]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-tdep.c
gdb/testsuite/
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 Boston, MA 02110-1301, USA. */
26
27 #include "defs.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
30 #include "frame.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "value.h"
34 #include "gdbcmd.h"
35 #include "language.h"
36 #include "gdbcore.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "gdbtypes.h"
40 #include "target.h"
41 #include "arch-utils.h"
42 #include "regcache.h"
43 #include "osabi.h"
44 #include "mips-tdep.h"
45 #include "block.h"
46 #include "reggroups.h"
47 #include "opcode/mips.h"
48 #include "elf/mips.h"
49 #include "elf-bfd.h"
50 #include "symcat.h"
51 #include "sim-regno.h"
52 #include "dis-asm.h"
53 #include "frame-unwind.h"
54 #include "frame-base.h"
55 #include "trad-frame.h"
56 #include "infcall.h"
57 #include "floatformat.h"
58 #include "remote.h"
59 #include "target-descriptions.h"
60 #include "dwarf2-frame.h"
61 #include "user-regs.h"
62
63 static const struct objfile_data *mips_pdr_data;
64
65 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
66
67 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
68 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
69 #define ST0_FR (1 << 26)
70
71 /* The sizes of floating point registers. */
72
73 enum
74 {
75 MIPS_FPU_SINGLE_REGSIZE = 4,
76 MIPS_FPU_DOUBLE_REGSIZE = 8
77 };
78
79 enum
80 {
81 MIPS32_REGSIZE = 4,
82 MIPS64_REGSIZE = 8
83 };
84
85 static const char *mips_abi_string;
86
87 static const char *mips_abi_strings[] = {
88 "auto",
89 "n32",
90 "o32",
91 "n64",
92 "o64",
93 "eabi32",
94 "eabi64",
95 NULL
96 };
97
98 /* The standard register names, and all the valid aliases for them. */
99 struct register_alias
100 {
101 const char *name;
102 int regnum;
103 };
104
105 /* Aliases for o32 and most other ABIs. */
106 const struct register_alias mips_o32_aliases[] = {
107 { "ta0", 12 },
108 { "ta1", 13 },
109 { "ta2", 14 },
110 { "ta3", 15 }
111 };
112
113 /* Aliases for n32 and n64. */
114 const struct register_alias mips_n32_n64_aliases[] = {
115 { "ta0", 8 },
116 { "ta1", 9 },
117 { "ta2", 10 },
118 { "ta3", 11 }
119 };
120
121 /* Aliases for ABI-independent registers. */
122 const struct register_alias mips_register_aliases[] = {
123 /* The architecture manuals specify these ABI-independent names for
124 the GPRs. */
125 #define R(n) { "r" #n, n }
126 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
127 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
128 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
129 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
130 #undef R
131
132 /* k0 and k1 are sometimes called these instead (for "kernel
133 temp"). */
134 { "kt0", 26 },
135 { "kt1", 27 },
136
137 /* This is the traditional GDB name for the CP0 status register. */
138 { "sr", MIPS_PS_REGNUM },
139
140 /* This is the traditional GDB name for the CP0 BadVAddr register. */
141 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
142
143 /* This is the traditional GDB name for the FCSR. */
144 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
145 };
146
147 /* Some MIPS boards don't support floating point while others only
148 support single-precision floating-point operations. */
149
150 enum mips_fpu_type
151 {
152 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
153 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
154 MIPS_FPU_NONE /* No floating point. */
155 };
156
157 #ifndef MIPS_DEFAULT_FPU_TYPE
158 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
159 #endif
160 static int mips_fpu_type_auto = 1;
161 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
162
163 static int mips_debug = 0;
164
165 /* Properties (for struct target_desc) describing the g/G packet
166 layout. */
167 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
168 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
169
170 /* MIPS specific per-architecture information */
171 struct gdbarch_tdep
172 {
173 /* from the elf header */
174 int elf_flags;
175
176 /* mips options */
177 enum mips_abi mips_abi;
178 enum mips_abi found_abi;
179 enum mips_fpu_type mips_fpu_type;
180 int mips_last_arg_regnum;
181 int mips_last_fp_arg_regnum;
182 int default_mask_address_p;
183 /* Is the target using 64-bit raw integer registers but only
184 storing a left-aligned 32-bit value in each? */
185 int mips64_transfers_32bit_regs_p;
186 /* Indexes for various registers. IRIX and embedded have
187 different values. This contains the "public" fields. Don't
188 add any that do not need to be public. */
189 const struct mips_regnum *regnum;
190 /* Register names table for the current register set. */
191 const char **mips_processor_reg_names;
192
193 /* The size of register data available from the target, if known.
194 This doesn't quite obsolete the manual
195 mips64_transfers_32bit_regs_p, since that is documented to force
196 left alignment even for big endian (very strange). */
197 int register_size_valid_p;
198 int register_size;
199 };
200
201 static int
202 n32n64_floatformat_always_valid (const struct floatformat *fmt,
203 const void *from)
204 {
205 return 1;
206 }
207
208 /* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
209 They are implemented as a pair of 64bit doubles where the high
210 part holds the result of the operation rounded to double, and
211 the low double holds the difference between the exact result and
212 the rounded result. So "high" + "low" contains the result with
213 added precision. Unfortunately, the floatformat structure used
214 by GDB is not powerful enough to describe this format. As a temporary
215 measure, we define a 128bit floatformat that only uses the high part.
216 We lose a bit of precision but that's probably the best we can do
217 for now with the current infrastructure. */
218
219 static const struct floatformat floatformat_n32n64_long_double_big =
220 {
221 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
222 floatformat_intbit_no,
223 "floatformat_n32n64_long_double_big",
224 n32n64_floatformat_always_valid
225 };
226
227 static const struct floatformat *floatformats_n32n64_long[BFD_ENDIAN_UNKNOWN] =
228 {
229 &floatformat_n32n64_long_double_big,
230 &floatformat_n32n64_long_double_big
231 };
232
233 const struct mips_regnum *
234 mips_regnum (struct gdbarch *gdbarch)
235 {
236 return gdbarch_tdep (gdbarch)->regnum;
237 }
238
239 static int
240 mips_fpa0_regnum (struct gdbarch *gdbarch)
241 {
242 return mips_regnum (gdbarch)->fp0 + 12;
243 }
244
245 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
246 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
247
248 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
249
250 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
251
252 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
253
254 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
255 functions to test, set, or clear bit 0 of addresses. */
256
257 static CORE_ADDR
258 is_mips16_addr (CORE_ADDR addr)
259 {
260 return ((addr) & 1);
261 }
262
263 static CORE_ADDR
264 unmake_mips16_addr (CORE_ADDR addr)
265 {
266 return ((addr) & ~(CORE_ADDR) 1);
267 }
268
269 /* Return the MIPS ABI associated with GDBARCH. */
270 enum mips_abi
271 mips_abi (struct gdbarch *gdbarch)
272 {
273 return gdbarch_tdep (gdbarch)->mips_abi;
274 }
275
276 int
277 mips_isa_regsize (struct gdbarch *gdbarch)
278 {
279 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
280
281 /* If we know how big the registers are, use that size. */
282 if (tdep->register_size_valid_p)
283 return tdep->register_size;
284
285 /* Fall back to the previous behavior. */
286 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
287 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
288 }
289
290 /* Return the currently configured (or set) saved register size. */
291
292 unsigned int
293 mips_abi_regsize (struct gdbarch *gdbarch)
294 {
295 switch (mips_abi (gdbarch))
296 {
297 case MIPS_ABI_EABI32:
298 case MIPS_ABI_O32:
299 return 4;
300 case MIPS_ABI_N32:
301 case MIPS_ABI_N64:
302 case MIPS_ABI_O64:
303 case MIPS_ABI_EABI64:
304 return 8;
305 case MIPS_ABI_UNKNOWN:
306 case MIPS_ABI_LAST:
307 default:
308 internal_error (__FILE__, __LINE__, _("bad switch"));
309 }
310 }
311
312 /* Functions for setting and testing a bit in a minimal symbol that
313 marks it as 16-bit function. The MSB of the minimal symbol's
314 "info" field is used for this purpose.
315
316 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
317 i.e. refers to a 16-bit function, and sets a "special" bit in a
318 minimal symbol to mark it as a 16-bit function
319
320 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
321
322 static void
323 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
324 {
325 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
326 {
327 MSYMBOL_INFO (msym) = (char *)
328 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
329 SYMBOL_VALUE_ADDRESS (msym) |= 1;
330 }
331 }
332
333 static int
334 msymbol_is_special (struct minimal_symbol *msym)
335 {
336 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
337 }
338
339 /* XFER a value from the big/little/left end of the register.
340 Depending on the size of the value it might occupy the entire
341 register or just part of it. Make an allowance for this, aligning
342 things accordingly. */
343
344 static void
345 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
346 enum bfd_endian endian, gdb_byte *in,
347 const gdb_byte *out, int buf_offset)
348 {
349 int reg_offset = 0;
350 gdb_assert (reg_num >= gdbarch_num_regs (current_gdbarch));
351 /* Need to transfer the left or right part of the register, based on
352 the targets byte order. */
353 switch (endian)
354 {
355 case BFD_ENDIAN_BIG:
356 reg_offset = register_size (current_gdbarch, reg_num) - length;
357 break;
358 case BFD_ENDIAN_LITTLE:
359 reg_offset = 0;
360 break;
361 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
362 reg_offset = 0;
363 break;
364 default:
365 internal_error (__FILE__, __LINE__, _("bad switch"));
366 }
367 if (mips_debug)
368 fprintf_unfiltered (gdb_stderr,
369 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
370 reg_num, reg_offset, buf_offset, length);
371 if (mips_debug && out != NULL)
372 {
373 int i;
374 fprintf_unfiltered (gdb_stdlog, "out ");
375 for (i = 0; i < length; i++)
376 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
377 }
378 if (in != NULL)
379 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
380 in + buf_offset);
381 if (out != NULL)
382 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
383 out + buf_offset);
384 if (mips_debug && in != NULL)
385 {
386 int i;
387 fprintf_unfiltered (gdb_stdlog, "in ");
388 for (i = 0; i < length; i++)
389 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
390 }
391 if (mips_debug)
392 fprintf_unfiltered (gdb_stdlog, "\n");
393 }
394
395 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
396 compatiblity mode. A return value of 1 means that we have
397 physical 64-bit registers, but should treat them as 32-bit registers. */
398
399 static int
400 mips2_fp_compat (struct frame_info *frame)
401 {
402 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
403 meaningful. */
404 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
405 4)
406 return 0;
407
408 #if 0
409 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
410 in all the places we deal with FP registers. PR gdb/413. */
411 /* Otherwise check the FR bit in the status register - it controls
412 the FP compatiblity mode. If it is clear we are in compatibility
413 mode. */
414 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
415 return 1;
416 #endif
417
418 return 0;
419 }
420
421 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
422
423 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
424
425 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
426
427 static struct type *mips_float_register_type (void);
428 static struct type *mips_double_register_type (void);
429
430 /* The list of available "set mips " and "show mips " commands */
431
432 static struct cmd_list_element *setmipscmdlist = NULL;
433 static struct cmd_list_element *showmipscmdlist = NULL;
434
435 /* Integer registers 0 thru 31 are handled explicitly by
436 mips_register_name(). Processor specific registers 32 and above
437 are listed in the following tables. */
438
439 enum
440 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
441
442 /* Generic MIPS. */
443
444 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
445 "sr", "lo", "hi", "bad", "cause", "pc",
446 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
447 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
448 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
449 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
450 "fsr", "fir", "" /*"fp" */ , "",
451 "", "", "", "", "", "", "", "",
452 "", "", "", "", "", "", "", "",
453 };
454
455 /* Names of IDT R3041 registers. */
456
457 static const char *mips_r3041_reg_names[] = {
458 "sr", "lo", "hi", "bad", "cause", "pc",
459 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
460 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
461 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
462 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
463 "fsr", "fir", "", /*"fp" */ "",
464 "", "", "bus", "ccfg", "", "", "", "",
465 "", "", "port", "cmp", "", "", "epc", "prid",
466 };
467
468 /* Names of tx39 registers. */
469
470 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
471 "sr", "lo", "hi", "bad", "cause", "pc",
472 "", "", "", "", "", "", "", "",
473 "", "", "", "", "", "", "", "",
474 "", "", "", "", "", "", "", "",
475 "", "", "", "", "", "", "", "",
476 "", "", "", "",
477 "", "", "", "", "", "", "", "",
478 "", "", "config", "cache", "debug", "depc", "epc", ""
479 };
480
481 /* Names of IRIX registers. */
482 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
483 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
484 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
485 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
486 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
487 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
488 };
489
490
491 /* Return the name of the register corresponding to REGNO. */
492 static const char *
493 mips_register_name (int regno)
494 {
495 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
496 /* GPR names for all ABIs other than n32/n64. */
497 static char *mips_gpr_names[] = {
498 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
499 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
500 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
501 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
502 };
503
504 /* GPR names for n32 and n64 ABIs. */
505 static char *mips_n32_n64_gpr_names[] = {
506 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
507 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
508 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
509 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
510 };
511
512 enum mips_abi abi = mips_abi (current_gdbarch);
513
514 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
515 but then don't make the raw register names visible. */
516 int rawnum = regno % gdbarch_num_regs (current_gdbarch);
517 if (regno < gdbarch_num_regs (current_gdbarch))
518 return "";
519
520 /* The MIPS integer registers are always mapped from 0 to 31. The
521 names of the registers (which reflects the conventions regarding
522 register use) vary depending on the ABI. */
523 if (0 <= rawnum && rawnum < 32)
524 {
525 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
526 return mips_n32_n64_gpr_names[rawnum];
527 else
528 return mips_gpr_names[rawnum];
529 }
530 else if (tdesc_has_registers (gdbarch_target_desc (current_gdbarch)))
531 return tdesc_register_name (rawnum);
532 else if (32 <= rawnum && rawnum < gdbarch_num_regs (current_gdbarch))
533 {
534 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
535 return tdep->mips_processor_reg_names[rawnum - 32];
536 }
537 else
538 internal_error (__FILE__, __LINE__,
539 _("mips_register_name: bad register number %d"), rawnum);
540 }
541
542 /* Return the groups that a MIPS register can be categorised into. */
543
544 static int
545 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
546 struct reggroup *reggroup)
547 {
548 int vector_p;
549 int float_p;
550 int raw_p;
551 int rawnum = regnum % gdbarch_num_regs (current_gdbarch);
552 int pseudo = regnum / gdbarch_num_regs (current_gdbarch);
553 if (reggroup == all_reggroup)
554 return pseudo;
555 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
556 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
557 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
558 (gdbarch), as not all architectures are multi-arch. */
559 raw_p = rawnum < gdbarch_num_regs (current_gdbarch);
560 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
561 || gdbarch_register_name (current_gdbarch, regnum)[0] == '\0')
562 return 0;
563 if (reggroup == float_reggroup)
564 return float_p && pseudo;
565 if (reggroup == vector_reggroup)
566 return vector_p && pseudo;
567 if (reggroup == general_reggroup)
568 return (!vector_p && !float_p) && pseudo;
569 /* Save the pseudo registers. Need to make certain that any code
570 extracting register values from a saved register cache also uses
571 pseudo registers. */
572 if (reggroup == save_reggroup)
573 return raw_p && pseudo;
574 /* Restore the same pseudo register. */
575 if (reggroup == restore_reggroup)
576 return raw_p && pseudo;
577 return 0;
578 }
579
580 /* Return the groups that a MIPS register can be categorised into.
581 This version is only used if we have a target description which
582 describes real registers (and their groups). */
583
584 static int
585 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
586 struct reggroup *reggroup)
587 {
588 int rawnum = regnum % gdbarch_num_regs (gdbarch);
589 int pseudo = regnum / gdbarch_num_regs (gdbarch);
590 int ret;
591
592 /* Only save, restore, and display the pseudo registers. Need to
593 make certain that any code extracting register values from a
594 saved register cache also uses pseudo registers.
595
596 Note: saving and restoring the pseudo registers is slightly
597 strange; if we have 64 bits, we should save and restore all
598 64 bits. But this is hard and has little benefit. */
599 if (!pseudo)
600 return 0;
601
602 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
603 if (ret != -1)
604 return ret;
605
606 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
607 }
608
609 /* Map the symbol table registers which live in the range [1 *
610 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
611 registers. Take care of alignment and size problems. */
612
613 static void
614 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
615 int cookednum, gdb_byte *buf)
616 {
617 int rawnum = cookednum % gdbarch_num_regs (current_gdbarch);
618 gdb_assert (cookednum >= gdbarch_num_regs (current_gdbarch)
619 && cookednum < 2 * gdbarch_num_regs (current_gdbarch));
620 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
621 regcache_raw_read (regcache, rawnum, buf);
622 else if (register_size (gdbarch, rawnum) >
623 register_size (gdbarch, cookednum))
624 {
625 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
626 || gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
627 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
628 else
629 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
630 }
631 else
632 internal_error (__FILE__, __LINE__, _("bad register size"));
633 }
634
635 static void
636 mips_pseudo_register_write (struct gdbarch *gdbarch,
637 struct regcache *regcache, int cookednum,
638 const gdb_byte *buf)
639 {
640 int rawnum = cookednum % gdbarch_num_regs (current_gdbarch);
641 gdb_assert (cookednum >= gdbarch_num_regs (current_gdbarch)
642 && cookednum < 2 * gdbarch_num_regs (current_gdbarch));
643 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
644 regcache_raw_write (regcache, rawnum, buf);
645 else if (register_size (gdbarch, rawnum) >
646 register_size (gdbarch, cookednum))
647 {
648 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
649 || gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
650 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
651 else
652 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
653 }
654 else
655 internal_error (__FILE__, __LINE__, _("bad register size"));
656 }
657
658 /* Table to translate MIPS16 register field to actual register number. */
659 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
660
661 /* Heuristic_proc_start may hunt through the text section for a long
662 time across a 2400 baud serial line. Allows the user to limit this
663 search. */
664
665 static unsigned int heuristic_fence_post = 0;
666
667 /* Number of bytes of storage in the actual machine representation for
668 register N. NOTE: This defines the pseudo register type so need to
669 rebuild the architecture vector. */
670
671 static int mips64_transfers_32bit_regs_p = 0;
672
673 static void
674 set_mips64_transfers_32bit_regs (char *args, int from_tty,
675 struct cmd_list_element *c)
676 {
677 struct gdbarch_info info;
678 gdbarch_info_init (&info);
679 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
680 instead of relying on globals. Doing that would let generic code
681 handle the search for this specific architecture. */
682 if (!gdbarch_update_p (info))
683 {
684 mips64_transfers_32bit_regs_p = 0;
685 error (_("32-bit compatibility mode not supported"));
686 }
687 }
688
689 /* Convert to/from a register and the corresponding memory value. */
690
691 static int
692 mips_convert_register_p (int regnum, struct type *type)
693 {
694 return (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
695 && register_size (current_gdbarch, regnum) == 4
696 && (regnum % gdbarch_num_regs (current_gdbarch))
697 >= mips_regnum (current_gdbarch)->fp0
698 && (regnum % gdbarch_num_regs (current_gdbarch))
699 < mips_regnum (current_gdbarch)->fp0 + 32
700 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
701 }
702
703 static void
704 mips_register_to_value (struct frame_info *frame, int regnum,
705 struct type *type, gdb_byte *to)
706 {
707 get_frame_register (frame, regnum + 0, to + 4);
708 get_frame_register (frame, regnum + 1, to + 0);
709 }
710
711 static void
712 mips_value_to_register (struct frame_info *frame, int regnum,
713 struct type *type, const gdb_byte *from)
714 {
715 put_frame_register (frame, regnum + 0, from + 4);
716 put_frame_register (frame, regnum + 1, from + 0);
717 }
718
719 /* Return the GDB type object for the "standard" data type of data in
720 register REG. */
721
722 static struct type *
723 mips_register_type (struct gdbarch *gdbarch, int regnum)
724 {
725 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (current_gdbarch));
726 if ((regnum % gdbarch_num_regs (current_gdbarch))
727 >= mips_regnum (current_gdbarch)->fp0
728 && (regnum % gdbarch_num_regs (current_gdbarch))
729 < mips_regnum (current_gdbarch)->fp0 + 32)
730 {
731 /* The floating-point registers raw, or cooked, always match
732 mips_isa_regsize(), and also map 1:1, byte for byte. */
733 if (mips_isa_regsize (gdbarch) == 4)
734 return builtin_type_ieee_single;
735 else
736 return builtin_type_ieee_double;
737 }
738 else if (regnum < gdbarch_num_regs (current_gdbarch))
739 {
740 /* The raw or ISA registers. These are all sized according to
741 the ISA regsize. */
742 if (mips_isa_regsize (gdbarch) == 4)
743 return builtin_type_int32;
744 else
745 return builtin_type_int64;
746 }
747 else
748 {
749 /* The cooked or ABI registers. These are sized according to
750 the ABI (with a few complications). */
751 if (regnum >= (gdbarch_num_regs (current_gdbarch)
752 + mips_regnum (current_gdbarch)->fp_control_status)
753 && regnum <= gdbarch_num_regs (current_gdbarch)
754 + MIPS_LAST_EMBED_REGNUM)
755 /* The pseudo/cooked view of the embedded registers is always
756 32-bit. The raw view is handled below. */
757 return builtin_type_int32;
758 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
759 /* The target, while possibly using a 64-bit register buffer,
760 is only transfering 32-bits of each integer register.
761 Reflect this in the cooked/pseudo (ABI) register value. */
762 return builtin_type_int32;
763 else if (mips_abi_regsize (gdbarch) == 4)
764 /* The ABI is restricted to 32-bit registers (the ISA could be
765 32- or 64-bit). */
766 return builtin_type_int32;
767 else
768 /* 64-bit ABI. */
769 return builtin_type_int64;
770 }
771 }
772
773 /* Return the GDB type for the pseudo register REGNUM, which is the
774 ABI-level view. This function is only called if there is a target
775 description which includes registers, so we know precisely the
776 types of hardware registers. */
777
778 static struct type *
779 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
780 {
781 const int num_regs = gdbarch_num_regs (gdbarch);
782 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
783 int rawnum = regnum % num_regs;
784 struct type *rawtype;
785
786 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
787
788 /* Absent registers are still absent. */
789 rawtype = gdbarch_register_type (gdbarch, rawnum);
790 if (TYPE_LENGTH (rawtype) == 0)
791 return rawtype;
792
793 if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
794 /* Present the floating point registers however the hardware did;
795 do not try to convert between FPU layouts. */
796 return rawtype;
797
798 if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
799 {
800 /* The pseudo/cooked view of embedded registers is always
801 32-bit, even if the target transfers 64-bit values for them.
802 New targets relying on XML descriptions should only transfer
803 the necessary 32 bits, but older versions of GDB expected 64,
804 so allow the target to provide 64 bits without interfering
805 with the displayed type. */
806 return builtin_type_int32;
807 }
808
809 /* Use pointer types for registers if we can. For n32 we can not,
810 since we do not have a 64-bit pointer type. */
811 if (mips_abi_regsize (gdbarch) == TYPE_LENGTH (builtin_type_void_data_ptr))
812 {
813 if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
814 return builtin_type_void_data_ptr;
815 else if (rawnum == MIPS_EMBED_PC_REGNUM)
816 return builtin_type_void_func_ptr;
817 }
818
819 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
820 && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
821 return builtin_type_int32;
822
823 /* For all other registers, pass through the hardware type. */
824 return rawtype;
825 }
826
827 /* Should the upper word of 64-bit addresses be zeroed? */
828 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
829
830 static int
831 mips_mask_address_p (struct gdbarch_tdep *tdep)
832 {
833 switch (mask_address_var)
834 {
835 case AUTO_BOOLEAN_TRUE:
836 return 1;
837 case AUTO_BOOLEAN_FALSE:
838 return 0;
839 break;
840 case AUTO_BOOLEAN_AUTO:
841 return tdep->default_mask_address_p;
842 default:
843 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
844 return -1;
845 }
846 }
847
848 static void
849 show_mask_address (struct ui_file *file, int from_tty,
850 struct cmd_list_element *c, const char *value)
851 {
852 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
853
854 deprecated_show_value_hack (file, from_tty, c, value);
855 switch (mask_address_var)
856 {
857 case AUTO_BOOLEAN_TRUE:
858 printf_filtered ("The 32 bit mips address mask is enabled\n");
859 break;
860 case AUTO_BOOLEAN_FALSE:
861 printf_filtered ("The 32 bit mips address mask is disabled\n");
862 break;
863 case AUTO_BOOLEAN_AUTO:
864 printf_filtered
865 ("The 32 bit address mask is set automatically. Currently %s\n",
866 mips_mask_address_p (tdep) ? "enabled" : "disabled");
867 break;
868 default:
869 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
870 break;
871 }
872 }
873
874 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
875
876 int
877 mips_pc_is_mips16 (CORE_ADDR memaddr)
878 {
879 struct minimal_symbol *sym;
880
881 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
882 if (is_mips16_addr (memaddr))
883 return 1;
884
885 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
886 the high bit of the info field. Use this to decide if the function is
887 MIPS16 or normal MIPS. */
888 sym = lookup_minimal_symbol_by_pc (memaddr);
889 if (sym)
890 return msymbol_is_special (sym);
891 else
892 return 0;
893 }
894
895 /* MIPS believes that the PC has a sign extended value. Perhaps the
896 all registers should be sign extended for simplicity? */
897
898 static CORE_ADDR
899 mips_read_pc (struct regcache *regcache)
900 {
901 ULONGEST pc;
902 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
903 regcache_cooked_read_signed (regcache, regnum, &pc);
904 return pc;
905 }
906
907 static CORE_ADDR
908 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
909 {
910 return frame_unwind_register_signed (next_frame,
911 gdbarch_num_regs (current_gdbarch)
912 + mips_regnum (gdbarch)->pc);
913 }
914
915 static CORE_ADDR
916 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
917 {
918 return frame_unwind_register_signed (next_frame,
919 gdbarch_num_regs (current_gdbarch)
920 + MIPS_SP_REGNUM);
921 }
922
923 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
924 dummy frame. The frame ID's base needs to match the TOS value
925 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
926 breakpoint. */
927
928 static struct frame_id
929 mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
930 {
931 return frame_id_build
932 (frame_unwind_register_signed (next_frame,
933 gdbarch_num_regs (current_gdbarch)
934 + MIPS_SP_REGNUM),
935 frame_pc_unwind (next_frame));
936 }
937
938 static void
939 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
940 {
941 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
942 regcache_cooked_write_unsigned (regcache, regnum, pc);
943 }
944
945 /* Fetch and return instruction from the specified location. If the PC
946 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
947
948 static ULONGEST
949 mips_fetch_instruction (CORE_ADDR addr)
950 {
951 gdb_byte buf[MIPS_INSN32_SIZE];
952 int instlen;
953 int status;
954
955 if (mips_pc_is_mips16 (addr))
956 {
957 instlen = MIPS_INSN16_SIZE;
958 addr = unmake_mips16_addr (addr);
959 }
960 else
961 instlen = MIPS_INSN32_SIZE;
962 status = read_memory_nobpt (addr, buf, instlen);
963 if (status)
964 memory_error (status, addr);
965 return extract_unsigned_integer (buf, instlen);
966 }
967
968 /* These the fields of 32 bit mips instructions */
969 #define mips32_op(x) (x >> 26)
970 #define itype_op(x) (x >> 26)
971 #define itype_rs(x) ((x >> 21) & 0x1f)
972 #define itype_rt(x) ((x >> 16) & 0x1f)
973 #define itype_immediate(x) (x & 0xffff)
974
975 #define jtype_op(x) (x >> 26)
976 #define jtype_target(x) (x & 0x03ffffff)
977
978 #define rtype_op(x) (x >> 26)
979 #define rtype_rs(x) ((x >> 21) & 0x1f)
980 #define rtype_rt(x) ((x >> 16) & 0x1f)
981 #define rtype_rd(x) ((x >> 11) & 0x1f)
982 #define rtype_shamt(x) ((x >> 6) & 0x1f)
983 #define rtype_funct(x) (x & 0x3f)
984
985 static LONGEST
986 mips32_relative_offset (ULONGEST inst)
987 {
988 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
989 }
990
991 /* Determine where to set a single step breakpoint while considering
992 branch prediction. */
993 static CORE_ADDR
994 mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
995 {
996 unsigned long inst;
997 int op;
998 inst = mips_fetch_instruction (pc);
999 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
1000 {
1001 if (itype_op (inst) >> 2 == 5)
1002 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1003 {
1004 op = (itype_op (inst) & 0x03);
1005 switch (op)
1006 {
1007 case 0: /* BEQL */
1008 goto equal_branch;
1009 case 1: /* BNEL */
1010 goto neq_branch;
1011 case 2: /* BLEZL */
1012 goto less_branch;
1013 case 3: /* BGTZ */
1014 goto greater_branch;
1015 default:
1016 pc += 4;
1017 }
1018 }
1019 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1020 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1021 {
1022 int tf = itype_rt (inst) & 0x01;
1023 int cnum = itype_rt (inst) >> 2;
1024 int fcrcs =
1025 get_frame_register_signed (frame, mips_regnum (current_gdbarch)->
1026 fp_control_status);
1027 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1028
1029 if (((cond >> cnum) & 0x01) == tf)
1030 pc += mips32_relative_offset (inst) + 4;
1031 else
1032 pc += 8;
1033 }
1034 else
1035 pc += 4; /* Not a branch, next instruction is easy */
1036 }
1037 else
1038 { /* This gets way messy */
1039
1040 /* Further subdivide into SPECIAL, REGIMM and other */
1041 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1042 {
1043 case 0: /* SPECIAL */
1044 op = rtype_funct (inst);
1045 switch (op)
1046 {
1047 case 8: /* JR */
1048 case 9: /* JALR */
1049 /* Set PC to that address */
1050 pc = get_frame_register_signed (frame, rtype_rs (inst));
1051 break;
1052 default:
1053 pc += 4;
1054 }
1055
1056 break; /* end SPECIAL */
1057 case 1: /* REGIMM */
1058 {
1059 op = itype_rt (inst); /* branch condition */
1060 switch (op)
1061 {
1062 case 0: /* BLTZ */
1063 case 2: /* BLTZL */
1064 case 16: /* BLTZAL */
1065 case 18: /* BLTZALL */
1066 less_branch:
1067 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1068 pc += mips32_relative_offset (inst) + 4;
1069 else
1070 pc += 8; /* after the delay slot */
1071 break;
1072 case 1: /* BGEZ */
1073 case 3: /* BGEZL */
1074 case 17: /* BGEZAL */
1075 case 19: /* BGEZALL */
1076 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1077 pc += mips32_relative_offset (inst) + 4;
1078 else
1079 pc += 8; /* after the delay slot */
1080 break;
1081 /* All of the other instructions in the REGIMM category */
1082 default:
1083 pc += 4;
1084 }
1085 }
1086 break; /* end REGIMM */
1087 case 2: /* J */
1088 case 3: /* JAL */
1089 {
1090 unsigned long reg;
1091 reg = jtype_target (inst) << 2;
1092 /* Upper four bits get never changed... */
1093 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1094 }
1095 break;
1096 /* FIXME case JALX : */
1097 {
1098 unsigned long reg;
1099 reg = jtype_target (inst) << 2;
1100 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
1101 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1102 }
1103 break; /* The new PC will be alternate mode */
1104 case 4: /* BEQ, BEQL */
1105 equal_branch:
1106 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1107 get_frame_register_signed (frame, itype_rt (inst)))
1108 pc += mips32_relative_offset (inst) + 4;
1109 else
1110 pc += 8;
1111 break;
1112 case 5: /* BNE, BNEL */
1113 neq_branch:
1114 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1115 get_frame_register_signed (frame, itype_rt (inst)))
1116 pc += mips32_relative_offset (inst) + 4;
1117 else
1118 pc += 8;
1119 break;
1120 case 6: /* BLEZ, BLEZL */
1121 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1122 pc += mips32_relative_offset (inst) + 4;
1123 else
1124 pc += 8;
1125 break;
1126 case 7:
1127 default:
1128 greater_branch: /* BGTZ, BGTZL */
1129 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1130 pc += mips32_relative_offset (inst) + 4;
1131 else
1132 pc += 8;
1133 break;
1134 } /* switch */
1135 } /* else */
1136 return pc;
1137 } /* mips32_next_pc */
1138
1139 /* Decoding the next place to set a breakpoint is irregular for the
1140 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1141 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1142 We dont want to set a single step instruction on the extend instruction
1143 either.
1144 */
1145
1146 /* Lots of mips16 instruction formats */
1147 /* Predicting jumps requires itype,ritype,i8type
1148 and their extensions extItype,extritype,extI8type
1149 */
1150 enum mips16_inst_fmts
1151 {
1152 itype, /* 0 immediate 5,10 */
1153 ritype, /* 1 5,3,8 */
1154 rrtype, /* 2 5,3,3,5 */
1155 rritype, /* 3 5,3,3,5 */
1156 rrrtype, /* 4 5,3,3,3,2 */
1157 rriatype, /* 5 5,3,3,1,4 */
1158 shifttype, /* 6 5,3,3,3,2 */
1159 i8type, /* 7 5,3,8 */
1160 i8movtype, /* 8 5,3,3,5 */
1161 i8mov32rtype, /* 9 5,3,5,3 */
1162 i64type, /* 10 5,3,8 */
1163 ri64type, /* 11 5,3,3,5 */
1164 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1165 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1166 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1167 extRRItype, /* 15 5,5,5,5,3,3,5 */
1168 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1169 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1170 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1171 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1172 extRi64type, /* 20 5,6,5,5,3,3,5 */
1173 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1174 };
1175 /* I am heaping all the fields of the formats into one structure and
1176 then, only the fields which are involved in instruction extension */
1177 struct upk_mips16
1178 {
1179 CORE_ADDR offset;
1180 unsigned int regx; /* Function in i8 type */
1181 unsigned int regy;
1182 };
1183
1184
1185 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1186 for the bits which make up the immediatate extension. */
1187
1188 static CORE_ADDR
1189 extended_offset (unsigned int extension)
1190 {
1191 CORE_ADDR value;
1192 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1193 value = value << 6;
1194 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1195 value = value << 5;
1196 value |= extension & 0x01f; /* extract 4:0 */
1197 return value;
1198 }
1199
1200 /* Only call this function if you know that this is an extendable
1201 instruction. It won't malfunction, but why make excess remote memory
1202 references? If the immediate operands get sign extended or something,
1203 do it after the extension is performed. */
1204 /* FIXME: Every one of these cases needs to worry about sign extension
1205 when the offset is to be used in relative addressing. */
1206
1207 static unsigned int
1208 fetch_mips_16 (CORE_ADDR pc)
1209 {
1210 gdb_byte buf[8];
1211 pc &= 0xfffffffe; /* clear the low order bit */
1212 target_read_memory (pc, buf, 2);
1213 return extract_unsigned_integer (buf, 2);
1214 }
1215
1216 static void
1217 unpack_mips16 (CORE_ADDR pc,
1218 unsigned int extension,
1219 unsigned int inst,
1220 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1221 {
1222 CORE_ADDR offset;
1223 int regx;
1224 int regy;
1225 switch (insn_format)
1226 {
1227 case itype:
1228 {
1229 CORE_ADDR value;
1230 if (extension)
1231 {
1232 value = extended_offset (extension);
1233 value = value << 11; /* rom for the original value */
1234 value |= inst & 0x7ff; /* eleven bits from instruction */
1235 }
1236 else
1237 {
1238 value = inst & 0x7ff;
1239 /* FIXME : Consider sign extension */
1240 }
1241 offset = value;
1242 regx = -1;
1243 regy = -1;
1244 }
1245 break;
1246 case ritype:
1247 case i8type:
1248 { /* A register identifier and an offset */
1249 /* Most of the fields are the same as I type but the
1250 immediate value is of a different length */
1251 CORE_ADDR value;
1252 if (extension)
1253 {
1254 value = extended_offset (extension);
1255 value = value << 8; /* from the original instruction */
1256 value |= inst & 0xff; /* eleven bits from instruction */
1257 regx = (extension >> 8) & 0x07; /* or i8 funct */
1258 if (value & 0x4000) /* test the sign bit , bit 26 */
1259 {
1260 value &= ~0x3fff; /* remove the sign bit */
1261 value = -value;
1262 }
1263 }
1264 else
1265 {
1266 value = inst & 0xff; /* 8 bits */
1267 regx = (inst >> 8) & 0x07; /* or i8 funct */
1268 /* FIXME: Do sign extension , this format needs it */
1269 if (value & 0x80) /* THIS CONFUSES ME */
1270 {
1271 value &= 0xef; /* remove the sign bit */
1272 value = -value;
1273 }
1274 }
1275 offset = value;
1276 regy = -1;
1277 break;
1278 }
1279 case jalxtype:
1280 {
1281 unsigned long value;
1282 unsigned int nexthalf;
1283 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1284 value = value << 16;
1285 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1286 value |= nexthalf;
1287 offset = value;
1288 regx = -1;
1289 regy = -1;
1290 break;
1291 }
1292 default:
1293 internal_error (__FILE__, __LINE__, _("bad switch"));
1294 }
1295 upk->offset = offset;
1296 upk->regx = regx;
1297 upk->regy = regy;
1298 }
1299
1300
1301 static CORE_ADDR
1302 add_offset_16 (CORE_ADDR pc, int offset)
1303 {
1304 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
1305 }
1306
1307 static CORE_ADDR
1308 extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
1309 unsigned int extension, unsigned int insn)
1310 {
1311 int op = (insn >> 11);
1312 switch (op)
1313 {
1314 case 2: /* Branch */
1315 {
1316 CORE_ADDR offset;
1317 struct upk_mips16 upk;
1318 unpack_mips16 (pc, extension, insn, itype, &upk);
1319 offset = upk.offset;
1320 if (offset & 0x800)
1321 {
1322 offset &= 0xeff;
1323 offset = -offset;
1324 }
1325 pc += (offset << 1) + 2;
1326 break;
1327 }
1328 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1329 {
1330 struct upk_mips16 upk;
1331 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1332 pc = add_offset_16 (pc, upk.offset);
1333 if ((insn >> 10) & 0x01) /* Exchange mode */
1334 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1335 else
1336 pc |= 0x01;
1337 break;
1338 }
1339 case 4: /* beqz */
1340 {
1341 struct upk_mips16 upk;
1342 int reg;
1343 unpack_mips16 (pc, extension, insn, ritype, &upk);
1344 reg = get_frame_register_signed (frame, upk.regx);
1345 if (reg == 0)
1346 pc += (upk.offset << 1) + 2;
1347 else
1348 pc += 2;
1349 break;
1350 }
1351 case 5: /* bnez */
1352 {
1353 struct upk_mips16 upk;
1354 int reg;
1355 unpack_mips16 (pc, extension, insn, ritype, &upk);
1356 reg = get_frame_register_signed (frame, upk.regx);
1357 if (reg != 0)
1358 pc += (upk.offset << 1) + 2;
1359 else
1360 pc += 2;
1361 break;
1362 }
1363 case 12: /* I8 Formats btez btnez */
1364 {
1365 struct upk_mips16 upk;
1366 int reg;
1367 unpack_mips16 (pc, extension, insn, i8type, &upk);
1368 /* upk.regx contains the opcode */
1369 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
1370 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1371 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1372 /* pc = add_offset_16(pc,upk.offset) ; */
1373 pc += (upk.offset << 1) + 2;
1374 else
1375 pc += 2;
1376 break;
1377 }
1378 case 29: /* RR Formats JR, JALR, JALR-RA */
1379 {
1380 struct upk_mips16 upk;
1381 /* upk.fmt = rrtype; */
1382 op = insn & 0x1f;
1383 if (op == 0)
1384 {
1385 int reg;
1386 upk.regx = (insn >> 8) & 0x07;
1387 upk.regy = (insn >> 5) & 0x07;
1388 switch (upk.regy)
1389 {
1390 case 0:
1391 reg = upk.regx;
1392 break;
1393 case 1:
1394 reg = 31;
1395 break; /* Function return instruction */
1396 case 2:
1397 reg = upk.regx;
1398 break;
1399 default:
1400 reg = 31;
1401 break; /* BOGUS Guess */
1402 }
1403 pc = get_frame_register_signed (frame, reg);
1404 }
1405 else
1406 pc += 2;
1407 break;
1408 }
1409 case 30:
1410 /* This is an instruction extension. Fetch the real instruction
1411 (which follows the extension) and decode things based on
1412 that. */
1413 {
1414 pc += 2;
1415 pc = extended_mips16_next_pc (frame, pc, insn, fetch_mips_16 (pc));
1416 break;
1417 }
1418 default:
1419 {
1420 pc += 2;
1421 break;
1422 }
1423 }
1424 return pc;
1425 }
1426
1427 static CORE_ADDR
1428 mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
1429 {
1430 unsigned int insn = fetch_mips_16 (pc);
1431 return extended_mips16_next_pc (frame, pc, 0, insn);
1432 }
1433
1434 /* The mips_next_pc function supports single_step when the remote
1435 target monitor or stub is not developed enough to do a single_step.
1436 It works by decoding the current instruction and predicting where a
1437 branch will go. This isnt hard because all the data is available.
1438 The MIPS32 and MIPS16 variants are quite different. */
1439 static CORE_ADDR
1440 mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1441 {
1442 if (is_mips16_addr (pc))
1443 return mips16_next_pc (frame, pc);
1444 else
1445 return mips32_next_pc (frame, pc);
1446 }
1447
1448 struct mips_frame_cache
1449 {
1450 CORE_ADDR base;
1451 struct trad_frame_saved_reg *saved_regs;
1452 };
1453
1454 /* Set a register's saved stack address in temp_saved_regs. If an
1455 address has already been set for this register, do nothing; this
1456 way we will only recognize the first save of a given register in a
1457 function prologue.
1458
1459 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
1460 [gdbarch_num_regs .. 2*gdbarch_num_regs).
1461 Strictly speaking, only the second range is used as it is only second
1462 range (the ABI instead of ISA registers) that comes into play when finding
1463 saved registers in a frame. */
1464
1465 static void
1466 set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1467 CORE_ADDR offset)
1468 {
1469 if (this_cache != NULL
1470 && this_cache->saved_regs[regnum].addr == -1)
1471 {
1472 this_cache->saved_regs[regnum
1473 + 0 * gdbarch_num_regs (current_gdbarch)].addr
1474 = offset;
1475 this_cache->saved_regs[regnum
1476 + 1 * gdbarch_num_regs (current_gdbarch)].addr
1477 = offset;
1478 }
1479 }
1480
1481
1482 /* Fetch the immediate value from a MIPS16 instruction.
1483 If the previous instruction was an EXTEND, use it to extend
1484 the upper bits of the immediate value. This is a helper function
1485 for mips16_scan_prologue. */
1486
1487 static int
1488 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1489 unsigned short inst, /* current instruction */
1490 int nbits, /* number of bits in imm field */
1491 int scale, /* scale factor to be applied to imm */
1492 int is_signed) /* is the imm field signed? */
1493 {
1494 int offset;
1495
1496 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1497 {
1498 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1499 if (offset & 0x8000) /* check for negative extend */
1500 offset = 0 - (0x10000 - (offset & 0xffff));
1501 return offset | (inst & 0x1f);
1502 }
1503 else
1504 {
1505 int max_imm = 1 << nbits;
1506 int mask = max_imm - 1;
1507 int sign_bit = max_imm >> 1;
1508
1509 offset = inst & mask;
1510 if (is_signed && (offset & sign_bit))
1511 offset = 0 - (max_imm - offset);
1512 return offset * scale;
1513 }
1514 }
1515
1516
1517 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1518 the associated FRAME_CACHE if not null.
1519 Return the address of the first instruction past the prologue. */
1520
1521 static CORE_ADDR
1522 mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1523 struct frame_info *next_frame,
1524 struct mips_frame_cache *this_cache)
1525 {
1526 CORE_ADDR cur_pc;
1527 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1528 CORE_ADDR sp;
1529 long frame_offset = 0; /* Size of stack frame. */
1530 long frame_adjust = 0; /* Offset of FP from SP. */
1531 int frame_reg = MIPS_SP_REGNUM;
1532 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1533 unsigned inst = 0; /* current instruction */
1534 unsigned entry_inst = 0; /* the entry instruction */
1535 int reg, offset;
1536
1537 int extend_bytes = 0;
1538 int prev_extend_bytes;
1539 CORE_ADDR end_prologue_addr = 0;
1540
1541 /* Can be called when there's no process, and hence when there's no
1542 NEXT_FRAME. */
1543 if (next_frame != NULL)
1544 sp = frame_unwind_register_signed (next_frame,
1545 gdbarch_num_regs (current_gdbarch)
1546 + MIPS_SP_REGNUM);
1547 else
1548 sp = 0;
1549
1550 if (limit_pc > start_pc + 200)
1551 limit_pc = start_pc + 200;
1552
1553 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1554 {
1555 /* Save the previous instruction. If it's an EXTEND, we'll extract
1556 the immediate offset extension from it in mips16_get_imm. */
1557 prev_inst = inst;
1558
1559 /* Fetch and decode the instruction. */
1560 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1561
1562 /* Normally we ignore extend instructions. However, if it is
1563 not followed by a valid prologue instruction, then this
1564 instruction is not part of the prologue either. We must
1565 remember in this case to adjust the end_prologue_addr back
1566 over the extend. */
1567 if ((inst & 0xf800) == 0xf000) /* extend */
1568 {
1569 extend_bytes = MIPS_INSN16_SIZE;
1570 continue;
1571 }
1572
1573 prev_extend_bytes = extend_bytes;
1574 extend_bytes = 0;
1575
1576 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1577 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1578 {
1579 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1580 if (offset < 0) /* negative stack adjustment? */
1581 frame_offset -= offset;
1582 else
1583 /* Exit loop if a positive stack adjustment is found, which
1584 usually means that the stack cleanup code in the function
1585 epilogue is reached. */
1586 break;
1587 }
1588 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1589 {
1590 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1591 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1592 set_reg_offset (this_cache, reg, sp + offset);
1593 }
1594 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1595 {
1596 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1597 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1598 set_reg_offset (this_cache, reg, sp + offset);
1599 }
1600 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1601 {
1602 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1603 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1604 }
1605 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1606 {
1607 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1608 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1609 }
1610 else if (inst == 0x673d) /* move $s1, $sp */
1611 {
1612 frame_addr = sp;
1613 frame_reg = 17;
1614 }
1615 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1616 {
1617 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1618 frame_addr = sp + offset;
1619 frame_reg = 17;
1620 frame_adjust = offset;
1621 }
1622 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1623 {
1624 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1625 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1626 set_reg_offset (this_cache, reg, frame_addr + offset);
1627 }
1628 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1629 {
1630 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1631 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1632 set_reg_offset (this_cache, reg, frame_addr + offset);
1633 }
1634 else if ((inst & 0xf81f) == 0xe809
1635 && (inst & 0x700) != 0x700) /* entry */
1636 entry_inst = inst; /* save for later processing */
1637 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1638 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1639 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1640 {
1641 /* This instruction is part of the prologue, but we don't
1642 need to do anything special to handle it. */
1643 }
1644 else
1645 {
1646 /* This instruction is not an instruction typically found
1647 in a prologue, so we must have reached the end of the
1648 prologue. */
1649 if (end_prologue_addr == 0)
1650 end_prologue_addr = cur_pc - prev_extend_bytes;
1651 }
1652 }
1653
1654 /* The entry instruction is typically the first instruction in a function,
1655 and it stores registers at offsets relative to the value of the old SP
1656 (before the prologue). But the value of the sp parameter to this
1657 function is the new SP (after the prologue has been executed). So we
1658 can't calculate those offsets until we've seen the entire prologue,
1659 and can calculate what the old SP must have been. */
1660 if (entry_inst != 0)
1661 {
1662 int areg_count = (entry_inst >> 8) & 7;
1663 int sreg_count = (entry_inst >> 6) & 3;
1664
1665 /* The entry instruction always subtracts 32 from the SP. */
1666 frame_offset += 32;
1667
1668 /* Now we can calculate what the SP must have been at the
1669 start of the function prologue. */
1670 sp += frame_offset;
1671
1672 /* Check if a0-a3 were saved in the caller's argument save area. */
1673 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1674 {
1675 set_reg_offset (this_cache, reg, sp + offset);
1676 offset += mips_abi_regsize (current_gdbarch);
1677 }
1678
1679 /* Check if the ra register was pushed on the stack. */
1680 offset = -4;
1681 if (entry_inst & 0x20)
1682 {
1683 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1684 offset -= mips_abi_regsize (current_gdbarch);
1685 }
1686
1687 /* Check if the s0 and s1 registers were pushed on the stack. */
1688 for (reg = 16; reg < sreg_count + 16; reg++)
1689 {
1690 set_reg_offset (this_cache, reg, sp + offset);
1691 offset -= mips_abi_regsize (current_gdbarch);
1692 }
1693 }
1694
1695 if (this_cache != NULL)
1696 {
1697 this_cache->base =
1698 (frame_unwind_register_signed (next_frame,
1699 gdbarch_num_regs (current_gdbarch)
1700 + frame_reg)
1701 + frame_offset - frame_adjust);
1702 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1703 be able to get rid of the assignment below, evetually. But it's
1704 still needed for now. */
1705 this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
1706 + mips_regnum (current_gdbarch)->pc]
1707 = this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
1708 + MIPS_RA_REGNUM];
1709 }
1710
1711 /* If we didn't reach the end of the prologue when scanning the function
1712 instructions, then set end_prologue_addr to the address of the
1713 instruction immediately after the last one we scanned. */
1714 if (end_prologue_addr == 0)
1715 end_prologue_addr = cur_pc;
1716
1717 return end_prologue_addr;
1718 }
1719
1720 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1721 Procedures that use the 32-bit instruction set are handled by the
1722 mips_insn32 unwinder. */
1723
1724 static struct mips_frame_cache *
1725 mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
1726 {
1727 struct mips_frame_cache *cache;
1728
1729 if ((*this_cache) != NULL)
1730 return (*this_cache);
1731 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1732 (*this_cache) = cache;
1733 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1734
1735 /* Analyze the function prologue. */
1736 {
1737 const CORE_ADDR pc =
1738 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1739 CORE_ADDR start_addr;
1740
1741 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1742 if (start_addr == 0)
1743 start_addr = heuristic_proc_start (pc);
1744 /* We can't analyze the prologue if we couldn't find the begining
1745 of the function. */
1746 if (start_addr == 0)
1747 return cache;
1748
1749 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1750 }
1751
1752 /* gdbarch_sp_regnum contains the value and not the address. */
1753 trad_frame_set_value (cache->saved_regs, gdbarch_num_regs (current_gdbarch)
1754 + MIPS_SP_REGNUM, cache->base);
1755
1756 return (*this_cache);
1757 }
1758
1759 static void
1760 mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1761 struct frame_id *this_id)
1762 {
1763 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1764 this_cache);
1765 (*this_id) = frame_id_build (info->base,
1766 frame_func_unwind (next_frame, NORMAL_FRAME));
1767 }
1768
1769 static void
1770 mips_insn16_frame_prev_register (struct frame_info *next_frame,
1771 void **this_cache,
1772 int regnum, int *optimizedp,
1773 enum lval_type *lvalp, CORE_ADDR *addrp,
1774 int *realnump, gdb_byte *valuep)
1775 {
1776 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1777 this_cache);
1778 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1779 optimizedp, lvalp, addrp, realnump, valuep);
1780 }
1781
1782 static const struct frame_unwind mips_insn16_frame_unwind =
1783 {
1784 NORMAL_FRAME,
1785 mips_insn16_frame_this_id,
1786 mips_insn16_frame_prev_register
1787 };
1788
1789 static const struct frame_unwind *
1790 mips_insn16_frame_sniffer (struct frame_info *next_frame)
1791 {
1792 CORE_ADDR pc = frame_pc_unwind (next_frame);
1793 if (mips_pc_is_mips16 (pc))
1794 return &mips_insn16_frame_unwind;
1795 return NULL;
1796 }
1797
1798 static CORE_ADDR
1799 mips_insn16_frame_base_address (struct frame_info *next_frame,
1800 void **this_cache)
1801 {
1802 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1803 this_cache);
1804 return info->base;
1805 }
1806
1807 static const struct frame_base mips_insn16_frame_base =
1808 {
1809 &mips_insn16_frame_unwind,
1810 mips_insn16_frame_base_address,
1811 mips_insn16_frame_base_address,
1812 mips_insn16_frame_base_address
1813 };
1814
1815 static const struct frame_base *
1816 mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
1817 {
1818 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1819 return &mips_insn16_frame_base;
1820 else
1821 return NULL;
1822 }
1823
1824 /* Mark all the registers as unset in the saved_regs array
1825 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1826
1827 void
1828 reset_saved_regs (struct mips_frame_cache *this_cache)
1829 {
1830 if (this_cache == NULL || this_cache->saved_regs == NULL)
1831 return;
1832
1833 {
1834 const int num_regs = gdbarch_num_regs (current_gdbarch);
1835 int i;
1836
1837 for (i = 0; i < num_regs; i++)
1838 {
1839 this_cache->saved_regs[i].addr = -1;
1840 }
1841 }
1842 }
1843
1844 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1845 the associated FRAME_CACHE if not null.
1846 Return the address of the first instruction past the prologue. */
1847
1848 static CORE_ADDR
1849 mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1850 struct frame_info *next_frame,
1851 struct mips_frame_cache *this_cache)
1852 {
1853 CORE_ADDR cur_pc;
1854 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1855 CORE_ADDR sp;
1856 long frame_offset;
1857 int frame_reg = MIPS_SP_REGNUM;
1858
1859 CORE_ADDR end_prologue_addr = 0;
1860 int seen_sp_adjust = 0;
1861 int load_immediate_bytes = 0;
1862
1863 /* Can be called when there's no process, and hence when there's no
1864 NEXT_FRAME. */
1865 if (next_frame != NULL)
1866 sp = frame_unwind_register_signed (next_frame,
1867 gdbarch_num_regs (current_gdbarch)
1868 + MIPS_SP_REGNUM);
1869 else
1870 sp = 0;
1871
1872 if (limit_pc > start_pc + 200)
1873 limit_pc = start_pc + 200;
1874
1875 restart:
1876
1877 frame_offset = 0;
1878 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1879 {
1880 unsigned long inst, high_word, low_word;
1881 int reg;
1882
1883 /* Fetch the instruction. */
1884 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1885
1886 /* Save some code by pre-extracting some useful fields. */
1887 high_word = (inst >> 16) & 0xffff;
1888 low_word = inst & 0xffff;
1889 reg = high_word & 0x1f;
1890
1891 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1892 || high_word == 0x23bd /* addi $sp,$sp,-i */
1893 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1894 {
1895 if (low_word & 0x8000) /* negative stack adjustment? */
1896 frame_offset += 0x10000 - low_word;
1897 else
1898 /* Exit loop if a positive stack adjustment is found, which
1899 usually means that the stack cleanup code in the function
1900 epilogue is reached. */
1901 break;
1902 seen_sp_adjust = 1;
1903 }
1904 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1905 {
1906 set_reg_offset (this_cache, reg, sp + low_word);
1907 }
1908 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1909 {
1910 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1911 set_reg_offset (this_cache, reg, sp + low_word);
1912 }
1913 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1914 {
1915 /* Old gcc frame, r30 is virtual frame pointer. */
1916 if ((long) low_word != frame_offset)
1917 frame_addr = sp + low_word;
1918 else if (next_frame && frame_reg == MIPS_SP_REGNUM)
1919 {
1920 unsigned alloca_adjust;
1921
1922 frame_reg = 30;
1923 frame_addr = frame_unwind_register_signed
1924 (next_frame,
1925 gdbarch_num_regs (current_gdbarch) + 30);
1926
1927 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1928 if (alloca_adjust > 0)
1929 {
1930 /* FP > SP + frame_size. This may be because of
1931 an alloca or somethings similar. Fix sp to
1932 "pre-alloca" value, and try again. */
1933 sp += alloca_adjust;
1934 /* Need to reset the status of all registers. Otherwise,
1935 we will hit a guard that prevents the new address
1936 for each register to be recomputed during the second
1937 pass. */
1938 reset_saved_regs (this_cache);
1939 goto restart;
1940 }
1941 }
1942 }
1943 /* move $30,$sp. With different versions of gas this will be either
1944 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1945 Accept any one of these. */
1946 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1947 {
1948 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1949 if (next_frame && frame_reg == MIPS_SP_REGNUM)
1950 {
1951 unsigned alloca_adjust;
1952
1953 frame_reg = 30;
1954 frame_addr = frame_unwind_register_signed
1955 (next_frame,
1956 gdbarch_num_regs (current_gdbarch) + 30);
1957
1958 alloca_adjust = (unsigned) (frame_addr - sp);
1959 if (alloca_adjust > 0)
1960 {
1961 /* FP > SP + frame_size. This may be because of
1962 an alloca or somethings similar. Fix sp to
1963 "pre-alloca" value, and try again. */
1964 sp = frame_addr;
1965 /* Need to reset the status of all registers. Otherwise,
1966 we will hit a guard that prevents the new address
1967 for each register to be recomputed during the second
1968 pass. */
1969 reset_saved_regs (this_cache);
1970 goto restart;
1971 }
1972 }
1973 }
1974 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1975 {
1976 set_reg_offset (this_cache, reg, frame_addr + low_word);
1977 }
1978 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1979 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1980 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1981 || high_word == 0x3c1c /* lui $gp,n */
1982 || high_word == 0x279c /* addiu $gp,$gp,n */
1983 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1984 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1985 )
1986 {
1987 /* These instructions are part of the prologue, but we don't
1988 need to do anything special to handle them. */
1989 }
1990 /* The instructions below load $at or $t0 with an immediate
1991 value in preparation for a stack adjustment via
1992 subu $sp,$sp,[$at,$t0]. These instructions could also
1993 initialize a local variable, so we accept them only before
1994 a stack adjustment instruction was seen. */
1995 else if (!seen_sp_adjust
1996 && (high_word == 0x3c01 /* lui $at,n */
1997 || high_word == 0x3c08 /* lui $t0,n */
1998 || high_word == 0x3421 /* ori $at,$at,n */
1999 || high_word == 0x3508 /* ori $t0,$t0,n */
2000 || high_word == 0x3401 /* ori $at,$zero,n */
2001 || high_word == 0x3408 /* ori $t0,$zero,n */
2002 ))
2003 {
2004 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
2005 }
2006 else
2007 {
2008 /* This instruction is not an instruction typically found
2009 in a prologue, so we must have reached the end of the
2010 prologue. */
2011 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
2012 loop now? Why would we need to continue scanning the function
2013 instructions? */
2014 if (end_prologue_addr == 0)
2015 end_prologue_addr = cur_pc;
2016 }
2017 }
2018
2019 if (this_cache != NULL)
2020 {
2021 this_cache->base =
2022 (frame_unwind_register_signed (next_frame,
2023 gdbarch_num_regs (current_gdbarch)
2024 + frame_reg)
2025 + frame_offset);
2026 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
2027 this assignment below, eventually. But it's still needed
2028 for now. */
2029 this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
2030 + mips_regnum (current_gdbarch)->pc]
2031 = this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
2032 + MIPS_RA_REGNUM];
2033 }
2034
2035 /* If we didn't reach the end of the prologue when scanning the function
2036 instructions, then set end_prologue_addr to the address of the
2037 instruction immediately after the last one we scanned. */
2038 /* brobecker/2004-10-10: I don't think this would ever happen, but
2039 we may as well be careful and do our best if we have a null
2040 end_prologue_addr. */
2041 if (end_prologue_addr == 0)
2042 end_prologue_addr = cur_pc;
2043
2044 /* In a frameless function, we might have incorrectly
2045 skipped some load immediate instructions. Undo the skipping
2046 if the load immediate was not followed by a stack adjustment. */
2047 if (load_immediate_bytes && !seen_sp_adjust)
2048 end_prologue_addr -= load_immediate_bytes;
2049
2050 return end_prologue_addr;
2051 }
2052
2053 /* Heuristic unwinder for procedures using 32-bit instructions (covers
2054 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
2055 instructions (a.k.a. MIPS16) are handled by the mips_insn16
2056 unwinder. */
2057
2058 static struct mips_frame_cache *
2059 mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
2060 {
2061 struct mips_frame_cache *cache;
2062
2063 if ((*this_cache) != NULL)
2064 return (*this_cache);
2065
2066 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2067 (*this_cache) = cache;
2068 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2069
2070 /* Analyze the function prologue. */
2071 {
2072 const CORE_ADDR pc =
2073 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2074 CORE_ADDR start_addr;
2075
2076 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2077 if (start_addr == 0)
2078 start_addr = heuristic_proc_start (pc);
2079 /* We can't analyze the prologue if we couldn't find the begining
2080 of the function. */
2081 if (start_addr == 0)
2082 return cache;
2083
2084 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
2085 }
2086
2087 /* gdbarch_sp_regnum contains the value and not the address. */
2088 trad_frame_set_value (cache->saved_regs,
2089 gdbarch_num_regs (current_gdbarch) + MIPS_SP_REGNUM,
2090 cache->base);
2091
2092 return (*this_cache);
2093 }
2094
2095 static void
2096 mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
2097 struct frame_id *this_id)
2098 {
2099 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2100 this_cache);
2101 (*this_id) = frame_id_build (info->base,
2102 frame_func_unwind (next_frame, NORMAL_FRAME));
2103 }
2104
2105 static void
2106 mips_insn32_frame_prev_register (struct frame_info *next_frame,
2107 void **this_cache,
2108 int regnum, int *optimizedp,
2109 enum lval_type *lvalp, CORE_ADDR *addrp,
2110 int *realnump, gdb_byte *valuep)
2111 {
2112 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2113 this_cache);
2114 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2115 optimizedp, lvalp, addrp, realnump, valuep);
2116 }
2117
2118 static const struct frame_unwind mips_insn32_frame_unwind =
2119 {
2120 NORMAL_FRAME,
2121 mips_insn32_frame_this_id,
2122 mips_insn32_frame_prev_register
2123 };
2124
2125 static const struct frame_unwind *
2126 mips_insn32_frame_sniffer (struct frame_info *next_frame)
2127 {
2128 CORE_ADDR pc = frame_pc_unwind (next_frame);
2129 if (! mips_pc_is_mips16 (pc))
2130 return &mips_insn32_frame_unwind;
2131 return NULL;
2132 }
2133
2134 static CORE_ADDR
2135 mips_insn32_frame_base_address (struct frame_info *next_frame,
2136 void **this_cache)
2137 {
2138 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2139 this_cache);
2140 return info->base;
2141 }
2142
2143 static const struct frame_base mips_insn32_frame_base =
2144 {
2145 &mips_insn32_frame_unwind,
2146 mips_insn32_frame_base_address,
2147 mips_insn32_frame_base_address,
2148 mips_insn32_frame_base_address
2149 };
2150
2151 static const struct frame_base *
2152 mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2153 {
2154 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2155 return &mips_insn32_frame_base;
2156 else
2157 return NULL;
2158 }
2159
2160 static struct trad_frame_cache *
2161 mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2162 {
2163 CORE_ADDR pc;
2164 CORE_ADDR start_addr;
2165 CORE_ADDR stack_addr;
2166 struct trad_frame_cache *this_trad_cache;
2167
2168 if ((*this_cache) != NULL)
2169 return (*this_cache);
2170 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2171 (*this_cache) = this_trad_cache;
2172
2173 /* The return address is in the link register. */
2174 trad_frame_set_reg_realreg (this_trad_cache,
2175 gdbarch_pc_regnum (current_gdbarch),
2176 MIPS_RA_REGNUM);
2177
2178 /* Frame ID, since it's a frameless / stackless function, no stack
2179 space is allocated and SP on entry is the current SP. */
2180 pc = frame_pc_unwind (next_frame);
2181 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2182 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
2183 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2184
2185 /* Assume that the frame's base is the same as the
2186 stack-pointer. */
2187 trad_frame_set_this_base (this_trad_cache, stack_addr);
2188
2189 return this_trad_cache;
2190 }
2191
2192 static void
2193 mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2194 struct frame_id *this_id)
2195 {
2196 struct trad_frame_cache *this_trad_cache
2197 = mips_stub_frame_cache (next_frame, this_cache);
2198 trad_frame_get_id (this_trad_cache, this_id);
2199 }
2200
2201 static void
2202 mips_stub_frame_prev_register (struct frame_info *next_frame,
2203 void **this_cache,
2204 int regnum, int *optimizedp,
2205 enum lval_type *lvalp, CORE_ADDR *addrp,
2206 int *realnump, gdb_byte *valuep)
2207 {
2208 struct trad_frame_cache *this_trad_cache
2209 = mips_stub_frame_cache (next_frame, this_cache);
2210 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2211 lvalp, addrp, realnump, valuep);
2212 }
2213
2214 static const struct frame_unwind mips_stub_frame_unwind =
2215 {
2216 NORMAL_FRAME,
2217 mips_stub_frame_this_id,
2218 mips_stub_frame_prev_register
2219 };
2220
2221 static const struct frame_unwind *
2222 mips_stub_frame_sniffer (struct frame_info *next_frame)
2223 {
2224 struct obj_section *s;
2225 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2226
2227 if (in_plt_section (pc, NULL))
2228 return &mips_stub_frame_unwind;
2229
2230 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2231 s = find_pc_section (pc);
2232
2233 if (s != NULL
2234 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2235 ".MIPS.stubs") == 0)
2236 return &mips_stub_frame_unwind;
2237
2238 return NULL;
2239 }
2240
2241 static CORE_ADDR
2242 mips_stub_frame_base_address (struct frame_info *next_frame,
2243 void **this_cache)
2244 {
2245 struct trad_frame_cache *this_trad_cache
2246 = mips_stub_frame_cache (next_frame, this_cache);
2247 return trad_frame_get_this_base (this_trad_cache);
2248 }
2249
2250 static const struct frame_base mips_stub_frame_base =
2251 {
2252 &mips_stub_frame_unwind,
2253 mips_stub_frame_base_address,
2254 mips_stub_frame_base_address,
2255 mips_stub_frame_base_address
2256 };
2257
2258 static const struct frame_base *
2259 mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2260 {
2261 if (mips_stub_frame_sniffer (next_frame) != NULL)
2262 return &mips_stub_frame_base;
2263 else
2264 return NULL;
2265 }
2266
2267 /* mips_addr_bits_remove - remove useless address bits */
2268
2269 static CORE_ADDR
2270 mips_addr_bits_remove (CORE_ADDR addr)
2271 {
2272 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2273 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2274 /* This hack is a work-around for existing boards using PMON, the
2275 simulator, and any other 64-bit targets that doesn't have true
2276 64-bit addressing. On these targets, the upper 32 bits of
2277 addresses are ignored by the hardware. Thus, the PC or SP are
2278 likely to have been sign extended to all 1s by instruction
2279 sequences that load 32-bit addresses. For example, a typical
2280 piece of code that loads an address is this:
2281
2282 lui $r2, <upper 16 bits>
2283 ori $r2, <lower 16 bits>
2284
2285 But the lui sign-extends the value such that the upper 32 bits
2286 may be all 1s. The workaround is simply to mask off these
2287 bits. In the future, gcc may be changed to support true 64-bit
2288 addressing, and this masking will have to be disabled. */
2289 return addr &= 0xffffffffUL;
2290 else
2291 return addr;
2292 }
2293
2294 /* mips_software_single_step() is called just before we want to resume
2295 the inferior, if we want to single-step it but there is no hardware
2296 or kernel single-step support (MIPS on GNU/Linux for example). We find
2297 the target of the coming instruction and breakpoint it. */
2298
2299 int
2300 mips_software_single_step (struct frame_info *frame)
2301 {
2302 CORE_ADDR pc, next_pc;
2303
2304 pc = get_frame_pc (frame);
2305 next_pc = mips_next_pc (frame, pc);
2306
2307 insert_single_step_breakpoint (next_pc);
2308 return 1;
2309 }
2310
2311 /* Test whether the PC points to the return instruction at the
2312 end of a function. */
2313
2314 static int
2315 mips_about_to_return (CORE_ADDR pc)
2316 {
2317 if (mips_pc_is_mips16 (pc))
2318 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2319 generates a "jr $ra"; other times it generates code to load
2320 the return address from the stack to an accessible register (such
2321 as $a3), then a "jr" using that register. This second case
2322 is almost impossible to distinguish from an indirect jump
2323 used for switch statements, so we don't even try. */
2324 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2325 else
2326 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2327 }
2328
2329
2330 /* This fencepost looks highly suspicious to me. Removing it also
2331 seems suspicious as it could affect remote debugging across serial
2332 lines. */
2333
2334 static CORE_ADDR
2335 heuristic_proc_start (CORE_ADDR pc)
2336 {
2337 CORE_ADDR start_pc;
2338 CORE_ADDR fence;
2339 int instlen;
2340 int seen_adjsp = 0;
2341
2342 pc = gdbarch_addr_bits_remove (current_gdbarch, pc);
2343 start_pc = pc;
2344 fence = start_pc - heuristic_fence_post;
2345 if (start_pc == 0)
2346 return 0;
2347
2348 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2349 fence = VM_MIN_ADDRESS;
2350
2351 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2352
2353 /* search back for previous return */
2354 for (start_pc -= instlen;; start_pc -= instlen)
2355 if (start_pc < fence)
2356 {
2357 /* It's not clear to me why we reach this point when
2358 stop_soon, but with this test, at least we
2359 don't print out warnings for every child forked (eg, on
2360 decstation). 22apr93 rich@cygnus.com. */
2361 if (stop_soon == NO_STOP_QUIETLY)
2362 {
2363 static int blurb_printed = 0;
2364
2365 warning (_("GDB can't find the start of the function at 0x%s."),
2366 paddr_nz (pc));
2367
2368 if (!blurb_printed)
2369 {
2370 /* This actually happens frequently in embedded
2371 development, when you first connect to a board
2372 and your stack pointer and pc are nowhere in
2373 particular. This message needs to give people
2374 in that situation enough information to
2375 determine that it's no big deal. */
2376 printf_filtered ("\n\
2377 GDB is unable to find the start of the function at 0x%s\n\
2378 and thus can't determine the size of that function's stack frame.\n\
2379 This means that GDB may be unable to access that stack frame, or\n\
2380 the frames below it.\n\
2381 This problem is most likely caused by an invalid program counter or\n\
2382 stack pointer.\n\
2383 However, if you think GDB should simply search farther back\n\
2384 from 0x%s for code which looks like the beginning of a\n\
2385 function, you can increase the range of the search using the `set\n\
2386 heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2387 blurb_printed = 1;
2388 }
2389 }
2390
2391 return 0;
2392 }
2393 else if (mips_pc_is_mips16 (start_pc))
2394 {
2395 unsigned short inst;
2396
2397 /* On MIPS16, any one of the following is likely to be the
2398 start of a function:
2399 extend save
2400 save
2401 entry
2402 addiu sp,-n
2403 daddiu sp,-n
2404 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2405 inst = mips_fetch_instruction (start_pc);
2406 if ((inst & 0xff80) == 0x6480) /* save */
2407 {
2408 if (start_pc - instlen >= fence)
2409 {
2410 inst = mips_fetch_instruction (start_pc - instlen);
2411 if ((inst & 0xf800) == 0xf000) /* extend */
2412 start_pc -= instlen;
2413 }
2414 break;
2415 }
2416 else if (((inst & 0xf81f) == 0xe809
2417 && (inst & 0x700) != 0x700) /* entry */
2418 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2419 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2420 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2421 break;
2422 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2423 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2424 seen_adjsp = 1;
2425 else
2426 seen_adjsp = 0;
2427 }
2428 else if (mips_about_to_return (start_pc))
2429 {
2430 /* Skip return and its delay slot. */
2431 start_pc += 2 * MIPS_INSN32_SIZE;
2432 break;
2433 }
2434
2435 return start_pc;
2436 }
2437
2438 struct mips_objfile_private
2439 {
2440 bfd_size_type size;
2441 char *contents;
2442 };
2443
2444 /* According to the current ABI, should the type be passed in a
2445 floating-point register (assuming that there is space)? When there
2446 is no FPU, FP are not even considered as possible candidates for
2447 FP registers and, consequently this returns false - forces FP
2448 arguments into integer registers. */
2449
2450 static int
2451 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2452 {
2453 return ((typecode == TYPE_CODE_FLT
2454 || (MIPS_EABI
2455 && (typecode == TYPE_CODE_STRUCT
2456 || typecode == TYPE_CODE_UNION)
2457 && TYPE_NFIELDS (arg_type) == 1
2458 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2459 == TYPE_CODE_FLT))
2460 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2461 }
2462
2463 /* On o32, argument passing in GPRs depends on the alignment of the type being
2464 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2465
2466 static int
2467 mips_type_needs_double_align (struct type *type)
2468 {
2469 enum type_code typecode = TYPE_CODE (type);
2470
2471 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2472 return 1;
2473 else if (typecode == TYPE_CODE_STRUCT)
2474 {
2475 if (TYPE_NFIELDS (type) < 1)
2476 return 0;
2477 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2478 }
2479 else if (typecode == TYPE_CODE_UNION)
2480 {
2481 int i, n;
2482
2483 n = TYPE_NFIELDS (type);
2484 for (i = 0; i < n; i++)
2485 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2486 return 1;
2487 return 0;
2488 }
2489 return 0;
2490 }
2491
2492 /* Adjust the address downward (direction of stack growth) so that it
2493 is correctly aligned for a new stack frame. */
2494 static CORE_ADDR
2495 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2496 {
2497 return align_down (addr, 16);
2498 }
2499
2500 static CORE_ADDR
2501 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2502 struct regcache *regcache, CORE_ADDR bp_addr,
2503 int nargs, struct value **args, CORE_ADDR sp,
2504 int struct_return, CORE_ADDR struct_addr)
2505 {
2506 int argreg;
2507 int float_argreg;
2508 int argnum;
2509 int len = 0;
2510 int stack_offset = 0;
2511 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2512 CORE_ADDR func_addr = find_function_addr (function, NULL);
2513 int regsize = mips_abi_regsize (gdbarch);
2514
2515 /* For shared libraries, "t9" needs to point at the function
2516 address. */
2517 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2518
2519 /* Set the return address register to point to the entry point of
2520 the program, where a breakpoint lies in wait. */
2521 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2522
2523 /* First ensure that the stack and structure return address (if any)
2524 are properly aligned. The stack has to be at least 64-bit
2525 aligned even on 32-bit machines, because doubles must be 64-bit
2526 aligned. For n32 and n64, stack frames need to be 128-bit
2527 aligned, so we round to this widest known alignment. */
2528
2529 sp = align_down (sp, 16);
2530 struct_addr = align_down (struct_addr, 16);
2531
2532 /* Now make space on the stack for the args. We allocate more
2533 than necessary for EABI, because the first few arguments are
2534 passed in registers, but that's OK. */
2535 for (argnum = 0; argnum < nargs; argnum++)
2536 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
2537 sp -= align_up (len, 16);
2538
2539 if (mips_debug)
2540 fprintf_unfiltered (gdb_stdlog,
2541 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2542 paddr_nz (sp), (long) align_up (len, 16));
2543
2544 /* Initialize the integer and float register pointers. */
2545 argreg = MIPS_A0_REGNUM;
2546 float_argreg = mips_fpa0_regnum (current_gdbarch);
2547
2548 /* The struct_return pointer occupies the first parameter-passing reg. */
2549 if (struct_return)
2550 {
2551 if (mips_debug)
2552 fprintf_unfiltered (gdb_stdlog,
2553 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2554 argreg, paddr_nz (struct_addr));
2555 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2556 }
2557
2558 /* Now load as many as possible of the first arguments into
2559 registers, and push the rest onto the stack. Loop thru args
2560 from first to last. */
2561 for (argnum = 0; argnum < nargs; argnum++)
2562 {
2563 const gdb_byte *val;
2564 gdb_byte valbuf[MAX_REGISTER_SIZE];
2565 struct value *arg = args[argnum];
2566 struct type *arg_type = check_typedef (value_type (arg));
2567 int len = TYPE_LENGTH (arg_type);
2568 enum type_code typecode = TYPE_CODE (arg_type);
2569
2570 if (mips_debug)
2571 fprintf_unfiltered (gdb_stdlog,
2572 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2573 argnum + 1, len, (int) typecode);
2574
2575 /* The EABI passes structures that do not fit in a register by
2576 reference. */
2577 if (len > regsize
2578 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2579 {
2580 store_unsigned_integer (valbuf, regsize, VALUE_ADDRESS (arg));
2581 typecode = TYPE_CODE_PTR;
2582 len = regsize;
2583 val = valbuf;
2584 if (mips_debug)
2585 fprintf_unfiltered (gdb_stdlog, " push");
2586 }
2587 else
2588 val = value_contents (arg);
2589
2590 /* 32-bit ABIs always start floating point arguments in an
2591 even-numbered floating point register. Round the FP register
2592 up before the check to see if there are any FP registers
2593 left. Non MIPS_EABI targets also pass the FP in the integer
2594 registers so also round up normal registers. */
2595 if (regsize < 8 && fp_register_arg_p (typecode, arg_type))
2596 {
2597 if ((float_argreg & 1))
2598 float_argreg++;
2599 }
2600
2601 /* Floating point arguments passed in registers have to be
2602 treated specially. On 32-bit architectures, doubles
2603 are passed in register pairs; the even register gets
2604 the low word, and the odd register gets the high word.
2605 On non-EABI processors, the first two floating point arguments are
2606 also copied to general registers, because MIPS16 functions
2607 don't use float registers for arguments. This duplication of
2608 arguments in general registers can't hurt non-MIPS16 functions
2609 because those registers are normally skipped. */
2610 /* MIPS_EABI squeezes a struct that contains a single floating
2611 point value into an FP register instead of pushing it onto the
2612 stack. */
2613 if (fp_register_arg_p (typecode, arg_type)
2614 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2615 {
2616 /* EABI32 will pass doubles in consecutive registers, even on
2617 64-bit cores. At one time, we used to check the size of
2618 `float_argreg' to determine whether or not to pass doubles
2619 in consecutive registers, but this is not sufficient for
2620 making the ABI determination. */
2621 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
2622 {
2623 int low_offset = gdbarch_byte_order (current_gdbarch)
2624 == BFD_ENDIAN_BIG ? 4 : 0;
2625 unsigned long regval;
2626
2627 /* Write the low word of the double to the even register(s). */
2628 regval = extract_unsigned_integer (val + low_offset, 4);
2629 if (mips_debug)
2630 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2631 float_argreg, phex (regval, 4));
2632 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2633
2634 /* Write the high word of the double to the odd register(s). */
2635 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2636 if (mips_debug)
2637 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2638 float_argreg, phex (regval, 4));
2639 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2640 }
2641 else
2642 {
2643 /* This is a floating point value that fits entirely
2644 in a single register. */
2645 /* On 32 bit ABI's the float_argreg is further adjusted
2646 above to ensure that it is even register aligned. */
2647 LONGEST regval = extract_unsigned_integer (val, len);
2648 if (mips_debug)
2649 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2650 float_argreg, phex (regval, len));
2651 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2652 }
2653 }
2654 else
2655 {
2656 /* Copy the argument to general registers or the stack in
2657 register-sized pieces. Large arguments are split between
2658 registers and stack. */
2659 /* Note: structs whose size is not a multiple of regsize
2660 are treated specially: Irix cc passes
2661 them in registers where gcc sometimes puts them on the
2662 stack. For maximum compatibility, we will put them in
2663 both places. */
2664 int odd_sized_struct = (len > regsize && len % regsize != 0);
2665
2666 /* Note: Floating-point values that didn't fit into an FP
2667 register are only written to memory. */
2668 while (len > 0)
2669 {
2670 /* Remember if the argument was written to the stack. */
2671 int stack_used_p = 0;
2672 int partial_len = (len < regsize ? len : regsize);
2673
2674 if (mips_debug)
2675 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2676 partial_len);
2677
2678 /* Write this portion of the argument to the stack. */
2679 if (argreg > MIPS_LAST_ARG_REGNUM
2680 || odd_sized_struct
2681 || fp_register_arg_p (typecode, arg_type))
2682 {
2683 /* Should shorter than int integer values be
2684 promoted to int before being stored? */
2685 int longword_offset = 0;
2686 CORE_ADDR addr;
2687 stack_used_p = 1;
2688 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
2689 {
2690 if (regsize == 8
2691 && (typecode == TYPE_CODE_INT
2692 || typecode == TYPE_CODE_PTR
2693 || typecode == TYPE_CODE_FLT) && len <= 4)
2694 longword_offset = regsize - len;
2695 else if ((typecode == TYPE_CODE_STRUCT
2696 || typecode == TYPE_CODE_UNION)
2697 && TYPE_LENGTH (arg_type) < regsize)
2698 longword_offset = regsize - len;
2699 }
2700
2701 if (mips_debug)
2702 {
2703 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2704 paddr_nz (stack_offset));
2705 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2706 paddr_nz (longword_offset));
2707 }
2708
2709 addr = sp + stack_offset + longword_offset;
2710
2711 if (mips_debug)
2712 {
2713 int i;
2714 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2715 paddr_nz (addr));
2716 for (i = 0; i < partial_len; i++)
2717 {
2718 fprintf_unfiltered (gdb_stdlog, "%02x",
2719 val[i] & 0xff);
2720 }
2721 }
2722 write_memory (addr, val, partial_len);
2723 }
2724
2725 /* Note!!! This is NOT an else clause. Odd sized
2726 structs may go thru BOTH paths. Floating point
2727 arguments will not. */
2728 /* Write this portion of the argument to a general
2729 purpose register. */
2730 if (argreg <= MIPS_LAST_ARG_REGNUM
2731 && !fp_register_arg_p (typecode, arg_type))
2732 {
2733 LONGEST regval =
2734 extract_unsigned_integer (val, partial_len);
2735
2736 if (mips_debug)
2737 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2738 argreg,
2739 phex (regval, regsize));
2740 regcache_cooked_write_unsigned (regcache, argreg, regval);
2741 argreg++;
2742 }
2743
2744 len -= partial_len;
2745 val += partial_len;
2746
2747 /* Compute the the offset into the stack at which we
2748 will copy the next parameter.
2749
2750 In the new EABI (and the NABI32), the stack_offset
2751 only needs to be adjusted when it has been used. */
2752
2753 if (stack_used_p)
2754 stack_offset += align_up (partial_len, regsize);
2755 }
2756 }
2757 if (mips_debug)
2758 fprintf_unfiltered (gdb_stdlog, "\n");
2759 }
2760
2761 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2762
2763 /* Return adjusted stack pointer. */
2764 return sp;
2765 }
2766
2767 /* Determine the return value convention being used. */
2768
2769 static enum return_value_convention
2770 mips_eabi_return_value (struct gdbarch *gdbarch,
2771 struct type *type, struct regcache *regcache,
2772 gdb_byte *readbuf, const gdb_byte *writebuf)
2773 {
2774 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2775 return RETURN_VALUE_STRUCT_CONVENTION;
2776 if (readbuf)
2777 memset (readbuf, 0, TYPE_LENGTH (type));
2778 return RETURN_VALUE_REGISTER_CONVENTION;
2779 }
2780
2781
2782 /* N32/N64 ABI stuff. */
2783
2784 /* Search for a naturally aligned double at OFFSET inside a struct
2785 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
2786 registers. */
2787
2788 static int
2789 mips_n32n64_fp_arg_chunk_p (struct type *arg_type, int offset)
2790 {
2791 int i;
2792
2793 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
2794 return 0;
2795
2796 if (MIPS_FPU_TYPE != MIPS_FPU_DOUBLE)
2797 return 0;
2798
2799 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
2800 return 0;
2801
2802 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
2803 {
2804 int pos;
2805 struct type *field_type;
2806
2807 /* We're only looking at normal fields. */
2808 if (TYPE_FIELD_STATIC (arg_type, i)
2809 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
2810 continue;
2811
2812 /* If we have gone past the offset, there is no double to pass. */
2813 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
2814 if (pos > offset)
2815 return 0;
2816
2817 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
2818
2819 /* If this field is entirely before the requested offset, go
2820 on to the next one. */
2821 if (pos + TYPE_LENGTH (field_type) <= offset)
2822 continue;
2823
2824 /* If this is our special aligned double, we can stop. */
2825 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
2826 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
2827 return 1;
2828
2829 /* This field starts at or before the requested offset, and
2830 overlaps it. If it is a structure, recurse inwards. */
2831 return mips_n32n64_fp_arg_chunk_p (field_type, offset - pos);
2832 }
2833
2834 return 0;
2835 }
2836
2837 static CORE_ADDR
2838 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2839 struct regcache *regcache, CORE_ADDR bp_addr,
2840 int nargs, struct value **args, CORE_ADDR sp,
2841 int struct_return, CORE_ADDR struct_addr)
2842 {
2843 int argreg;
2844 int float_argreg;
2845 int argnum;
2846 int len = 0;
2847 int stack_offset = 0;
2848 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2849 CORE_ADDR func_addr = find_function_addr (function, NULL);
2850
2851 /* For shared libraries, "t9" needs to point at the function
2852 address. */
2853 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2854
2855 /* Set the return address register to point to the entry point of
2856 the program, where a breakpoint lies in wait. */
2857 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2858
2859 /* First ensure that the stack and structure return address (if any)
2860 are properly aligned. The stack has to be at least 64-bit
2861 aligned even on 32-bit machines, because doubles must be 64-bit
2862 aligned. For n32 and n64, stack frames need to be 128-bit
2863 aligned, so we round to this widest known alignment. */
2864
2865 sp = align_down (sp, 16);
2866 struct_addr = align_down (struct_addr, 16);
2867
2868 /* Now make space on the stack for the args. */
2869 for (argnum = 0; argnum < nargs; argnum++)
2870 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
2871 sp -= align_up (len, 16);
2872
2873 if (mips_debug)
2874 fprintf_unfiltered (gdb_stdlog,
2875 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2876 paddr_nz (sp), (long) align_up (len, 16));
2877
2878 /* Initialize the integer and float register pointers. */
2879 argreg = MIPS_A0_REGNUM;
2880 float_argreg = mips_fpa0_regnum (current_gdbarch);
2881
2882 /* The struct_return pointer occupies the first parameter-passing reg. */
2883 if (struct_return)
2884 {
2885 if (mips_debug)
2886 fprintf_unfiltered (gdb_stdlog,
2887 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
2888 argreg, paddr_nz (struct_addr));
2889 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2890 }
2891
2892 /* Now load as many as possible of the first arguments into
2893 registers, and push the rest onto the stack. Loop thru args
2894 from first to last. */
2895 for (argnum = 0; argnum < nargs; argnum++)
2896 {
2897 const gdb_byte *val;
2898 struct value *arg = args[argnum];
2899 struct type *arg_type = check_typedef (value_type (arg));
2900 int len = TYPE_LENGTH (arg_type);
2901 enum type_code typecode = TYPE_CODE (arg_type);
2902
2903 if (mips_debug)
2904 fprintf_unfiltered (gdb_stdlog,
2905 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
2906 argnum + 1, len, (int) typecode);
2907
2908 val = value_contents (arg);
2909
2910 if (fp_register_arg_p (typecode, arg_type)
2911 && argreg <= MIPS_LAST_ARG_REGNUM)
2912 {
2913 /* This is a floating point value that fits entirely
2914 in a single register. */
2915 LONGEST regval = extract_unsigned_integer (val, len);
2916 if (mips_debug)
2917 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2918 float_argreg, phex (regval, len));
2919 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
2920
2921 if (mips_debug)
2922 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2923 argreg, phex (regval, len));
2924 regcache_cooked_write_unsigned (regcache, argreg, regval);
2925 float_argreg++;
2926 argreg++;
2927 }
2928 else
2929 {
2930 /* Copy the argument to general registers or the stack in
2931 register-sized pieces. Large arguments are split between
2932 registers and stack. */
2933 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
2934 are treated specially: Irix cc passes them in registers
2935 where gcc sometimes puts them on the stack. For maximum
2936 compatibility, we will put them in both places. */
2937 int odd_sized_struct = (len > MIPS64_REGSIZE
2938 && len % MIPS64_REGSIZE != 0);
2939 /* Note: Floating-point values that didn't fit into an FP
2940 register are only written to memory. */
2941 while (len > 0)
2942 {
2943 /* Remember if the argument was written to the stack. */
2944 int stack_used_p = 0;
2945 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
2946
2947 if (mips_debug)
2948 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2949 partial_len);
2950
2951 if (fp_register_arg_p (typecode, arg_type))
2952 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM);
2953
2954 /* Write this portion of the argument to the stack. */
2955 if (argreg > MIPS_LAST_ARG_REGNUM
2956 || odd_sized_struct)
2957 {
2958 /* Should shorter than int integer values be
2959 promoted to int before being stored? */
2960 int longword_offset = 0;
2961 CORE_ADDR addr;
2962 stack_used_p = 1;
2963 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
2964 {
2965 if ((typecode == TYPE_CODE_INT
2966 || typecode == TYPE_CODE_PTR
2967 || typecode == TYPE_CODE_FLT)
2968 && len <= 4)
2969 longword_offset = MIPS64_REGSIZE - len;
2970 }
2971
2972 if (mips_debug)
2973 {
2974 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2975 paddr_nz (stack_offset));
2976 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2977 paddr_nz (longword_offset));
2978 }
2979
2980 addr = sp + stack_offset + longword_offset;
2981
2982 if (mips_debug)
2983 {
2984 int i;
2985 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2986 paddr_nz (addr));
2987 for (i = 0; i < partial_len; i++)
2988 {
2989 fprintf_unfiltered (gdb_stdlog, "%02x",
2990 val[i] & 0xff);
2991 }
2992 }
2993 write_memory (addr, val, partial_len);
2994 }
2995
2996 /* Note!!! This is NOT an else clause. Odd sized
2997 structs may go thru BOTH paths. */
2998 /* Write this portion of the argument to a general
2999 purpose register. */
3000 if (argreg <= MIPS_LAST_ARG_REGNUM)
3001 {
3002 LONGEST regval =
3003 extract_unsigned_integer (val, partial_len);
3004
3005 /* A non-floating-point argument being passed in a
3006 general register. If a struct or union, and if
3007 the remaining length is smaller than the register
3008 size, we have to adjust the register value on
3009 big endian targets.
3010
3011 It does not seem to be necessary to do the
3012 same for integral types. */
3013
3014 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
3015 && partial_len < MIPS64_REGSIZE
3016 && (typecode == TYPE_CODE_STRUCT
3017 || typecode == TYPE_CODE_UNION))
3018 regval <<= ((MIPS64_REGSIZE - partial_len)
3019 * TARGET_CHAR_BIT);
3020
3021 if (mips_debug)
3022 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3023 argreg,
3024 phex (regval, MIPS64_REGSIZE));
3025 regcache_cooked_write_unsigned (regcache, argreg, regval);
3026
3027 if (mips_n32n64_fp_arg_chunk_p (arg_type,
3028 TYPE_LENGTH (arg_type) - len))
3029 {
3030 if (mips_debug)
3031 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
3032 float_argreg,
3033 phex (regval, MIPS64_REGSIZE));
3034 regcache_cooked_write_unsigned (regcache, float_argreg,
3035 regval);
3036 }
3037
3038 float_argreg++;
3039 argreg++;
3040 }
3041
3042 len -= partial_len;
3043 val += partial_len;
3044
3045 /* Compute the the offset into the stack at which we
3046 will copy the next parameter.
3047
3048 In N32 (N64?), the stack_offset only needs to be
3049 adjusted when it has been used. */
3050
3051 if (stack_used_p)
3052 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3053 }
3054 }
3055 if (mips_debug)
3056 fprintf_unfiltered (gdb_stdlog, "\n");
3057 }
3058
3059 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3060
3061 /* Return adjusted stack pointer. */
3062 return sp;
3063 }
3064
3065 static enum return_value_convention
3066 mips_n32n64_return_value (struct gdbarch *gdbarch,
3067 struct type *type, struct regcache *regcache,
3068 gdb_byte *readbuf, const gdb_byte *writebuf)
3069 {
3070 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3071 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3072 || TYPE_CODE (type) == TYPE_CODE_UNION
3073 || TYPE_CODE (type) == TYPE_CODE_ARRAY
3074 || TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
3075 return RETURN_VALUE_STRUCT_CONVENTION;
3076 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3077 && TYPE_LENGTH (type) == 16
3078 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3079 {
3080 /* A 128-bit floating-point value fills both $f0 and $f2. The
3081 two registers are used in the same as memory order, so the
3082 eight bytes with the lower memory address are in $f0. */
3083 if (mips_debug)
3084 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
3085 mips_xfer_register (regcache,
3086 gdbarch_num_regs (current_gdbarch)
3087 + mips_regnum (current_gdbarch)->fp0,
3088 8, gdbarch_byte_order (current_gdbarch),
3089 readbuf, writebuf, 0);
3090 mips_xfer_register (regcache,
3091 gdbarch_num_regs (current_gdbarch)
3092 + mips_regnum (current_gdbarch)->fp0 + 2,
3093 8, gdbarch_byte_order (current_gdbarch),
3094 readbuf ? readbuf + 8 : readbuf,
3095 writebuf ? writebuf + 8 : writebuf, 0);
3096 return RETURN_VALUE_REGISTER_CONVENTION;
3097 }
3098 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3099 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3100 {
3101 /* A floating-point value belongs in the least significant part
3102 of FP0. */
3103 if (mips_debug)
3104 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3105 mips_xfer_register (regcache,
3106 gdbarch_num_regs (current_gdbarch)
3107 + mips_regnum (current_gdbarch)->fp0,
3108 TYPE_LENGTH (type),
3109 gdbarch_byte_order (current_gdbarch),
3110 readbuf, writebuf, 0);
3111 return RETURN_VALUE_REGISTER_CONVENTION;
3112 }
3113 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3114 && TYPE_NFIELDS (type) <= 2
3115 && TYPE_NFIELDS (type) >= 1
3116 && ((TYPE_NFIELDS (type) == 1
3117 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3118 == TYPE_CODE_FLT))
3119 || (TYPE_NFIELDS (type) == 2
3120 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3121 == TYPE_CODE_FLT)
3122 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3123 == TYPE_CODE_FLT)))
3124 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3125 {
3126 /* A struct that contains one or two floats. Each value is part
3127 in the least significant part of their floating point
3128 register.. */
3129 int regnum;
3130 int field;
3131 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3132 field < TYPE_NFIELDS (type); field++, regnum += 2)
3133 {
3134 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3135 / TARGET_CHAR_BIT);
3136 if (mips_debug)
3137 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3138 offset);
3139 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3140 + regnum,
3141 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3142 gdbarch_byte_order (current_gdbarch),
3143 readbuf, writebuf, offset);
3144 }
3145 return RETURN_VALUE_REGISTER_CONVENTION;
3146 }
3147 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3148 || TYPE_CODE (type) == TYPE_CODE_UNION)
3149 {
3150 /* A structure or union. Extract the left justified value,
3151 regardless of the byte order. I.e. DO NOT USE
3152 mips_xfer_lower. */
3153 int offset;
3154 int regnum;
3155 for (offset = 0, regnum = MIPS_V0_REGNUM;
3156 offset < TYPE_LENGTH (type);
3157 offset += register_size (current_gdbarch, regnum), regnum++)
3158 {
3159 int xfer = register_size (current_gdbarch, regnum);
3160 if (offset + xfer > TYPE_LENGTH (type))
3161 xfer = TYPE_LENGTH (type) - offset;
3162 if (mips_debug)
3163 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3164 offset, xfer, regnum);
3165 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3166 + regnum, xfer,
3167 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3168 }
3169 return RETURN_VALUE_REGISTER_CONVENTION;
3170 }
3171 else
3172 {
3173 /* A scalar extract each part but least-significant-byte
3174 justified. */
3175 int offset;
3176 int regnum;
3177 for (offset = 0, regnum = MIPS_V0_REGNUM;
3178 offset < TYPE_LENGTH (type);
3179 offset += register_size (current_gdbarch, regnum), regnum++)
3180 {
3181 int xfer = register_size (current_gdbarch, regnum);
3182 if (offset + xfer > TYPE_LENGTH (type))
3183 xfer = TYPE_LENGTH (type) - offset;
3184 if (mips_debug)
3185 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3186 offset, xfer, regnum);
3187 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3188 + regnum, xfer,
3189 gdbarch_byte_order (current_gdbarch),
3190 readbuf, writebuf, offset);
3191 }
3192 return RETURN_VALUE_REGISTER_CONVENTION;
3193 }
3194 }
3195
3196 /* O32 ABI stuff. */
3197
3198 static CORE_ADDR
3199 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3200 struct regcache *regcache, CORE_ADDR bp_addr,
3201 int nargs, struct value **args, CORE_ADDR sp,
3202 int struct_return, CORE_ADDR struct_addr)
3203 {
3204 int argreg;
3205 int float_argreg;
3206 int argnum;
3207 int len = 0;
3208 int stack_offset = 0;
3209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3210 CORE_ADDR func_addr = find_function_addr (function, NULL);
3211
3212 /* For shared libraries, "t9" needs to point at the function
3213 address. */
3214 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3215
3216 /* Set the return address register to point to the entry point of
3217 the program, where a breakpoint lies in wait. */
3218 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3219
3220 /* First ensure that the stack and structure return address (if any)
3221 are properly aligned. The stack has to be at least 64-bit
3222 aligned even on 32-bit machines, because doubles must be 64-bit
3223 aligned. For n32 and n64, stack frames need to be 128-bit
3224 aligned, so we round to this widest known alignment. */
3225
3226 sp = align_down (sp, 16);
3227 struct_addr = align_down (struct_addr, 16);
3228
3229 /* Now make space on the stack for the args. */
3230 for (argnum = 0; argnum < nargs; argnum++)
3231 {
3232 struct type *arg_type = check_typedef (value_type (args[argnum]));
3233 int arglen = TYPE_LENGTH (arg_type);
3234
3235 /* Align to double-word if necessary. */
3236 if (mips_type_needs_double_align (arg_type))
3237 len = align_up (len, MIPS32_REGSIZE * 2);
3238 /* Allocate space on the stack. */
3239 len += align_up (arglen, MIPS32_REGSIZE);
3240 }
3241 sp -= align_up (len, 16);
3242
3243 if (mips_debug)
3244 fprintf_unfiltered (gdb_stdlog,
3245 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3246 paddr_nz (sp), (long) align_up (len, 16));
3247
3248 /* Initialize the integer and float register pointers. */
3249 argreg = MIPS_A0_REGNUM;
3250 float_argreg = mips_fpa0_regnum (current_gdbarch);
3251
3252 /* The struct_return pointer occupies the first parameter-passing reg. */
3253 if (struct_return)
3254 {
3255 if (mips_debug)
3256 fprintf_unfiltered (gdb_stdlog,
3257 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3258 argreg, paddr_nz (struct_addr));
3259 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3260 stack_offset += MIPS32_REGSIZE;
3261 }
3262
3263 /* Now load as many as possible of the first arguments into
3264 registers, and push the rest onto the stack. Loop thru args
3265 from first to last. */
3266 for (argnum = 0; argnum < nargs; argnum++)
3267 {
3268 const gdb_byte *val;
3269 struct value *arg = args[argnum];
3270 struct type *arg_type = check_typedef (value_type (arg));
3271 int len = TYPE_LENGTH (arg_type);
3272 enum type_code typecode = TYPE_CODE (arg_type);
3273
3274 if (mips_debug)
3275 fprintf_unfiltered (gdb_stdlog,
3276 "mips_o32_push_dummy_call: %d len=%d type=%d",
3277 argnum + 1, len, (int) typecode);
3278
3279 val = value_contents (arg);
3280
3281 /* 32-bit ABIs always start floating point arguments in an
3282 even-numbered floating point register. Round the FP register
3283 up before the check to see if there are any FP registers
3284 left. O32/O64 targets also pass the FP in the integer
3285 registers so also round up normal registers. */
3286 if (fp_register_arg_p (typecode, arg_type))
3287 {
3288 if ((float_argreg & 1))
3289 float_argreg++;
3290 }
3291
3292 /* Floating point arguments passed in registers have to be
3293 treated specially. On 32-bit architectures, doubles
3294 are passed in register pairs; the even register gets
3295 the low word, and the odd register gets the high word.
3296 On O32/O64, the first two floating point arguments are
3297 also copied to general registers, because MIPS16 functions
3298 don't use float registers for arguments. This duplication of
3299 arguments in general registers can't hurt non-MIPS16 functions
3300 because those registers are normally skipped. */
3301
3302 if (fp_register_arg_p (typecode, arg_type)
3303 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3304 {
3305 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
3306 {
3307 int low_offset = gdbarch_byte_order (current_gdbarch)
3308 == BFD_ENDIAN_BIG ? 4 : 0;
3309 unsigned long regval;
3310
3311 /* Write the low word of the double to the even register(s). */
3312 regval = extract_unsigned_integer (val + low_offset, 4);
3313 if (mips_debug)
3314 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3315 float_argreg, phex (regval, 4));
3316 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3317 if (mips_debug)
3318 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3319 argreg, phex (regval, 4));
3320 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3321
3322 /* Write the high word of the double to the odd register(s). */
3323 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3324 if (mips_debug)
3325 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3326 float_argreg, phex (regval, 4));
3327 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3328
3329 if (mips_debug)
3330 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3331 argreg, phex (regval, 4));
3332 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3333 }
3334 else
3335 {
3336 /* This is a floating point value that fits entirely
3337 in a single register. */
3338 /* On 32 bit ABI's the float_argreg is further adjusted
3339 above to ensure that it is even register aligned. */
3340 LONGEST regval = extract_unsigned_integer (val, len);
3341 if (mips_debug)
3342 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3343 float_argreg, phex (regval, len));
3344 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3345 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3346 registers for each argument. The below is (my
3347 guess) to ensure that the corresponding integer
3348 register has reserved the same space. */
3349 if (mips_debug)
3350 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3351 argreg, phex (regval, len));
3352 regcache_cooked_write_unsigned (regcache, argreg, regval);
3353 argreg += 2;
3354 }
3355 /* Reserve space for the FP register. */
3356 stack_offset += align_up (len, MIPS32_REGSIZE);
3357 }
3358 else
3359 {
3360 /* Copy the argument to general registers or the stack in
3361 register-sized pieces. Large arguments are split between
3362 registers and stack. */
3363 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
3364 are treated specially: Irix cc passes
3365 them in registers where gcc sometimes puts them on the
3366 stack. For maximum compatibility, we will put them in
3367 both places. */
3368 int odd_sized_struct = (len > MIPS32_REGSIZE
3369 && len % MIPS32_REGSIZE != 0);
3370 /* Structures should be aligned to eight bytes (even arg registers)
3371 on MIPS_ABI_O32, if their first member has double precision. */
3372 if (mips_type_needs_double_align (arg_type))
3373 {
3374 if ((argreg & 1))
3375 {
3376 argreg++;
3377 stack_offset += MIPS32_REGSIZE;
3378 }
3379 }
3380 while (len > 0)
3381 {
3382 /* Remember if the argument was written to the stack. */
3383 int stack_used_p = 0;
3384 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
3385
3386 if (mips_debug)
3387 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3388 partial_len);
3389
3390 /* Write this portion of the argument to the stack. */
3391 if (argreg > MIPS_LAST_ARG_REGNUM
3392 || odd_sized_struct)
3393 {
3394 /* Should shorter than int integer values be
3395 promoted to int before being stored? */
3396 int longword_offset = 0;
3397 CORE_ADDR addr;
3398 stack_used_p = 1;
3399
3400 if (mips_debug)
3401 {
3402 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3403 paddr_nz (stack_offset));
3404 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3405 paddr_nz (longword_offset));
3406 }
3407
3408 addr = sp + stack_offset + longword_offset;
3409
3410 if (mips_debug)
3411 {
3412 int i;
3413 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3414 paddr_nz (addr));
3415 for (i = 0; i < partial_len; i++)
3416 {
3417 fprintf_unfiltered (gdb_stdlog, "%02x",
3418 val[i] & 0xff);
3419 }
3420 }
3421 write_memory (addr, val, partial_len);
3422 }
3423
3424 /* Note!!! This is NOT an else clause. Odd sized
3425 structs may go thru BOTH paths. */
3426 /* Write this portion of the argument to a general
3427 purpose register. */
3428 if (argreg <= MIPS_LAST_ARG_REGNUM)
3429 {
3430 LONGEST regval = extract_signed_integer (val, partial_len);
3431 /* Value may need to be sign extended, because
3432 mips_isa_regsize() != mips_abi_regsize(). */
3433
3434 /* A non-floating-point argument being passed in a
3435 general register. If a struct or union, and if
3436 the remaining length is smaller than the register
3437 size, we have to adjust the register value on
3438 big endian targets.
3439
3440 It does not seem to be necessary to do the
3441 same for integral types.
3442
3443 Also don't do this adjustment on O64 binaries.
3444
3445 cagney/2001-07-23: gdb/179: Also, GCC, when
3446 outputting LE O32 with sizeof (struct) <
3447 mips_abi_regsize(), generates a left shift
3448 as part of storing the argument in a register
3449 (the left shift isn't generated when
3450 sizeof (struct) >= mips_abi_regsize()). Since
3451 it is quite possible that this is GCC
3452 contradicting the LE/O32 ABI, GDB has not been
3453 adjusted to accommodate this. Either someone
3454 needs to demonstrate that the LE/O32 ABI
3455 specifies such a left shift OR this new ABI gets
3456 identified as such and GDB gets tweaked
3457 accordingly. */
3458
3459 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
3460 && partial_len < MIPS32_REGSIZE
3461 && (typecode == TYPE_CODE_STRUCT
3462 || typecode == TYPE_CODE_UNION))
3463 regval <<= ((MIPS32_REGSIZE - partial_len)
3464 * TARGET_CHAR_BIT);
3465
3466 if (mips_debug)
3467 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3468 argreg,
3469 phex (regval, MIPS32_REGSIZE));
3470 regcache_cooked_write_unsigned (regcache, argreg, regval);
3471 argreg++;
3472
3473 /* Prevent subsequent floating point arguments from
3474 being passed in floating point registers. */
3475 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3476 }
3477
3478 len -= partial_len;
3479 val += partial_len;
3480
3481 /* Compute the the offset into the stack at which we
3482 will copy the next parameter.
3483
3484 In older ABIs, the caller reserved space for
3485 registers that contained arguments. This was loosely
3486 refered to as their "home". Consequently, space is
3487 always allocated. */
3488
3489 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
3490 }
3491 }
3492 if (mips_debug)
3493 fprintf_unfiltered (gdb_stdlog, "\n");
3494 }
3495
3496 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3497
3498 /* Return adjusted stack pointer. */
3499 return sp;
3500 }
3501
3502 static enum return_value_convention
3503 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3504 struct regcache *regcache,
3505 gdb_byte *readbuf, const gdb_byte *writebuf)
3506 {
3507 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3508
3509 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3510 || TYPE_CODE (type) == TYPE_CODE_UNION
3511 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3512 return RETURN_VALUE_STRUCT_CONVENTION;
3513 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3514 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3515 {
3516 /* A single-precision floating-point value. It fits in the
3517 least significant part of FP0. */
3518 if (mips_debug)
3519 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3520 mips_xfer_register (regcache,
3521 gdbarch_num_regs (current_gdbarch)
3522 + mips_regnum (current_gdbarch)->fp0,
3523 TYPE_LENGTH (type),
3524 gdbarch_byte_order (current_gdbarch),
3525 readbuf, writebuf, 0);
3526 return RETURN_VALUE_REGISTER_CONVENTION;
3527 }
3528 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3529 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3530 {
3531 /* A double-precision floating-point value. The most
3532 significant part goes in FP1, and the least significant in
3533 FP0. */
3534 if (mips_debug)
3535 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3536 switch (gdbarch_byte_order (current_gdbarch))
3537 {
3538 case BFD_ENDIAN_LITTLE:
3539 mips_xfer_register (regcache,
3540 gdbarch_num_regs (current_gdbarch)
3541 + mips_regnum (current_gdbarch)->fp0 +
3542 0, 4, gdbarch_byte_order (current_gdbarch),
3543 readbuf, writebuf, 0);
3544 mips_xfer_register (regcache,
3545 gdbarch_num_regs (current_gdbarch)
3546 + mips_regnum (current_gdbarch)->fp0 + 1,
3547 4, gdbarch_byte_order (current_gdbarch),
3548 readbuf, writebuf, 4);
3549 break;
3550 case BFD_ENDIAN_BIG:
3551 mips_xfer_register (regcache,
3552 gdbarch_num_regs (current_gdbarch)
3553 + mips_regnum (current_gdbarch)->fp0 + 1,
3554 4, gdbarch_byte_order (current_gdbarch),
3555 readbuf, writebuf, 0);
3556 mips_xfer_register (regcache,
3557 gdbarch_num_regs (current_gdbarch)
3558 + mips_regnum (current_gdbarch)->fp0 + 0,
3559 4, gdbarch_byte_order (current_gdbarch),
3560 readbuf, writebuf, 4);
3561 break;
3562 default:
3563 internal_error (__FILE__, __LINE__, _("bad switch"));
3564 }
3565 return RETURN_VALUE_REGISTER_CONVENTION;
3566 }
3567 #if 0
3568 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3569 && TYPE_NFIELDS (type) <= 2
3570 && TYPE_NFIELDS (type) >= 1
3571 && ((TYPE_NFIELDS (type) == 1
3572 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3573 == TYPE_CODE_FLT))
3574 || (TYPE_NFIELDS (type) == 2
3575 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3576 == TYPE_CODE_FLT)
3577 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3578 == TYPE_CODE_FLT)))
3579 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3580 {
3581 /* A struct that contains one or two floats. Each value is part
3582 in the least significant part of their floating point
3583 register.. */
3584 gdb_byte reg[MAX_REGISTER_SIZE];
3585 int regnum;
3586 int field;
3587 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3588 field < TYPE_NFIELDS (type); field++, regnum += 2)
3589 {
3590 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3591 / TARGET_CHAR_BIT);
3592 if (mips_debug)
3593 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3594 offset);
3595 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3596 + regnum,
3597 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3598 gdbarch_byte_order (current_gdbarch),
3599 readbuf, writebuf, offset);
3600 }
3601 return RETURN_VALUE_REGISTER_CONVENTION;
3602 }
3603 #endif
3604 #if 0
3605 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3606 || TYPE_CODE (type) == TYPE_CODE_UNION)
3607 {
3608 /* A structure or union. Extract the left justified value,
3609 regardless of the byte order. I.e. DO NOT USE
3610 mips_xfer_lower. */
3611 int offset;
3612 int regnum;
3613 for (offset = 0, regnum = MIPS_V0_REGNUM;
3614 offset < TYPE_LENGTH (type);
3615 offset += register_size (current_gdbarch, regnum), regnum++)
3616 {
3617 int xfer = register_size (current_gdbarch, regnum);
3618 if (offset + xfer > TYPE_LENGTH (type))
3619 xfer = TYPE_LENGTH (type) - offset;
3620 if (mips_debug)
3621 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3622 offset, xfer, regnum);
3623 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3624 + regnum, xfer,
3625 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3626 }
3627 return RETURN_VALUE_REGISTER_CONVENTION;
3628 }
3629 #endif
3630 else
3631 {
3632 /* A scalar extract each part but least-significant-byte
3633 justified. o32 thinks registers are 4 byte, regardless of
3634 the ISA. */
3635 int offset;
3636 int regnum;
3637 for (offset = 0, regnum = MIPS_V0_REGNUM;
3638 offset < TYPE_LENGTH (type);
3639 offset += MIPS32_REGSIZE, regnum++)
3640 {
3641 int xfer = MIPS32_REGSIZE;
3642 if (offset + xfer > TYPE_LENGTH (type))
3643 xfer = TYPE_LENGTH (type) - offset;
3644 if (mips_debug)
3645 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3646 offset, xfer, regnum);
3647 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3648 + regnum, xfer,
3649 gdbarch_byte_order (current_gdbarch),
3650 readbuf, writebuf, offset);
3651 }
3652 return RETURN_VALUE_REGISTER_CONVENTION;
3653 }
3654 }
3655
3656 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3657 ABI. */
3658
3659 static CORE_ADDR
3660 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3661 struct regcache *regcache, CORE_ADDR bp_addr,
3662 int nargs,
3663 struct value **args, CORE_ADDR sp,
3664 int struct_return, CORE_ADDR struct_addr)
3665 {
3666 int argreg;
3667 int float_argreg;
3668 int argnum;
3669 int len = 0;
3670 int stack_offset = 0;
3671 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3672 CORE_ADDR func_addr = find_function_addr (function, NULL);
3673
3674 /* For shared libraries, "t9" needs to point at the function
3675 address. */
3676 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3677
3678 /* Set the return address register to point to the entry point of
3679 the program, where a breakpoint lies in wait. */
3680 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3681
3682 /* First ensure that the stack and structure return address (if any)
3683 are properly aligned. The stack has to be at least 64-bit
3684 aligned even on 32-bit machines, because doubles must be 64-bit
3685 aligned. For n32 and n64, stack frames need to be 128-bit
3686 aligned, so we round to this widest known alignment. */
3687
3688 sp = align_down (sp, 16);
3689 struct_addr = align_down (struct_addr, 16);
3690
3691 /* Now make space on the stack for the args. */
3692 for (argnum = 0; argnum < nargs; argnum++)
3693 {
3694 struct type *arg_type = check_typedef (value_type (args[argnum]));
3695 int arglen = TYPE_LENGTH (arg_type);
3696
3697 /* Allocate space on the stack. */
3698 len += align_up (arglen, MIPS64_REGSIZE);
3699 }
3700 sp -= align_up (len, 16);
3701
3702 if (mips_debug)
3703 fprintf_unfiltered (gdb_stdlog,
3704 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3705 paddr_nz (sp), (long) align_up (len, 16));
3706
3707 /* Initialize the integer and float register pointers. */
3708 argreg = MIPS_A0_REGNUM;
3709 float_argreg = mips_fpa0_regnum (current_gdbarch);
3710
3711 /* The struct_return pointer occupies the first parameter-passing reg. */
3712 if (struct_return)
3713 {
3714 if (mips_debug)
3715 fprintf_unfiltered (gdb_stdlog,
3716 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3717 argreg, paddr_nz (struct_addr));
3718 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3719 stack_offset += MIPS64_REGSIZE;
3720 }
3721
3722 /* Now load as many as possible of the first arguments into
3723 registers, and push the rest onto the stack. Loop thru args
3724 from first to last. */
3725 for (argnum = 0; argnum < nargs; argnum++)
3726 {
3727 const gdb_byte *val;
3728 struct value *arg = args[argnum];
3729 struct type *arg_type = check_typedef (value_type (arg));
3730 int len = TYPE_LENGTH (arg_type);
3731 enum type_code typecode = TYPE_CODE (arg_type);
3732
3733 if (mips_debug)
3734 fprintf_unfiltered (gdb_stdlog,
3735 "mips_o64_push_dummy_call: %d len=%d type=%d",
3736 argnum + 1, len, (int) typecode);
3737
3738 val = value_contents (arg);
3739
3740 /* Floating point arguments passed in registers have to be
3741 treated specially. On 32-bit architectures, doubles
3742 are passed in register pairs; the even register gets
3743 the low word, and the odd register gets the high word.
3744 On O32/O64, the first two floating point arguments are
3745 also copied to general registers, because MIPS16 functions
3746 don't use float registers for arguments. This duplication of
3747 arguments in general registers can't hurt non-MIPS16 functions
3748 because those registers are normally skipped. */
3749
3750 if (fp_register_arg_p (typecode, arg_type)
3751 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3752 {
3753 LONGEST regval = extract_unsigned_integer (val, len);
3754 if (mips_debug)
3755 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3756 float_argreg, phex (regval, len));
3757 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3758 if (mips_debug)
3759 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3760 argreg, phex (regval, len));
3761 regcache_cooked_write_unsigned (regcache, argreg, regval);
3762 argreg++;
3763 /* Reserve space for the FP register. */
3764 stack_offset += align_up (len, MIPS64_REGSIZE);
3765 }
3766 else
3767 {
3768 /* Copy the argument to general registers or the stack in
3769 register-sized pieces. Large arguments are split between
3770 registers and stack. */
3771 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
3772 are treated specially: Irix cc passes them in registers
3773 where gcc sometimes puts them on the stack. For maximum
3774 compatibility, we will put them in both places. */
3775 int odd_sized_struct = (len > MIPS64_REGSIZE
3776 && len % MIPS64_REGSIZE != 0);
3777 while (len > 0)
3778 {
3779 /* Remember if the argument was written to the stack. */
3780 int stack_used_p = 0;
3781 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
3782
3783 if (mips_debug)
3784 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3785 partial_len);
3786
3787 /* Write this portion of the argument to the stack. */
3788 if (argreg > MIPS_LAST_ARG_REGNUM
3789 || odd_sized_struct)
3790 {
3791 /* Should shorter than int integer values be
3792 promoted to int before being stored? */
3793 int longword_offset = 0;
3794 CORE_ADDR addr;
3795 stack_used_p = 1;
3796 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
3797 {
3798 if ((typecode == TYPE_CODE_INT
3799 || typecode == TYPE_CODE_PTR
3800 || typecode == TYPE_CODE_FLT)
3801 && len <= 4)
3802 longword_offset = MIPS64_REGSIZE - len;
3803 }
3804
3805 if (mips_debug)
3806 {
3807 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3808 paddr_nz (stack_offset));
3809 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3810 paddr_nz (longword_offset));
3811 }
3812
3813 addr = sp + stack_offset + longword_offset;
3814
3815 if (mips_debug)
3816 {
3817 int i;
3818 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3819 paddr_nz (addr));
3820 for (i = 0; i < partial_len; i++)
3821 {
3822 fprintf_unfiltered (gdb_stdlog, "%02x",
3823 val[i] & 0xff);
3824 }
3825 }
3826 write_memory (addr, val, partial_len);
3827 }
3828
3829 /* Note!!! This is NOT an else clause. Odd sized
3830 structs may go thru BOTH paths. */
3831 /* Write this portion of the argument to a general
3832 purpose register. */
3833 if (argreg <= MIPS_LAST_ARG_REGNUM)
3834 {
3835 LONGEST regval = extract_signed_integer (val, partial_len);
3836 /* Value may need to be sign extended, because
3837 mips_isa_regsize() != mips_abi_regsize(). */
3838
3839 /* A non-floating-point argument being passed in a
3840 general register. If a struct or union, and if
3841 the remaining length is smaller than the register
3842 size, we have to adjust the register value on
3843 big endian targets.
3844
3845 It does not seem to be necessary to do the
3846 same for integral types. */
3847
3848 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
3849 && partial_len < MIPS64_REGSIZE
3850 && (typecode == TYPE_CODE_STRUCT
3851 || typecode == TYPE_CODE_UNION))
3852 regval <<= ((MIPS64_REGSIZE - partial_len)
3853 * TARGET_CHAR_BIT);
3854
3855 if (mips_debug)
3856 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3857 argreg,
3858 phex (regval, MIPS64_REGSIZE));
3859 regcache_cooked_write_unsigned (regcache, argreg, regval);
3860 argreg++;
3861
3862 /* Prevent subsequent floating point arguments from
3863 being passed in floating point registers. */
3864 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3865 }
3866
3867 len -= partial_len;
3868 val += partial_len;
3869
3870 /* Compute the the offset into the stack at which we
3871 will copy the next parameter.
3872
3873 In older ABIs, the caller reserved space for
3874 registers that contained arguments. This was loosely
3875 refered to as their "home". Consequently, space is
3876 always allocated. */
3877
3878 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3879 }
3880 }
3881 if (mips_debug)
3882 fprintf_unfiltered (gdb_stdlog, "\n");
3883 }
3884
3885 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3886
3887 /* Return adjusted stack pointer. */
3888 return sp;
3889 }
3890
3891 static enum return_value_convention
3892 mips_o64_return_value (struct gdbarch *gdbarch,
3893 struct type *type, struct regcache *regcache,
3894 gdb_byte *readbuf, const gdb_byte *writebuf)
3895 {
3896 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3897
3898 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3899 || TYPE_CODE (type) == TYPE_CODE_UNION
3900 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3901 return RETURN_VALUE_STRUCT_CONVENTION;
3902 else if (fp_register_arg_p (TYPE_CODE (type), type))
3903 {
3904 /* A floating-point value. It fits in the least significant
3905 part of FP0. */
3906 if (mips_debug)
3907 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3908 mips_xfer_register (regcache,
3909 gdbarch_num_regs (current_gdbarch)
3910 + mips_regnum (current_gdbarch)->fp0,
3911 TYPE_LENGTH (type),
3912 gdbarch_byte_order (current_gdbarch),
3913 readbuf, writebuf, 0);
3914 return RETURN_VALUE_REGISTER_CONVENTION;
3915 }
3916 else
3917 {
3918 /* A scalar extract each part but least-significant-byte
3919 justified. */
3920 int offset;
3921 int regnum;
3922 for (offset = 0, regnum = MIPS_V0_REGNUM;
3923 offset < TYPE_LENGTH (type);
3924 offset += MIPS64_REGSIZE, regnum++)
3925 {
3926 int xfer = MIPS64_REGSIZE;
3927 if (offset + xfer > TYPE_LENGTH (type))
3928 xfer = TYPE_LENGTH (type) - offset;
3929 if (mips_debug)
3930 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3931 offset, xfer, regnum);
3932 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3933 + regnum, xfer,
3934 gdbarch_byte_order (current_gdbarch),
3935 readbuf, writebuf, offset);
3936 }
3937 return RETURN_VALUE_REGISTER_CONVENTION;
3938 }
3939 }
3940
3941 /* Floating point register management.
3942
3943 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3944 64bit operations, these early MIPS cpus treat fp register pairs
3945 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3946 registers and offer a compatibility mode that emulates the MIPS2 fp
3947 model. When operating in MIPS2 fp compat mode, later cpu's split
3948 double precision floats into two 32-bit chunks and store them in
3949 consecutive fp regs. To display 64-bit floats stored in this
3950 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3951 Throw in user-configurable endianness and you have a real mess.
3952
3953 The way this works is:
3954 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3955 double-precision value will be split across two logical registers.
3956 The lower-numbered logical register will hold the low-order bits,
3957 regardless of the processor's endianness.
3958 - If we are on a 64-bit processor, and we are looking for a
3959 single-precision value, it will be in the low ordered bits
3960 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3961 save slot in memory.
3962 - If we are in 64-bit mode, everything is straightforward.
3963
3964 Note that this code only deals with "live" registers at the top of the
3965 stack. We will attempt to deal with saved registers later, when
3966 the raw/cooked register interface is in place. (We need a general
3967 interface that can deal with dynamic saved register sizes -- fp
3968 regs could be 32 bits wide in one frame and 64 on the frame above
3969 and below). */
3970
3971 static struct type *
3972 mips_float_register_type (void)
3973 {
3974 return builtin_type_ieee_single;
3975 }
3976
3977 static struct type *
3978 mips_double_register_type (void)
3979 {
3980 return builtin_type_ieee_double;
3981 }
3982
3983 /* Copy a 32-bit single-precision value from the current frame
3984 into rare_buffer. */
3985
3986 static void
3987 mips_read_fp_register_single (struct frame_info *frame, int regno,
3988 gdb_byte *rare_buffer)
3989 {
3990 int raw_size = register_size (current_gdbarch, regno);
3991 gdb_byte *raw_buffer = alloca (raw_size);
3992
3993 if (!frame_register_read (frame, regno, raw_buffer))
3994 error (_("can't read register %d (%s)"),
3995 regno, gdbarch_register_name (current_gdbarch, regno));
3996 if (raw_size == 8)
3997 {
3998 /* We have a 64-bit value for this register. Find the low-order
3999 32 bits. */
4000 int offset;
4001
4002 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4003 offset = 4;
4004 else
4005 offset = 0;
4006
4007 memcpy (rare_buffer, raw_buffer + offset, 4);
4008 }
4009 else
4010 {
4011 memcpy (rare_buffer, raw_buffer, 4);
4012 }
4013 }
4014
4015 /* Copy a 64-bit double-precision value from the current frame into
4016 rare_buffer. This may include getting half of it from the next
4017 register. */
4018
4019 static void
4020 mips_read_fp_register_double (struct frame_info *frame, int regno,
4021 gdb_byte *rare_buffer)
4022 {
4023 int raw_size = register_size (current_gdbarch, regno);
4024
4025 if (raw_size == 8 && !mips2_fp_compat (frame))
4026 {
4027 /* We have a 64-bit value for this register, and we should use
4028 all 64 bits. */
4029 if (!frame_register_read (frame, regno, rare_buffer))
4030 error (_("can't read register %d (%s)"),
4031 regno, gdbarch_register_name (current_gdbarch, regno));
4032 }
4033 else
4034 {
4035 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
4036 internal_error (__FILE__, __LINE__,
4037 _("mips_read_fp_register_double: bad access to "
4038 "odd-numbered FP register"));
4039
4040 /* mips_read_fp_register_single will find the correct 32 bits from
4041 each register. */
4042 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4043 {
4044 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4045 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4046 }
4047 else
4048 {
4049 mips_read_fp_register_single (frame, regno, rare_buffer);
4050 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4051 }
4052 }
4053 }
4054
4055 static void
4056 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4057 int regnum)
4058 { /* do values for FP (float) regs */
4059 gdb_byte *raw_buffer;
4060 double doub, flt1; /* doubles extracted from raw hex data */
4061 int inv1, inv2;
4062
4063 raw_buffer = alloca (2 * register_size (current_gdbarch,
4064 mips_regnum (current_gdbarch)->fp0));
4065
4066 fprintf_filtered (file, "%s:",
4067 gdbarch_register_name (current_gdbarch, regnum));
4068 fprintf_filtered (file, "%*s",
4069 4 - (int) strlen (gdbarch_register_name
4070 (current_gdbarch, regnum)),
4071 "");
4072
4073 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat (frame))
4074 {
4075 /* 4-byte registers: Print hex and floating. Also print even
4076 numbered registers as doubles. */
4077 mips_read_fp_register_single (frame, regnum, raw_buffer);
4078 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4079
4080 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
4081 file);
4082
4083 fprintf_filtered (file, " flt: ");
4084 if (inv1)
4085 fprintf_filtered (file, " <invalid float> ");
4086 else
4087 fprintf_filtered (file, "%-17.9g", flt1);
4088
4089 if (regnum % 2 == 0)
4090 {
4091 mips_read_fp_register_double (frame, regnum, raw_buffer);
4092 doub = unpack_double (mips_double_register_type (), raw_buffer,
4093 &inv2);
4094
4095 fprintf_filtered (file, " dbl: ");
4096 if (inv2)
4097 fprintf_filtered (file, "<invalid double>");
4098 else
4099 fprintf_filtered (file, "%-24.17g", doub);
4100 }
4101 }
4102 else
4103 {
4104 /* Eight byte registers: print each one as hex, float and double. */
4105 mips_read_fp_register_single (frame, regnum, raw_buffer);
4106 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4107
4108 mips_read_fp_register_double (frame, regnum, raw_buffer);
4109 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4110
4111
4112 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4113 file);
4114
4115 fprintf_filtered (file, " flt: ");
4116 if (inv1)
4117 fprintf_filtered (file, "<invalid float>");
4118 else
4119 fprintf_filtered (file, "%-17.9g", flt1);
4120
4121 fprintf_filtered (file, " dbl: ");
4122 if (inv2)
4123 fprintf_filtered (file, "<invalid double>");
4124 else
4125 fprintf_filtered (file, "%-24.17g", doub);
4126 }
4127 }
4128
4129 static void
4130 mips_print_register (struct ui_file *file, struct frame_info *frame,
4131 int regnum)
4132 {
4133 struct gdbarch *gdbarch = get_frame_arch (frame);
4134 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4135 int offset;
4136
4137 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4138 {
4139 mips_print_fp_register (file, frame, regnum);
4140 return;
4141 }
4142
4143 /* Get the data in raw format. */
4144 if (!frame_register_read (frame, regnum, raw_buffer))
4145 {
4146 fprintf_filtered (file, "%s: [Invalid]",
4147 gdbarch_register_name (current_gdbarch, regnum));
4148 return;
4149 }
4150
4151 fputs_filtered (gdbarch_register_name (current_gdbarch, regnum), file);
4152
4153 /* The problem with printing numeric register names (r26, etc.) is that
4154 the user can't use them on input. Probably the best solution is to
4155 fix it so that either the numeric or the funky (a2, etc.) names
4156 are accepted on input. */
4157 if (regnum < MIPS_NUMREGS)
4158 fprintf_filtered (file, "(r%d): ", regnum);
4159 else
4160 fprintf_filtered (file, ": ");
4161
4162 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4163 offset =
4164 register_size (current_gdbarch,
4165 regnum) - register_size (current_gdbarch, regnum);
4166 else
4167 offset = 0;
4168
4169 print_scalar_formatted (raw_buffer + offset,
4170 register_type (gdbarch, regnum), 'x', 0,
4171 file);
4172 }
4173
4174 /* Replacement for generic do_registers_info.
4175 Print regs in pretty columns. */
4176
4177 static int
4178 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4179 int regnum)
4180 {
4181 fprintf_filtered (file, " ");
4182 mips_print_fp_register (file, frame, regnum);
4183 fprintf_filtered (file, "\n");
4184 return regnum + 1;
4185 }
4186
4187
4188 /* Print a row's worth of GP (int) registers, with name labels above */
4189
4190 static int
4191 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4192 int start_regnum)
4193 {
4194 struct gdbarch *gdbarch = get_frame_arch (frame);
4195 /* do values for GP (int) regs */
4196 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4197 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4198 int col, byte;
4199 int regnum;
4200
4201 /* For GP registers, we print a separate row of names above the vals */
4202 for (col = 0, regnum = start_regnum;
4203 col < ncols && regnum < gdbarch_num_regs (current_gdbarch)
4204 + gdbarch_num_pseudo_regs (current_gdbarch);
4205 regnum++)
4206 {
4207 if (*gdbarch_register_name (current_gdbarch, regnum) == '\0')
4208 continue; /* unused register */
4209 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4210 TYPE_CODE_FLT)
4211 break; /* end the row: reached FP register */
4212 /* Large registers are handled separately. */
4213 if (register_size (current_gdbarch, regnum)
4214 > mips_abi_regsize (current_gdbarch))
4215 {
4216 if (col > 0)
4217 break; /* End the row before this register. */
4218
4219 /* Print this register on a row by itself. */
4220 mips_print_register (file, frame, regnum);
4221 fprintf_filtered (file, "\n");
4222 return regnum + 1;
4223 }
4224 if (col == 0)
4225 fprintf_filtered (file, " ");
4226 fprintf_filtered (file,
4227 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4228 gdbarch_register_name (current_gdbarch, regnum));
4229 col++;
4230 }
4231
4232 if (col == 0)
4233 return regnum;
4234
4235 /* print the R0 to R31 names */
4236 if ((start_regnum % gdbarch_num_regs (current_gdbarch)) < MIPS_NUMREGS)
4237 fprintf_filtered (file, "\n R%-4d",
4238 start_regnum % gdbarch_num_regs (current_gdbarch));
4239 else
4240 fprintf_filtered (file, "\n ");
4241
4242 /* now print the values in hex, 4 or 8 to the row */
4243 for (col = 0, regnum = start_regnum;
4244 col < ncols && regnum < gdbarch_num_regs (current_gdbarch)
4245 + gdbarch_num_pseudo_regs (current_gdbarch);
4246 regnum++)
4247 {
4248 if (*gdbarch_register_name (current_gdbarch, regnum) == '\0')
4249 continue; /* unused register */
4250 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4251 TYPE_CODE_FLT)
4252 break; /* end row: reached FP register */
4253 if (register_size (current_gdbarch, regnum)
4254 > mips_abi_regsize (current_gdbarch))
4255 break; /* End row: large register. */
4256
4257 /* OK: get the data in raw format. */
4258 if (!frame_register_read (frame, regnum, raw_buffer))
4259 error (_("can't read register %d (%s)"),
4260 regnum, gdbarch_register_name (current_gdbarch, regnum));
4261 /* pad small registers */
4262 for (byte = 0;
4263 byte < (mips_abi_regsize (current_gdbarch)
4264 - register_size (current_gdbarch, regnum)); byte++)
4265 printf_filtered (" ");
4266 /* Now print the register value in hex, endian order. */
4267 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4268 for (byte =
4269 register_size (current_gdbarch,
4270 regnum) - register_size (current_gdbarch, regnum);
4271 byte < register_size (current_gdbarch, regnum); byte++)
4272 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4273 else
4274 for (byte = register_size (current_gdbarch, regnum) - 1;
4275 byte >= 0; byte--)
4276 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4277 fprintf_filtered (file, " ");
4278 col++;
4279 }
4280 if (col > 0) /* ie. if we actually printed anything... */
4281 fprintf_filtered (file, "\n");
4282
4283 return regnum;
4284 }
4285
4286 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4287
4288 static void
4289 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4290 struct frame_info *frame, int regnum, int all)
4291 {
4292 if (regnum != -1) /* do one specified register */
4293 {
4294 gdb_assert (regnum >= gdbarch_num_regs (current_gdbarch));
4295 if (*(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
4296 error (_("Not a valid register for the current processor type"));
4297
4298 mips_print_register (file, frame, regnum);
4299 fprintf_filtered (file, "\n");
4300 }
4301 else
4302 /* do all (or most) registers */
4303 {
4304 regnum = gdbarch_num_regs (current_gdbarch);
4305 while (regnum < gdbarch_num_regs (current_gdbarch)
4306 + gdbarch_num_pseudo_regs (current_gdbarch))
4307 {
4308 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4309 TYPE_CODE_FLT)
4310 {
4311 if (all) /* true for "INFO ALL-REGISTERS" command */
4312 regnum = print_fp_register_row (file, frame, regnum);
4313 else
4314 regnum += MIPS_NUMREGS; /* skip floating point regs */
4315 }
4316 else
4317 regnum = print_gp_register_row (file, frame, regnum);
4318 }
4319 }
4320 }
4321
4322 /* Is this a branch with a delay slot? */
4323
4324 static int
4325 is_delayed (unsigned long insn)
4326 {
4327 int i;
4328 for (i = 0; i < NUMOPCODES; ++i)
4329 if (mips_opcodes[i].pinfo != INSN_MACRO
4330 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4331 break;
4332 return (i < NUMOPCODES
4333 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4334 | INSN_COND_BRANCH_DELAY
4335 | INSN_COND_BRANCH_LIKELY)));
4336 }
4337
4338 int
4339 mips_single_step_through_delay (struct gdbarch *gdbarch,
4340 struct frame_info *frame)
4341 {
4342 CORE_ADDR pc = get_frame_pc (frame);
4343 gdb_byte buf[MIPS_INSN32_SIZE];
4344
4345 /* There is no branch delay slot on MIPS16. */
4346 if (mips_pc_is_mips16 (pc))
4347 return 0;
4348
4349 if (!breakpoint_here_p (pc + 4))
4350 return 0;
4351
4352 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4353 /* If error reading memory, guess that it is not a delayed
4354 branch. */
4355 return 0;
4356 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
4357 }
4358
4359 /* To skip prologues, I use this predicate. Returns either PC itself
4360 if the code at PC does not look like a function prologue; otherwise
4361 returns an address that (if we're lucky) follows the prologue. If
4362 LENIENT, then we must skip everything which is involved in setting
4363 up the frame (it's OK to skip more, just so long as we don't skip
4364 anything which might clobber the registers which are being saved.
4365 We must skip more in the case where part of the prologue is in the
4366 delay slot of a non-prologue instruction). */
4367
4368 static CORE_ADDR
4369 mips_skip_prologue (CORE_ADDR pc)
4370 {
4371 CORE_ADDR limit_pc;
4372 CORE_ADDR func_addr;
4373
4374 /* See if we can determine the end of the prologue via the symbol table.
4375 If so, then return either PC, or the PC after the prologue, whichever
4376 is greater. */
4377 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4378 {
4379 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4380 if (post_prologue_pc != 0)
4381 return max (pc, post_prologue_pc);
4382 }
4383
4384 /* Can't determine prologue from the symbol table, need to examine
4385 instructions. */
4386
4387 /* Find an upper limit on the function prologue using the debug
4388 information. If the debug information could not be used to provide
4389 that bound, then use an arbitrary large number as the upper bound. */
4390 limit_pc = skip_prologue_using_sal (pc);
4391 if (limit_pc == 0)
4392 limit_pc = pc + 100; /* Magic. */
4393
4394 if (mips_pc_is_mips16 (pc))
4395 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
4396 else
4397 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
4398 }
4399
4400 /* Root of all "set mips "/"show mips " commands. This will eventually be
4401 used for all MIPS-specific commands. */
4402
4403 static void
4404 show_mips_command (char *args, int from_tty)
4405 {
4406 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4407 }
4408
4409 static void
4410 set_mips_command (char *args, int from_tty)
4411 {
4412 printf_unfiltered
4413 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4414 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4415 }
4416
4417 /* Commands to show/set the MIPS FPU type. */
4418
4419 static void
4420 show_mipsfpu_command (char *args, int from_tty)
4421 {
4422 char *fpu;
4423 switch (MIPS_FPU_TYPE)
4424 {
4425 case MIPS_FPU_SINGLE:
4426 fpu = "single-precision";
4427 break;
4428 case MIPS_FPU_DOUBLE:
4429 fpu = "double-precision";
4430 break;
4431 case MIPS_FPU_NONE:
4432 fpu = "absent (none)";
4433 break;
4434 default:
4435 internal_error (__FILE__, __LINE__, _("bad switch"));
4436 }
4437 if (mips_fpu_type_auto)
4438 printf_unfiltered
4439 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4440 fpu);
4441 else
4442 printf_unfiltered
4443 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4444 }
4445
4446
4447 static void
4448 set_mipsfpu_command (char *args, int from_tty)
4449 {
4450 printf_unfiltered
4451 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4452 show_mipsfpu_command (args, from_tty);
4453 }
4454
4455 static void
4456 set_mipsfpu_single_command (char *args, int from_tty)
4457 {
4458 struct gdbarch_info info;
4459 gdbarch_info_init (&info);
4460 mips_fpu_type = MIPS_FPU_SINGLE;
4461 mips_fpu_type_auto = 0;
4462 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4463 instead of relying on globals. Doing that would let generic code
4464 handle the search for this specific architecture. */
4465 if (!gdbarch_update_p (info))
4466 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4467 }
4468
4469 static void
4470 set_mipsfpu_double_command (char *args, int from_tty)
4471 {
4472 struct gdbarch_info info;
4473 gdbarch_info_init (&info);
4474 mips_fpu_type = MIPS_FPU_DOUBLE;
4475 mips_fpu_type_auto = 0;
4476 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4477 instead of relying on globals. Doing that would let generic code
4478 handle the search for this specific architecture. */
4479 if (!gdbarch_update_p (info))
4480 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4481 }
4482
4483 static void
4484 set_mipsfpu_none_command (char *args, int from_tty)
4485 {
4486 struct gdbarch_info info;
4487 gdbarch_info_init (&info);
4488 mips_fpu_type = MIPS_FPU_NONE;
4489 mips_fpu_type_auto = 0;
4490 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4491 instead of relying on globals. Doing that would let generic code
4492 handle the search for this specific architecture. */
4493 if (!gdbarch_update_p (info))
4494 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4495 }
4496
4497 static void
4498 set_mipsfpu_auto_command (char *args, int from_tty)
4499 {
4500 mips_fpu_type_auto = 1;
4501 }
4502
4503 /* Attempt to identify the particular processor model by reading the
4504 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4505 the relevant processor still exists (it dates back to '94) and
4506 secondly this is not the way to do this. The processor type should
4507 be set by forcing an architecture change. */
4508
4509 void
4510 deprecated_mips_set_processor_regs_hack (void)
4511 {
4512 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4513 ULONGEST prid;
4514
4515 regcache_cooked_read_unsigned (get_current_regcache (),
4516 MIPS_PRID_REGNUM, &prid);
4517 if ((prid & ~0xf) == 0x700)
4518 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4519 }
4520
4521 /* Just like reinit_frame_cache, but with the right arguments to be
4522 callable as an sfunc. */
4523
4524 static void
4525 reinit_frame_cache_sfunc (char *args, int from_tty,
4526 struct cmd_list_element *c)
4527 {
4528 reinit_frame_cache ();
4529 }
4530
4531 static int
4532 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4533 {
4534 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4535
4536 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4537 disassembler needs to be able to locally determine the ISA, and
4538 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4539 work. */
4540 if (mips_pc_is_mips16 (memaddr))
4541 info->mach = bfd_mach_mips16;
4542
4543 /* Round down the instruction address to the appropriate boundary. */
4544 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4545
4546 /* Set the disassembler options. */
4547 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
4548 {
4549 /* Set up the disassembler info, so that we get the right
4550 register names from libopcodes. */
4551 if (tdep->mips_abi == MIPS_ABI_N32)
4552 info->disassembler_options = "gpr-names=n32";
4553 else
4554 info->disassembler_options = "gpr-names=64";
4555 info->flavour = bfd_target_elf_flavour;
4556 }
4557 else
4558 /* This string is not recognized explicitly by the disassembler,
4559 but it tells the disassembler to not try to guess the ABI from
4560 the bfd elf headers, such that, if the user overrides the ABI
4561 of a program linked as NewABI, the disassembly will follow the
4562 register naming conventions specified by the user. */
4563 info->disassembler_options = "gpr-names=32";
4564
4565 /* Call the appropriate disassembler based on the target endian-ness. */
4566 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4567 return print_insn_big_mips (memaddr, info);
4568 else
4569 return print_insn_little_mips (memaddr, info);
4570 }
4571
4572 /* This function implements gdbarch_breakpoint_from_pc. It uses the program
4573 counter value to determine whether a 16- or 32-bit breakpoint should be used.
4574 It returns a pointer to a string of bytes that encode a breakpoint
4575 instruction, stores the length of the string to *lenptr, and adjusts pc (if
4576 necessary) to point to the actual memory location where the breakpoint
4577 should be inserted. */
4578
4579 static const gdb_byte *
4580 mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
4581 {
4582 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4583 {
4584 if (mips_pc_is_mips16 (*pcptr))
4585 {
4586 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4587 *pcptr = unmake_mips16_addr (*pcptr);
4588 *lenptr = sizeof (mips16_big_breakpoint);
4589 return mips16_big_breakpoint;
4590 }
4591 else
4592 {
4593 /* The IDT board uses an unusual breakpoint value, and
4594 sometimes gets confused when it sees the usual MIPS
4595 breakpoint instruction. */
4596 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4597 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4598 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
4599
4600 *lenptr = sizeof (big_breakpoint);
4601
4602 if (strcmp (target_shortname, "mips") == 0)
4603 return idt_big_breakpoint;
4604 else if (strcmp (target_shortname, "ddb") == 0
4605 || strcmp (target_shortname, "pmon") == 0
4606 || strcmp (target_shortname, "lsi") == 0)
4607 return pmon_big_breakpoint;
4608 else
4609 return big_breakpoint;
4610 }
4611 }
4612 else
4613 {
4614 if (mips_pc_is_mips16 (*pcptr))
4615 {
4616 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4617 *pcptr = unmake_mips16_addr (*pcptr);
4618 *lenptr = sizeof (mips16_little_breakpoint);
4619 return mips16_little_breakpoint;
4620 }
4621 else
4622 {
4623 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4624 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4625 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
4626
4627 *lenptr = sizeof (little_breakpoint);
4628
4629 if (strcmp (target_shortname, "mips") == 0)
4630 return idt_little_breakpoint;
4631 else if (strcmp (target_shortname, "ddb") == 0
4632 || strcmp (target_shortname, "pmon") == 0
4633 || strcmp (target_shortname, "lsi") == 0)
4634 return pmon_little_breakpoint;
4635 else
4636 return little_breakpoint;
4637 }
4638 }
4639 }
4640
4641 /* If PC is in a mips16 call or return stub, return the address of the target
4642 PC, which is either the callee or the caller. There are several
4643 cases which must be handled:
4644
4645 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4646 target PC is in $31 ($ra).
4647 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4648 and the target PC is in $2.
4649 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4650 before the jal instruction, this is effectively a call stub
4651 and the the target PC is in $2. Otherwise this is effectively
4652 a return stub and the target PC is in $18.
4653
4654 See the source code for the stubs in gcc/config/mips/mips16.S for
4655 gory details. */
4656
4657 static CORE_ADDR
4658 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
4659 {
4660 char *name;
4661 CORE_ADDR start_addr;
4662
4663 /* Find the starting address and name of the function containing the PC. */
4664 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4665 return 0;
4666
4667 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4668 target PC is in $31 ($ra). */
4669 if (strcmp (name, "__mips16_ret_sf") == 0
4670 || strcmp (name, "__mips16_ret_df") == 0)
4671 return get_frame_register_signed (frame, MIPS_RA_REGNUM);
4672
4673 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4674 {
4675 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4676 and the target PC is in $2. */
4677 if (name[19] >= '0' && name[19] <= '9')
4678 return get_frame_register_signed (frame, 2);
4679
4680 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4681 before the jal instruction, this is effectively a call stub
4682 and the the target PC is in $2. Otherwise this is effectively
4683 a return stub and the target PC is in $18. */
4684 else if (name[19] == 's' || name[19] == 'd')
4685 {
4686 if (pc == start_addr)
4687 {
4688 /* Check if the target of the stub is a compiler-generated
4689 stub. Such a stub for a function bar might have a name
4690 like __fn_stub_bar, and might look like this:
4691 mfc1 $4,$f13
4692 mfc1 $5,$f12
4693 mfc1 $6,$f15
4694 mfc1 $7,$f14
4695 la $1,bar (becomes a lui/addiu pair)
4696 jr $1
4697 So scan down to the lui/addi and extract the target
4698 address from those two instructions. */
4699
4700 CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
4701 ULONGEST inst;
4702 int i;
4703
4704 /* See if the name of the target function is __fn_stub_*. */
4705 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4706 0)
4707 return target_pc;
4708 if (strncmp (name, "__fn_stub_", 10) != 0
4709 && strcmp (name, "etext") != 0
4710 && strcmp (name, "_etext") != 0)
4711 return target_pc;
4712
4713 /* Scan through this _fn_stub_ code for the lui/addiu pair.
4714 The limit on the search is arbitrarily set to 20
4715 instructions. FIXME. */
4716 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
4717 {
4718 inst = mips_fetch_instruction (target_pc);
4719 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4720 pc = (inst << 16) & 0xffff0000; /* high word */
4721 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4722 return pc | (inst & 0xffff); /* low word */
4723 }
4724
4725 /* Couldn't find the lui/addui pair, so return stub address. */
4726 return target_pc;
4727 }
4728 else
4729 /* This is the 'return' part of a call stub. The return
4730 address is in $r18. */
4731 return get_frame_register_signed (frame, 18);
4732 }
4733 }
4734 return 0; /* not a stub */
4735 }
4736
4737 /* Convert a dbx stab register number (from `r' declaration) to a GDB
4738 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
4739
4740 static int
4741 mips_stab_reg_to_regnum (int num)
4742 {
4743 int regnum;
4744 if (num >= 0 && num < 32)
4745 regnum = num;
4746 else if (num >= 38 && num < 70)
4747 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
4748 else if (num == 70)
4749 regnum = mips_regnum (current_gdbarch)->hi;
4750 else if (num == 71)
4751 regnum = mips_regnum (current_gdbarch)->lo;
4752 else
4753 /* This will hopefully (eventually) provoke a warning. Should
4754 we be calling complaint() here? */
4755 return gdbarch_num_regs (current_gdbarch)
4756 + gdbarch_num_pseudo_regs (current_gdbarch);
4757 return gdbarch_num_regs (current_gdbarch) + regnum;
4758 }
4759
4760
4761 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4762 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
4763
4764 static int
4765 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
4766 {
4767 int regnum;
4768 if (num >= 0 && num < 32)
4769 regnum = num;
4770 else if (num >= 32 && num < 64)
4771 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
4772 else if (num == 64)
4773 regnum = mips_regnum (current_gdbarch)->hi;
4774 else if (num == 65)
4775 regnum = mips_regnum (current_gdbarch)->lo;
4776 else
4777 /* This will hopefully (eventually) provoke a warning. Should we
4778 be calling complaint() here? */
4779 return gdbarch_num_regs (current_gdbarch)
4780 + gdbarch_num_pseudo_regs (current_gdbarch);
4781 return gdbarch_num_regs (current_gdbarch) + regnum;
4782 }
4783
4784 static int
4785 mips_register_sim_regno (int regnum)
4786 {
4787 /* Only makes sense to supply raw registers. */
4788 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (current_gdbarch));
4789 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4790 decide if it is valid. Should instead define a standard sim/gdb
4791 register numbering scheme. */
4792 if (gdbarch_register_name (current_gdbarch,
4793 gdbarch_num_regs
4794 (current_gdbarch) + regnum) != NULL
4795 && gdbarch_register_name (current_gdbarch,
4796 gdbarch_num_regs
4797 (current_gdbarch) + regnum)[0] != '\0')
4798 return regnum;
4799 else
4800 return LEGACY_SIM_REGNO_IGNORE;
4801 }
4802
4803
4804 /* Convert an integer into an address. Extracting the value signed
4805 guarantees a correctly sign extended address. */
4806
4807 static CORE_ADDR
4808 mips_integer_to_address (struct gdbarch *gdbarch,
4809 struct type *type, const gdb_byte *buf)
4810 {
4811 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
4812 }
4813
4814 static void
4815 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4816 {
4817 enum mips_abi *abip = (enum mips_abi *) obj;
4818 const char *name = bfd_get_section_name (abfd, sect);
4819
4820 if (*abip != MIPS_ABI_UNKNOWN)
4821 return;
4822
4823 if (strncmp (name, ".mdebug.", 8) != 0)
4824 return;
4825
4826 if (strcmp (name, ".mdebug.abi32") == 0)
4827 *abip = MIPS_ABI_O32;
4828 else if (strcmp (name, ".mdebug.abiN32") == 0)
4829 *abip = MIPS_ABI_N32;
4830 else if (strcmp (name, ".mdebug.abi64") == 0)
4831 *abip = MIPS_ABI_N64;
4832 else if (strcmp (name, ".mdebug.abiO64") == 0)
4833 *abip = MIPS_ABI_O64;
4834 else if (strcmp (name, ".mdebug.eabi32") == 0)
4835 *abip = MIPS_ABI_EABI32;
4836 else if (strcmp (name, ".mdebug.eabi64") == 0)
4837 *abip = MIPS_ABI_EABI64;
4838 else
4839 warning (_("unsupported ABI %s."), name + 8);
4840 }
4841
4842 static void
4843 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
4844 {
4845 int *lbp = (int *) obj;
4846 const char *name = bfd_get_section_name (abfd, sect);
4847
4848 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
4849 *lbp = 32;
4850 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
4851 *lbp = 64;
4852 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
4853 warning (_("unrecognized .gcc_compiled_longXX"));
4854 }
4855
4856 static enum mips_abi
4857 global_mips_abi (void)
4858 {
4859 int i;
4860
4861 for (i = 0; mips_abi_strings[i] != NULL; i++)
4862 if (mips_abi_strings[i] == mips_abi_string)
4863 return (enum mips_abi) i;
4864
4865 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
4866 }
4867
4868 static void
4869 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
4870 {
4871 static struct target_desc *tdesc_gp32, *tdesc_gp64;
4872
4873 if (tdesc_gp32 == NULL)
4874 {
4875 /* Create feature sets with the appropriate properties. The values
4876 are not important. */
4877
4878 tdesc_gp32 = allocate_target_description ();
4879 set_tdesc_property (tdesc_gp32, PROPERTY_GP32, "");
4880
4881 tdesc_gp64 = allocate_target_description ();
4882 set_tdesc_property (tdesc_gp64, PROPERTY_GP64, "");
4883 }
4884
4885 /* If the size matches the set of 32-bit or 64-bit integer registers,
4886 assume that's what we've got. */
4887 register_remote_g_packet_guess (gdbarch, 38 * 4, tdesc_gp32);
4888 register_remote_g_packet_guess (gdbarch, 38 * 8, tdesc_gp64);
4889
4890 /* If the size matches the full set of registers GDB traditionally
4891 knows about, including floating point, for either 32-bit or
4892 64-bit, assume that's what we've got. */
4893 register_remote_g_packet_guess (gdbarch, 90 * 4, tdesc_gp32);
4894 register_remote_g_packet_guess (gdbarch, 90 * 8, tdesc_gp64);
4895
4896 /* Otherwise we don't have a useful guess. */
4897 }
4898
4899 static struct value *
4900 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
4901 {
4902 const int *reg_p = baton;
4903 return value_of_register (*reg_p, frame);
4904 }
4905
4906 static struct gdbarch *
4907 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4908 {
4909 struct gdbarch *gdbarch;
4910 struct gdbarch_tdep *tdep;
4911 int elf_flags;
4912 enum mips_abi mips_abi, found_abi, wanted_abi;
4913 int i, num_regs;
4914 enum mips_fpu_type fpu_type;
4915 struct tdesc_arch_data *tdesc_data = NULL;
4916
4917 /* Check any target description for validity. */
4918 if (tdesc_has_registers (info.target_desc))
4919 {
4920 static const char *const mips_gprs[] = {
4921 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
4922 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
4923 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
4924 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
4925 };
4926 static const char *const mips_fprs[] = {
4927 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
4928 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
4929 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
4930 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
4931 };
4932
4933 const struct tdesc_feature *feature;
4934 int valid_p;
4935
4936 feature = tdesc_find_feature (info.target_desc,
4937 "org.gnu.gdb.mips.cpu");
4938 if (feature == NULL)
4939 return NULL;
4940
4941 tdesc_data = tdesc_data_alloc ();
4942
4943 valid_p = 1;
4944 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
4945 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
4946 mips_gprs[i]);
4947
4948
4949 valid_p &= tdesc_numbered_register (feature, tdesc_data,
4950 MIPS_EMBED_LO_REGNUM, "lo");
4951 valid_p &= tdesc_numbered_register (feature, tdesc_data,
4952 MIPS_EMBED_HI_REGNUM, "hi");
4953 valid_p &= tdesc_numbered_register (feature, tdesc_data,
4954 MIPS_EMBED_PC_REGNUM, "pc");
4955
4956 if (!valid_p)
4957 {
4958 tdesc_data_cleanup (tdesc_data);
4959 return NULL;
4960 }
4961
4962 feature = tdesc_find_feature (info.target_desc,
4963 "org.gnu.gdb.mips.cp0");
4964 if (feature == NULL)
4965 {
4966 tdesc_data_cleanup (tdesc_data);
4967 return NULL;
4968 }
4969
4970 valid_p = 1;
4971 valid_p &= tdesc_numbered_register (feature, tdesc_data,
4972 MIPS_EMBED_BADVADDR_REGNUM,
4973 "badvaddr");
4974 valid_p &= tdesc_numbered_register (feature, tdesc_data,
4975 MIPS_PS_REGNUM, "status");
4976 valid_p &= tdesc_numbered_register (feature, tdesc_data,
4977 MIPS_EMBED_CAUSE_REGNUM, "cause");
4978
4979 if (!valid_p)
4980 {
4981 tdesc_data_cleanup (tdesc_data);
4982 return NULL;
4983 }
4984
4985 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
4986 backend is not prepared for that, though. */
4987 feature = tdesc_find_feature (info.target_desc,
4988 "org.gnu.gdb.mips.fpu");
4989 if (feature == NULL)
4990 {
4991 tdesc_data_cleanup (tdesc_data);
4992 return NULL;
4993 }
4994
4995 valid_p = 1;
4996 for (i = 0; i < 32; i++)
4997 valid_p &= tdesc_numbered_register (feature, tdesc_data,
4998 i + MIPS_EMBED_FP0_REGNUM,
4999 mips_fprs[i]);
5000
5001 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5002 MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
5003 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5004 MIPS_EMBED_FP0_REGNUM + 33, "fir");
5005
5006 if (!valid_p)
5007 {
5008 tdesc_data_cleanup (tdesc_data);
5009 return NULL;
5010 }
5011
5012 /* It would be nice to detect an attempt to use a 64-bit ABI
5013 when only 32-bit registers are provided. */
5014 }
5015
5016 /* First of all, extract the elf_flags, if available. */
5017 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5018 elf_flags = elf_elfheader (info.abfd)->e_flags;
5019 else if (arches != NULL)
5020 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
5021 else
5022 elf_flags = 0;
5023 if (gdbarch_debug)
5024 fprintf_unfiltered (gdb_stdlog,
5025 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
5026
5027 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5028 switch ((elf_flags & EF_MIPS_ABI))
5029 {
5030 case E_MIPS_ABI_O32:
5031 found_abi = MIPS_ABI_O32;
5032 break;
5033 case E_MIPS_ABI_O64:
5034 found_abi = MIPS_ABI_O64;
5035 break;
5036 case E_MIPS_ABI_EABI32:
5037 found_abi = MIPS_ABI_EABI32;
5038 break;
5039 case E_MIPS_ABI_EABI64:
5040 found_abi = MIPS_ABI_EABI64;
5041 break;
5042 default:
5043 if ((elf_flags & EF_MIPS_ABI2))
5044 found_abi = MIPS_ABI_N32;
5045 else
5046 found_abi = MIPS_ABI_UNKNOWN;
5047 break;
5048 }
5049
5050 /* GCC creates a pseudo-section whose name describes the ABI. */
5051 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5052 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
5053
5054 /* If we have no useful BFD information, use the ABI from the last
5055 MIPS architecture (if there is one). */
5056 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5057 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5058
5059 /* Try the architecture for any hint of the correct ABI. */
5060 if (found_abi == MIPS_ABI_UNKNOWN
5061 && info.bfd_arch_info != NULL
5062 && info.bfd_arch_info->arch == bfd_arch_mips)
5063 {
5064 switch (info.bfd_arch_info->mach)
5065 {
5066 case bfd_mach_mips3900:
5067 found_abi = MIPS_ABI_EABI32;
5068 break;
5069 case bfd_mach_mips4100:
5070 case bfd_mach_mips5000:
5071 found_abi = MIPS_ABI_EABI64;
5072 break;
5073 case bfd_mach_mips8000:
5074 case bfd_mach_mips10000:
5075 /* On Irix, ELF64 executables use the N64 ABI. The
5076 pseudo-sections which describe the ABI aren't present
5077 on IRIX. (Even for executables created by gcc.) */
5078 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5079 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5080 found_abi = MIPS_ABI_N64;
5081 else
5082 found_abi = MIPS_ABI_N32;
5083 break;
5084 }
5085 }
5086
5087 /* Default 64-bit objects to N64 instead of O32. */
5088 if (found_abi == MIPS_ABI_UNKNOWN
5089 && info.abfd != NULL
5090 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5091 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5092 found_abi = MIPS_ABI_N64;
5093
5094 if (gdbarch_debug)
5095 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5096 found_abi);
5097
5098 /* What has the user specified from the command line? */
5099 wanted_abi = global_mips_abi ();
5100 if (gdbarch_debug)
5101 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5102 wanted_abi);
5103
5104 /* Now that we have found what the ABI for this binary would be,
5105 check whether the user is overriding it. */
5106 if (wanted_abi != MIPS_ABI_UNKNOWN)
5107 mips_abi = wanted_abi;
5108 else if (found_abi != MIPS_ABI_UNKNOWN)
5109 mips_abi = found_abi;
5110 else
5111 mips_abi = MIPS_ABI_O32;
5112 if (gdbarch_debug)
5113 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5114 mips_abi);
5115
5116 /* Also used when doing an architecture lookup. */
5117 if (gdbarch_debug)
5118 fprintf_unfiltered (gdb_stdlog,
5119 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5120 mips64_transfers_32bit_regs_p);
5121
5122 /* Determine the MIPS FPU type. */
5123 if (!mips_fpu_type_auto)
5124 fpu_type = mips_fpu_type;
5125 else if (info.bfd_arch_info != NULL
5126 && info.bfd_arch_info->arch == bfd_arch_mips)
5127 switch (info.bfd_arch_info->mach)
5128 {
5129 case bfd_mach_mips3900:
5130 case bfd_mach_mips4100:
5131 case bfd_mach_mips4111:
5132 case bfd_mach_mips4120:
5133 fpu_type = MIPS_FPU_NONE;
5134 break;
5135 case bfd_mach_mips4650:
5136 fpu_type = MIPS_FPU_SINGLE;
5137 break;
5138 default:
5139 fpu_type = MIPS_FPU_DOUBLE;
5140 break;
5141 }
5142 else if (arches != NULL)
5143 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5144 else
5145 fpu_type = MIPS_FPU_DOUBLE;
5146 if (gdbarch_debug)
5147 fprintf_unfiltered (gdb_stdlog,
5148 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
5149
5150 /* Check for blatant incompatibilities. */
5151
5152 /* If we have only 32-bit registers, then we can't debug a 64-bit
5153 ABI. */
5154 if (info.target_desc
5155 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
5156 && mips_abi != MIPS_ABI_EABI32
5157 && mips_abi != MIPS_ABI_O32)
5158 {
5159 if (tdesc_data != NULL)
5160 tdesc_data_cleanup (tdesc_data);
5161 return NULL;
5162 }
5163
5164 /* try to find a pre-existing architecture */
5165 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5166 arches != NULL;
5167 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5168 {
5169 /* MIPS needs to be pedantic about which ABI the object is
5170 using. */
5171 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5172 continue;
5173 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5174 continue;
5175 /* Need to be pedantic about which register virtual size is
5176 used. */
5177 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5178 != mips64_transfers_32bit_regs_p)
5179 continue;
5180 /* Be pedantic about which FPU is selected. */
5181 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5182 continue;
5183
5184 if (tdesc_data != NULL)
5185 tdesc_data_cleanup (tdesc_data);
5186 return arches->gdbarch;
5187 }
5188
5189 /* Need a new architecture. Fill in a target specific vector. */
5190 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5191 gdbarch = gdbarch_alloc (&info, tdep);
5192 tdep->elf_flags = elf_flags;
5193 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
5194 tdep->found_abi = found_abi;
5195 tdep->mips_abi = mips_abi;
5196 tdep->mips_fpu_type = fpu_type;
5197 tdep->register_size_valid_p = 0;
5198 tdep->register_size = 0;
5199
5200 if (info.target_desc)
5201 {
5202 /* Some useful properties can be inferred from the target. */
5203 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
5204 {
5205 tdep->register_size_valid_p = 1;
5206 tdep->register_size = 4;
5207 }
5208 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
5209 {
5210 tdep->register_size_valid_p = 1;
5211 tdep->register_size = 8;
5212 }
5213 }
5214
5215 /* Initially set everything according to the default ABI/ISA. */
5216 set_gdbarch_short_bit (gdbarch, 16);
5217 set_gdbarch_int_bit (gdbarch, 32);
5218 set_gdbarch_float_bit (gdbarch, 32);
5219 set_gdbarch_double_bit (gdbarch, 64);
5220 set_gdbarch_long_double_bit (gdbarch, 64);
5221 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5222 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5223 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5224
5225 set_gdbarch_elf_make_msymbol_special (gdbarch,
5226 mips_elf_make_msymbol_special);
5227
5228 /* Fill in the OS dependant register numbers and names. */
5229 {
5230 const char **reg_names;
5231 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5232 struct mips_regnum);
5233 if (tdesc_has_registers (info.target_desc))
5234 {
5235 regnum->lo = MIPS_EMBED_LO_REGNUM;
5236 regnum->hi = MIPS_EMBED_HI_REGNUM;
5237 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5238 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5239 regnum->pc = MIPS_EMBED_PC_REGNUM;
5240 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5241 regnum->fp_control_status = 70;
5242 regnum->fp_implementation_revision = 71;
5243 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
5244 reg_names = NULL;
5245 }
5246 else if (info.osabi == GDB_OSABI_IRIX)
5247 {
5248 regnum->fp0 = 32;
5249 regnum->pc = 64;
5250 regnum->cause = 65;
5251 regnum->badvaddr = 66;
5252 regnum->hi = 67;
5253 regnum->lo = 68;
5254 regnum->fp_control_status = 69;
5255 regnum->fp_implementation_revision = 70;
5256 num_regs = 71;
5257 reg_names = mips_irix_reg_names;
5258 }
5259 else
5260 {
5261 regnum->lo = MIPS_EMBED_LO_REGNUM;
5262 regnum->hi = MIPS_EMBED_HI_REGNUM;
5263 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5264 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5265 regnum->pc = MIPS_EMBED_PC_REGNUM;
5266 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5267 regnum->fp_control_status = 70;
5268 regnum->fp_implementation_revision = 71;
5269 num_regs = 90;
5270 if (info.bfd_arch_info != NULL
5271 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5272 reg_names = mips_tx39_reg_names;
5273 else
5274 reg_names = mips_generic_reg_names;
5275 }
5276 /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
5277 replaced by read_pc? */
5278 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5279 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5280 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5281 set_gdbarch_num_regs (gdbarch, num_regs);
5282 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5283 set_gdbarch_register_name (gdbarch, mips_register_name);
5284 tdep->mips_processor_reg_names = reg_names;
5285 tdep->regnum = regnum;
5286 }
5287
5288 switch (mips_abi)
5289 {
5290 case MIPS_ABI_O32:
5291 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5292 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
5293 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5294 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5295 tdep->default_mask_address_p = 0;
5296 set_gdbarch_long_bit (gdbarch, 32);
5297 set_gdbarch_ptr_bit (gdbarch, 32);
5298 set_gdbarch_long_long_bit (gdbarch, 64);
5299 break;
5300 case MIPS_ABI_O64:
5301 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5302 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
5303 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5304 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5305 tdep->default_mask_address_p = 0;
5306 set_gdbarch_long_bit (gdbarch, 32);
5307 set_gdbarch_ptr_bit (gdbarch, 32);
5308 set_gdbarch_long_long_bit (gdbarch, 64);
5309 break;
5310 case MIPS_ABI_EABI32:
5311 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5312 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5313 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5314 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5315 tdep->default_mask_address_p = 0;
5316 set_gdbarch_long_bit (gdbarch, 32);
5317 set_gdbarch_ptr_bit (gdbarch, 32);
5318 set_gdbarch_long_long_bit (gdbarch, 64);
5319 break;
5320 case MIPS_ABI_EABI64:
5321 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5322 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5323 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5324 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5325 tdep->default_mask_address_p = 0;
5326 set_gdbarch_long_bit (gdbarch, 64);
5327 set_gdbarch_ptr_bit (gdbarch, 64);
5328 set_gdbarch_long_long_bit (gdbarch, 64);
5329 break;
5330 case MIPS_ABI_N32:
5331 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5332 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5333 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5334 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5335 tdep->default_mask_address_p = 0;
5336 set_gdbarch_long_bit (gdbarch, 32);
5337 set_gdbarch_ptr_bit (gdbarch, 32);
5338 set_gdbarch_long_long_bit (gdbarch, 64);
5339 set_gdbarch_long_double_bit (gdbarch, 128);
5340 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
5341 break;
5342 case MIPS_ABI_N64:
5343 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5344 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5345 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5346 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5347 tdep->default_mask_address_p = 0;
5348 set_gdbarch_long_bit (gdbarch, 64);
5349 set_gdbarch_ptr_bit (gdbarch, 64);
5350 set_gdbarch_long_long_bit (gdbarch, 64);
5351 set_gdbarch_long_double_bit (gdbarch, 128);
5352 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
5353 break;
5354 default:
5355 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5356 }
5357
5358 /* GCC creates a pseudo-section whose name specifies the size of
5359 longs, since -mlong32 or -mlong64 may be used independent of
5360 other options. How those options affect pointer sizes is ABI and
5361 architecture dependent, so use them to override the default sizes
5362 set by the ABI. This table shows the relationship between ABI,
5363 -mlongXX, and size of pointers:
5364
5365 ABI -mlongXX ptr bits
5366 --- -------- --------
5367 o32 32 32
5368 o32 64 32
5369 n32 32 32
5370 n32 64 64
5371 o64 32 32
5372 o64 64 64
5373 n64 32 32
5374 n64 64 64
5375 eabi32 32 32
5376 eabi32 64 32
5377 eabi64 32 32
5378 eabi64 64 64
5379
5380 Note that for o32 and eabi32, pointers are always 32 bits
5381 regardless of any -mlongXX option. For all others, pointers and
5382 longs are the same, as set by -mlongXX or set by defaults.
5383 */
5384
5385 if (info.abfd != NULL)
5386 {
5387 int long_bit = 0;
5388
5389 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5390 if (long_bit)
5391 {
5392 set_gdbarch_long_bit (gdbarch, long_bit);
5393 switch (mips_abi)
5394 {
5395 case MIPS_ABI_O32:
5396 case MIPS_ABI_EABI32:
5397 break;
5398 case MIPS_ABI_N32:
5399 case MIPS_ABI_O64:
5400 case MIPS_ABI_N64:
5401 case MIPS_ABI_EABI64:
5402 set_gdbarch_ptr_bit (gdbarch, long_bit);
5403 break;
5404 default:
5405 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5406 }
5407 }
5408 }
5409
5410 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5411 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5412 comment:
5413
5414 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5415 flag in object files because to do so would make it impossible to
5416 link with libraries compiled without "-gp32". This is
5417 unnecessarily restrictive.
5418
5419 We could solve this problem by adding "-gp32" multilibs to gcc,
5420 but to set this flag before gcc is built with such multilibs will
5421 break too many systems.''
5422
5423 But even more unhelpfully, the default linker output target for
5424 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5425 for 64-bit programs - you need to change the ABI to change this,
5426 and not all gcc targets support that currently. Therefore using
5427 this flag to detect 32-bit mode would do the wrong thing given
5428 the current gcc - it would make GDB treat these 64-bit programs
5429 as 32-bit programs by default. */
5430
5431 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5432 set_gdbarch_write_pc (gdbarch, mips_write_pc);
5433
5434 /* Add/remove bits from an address. The MIPS needs be careful to
5435 ensure that all 32 bit addresses are sign extended to 64 bits. */
5436 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5437
5438 /* Unwind the frame. */
5439 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
5440 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
5441 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
5442
5443 /* Map debug register numbers onto internal register numbers. */
5444 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5445 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5446 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5447 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5448 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5449 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5450 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5451 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5452
5453 /* MIPS version of CALL_DUMMY */
5454
5455 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5456 replaced by a command, and all targets will default to on stack
5457 (regardless of the stack's execute status). */
5458 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5459 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5460
5461 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5462 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5463 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5464
5465 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5466 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5467
5468 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5469
5470 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5471 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5472 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5473
5474 set_gdbarch_register_type (gdbarch, mips_register_type);
5475
5476 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5477
5478 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5479
5480 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5481 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5482 need to all be folded into the target vector. Since they are
5483 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5484 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5485 is sitting on? */
5486 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5487
5488 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
5489
5490 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5491
5492 /* Virtual tables. */
5493 set_gdbarch_vbit_in_delta (gdbarch, 1);
5494
5495 mips_register_g_packet_guesses (gdbarch);
5496
5497 /* Hook in OS ABI-specific overrides, if they have been registered. */
5498 info.tdep_info = (void *) tdesc_data;
5499 gdbarch_init_osabi (info, gdbarch);
5500
5501 /* Unwind the frame. */
5502 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
5503 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
5504 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5505 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
5506 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
5507 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
5508 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5509 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5510
5511 if (tdesc_data)
5512 {
5513 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
5514 tdesc_use_registers (gdbarch, tdesc_data);
5515
5516 /* Override the normal target description methods to handle our
5517 dual real and pseudo registers. */
5518 set_gdbarch_register_name (gdbarch, mips_register_name);
5519 set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
5520
5521 num_regs = gdbarch_num_regs (gdbarch);
5522 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5523 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
5524 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5525 }
5526
5527 /* Add ABI-specific aliases for the registers. */
5528 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5529 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
5530 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
5531 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
5532 else
5533 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
5534 user_reg_add (gdbarch, mips_o32_aliases[i].name,
5535 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
5536
5537 /* Add some other standard aliases. */
5538 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
5539 user_reg_add (gdbarch, mips_register_aliases[i].name,
5540 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
5541
5542 return gdbarch;
5543 }
5544
5545 static void
5546 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5547 {
5548 struct gdbarch_info info;
5549
5550 /* Force the architecture to update, and (if it's a MIPS architecture)
5551 mips_gdbarch_init will take care of the rest. */
5552 gdbarch_info_init (&info);
5553 gdbarch_update_p (info);
5554 }
5555
5556 /* Print out which MIPS ABI is in use. */
5557
5558 static void
5559 show_mips_abi (struct ui_file *file,
5560 int from_tty,
5561 struct cmd_list_element *ignored_cmd,
5562 const char *ignored_value)
5563 {
5564 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
5565 fprintf_filtered
5566 (file,
5567 "The MIPS ABI is unknown because the current architecture "
5568 "is not MIPS.\n");
5569 else
5570 {
5571 enum mips_abi global_abi = global_mips_abi ();
5572 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5573 const char *actual_abi_str = mips_abi_strings[actual_abi];
5574
5575 if (global_abi == MIPS_ABI_UNKNOWN)
5576 fprintf_filtered
5577 (file,
5578 "The MIPS ABI is set automatically (currently \"%s\").\n",
5579 actual_abi_str);
5580 else if (global_abi == actual_abi)
5581 fprintf_filtered
5582 (file,
5583 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5584 actual_abi_str);
5585 else
5586 {
5587 /* Probably shouldn't happen... */
5588 fprintf_filtered
5589 (file,
5590 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5591 actual_abi_str, mips_abi_strings[global_abi]);
5592 }
5593 }
5594 }
5595
5596 static void
5597 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5598 {
5599 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5600 if (tdep != NULL)
5601 {
5602 int ef_mips_arch;
5603 int ef_mips_32bitmode;
5604 /* Determine the ISA. */
5605 switch (tdep->elf_flags & EF_MIPS_ARCH)
5606 {
5607 case E_MIPS_ARCH_1:
5608 ef_mips_arch = 1;
5609 break;
5610 case E_MIPS_ARCH_2:
5611 ef_mips_arch = 2;
5612 break;
5613 case E_MIPS_ARCH_3:
5614 ef_mips_arch = 3;
5615 break;
5616 case E_MIPS_ARCH_4:
5617 ef_mips_arch = 4;
5618 break;
5619 default:
5620 ef_mips_arch = 0;
5621 break;
5622 }
5623 /* Determine the size of a pointer. */
5624 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
5625 fprintf_unfiltered (file,
5626 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5627 tdep->elf_flags);
5628 fprintf_unfiltered (file,
5629 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5630 ef_mips_32bitmode);
5631 fprintf_unfiltered (file,
5632 "mips_dump_tdep: ef_mips_arch = %d\n",
5633 ef_mips_arch);
5634 fprintf_unfiltered (file,
5635 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5636 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
5637 fprintf_unfiltered (file,
5638 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5639 mips_mask_address_p (tdep),
5640 tdep->default_mask_address_p);
5641 }
5642 fprintf_unfiltered (file,
5643 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5644 MIPS_DEFAULT_FPU_TYPE,
5645 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5646 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5647 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5648 : "???"));
5649 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
5650 fprintf_unfiltered (file,
5651 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5652 MIPS_FPU_TYPE,
5653 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5654 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5655 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5656 : "???"));
5657 }
5658
5659 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
5660
5661 void
5662 _initialize_mips_tdep (void)
5663 {
5664 static struct cmd_list_element *mipsfpulist = NULL;
5665 struct cmd_list_element *c;
5666
5667 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
5668 if (MIPS_ABI_LAST + 1
5669 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5670 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
5671
5672 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
5673
5674 mips_pdr_data = register_objfile_data ();
5675
5676 /* Add root prefix command for all "set mips"/"show mips" commands */
5677 add_prefix_cmd ("mips", no_class, set_mips_command,
5678 _("Various MIPS specific commands."),
5679 &setmipscmdlist, "set mips ", 0, &setlist);
5680
5681 add_prefix_cmd ("mips", no_class, show_mips_command,
5682 _("Various MIPS specific commands."),
5683 &showmipscmdlist, "show mips ", 0, &showlist);
5684
5685 /* Allow the user to override the ABI. */
5686 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5687 &mips_abi_string, _("\
5688 Set the MIPS ABI used by this program."), _("\
5689 Show the MIPS ABI used by this program."), _("\
5690 This option can be set to one of:\n\
5691 auto - the default ABI associated with the current binary\n\
5692 o32\n\
5693 o64\n\
5694 n32\n\
5695 n64\n\
5696 eabi32\n\
5697 eabi64"),
5698 mips_abi_update,
5699 show_mips_abi,
5700 &setmipscmdlist, &showmipscmdlist);
5701
5702 /* Let the user turn off floating point and set the fence post for
5703 heuristic_proc_start. */
5704
5705 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5706 _("Set use of MIPS floating-point coprocessor."),
5707 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5708 add_cmd ("single", class_support, set_mipsfpu_single_command,
5709 _("Select single-precision MIPS floating-point coprocessor."),
5710 &mipsfpulist);
5711 add_cmd ("double", class_support, set_mipsfpu_double_command,
5712 _("Select double-precision MIPS floating-point coprocessor."),
5713 &mipsfpulist);
5714 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5715 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5716 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5717 add_cmd ("none", class_support, set_mipsfpu_none_command,
5718 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
5719 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5720 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5721 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5722 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5723 _("Select MIPS floating-point coprocessor automatically."),
5724 &mipsfpulist);
5725 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5726 _("Show current use of MIPS floating-point coprocessor target."),
5727 &showlist);
5728
5729 /* We really would like to have both "0" and "unlimited" work, but
5730 command.c doesn't deal with that. So make it a var_zinteger
5731 because the user can always use "999999" or some such for unlimited. */
5732 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
5733 &heuristic_fence_post, _("\
5734 Set the distance searched for the start of a function."), _("\
5735 Show the distance searched for the start of a function."), _("\
5736 If you are debugging a stripped executable, GDB needs to search through the\n\
5737 program for the start of a function. This command sets the distance of the\n\
5738 search. The only need to set it is when debugging a stripped executable."),
5739 reinit_frame_cache_sfunc,
5740 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
5741 &setlist, &showlist);
5742
5743 /* Allow the user to control whether the upper bits of 64-bit
5744 addresses should be zeroed. */
5745 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5746 &mask_address_var, _("\
5747 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5748 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
5749 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5750 allow GDB to determine the correct value."),
5751 NULL, show_mask_address,
5752 &setmipscmdlist, &showmipscmdlist);
5753
5754 /* Allow the user to control the size of 32 bit registers within the
5755 raw remote packet. */
5756 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
5757 &mips64_transfers_32bit_regs_p, _("\
5758 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5759 _("\
5760 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5761 _("\
5762 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5763 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5764 64 bits for others. Use \"off\" to disable compatibility mode"),
5765 set_mips64_transfers_32bit_regs,
5766 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
5767 &setlist, &showlist);
5768
5769 /* Debug this files internals. */
5770 add_setshow_zinteger_cmd ("mips", class_maintenance,
5771 &mips_debug, _("\
5772 Set mips debugging."), _("\
5773 Show mips debugging."), _("\
5774 When non-zero, mips specific debugging is enabled."),
5775 NULL,
5776 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
5777 &setdebuglist, &showdebuglist);
5778 }