGNUM)
1850 {
1851 unsigned alloca_adjust;
1852
1853 frame_reg = 30;
1854 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1855 alloca_adjust = (unsigned) (frame_addr - sp);
1856 if (alloca_adjust > 0)
1857 {
1858 /* FP > SP + frame_size. This may be because of
1859 an alloca or somethings similar. Fix sp to
1860 "pre-alloca" value, and try again. */
1861 sp = frame_addr;
1862 /* Need to reset the status of all registers. Otherwise,
1863 we will hit a guard that prevents the new address
1864 for each register to be recomputed during the second
1865 pass. */
1866 reset_saved_regs (this_cache);
1867 goto restart;
1868 }
1869 }
1870 }
1871 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1872 {
1873 set_reg_offset (this_cache, reg, frame_addr + low_word);
1874 }
1875 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1876 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1877 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1878 || high_word == 0x3c1c /* lui $gp,n */
1879 || high_word == 0x279c /* addiu $gp,$gp,n */
1880 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1881 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1882 )
1883 {
1884 /* These instructions are part of the prologue, but we don't
1885 need to do anything special to handle them. */
1886 }
1887 /* The instructions below load $at or $t0 with an immediate
1888 value in preparation for a stack adjustment via
1889 subu $sp,$sp,[$at,$t0]. These instructions could also
1890 initialize a local variable, so we accept them only before
1891 a stack adjustment instruction was seen. */
1892 else if (!seen_sp_adjust
1893 && (high_word == 0x3c01 /* lui $at,n */
1894 || high_word == 0x3c08 /* lui $t0,n */
1895 || high_word == 0x3421 /* ori $at,$at,n */
1896 || high_word == 0x3508 /* ori $t0,$t0,n */
1897 || high_word == 0x3401 /* ori $at,$zero,n */
1898 || high_word == 0x3408 /* ori $t0,$zero,n */
1899 ))
1900 {
1901 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
1902 }
1903 else
1904 {
1905 /* This instruction is not an instruction typically found
1906 in a prologue, so we must have reached the end of the
1907 prologue. */
1908 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
1909 loop now? Why would we need to continue scanning the function
1910 instructions? */
1911 if (end_prologue_addr == 0)
1912 end_prologue_addr = cur_pc;
1913 }
1914 }
1915
1916 if (this_cache != NULL)
1917 {
1918 this_cache->base =
1919 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1920 + frame_offset);
1921 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
1922 this assignment below, eventually. But it's still needed
1923 for now. */
1924 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1925 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1926 }
1927
1928 /* If we didn't reach the end of the prologue when scanning the function
1929 instructions, then set end_prologue_addr to the address of the
1930 instruction immediately after the last one we scanned. */
1931 /* brobecker/2004-10-10: I don't think this would ever happen, but
1932 we may as well be careful and do our best if we have a null
1933 end_prologue_addr. */
1934 if (end_prologue_addr == 0)
1935 end_prologue_addr = cur_pc;
1936
1937 /* In a frameless function, we might have incorrectly
1938 skipped some load immediate instructions. Undo the skipping
1939 if the load immediate was not followed by a stack adjustment. */
1940 if (load_immediate_bytes && !seen_sp_adjust)
1941 end_prologue_addr -= load_immediate_bytes;
1942
1943 return end_prologue_addr;
1944 }
1945
1946 /* Heuristic unwinder for procedures using 32-bit instructions (covers
1947 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
1948 instructions (a.k.a. MIPS16) are handled by the mips_insn16
1949 unwinder. */
1950
1951 static struct mips_frame_cache *
1952 mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
1953 {
1954 struct mips_frame_cache *cache;
1955
1956 if ((*this_cache) != NULL)
1957 return (*this_cache);
1958
1959 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1960 (*this_cache) = cache;
1961 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1962
1963 /* Analyze the function prologue. */
1964 {
1965 const CORE_ADDR pc =
1966 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1967 CORE_ADDR start_addr;
1968
1969 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1970 if (start_addr == 0)
1971 start_addr = heuristic_proc_start (pc);
1972 /* We can't analyze the prologue if we couldn't find the begining
1973 of the function. */
1974 if (start_addr == 0)
1975 return cache;
1976
1977 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
1978 }
1979
1980 /* SP_REGNUM, contains the value and not the address. */
1981 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1982
1983 return (*this_cache);
1984 }
1985
1986 static void
1987 mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
1988 struct frame_id *this_id)
1989 {
1990 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1991 this_cache);
1992 (*this_id) = frame_id_build (info->base,
1993 frame_func_unwind (next_frame, NORMAL_FRAME));
1994 }
1995
1996 static void
1997 mips_insn32_frame_prev_register (struct frame_info *next_frame,
1998 void **this_cache,
1999 int regnum, int *optimizedp,
2000 enum lval_type *lvalp, CORE_ADDR *addrp,
2001 int *realnump, gdb_byte *valuep)
2002 {
2003 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2004 this_cache);
2005 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2006 optimizedp, lvalp, addrp, realnump, valuep);
2007 }
2008
2009 static const struct frame_unwind mips_insn32_frame_unwind =
2010 {
2011 NORMAL_FRAME,
2012 mips_insn32_frame_this_id,
2013 mips_insn32_frame_prev_register
2014 };
2015
2016 static const struct frame_unwind *
2017 mips_insn32_frame_sniffer (struct frame_info *next_frame)
2018 {
2019 CORE_ADDR pc = frame_pc_unwind (next_frame);
2020 if (! mips_pc_is_mips16 (pc))
2021 return &mips_insn32_frame_unwind;
2022 return NULL;
2023 }
2024
2025 static CORE_ADDR
2026 mips_insn32_frame_base_address (struct frame_info *next_frame,
2027 void **this_cache)
2028 {
2029 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2030 this_cache);
2031 return info->base;
2032 }
2033
2034 static const struct frame_base mips_insn32_frame_base =
2035 {
2036 &mips_insn32_frame_unwind,
2037 mips_insn32_frame_base_address,
2038 mips_insn32_frame_base_address,
2039 mips_insn32_frame_base_address
2040 };
2041
2042 static const struct frame_base *
2043 mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2044 {
2045 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2046 return &mips_insn32_frame_base;
2047 else
2048 return NULL;
2049 }
2050
2051 static struct trad_frame_cache *
2052 mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2053 {
2054 CORE_ADDR pc;
2055 CORE_ADDR start_addr;
2056 CORE_ADDR stack_addr;
2057 struct trad_frame_cache *this_trad_cache;
2058
2059 if ((*this_cache) != NULL)
2060 return (*this_cache);
2061 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2062 (*this_cache) = this_trad_cache;
2063
2064 /* The return address is in the link register. */
2065 trad_frame_set_reg_realreg (this_trad_cache, PC_REGNUM, MIPS_RA_REGNUM);
2066
2067 /* Frame ID, since it's a frameless / stackless function, no stack
2068 space is allocated and SP on entry is the current SP. */
2069 pc = frame_pc_unwind (next_frame);
2070 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2071 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
2072 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2073
2074 /* Assume that the frame's base is the same as the
2075 stack-pointer. */
2076 trad_frame_set_this_base (this_trad_cache, stack_addr);
2077
2078 return this_trad_cache;
2079 }
2080
2081 static void
2082 mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2083 struct frame_id *this_id)
2084 {
2085 struct trad_frame_cache *this_trad_cache
2086 = mips_stub_frame_cache (next_frame, this_cache);
2087 trad_frame_get_id (this_trad_cache, this_id);
2088 }
2089
2090 static void
2091 mips_stub_frame_prev_register (struct frame_info *next_frame,
2092 void **this_cache,
2093 int regnum, int *optimizedp,
2094 enum lval_type *lvalp, CORE_ADDR *addrp,
2095 int *realnump, gdb_byte *valuep)
2096 {
2097 struct trad_frame_cache *this_trad_cache
2098 = mips_stub_frame_cache (next_frame, this_cache);
2099 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2100 lvalp, addrp, realnump, valuep);
2101 }
2102
2103 static const struct frame_unwind mips_stub_frame_unwind =
2104 {
2105 NORMAL_FRAME,
2106 mips_stub_frame_this_id,
2107 mips_stub_frame_prev_register
2108 };
2109
2110 static const struct frame_unwind *
2111 mips_stub_frame_sniffer (struct frame_info *next_frame)
2112 {
2113 struct obj_section *s;
2114 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2115
2116 if (in_plt_section (pc, NULL))
2117 return &mips_stub_frame_unwind;
2118
2119 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2120 s = find_pc_section (pc);
2121
2122 if (s != NULL
2123 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2124 ".MIPS.stubs") == 0)
2125 return &mips_stub_frame_unwind;
2126
2127 return NULL;
2128 }
2129
2130 static CORE_ADDR
2131 mips_stub_frame_base_address (struct frame_info *next_frame,
2132 void **this_cache)
2133 {
2134 struct trad_frame_cache *this_trad_cache
2135 = mips_stub_frame_cache (next_frame, this_cache);
2136 return trad_frame_get_this_base (this_trad_cache);
2137 }
2138
2139 static const struct frame_base mips_stub_frame_base =
2140 {
2141 &mips_stub_frame_unwind,
2142 mips_stub_frame_base_address,
2143 mips_stub_frame_base_address,
2144 mips_stub_frame_base_address
2145 };
2146
2147 static const struct frame_base *
2148 mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2149 {
2150 if (mips_stub_frame_sniffer (next_frame) != NULL)
2151 return &mips_stub_frame_base;
2152 else
2153 return NULL;
2154 }
2155
2156 static CORE_ADDR
2157 read_next_frame_reg (struct frame_info *fi, int regno)
2158 {
2159 /* Always a pseudo. */
2160 gdb_assert (regno >= NUM_REGS);
2161 if (fi == NULL)
2162 {
2163 LONGEST val;
2164 regcache_cooked_read_signed (current_regcache, regno, &val);
2165 return val;
2166 }
2167 else
2168 return frame_unwind_register_signed (fi, regno);
2169
2170 }
2171
2172 /* mips_addr_bits_remove - remove useless address bits */
2173
2174 static CORE_ADDR
2175 mips_addr_bits_remove (CORE_ADDR addr)
2176 {
2177 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2178 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2179 /* This hack is a work-around for existing boards using PMON, the
2180 simulator, and any other 64-bit targets that doesn't have true
2181 64-bit addressing. On these targets, the upper 32 bits of
2182 addresses are ignored by the hardware. Thus, the PC or SP are
2183 likely to have been sign extended to all 1s by instruction
2184 sequences that load 32-bit addresses. For example, a typical
2185 piece of code that loads an address is this:
2186
2187 lui $r2, <upper 16 bits>
2188 ori $r2, <lower 16 bits>
2189
2190 But the lui sign-extends the value such that the upper 32 bits
2191 may be all 1s. The workaround is simply to mask off these
2192 bits. In the future, gcc may be changed to support true 64-bit
2193 addressing, and this masking will have to be disabled. */
2194 return addr &= 0xffffffffUL;
2195 else
2196 return addr;
2197 }
2198
2199 /* mips_software_single_step() is called just before we want to resume
2200 the inferior, if we want to single-step it but there is no hardware
2201 or kernel single-step support (MIPS on GNU/Linux for example). We find
2202 the target of the coming instruction and breakpoint it.
2203
2204 single_step is also called just after the inferior stops. If we had
2205 set up a simulated single-step, we undo our damage. */
2206
2207 void
2208 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
2209 {
2210 CORE_ADDR pc, next_pc;
2211
2212 if (insert_breakpoints_p)
2213 {
2214 pc = read_register (mips_regnum (current_gdbarch)->pc);
2215 next_pc = mips_next_pc (pc);
2216
2217 insert_single_step_breakpoint (next_pc);
2218 }
2219 else
2220 remove_single_step_breakpoints ();
2221 }
2222
2223 /* Test whether the PC points to the return instruction at the
2224 end of a function. */
2225
2226 static int
2227 mips_about_to_return (CORE_ADDR pc)
2228 {
2229 if (mips_pc_is_mips16 (pc))
2230 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2231 generates a "jr $ra"; other times it generates code to load
2232 the return address from the stack to an accessible register (such
2233 as $a3), then a "jr" using that register. This second case
2234 is almost impossible to distinguish from an indirect jump
2235 used for switch statements, so we don't even try. */
2236 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2237 else
2238 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2239 }
2240
2241
2242 /* This fencepost looks highly suspicious to me. Removing it also
2243 seems suspicious as it could affect remote debugging across serial
2244 lines. */
2245
2246 static CORE_ADDR
2247 heuristic_proc_start (CORE_ADDR pc)
2248 {
2249 CORE_ADDR start_pc;
2250 CORE_ADDR fence;
2251 int instlen;
2252 int seen_adjsp = 0;
2253
2254 pc = ADDR_BITS_REMOVE (pc);
2255 start_pc = pc;
2256 fence = start_pc - heuristic_fence_post;
2257 if (start_pc == 0)
2258 return 0;
2259
2260 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2261 fence = VM_MIN_ADDRESS;
2262
2263 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2264
2265 /* search back for previous return */
2266 for (start_pc -= instlen;; start_pc -= instlen)
2267 if (start_pc < fence)
2268 {
2269 /* It's not clear to me why we reach this point when
2270 stop_soon, but with this test, at least we
2271 don't print out warnings for every child forked (eg, on
2272 decstation). 22apr93 rich@cygnus.com. */
2273 if (stop_soon == NO_STOP_QUIETLY)
2274 {
2275 static int blurb_printed = 0;
2276
2277 warning (_("GDB can't find the start of the function at 0x%s."),
2278 paddr_nz (pc));
2279
2280 if (!blurb_printed)
2281 {
2282 /* This actually happens frequently in embedded
2283 development, when you first connect to a board
2284 and your stack pointer and pc are nowhere in
2285 particular. This message needs to give people
2286 in that situation enough information to
2287 determine that it's no big deal. */
2288 printf_filtered ("\n\
2289 GDB is unable to find the start of the function at 0x%s\n\
2290 and thus can't determine the size of that function's stack frame.\n\
2291 This means that GDB may be unable to access that stack frame, or\n\
2292 the frames below it.\n\
2293 This problem is most likely caused by an invalid program counter or\n\
2294 stack pointer.\n\
2295 However, if you think GDB should simply search farther back\n\
2296 from 0x%s for code which looks like the beginning of a\n\
2297 function, you can increase the range of the search using the `set\n\
2298 heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2299 blurb_printed = 1;
2300 }
2301 }
2302
2303 return 0;
2304 }
2305 else if (mips_pc_is_mips16 (start_pc))
2306 {
2307 unsigned short inst;
2308
2309 /* On MIPS16, any one of the following is likely to be the
2310 start of a function:
2311 entry
2312 addiu sp,-n
2313 daddiu sp,-n
2314 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2315 inst = mips_fetch_instruction (start_pc);
2316 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2317 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2318 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2319 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2320 break;
2321 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2322 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2323 seen_adjsp = 1;
2324 else
2325 seen_adjsp = 0;
2326 }
2327 else if (mips_about_to_return (start_pc))
2328 {
2329 /* Skip return and its delay slot. */
2330 start_pc += 2 * MIPS_INSN32_SIZE;
2331 break;
2332 }
2333
2334 return start_pc;
2335 }
2336
2337 struct mips_objfile_private
2338 {
2339 bfd_size_type size;
2340 char *contents;
2341 };
2342
2343 /* According to the current ABI, should the type be passed in a
2344 floating-point register (assuming that there is space)? When there
2345 is no FPU, FP are not even considered as possible candidates for
2346 FP registers and, consequently this returns false - forces FP
2347 arguments into integer registers. */
2348
2349 static int
2350 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2351 {
2352 return ((typecode == TYPE_CODE_FLT
2353 || (MIPS_EABI
2354 && (typecode == TYPE_CODE_STRUCT
2355 || typecode == TYPE_CODE_UNION)
2356 && TYPE_NFIELDS (arg_type) == 1
2357 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2358 == TYPE_CODE_FLT))
2359 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2360 }
2361
2362 /* On o32, argument passing in GPRs depends on the alignment of the type being
2363 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2364
2365 static int
2366 mips_type_needs_double_align (struct type *type)
2367 {
2368 enum type_code typecode = TYPE_CODE (type);
2369
2370 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2371 return 1;
2372 else if (typecode == TYPE_CODE_STRUCT)
2373 {
2374 if (TYPE_NFIELDS (type) < 1)
2375 return 0;
2376 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2377 }
2378 else if (typecode == TYPE_CODE_UNION)
2379 {
2380 int i, n;
2381
2382 n = TYPE_NFIELDS (type);
2383 for (i = 0; i < n; i++)
2384 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2385 return 1;
2386 return 0;
2387 }
2388 return 0;
2389 }
2390
2391 /* Adjust the address downward (direction of stack growth) so that it
2392 is correctly aligned for a new stack frame. */
2393 static CORE_ADDR
2394 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2395 {
2396 return align_down (addr, 16);
2397 }
2398
2399 static CORE_ADDR
2400 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2401 struct regcache *regcache, CORE_ADDR bp_addr,
2402 int nargs, struct value **args, CORE_ADDR sp,
2403 int struct_return, CORE_ADDR struct_addr)
2404 {
2405 int argreg;
2406 int float_argreg;
2407 int argnum;
2408 int len = 0;
2409 int stack_offset = 0;
2410 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2411 CORE_ADDR func_addr = find_function_addr (function, NULL);
2412
2413 /* For shared libraries, "t9" needs to point at the function
2414 address. */
2415 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2416
2417 /* Set the return address register to point to the entry point of
2418 the program, where a breakpoint lies in wait. */
2419 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2420
2421 /* First ensure that the stack and structure return address (if any)
2422 are properly aligned. The stack has to be at least 64-bit
2423 aligned even on 32-bit machines, because doubles must be 64-bit
2424 aligned. For n32 and n64, stack frames need to be 128-bit
2425 aligned, so we round to this widest known alignment. */
2426
2427 sp = align_down (sp, 16);
2428 struct_addr = align_down (struct_addr, 16);
2429
2430 /* Now make space on the stack for the args. We allocate more
2431 than necessary for EABI, because the first few arguments are
2432 passed in registers, but that's OK. */
2433 for (argnum = 0; argnum < nargs; argnum++)
2434 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
2435 mips_stack_argsize (gdbarch));
2436 sp -= align_up (len, 16);
2437
2438 if (mips_debug)
2439 fprintf_unfiltered (gdb_stdlog,
2440 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2441 paddr_nz (sp), (long) align_up (len, 16));
2442
2443 /* Initialize the integer and float register pointers. */
2444 argreg = MIPS_A0_REGNUM;
2445 float_argreg = mips_fpa0_regnum (current_gdbarch);
2446
2447 /* The struct_return pointer occupies the first parameter-passing reg. */
2448 if (struct_return)
2449 {
2450 if (mips_debug)
2451 fprintf_unfiltered (gdb_stdlog,
2452 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2453 argreg, paddr_nz (struct_addr));
2454 write_register (argreg++, struct_addr);
2455 }
2456
2457 /* Now load as many as possible of the first arguments into
2458 registers, and push the rest onto the stack. Loop thru args
2459 from first to last. */
2460 for (argnum = 0; argnum < nargs; argnum++)
2461 {
2462 const gdb_byte *val;
2463 gdb_byte valbuf[MAX_REGISTER_SIZE];
2464 struct value *arg = args[argnum];
2465 struct type *arg_type = check_typedef (value_type (arg));
2466 int len = TYPE_LENGTH (arg_type);
2467 enum type_code typecode = TYPE_CODE (arg_type);
2468
2469 if (mips_debug)
2470 fprintf_unfiltered (gdb_stdlog,
2471 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2472 argnum + 1, len, (int) typecode);
2473
2474 /* The EABI passes structures that do not fit in a register by
2475 reference. */
2476 if (len > mips_abi_regsize (gdbarch)
2477 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2478 {
2479 store_unsigned_integer (valbuf, mips_abi_regsize (gdbarch),
2480 VALUE_ADDRESS (arg));
2481 typecode = TYPE_CODE_PTR;
2482 len = mips_abi_regsize (gdbarch);
2483 val = valbuf;
2484 if (mips_debug)
2485 fprintf_unfiltered (gdb_stdlog, " push");
2486 }
2487 else
2488 val = value_contents (arg);
2489
2490 /* 32-bit ABIs always start floating point arguments in an
2491 even-numbered floating point register. Round the FP register
2492 up before the check to see if there are any FP registers
2493 left. Non MIPS_EABI targets also pass the FP in the integer
2494 registers so also round up normal registers. */
2495 if (mips_abi_regsize (gdbarch) < 8
2496 && fp_register_arg_p (typecode, arg_type))
2497 {
2498 if ((float_argreg & 1))
2499 float_argreg++;
2500 }
2501
2502 /* Floating point arguments passed in registers have to be
2503 treated specially. On 32-bit architectures, doubles
2504 are passed in register pairs; the even register gets
2505 the low word, and the odd register gets the high word.
2506 On non-EABI processors, the first two floating point arguments are
2507 also copied to general registers, because MIPS16 functions
2508 don't use float registers for arguments. This duplication of
2509 arguments in general registers can't hurt non-MIPS16 functions
2510 because those registers are normally skipped. */
2511 /* MIPS_EABI squeezes a struct that contains a single floating
2512 point value into an FP register instead of pushing it onto the
2513 stack. */
2514 if (fp_register_arg_p (typecode, arg_type)
2515 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2516 {
2517 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
2518 {
2519 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2520 unsigned long regval;
2521
2522 /* Write the low word of the double to the even register(s). */
2523 regval = extract_unsigned_integer (val + low_offset, 4);
2524 if (mips_debug)
2525 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2526 float_argreg, phex (regval, 4));
2527 write_register (float_argreg++, regval);
2528
2529 /* Write the high word of the double to the odd register(s). */
2530 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2531 if (mips_debug)
2532 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2533 float_argreg, phex (regval, 4));
2534 write_register (float_argreg++, regval);
2535 }
2536 else
2537 {
2538 /* This is a floating point value that fits entirely
2539 in a single register. */
2540 /* On 32 bit ABI's the float_argreg is further adjusted
2541 above to ensure that it is even register aligned. */
2542 LONGEST regval = extract_unsigned_integer (val, len);
2543 if (mips_debug)
2544 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2545 float_argreg, phex (regval, len));
2546 write_register (float_argreg++, regval);
2547 }
2548 }
2549 else
2550 {
2551 /* Copy the argument to general registers or the stack in
2552 register-sized pieces. Large arguments are split between
2553 registers and stack. */
2554 /* Note: structs whose size is not a multiple of
2555 mips_abi_regsize() are treated specially: Irix cc passes
2556 them in registers where gcc sometimes puts them on the
2557 stack. For maximum compatibility, we will put them in
2558 both places. */
2559 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2560 && (len % mips_abi_regsize (gdbarch) != 0));
2561
2562 /* Note: Floating-point values that didn't fit into an FP
2563 register are only written to memory. */
2564 while (len > 0)
2565 {
2566 /* Remember if the argument was written to the stack. */
2567 int stack_used_p = 0;
2568 int partial_len = (len < mips_abi_regsize (gdbarch)
2569 ? len : mips_abi_regsize (gdbarch));
2570
2571 if (mips_debug)
2572 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2573 partial_len);
2574
2575 /* Write this portion of the argument to the stack. */
2576 if (argreg > MIPS_LAST_ARG_REGNUM
2577 || odd_sized_struct
2578 || fp_register_arg_p (typecode, arg_type))
2579 {
2580 /* Should shorter than int integer values be
2581 promoted to int before being stored? */
2582 int longword_offset = 0;
2583 CORE_ADDR addr;
2584 stack_used_p = 1;
2585 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2586 {
2587 if (mips_stack_argsize (gdbarch) == 8
2588 && (typecode == TYPE_CODE_INT
2589 || typecode == TYPE_CODE_PTR
2590 || typecode == TYPE_CODE_FLT) && len <= 4)
2591 longword_offset = mips_stack_argsize (gdbarch) - len;
2592 else if ((typecode == TYPE_CODE_STRUCT
2593 || typecode == TYPE_CODE_UNION)
2594 && (TYPE_LENGTH (arg_type)
2595 < mips_stack_argsize (gdbarch)))
2596 longword_offset = mips_stack_argsize (gdbarch) - len;
2597 }
2598
2599 if (mips_debug)
2600 {
2601 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2602 paddr_nz (stack_offset));
2603 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2604 paddr_nz (longword_offset));
2605 }
2606
2607 addr = sp + stack_offset + longword_offset;
2608
2609 if (mips_debug)
2610 {
2611 int i;
2612 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2613 paddr_nz (addr));
2614 for (i = 0; i < partial_len; i++)
2615 {
2616 fprintf_unfiltered (gdb_stdlog, "%02x",
2617 val[i] & 0xff);
2618 }
2619 }
2620 write_memory (addr, val, partial_len);
2621 }
2622
2623 /* Note!!! This is NOT an else clause. Odd sized
2624 structs may go thru BOTH paths. Floating point
2625 arguments will not. */
2626 /* Write this portion of the argument to a general
2627 purpose register. */
2628 if (argreg <= MIPS_LAST_ARG_REGNUM
2629 && !fp_register_arg_p (typecode, arg_type))
2630 {
2631 LONGEST regval =
2632 extract_unsigned_integer (val, partial_len);
2633
2634 if (mips_debug)
2635 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2636 argreg,
2637 phex (regval,
2638 mips_abi_regsize (gdbarch)));
2639 write_register (argreg, regval);
2640 argreg++;
2641 }
2642
2643 len -= partial_len;
2644 val += partial_len;
2645
2646 /* Compute the the offset into the stack at which we
2647 will copy the next parameter.
2648
2649 In the new EABI (and the NABI32), the stack_offset
2650 only needs to be adjusted when it has been used. */
2651
2652 if (stack_used_p)
2653 stack_offset += align_up (partial_len,
2654 mips_stack_argsize (gdbarch));
2655 }
2656 }
2657 if (mips_debug)
2658 fprintf_unfiltered (gdb_stdlog, "\n");
2659 }
2660
2661 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2662
2663 /* Return adjusted stack pointer. */
2664 return sp;
2665 }
2666
2667 /* Determine the return value convention being used. */
2668
2669 static enum return_value_convention
2670 mips_eabi_return_value (struct gdbarch *gdbarch,
2671 struct type *type, struct regcache *regcache,
2672 gdb_byte *readbuf, const gdb_byte *writebuf)
2673 {
2674 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2675 return RETURN_VALUE_STRUCT_CONVENTION;
2676 if (readbuf)
2677 memset (readbuf, 0, TYPE_LENGTH (type));
2678 return RETURN_VALUE_REGISTER_CONVENTION;
2679 }
2680
2681
2682 /* N32/N64 ABI stuff. */
2683
2684 static CORE_ADDR
2685 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2686 struct regcache *regcache, CORE_ADDR bp_addr,
2687 int nargs, struct value **args, CORE_ADDR sp,
2688 int struct_return, CORE_ADDR struct_addr)
2689 {
2690 int argreg;
2691 int float_argreg;
2692 int argnum;
2693 int len = 0;
2694 int stack_offset = 0;
2695 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2696 CORE_ADDR func_addr = find_function_addr (function, NULL);
2697
2698 /* For shared libraries, "t9" needs to point at the function
2699 address. */
2700 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2701
2702 /* Set the return address register to point to the entry point of
2703 the program, where a breakpoint lies in wait. */
2704 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2705
2706 /* First ensure that the stack and structure return address (if any)
2707 are properly aligned. The stack has to be at least 64-bit
2708 aligned even on 32-bit machines, because doubles must be 64-bit
2709 aligned. For n32 and n64, stack frames need to be 128-bit
2710 aligned, so we round to this widest known alignment. */
2711
2712 sp = align_down (sp, 16);
2713 struct_addr = align_down (struct_addr, 16);
2714
2715 /* Now make space on the stack for the args. */
2716 for (argnum = 0; argnum < nargs; argnum++)
2717 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
2718 mips_stack_argsize (gdbarch));
2719 sp -= align_up (len, 16);
2720
2721 if (mips_debug)
2722 fprintf_unfiltered (gdb_stdlog,
2723 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2724 paddr_nz (sp), (long) align_up (len, 16));
2725
2726 /* Initialize the integer and float register pointers. */
2727 argreg = MIPS_A0_REGNUM;
2728 float_argreg = mips_fpa0_regnum (current_gdbarch);
2729
2730 /* The struct_return pointer occupies the first parameter-passing reg. */
2731 if (struct_return)
2732 {
2733 if (mips_debug)
2734 fprintf_unfiltered (gdb_stdlog,
2735 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
2736 argreg, paddr_nz (struct_addr));
2737 write_register (argreg++, struct_addr);
2738 }
2739
2740 /* Now load as many as possible of the first arguments into
2741 registers, and push the rest onto the stack. Loop thru args
2742 from first to last. */
2743 for (argnum = 0; argnum < nargs; argnum++)
2744 {
2745 const gdb_byte *val;
2746 struct value *arg = args[argnum];
2747 struct type *arg_type = check_typedef (value_type (arg));
2748 int len = TYPE_LENGTH (arg_type);
2749 enum type_code typecode = TYPE_CODE (arg_type);
2750
2751 if (mips_debug)
2752 fprintf_unfiltered (gdb_stdlog,
2753 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
2754 argnum + 1, len, (int) typecode);
2755
2756 val = value_contents (arg);
2757
2758 if (fp_register_arg_p (typecode, arg_type)
2759 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2760 {
2761 /* This is a floating point value that fits entirely
2762 in a single register. */
2763 /* On 32 bit ABI's the float_argreg is further adjusted
2764 above to ensure that it is even register aligned. */
2765 LONGEST regval = extract_unsigned_integer (val, len);
2766 if (mips_debug)
2767 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2768 float_argreg, phex (regval, len));
2769 write_register (float_argreg++, regval);
2770
2771 if (mips_debug)
2772 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2773 argreg, phex (regval, len));
2774 write_register (argreg, regval);
2775 argreg += 1;
2776 }
2777 else
2778 {
2779 /* Copy the argument to general registers or the stack in
2780 register-sized pieces. Large arguments are split between
2781 registers and stack. */
2782 /* Note: structs whose size is not a multiple of
2783 mips_abi_regsize() are treated specially: Irix cc passes
2784 them in registers where gcc sometimes puts them on the
2785 stack. For maximum compatibility, we will put them in
2786 both places. */
2787 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2788 && (len % mips_abi_regsize (gdbarch) != 0));
2789 /* Note: Floating-point values that didn't fit into an FP
2790 register are only written to memory. */
2791 while (len > 0)
2792 {
2793 /* Rememer if the argument was written to the stack. */
2794 int stack_used_p = 0;
2795 int partial_len = (len < mips_abi_regsize (gdbarch)
2796 ? len : mips_abi_regsize (gdbarch));
2797
2798 if (mips_debug)
2799 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2800 partial_len);
2801
2802 /* Write this portion of the argument to the stack. */
2803 if (argreg > MIPS_LAST_ARG_REGNUM
2804 || odd_sized_struct
2805 || fp_register_arg_p (typecode, arg_type))
2806 {
2807 /* Should shorter than int integer values be
2808 promoted to int before being stored? */
2809 int longword_offset = 0;
2810 CORE_ADDR addr;
2811 stack_used_p = 1;
2812 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2813 {
2814 if (mips_stack_argsize (gdbarch) == 8
2815 && (typecode == TYPE_CODE_INT
2816 || typecode == TYPE_CODE_PTR
2817 || typecode == TYPE_CODE_FLT) && len <= 4)
2818 longword_offset = mips_stack_argsize (gdbarch) - len;
2819 }
2820
2821 if (mips_debug)
2822 {
2823 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2824 paddr_nz (stack_offset));
2825 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2826 paddr_nz (longword_offset));
2827 }
2828
2829 addr = sp + stack_offset + longword_offset;
2830
2831 if (mips_debug)
2832 {
2833 int i;
2834 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2835 paddr_nz (addr));
2836 for (i = 0; i < partial_len; i++)
2837 {
2838 fprintf_unfiltered (gdb_stdlog, "%02x",
2839 val[i] & 0xff);
2840 }
2841 }
2842 write_memory (addr, val, partial_len);
2843 }
2844
2845 /* Note!!! This is NOT an else clause. Odd sized
2846 structs may go thru BOTH paths. Floating point
2847 arguments will not. */
2848 /* Write this portion of the argument to a general
2849 purpose register. */
2850 if (argreg <= MIPS_LAST_ARG_REGNUM
2851 && !fp_register_arg_p (typecode, arg_type))
2852 {
2853 LONGEST regval =
2854 extract_unsigned_integer (val, partial_len);
2855
2856 /* A non-floating-point argument being passed in a
2857 general register. If a struct or union, and if
2858 the remaining length is smaller than the register
2859 size, we have to adjust the register value on
2860 big endian targets.
2861
2862 It does not seem to be necessary to do the
2863 same for integral types.
2864
2865 cagney/2001-07-23: gdb/179: Also, GCC, when
2866 outputting LE O32 with sizeof (struct) <
2867 mips_abi_regsize(), generates a left shift as
2868 part of storing the argument in a register a
2869 register (the left shift isn't generated when
2870 sizeof (struct) >= mips_abi_regsize()). Since
2871 it is quite possible that this is GCC
2872 contradicting the LE/O32 ABI, GDB has not been
2873 adjusted to accommodate this. Either someone
2874 needs to demonstrate that the LE/O32 ABI
2875 specifies such a left shift OR this new ABI gets
2876 identified as such and GDB gets tweaked
2877 accordingly. */
2878
2879 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
2880 && partial_len < mips_abi_regsize (gdbarch)
2881 && (typecode == TYPE_CODE_STRUCT ||
2882 typecode == TYPE_CODE_UNION))
2883 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
2884 TARGET_CHAR_BIT);
2885
2886 if (mips_debug)
2887 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2888 argreg,
2889 phex (regval,
2890 mips_abi_regsize (gdbarch)));
2891 write_register (argreg, regval);
2892 argreg++;
2893 }
2894
2895 len -= partial_len;
2896 val += partial_len;
2897
2898 /* Compute the the offset into the stack at which we
2899 will copy the next parameter.
2900
2901 In N32 (N64?), the stack_offset only needs to be
2902 adjusted when it has been used. */
2903
2904 if (stack_used_p)
2905 stack_offset += align_up (partial_len,
2906 mips_stack_argsize (gdbarch));
2907 }
2908 }
2909 if (mips_debug)
2910 fprintf_unfiltered (gdb_stdlog, "\n");
2911 }
2912
2913 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2914
2915 /* Return adjusted stack pointer. */
2916 return sp;
2917 }
2918
2919 static enum return_value_convention
2920 mips_n32n64_return_value (struct gdbarch *gdbarch,
2921 struct type *type, struct regcache *regcache,
2922 gdb_byte *readbuf, const gdb_byte *writebuf)
2923 {
2924 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2925 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2926 || TYPE_CODE (type) == TYPE_CODE_UNION
2927 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2928 || TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2929 return RETURN_VALUE_STRUCT_CONVENTION;
2930 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2931 && TYPE_LENGTH (type) == 16
2932 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2933 {
2934 /* A 128-bit floating-point value fills both $f0 and $f2. The
2935 two registers are used in the same as memory order, so the
2936 eight bytes with the lower memory address are in $f0. */
2937 if (mips_debug)
2938 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
2939 mips_xfer_register (regcache,
2940 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2941 8, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2942 mips_xfer_register (regcache,
2943 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 2,
2944 8, TARGET_BYTE_ORDER, readbuf ? readbuf + 8 : readbuf,
2945 writebuf ? writebuf + 8 : writebuf, 0);
2946 return RETURN_VALUE_REGISTER_CONVENTION;
2947 }
2948 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2949 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2950 {
2951 /* A floating-point value belongs in the least significant part
2952 of FP0. */
2953 if (mips_debug)
2954 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
2955 mips_xfer_register (regcache,
2956 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2957 TYPE_LENGTH (type),
2958 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2959 return RETURN_VALUE_REGISTER_CONVENTION;
2960 }
2961 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2962 && TYPE_NFIELDS (type) <= 2
2963 && TYPE_NFIELDS (type) >= 1
2964 && ((TYPE_NFIELDS (type) == 1
2965 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2966 == TYPE_CODE_FLT))
2967 || (TYPE_NFIELDS (type) == 2
2968 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2969 == TYPE_CODE_FLT)
2970 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
2971 == TYPE_CODE_FLT)))
2972 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2973 {
2974 /* A struct that contains one or two floats. Each value is part
2975 in the least significant part of their floating point
2976 register.. */
2977 int regnum;
2978 int field;
2979 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
2980 field < TYPE_NFIELDS (type); field++, regnum += 2)
2981 {
2982 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
2983 / TARGET_CHAR_BIT);
2984 if (mips_debug)
2985 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
2986 offset);
2987 mips_xfer_register (regcache, NUM_REGS + regnum,
2988 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
2989 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2990 }
2991 return RETURN_VALUE_REGISTER_CONVENTION;
2992 }
2993 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2994 || TYPE_CODE (type) == TYPE_CODE_UNION)
2995 {
2996 /* A structure or union. Extract the left justified value,
2997 regardless of the byte order. I.e. DO NOT USE
2998 mips_xfer_lower. */
2999 int offset;
3000 int regnum;
3001 for (offset = 0, regnum = MIPS_V0_REGNUM;
3002 offset < TYPE_LENGTH (type);
3003 offset += register_size (current_gdbarch, regnum), regnum++)
3004 {
3005 int xfer = register_size (current_gdbarch, regnum);
3006 if (offset + xfer > TYPE_LENGTH (type))
3007 xfer = TYPE_LENGTH (type) - offset;
3008 if (mips_debug)
3009 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3010 offset, xfer, regnum);
3011 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3012 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3013 }
3014 return RETURN_VALUE_REGISTER_CONVENTION;
3015 }
3016 else
3017 {
3018 /* A scalar extract each part but least-significant-byte
3019 justified. */
3020 int offset;
3021 int regnum;
3022 for (offset = 0, regnum = MIPS_V0_REGNUM;
3023 offset < TYPE_LENGTH (type);
3024 offset += register_size (current_gdbarch, regnum), regnum++)
3025 {
3026 int xfer = register_size (current_gdbarch, regnum);
3027 if (offset + xfer > TYPE_LENGTH (type))
3028 xfer = TYPE_LENGTH (type) - offset;
3029 if (mips_debug)
3030 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3031 offset, xfer, regnum);
3032 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3033 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3034 }
3035 return RETURN_VALUE_REGISTER_CONVENTION;
3036 }
3037 }
3038
3039 /* O32 ABI stuff. */
3040
3041 static CORE_ADDR
3042 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3043 struct regcache *regcache, CORE_ADDR bp_addr,
3044 int nargs, struct value **args, CORE_ADDR sp,
3045 int struct_return, CORE_ADDR struct_addr)
3046 {
3047 int argreg;
3048 int float_argreg;
3049 int argnum;
3050 int len = 0;
3051 int stack_offset = 0;
3052 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3053 CORE_ADDR func_addr = find_function_addr (function, NULL);
3054
3055 /* For shared libraries, "t9" needs to point at the function
3056 address. */
3057 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3058
3059 /* Set the return address register to point to the entry point of
3060 the program, where a breakpoint lies in wait. */
3061 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3062
3063 /* First ensure that the stack and structure return address (if any)
3064 are properly aligned. The stack has to be at least 64-bit
3065 aligned even on 32-bit machines, because doubles must be 64-bit
3066 aligned. For n32 and n64, stack frames need to be 128-bit
3067 aligned, so we round to this widest known alignment. */
3068
3069 sp = align_down (sp, 16);
3070 struct_addr = align_down (struct_addr, 16);
3071
3072 /* Now make space on the stack for the args. */
3073 for (argnum = 0; argnum < nargs; argnum++)
3074 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
3075 mips_stack_argsize (gdbarch));
3076 sp -= align_up (len, 16);
3077
3078 if (mips_debug)
3079 fprintf_unfiltered (gdb_stdlog,
3080 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3081 paddr_nz (sp), (long) align_up (len, 16));
3082
3083 /* Initialize the integer and float register pointers. */
3084 argreg = MIPS_A0_REGNUM;
3085 float_argreg = mips_fpa0_regnum (current_gdbarch);
3086
3087 /* The struct_return pointer occupies the first parameter-passing reg. */
3088 if (struct_return)
3089 {
3090 if (mips_debug)
3091 fprintf_unfiltered (gdb_stdlog,
3092 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3093 argreg, paddr_nz (struct_addr));
3094 write_register (argreg++, struct_addr);
3095 stack_offset += mips_stack_argsize (gdbarch);
3096 }
3097
3098 /* Now load as many as possible of the first arguments into
3099 registers, and push the rest onto the stack. Loop thru args
3100 from first to last. */
3101 for (argnum = 0; argnum < nargs; argnum++)
3102 {
3103 const gdb_byte *val;
3104 struct value *arg = args[argnum];
3105 struct type *arg_type = check_typedef (value_type (arg));
3106 int len = TYPE_LENGTH (arg_type);
3107 enum type_code typecode = TYPE_CODE (arg_type);
3108
3109 if (mips_debug)
3110 fprintf_unfiltered (gdb_stdlog,
3111 "mips_o32_push_dummy_call: %d len=%d type=%d",
3112 argnum + 1, len, (int) typecode);
3113
3114 val = value_contents (arg);
3115
3116 /* 32-bit ABIs always start floating point arguments in an
3117 even-numbered floating point register. Round the FP register
3118 up before the check to see if there are any FP registers
3119 left. O32/O64 targets also pass the FP in the integer
3120 registers so also round up normal registers. */
3121 if (mips_abi_regsize (gdbarch) < 8
3122 && fp_register_arg_p (typecode, arg_type))
3123 {
3124 if ((float_argreg & 1))
3125 float_argreg++;
3126 }
3127
3128 /* Floating point arguments passed in registers have to be
3129 treated specially. On 32-bit architectures, doubles
3130 are passed in register pairs; the even register gets
3131 the low word, and the odd register gets the high word.
3132 On O32/O64, the first two floating point arguments are
3133 also copied to general registers, because MIPS16 functions
3134 don't use float registers for arguments. This duplication of
3135 arguments in general registers can't hurt non-MIPS16 functions
3136 because those registers are normally skipped. */
3137
3138 if (fp_register_arg_p (typecode, arg_type)
3139 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3140 {
3141 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
3142 {
3143 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3144 unsigned long regval;
3145
3146 /* Write the low word of the double to the even register(s). */
3147 regval = extract_unsigned_integer (val + low_offset, 4);
3148 if (mips_debug)
3149 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3150 float_argreg, phex (regval, 4));
3151 write_register (float_argreg++, regval);
3152 if (mips_debug)
3153 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3154 argreg, phex (regval, 4));
3155 write_register (argreg++, regval);
3156
3157 /* Write the high word of the double to the odd register(s). */
3158 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3159 if (mips_debug)
3160 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3161 float_argreg, phex (regval, 4));
3162 write_register (float_argreg++, regval);
3163
3164 if (mips_debug)
3165 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3166 argreg, phex (regval, 4));
3167 write_register (argreg++, regval);
3168 }
3169 else
3170 {
3171 /* This is a floating point value that fits entirely
3172 in a single register. */
3173 /* On 32 bit ABI's the float_argreg is further adjusted
3174 above to ensure that it is even register aligned. */
3175 LONGEST regval = extract_unsigned_integer (val, len);
3176 if (mips_debug)
3177 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3178 float_argreg, phex (regval, len));
3179 write_register (float_argreg++, regval);
3180 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3181 registers for each argument. The below is (my
3182 guess) to ensure that the corresponding integer
3183 register has reserved the same space. */
3184 if (mips_debug)
3185 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3186 argreg, phex (regval, len));
3187 write_register (argreg, regval);
3188 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3189 }
3190 /* Reserve space for the FP register. */
3191 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3192 }
3193 else
3194 {
3195 /* Copy the argument to general registers or the stack in
3196 register-sized pieces. Large arguments are split between
3197 registers and stack. */
3198 /* Note: structs whose size is not a multiple of
3199 mips_abi_regsize() are treated specially: Irix cc passes
3200 them in registers where gcc sometimes puts them on the
3201 stack. For maximum compatibility, we will put them in
3202 both places. */
3203 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3204 && (len % mips_abi_regsize (gdbarch) != 0));
3205 /* Structures should be aligned to eight bytes (even arg registers)
3206 on MIPS_ABI_O32, if their first member has double precision. */
3207 if (mips_abi_regsize (gdbarch) < 8
3208 && mips_type_needs_double_align (arg_type))
3209 {
3210 if ((argreg & 1))
3211 argreg++;
3212 }
3213 /* Note: Floating-point values that didn't fit into an FP
3214 register are only written to memory. */
3215 while (len > 0)
3216 {
3217 /* Remember if the argument was written to the stack. */
3218 int stack_used_p = 0;
3219 int partial_len = (len < mips_abi_regsize (gdbarch)
3220 ? len : mips_abi_regsize (gdbarch));
3221
3222 if (mips_debug)
3223 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3224 partial_len);
3225
3226 /* Write this portion of the argument to the stack. */
3227 if (argreg > MIPS_LAST_ARG_REGNUM
3228 || odd_sized_struct
3229 || fp_register_arg_p (typecode, arg_type))
3230 {
3231 /* Should shorter than int integer values be
3232 promoted to int before being stored? */
3233 int longword_offset = 0;
3234 CORE_ADDR addr;
3235 stack_used_p = 1;
3236 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3237 {
3238 if (mips_stack_argsize (gdbarch) == 8
3239 && (typecode == TYPE_CODE_INT
3240 || typecode == TYPE_CODE_PTR
3241 || typecode == TYPE_CODE_FLT) && len <= 4)
3242 longword_offset = mips_stack_argsize (gdbarch) - len;
3243 }
3244
3245 if (mips_debug)
3246 {
3247 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3248 paddr_nz (stack_offset));
3249 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3250 paddr_nz (longword_offset));
3251 }
3252
3253 addr = sp + stack_offset + longword_offset;
3254
3255 if (mips_debug)
3256 {
3257 int i;
3258 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3259 paddr_nz (addr));
3260 for (i = 0; i < partial_len; i++)
3261 {
3262 fprintf_unfiltered (gdb_stdlog, "%02x",
3263 val[i] & 0xff);
3264 }
3265 }
3266 write_memory (addr, val, partial_len);
3267 }
3268
3269 /* Note!!! This is NOT an else clause. Odd sized
3270 structs may go thru BOTH paths. Floating point
3271 arguments will not. */
3272 /* Write this portion of the argument to a general
3273 purpose register. */
3274 if (argreg <= MIPS_LAST_ARG_REGNUM
3275 && !fp_register_arg_p (typecode, arg_type))
3276 {
3277 LONGEST regval = extract_signed_integer (val, partial_len);
3278 /* Value may need to be sign extended, because
3279 mips_isa_regsize() != mips_abi_regsize(). */
3280
3281 /* A non-floating-point argument being passed in a
3282 general register. If a struct or union, and if
3283 the remaining length is smaller than the register
3284 size, we have to adjust the register value on
3285 big endian targets.
3286
3287 It does not seem to be necessary to do the
3288 same for integral types.
3289
3290 Also don't do this adjustment on O64 binaries.
3291
3292 cagney/2001-07-23: gdb/179: Also, GCC, when
3293 outputting LE O32 with sizeof (struct) <
3294 mips_abi_regsize(), generates a left shift as
3295 part of storing the argument in a register a
3296 register (the left shift isn't generated when
3297 sizeof (struct) >= mips_abi_regsize()). Since
3298 it is quite possible that this is GCC
3299 contradicting the LE/O32 ABI, GDB has not been
3300 adjusted to accommodate this. Either someone
3301 needs to demonstrate that the LE/O32 ABI
3302 specifies such a left shift OR this new ABI gets
3303 identified as such and GDB gets tweaked
3304 accordingly. */
3305
3306 if (mips_abi_regsize (gdbarch) < 8
3307 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3308 && partial_len < mips_abi_regsize (gdbarch)
3309 && (typecode == TYPE_CODE_STRUCT ||
3310 typecode == TYPE_CODE_UNION))
3311 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3312 TARGET_CHAR_BIT);
3313
3314 if (mips_debug)
3315 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3316 argreg,
3317 phex (regval,
3318 mips_abi_regsize (gdbarch)));
3319 write_register (argreg, regval);
3320 argreg++;
3321
3322 /* Prevent subsequent floating point arguments from
3323 being passed in floating point registers. */
3324 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3325 }
3326
3327 len -= partial_len;
3328 val += partial_len;
3329
3330 /* Compute the the offset into the stack at which we
3331 will copy the next parameter.
3332
3333 In older ABIs, the caller reserved space for
3334 registers that contained arguments. This was loosely
3335 refered to as their "home". Consequently, space is
3336 always allocated. */
3337
3338 stack_offset += align_up (partial_len,
3339 mips_stack_argsize (gdbarch));
3340 }
3341 }
3342 if (mips_debug)
3343 fprintf_unfiltered (gdb_stdlog, "\n");
3344 }
3345
3346 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3347
3348 /* Return adjusted stack pointer. */
3349 return sp;
3350 }
3351
3352 static enum return_value_convention
3353 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3354 struct regcache *regcache,
3355 gdb_byte *readbuf, const gdb_byte *writebuf)
3356 {
3357 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3358
3359 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3360 || TYPE_CODE (type) == TYPE_CODE_UNION
3361 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3362 return RETURN_VALUE_STRUCT_CONVENTION;
3363 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3364 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3365 {
3366 /* A single-precision floating-point value. It fits in the
3367 least significant part of FP0. */
3368 if (mips_debug)
3369 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3370 mips_xfer_register (regcache,
3371 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3372 TYPE_LENGTH (type),
3373 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3374 return RETURN_VALUE_REGISTER_CONVENTION;
3375 }
3376 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3377 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3378 {
3379 /* A double-precision floating-point value. The most
3380 significant part goes in FP1, and the least significant in
3381 FP0. */
3382 if (mips_debug)
3383 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3384 switch (TARGET_BYTE_ORDER)
3385 {
3386 case BFD_ENDIAN_LITTLE:
3387 mips_xfer_register (regcache,
3388 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3389 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3390 mips_xfer_register (regcache,
3391 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3392 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3393 break;
3394 case BFD_ENDIAN_BIG:
3395 mips_xfer_register (regcache,
3396 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3397 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3398 mips_xfer_register (regcache,
3399 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3400 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3401 break;
3402 default:
3403 internal_error (__FILE__, __LINE__, _("bad switch"));
3404 }
3405 return RETURN_VALUE_REGISTER_CONVENTION;
3406 }
3407 #if 0
3408 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3409 && TYPE_NFIELDS (type) <= 2
3410 && TYPE_NFIELDS (type) >= 1
3411 && ((TYPE_NFIELDS (type) == 1
3412 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3413 == TYPE_CODE_FLT))
3414 || (TYPE_NFIELDS (type) == 2
3415 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3416 == TYPE_CODE_FLT)
3417 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3418 == TYPE_CODE_FLT)))
3419 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3420 {
3421 /* A struct that contains one or two floats. Each value is part
3422 in the least significant part of their floating point
3423 register.. */
3424 gdb_byte reg[MAX_REGISTER_SIZE];
3425 int regnum;
3426 int field;
3427 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3428 field < TYPE_NFIELDS (type); field++, regnum += 2)
3429 {
3430 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3431 / TARGET_CHAR_BIT);
3432 if (mips_debug)
3433 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3434 offset);
3435 mips_xfer_register (regcache, NUM_REGS + regnum,
3436 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3437 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3438 }
3439 return RETURN_VALUE_REGISTER_CONVENTION;
3440 }
3441 #endif
3442 #if 0
3443 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3444 || TYPE_CODE (type) == TYPE_CODE_UNION)
3445 {
3446 /* A structure or union. Extract the left justified value,
3447 regardless of the byte order. I.e. DO NOT USE
3448 mips_xfer_lower. */
3449 int offset;
3450 int regnum;
3451 for (offset = 0, regnum = MIPS_V0_REGNUM;
3452 offset < TYPE_LENGTH (type);
3453 offset += register_size (current_gdbarch, regnum), regnum++)
3454 {
3455 int xfer = register_size (current_gdbarch, regnum);
3456 if (offset + xfer > TYPE_LENGTH (type))
3457 xfer = TYPE_LENGTH (type) - offset;
3458 if (mips_debug)
3459 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3460 offset, xfer, regnum);
3461 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3462 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3463 }
3464 return RETURN_VALUE_REGISTER_CONVENTION;
3465 }
3466 #endif
3467 else
3468 {
3469 /* A scalar extract each part but least-significant-byte
3470 justified. o32 thinks registers are 4 byte, regardless of
3471 the ISA. mips_stack_argsize controls this. */
3472 int offset;
3473 int regnum;
3474 for (offset = 0, regnum = MIPS_V0_REGNUM;
3475 offset < TYPE_LENGTH (type);
3476 offset += mips_stack_argsize (gdbarch), regnum++)
3477 {
3478 int xfer = mips_stack_argsize (gdbarch);
3479 if (offset + xfer > TYPE_LENGTH (type))
3480 xfer = TYPE_LENGTH (type) - offset;
3481 if (mips_debug)
3482 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3483 offset, xfer, regnum);
3484 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3485 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3486 }
3487 return RETURN_VALUE_REGISTER_CONVENTION;
3488 }
3489 }
3490
3491 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3492 ABI. */
3493
3494 static CORE_ADDR
3495 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3496 struct regcache *regcache, CORE_ADDR bp_addr,
3497 int nargs,
3498 struct value **args, CORE_ADDR sp,
3499 int struct_return, CORE_ADDR struct_addr)
3500 {
3501 int argreg;
3502 int float_argreg;
3503 int argnum;
3504 int len = 0;
3505 int stack_offset = 0;
3506 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3507 CORE_ADDR func_addr = find_function_addr (function, NULL);
3508
3509 /* For shared libraries, "t9" needs to point at the function
3510 address. */
3511 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3512
3513 /* Set the return address register to point to the entry point of
3514 the program, where a breakpoint lies in wait. */
3515 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3516
3517 /* First ensure that the stack and structure return address (if any)
3518 are properly aligned. The stack has to be at least 64-bit
3519 aligned even on 32-bit machines, because doubles must be 64-bit
3520 aligned. For n32 and n64, stack frames need to be 128-bit
3521 aligned, so we round to this widest known alignment. */
3522
3523 sp = align_down (sp, 16);
3524 struct_addr = align_down (struct_addr, 16);
3525
3526 /* Now make space on the stack for the args. */
3527 for (argnum = 0; argnum < nargs; argnum++)
3528 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
3529 mips_stack_argsize (gdbarch));
3530 sp -= align_up (len, 16);
3531
3532 if (mips_debug)
3533 fprintf_unfiltered (gdb_stdlog,
3534 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3535 paddr_nz (sp), (long) align_up (len, 16));
3536
3537 /* Initialize the integer and float register pointers. */
3538 argreg = MIPS_A0_REGNUM;
3539 float_argreg = mips_fpa0_regnum (current_gdbarch);
3540
3541 /* The struct_return pointer occupies the first parameter-passing reg. */
3542 if (struct_return)
3543 {
3544 if (mips_debug)
3545 fprintf_unfiltered (gdb_stdlog,
3546 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3547 argreg, paddr_nz (struct_addr));
3548 write_register (argreg++, struct_addr);
3549 stack_offset += mips_stack_argsize (gdbarch);
3550 }
3551
3552 /* Now load as many as possible of the first arguments into
3553 registers, and push the rest onto the stack. Loop thru args
3554 from first to last. */
3555 for (argnum = 0; argnum < nargs; argnum++)
3556 {
3557 const gdb_byte *val;
3558 struct value *arg = args[argnum];
3559 struct type *arg_type = check_typedef (value_type (arg));
3560 int len = TYPE_LENGTH (arg_type);
3561 enum type_code typecode = TYPE_CODE (arg_type);
3562
3563 if (mips_debug)
3564 fprintf_unfiltered (gdb_stdlog,
3565 "mips_o64_push_dummy_call: %d len=%d type=%d",
3566 argnum + 1, len, (int) typecode);
3567
3568 val = value_contents (arg);
3569
3570 /* 32-bit ABIs always start floating point arguments in an
3571 even-numbered floating point register. Round the FP register
3572 up before the check to see if there are any FP registers
3573 left. O32/O64 targets also pass the FP in the integer
3574 registers so also round up normal registers. */
3575 if (mips_abi_regsize (gdbarch) < 8
3576 && fp_register_arg_p (typecode, arg_type))
3577 {
3578 if ((float_argreg & 1))
3579 float_argreg++;
3580 }
3581
3582 /* Floating point arguments passed in registers have to be
3583 treated specially. On 32-bit architectures, doubles
3584 are passed in register pairs; the even register gets
3585 the low word, and the odd register gets the high word.
3586 On O32/O64, the first two floating point arguments are
3587 also copied to general registers, because MIPS16 functions
3588 don't use float registers for arguments. This duplication of
3589 arguments in general registers can't hurt non-MIPS16 functions
3590 because those registers are normally skipped. */
3591
3592 if (fp_register_arg_p (typecode, arg_type)
3593 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3594 {
3595 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
3596 {
3597 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3598 unsigned long regval;
3599
3600 /* Write the low word of the double to the even register(s). */
3601 regval = extract_unsigned_integer (val + low_offset, 4);
3602 if (mips_debug)
3603 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3604 float_argreg, phex (regval, 4));
3605 write_register (float_argreg++, regval);
3606 if (mips_debug)
3607 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3608 argreg, phex (regval, 4));
3609 write_register (argreg++, regval);
3610
3611 /* Write the high word of the double to the odd register(s). */
3612 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3613 if (mips_debug)
3614 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3615 float_argreg, phex (regval, 4));
3616 write_register (float_argreg++, regval);
3617
3618 if (mips_debug)
3619 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3620 argreg, phex (regval, 4));
3621 write_register (argreg++, regval);
3622 }
3623 else
3624 {
3625 /* This is a floating point value that fits entirely
3626 in a single register. */
3627 /* On 32 bit ABI's the float_argreg is further adjusted
3628 above to ensure that it is even register aligned. */
3629 LONGEST regval = extract_unsigned_integer (val, len);
3630 if (mips_debug)
3631 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3632 float_argreg, phex (regval, len));
3633 write_register (float_argreg++, regval);
3634 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3635 registers for each argument. The below is (my
3636 guess) to ensure that the corresponding integer
3637 register has reserved the same space. */
3638 if (mips_debug)
3639 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3640 argreg, phex (regval, len));
3641 write_register (argreg, regval);
3642 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3643 }
3644 /* Reserve space for the FP register. */
3645 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3646 }
3647 else
3648 {
3649 /* Copy the argument to general registers or the stack in
3650 register-sized pieces. Large arguments are split between
3651 registers and stack. */
3652 /* Note: structs whose size is not a multiple of
3653 mips_abi_regsize() are treated specially: Irix cc passes
3654 them in registers where gcc sometimes puts them on the
3655 stack. For maximum compatibility, we will put them in
3656 both places. */
3657 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3658 && (len % mips_abi_regsize (gdbarch) != 0));
3659 /* Structures should be aligned to eight bytes (even arg registers)
3660 on MIPS_ABI_O32, if their first member has double precision. */
3661 if (mips_abi_regsize (gdbarch) < 8
3662 && mips_type_needs_double_align (arg_type))
3663 {
3664 if ((argreg & 1))
3665 argreg++;
3666 }
3667 /* Note: Floating-point values that didn't fit into an FP
3668 register are only written to memory. */
3669 while (len > 0)
3670 {
3671 /* Remember if the argument was written to the stack. */
3672 int stack_used_p = 0;
3673 int partial_len = (len < mips_abi_regsize (gdbarch)
3674 ? len : mips_abi_regsize (gdbarch));
3675
3676 if (mips_debug)
3677 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3678 partial_len);
3679
3680 /* Write this portion of the argument to the stack. */
3681 if (argreg > MIPS_LAST_ARG_REGNUM
3682 || odd_sized_struct
3683 || fp_register_arg_p (typecode, arg_type))
3684 {
3685 /* Should shorter than int integer values be
3686 promoted to int before being stored? */
3687 int longword_offset = 0;
3688 CORE_ADDR addr;
3689 stack_used_p = 1;
3690 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3691 {
3692 if (mips_stack_argsize (gdbarch) == 8
3693 && (typecode == TYPE_CODE_INT
3694 || typecode == TYPE_CODE_PTR
3695 || typecode == TYPE_CODE_FLT) && len <= 4)
3696 longword_offset = mips_stack_argsize (gdbarch) - len;
3697 }
3698
3699 if (mips_debug)
3700 {
3701 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3702 paddr_nz (stack_offset));
3703 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3704 paddr_nz (longword_offset));
3705 }
3706
3707 addr = sp + stack_offset + longword_offset;
3708
3709 if (mips_debug)
3710 {
3711 int i;
3712 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3713 paddr_nz (addr));
3714 for (i = 0; i < partial_len; i++)
3715 {
3716 fprintf_unfiltered (gdb_stdlog, "%02x",
3717 val[i] & 0xff);
3718 }
3719 }
3720 write_memory (addr, val, partial_len);
3721 }
3722
3723 /* Note!!! This is NOT an else clause. Odd sized
3724 structs may go thru BOTH paths. Floating point
3725 arguments will not. */
3726 /* Write this portion of the argument to a general
3727 purpose register. */
3728 if (argreg <= MIPS_LAST_ARG_REGNUM
3729 && !fp_register_arg_p (typecode, arg_type))
3730 {
3731 LONGEST regval = extract_signed_integer (val, partial_len);
3732 /* Value may need to be sign extended, because
3733 mips_isa_regsize() != mips_abi_regsize(). */
3734
3735 /* A non-floating-point argument being passed in a
3736 general register. If a struct or union, and if
3737 the remaining length is smaller than the register
3738 size, we have to adjust the register value on
3739 big endian targets.
3740
3741 It does not seem to be necessary to do the
3742 same for integral types. */
3743
3744 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3745 && partial_len < mips_abi_regsize (gdbarch)
3746 && (typecode == TYPE_CODE_STRUCT ||
3747 typecode == TYPE_CODE_UNION))
3748 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3749 TARGET_CHAR_BIT);
3750
3751 if (mips_debug)
3752 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3753 argreg,
3754 phex (regval,
3755 mips_abi_regsize (gdbarch)));
3756 write_register (argreg, regval);
3757 argreg++;
3758
3759 /* Prevent subsequent floating point arguments from
3760 being passed in floating point registers. */
3761 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3762 }
3763
3764 len -= partial_len;
3765 val += partial_len;
3766
3767 /* Compute the the offset into the stack at which we
3768 will copy the next parameter.
3769
3770 In older ABIs, the caller reserved space for
3771 registers that contained arguments. This was loosely
3772 refered to as their "home". Consequently, space is
3773 always allocated. */
3774
3775 stack_offset += align_up (partial_len,
3776 mips_stack_argsize (gdbarch));
3777 }
3778 }
3779 if (mips_debug)
3780 fprintf_unfiltered (gdb_stdlog, "\n");
3781 }
3782
3783 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3784
3785 /* Return adjusted stack pointer. */
3786 return sp;
3787 }
3788
3789 static enum return_value_convention
3790 mips_o64_return_value (struct gdbarch *gdbarch,
3791 struct type *type, struct regcache *regcache,
3792 gdb_byte *readbuf, const gdb_byte *writebuf)
3793 {
3794 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3795
3796 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3797 || TYPE_CODE (type) == TYPE_CODE_UNION
3798 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3799 return RETURN_VALUE_STRUCT_CONVENTION;
3800 else if (fp_register_arg_p (TYPE_CODE (type), type))
3801 {
3802 /* A floating-point value. It fits in the least significant
3803 part of FP0. */
3804 if (mips_debug)
3805 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3806 mips_xfer_register (regcache,
3807 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3808 TYPE_LENGTH (type),
3809 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3810 return RETURN_VALUE_REGISTER_CONVENTION;
3811 }
3812 else
3813 {
3814 /* A scalar extract each part but least-significant-byte
3815 justified. */
3816 int offset;
3817 int regnum;
3818 for (offset = 0, regnum = MIPS_V0_REGNUM;
3819 offset < TYPE_LENGTH (type);
3820 offset += mips_stack_argsize (gdbarch), regnum++)
3821 {
3822 int xfer = mips_stack_argsize (gdbarch);
3823 if (offset + xfer > TYPE_LENGTH (type))
3824 xfer = TYPE_LENGTH (type) - offset;
3825 if (mips_debug)
3826 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3827 offset, xfer, regnum);
3828 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3829 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3830 }
3831 return RETURN_VALUE_REGISTER_CONVENTION;
3832 }
3833 }
3834
3835 /* Floating point register management.
3836
3837 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3838 64bit operations, these early MIPS cpus treat fp register pairs
3839 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3840 registers and offer a compatibility mode that emulates the MIPS2 fp
3841 model. When operating in MIPS2 fp compat mode, later cpu's split
3842 double precision floats into two 32-bit chunks and store them in
3843 consecutive fp regs. To display 64-bit floats stored in this
3844 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3845 Throw in user-configurable endianness and you have a real mess.
3846
3847 The way this works is:
3848 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3849 double-precision value will be split across two logical registers.
3850 The lower-numbered logical register will hold the low-order bits,
3851 regardless of the processor's endianness.
3852 - If we are on a 64-bit processor, and we are looking for a
3853 single-precision value, it will be in the low ordered bits
3854 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3855 save slot in memory.
3856 - If we are in 64-bit mode, everything is straightforward.
3857
3858 Note that this code only deals with "live" registers at the top of the
3859 stack. We will attempt to deal with saved registers later, when
3860 the raw/cooked register interface is in place. (We need a general
3861 interface that can deal with dynamic saved register sizes -- fp
3862 regs could be 32 bits wide in one frame and 64 on the frame above
3863 and below). */
3864
3865 static struct type *
3866 mips_float_register_type (void)
3867 {
3868 return builtin_type_ieee_single;
3869 }
3870
3871 static struct type *
3872 mips_double_register_type (void)
3873 {
3874 return builtin_type_ieee_double;
3875 }
3876
3877 /* Copy a 32-bit single-precision value from the current frame
3878 into rare_buffer. */
3879
3880 static void
3881 mips_read_fp_register_single (struct frame_info *frame, int regno,
3882 gdb_byte *rare_buffer)
3883 {
3884 int raw_size = register_size (current_gdbarch, regno);
3885 gdb_byte *raw_buffer = alloca (raw_size);
3886
3887 if (!frame_register_read (frame, regno, raw_buffer))
3888 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
3889 if (raw_size == 8)
3890 {
3891 /* We have a 64-bit value for this register. Find the low-order
3892 32 bits. */
3893 int offset;
3894
3895 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3896 offset = 4;
3897 else
3898 offset = 0;
3899
3900 memcpy (rare_buffer, raw_buffer + offset, 4);
3901 }
3902 else
3903 {
3904 memcpy (rare_buffer, raw_buffer, 4);
3905 }
3906 }
3907
3908 /* Copy a 64-bit double-precision value from the current frame into
3909 rare_buffer. This may include getting half of it from the next
3910 register. */
3911
3912 static void
3913 mips_read_fp_register_double (struct frame_info *frame, int regno,
3914 gdb_byte *rare_buffer)
3915 {
3916 int raw_size = register_size (current_gdbarch, regno);
3917
3918 if (raw_size == 8 && !mips2_fp_compat ())
3919 {
3920 /* We have a 64-bit value for this register, and we should use
3921 all 64 bits. */
3922 if (!frame_register_read (frame, regno, rare_buffer))
3923 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
3924 }
3925 else
3926 {
3927 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
3928 internal_error (__FILE__, __LINE__,
3929 _("mips_read_fp_register_double: bad access to "
3930 "odd-numbered FP register"));
3931
3932 /* mips_read_fp_register_single will find the correct 32 bits from
3933 each register. */
3934 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3935 {
3936 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3937 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
3938 }
3939 else
3940 {
3941 mips_read_fp_register_single (frame, regno, rare_buffer);
3942 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
3943 }
3944 }
3945 }
3946
3947 static void
3948 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
3949 int regnum)
3950 { /* do values for FP (float) regs */
3951 gdb_byte *raw_buffer;
3952 double doub, flt1; /* doubles extracted from raw hex data */
3953 int inv1, inv2;
3954
3955 raw_buffer = alloca (2 * register_size (current_gdbarch,
3956 mips_regnum (current_gdbarch)->fp0));
3957
3958 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
3959 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
3960 "");
3961
3962 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
3963 {
3964 /* 4-byte registers: Print hex and floating. Also print even
3965 numbered registers as doubles. */
3966 mips_read_fp_register_single (frame, regnum, raw_buffer);
3967 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3968
3969 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
3970 file);
3971
3972 fprintf_filtered (file, " flt: ");
3973 if (inv1)
3974 fprintf_filtered (file, " <invalid float> ");
3975 else
3976 fprintf_filtered (file, "%-17.9g", flt1);
3977
3978 if (regnum % 2 == 0)
3979 {
3980 mips_read_fp_register_double (frame, regnum, raw_buffer);
3981 doub = unpack_double (mips_double_register_type (), raw_buffer,
3982 &inv2);
3983
3984 fprintf_filtered (file, " dbl: ");
3985 if (inv2)
3986 fprintf_filtered (file, "<invalid double>");
3987 else
3988 fprintf_filtered (file, "%-24.17g", doub);
3989 }
3990 }
3991 else
3992 {
3993 /* Eight byte registers: print each one as hex, float and double. */
3994 mips_read_fp_register_single (frame, regnum, raw_buffer);
3995 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3996
3997 mips_read_fp_register_double (frame, regnum, raw_buffer);
3998 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
3999
4000
4001 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4002 file);
4003
4004 fprintf_filtered (file, " flt: ");
4005 if (inv1)
4006 fprintf_filtered (file, "<invalid float>");
4007 else
4008 fprintf_filtered (file, "%-17.9g", flt1);
4009
4010 fprintf_filtered (file, " dbl: ");
4011 if (inv2)
4012 fprintf_filtered (file, "<invalid double>");
4013 else
4014 fprintf_filtered (file, "%-24.17g", doub);
4015 }
4016 }
4017
4018 static void
4019 mips_print_register (struct ui_file *file, struct frame_info *frame,
4020 int regnum, int all)
4021 {
4022 struct gdbarch *gdbarch = get_frame_arch (frame);
4023 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4024 int offset;
4025
4026 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4027 {
4028 mips_print_fp_register (file, frame, regnum);
4029 return;
4030 }
4031
4032 /* Get the data in raw format. */
4033 if (!frame_register_read (frame, regnum, raw_buffer))
4034 {
4035 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
4036 return;
4037 }
4038
4039 fputs_filtered (REGISTER_NAME (regnum), file);
4040
4041 /* The problem with printing numeric register names (r26, etc.) is that
4042 the user can't use them on input. Probably the best solution is to
4043 fix it so that either the numeric or the funky (a2, etc.) names
4044 are accepted on input. */
4045 if (regnum < MIPS_NUMREGS)
4046 fprintf_filtered (file, "(r%d): ", regnum);
4047 else
4048 fprintf_filtered (file, ": ");
4049
4050 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4051 offset =
4052 register_size (current_gdbarch,
4053 regnum) - register_size (current_gdbarch, regnum);
4054 else
4055 offset = 0;
4056
4057 print_scalar_formatted (raw_buffer + offset,
4058 register_type (gdbarch, regnum), 'x', 0,
4059 file);
4060 }
4061
4062 /* Replacement for generic do_registers_info.
4063 Print regs in pretty columns. */
4064
4065 static int
4066 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4067 int regnum)
4068 {
4069 fprintf_filtered (file, " ");
4070 mips_print_fp_register (file, frame, regnum);
4071 fprintf_filtered (file, "\n");
4072 return regnum + 1;
4073 }
4074
4075
4076 /* Print a row's worth of GP (int) registers, with name labels above */
4077
4078 static int
4079 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4080 int start_regnum)
4081 {
4082 struct gdbarch *gdbarch = get_frame_arch (frame);
4083 /* do values for GP (int) regs */
4084 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4085 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4086 int col, byte;
4087 int regnum;
4088
4089 /* For GP registers, we print a separate row of names above the vals */
4090 for (col = 0, regnum = start_regnum;
4091 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4092 {
4093 if (*REGISTER_NAME (regnum) == '\0')
4094 continue; /* unused register */
4095 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4096 TYPE_CODE_FLT)
4097 break; /* end the row: reached FP register */
4098 if (col == 0)
4099 fprintf_filtered (file, " ");
4100 fprintf_filtered (file,
4101 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4102 REGISTER_NAME (regnum));
4103 col++;
4104 }
4105
4106 if (col == 0)
4107 return regnum;
4108
4109 /* print the R0 to R31 names */
4110 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4111 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4112 else
4113 fprintf_filtered (file, "\n ");
4114
4115 /* now print the values in hex, 4 or 8 to the row */
4116 for (col = 0, regnum = start_regnum;
4117 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4118 {
4119 if (*REGISTER_NAME (regnum) == '\0')
4120 continue; /* unused register */
4121 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4122 TYPE_CODE_FLT)
4123 break; /* end row: reached FP register */
4124 /* OK: get the data in raw format. */
4125 if (!frame_register_read (frame, regnum, raw_buffer))
4126 error (_("can't read register %d (%s)"), regnum, REGISTER_NAME (regnum));
4127 /* pad small registers */
4128 for (byte = 0;
4129 byte < (mips_abi_regsize (current_gdbarch)
4130 - register_size (current_gdbarch, regnum)); byte++)
4131 printf_filtered (" ");
4132 /* Now print the register value in hex, endian order. */
4133 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4134 for (byte =
4135 register_size (current_gdbarch,
4136 regnum) - register_size (current_gdbarch, regnum);
4137 byte < register_size (current_gdbarch, regnum); byte++)
4138 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4139 else
4140 for (byte = register_size (current_gdbarch, regnum) - 1;
4141 byte >= 0; byte--)
4142 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4143 fprintf_filtered (file, " ");
4144 col++;
4145 }
4146 if (col > 0) /* ie. if we actually printed anything... */
4147 fprintf_filtered (file, "\n");
4148
4149 return regnum;
4150 }
4151
4152 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4153
4154 static void
4155 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4156 struct frame_info *frame, int regnum, int all)
4157 {
4158 if (regnum != -1) /* do one specified register */
4159 {
4160 gdb_assert (regnum >= NUM_REGS);
4161 if (*(REGISTER_NAME (regnum)) == '\0')
4162 error (_("Not a valid register for the current processor type"));
4163
4164 mips_print_register (file, frame, regnum, 0);
4165 fprintf_filtered (file, "\n");
4166 }
4167 else
4168 /* do all (or most) registers */
4169 {
4170 regnum = NUM_REGS;
4171 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
4172 {
4173 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4174 TYPE_CODE_FLT)
4175 {
4176 if (all) /* true for "INFO ALL-REGISTERS" command */
4177 regnum = print_fp_register_row (file, frame, regnum);
4178 else
4179 regnum += MIPS_NUMREGS; /* skip floating point regs */
4180 }
4181 else
4182 regnum = print_gp_register_row (file, frame, regnum);
4183 }
4184 }
4185 }
4186
4187 /* Is this a branch with a delay slot? */
4188
4189 static int
4190 is_delayed (unsigned long insn)
4191 {
4192 int i;
4193 for (i = 0; i < NUMOPCODES; ++i)
4194 if (mips_opcodes[i].pinfo != INSN_MACRO
4195 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4196 break;
4197 return (i < NUMOPCODES
4198 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4199 | INSN_COND_BRANCH_DELAY
4200 | INSN_COND_BRANCH_LIKELY)));
4201 }
4202
4203 int
4204 mips_single_step_through_delay (struct gdbarch *gdbarch,
4205 struct frame_info *frame)
4206 {
4207 CORE_ADDR pc = get_frame_pc (frame);
4208 gdb_byte buf[MIPS_INSN32_SIZE];
4209
4210 /* There is no branch delay slot on MIPS16. */
4211 if (mips_pc_is_mips16 (pc))
4212 return 0;
4213
4214 if (!breakpoint_here_p (pc + 4))
4215 return 0;
4216
4217 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4218 /* If error reading memory, guess that it is not a delayed
4219 branch. */
4220 return 0;
4221 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
4222 }
4223
4224 /* To skip prologues, I use this predicate. Returns either PC itself
4225 if the code at PC does not look like a function prologue; otherwise
4226 returns an address that (if we're lucky) follows the prologue. If
4227 LENIENT, then we must skip everything which is involved in setting
4228 up the frame (it's OK to skip more, just so long as we don't skip
4229 anything which might clobber the registers which are being saved.
4230 We must skip more in the case where part of the prologue is in the
4231 delay slot of a non-prologue instruction). */
4232
4233 static CORE_ADDR
4234 mips_skip_prologue (CORE_ADDR pc)
4235 {
4236 CORE_ADDR limit_pc;
4237 CORE_ADDR func_addr;
4238
4239 /* See if we can determine the end of the prologue via the symbol table.
4240 If so, then return either PC, or the PC after the prologue, whichever
4241 is greater. */
4242 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4243 {
4244 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4245 if (post_prologue_pc != 0)
4246 return max (pc, post_prologue_pc);
4247 }
4248
4249 /* Can't determine prologue from the symbol table, need to examine
4250 instructions. */
4251
4252 /* Find an upper limit on the function prologue using the debug
4253 information. If the debug information could not be used to provide
4254 that bound, then use an arbitrary large number as the upper bound. */
4255 limit_pc = skip_prologue_using_sal (pc);
4256 if (limit_pc == 0)
4257 limit_pc = pc + 100; /* Magic. */
4258
4259 if (mips_pc_is_mips16 (pc))
4260 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
4261 else
4262 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
4263 }
4264
4265 /* Root of all "set mips "/"show mips " commands. This will eventually be
4266 used for all MIPS-specific commands. */
4267
4268 static void
4269 show_mips_command (char *args, int from_tty)
4270 {
4271 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4272 }
4273
4274 static void
4275 set_mips_command (char *args, int from_tty)
4276 {
4277 printf_unfiltered
4278 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4279 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4280 }
4281
4282 /* Commands to show/set the MIPS FPU type. */
4283
4284 static void
4285 show_mipsfpu_command (char *args, int from_tty)
4286 {
4287 char *fpu;
4288 switch (MIPS_FPU_TYPE)
4289 {
4290 case MIPS_FPU_SINGLE:
4291 fpu = "single-precision";
4292 break;
4293 case MIPS_FPU_DOUBLE:
4294 fpu = "double-precision";
4295 break;
4296 case MIPS_FPU_NONE:
4297 fpu = "absent (none)";
4298 break;
4299 default:
4300 internal_error (__FILE__, __LINE__, _("bad switch"));
4301 }
4302 if (mips_fpu_type_auto)
4303 printf_unfiltered
4304 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4305 fpu);
4306 else
4307 printf_unfiltered
4308 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4309 }
4310
4311
4312 static void
4313 set_mipsfpu_command (char *args, int from_tty)
4314 {
4315 printf_unfiltered
4316 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4317 show_mipsfpu_command (args, from_tty);
4318 }
4319
4320 static void
4321 set_mipsfpu_single_command (char *args, int from_tty)
4322 {
4323 struct gdbarch_info info;
4324 gdbarch_info_init (&info);
4325 mips_fpu_type = MIPS_FPU_SINGLE;
4326 mips_fpu_type_auto = 0;
4327 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4328 instead of relying on globals. Doing that would let generic code
4329 handle the search for this specific architecture. */
4330 if (!gdbarch_update_p (info))
4331 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4332 }
4333
4334 static void
4335 set_mipsfpu_double_command (char *args, int from_tty)
4336 {
4337 struct gdbarch_info info;
4338 gdbarch_info_init (&info);
4339 mips_fpu_type = MIPS_FPU_DOUBLE;
4340 mips_fpu_type_auto = 0;
4341 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4342 instead of relying on globals. Doing that would let generic code
4343 handle the search for this specific architecture. */
4344 if (!gdbarch_update_p (info))
4345 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4346 }
4347
4348 static void
4349 set_mipsfpu_none_command (char *args, int from_tty)
4350 {
4351 struct gdbarch_info info;
4352 gdbarch_info_init (&info);
4353 mips_fpu_type = MIPS_FPU_NONE;
4354 mips_fpu_type_auto = 0;
4355 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4356 instead of relying on globals. Doing that would let generic code
4357 handle the search for this specific architecture. */
4358 if (!gdbarch_update_p (info))
4359 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4360 }
4361
4362 static void
4363 set_mipsfpu_auto_command (char *args, int from_tty)
4364 {
4365 mips_fpu_type_auto = 1;
4366 }
4367
4368 /* Attempt to identify the particular processor model by reading the
4369 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4370 the relevant processor still exists (it dates back to '94) and
4371 secondly this is not the way to do this. The processor type should
4372 be set by forcing an architecture change. */
4373
4374 void
4375 deprecated_mips_set_processor_regs_hack (void)
4376 {
4377 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4378 CORE_ADDR prid;
4379
4380 prid = read_register (MIPS_PRID_REGNUM);
4381
4382 if ((prid & ~0xf) == 0x700)
4383 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4384 }
4385
4386 /* Just like reinit_frame_cache, but with the right arguments to be
4387 callable as an sfunc. */
4388
4389 static void
4390 reinit_frame_cache_sfunc (char *args, int from_tty,
4391 struct cmd_list_element *c)
4392 {
4393 reinit_frame_cache ();
4394 }
4395
4396 static int
4397 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4398 {
4399 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4400
4401 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4402 disassembler needs to be able to locally determine the ISA, and
4403 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4404 work. */
4405 if (mips_pc_is_mips16 (memaddr))
4406 info->mach = bfd_mach_mips16;
4407
4408 /* Round down the instruction address to the appropriate boundary. */
4409 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4410
4411 /* Set the disassembler options. */
4412 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
4413 {
4414 /* Set up the disassembler info, so that we get the right
4415 register names from libopcodes. */
4416 if (tdep->mips_abi == MIPS_ABI_N32)
4417 info->disassembler_options = "gpr-names=n32";
4418 else
4419 info->disassembler_options = "gpr-names=64";
4420 info->flavour = bfd_target_elf_flavour;
4421 }
4422 else
4423 /* This string is not recognized explicitly by the disassembler,
4424 but it tells the disassembler to not try to guess the ABI from
4425 the bfd elf headers, such that, if the user overrides the ABI
4426 of a program linked as NewABI, the disassembly will follow the
4427 register naming conventions specified by the user. */
4428 info->disassembler_options = "gpr-names=32";
4429
4430 /* Call the appropriate disassembler based on the target endian-ness. */
4431 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4432 return print_insn_big_mips (memaddr, info);
4433 else
4434 return print_insn_little_mips (memaddr, info);
4435 }
4436
4437 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
4438 counter value to determine whether a 16- or 32-bit breakpoint should be
4439 used. It returns a pointer to a string of bytes that encode a breakpoint
4440 instruction, stores the length of the string to *lenptr, and adjusts pc
4441 (if necessary) to point to the actual memory location where the
4442 breakpoint should be inserted. */
4443
4444 static const gdb_byte *
4445 mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
4446 {
4447 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4448 {
4449 if (mips_pc_is_mips16 (*pcptr))
4450 {
4451 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4452 *pcptr = unmake_mips16_addr (*pcptr);
4453 *lenptr = sizeof (mips16_big_breakpoint);
4454 return mips16_big_breakpoint;
4455 }
4456 else
4457 {
4458 /* The IDT board uses an unusual breakpoint value, and
4459 sometimes gets confused when it sees the usual MIPS
4460 breakpoint instruction. */
4461 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4462 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4463 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
4464
4465 *lenptr = sizeof (big_breakpoint);
4466
4467 if (strcmp (target_shortname, "mips") == 0)
4468 return idt_big_breakpoint;
4469 else if (strcmp (target_shortname, "ddb") == 0
4470 || strcmp (target_shortname, "pmon") == 0
4471 || strcmp (target_shortname, "lsi") == 0)
4472 return pmon_big_breakpoint;
4473 else
4474 return big_breakpoint;
4475 }
4476 }
4477 else
4478 {
4479 if (mips_pc_is_mips16 (*pcptr))
4480 {
4481 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4482 *pcptr = unmake_mips16_addr (*pcptr);
4483 *lenptr = sizeof (mips16_little_breakpoint);
4484 return mips16_little_breakpoint;
4485 }
4486 else
4487 {
4488 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4489 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4490 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
4491
4492 *lenptr = sizeof (little_breakpoint);
4493
4494 if (strcmp (target_shortname, "mips") == 0)
4495 return idt_little_breakpoint;
4496 else if (strcmp (target_shortname, "ddb") == 0
4497 || strcmp (target_shortname, "pmon") == 0
4498 || strcmp (target_shortname, "lsi") == 0)
4499 return pmon_little_breakpoint;
4500 else
4501 return little_breakpoint;
4502 }
4503 }
4504 }
4505
4506 /* If PC is in a mips16 call or return stub, return the address of the target
4507 PC, which is either the callee or the caller. There are several
4508 cases which must be handled:
4509
4510 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4511 target PC is in $31 ($ra).
4512 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4513 and the target PC is in $2.
4514 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4515 before the jal instruction, this is effectively a call stub
4516 and the the target PC is in $2. Otherwise this is effectively
4517 a return stub and the target PC is in $18.
4518
4519 See the source code for the stubs in gcc/config/mips/mips16.S for
4520 gory details. */
4521
4522 static CORE_ADDR
4523 mips_skip_trampoline_code (CORE_ADDR pc)
4524 {
4525 char *name;
4526 CORE_ADDR start_addr;
4527
4528 /* Find the starting address and name of the function containing the PC. */
4529 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4530 return 0;
4531
4532 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4533 target PC is in $31 ($ra). */
4534 if (strcmp (name, "__mips16_ret_sf") == 0
4535 || strcmp (name, "__mips16_ret_df") == 0)
4536 return read_signed_register (MIPS_RA_REGNUM);
4537
4538 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4539 {
4540 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4541 and the target PC is in $2. */
4542 if (name[19] >= '0' && name[19] <= '9')
4543 return read_signed_register (2);
4544
4545 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4546 before the jal instruction, this is effectively a call stub
4547 and the the target PC is in $2. Otherwise this is effectively
4548 a return stub and the target PC is in $18. */
4549 else if (name[19] == 's' || name[19] == 'd')
4550 {
4551 if (pc == start_addr)
4552 {
4553 /* Check if the target of the stub is a compiler-generated
4554 stub. Such a stub for a function bar might have a name
4555 like __fn_stub_bar, and might look like this:
4556 mfc1 $4,$f13
4557 mfc1 $5,$f12
4558 mfc1 $6,$f15
4559 mfc1 $7,$f14
4560 la $1,bar (becomes a lui/addiu pair)
4561 jr $1
4562 So scan down to the lui/addi and extract the target
4563 address from those two instructions. */
4564
4565 CORE_ADDR target_pc = read_signed_register (2);
4566 ULONGEST inst;
4567 int i;
4568
4569 /* See if the name of the target function is __fn_stub_*. */
4570 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4571 0)
4572 return target_pc;
4573 if (strncmp (name, "__fn_stub_", 10) != 0
4574 && strcmp (name, "etext") != 0
4575 && strcmp (name, "_etext") != 0)
4576 return target_pc;
4577
4578 /* Scan through this _fn_stub_ code for the lui/addiu pair.
4579 The limit on the search is arbitrarily set to 20
4580 instructions. FIXME. */
4581 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
4582 {
4583 inst = mips_fetch_instruction (target_pc);
4584 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4585 pc = (inst << 16) & 0xffff0000; /* high word */
4586 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4587 return pc | (inst & 0xffff); /* low word */
4588 }
4589
4590 /* Couldn't find the lui/addui pair, so return stub address. */
4591 return target_pc;
4592 }
4593 else
4594 /* This is the 'return' part of a call stub. The return
4595 address is in $r18. */
4596 return read_signed_register (18);
4597 }
4598 }
4599 return 0; /* not a stub */
4600 }
4601
4602 /* Convert a dbx stab register number (from `r' declaration) to a GDB
4603 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4604
4605 static int
4606 mips_stab_reg_to_regnum (int num)
4607 {
4608 int regnum;
4609 if (num >= 0 && num < 32)
4610 regnum = num;
4611 else if (num >= 38 && num < 70)
4612 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
4613 else if (num == 70)
4614 regnum = mips_regnum (current_gdbarch)->hi;
4615 else if (num == 71)
4616 regnum = mips_regnum (current_gdbarch)->lo;
4617 else
4618 /* This will hopefully (eventually) provoke a warning. Should
4619 we be calling complaint() here? */
4620 return NUM_REGS + NUM_PSEUDO_REGS;
4621 return NUM_REGS + regnum;
4622 }
4623
4624
4625 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4626 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4627
4628 static int
4629 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
4630 {
4631 int regnum;
4632 if (num >= 0 && num < 32)
4633 regnum = num;
4634 else if (num >= 32 && num < 64)
4635 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
4636 else if (num == 64)
4637 regnum = mips_regnum (current_gdbarch)->hi;
4638 else if (num == 65)
4639 regnum = mips_regnum (current_gdbarch)->lo;
4640 else
4641 /* This will hopefully (eventually) provoke a warning. Should we
4642 be calling complaint() here? */
4643 return NUM_REGS + NUM_PSEUDO_REGS;
4644 return NUM_REGS + regnum;
4645 }
4646
4647 static int
4648 mips_register_sim_regno (int regnum)
4649 {
4650 /* Only makes sense to supply raw registers. */
4651 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
4652 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4653 decide if it is valid. Should instead define a standard sim/gdb
4654 register numbering scheme. */
4655 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
4656 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
4657 return regnum;
4658 else
4659 return LEGACY_SIM_REGNO_IGNORE;
4660 }
4661
4662
4663 /* Convert an integer into an address. Extracting the value signed
4664 guarantees a correctly sign extended address. */
4665
4666 static CORE_ADDR
4667 mips_integer_to_address (struct gdbarch *gdbarch,
4668 struct type *type, const gdb_byte *buf)
4669 {
4670 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
4671 }
4672
4673 static void
4674 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4675 {
4676 enum mips_abi *abip = (enum mips_abi *) obj;
4677 const char *name = bfd_get_section_name (abfd, sect);
4678
4679 if (*abip != MIPS_ABI_UNKNOWN)
4680 return;
4681
4682 if (strncmp (name, ".mdebug.", 8) != 0)
4683 return;
4684
4685 if (strcmp (name, ".mdebug.abi32") == 0)
4686 *abip = MIPS_ABI_O32;
4687 else if (strcmp (name, ".mdebug.abiN32") == 0)
4688 *abip = MIPS_ABI_N32;
4689 else if (strcmp (name, ".mdebug.abi64") == 0)
4690 *abip = MIPS_ABI_N64;
4691 else if (strcmp (name, ".mdebug.abiO64") == 0)
4692 *abip = MIPS_ABI_O64;
4693 else if (strcmp (name, ".mdebug.eabi32") == 0)
4694 *abip = MIPS_ABI_EABI32;
4695 else if (strcmp (name, ".mdebug.eabi64") == 0)
4696 *abip = MIPS_ABI_EABI64;
4697 else
4698 warning (_("unsupported ABI %s."), name + 8);
4699 }
4700
4701 static void
4702 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
4703 {
4704 int *lbp = (int *) obj;
4705 const char *name = bfd_get_section_name (abfd, sect);
4706
4707 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
4708 *lbp = 32;
4709 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
4710 *lbp = 64;
4711 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
4712 warning (_("unrecognized .gcc_compiled_longXX"));
4713 }
4714
4715 static enum mips_abi
4716 global_mips_abi (void)
4717 {
4718 int i;
4719
4720 for (i = 0; mips_abi_strings[i] != NULL; i++)
4721 if (mips_abi_strings[i] == mips_abi_string)
4722 return (enum mips_abi) i;
4723
4724 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
4725 }
4726
4727 static void
4728 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
4729 {
4730 static struct target_desc *tdesc_gp32, *tdesc_gp64;
4731
4732 if (tdesc_gp32 == NULL)
4733 {
4734 /* Create feature sets with the appropriate properties. The values
4735 are not important. */
4736
4737 tdesc_gp32 = allocate_target_description ();
4738 set_tdesc_property (tdesc_gp32, PROPERTY_GP32, "");
4739
4740 tdesc_gp64 = allocate_target_description ();
4741 set_tdesc_property (tdesc_gp64, PROPERTY_GP64, "");
4742 }
4743
4744 /* If the size matches the set of 32-bit or 64-bit integer registers,
4745 assume that's what we've got. */
4746 register_remote_g_packet_guess (gdbarch, 38 * 4, tdesc_gp32);
4747 register_remote_g_packet_guess (gdbarch, 38 * 8, tdesc_gp64);
4748
4749 /* If the size matches the full set of registers GDB traditionally
4750 knows about, including floating point, for either 32-bit or
4751 64-bit, assume that's what we've got. */
4752 register_remote_g_packet_guess (gdbarch, 90 * 4, tdesc_gp32);
4753 register_remote_g_packet_guess (gdbarch, 90 * 8, tdesc_gp64);
4754
4755 /* Otherwise we don't have a useful guess. */
4756 }
4757
4758 static struct gdbarch *
4759 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4760 {
4761 struct gdbarch *gdbarch;
4762 struct gdbarch_tdep *tdep;
4763 int elf_flags;
4764 enum mips_abi mips_abi, found_abi, wanted_abi;
4765 int num_regs;
4766 enum mips_fpu_type fpu_type;
4767
4768 /* First of all, extract the elf_flags, if available. */
4769 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4770 elf_flags = elf_elfheader (info.abfd)->e_flags;
4771 else if (arches != NULL)
4772 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
4773 else
4774 elf_flags = 0;
4775 if (gdbarch_debug)
4776 fprintf_unfiltered (gdb_stdlog,
4777 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
4778
4779 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
4780 switch ((elf_flags & EF_MIPS_ABI))
4781 {
4782 case E_MIPS_ABI_O32:
4783 found_abi = MIPS_ABI_O32;
4784 break;
4785 case E_MIPS_ABI_O64:
4786 found_abi = MIPS_ABI_O64;
4787 break;
4788 case E_MIPS_ABI_EABI32:
4789 found_abi = MIPS_ABI_EABI32;
4790 break;
4791 case E_MIPS_ABI_EABI64:
4792 found_abi = MIPS_ABI_EABI64;
4793 break;
4794 default:
4795 if ((elf_flags & EF_MIPS_ABI2))
4796 found_abi = MIPS_ABI_N32;
4797 else
4798 found_abi = MIPS_ABI_UNKNOWN;
4799 break;
4800 }
4801
4802 /* GCC creates a pseudo-section whose name describes the ABI. */
4803 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
4804 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
4805
4806 /* If we have no useful BFD information, use the ABI from the last
4807 MIPS architecture (if there is one). */
4808 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
4809 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
4810
4811 /* Try the architecture for any hint of the correct ABI. */
4812 if (found_abi == MIPS_ABI_UNKNOWN
4813 && info.bfd_arch_info != NULL
4814 && info.bfd_arch_info->arch == bfd_arch_mips)
4815 {
4816 switch (info.bfd_arch_info->mach)
4817 {
4818 case bfd_mach_mips3900:
4819 found_abi = MIPS_ABI_EABI32;
4820 break;
4821 case bfd_mach_mips4100:
4822 case bfd_mach_mips5000:
4823 found_abi = MIPS_ABI_EABI64;
4824 break;
4825 case bfd_mach_mips8000:
4826 case bfd_mach_mips10000:
4827 /* On Irix, ELF64 executables use the N64 ABI. The
4828 pseudo-sections which describe the ABI aren't present
4829 on IRIX. (Even for executables created by gcc.) */
4830 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4831 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4832 found_abi = MIPS_ABI_N64;
4833 else
4834 found_abi = MIPS_ABI_N32;
4835 break;
4836 }
4837 }
4838
4839 /* Default 64-bit objects to N64 instead of O32. */
4840 if (found_abi == MIPS_ABI_UNKNOWN
4841 && info.abfd != NULL
4842 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4843 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4844 found_abi = MIPS_ABI_N64;
4845
4846 if (gdbarch_debug)
4847 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
4848 found_abi);
4849
4850 /* What has the user specified from the command line? */
4851 wanted_abi = global_mips_abi ();
4852 if (gdbarch_debug)
4853 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
4854 wanted_abi);
4855
4856 /* Now that we have found what the ABI for this binary would be,
4857 check whether the user is overriding it. */
4858 if (wanted_abi != MIPS_ABI_UNKNOWN)
4859 mips_abi = wanted_abi;
4860 else if (found_abi != MIPS_ABI_UNKNOWN)
4861 mips_abi = found_abi;
4862 else
4863 mips_abi = MIPS_ABI_O32;
4864 if (gdbarch_debug)
4865 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
4866 mips_abi);
4867
4868 /* Also used when doing an architecture lookup. */
4869 if (gdbarch_debug)
4870 fprintf_unfiltered (gdb_stdlog,
4871 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
4872 mips64_transfers_32bit_regs_p);
4873
4874 /* Determine the MIPS FPU type. */
4875 if (!mips_fpu_type_auto)
4876 fpu_type = mips_fpu_type;
4877 else if (info.bfd_arch_info != NULL
4878 && info.bfd_arch_info->arch == bfd_arch_mips)
4879 switch (info.bfd_arch_info->mach)
4880 {
4881 case bfd_mach_mips3900:
4882 case bfd_mach_mips4100:
4883 case bfd_mach_mips4111:
4884 case bfd_mach_mips4120:
4885 fpu_type = MIPS_FPU_NONE;
4886 break;
4887 case bfd_mach_mips4650:
4888 fpu_type = MIPS_FPU_SINGLE;
4889 break;
4890 default:
4891 fpu_type = MIPS_FPU_DOUBLE;
4892 break;
4893 }
4894 else if (arches != NULL)
4895 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
4896 else
4897 fpu_type = MIPS_FPU_DOUBLE;
4898 if (gdbarch_debug)
4899 fprintf_unfiltered (gdb_stdlog,
4900 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
4901
4902 /* Check for blatant incompatibilities. */
4903
4904 /* If we have only 32-bit registers, then we can't debug a 64-bit
4905 ABI. */
4906 if (info.target_desc
4907 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
4908 && mips_abi != MIPS_ABI_EABI32
4909 && mips_abi != MIPS_ABI_O32)
4910 return NULL;
4911
4912 /* try to find a pre-existing architecture */
4913 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4914 arches != NULL;
4915 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4916 {
4917 /* MIPS needs to be pedantic about which ABI the object is
4918 using. */
4919 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
4920 continue;
4921 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
4922 continue;
4923 /* Need to be pedantic about which register virtual size is
4924 used. */
4925 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
4926 != mips64_transfers_32bit_regs_p)
4927 continue;
4928 /* Be pedantic about which FPU is selected. */
4929 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
4930 continue;
4931 return arches->gdbarch;
4932 }
4933
4934 /* Need a new architecture. Fill in a target specific vector. */
4935 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4936 gdbarch = gdbarch_alloc (&info, tdep);
4937 tdep->elf_flags = elf_flags;
4938 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
4939 tdep->found_abi = found_abi;
4940 tdep->mips_abi = mips_abi;
4941 tdep->mips_fpu_type = fpu_type;
4942 tdep->register_size_valid_p = 0;
4943 tdep->register_size = 0;
4944
4945 if (info.target_desc)
4946 {
4947 /* Some useful properties can be inferred from the target. */
4948 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
4949 {
4950 tdep->register_size_valid_p = 1;
4951 tdep->register_size = 4;
4952 }
4953 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
4954 {
4955 tdep->register_size_valid_p = 1;
4956 tdep->register_size = 8;
4957 }
4958 }
4959
4960 /* Initially set everything according to the default ABI/ISA. */
4961 set_gdbarch_short_bit (gdbarch, 16);
4962 set_gdbarch_int_bit (gdbarch, 32);
4963 set_gdbarch_float_bit (gdbarch, 32);
4964 set_gdbarch_double_bit (gdbarch, 64);
4965 set_gdbarch_long_double_bit (gdbarch, 64);
4966 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
4967 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
4968 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
4969
4970 set_gdbarch_elf_make_msymbol_special (gdbarch,
4971 mips_elf_make_msymbol_special);
4972
4973 /* Fill in the OS dependant register numbers and names. */
4974 {
4975 const char **reg_names;
4976 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
4977 struct mips_regnum);
4978 if (info.osabi == GDB_OSABI_IRIX)
4979 {
4980 regnum->fp0 = 32;
4981 regnum->pc = 64;
4982 regnum->cause = 65;
4983 regnum->badvaddr = 66;
4984 regnum->hi = 67;
4985 regnum->lo = 68;
4986 regnum->fp_control_status = 69;
4987 regnum->fp_implementation_revision = 70;
4988 num_regs = 71;
4989 reg_names = mips_irix_reg_names;
4990 }
4991 else
4992 {
4993 regnum->lo = MIPS_EMBED_LO_REGNUM;
4994 regnum->hi = MIPS_EMBED_HI_REGNUM;
4995 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
4996 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
4997 regnum->pc = MIPS_EMBED_PC_REGNUM;
4998 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
4999 regnum->fp_control_status = 70;
5000 regnum->fp_implementation_revision = 71;
5001 num_regs = 90;
5002 if (info.bfd_arch_info != NULL
5003 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5004 reg_names = mips_tx39_reg_names;
5005 else
5006 reg_names = mips_generic_reg_names;
5007 }
5008 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
5009 replaced by read_pc? */
5010 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5011 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5012 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5013 set_gdbarch_num_regs (gdbarch, num_regs);
5014 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5015 set_gdbarch_register_name (gdbarch, mips_register_name);
5016 tdep->mips_processor_reg_names = reg_names;
5017 tdep->regnum = regnum;
5018 }
5019
5020 switch (mips_abi)
5021 {
5022 case MIPS_ABI_O32:
5023 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5024 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
5025 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5026 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5027 tdep->default_mask_address_p = 0;
5028 set_gdbarch_long_bit (gdbarch, 32);
5029 set_gdbarch_ptr_bit (gdbarch, 32);
5030 set_gdbarch_long_long_bit (gdbarch, 64);
5031 break;
5032 case MIPS_ABI_O64:
5033 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5034 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
5035 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5036 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5037 tdep->default_mask_address_p = 0;
5038 set_gdbarch_long_bit (gdbarch, 32);
5039 set_gdbarch_ptr_bit (gdbarch, 32);
5040 set_gdbarch_long_long_bit (gdbarch, 64);
5041 break;
5042 case MIPS_ABI_EABI32:
5043 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5044 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5045 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5046 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5047 tdep->default_mask_address_p = 0;
5048 set_gdbarch_long_bit (gdbarch, 32);
5049 set_gdbarch_ptr_bit (gdbarch, 32);
5050 set_gdbarch_long_long_bit (gdbarch, 64);
5051 break;
5052 case MIPS_ABI_EABI64:
5053 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5054 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5055 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5056 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5057 tdep->default_mask_address_p = 0;
5058 set_gdbarch_long_bit (gdbarch, 64);
5059 set_gdbarch_ptr_bit (gdbarch, 64);
5060 set_gdbarch_long_long_bit (gdbarch, 64);
5061 break;
5062 case MIPS_ABI_N32:
5063 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5064 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5065 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5066 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5067 tdep->default_mask_address_p = 0;
5068 set_gdbarch_long_bit (gdbarch, 32);
5069 set_gdbarch_ptr_bit (gdbarch, 32);
5070 set_gdbarch_long_long_bit (gdbarch, 64);
5071 set_gdbarch_long_double_bit (gdbarch, 128);
5072 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
5073 break;
5074 case MIPS_ABI_N64:
5075 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5076 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5077 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5078 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5079 tdep->default_mask_address_p = 0;
5080 set_gdbarch_long_bit (gdbarch, 64);
5081 set_gdbarch_ptr_bit (gdbarch, 64);
5082 set_gdbarch_long_long_bit (gdbarch, 64);
5083 set_gdbarch_long_double_bit (gdbarch, 128);
5084 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
5085 break;
5086 default:
5087 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5088 }
5089
5090 /* GCC creates a pseudo-section whose name specifies the size of
5091 longs, since -mlong32 or -mlong64 may be used independent of
5092 other options. How those options affect pointer sizes is ABI and
5093 architecture dependent, so use them to override the default sizes
5094 set by the ABI. This table shows the relationship between ABI,
5095 -mlongXX, and size of pointers:
5096
5097 ABI -mlongXX ptr bits
5098 --- -------- --------
5099 o32 32 32
5100 o32 64 32
5101 n32 32 32
5102 n32 64 64
5103 o64 32 32
5104 o64 64 64
5105 n64 32 32
5106 n64 64 64
5107 eabi32 32 32
5108 eabi32 64 32
5109 eabi64 32 32
5110 eabi64 64 64
5111
5112 Note that for o32 and eabi32, pointers are always 32 bits
5113 regardless of any -mlongXX option. For all others, pointers and
5114 longs are the same, as set by -mlongXX or set by defaults.
5115 */
5116
5117 if (info.abfd != NULL)
5118 {
5119 int long_bit = 0;
5120
5121 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5122 if (long_bit)
5123 {
5124 set_gdbarch_long_bit (gdbarch, long_bit);
5125 switch (mips_abi)
5126 {
5127 case MIPS_ABI_O32:
5128 case MIPS_ABI_EABI32:
5129 break;
5130 case MIPS_ABI_N32:
5131 case MIPS_ABI_O64:
5132 case MIPS_ABI_N64:
5133 case MIPS_ABI_EABI64:
5134 set_gdbarch_ptr_bit (gdbarch, long_bit);
5135 break;
5136 default:
5137 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5138 }
5139 }
5140 }
5141
5142 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5143 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5144 comment:
5145
5146 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5147 flag in object files because to do so would make it impossible to
5148 link with libraries compiled without "-gp32". This is
5149 unnecessarily restrictive.
5150
5151 We could solve this problem by adding "-gp32" multilibs to gcc,
5152 but to set this flag before gcc is built with such multilibs will
5153 break too many systems.''
5154
5155 But even more unhelpfully, the default linker output target for
5156 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5157 for 64-bit programs - you need to change the ABI to change this,
5158 and not all gcc targets support that currently. Therefore using
5159 this flag to detect 32-bit mode would do the wrong thing given
5160 the current gcc - it would make GDB treat these 64-bit programs
5161 as 32-bit programs by default. */
5162
5163 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5164 set_gdbarch_write_pc (gdbarch, mips_write_pc);
5165 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5166
5167 /* Add/remove bits from an address. The MIPS needs be careful to
5168 ensure that all 32 bit addresses are sign extended to 64 bits. */
5169 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5170
5171 /* Unwind the frame. */
5172 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
5173 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
5174
5175 /* Map debug register numbers onto internal register numbers. */
5176 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5177 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5178 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5179 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5180 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5181 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5182 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5183 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5184
5185 /* MIPS version of CALL_DUMMY */
5186
5187 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5188 replaced by a command, and all targets will default to on stack
5189 (regardless of the stack's execute status). */
5190 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5191 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5192
5193 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5194 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5195 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5196
5197 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5198 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5199
5200 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5201
5202 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5203 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5204 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5205
5206 set_gdbarch_register_type (gdbarch, mips_register_type);
5207
5208 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5209
5210 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5211
5212 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5213 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5214 need to all be folded into the target vector. Since they are
5215 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5216 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5217 is sitting on? */
5218 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5219
5220 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
5221
5222 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5223
5224 /* Virtual tables. */
5225 set_gdbarch_vbit_in_delta (gdbarch, 1);
5226
5227 mips_register_g_packet_guesses (gdbarch);
5228
5229 /* Hook in OS ABI-specific overrides, if they have been registered. */
5230 gdbarch_init_osabi (info, gdbarch);
5231
5232 /* Unwind the frame. */
5233 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
5234 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5235 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
5236 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
5237 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5238 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5239
5240 return gdbarch;
5241 }
5242
5243 static void
5244 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5245 {
5246 struct gdbarch_info info;
5247
5248 /* Force the architecture to update, and (if it's a MIPS architecture)
5249 mips_gdbarch_init will take care of the rest. */
5250 gdbarch_info_init (&info);
5251 gdbarch_update_p (info);
5252 }
5253
5254 /* Print out which MIPS ABI is in use. */
5255
5256 static void
5257 show_mips_abi (struct ui_file *file,
5258 int from_tty,
5259 struct cmd_list_element *ignored_cmd,
5260 const char *ignored_value)
5261 {
5262 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
5263 fprintf_filtered
5264 (file,
5265 "The MIPS ABI is unknown because the current architecture "
5266 "is not MIPS.\n");
5267 else
5268 {
5269 enum mips_abi global_abi = global_mips_abi ();
5270 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5271 const char *actual_abi_str = mips_abi_strings[actual_abi];
5272
5273 if (global_abi == MIPS_ABI_UNKNOWN)
5274 fprintf_filtered
5275 (file,
5276 "The MIPS ABI is set automatically (currently \"%s\").\n",
5277 actual_abi_str);
5278 else if (global_abi == actual_abi)
5279 fprintf_filtered
5280 (file,
5281 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5282 actual_abi_str);
5283 else
5284 {
5285 /* Probably shouldn't happen... */
5286 fprintf_filtered
5287 (file,
5288 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5289 actual_abi_str, mips_abi_strings[global_abi]);
5290 }
5291 }
5292 }
5293
5294 static void
5295 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5296 {
5297 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5298 if (tdep != NULL)
5299 {
5300 int ef_mips_arch;
5301 int ef_mips_32bitmode;
5302 /* Determine the ISA. */
5303 switch (tdep->elf_flags & EF_MIPS_ARCH)
5304 {
5305 case E_MIPS_ARCH_1:
5306 ef_mips_arch = 1;
5307 break;
5308 case E_MIPS_ARCH_2:
5309 ef_mips_arch = 2;
5310 break;
5311 case E_MIPS_ARCH_3:
5312 ef_mips_arch = 3;
5313 break;
5314 case E_MIPS_ARCH_4:
5315 ef_mips_arch = 4;
5316 break;
5317 default:
5318 ef_mips_arch = 0;
5319 break;
5320 }
5321 /* Determine the size of a pointer. */
5322 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
5323 fprintf_unfiltered (file,
5324 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5325 tdep->elf_flags);
5326 fprintf_unfiltered (file,
5327 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5328 ef_mips_32bitmode);
5329 fprintf_unfiltered (file,
5330 "mips_dump_tdep: ef_mips_arch = %d\n",
5331 ef_mips_arch);
5332 fprintf_unfiltered (file,
5333 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5334 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
5335 fprintf_unfiltered (file,
5336 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5337 mips_mask_address_p (tdep),
5338 tdep->default_mask_address_p);
5339 }
5340 fprintf_unfiltered (file,
5341 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5342 MIPS_DEFAULT_FPU_TYPE,
5343 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5344 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5345 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5346 : "???"));
5347 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
5348 fprintf_unfiltered (file,
5349 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5350 MIPS_FPU_TYPE,
5351 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5352 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5353 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5354 : "???"));
5355 fprintf_unfiltered (file,
5356 "mips_dump_tdep: mips_stack_argsize() = %d\n",
5357 mips_stack_argsize (current_gdbarch));
5358 }
5359
5360 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
5361
5362 void
5363 _initialize_mips_tdep (void)
5364 {
5365 static struct cmd_list_element *mipsfpulist = NULL;
5366 struct cmd_list_element *c;
5367
5368 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
5369 if (MIPS_ABI_LAST + 1
5370 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5371 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
5372
5373 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
5374
5375 mips_pdr_data = register_objfile_data ();
5376
5377 /* Add root prefix command for all "set mips"/"show mips" commands */
5378 add_prefix_cmd ("mips", no_class, set_mips_command,
5379 _("Various MIPS specific commands."),
5380 &setmipscmdlist, "set mips ", 0, &setlist);
5381
5382 add_prefix_cmd ("mips", no_class, show_mips_command,
5383 _("Various MIPS specific commands."),
5384 &showmipscmdlist, "show mips ", 0, &showlist);
5385
5386 /* Allow the user to override the saved register size. */
5387 add_setshow_enum_cmd ("saved-gpreg-size", class_obscure,
5388 size_enums, &mips_abi_regsize_string, _("\
5389 Set size of general purpose registers saved on the stack."), _("\
5390 Show size of general purpose registers saved on the stack."), _("\
5391 This option can be set to one of:\n\
5392 32 - Force GDB to treat saved GP registers as 32-bit\n\
5393 64 - Force GDB to treat saved GP registers as 64-bit\n\
5394 auto - Allow GDB to use the target's default setting or autodetect the\n\
5395 saved GP register size from information contained in the\n\
5396 executable (default)."),
5397 NULL,
5398 NULL, /* FIXME: i18n: Size of general purpose registers saved on the stack is %s. */
5399 &setmipscmdlist, &showmipscmdlist);
5400
5401 /* Allow the user to override the argument stack size. */
5402 add_setshow_enum_cmd ("stack-arg-size", class_obscure,
5403 size_enums, &mips_stack_argsize_string, _("\
5404 Set the amount of stack space reserved for each argument."), _("\
5405 Show the amount of stack space reserved for each argument."), _("\
5406 This option can be set to one of:\n\
5407 32 - Force GDB to allocate 32-bit chunks per argument\n\
5408 64 - Force GDB to allocate 64-bit chunks per argument\n\
5409 auto - Allow GDB to determine the correct setting from the current\n\
5410 target and executable (default)"),
5411 NULL,
5412 NULL, /* FIXME: i18n: The amount of stack space reserved for each argument is %s. */
5413 &setmipscmdlist, &showmipscmdlist);
5414
5415 /* Allow the user to override the ABI. */
5416 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5417 &mips_abi_string, _("\
5418 Set the MIPS ABI used by this program."), _("\
5419 Show the MIPS ABI used by this program."), _("\
5420 This option can be set to one of:\n\
5421 auto - the default ABI associated with the current binary\n\
5422 o32\n\
5423 o64\n\
5424 n32\n\
5425 n64\n\
5426 eabi32\n\
5427 eabi64"),
5428 mips_abi_update,
5429 show_mips_abi,
5430 &setmipscmdlist, &showmipscmdlist);
5431
5432 /* Let the user turn off floating point and set the fence post for
5433 heuristic_proc_start. */
5434
5435 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5436 _("Set use of MIPS floating-point coprocessor."),
5437 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5438 add_cmd ("single", class_support, set_mipsfpu_single_command,
5439 _("Select single-precision MIPS floating-point coprocessor."),
5440 &mipsfpulist);
5441 add_cmd ("double", class_support, set_mipsfpu_double_command,
5442 _("Select double-precision MIPS floating-point coprocessor."),
5443 &mipsfpulist);
5444 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5445 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5446 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5447 add_cmd ("none", class_support, set_mipsfpu_none_command,
5448 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
5449 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5450 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5451 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5452 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5453 _("Select MIPS floating-point coprocessor automatically."),
5454 &mipsfpulist);
5455 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5456 _("Show current use of MIPS floating-point coprocessor target."),
5457 &showlist);
5458
5459 /* We really would like to have both "0" and "unlimited" work, but
5460 command.c doesn't deal with that. So make it a var_zinteger
5461 because the user can always use "999999" or some such for unlimited. */
5462 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
5463 &heuristic_fence_post, _("\
5464 Set the distance searched for the start of a function."), _("\
5465 Show the distance searched for the start of a function."), _("\
5466 If you are debugging a stripped executable, GDB needs to search through the\n\
5467 program for the start of a function. This command sets the distance of the\n\
5468 search. The only need to set it is when debugging a stripped executable."),
5469 reinit_frame_cache_sfunc,
5470 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
5471 &setlist, &showlist);
5472
5473 /* Allow the user to control whether the upper bits of 64-bit
5474 addresses should be zeroed. */
5475 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5476 &mask_address_var, _("\
5477 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5478 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
5479 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5480 allow GDB to determine the correct value."),
5481 NULL, show_mask_address,
5482 &setmipscmdlist, &showmipscmdlist);
5483
5484 /* Allow the user to control the size of 32 bit registers within the
5485 raw remote packet. */
5486 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
5487 &mips64_transfers_32bit_regs_p, _("\
5488 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5489 _("\
5490 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5491 _("\
5492 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5493 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5494 64 bits for others. Use \"off\" to disable compatibility mode"),
5495 set_mips64_transfers_32bit_regs,
5496 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
5497 &setlist, &showlist);
5498
5499 /* Debug this files internals. */
5500 add_setshow_zinteger_cmd ("mips", class_maintenance,
5501 &mips_debug, _("\
5502 Set mips debugging."), _("\
5503 Show mips debugging."), _("\
5504 When non-zero, mips specific debugging is enabled."),
5505 NULL,
5506 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
5507 &setdebuglist, &showdebuglist);
5508 }