]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-tdep.c
* mips-tdep.c (mips_n32n64_push_dummy_call): Fix a typo in a
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 Boston, MA 02110-1301, USA. */
26
27 #include "defs.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
30 #include "frame.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "value.h"
34 #include "gdbcmd.h"
35 #include "language.h"
36 #include "gdbcore.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "gdbtypes.h"
40 #include "target.h"
41 #include "arch-utils.h"
42 #include "regcache.h"
43 #include "osabi.h"
44 #include "mips-tdep.h"
45 #include "block.h"
46 #include "reggroups.h"
47 #include "opcode/mips.h"
48 #include "elf/mips.h"
49 #include "elf-bfd.h"
50 #include "symcat.h"
51 #include "sim-regno.h"
52 #include "dis-asm.h"
53 #include "frame-unwind.h"
54 #include "frame-base.h"
55 #include "trad-frame.h"
56 #include "infcall.h"
57 #include "floatformat.h"
58 #include "remote.h"
59 #include "target-descriptions.h"
60
61 static const struct objfile_data *mips_pdr_data;
62
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
66 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
67 #define ST0_FR (1 << 26)
68
69 /* The sizes of floating point registers. */
70
71 enum
72 {
73 MIPS_FPU_SINGLE_REGSIZE = 4,
74 MIPS_FPU_DOUBLE_REGSIZE = 8
75 };
76
77
78 static const char *mips_abi_string;
79
80 static const char *mips_abi_strings[] = {
81 "auto",
82 "n32",
83 "o32",
84 "n64",
85 "o64",
86 "eabi32",
87 "eabi64",
88 NULL
89 };
90
91 /* Various MIPS ISA options (related to stack analysis) can be
92 overridden dynamically. Establish an enum/array for managing
93 them. */
94
95 static const char size_auto[] = "auto";
96 static const char size_32[] = "32";
97 static const char size_64[] = "64";
98
99 static const char *size_enums[] = {
100 size_auto,
101 size_32,
102 size_64,
103 0
104 };
105
106 /* Some MIPS boards don't support floating point while others only
107 support single-precision floating-point operations. */
108
109 enum mips_fpu_type
110 {
111 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
112 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
113 MIPS_FPU_NONE /* No floating point. */
114 };
115
116 #ifndef MIPS_DEFAULT_FPU_TYPE
117 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
118 #endif
119 static int mips_fpu_type_auto = 1;
120 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
121
122 static int mips_debug = 0;
123
124 /* Properties (for struct target_desc) describing the g/G packet
125 layout. */
126 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
127 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
128
129 /* MIPS specific per-architecture information */
130 struct gdbarch_tdep
131 {
132 /* from the elf header */
133 int elf_flags;
134
135 /* mips options */
136 enum mips_abi mips_abi;
137 enum mips_abi found_abi;
138 enum mips_fpu_type mips_fpu_type;
139 int mips_last_arg_regnum;
140 int mips_last_fp_arg_regnum;
141 int default_mask_address_p;
142 /* Is the target using 64-bit raw integer registers but only
143 storing a left-aligned 32-bit value in each? */
144 int mips64_transfers_32bit_regs_p;
145 /* Indexes for various registers. IRIX and embedded have
146 different values. This contains the "public" fields. Don't
147 add any that do not need to be public. */
148 const struct mips_regnum *regnum;
149 /* Register names table for the current register set. */
150 const char **mips_processor_reg_names;
151
152 /* The size of register data available from the target, if known.
153 This doesn't quite obsolete the manual
154 mips64_transfers_32bit_regs_p, since that is documented to force
155 left alignment even for big endian (very strange). */
156 int register_size_valid_p;
157 int register_size;
158 };
159
160 static int
161 n32n64_floatformat_always_valid (const struct floatformat *fmt,
162 const void *from)
163 {
164 return 1;
165 }
166
167 /* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
168 They are implemented as a pair of 64bit doubles where the high
169 part holds the result of the operation rounded to double, and
170 the low double holds the difference between the exact result and
171 the rounded result. So "high" + "low" contains the result with
172 added precision. Unfortunately, the floatformat structure used
173 by GDB is not powerful enough to describe this format. As a temporary
174 measure, we define a 128bit floatformat that only uses the high part.
175 We lose a bit of precision but that's probably the best we can do
176 for now with the current infrastructure. */
177
178 static const struct floatformat floatformat_n32n64_long_double_big =
179 {
180 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
181 floatformat_intbit_no,
182 "floatformat_n32n64_long_double_big",
183 n32n64_floatformat_always_valid
184 };
185
186 static const struct floatformat *floatformats_n32n64_long[BFD_ENDIAN_UNKNOWN] =
187 {
188 &floatformat_n32n64_long_double_big,
189 &floatformat_n32n64_long_double_big
190 };
191
192 const struct mips_regnum *
193 mips_regnum (struct gdbarch *gdbarch)
194 {
195 return gdbarch_tdep (gdbarch)->regnum;
196 }
197
198 static int
199 mips_fpa0_regnum (struct gdbarch *gdbarch)
200 {
201 return mips_regnum (gdbarch)->fp0 + 12;
202 }
203
204 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
205 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
206
207 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
208
209 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
210
211 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
212
213 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
214 functions to test, set, or clear bit 0 of addresses. */
215
216 static CORE_ADDR
217 is_mips16_addr (CORE_ADDR addr)
218 {
219 return ((addr) & 1);
220 }
221
222 static CORE_ADDR
223 unmake_mips16_addr (CORE_ADDR addr)
224 {
225 return ((addr) & ~(CORE_ADDR) 1);
226 }
227
228 /* Return the contents of register REGNUM as a signed integer. */
229
230 static LONGEST
231 read_signed_register (int regnum)
232 {
233 LONGEST val;
234 regcache_cooked_read_signed (current_regcache, regnum, &val);
235 return val;
236 }
237
238 static LONGEST
239 read_signed_register_pid (int regnum, ptid_t ptid)
240 {
241 ptid_t save_ptid;
242 LONGEST retval;
243
244 if (ptid_equal (ptid, inferior_ptid))
245 return read_signed_register (regnum);
246
247 save_ptid = inferior_ptid;
248
249 inferior_ptid = ptid;
250
251 retval = read_signed_register (regnum);
252
253 inferior_ptid = save_ptid;
254
255 return retval;
256 }
257
258 /* Return the MIPS ABI associated with GDBARCH. */
259 enum mips_abi
260 mips_abi (struct gdbarch *gdbarch)
261 {
262 return gdbarch_tdep (gdbarch)->mips_abi;
263 }
264
265 int
266 mips_isa_regsize (struct gdbarch *gdbarch)
267 {
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269
270 /* If we know how big the registers are, use that size. */
271 if (tdep->register_size_valid_p)
272 return tdep->register_size;
273
274 /* Fall back to the previous behavior. */
275 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
276 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
277 }
278
279 /* Return the currently configured (or set) saved register size. */
280
281 static const char *mips_abi_regsize_string = size_auto;
282
283 unsigned int
284 mips_abi_regsize (struct gdbarch *gdbarch)
285 {
286 if (mips_abi_regsize_string == size_auto)
287 switch (mips_abi (gdbarch))
288 {
289 case MIPS_ABI_EABI32:
290 case MIPS_ABI_O32:
291 return 4;
292 case MIPS_ABI_N32:
293 case MIPS_ABI_N64:
294 case MIPS_ABI_O64:
295 case MIPS_ABI_EABI64:
296 return 8;
297 case MIPS_ABI_UNKNOWN:
298 case MIPS_ABI_LAST:
299 default:
300 internal_error (__FILE__, __LINE__, _("bad switch"));
301 }
302 else if (mips_abi_regsize_string == size_64)
303 return 8;
304 else /* if (mips_abi_regsize_string == size_32) */
305 return 4;
306 }
307
308 /* Functions for setting and testing a bit in a minimal symbol that
309 marks it as 16-bit function. The MSB of the minimal symbol's
310 "info" field is used for this purpose.
311
312 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
313 i.e. refers to a 16-bit function, and sets a "special" bit in a
314 minimal symbol to mark it as a 16-bit function
315
316 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
317
318 static void
319 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
320 {
321 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
322 {
323 MSYMBOL_INFO (msym) = (char *)
324 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
325 SYMBOL_VALUE_ADDRESS (msym) |= 1;
326 }
327 }
328
329 static int
330 msymbol_is_special (struct minimal_symbol *msym)
331 {
332 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
333 }
334
335 /* XFER a value from the big/little/left end of the register.
336 Depending on the size of the value it might occupy the entire
337 register or just part of it. Make an allowance for this, aligning
338 things accordingly. */
339
340 static void
341 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
342 enum bfd_endian endian, gdb_byte *in,
343 const gdb_byte *out, int buf_offset)
344 {
345 int reg_offset = 0;
346 gdb_assert (reg_num >= NUM_REGS);
347 /* Need to transfer the left or right part of the register, based on
348 the targets byte order. */
349 switch (endian)
350 {
351 case BFD_ENDIAN_BIG:
352 reg_offset = register_size (current_gdbarch, reg_num) - length;
353 break;
354 case BFD_ENDIAN_LITTLE:
355 reg_offset = 0;
356 break;
357 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
358 reg_offset = 0;
359 break;
360 default:
361 internal_error (__FILE__, __LINE__, _("bad switch"));
362 }
363 if (mips_debug)
364 fprintf_unfiltered (gdb_stderr,
365 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
366 reg_num, reg_offset, buf_offset, length);
367 if (mips_debug && out != NULL)
368 {
369 int i;
370 fprintf_unfiltered (gdb_stdlog, "out ");
371 for (i = 0; i < length; i++)
372 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
373 }
374 if (in != NULL)
375 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
376 in + buf_offset);
377 if (out != NULL)
378 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
379 out + buf_offset);
380 if (mips_debug && in != NULL)
381 {
382 int i;
383 fprintf_unfiltered (gdb_stdlog, "in ");
384 for (i = 0; i < length; i++)
385 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
386 }
387 if (mips_debug)
388 fprintf_unfiltered (gdb_stdlog, "\n");
389 }
390
391 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
392 compatiblity mode. A return value of 1 means that we have
393 physical 64-bit registers, but should treat them as 32-bit registers. */
394
395 static int
396 mips2_fp_compat (void)
397 {
398 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
399 meaningful. */
400 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
401 4)
402 return 0;
403
404 #if 0
405 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
406 in all the places we deal with FP registers. PR gdb/413. */
407 /* Otherwise check the FR bit in the status register - it controls
408 the FP compatiblity mode. If it is clear we are in compatibility
409 mode. */
410 if ((read_register (MIPS_PS_REGNUM) & ST0_FR) == 0)
411 return 1;
412 #endif
413
414 return 0;
415 }
416
417 /* The amount of space reserved on the stack for registers. This is
418 different to MIPS_ABI_REGSIZE as it determines the alignment of
419 data allocated after the registers have run out. */
420
421 static const char *mips_stack_argsize_string = size_auto;
422
423 static unsigned int
424 mips_stack_argsize (struct gdbarch *gdbarch)
425 {
426 if (mips_stack_argsize_string == size_auto)
427 return mips_abi_regsize (gdbarch);
428 else if (mips_stack_argsize_string == size_64)
429 return 8;
430 else /* if (mips_stack_argsize_string == size_32) */
431 return 4;
432 }
433
434 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
435
436 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
437
438 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
439
440 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
441
442 static struct type *mips_float_register_type (void);
443 static struct type *mips_double_register_type (void);
444
445 /* The list of available "set mips " and "show mips " commands */
446
447 static struct cmd_list_element *setmipscmdlist = NULL;
448 static struct cmd_list_element *showmipscmdlist = NULL;
449
450 /* Integer registers 0 thru 31 are handled explicitly by
451 mips_register_name(). Processor specific registers 32 and above
452 are listed in the following tables. */
453
454 enum
455 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
456
457 /* Generic MIPS. */
458
459 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
460 "sr", "lo", "hi", "bad", "cause", "pc",
461 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
462 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
463 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
464 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
465 "fsr", "fir", "" /*"fp" */ , "",
466 "", "", "", "", "", "", "", "",
467 "", "", "", "", "", "", "", "",
468 };
469
470 /* Names of IDT R3041 registers. */
471
472 static const char *mips_r3041_reg_names[] = {
473 "sr", "lo", "hi", "bad", "cause", "pc",
474 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
475 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
476 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
477 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
478 "fsr", "fir", "", /*"fp" */ "",
479 "", "", "bus", "ccfg", "", "", "", "",
480 "", "", "port", "cmp", "", "", "epc", "prid",
481 };
482
483 /* Names of tx39 registers. */
484
485 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
486 "sr", "lo", "hi", "bad", "cause", "pc",
487 "", "", "", "", "", "", "", "",
488 "", "", "", "", "", "", "", "",
489 "", "", "", "", "", "", "", "",
490 "", "", "", "", "", "", "", "",
491 "", "", "", "",
492 "", "", "", "", "", "", "", "",
493 "", "", "config", "cache", "debug", "depc", "epc", ""
494 };
495
496 /* Names of IRIX registers. */
497 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
498 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
499 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
500 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
501 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
502 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
503 };
504
505
506 /* Return the name of the register corresponding to REGNO. */
507 static const char *
508 mips_register_name (int regno)
509 {
510 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
511 /* GPR names for all ABIs other than n32/n64. */
512 static char *mips_gpr_names[] = {
513 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
514 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
515 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
516 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
517 };
518
519 /* GPR names for n32 and n64 ABIs. */
520 static char *mips_n32_n64_gpr_names[] = {
521 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
522 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
523 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
524 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
525 };
526
527 enum mips_abi abi = mips_abi (current_gdbarch);
528
529 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
530 don't make the raw register names visible. */
531 int rawnum = regno % NUM_REGS;
532 if (regno < NUM_REGS)
533 return "";
534
535 /* The MIPS integer registers are always mapped from 0 to 31. The
536 names of the registers (which reflects the conventions regarding
537 register use) vary depending on the ABI. */
538 if (0 <= rawnum && rawnum < 32)
539 {
540 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
541 return mips_n32_n64_gpr_names[rawnum];
542 else
543 return mips_gpr_names[rawnum];
544 }
545 else if (32 <= rawnum && rawnum < NUM_REGS)
546 {
547 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
548 return tdep->mips_processor_reg_names[rawnum - 32];
549 }
550 else
551 internal_error (__FILE__, __LINE__,
552 _("mips_register_name: bad register number %d"), rawnum);
553 }
554
555 /* Return the groups that a MIPS register can be categorised into. */
556
557 static int
558 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
559 struct reggroup *reggroup)
560 {
561 int vector_p;
562 int float_p;
563 int raw_p;
564 int rawnum = regnum % NUM_REGS;
565 int pseudo = regnum / NUM_REGS;
566 if (reggroup == all_reggroup)
567 return pseudo;
568 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
569 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
570 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
571 (gdbarch), as not all architectures are multi-arch. */
572 raw_p = rawnum < NUM_REGS;
573 if (REGISTER_NAME (regnum) == NULL || REGISTER_NAME (regnum)[0] == '\0')
574 return 0;
575 if (reggroup == float_reggroup)
576 return float_p && pseudo;
577 if (reggroup == vector_reggroup)
578 return vector_p && pseudo;
579 if (reggroup == general_reggroup)
580 return (!vector_p && !float_p) && pseudo;
581 /* Save the pseudo registers. Need to make certain that any code
582 extracting register values from a saved register cache also uses
583 pseudo registers. */
584 if (reggroup == save_reggroup)
585 return raw_p && pseudo;
586 /* Restore the same pseudo register. */
587 if (reggroup == restore_reggroup)
588 return raw_p && pseudo;
589 return 0;
590 }
591
592 /* Map the symbol table registers which live in the range [1 *
593 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
594 registers. Take care of alignment and size problems. */
595
596 static void
597 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
598 int cookednum, gdb_byte *buf)
599 {
600 int rawnum = cookednum % NUM_REGS;
601 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
602 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
603 regcache_raw_read (regcache, rawnum, buf);
604 else if (register_size (gdbarch, rawnum) >
605 register_size (gdbarch, cookednum))
606 {
607 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
608 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
609 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
610 else
611 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
612 }
613 else
614 internal_error (__FILE__, __LINE__, _("bad register size"));
615 }
616
617 static void
618 mips_pseudo_register_write (struct gdbarch *gdbarch,
619 struct regcache *regcache, int cookednum,
620 const gdb_byte *buf)
621 {
622 int rawnum = cookednum % NUM_REGS;
623 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
624 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
625 regcache_raw_write (regcache, rawnum, buf);
626 else if (register_size (gdbarch, rawnum) >
627 register_size (gdbarch, cookednum))
628 {
629 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
630 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
631 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
632 else
633 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
634 }
635 else
636 internal_error (__FILE__, __LINE__, _("bad register size"));
637 }
638
639 /* Table to translate MIPS16 register field to actual register number. */
640 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
641
642 /* Heuristic_proc_start may hunt through the text section for a long
643 time across a 2400 baud serial line. Allows the user to limit this
644 search. */
645
646 static unsigned int heuristic_fence_post = 0;
647
648 /* Number of bytes of storage in the actual machine representation for
649 register N. NOTE: This defines the pseudo register type so need to
650 rebuild the architecture vector. */
651
652 static int mips64_transfers_32bit_regs_p = 0;
653
654 static void
655 set_mips64_transfers_32bit_regs (char *args, int from_tty,
656 struct cmd_list_element *c)
657 {
658 struct gdbarch_info info;
659 gdbarch_info_init (&info);
660 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
661 instead of relying on globals. Doing that would let generic code
662 handle the search for this specific architecture. */
663 if (!gdbarch_update_p (info))
664 {
665 mips64_transfers_32bit_regs_p = 0;
666 error (_("32-bit compatibility mode not supported"));
667 }
668 }
669
670 /* Convert to/from a register and the corresponding memory value. */
671
672 static int
673 mips_convert_register_p (int regnum, struct type *type)
674 {
675 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
676 && register_size (current_gdbarch, regnum) == 4
677 && (regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
678 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32
679 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
680 }
681
682 static void
683 mips_register_to_value (struct frame_info *frame, int regnum,
684 struct type *type, gdb_byte *to)
685 {
686 get_frame_register (frame, regnum + 0, to + 4);
687 get_frame_register (frame, regnum + 1, to + 0);
688 }
689
690 static void
691 mips_value_to_register (struct frame_info *frame, int regnum,
692 struct type *type, const gdb_byte *from)
693 {
694 put_frame_register (frame, regnum + 0, from + 4);
695 put_frame_register (frame, regnum + 1, from + 0);
696 }
697
698 /* Return the GDB type object for the "standard" data type of data in
699 register REG. */
700
701 static struct type *
702 mips_register_type (struct gdbarch *gdbarch, int regnum)
703 {
704 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
705 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
706 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
707 {
708 /* The floating-point registers raw, or cooked, always match
709 mips_isa_regsize(), and also map 1:1, byte for byte. */
710 if (mips_isa_regsize (gdbarch) == 4)
711 return builtin_type_ieee_single;
712 else
713 return builtin_type_ieee_double;
714 }
715 else if (regnum < NUM_REGS)
716 {
717 /* The raw or ISA registers. These are all sized according to
718 the ISA regsize. */
719 if (mips_isa_regsize (gdbarch) == 4)
720 return builtin_type_int32;
721 else
722 return builtin_type_int64;
723 }
724 else
725 {
726 /* The cooked or ABI registers. These are sized according to
727 the ABI (with a few complications). */
728 if (regnum >= (NUM_REGS
729 + mips_regnum (current_gdbarch)->fp_control_status)
730 && regnum <= NUM_REGS + MIPS_LAST_EMBED_REGNUM)
731 /* The pseudo/cooked view of the embedded registers is always
732 32-bit. The raw view is handled below. */
733 return builtin_type_int32;
734 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
735 /* The target, while possibly using a 64-bit register buffer,
736 is only transfering 32-bits of each integer register.
737 Reflect this in the cooked/pseudo (ABI) register value. */
738 return builtin_type_int32;
739 else if (mips_abi_regsize (gdbarch) == 4)
740 /* The ABI is restricted to 32-bit registers (the ISA could be
741 32- or 64-bit). */
742 return builtin_type_int32;
743 else
744 /* 64-bit ABI. */
745 return builtin_type_int64;
746 }
747 }
748
749 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
750
751 static CORE_ADDR
752 mips_read_sp (void)
753 {
754 return read_signed_register (MIPS_SP_REGNUM);
755 }
756
757 /* Should the upper word of 64-bit addresses be zeroed? */
758 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
759
760 static int
761 mips_mask_address_p (struct gdbarch_tdep *tdep)
762 {
763 switch (mask_address_var)
764 {
765 case AUTO_BOOLEAN_TRUE:
766 return 1;
767 case AUTO_BOOLEAN_FALSE:
768 return 0;
769 break;
770 case AUTO_BOOLEAN_AUTO:
771 return tdep->default_mask_address_p;
772 default:
773 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
774 return -1;
775 }
776 }
777
778 static void
779 show_mask_address (struct ui_file *file, int from_tty,
780 struct cmd_list_element *c, const char *value)
781 {
782 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
783
784 deprecated_show_value_hack (file, from_tty, c, value);
785 switch (mask_address_var)
786 {
787 case AUTO_BOOLEAN_TRUE:
788 printf_filtered ("The 32 bit mips address mask is enabled\n");
789 break;
790 case AUTO_BOOLEAN_FALSE:
791 printf_filtered ("The 32 bit mips address mask is disabled\n");
792 break;
793 case AUTO_BOOLEAN_AUTO:
794 printf_filtered
795 ("The 32 bit address mask is set automatically. Currently %s\n",
796 mips_mask_address_p (tdep) ? "enabled" : "disabled");
797 break;
798 default:
799 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
800 break;
801 }
802 }
803
804 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
805
806 int
807 mips_pc_is_mips16 (CORE_ADDR memaddr)
808 {
809 struct minimal_symbol *sym;
810
811 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
812 if (is_mips16_addr (memaddr))
813 return 1;
814
815 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
816 the high bit of the info field. Use this to decide if the function is
817 MIPS16 or normal MIPS. */
818 sym = lookup_minimal_symbol_by_pc (memaddr);
819 if (sym)
820 return msymbol_is_special (sym);
821 else
822 return 0;
823 }
824
825 /* MIPS believes that the PC has a sign extended value. Perhaps the
826 all registers should be sign extended for simplicity? */
827
828 static CORE_ADDR
829 mips_read_pc (ptid_t ptid)
830 {
831 return read_signed_register_pid (mips_regnum (current_gdbarch)->pc, ptid);
832 }
833
834 static CORE_ADDR
835 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
836 {
837 return frame_unwind_register_signed (next_frame,
838 NUM_REGS + mips_regnum (gdbarch)->pc);
839 }
840
841 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
842 dummy frame. The frame ID's base needs to match the TOS value
843 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
844 breakpoint. */
845
846 static struct frame_id
847 mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
848 {
849 return frame_id_build (frame_unwind_register_signed (next_frame, NUM_REGS + MIPS_SP_REGNUM),
850 frame_pc_unwind (next_frame));
851 }
852
853 static void
854 mips_write_pc (CORE_ADDR pc, ptid_t ptid)
855 {
856 write_register_pid (mips_regnum (current_gdbarch)->pc, pc, ptid);
857 }
858
859 /* Fetch and return instruction from the specified location. If the PC
860 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
861
862 static ULONGEST
863 mips_fetch_instruction (CORE_ADDR addr)
864 {
865 gdb_byte buf[MIPS_INSN32_SIZE];
866 int instlen;
867 int status;
868
869 if (mips_pc_is_mips16 (addr))
870 {
871 instlen = MIPS_INSN16_SIZE;
872 addr = unmake_mips16_addr (addr);
873 }
874 else
875 instlen = MIPS_INSN32_SIZE;
876 status = read_memory_nobpt (addr, buf, instlen);
877 if (status)
878 memory_error (status, addr);
879 return extract_unsigned_integer (buf, instlen);
880 }
881
882 /* These the fields of 32 bit mips instructions */
883 #define mips32_op(x) (x >> 26)
884 #define itype_op(x) (x >> 26)
885 #define itype_rs(x) ((x >> 21) & 0x1f)
886 #define itype_rt(x) ((x >> 16) & 0x1f)
887 #define itype_immediate(x) (x & 0xffff)
888
889 #define jtype_op(x) (x >> 26)
890 #define jtype_target(x) (x & 0x03ffffff)
891
892 #define rtype_op(x) (x >> 26)
893 #define rtype_rs(x) ((x >> 21) & 0x1f)
894 #define rtype_rt(x) ((x >> 16) & 0x1f)
895 #define rtype_rd(x) ((x >> 11) & 0x1f)
896 #define rtype_shamt(x) ((x >> 6) & 0x1f)
897 #define rtype_funct(x) (x & 0x3f)
898
899 static LONGEST
900 mips32_relative_offset (ULONGEST inst)
901 {
902 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
903 }
904
905 /* Determine where to set a single step breakpoint while considering
906 branch prediction. */
907 static CORE_ADDR
908 mips32_next_pc (CORE_ADDR pc)
909 {
910 unsigned long inst;
911 int op;
912 inst = mips_fetch_instruction (pc);
913 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
914 {
915 if (itype_op (inst) >> 2 == 5)
916 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
917 {
918 op = (itype_op (inst) & 0x03);
919 switch (op)
920 {
921 case 0: /* BEQL */
922 goto equal_branch;
923 case 1: /* BNEL */
924 goto neq_branch;
925 case 2: /* BLEZL */
926 goto less_branch;
927 case 3: /* BGTZ */
928 goto greater_branch;
929 default:
930 pc += 4;
931 }
932 }
933 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
934 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
935 {
936 int tf = itype_rt (inst) & 0x01;
937 int cnum = itype_rt (inst) >> 2;
938 int fcrcs =
939 read_signed_register (mips_regnum (current_gdbarch)->
940 fp_control_status);
941 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
942
943 if (((cond >> cnum) & 0x01) == tf)
944 pc += mips32_relative_offset (inst) + 4;
945 else
946 pc += 8;
947 }
948 else
949 pc += 4; /* Not a branch, next instruction is easy */
950 }
951 else
952 { /* This gets way messy */
953
954 /* Further subdivide into SPECIAL, REGIMM and other */
955 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
956 {
957 case 0: /* SPECIAL */
958 op = rtype_funct (inst);
959 switch (op)
960 {
961 case 8: /* JR */
962 case 9: /* JALR */
963 /* Set PC to that address */
964 pc = read_signed_register (rtype_rs (inst));
965 break;
966 default:
967 pc += 4;
968 }
969
970 break; /* end SPECIAL */
971 case 1: /* REGIMM */
972 {
973 op = itype_rt (inst); /* branch condition */
974 switch (op)
975 {
976 case 0: /* BLTZ */
977 case 2: /* BLTZL */
978 case 16: /* BLTZAL */
979 case 18: /* BLTZALL */
980 less_branch:
981 if (read_signed_register (itype_rs (inst)) < 0)
982 pc += mips32_relative_offset (inst) + 4;
983 else
984 pc += 8; /* after the delay slot */
985 break;
986 case 1: /* BGEZ */
987 case 3: /* BGEZL */
988 case 17: /* BGEZAL */
989 case 19: /* BGEZALL */
990 if (read_signed_register (itype_rs (inst)) >= 0)
991 pc += mips32_relative_offset (inst) + 4;
992 else
993 pc += 8; /* after the delay slot */
994 break;
995 /* All of the other instructions in the REGIMM category */
996 default:
997 pc += 4;
998 }
999 }
1000 break; /* end REGIMM */
1001 case 2: /* J */
1002 case 3: /* JAL */
1003 {
1004 unsigned long reg;
1005 reg = jtype_target (inst) << 2;
1006 /* Upper four bits get never changed... */
1007 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1008 }
1009 break;
1010 /* FIXME case JALX : */
1011 {
1012 unsigned long reg;
1013 reg = jtype_target (inst) << 2;
1014 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
1015 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1016 }
1017 break; /* The new PC will be alternate mode */
1018 case 4: /* BEQ, BEQL */
1019 equal_branch:
1020 if (read_signed_register (itype_rs (inst)) ==
1021 read_signed_register (itype_rt (inst)))
1022 pc += mips32_relative_offset (inst) + 4;
1023 else
1024 pc += 8;
1025 break;
1026 case 5: /* BNE, BNEL */
1027 neq_branch:
1028 if (read_signed_register (itype_rs (inst)) !=
1029 read_signed_register (itype_rt (inst)))
1030 pc += mips32_relative_offset (inst) + 4;
1031 else
1032 pc += 8;
1033 break;
1034 case 6: /* BLEZ, BLEZL */
1035 if (read_signed_register (itype_rs (inst)) <= 0)
1036 pc += mips32_relative_offset (inst) + 4;
1037 else
1038 pc += 8;
1039 break;
1040 case 7:
1041 default:
1042 greater_branch: /* BGTZ, BGTZL */
1043 if (read_signed_register (itype_rs (inst)) > 0)
1044 pc += mips32_relative_offset (inst) + 4;
1045 else
1046 pc += 8;
1047 break;
1048 } /* switch */
1049 } /* else */
1050 return pc;
1051 } /* mips32_next_pc */
1052
1053 /* Decoding the next place to set a breakpoint is irregular for the
1054 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1055 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1056 We dont want to set a single step instruction on the extend instruction
1057 either.
1058 */
1059
1060 /* Lots of mips16 instruction formats */
1061 /* Predicting jumps requires itype,ritype,i8type
1062 and their extensions extItype,extritype,extI8type
1063 */
1064 enum mips16_inst_fmts
1065 {
1066 itype, /* 0 immediate 5,10 */
1067 ritype, /* 1 5,3,8 */
1068 rrtype, /* 2 5,3,3,5 */
1069 rritype, /* 3 5,3,3,5 */
1070 rrrtype, /* 4 5,3,3,3,2 */
1071 rriatype, /* 5 5,3,3,1,4 */
1072 shifttype, /* 6 5,3,3,3,2 */
1073 i8type, /* 7 5,3,8 */
1074 i8movtype, /* 8 5,3,3,5 */
1075 i8mov32rtype, /* 9 5,3,5,3 */
1076 i64type, /* 10 5,3,8 */
1077 ri64type, /* 11 5,3,3,5 */
1078 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1079 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1080 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1081 extRRItype, /* 15 5,5,5,5,3,3,5 */
1082 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1083 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1084 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1085 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1086 extRi64type, /* 20 5,6,5,5,3,3,5 */
1087 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1088 };
1089 /* I am heaping all the fields of the formats into one structure and
1090 then, only the fields which are involved in instruction extension */
1091 struct upk_mips16
1092 {
1093 CORE_ADDR offset;
1094 unsigned int regx; /* Function in i8 type */
1095 unsigned int regy;
1096 };
1097
1098
1099 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1100 for the bits which make up the immediatate extension. */
1101
1102 static CORE_ADDR
1103 extended_offset (unsigned int extension)
1104 {
1105 CORE_ADDR value;
1106 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1107 value = value << 6;
1108 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1109 value = value << 5;
1110 value |= extension & 0x01f; /* extract 4:0 */
1111 return value;
1112 }
1113
1114 /* Only call this function if you know that this is an extendable
1115 instruction, It wont malfunction, but why make excess remote memory references?
1116 If the immediate operands get sign extended or somthing, do it after
1117 the extension is performed.
1118 */
1119 /* FIXME: Every one of these cases needs to worry about sign extension
1120 when the offset is to be used in relative addressing */
1121
1122
1123 static unsigned int
1124 fetch_mips_16 (CORE_ADDR pc)
1125 {
1126 gdb_byte buf[8];
1127 pc &= 0xfffffffe; /* clear the low order bit */
1128 target_read_memory (pc, buf, 2);
1129 return extract_unsigned_integer (buf, 2);
1130 }
1131
1132 static void
1133 unpack_mips16 (CORE_ADDR pc,
1134 unsigned int extension,
1135 unsigned int inst,
1136 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1137 {
1138 CORE_ADDR offset;
1139 int regx;
1140 int regy;
1141 switch (insn_format)
1142 {
1143 case itype:
1144 {
1145 CORE_ADDR value;
1146 if (extension)
1147 {
1148 value = extended_offset (extension);
1149 value = value << 11; /* rom for the original value */
1150 value |= inst & 0x7ff; /* eleven bits from instruction */
1151 }
1152 else
1153 {
1154 value = inst & 0x7ff;
1155 /* FIXME : Consider sign extension */
1156 }
1157 offset = value;
1158 regx = -1;
1159 regy = -1;
1160 }
1161 break;
1162 case ritype:
1163 case i8type:
1164 { /* A register identifier and an offset */
1165 /* Most of the fields are the same as I type but the
1166 immediate value is of a different length */
1167 CORE_ADDR value;
1168 if (extension)
1169 {
1170 value = extended_offset (extension);
1171 value = value << 8; /* from the original instruction */
1172 value |= inst & 0xff; /* eleven bits from instruction */
1173 regx = (extension >> 8) & 0x07; /* or i8 funct */
1174 if (value & 0x4000) /* test the sign bit , bit 26 */
1175 {
1176 value &= ~0x3fff; /* remove the sign bit */
1177 value = -value;
1178 }
1179 }
1180 else
1181 {
1182 value = inst & 0xff; /* 8 bits */
1183 regx = (inst >> 8) & 0x07; /* or i8 funct */
1184 /* FIXME: Do sign extension , this format needs it */
1185 if (value & 0x80) /* THIS CONFUSES ME */
1186 {
1187 value &= 0xef; /* remove the sign bit */
1188 value = -value;
1189 }
1190 }
1191 offset = value;
1192 regy = -1;
1193 break;
1194 }
1195 case jalxtype:
1196 {
1197 unsigned long value;
1198 unsigned int nexthalf;
1199 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1200 value = value << 16;
1201 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1202 value |= nexthalf;
1203 offset = value;
1204 regx = -1;
1205 regy = -1;
1206 break;
1207 }
1208 default:
1209 internal_error (__FILE__, __LINE__, _("bad switch"));
1210 }
1211 upk->offset = offset;
1212 upk->regx = regx;
1213 upk->regy = regy;
1214 }
1215
1216
1217 static CORE_ADDR
1218 add_offset_16 (CORE_ADDR pc, int offset)
1219 {
1220 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
1221 }
1222
1223 static CORE_ADDR
1224 extended_mips16_next_pc (CORE_ADDR pc,
1225 unsigned int extension, unsigned int insn)
1226 {
1227 int op = (insn >> 11);
1228 switch (op)
1229 {
1230 case 2: /* Branch */
1231 {
1232 CORE_ADDR offset;
1233 struct upk_mips16 upk;
1234 unpack_mips16 (pc, extension, insn, itype, &upk);
1235 offset = upk.offset;
1236 if (offset & 0x800)
1237 {
1238 offset &= 0xeff;
1239 offset = -offset;
1240 }
1241 pc += (offset << 1) + 2;
1242 break;
1243 }
1244 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1245 {
1246 struct upk_mips16 upk;
1247 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1248 pc = add_offset_16 (pc, upk.offset);
1249 if ((insn >> 10) & 0x01) /* Exchange mode */
1250 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1251 else
1252 pc |= 0x01;
1253 break;
1254 }
1255 case 4: /* beqz */
1256 {
1257 struct upk_mips16 upk;
1258 int reg;
1259 unpack_mips16 (pc, extension, insn, ritype, &upk);
1260 reg = read_signed_register (upk.regx);
1261 if (reg == 0)
1262 pc += (upk.offset << 1) + 2;
1263 else
1264 pc += 2;
1265 break;
1266 }
1267 case 5: /* bnez */
1268 {
1269 struct upk_mips16 upk;
1270 int reg;
1271 unpack_mips16 (pc, extension, insn, ritype, &upk);
1272 reg = read_signed_register (upk.regx);
1273 if (reg != 0)
1274 pc += (upk.offset << 1) + 2;
1275 else
1276 pc += 2;
1277 break;
1278 }
1279 case 12: /* I8 Formats btez btnez */
1280 {
1281 struct upk_mips16 upk;
1282 int reg;
1283 unpack_mips16 (pc, extension, insn, i8type, &upk);
1284 /* upk.regx contains the opcode */
1285 reg = read_signed_register (24); /* Test register is 24 */
1286 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1287 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1288 /* pc = add_offset_16(pc,upk.offset) ; */
1289 pc += (upk.offset << 1) + 2;
1290 else
1291 pc += 2;
1292 break;
1293 }
1294 case 29: /* RR Formats JR, JALR, JALR-RA */
1295 {
1296 struct upk_mips16 upk;
1297 /* upk.fmt = rrtype; */
1298 op = insn & 0x1f;
1299 if (op == 0)
1300 {
1301 int reg;
1302 upk.regx = (insn >> 8) & 0x07;
1303 upk.regy = (insn >> 5) & 0x07;
1304 switch (upk.regy)
1305 {
1306 case 0:
1307 reg = upk.regx;
1308 break;
1309 case 1:
1310 reg = 31;
1311 break; /* Function return instruction */
1312 case 2:
1313 reg = upk.regx;
1314 break;
1315 default:
1316 reg = 31;
1317 break; /* BOGUS Guess */
1318 }
1319 pc = read_signed_register (reg);
1320 }
1321 else
1322 pc += 2;
1323 break;
1324 }
1325 case 30:
1326 /* This is an instruction extension. Fetch the real instruction
1327 (which follows the extension) and decode things based on
1328 that. */
1329 {
1330 pc += 2;
1331 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1332 break;
1333 }
1334 default:
1335 {
1336 pc += 2;
1337 break;
1338 }
1339 }
1340 return pc;
1341 }
1342
1343 static CORE_ADDR
1344 mips16_next_pc (CORE_ADDR pc)
1345 {
1346 unsigned int insn = fetch_mips_16 (pc);
1347 return extended_mips16_next_pc (pc, 0, insn);
1348 }
1349
1350 /* The mips_next_pc function supports single_step when the remote
1351 target monitor or stub is not developed enough to do a single_step.
1352 It works by decoding the current instruction and predicting where a
1353 branch will go. This isnt hard because all the data is available.
1354 The MIPS32 and MIPS16 variants are quite different */
1355 static CORE_ADDR
1356 mips_next_pc (CORE_ADDR pc)
1357 {
1358 if (pc & 0x01)
1359 return mips16_next_pc (pc);
1360 else
1361 return mips32_next_pc (pc);
1362 }
1363
1364 struct mips_frame_cache
1365 {
1366 CORE_ADDR base;
1367 struct trad_frame_saved_reg *saved_regs;
1368 };
1369
1370 /* Set a register's saved stack address in temp_saved_regs. If an
1371 address has already been set for this register, do nothing; this
1372 way we will only recognize the first save of a given register in a
1373 function prologue.
1374
1375 For simplicity, save the address in both [0 .. NUM_REGS) and
1376 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1377 is used as it is only second range (the ABI instead of ISA
1378 registers) that comes into play when finding saved registers in a
1379 frame. */
1380
1381 static void
1382 set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1383 CORE_ADDR offset)
1384 {
1385 if (this_cache != NULL
1386 && this_cache->saved_regs[regnum].addr == -1)
1387 {
1388 this_cache->saved_regs[regnum + 0 * NUM_REGS].addr = offset;
1389 this_cache->saved_regs[regnum + 1 * NUM_REGS].addr = offset;
1390 }
1391 }
1392
1393
1394 /* Fetch the immediate value from a MIPS16 instruction.
1395 If the previous instruction was an EXTEND, use it to extend
1396 the upper bits of the immediate value. This is a helper function
1397 for mips16_scan_prologue. */
1398
1399 static int
1400 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1401 unsigned short inst, /* current instruction */
1402 int nbits, /* number of bits in imm field */
1403 int scale, /* scale factor to be applied to imm */
1404 int is_signed) /* is the imm field signed? */
1405 {
1406 int offset;
1407
1408 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1409 {
1410 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1411 if (offset & 0x8000) /* check for negative extend */
1412 offset = 0 - (0x10000 - (offset & 0xffff));
1413 return offset | (inst & 0x1f);
1414 }
1415 else
1416 {
1417 int max_imm = 1 << nbits;
1418 int mask = max_imm - 1;
1419 int sign_bit = max_imm >> 1;
1420
1421 offset = inst & mask;
1422 if (is_signed && (offset & sign_bit))
1423 offset = 0 - (max_imm - offset);
1424 return offset * scale;
1425 }
1426 }
1427
1428
1429 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1430 the associated FRAME_CACHE if not null.
1431 Return the address of the first instruction past the prologue. */
1432
1433 static CORE_ADDR
1434 mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1435 struct frame_info *next_frame,
1436 struct mips_frame_cache *this_cache)
1437 {
1438 CORE_ADDR cur_pc;
1439 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1440 CORE_ADDR sp;
1441 long frame_offset = 0; /* Size of stack frame. */
1442 long frame_adjust = 0; /* Offset of FP from SP. */
1443 int frame_reg = MIPS_SP_REGNUM;
1444 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1445 unsigned inst = 0; /* current instruction */
1446 unsigned entry_inst = 0; /* the entry instruction */
1447 int reg, offset;
1448
1449 int extend_bytes = 0;
1450 int prev_extend_bytes;
1451 CORE_ADDR end_prologue_addr = 0;
1452
1453 /* Can be called when there's no process, and hence when there's no
1454 NEXT_FRAME. */
1455 if (next_frame != NULL)
1456 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1457 else
1458 sp = 0;
1459
1460 if (limit_pc > start_pc + 200)
1461 limit_pc = start_pc + 200;
1462
1463 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1464 {
1465 /* Save the previous instruction. If it's an EXTEND, we'll extract
1466 the immediate offset extension from it in mips16_get_imm. */
1467 prev_inst = inst;
1468
1469 /* Fetch and decode the instruction. */
1470 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1471
1472 /* Normally we ignore extend instructions. However, if it is
1473 not followed by a valid prologue instruction, then this
1474 instruction is not part of the prologue either. We must
1475 remember in this case to adjust the end_prologue_addr back
1476 over the extend. */
1477 if ((inst & 0xf800) == 0xf000) /* extend */
1478 {
1479 extend_bytes = MIPS_INSN16_SIZE;
1480 continue;
1481 }
1482
1483 prev_extend_bytes = extend_bytes;
1484 extend_bytes = 0;
1485
1486 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1487 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1488 {
1489 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1490 if (offset < 0) /* negative stack adjustment? */
1491 frame_offset -= offset;
1492 else
1493 /* Exit loop if a positive stack adjustment is found, which
1494 usually means that the stack cleanup code in the function
1495 epilogue is reached. */
1496 break;
1497 }
1498 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1499 {
1500 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1501 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1502 set_reg_offset (this_cache, reg, sp + offset);
1503 }
1504 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1505 {
1506 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1507 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1508 set_reg_offset (this_cache, reg, sp + offset);
1509 }
1510 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1511 {
1512 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1513 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1514 }
1515 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1516 {
1517 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1518 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1519 }
1520 else if (inst == 0x673d) /* move $s1, $sp */
1521 {
1522 frame_addr = sp;
1523 frame_reg = 17;
1524 }
1525 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1526 {
1527 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1528 frame_addr = sp + offset;
1529 frame_reg = 17;
1530 frame_adjust = offset;
1531 }
1532 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1533 {
1534 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1535 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1536 set_reg_offset (this_cache, reg, frame_addr + offset);
1537 }
1538 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1539 {
1540 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1541 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1542 set_reg_offset (this_cache, reg, frame_addr + offset);
1543 }
1544 else if ((inst & 0xf81f) == 0xe809
1545 && (inst & 0x700) != 0x700) /* entry */
1546 entry_inst = inst; /* save for later processing */
1547 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1548 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1549 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1550 {
1551 /* This instruction is part of the prologue, but we don't
1552 need to do anything special to handle it. */
1553 }
1554 else
1555 {
1556 /* This instruction is not an instruction typically found
1557 in a prologue, so we must have reached the end of the
1558 prologue. */
1559 if (end_prologue_addr == 0)
1560 end_prologue_addr = cur_pc - prev_extend_bytes;
1561 }
1562 }
1563
1564 /* The entry instruction is typically the first instruction in a function,
1565 and it stores registers at offsets relative to the value of the old SP
1566 (before the prologue). But the value of the sp parameter to this
1567 function is the new SP (after the prologue has been executed). So we
1568 can't calculate those offsets until we've seen the entire prologue,
1569 and can calculate what the old SP must have been. */
1570 if (entry_inst != 0)
1571 {
1572 int areg_count = (entry_inst >> 8) & 7;
1573 int sreg_count = (entry_inst >> 6) & 3;
1574
1575 /* The entry instruction always subtracts 32 from the SP. */
1576 frame_offset += 32;
1577
1578 /* Now we can calculate what the SP must have been at the
1579 start of the function prologue. */
1580 sp += frame_offset;
1581
1582 /* Check if a0-a3 were saved in the caller's argument save area. */
1583 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1584 {
1585 set_reg_offset (this_cache, reg, sp + offset);
1586 offset += mips_abi_regsize (current_gdbarch);
1587 }
1588
1589 /* Check if the ra register was pushed on the stack. */
1590 offset = -4;
1591 if (entry_inst & 0x20)
1592 {
1593 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1594 offset -= mips_abi_regsize (current_gdbarch);
1595 }
1596
1597 /* Check if the s0 and s1 registers were pushed on the stack. */
1598 for (reg = 16; reg < sreg_count + 16; reg++)
1599 {
1600 set_reg_offset (this_cache, reg, sp + offset);
1601 offset -= mips_abi_regsize (current_gdbarch);
1602 }
1603 }
1604
1605 if (this_cache != NULL)
1606 {
1607 this_cache->base =
1608 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1609 + frame_offset - frame_adjust);
1610 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1611 be able to get rid of the assignment below, evetually. But it's
1612 still needed for now. */
1613 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1614 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1615 }
1616
1617 /* If we didn't reach the end of the prologue when scanning the function
1618 instructions, then set end_prologue_addr to the address of the
1619 instruction immediately after the last one we scanned. */
1620 if (end_prologue_addr == 0)
1621 end_prologue_addr = cur_pc;
1622
1623 return end_prologue_addr;
1624 }
1625
1626 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1627 Procedures that use the 32-bit instruction set are handled by the
1628 mips_insn32 unwinder. */
1629
1630 static struct mips_frame_cache *
1631 mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
1632 {
1633 struct mips_frame_cache *cache;
1634
1635 if ((*this_cache) != NULL)
1636 return (*this_cache);
1637 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1638 (*this_cache) = cache;
1639 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1640
1641 /* Analyze the function prologue. */
1642 {
1643 const CORE_ADDR pc =
1644 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1645 CORE_ADDR start_addr;
1646
1647 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1648 if (start_addr == 0)
1649 start_addr = heuristic_proc_start (pc);
1650 /* We can't analyze the prologue if we couldn't find the begining
1651 of the function. */
1652 if (start_addr == 0)
1653 return cache;
1654
1655 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1656 }
1657
1658 /* SP_REGNUM, contains the value and not the address. */
1659 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1660
1661 return (*this_cache);
1662 }
1663
1664 static void
1665 mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1666 struct frame_id *this_id)
1667 {
1668 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1669 this_cache);
1670 (*this_id) = frame_id_build (info->base,
1671 frame_func_unwind (next_frame, NORMAL_FRAME));
1672 }
1673
1674 static void
1675 mips_insn16_frame_prev_register (struct frame_info *next_frame,
1676 void **this_cache,
1677 int regnum, int *optimizedp,
1678 enum lval_type *lvalp, CORE_ADDR *addrp,
1679 int *realnump, gdb_byte *valuep)
1680 {
1681 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1682 this_cache);
1683 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1684 optimizedp, lvalp, addrp, realnump, valuep);
1685 }
1686
1687 static const struct frame_unwind mips_insn16_frame_unwind =
1688 {
1689 NORMAL_FRAME,
1690 mips_insn16_frame_this_id,
1691 mips_insn16_frame_prev_register
1692 };
1693
1694 static const struct frame_unwind *
1695 mips_insn16_frame_sniffer (struct frame_info *next_frame)
1696 {
1697 CORE_ADDR pc = frame_pc_unwind (next_frame);
1698 if (mips_pc_is_mips16 (pc))
1699 return &mips_insn16_frame_unwind;
1700 return NULL;
1701 }
1702
1703 static CORE_ADDR
1704 mips_insn16_frame_base_address (struct frame_info *next_frame,
1705 void **this_cache)
1706 {
1707 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1708 this_cache);
1709 return info->base;
1710 }
1711
1712 static const struct frame_base mips_insn16_frame_base =
1713 {
1714 &mips_insn16_frame_unwind,
1715 mips_insn16_frame_base_address,
1716 mips_insn16_frame_base_address,
1717 mips_insn16_frame_base_address
1718 };
1719
1720 static const struct frame_base *
1721 mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
1722 {
1723 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1724 return &mips_insn16_frame_base;
1725 else
1726 return NULL;
1727 }
1728
1729 /* Mark all the registers as unset in the saved_regs array
1730 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1731
1732 void
1733 reset_saved_regs (struct mips_frame_cache *this_cache)
1734 {
1735 if (this_cache == NULL || this_cache->saved_regs == NULL)
1736 return;
1737
1738 {
1739 const int num_regs = NUM_REGS;
1740 int i;
1741
1742 for (i = 0; i < num_regs; i++)
1743 {
1744 this_cache->saved_regs[i].addr = -1;
1745 }
1746 }
1747 }
1748
1749 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1750 the associated FRAME_CACHE if not null.
1751 Return the address of the first instruction past the prologue. */
1752
1753 static CORE_ADDR
1754 mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1755 struct frame_info *next_frame,
1756 struct mips_frame_cache *this_cache)
1757 {
1758 CORE_ADDR cur_pc;
1759 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1760 CORE_ADDR sp;
1761 long frame_offset;
1762 int frame_reg = MIPS_SP_REGNUM;
1763
1764 CORE_ADDR end_prologue_addr = 0;
1765 int seen_sp_adjust = 0;
1766 int load_immediate_bytes = 0;
1767
1768 /* Can be called when there's no process, and hence when there's no
1769 NEXT_FRAME. */
1770 if (next_frame != NULL)
1771 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1772 else
1773 sp = 0;
1774
1775 if (limit_pc > start_pc + 200)
1776 limit_pc = start_pc + 200;
1777
1778 restart:
1779
1780 frame_offset = 0;
1781 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1782 {
1783 unsigned long inst, high_word, low_word;
1784 int reg;
1785
1786 /* Fetch the instruction. */
1787 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1788
1789 /* Save some code by pre-extracting some useful fields. */
1790 high_word = (inst >> 16) & 0xffff;
1791 low_word = inst & 0xffff;
1792 reg = high_word & 0x1f;
1793
1794 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1795 || high_word == 0x23bd /* addi $sp,$sp,-i */
1796 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1797 {
1798 if (low_word & 0x8000) /* negative stack adjustment? */
1799 frame_offset += 0x10000 - low_word;
1800 else
1801 /* Exit loop if a positive stack adjustment is found, which
1802 usually means that the stack cleanup code in the function
1803 epilogue is reached. */
1804 break;
1805 seen_sp_adjust = 1;
1806 }
1807 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1808 {
1809 set_reg_offset (this_cache, reg, sp + low_word);
1810 }
1811 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1812 {
1813 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1814 set_reg_offset (this_cache, reg, sp + low_word);
1815 }
1816 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1817 {
1818 /* Old gcc frame, r30 is virtual frame pointer. */
1819 if ((long) low_word != frame_offset)
1820 frame_addr = sp + low_word;
1821 else if (frame_reg == MIPS_SP_REGNUM)
1822 {
1823 unsigned alloca_adjust;
1824
1825 frame_reg = 30;
1826 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1827 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1828 if (alloca_adjust > 0)
1829 {
1830 /* FP > SP + frame_size. This may be because of
1831 an alloca or somethings similar. Fix sp to
1832 "pre-alloca" value, and try again. */
1833 sp += alloca_adjust;
1834 /* Need to reset the status of all registers. Otherwise,
1835 we will hit a guard that prevents the new address
1836 for each register to be recomputed during the second
1837 pass. */
1838 reset_saved_regs (this_cache);
1839 goto restart;
1840 }
1841 }
1842 }
1843 /* move $30,$sp. With different versions of gas this will be either
1844 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1845 Accept any one of these. */
1846 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1847 {
1848 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1849 if (frame_reg == MIPS_SP_REGNUM)
1850 {
1851 unsigned alloca_adjust;
1852
1853 frame_reg = 30;
1854 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1855 alloca_adjust = (unsigned) (frame_addr - sp);
1856 if (alloca_adjust > 0)
1857 {
1858 /* FP > SP + frame_size. This may be because of
1859 an alloca or somethings similar. Fix sp to
1860 "pre-alloca" value, and try again. */
1861 sp = frame_addr;
1862 /* Need to reset the status of all registers. Otherwise,
1863 we will hit a guard that prevents the new address
1864 for each register to be recomputed during the second
1865 pass. */
1866 reset_saved_regs (this_cache);
1867 goto restart;
1868 }
1869 }
1870 }
1871 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1872 {
1873 set_reg_offset (this_cache, reg, frame_addr + low_word);
1874 }
1875 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1876 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1877 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1878 || high_word == 0x3c1c /* lui $gp,n */
1879 || high_word == 0x279c /* addiu $gp,$gp,n */
1880 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1881 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1882 )
1883 {
1884 /* These instructions are part of the prologue, but we don't
1885 need to do anything special to handle them. */
1886 }
1887 /* The instructions below load $at or $t0 with an immediate
1888 value in preparation for a stack adjustment via
1889 subu $sp,$sp,[$at,$t0]. These instructions could also
1890 initialize a local variable, so we accept them only before
1891 a stack adjustment instruction was seen. */
1892 else if (!seen_sp_adjust
1893 && (high_word == 0x3c01 /* lui $at,n */
1894 || high_word == 0x3c08 /* lui $t0,n */
1895 || high_word == 0x3421 /* ori $at,$at,n */
1896 || high_word == 0x3508 /* ori $t0,$t0,n */
1897 || high_word == 0x3401 /* ori $at,$zero,n */
1898 || high_word == 0x3408 /* ori $t0,$zero,n */
1899 ))
1900 {
1901 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
1902 }
1903 else
1904 {
1905 /* This instruction is not an instruction typically found
1906 in a prologue, so we must have reached the end of the
1907 prologue. */
1908 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
1909 loop now? Why would we need to continue scanning the function
1910 instructions? */
1911 if (end_prologue_addr == 0)
1912 end_prologue_addr = cur_pc;
1913 }
1914 }
1915
1916 if (this_cache != NULL)
1917 {
1918 this_cache->base =
1919 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1920 + frame_offset);
1921 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
1922 this assignment below, eventually. But it's still needed
1923 for now. */
1924 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1925 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1926 }
1927
1928 /* If we didn't reach the end of the prologue when scanning the function
1929 instructions, then set end_prologue_addr to the address of the
1930 instruction immediately after the last one we scanned. */
1931 /* brobecker/2004-10-10: I don't think this would ever happen, but
1932 we may as well be careful and do our best if we have a null
1933 end_prologue_addr. */
1934 if (end_prologue_addr == 0)
1935 end_prologue_addr = cur_pc;
1936
1937 /* In a frameless function, we might have incorrectly
1938 skipped some load immediate instructions. Undo the skipping
1939 if the load immediate was not followed by a stack adjustment. */
1940 if (load_immediate_bytes && !seen_sp_adjust)
1941 end_prologue_addr -= load_immediate_bytes;
1942
1943 return end_prologue_addr;
1944 }
1945
1946 /* Heuristic unwinder for procedures using 32-bit instructions (covers
1947 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
1948 instructions (a.k.a. MIPS16) are handled by the mips_insn16
1949 unwinder. */
1950
1951 static struct mips_frame_cache *
1952 mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
1953 {
1954 struct mips_frame_cache *cache;
1955
1956 if ((*this_cache) != NULL)
1957 return (*this_cache);
1958
1959 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1960 (*this_cache) = cache;
1961 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1962
1963 /* Analyze the function prologue. */
1964 {
1965 const CORE_ADDR pc =
1966 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1967 CORE_ADDR start_addr;
1968
1969 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1970 if (start_addr == 0)
1971 start_addr = heuristic_proc_start (pc);
1972 /* We can't analyze the prologue if we couldn't find the begining
1973 of the function. */
1974 if (start_addr == 0)
1975 return cache;
1976
1977 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
1978 }
1979
1980 /* SP_REGNUM, contains the value and not the address. */
1981 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1982
1983 return (*this_cache);
1984 }
1985
1986 static void
1987 mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
1988 struct frame_id *this_id)
1989 {
1990 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1991 this_cache);
1992 (*this_id) = frame_id_build (info->base,
1993 frame_func_unwind (next_frame, NORMAL_FRAME));
1994 }
1995
1996 static void
1997 mips_insn32_frame_prev_register (struct frame_info *next_frame,
1998 void **this_cache,
1999 int regnum, int *optimizedp,
2000 enum lval_type *lvalp, CORE_ADDR *addrp,
2001 int *realnump, gdb_byte *valuep)
2002 {
2003 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2004 this_cache);
2005 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2006 optimizedp, lvalp, addrp, realnump, valuep);
2007 }
2008
2009 static const struct frame_unwind mips_insn32_frame_unwind =
2010 {
2011 NORMAL_FRAME,
2012 mips_insn32_frame_this_id,
2013 mips_insn32_frame_prev_register
2014 };
2015
2016 static const struct frame_unwind *
2017 mips_insn32_frame_sniffer (struct frame_info *next_frame)
2018 {
2019 CORE_ADDR pc = frame_pc_unwind (next_frame);
2020 if (! mips_pc_is_mips16 (pc))
2021 return &mips_insn32_frame_unwind;
2022 return NULL;
2023 }
2024
2025 static CORE_ADDR
2026 mips_insn32_frame_base_address (struct frame_info *next_frame,
2027 void **this_cache)
2028 {
2029 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2030 this_cache);
2031 return info->base;
2032 }
2033
2034 static const struct frame_base mips_insn32_frame_base =
2035 {
2036 &mips_insn32_frame_unwind,
2037 mips_insn32_frame_base_address,
2038 mips_insn32_frame_base_address,
2039 mips_insn32_frame_base_address
2040 };
2041
2042 static const struct frame_base *
2043 mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2044 {
2045 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2046 return &mips_insn32_frame_base;
2047 else
2048 return NULL;
2049 }
2050
2051 static struct trad_frame_cache *
2052 mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2053 {
2054 CORE_ADDR pc;
2055 CORE_ADDR start_addr;
2056 CORE_ADDR stack_addr;
2057 struct trad_frame_cache *this_trad_cache;
2058
2059 if ((*this_cache) != NULL)
2060 return (*this_cache);
2061 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2062 (*this_cache) = this_trad_cache;
2063
2064 /* The return address is in the link register. */
2065 trad_frame_set_reg_realreg (this_trad_cache, PC_REGNUM, MIPS_RA_REGNUM);
2066
2067 /* Frame ID, since it's a frameless / stackless function, no stack
2068 space is allocated and SP on entry is the current SP. */
2069 pc = frame_pc_unwind (next_frame);
2070 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2071 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
2072 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2073
2074 /* Assume that the frame's base is the same as the
2075 stack-pointer. */
2076 trad_frame_set_this_base (this_trad_cache, stack_addr);
2077
2078 return this_trad_cache;
2079 }
2080
2081 static void
2082 mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2083 struct frame_id *this_id)
2084 {
2085 struct trad_frame_cache *this_trad_cache
2086 = mips_stub_frame_cache (next_frame, this_cache);
2087 trad_frame_get_id (this_trad_cache, this_id);
2088 }
2089
2090 static void
2091 mips_stub_frame_prev_register (struct frame_info *next_frame,
2092 void **this_cache,
2093 int regnum, int *optimizedp,
2094 enum lval_type *lvalp, CORE_ADDR *addrp,
2095 int *realnump, gdb_byte *valuep)
2096 {
2097 struct trad_frame_cache *this_trad_cache
2098 = mips_stub_frame_cache (next_frame, this_cache);
2099 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2100 lvalp, addrp, realnump, valuep);
2101 }
2102
2103 static const struct frame_unwind mips_stub_frame_unwind =
2104 {
2105 NORMAL_FRAME,
2106 mips_stub_frame_this_id,
2107 mips_stub_frame_prev_register
2108 };
2109
2110 static const struct frame_unwind *
2111 mips_stub_frame_sniffer (struct frame_info *next_frame)
2112 {
2113 struct obj_section *s;
2114 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2115
2116 if (in_plt_section (pc, NULL))
2117 return &mips_stub_frame_unwind;
2118
2119 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2120 s = find_pc_section (pc);
2121
2122 if (s != NULL
2123 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2124 ".MIPS.stubs") == 0)
2125 return &mips_stub_frame_unwind;
2126
2127 return NULL;
2128 }
2129
2130 static CORE_ADDR
2131 mips_stub_frame_base_address (struct frame_info *next_frame,
2132 void **this_cache)
2133 {
2134 struct trad_frame_cache *this_trad_cache
2135 = mips_stub_frame_cache (next_frame, this_cache);
2136 return trad_frame_get_this_base (this_trad_cache);
2137 }
2138
2139 static const struct frame_base mips_stub_frame_base =
2140 {
2141 &mips_stub_frame_unwind,
2142 mips_stub_frame_base_address,
2143 mips_stub_frame_base_address,
2144 mips_stub_frame_base_address
2145 };
2146
2147 static const struct frame_base *
2148 mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2149 {
2150 if (mips_stub_frame_sniffer (next_frame) != NULL)
2151 return &mips_stub_frame_base;
2152 else
2153 return NULL;
2154 }
2155
2156 static CORE_ADDR
2157 read_next_frame_reg (struct frame_info *fi, int regno)
2158 {
2159 /* Always a pseudo. */
2160 gdb_assert (regno >= NUM_REGS);
2161 if (fi == NULL)
2162 {
2163 LONGEST val;
2164 regcache_cooked_read_signed (current_regcache, regno, &val);
2165 return val;
2166 }
2167 else
2168 return frame_unwind_register_signed (fi, regno);
2169
2170 }
2171
2172 /* mips_addr_bits_remove - remove useless address bits */
2173
2174 static CORE_ADDR
2175 mips_addr_bits_remove (CORE_ADDR addr)
2176 {
2177 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2178 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2179 /* This hack is a work-around for existing boards using PMON, the
2180 simulator, and any other 64-bit targets that doesn't have true
2181 64-bit addressing. On these targets, the upper 32 bits of
2182 addresses are ignored by the hardware. Thus, the PC or SP are
2183 likely to have been sign extended to all 1s by instruction
2184 sequences that load 32-bit addresses. For example, a typical
2185 piece of code that loads an address is this:
2186
2187 lui $r2, <upper 16 bits>
2188 ori $r2, <lower 16 bits>
2189
2190 But the lui sign-extends the value such that the upper 32 bits
2191 may be all 1s. The workaround is simply to mask off these
2192 bits. In the future, gcc may be changed to support true 64-bit
2193 addressing, and this masking will have to be disabled. */
2194 return addr &= 0xffffffffUL;
2195 else
2196 return addr;
2197 }
2198
2199 /* mips_software_single_step() is called just before we want to resume
2200 the inferior, if we want to single-step it but there is no hardware
2201 or kernel single-step support (MIPS on GNU/Linux for example). We find
2202 the target of the coming instruction and breakpoint it. */
2203
2204 int
2205 mips_software_single_step (struct regcache *regcache)
2206 {
2207 CORE_ADDR pc, next_pc;
2208
2209 pc = read_register (mips_regnum (current_gdbarch)->pc);
2210 next_pc = mips_next_pc (pc);
2211
2212 insert_single_step_breakpoint (next_pc);
2213 return 1;
2214 }
2215
2216 /* Test whether the PC points to the return instruction at the
2217 end of a function. */
2218
2219 static int
2220 mips_about_to_return (CORE_ADDR pc)
2221 {
2222 if (mips_pc_is_mips16 (pc))
2223 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2224 generates a "jr $ra"; other times it generates code to load
2225 the return address from the stack to an accessible register (such
2226 as $a3), then a "jr" using that register. This second case
2227 is almost impossible to distinguish from an indirect jump
2228 used for switch statements, so we don't even try. */
2229 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2230 else
2231 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2232 }
2233
2234
2235 /* This fencepost looks highly suspicious to me. Removing it also
2236 seems suspicious as it could affect remote debugging across serial
2237 lines. */
2238
2239 static CORE_ADDR
2240 heuristic_proc_start (CORE_ADDR pc)
2241 {
2242 CORE_ADDR start_pc;
2243 CORE_ADDR fence;
2244 int instlen;
2245 int seen_adjsp = 0;
2246
2247 pc = ADDR_BITS_REMOVE (pc);
2248 start_pc = pc;
2249 fence = start_pc - heuristic_fence_post;
2250 if (start_pc == 0)
2251 return 0;
2252
2253 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2254 fence = VM_MIN_ADDRESS;
2255
2256 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2257
2258 /* search back for previous return */
2259 for (start_pc -= instlen;; start_pc -= instlen)
2260 if (start_pc < fence)
2261 {
2262 /* It's not clear to me why we reach this point when
2263 stop_soon, but with this test, at least we
2264 don't print out warnings for every child forked (eg, on
2265 decstation). 22apr93 rich@cygnus.com. */
2266 if (stop_soon == NO_STOP_QUIETLY)
2267 {
2268 static int blurb_printed = 0;
2269
2270 warning (_("GDB can't find the start of the function at 0x%s."),
2271 paddr_nz (pc));
2272
2273 if (!blurb_printed)
2274 {
2275 /* This actually happens frequently in embedded
2276 development, when you first connect to a board
2277 and your stack pointer and pc are nowhere in
2278 particular. This message needs to give people
2279 in that situation enough information to
2280 determine that it's no big deal. */
2281 printf_filtered ("\n\
2282 GDB is unable to find the start of the function at 0x%s\n\
2283 and thus can't determine the size of that function's stack frame.\n\
2284 This means that GDB may be unable to access that stack frame, or\n\
2285 the frames below it.\n\
2286 This problem is most likely caused by an invalid program counter or\n\
2287 stack pointer.\n\
2288 However, if you think GDB should simply search farther back\n\
2289 from 0x%s for code which looks like the beginning of a\n\
2290 function, you can increase the range of the search using the `set\n\
2291 heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2292 blurb_printed = 1;
2293 }
2294 }
2295
2296 return 0;
2297 }
2298 else if (mips_pc_is_mips16 (start_pc))
2299 {
2300 unsigned short inst;
2301
2302 /* On MIPS16, any one of the following is likely to be the
2303 start of a function:
2304 entry
2305 addiu sp,-n
2306 daddiu sp,-n
2307 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2308 inst = mips_fetch_instruction (start_pc);
2309 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2310 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2311 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2312 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2313 break;
2314 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2315 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2316 seen_adjsp = 1;
2317 else
2318 seen_adjsp = 0;
2319 }
2320 else if (mips_about_to_return (start_pc))
2321 {
2322 /* Skip return and its delay slot. */
2323 start_pc += 2 * MIPS_INSN32_SIZE;
2324 break;
2325 }
2326
2327 return start_pc;
2328 }
2329
2330 struct mips_objfile_private
2331 {
2332 bfd_size_type size;
2333 char *contents;
2334 };
2335
2336 /* According to the current ABI, should the type be passed in a
2337 floating-point register (assuming that there is space)? When there
2338 is no FPU, FP are not even considered as possible candidates for
2339 FP registers and, consequently this returns false - forces FP
2340 arguments into integer registers. */
2341
2342 static int
2343 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2344 {
2345 return ((typecode == TYPE_CODE_FLT
2346 || (MIPS_EABI
2347 && (typecode == TYPE_CODE_STRUCT
2348 || typecode == TYPE_CODE_UNION)
2349 && TYPE_NFIELDS (arg_type) == 1
2350 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2351 == TYPE_CODE_FLT))
2352 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2353 }
2354
2355 /* On o32, argument passing in GPRs depends on the alignment of the type being
2356 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2357
2358 static int
2359 mips_type_needs_double_align (struct type *type)
2360 {
2361 enum type_code typecode = TYPE_CODE (type);
2362
2363 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2364 return 1;
2365 else if (typecode == TYPE_CODE_STRUCT)
2366 {
2367 if (TYPE_NFIELDS (type) < 1)
2368 return 0;
2369 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2370 }
2371 else if (typecode == TYPE_CODE_UNION)
2372 {
2373 int i, n;
2374
2375 n = TYPE_NFIELDS (type);
2376 for (i = 0; i < n; i++)
2377 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2378 return 1;
2379 return 0;
2380 }
2381 return 0;
2382 }
2383
2384 /* Adjust the address downward (direction of stack growth) so that it
2385 is correctly aligned for a new stack frame. */
2386 static CORE_ADDR
2387 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2388 {
2389 return align_down (addr, 16);
2390 }
2391
2392 static CORE_ADDR
2393 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2394 struct regcache *regcache, CORE_ADDR bp_addr,
2395 int nargs, struct value **args, CORE_ADDR sp,
2396 int struct_return, CORE_ADDR struct_addr)
2397 {
2398 int argreg;
2399 int float_argreg;
2400 int argnum;
2401 int len = 0;
2402 int stack_offset = 0;
2403 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2404 CORE_ADDR func_addr = find_function_addr (function, NULL);
2405
2406 /* For shared libraries, "t9" needs to point at the function
2407 address. */
2408 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2409
2410 /* Set the return address register to point to the entry point of
2411 the program, where a breakpoint lies in wait. */
2412 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2413
2414 /* First ensure that the stack and structure return address (if any)
2415 are properly aligned. The stack has to be at least 64-bit
2416 aligned even on 32-bit machines, because doubles must be 64-bit
2417 aligned. For n32 and n64, stack frames need to be 128-bit
2418 aligned, so we round to this widest known alignment. */
2419
2420 sp = align_down (sp, 16);
2421 struct_addr = align_down (struct_addr, 16);
2422
2423 /* Now make space on the stack for the args. We allocate more
2424 than necessary for EABI, because the first few arguments are
2425 passed in registers, but that's OK. */
2426 for (argnum = 0; argnum < nargs; argnum++)
2427 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
2428 mips_stack_argsize (gdbarch));
2429 sp -= align_up (len, 16);
2430
2431 if (mips_debug)
2432 fprintf_unfiltered (gdb_stdlog,
2433 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2434 paddr_nz (sp), (long) align_up (len, 16));
2435
2436 /* Initialize the integer and float register pointers. */
2437 argreg = MIPS_A0_REGNUM;
2438 float_argreg = mips_fpa0_regnum (current_gdbarch);
2439
2440 /* The struct_return pointer occupies the first parameter-passing reg. */
2441 if (struct_return)
2442 {
2443 if (mips_debug)
2444 fprintf_unfiltered (gdb_stdlog,
2445 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2446 argreg, paddr_nz (struct_addr));
2447 write_register (argreg++, struct_addr);
2448 }
2449
2450 /* Now load as many as possible of the first arguments into
2451 registers, and push the rest onto the stack. Loop thru args
2452 from first to last. */
2453 for (argnum = 0; argnum < nargs; argnum++)
2454 {
2455 const gdb_byte *val;
2456 gdb_byte valbuf[MAX_REGISTER_SIZE];
2457 struct value *arg = args[argnum];
2458 struct type *arg_type = check_typedef (value_type (arg));
2459 int len = TYPE_LENGTH (arg_type);
2460 enum type_code typecode = TYPE_CODE (arg_type);
2461
2462 if (mips_debug)
2463 fprintf_unfiltered (gdb_stdlog,
2464 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2465 argnum + 1, len, (int) typecode);
2466
2467 /* The EABI passes structures that do not fit in a register by
2468 reference. */
2469 if (len > mips_abi_regsize (gdbarch)
2470 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2471 {
2472 store_unsigned_integer (valbuf, mips_abi_regsize (gdbarch),
2473 VALUE_ADDRESS (arg));
2474 typecode = TYPE_CODE_PTR;
2475 len = mips_abi_regsize (gdbarch);
2476 val = valbuf;
2477 if (mips_debug)
2478 fprintf_unfiltered (gdb_stdlog, " push");
2479 }
2480 else
2481 val = value_contents (arg);
2482
2483 /* 32-bit ABIs always start floating point arguments in an
2484 even-numbered floating point register. Round the FP register
2485 up before the check to see if there are any FP registers
2486 left. Non MIPS_EABI targets also pass the FP in the integer
2487 registers so also round up normal registers. */
2488 if (mips_abi_regsize (gdbarch) < 8
2489 && fp_register_arg_p (typecode, arg_type))
2490 {
2491 if ((float_argreg & 1))
2492 float_argreg++;
2493 }
2494
2495 /* Floating point arguments passed in registers have to be
2496 treated specially. On 32-bit architectures, doubles
2497 are passed in register pairs; the even register gets
2498 the low word, and the odd register gets the high word.
2499 On non-EABI processors, the first two floating point arguments are
2500 also copied to general registers, because MIPS16 functions
2501 don't use float registers for arguments. This duplication of
2502 arguments in general registers can't hurt non-MIPS16 functions
2503 because those registers are normally skipped. */
2504 /* MIPS_EABI squeezes a struct that contains a single floating
2505 point value into an FP register instead of pushing it onto the
2506 stack. */
2507 if (fp_register_arg_p (typecode, arg_type)
2508 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2509 {
2510 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
2511 {
2512 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2513 unsigned long regval;
2514
2515 /* Write the low word of the double to the even register(s). */
2516 regval = extract_unsigned_integer (val + low_offset, 4);
2517 if (mips_debug)
2518 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2519 float_argreg, phex (regval, 4));
2520 write_register (float_argreg++, regval);
2521
2522 /* Write the high word of the double to the odd register(s). */
2523 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2524 if (mips_debug)
2525 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2526 float_argreg, phex (regval, 4));
2527 write_register (float_argreg++, regval);
2528 }
2529 else
2530 {
2531 /* This is a floating point value that fits entirely
2532 in a single register. */
2533 /* On 32 bit ABI's the float_argreg is further adjusted
2534 above to ensure that it is even register aligned. */
2535 LONGEST regval = extract_unsigned_integer (val, len);
2536 if (mips_debug)
2537 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2538 float_argreg, phex (regval, len));
2539 write_register (float_argreg++, regval);
2540 }
2541 }
2542 else
2543 {
2544 /* Copy the argument to general registers or the stack in
2545 register-sized pieces. Large arguments are split between
2546 registers and stack. */
2547 /* Note: structs whose size is not a multiple of
2548 mips_abi_regsize() are treated specially: Irix cc passes
2549 them in registers where gcc sometimes puts them on the
2550 stack. For maximum compatibility, we will put them in
2551 both places. */
2552 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2553 && (len % mips_abi_regsize (gdbarch) != 0));
2554
2555 /* Note: Floating-point values that didn't fit into an FP
2556 register are only written to memory. */
2557 while (len > 0)
2558 {
2559 /* Remember if the argument was written to the stack. */
2560 int stack_used_p = 0;
2561 int partial_len = (len < mips_abi_regsize (gdbarch)
2562 ? len : mips_abi_regsize (gdbarch));
2563
2564 if (mips_debug)
2565 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2566 partial_len);
2567
2568 /* Write this portion of the argument to the stack. */
2569 if (argreg > MIPS_LAST_ARG_REGNUM
2570 || odd_sized_struct
2571 || fp_register_arg_p (typecode, arg_type))
2572 {
2573 /* Should shorter than int integer values be
2574 promoted to int before being stored? */
2575 int longword_offset = 0;
2576 CORE_ADDR addr;
2577 stack_used_p = 1;
2578 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2579 {
2580 if (mips_stack_argsize (gdbarch) == 8
2581 && (typecode == TYPE_CODE_INT
2582 || typecode == TYPE_CODE_PTR
2583 || typecode == TYPE_CODE_FLT) && len <= 4)
2584 longword_offset = mips_stack_argsize (gdbarch) - len;
2585 else if ((typecode == TYPE_CODE_STRUCT
2586 || typecode == TYPE_CODE_UNION)
2587 && (TYPE_LENGTH (arg_type)
2588 < mips_stack_argsize (gdbarch)))
2589 longword_offset = mips_stack_argsize (gdbarch) - len;
2590 }
2591
2592 if (mips_debug)
2593 {
2594 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2595 paddr_nz (stack_offset));
2596 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2597 paddr_nz (longword_offset));
2598 }
2599
2600 addr = sp + stack_offset + longword_offset;
2601
2602 if (mips_debug)
2603 {
2604 int i;
2605 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2606 paddr_nz (addr));
2607 for (i = 0; i < partial_len; i++)
2608 {
2609 fprintf_unfiltered (gdb_stdlog, "%02x",
2610 val[i] & 0xff);
2611 }
2612 }
2613 write_memory (addr, val, partial_len);
2614 }
2615
2616 /* Note!!! This is NOT an else clause. Odd sized
2617 structs may go thru BOTH paths. Floating point
2618 arguments will not. */
2619 /* Write this portion of the argument to a general
2620 purpose register. */
2621 if (argreg <= MIPS_LAST_ARG_REGNUM
2622 && !fp_register_arg_p (typecode, arg_type))
2623 {
2624 LONGEST regval =
2625 extract_unsigned_integer (val, partial_len);
2626
2627 if (mips_debug)
2628 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2629 argreg,
2630 phex (regval,
2631 mips_abi_regsize (gdbarch)));
2632 write_register (argreg, regval);
2633 argreg++;
2634 }
2635
2636 len -= partial_len;
2637 val += partial_len;
2638
2639 /* Compute the the offset into the stack at which we
2640 will copy the next parameter.
2641
2642 In the new EABI (and the NABI32), the stack_offset
2643 only needs to be adjusted when it has been used. */
2644
2645 if (stack_used_p)
2646 stack_offset += align_up (partial_len,
2647 mips_stack_argsize (gdbarch));
2648 }
2649 }
2650 if (mips_debug)
2651 fprintf_unfiltered (gdb_stdlog, "\n");
2652 }
2653
2654 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2655
2656 /* Return adjusted stack pointer. */
2657 return sp;
2658 }
2659
2660 /* Determine the return value convention being used. */
2661
2662 static enum return_value_convention
2663 mips_eabi_return_value (struct gdbarch *gdbarch,
2664 struct type *type, struct regcache *regcache,
2665 gdb_byte *readbuf, const gdb_byte *writebuf)
2666 {
2667 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2668 return RETURN_VALUE_STRUCT_CONVENTION;
2669 if (readbuf)
2670 memset (readbuf, 0, TYPE_LENGTH (type));
2671 return RETURN_VALUE_REGISTER_CONVENTION;
2672 }
2673
2674
2675 /* N32/N64 ABI stuff. */
2676
2677 static CORE_ADDR
2678 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2679 struct regcache *regcache, CORE_ADDR bp_addr,
2680 int nargs, struct value **args, CORE_ADDR sp,
2681 int struct_return, CORE_ADDR struct_addr)
2682 {
2683 int argreg;
2684 int float_argreg;
2685 int argnum;
2686 int len = 0;
2687 int stack_offset = 0;
2688 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2689 CORE_ADDR func_addr = find_function_addr (function, NULL);
2690
2691 /* For shared libraries, "t9" needs to point at the function
2692 address. */
2693 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2694
2695 /* Set the return address register to point to the entry point of
2696 the program, where a breakpoint lies in wait. */
2697 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2698
2699 /* First ensure that the stack and structure return address (if any)
2700 are properly aligned. The stack has to be at least 64-bit
2701 aligned even on 32-bit machines, because doubles must be 64-bit
2702 aligned. For n32 and n64, stack frames need to be 128-bit
2703 aligned, so we round to this widest known alignment. */
2704
2705 sp = align_down (sp, 16);
2706 struct_addr = align_down (struct_addr, 16);
2707
2708 /* Now make space on the stack for the args. */
2709 for (argnum = 0; argnum < nargs; argnum++)
2710 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
2711 mips_stack_argsize (gdbarch));
2712 sp -= align_up (len, 16);
2713
2714 if (mips_debug)
2715 fprintf_unfiltered (gdb_stdlog,
2716 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2717 paddr_nz (sp), (long) align_up (len, 16));
2718
2719 /* Initialize the integer and float register pointers. */
2720 argreg = MIPS_A0_REGNUM;
2721 float_argreg = mips_fpa0_regnum (current_gdbarch);
2722
2723 /* The struct_return pointer occupies the first parameter-passing reg. */
2724 if (struct_return)
2725 {
2726 if (mips_debug)
2727 fprintf_unfiltered (gdb_stdlog,
2728 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
2729 argreg, paddr_nz (struct_addr));
2730 write_register (argreg++, struct_addr);
2731 }
2732
2733 /* Now load as many as possible of the first arguments into
2734 registers, and push the rest onto the stack. Loop thru args
2735 from first to last. */
2736 for (argnum = 0; argnum < nargs; argnum++)
2737 {
2738 const gdb_byte *val;
2739 struct value *arg = args[argnum];
2740 struct type *arg_type = check_typedef (value_type (arg));
2741 int len = TYPE_LENGTH (arg_type);
2742 enum type_code typecode = TYPE_CODE (arg_type);
2743
2744 if (mips_debug)
2745 fprintf_unfiltered (gdb_stdlog,
2746 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
2747 argnum + 1, len, (int) typecode);
2748
2749 val = value_contents (arg);
2750
2751 if (fp_register_arg_p (typecode, arg_type)
2752 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2753 {
2754 /* This is a floating point value that fits entirely
2755 in a single register. */
2756 /* On 32 bit ABI's the float_argreg is further adjusted
2757 above to ensure that it is even register aligned. */
2758 LONGEST regval = extract_unsigned_integer (val, len);
2759 if (mips_debug)
2760 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2761 float_argreg, phex (regval, len));
2762 write_register (float_argreg++, regval);
2763
2764 if (mips_debug)
2765 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2766 argreg, phex (regval, len));
2767 write_register (argreg, regval);
2768 argreg += 1;
2769 }
2770 else
2771 {
2772 /* Copy the argument to general registers or the stack in
2773 register-sized pieces. Large arguments are split between
2774 registers and stack. */
2775 /* Note: structs whose size is not a multiple of
2776 mips_abi_regsize() are treated specially: Irix cc passes
2777 them in registers where gcc sometimes puts them on the
2778 stack. For maximum compatibility, we will put them in
2779 both places. */
2780 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2781 && (len % mips_abi_regsize (gdbarch) != 0));
2782 /* Note: Floating-point values that didn't fit into an FP
2783 register are only written to memory. */
2784 while (len > 0)
2785 {
2786 /* Remember if the argument was written to the stack. */
2787 int stack_used_p = 0;
2788 int partial_len = (len < mips_abi_regsize (gdbarch)
2789 ? len : mips_abi_regsize (gdbarch));
2790
2791 if (mips_debug)
2792 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2793 partial_len);
2794
2795 /* Write this portion of the argument to the stack. */
2796 if (argreg > MIPS_LAST_ARG_REGNUM
2797 || odd_sized_struct
2798 || fp_register_arg_p (typecode, arg_type))
2799 {
2800 /* Should shorter than int integer values be
2801 promoted to int before being stored? */
2802 int longword_offset = 0;
2803 CORE_ADDR addr;
2804 stack_used_p = 1;
2805 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2806 {
2807 if (mips_stack_argsize (gdbarch) == 8
2808 && (typecode == TYPE_CODE_INT
2809 || typecode == TYPE_CODE_PTR
2810 || typecode == TYPE_CODE_FLT) && len <= 4)
2811 longword_offset = mips_stack_argsize (gdbarch) - len;
2812 }
2813
2814 if (mips_debug)
2815 {
2816 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2817 paddr_nz (stack_offset));
2818 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2819 paddr_nz (longword_offset));
2820 }
2821
2822 addr = sp + stack_offset + longword_offset;
2823
2824 if (mips_debug)
2825 {
2826 int i;
2827 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2828 paddr_nz (addr));
2829 for (i = 0; i < partial_len; i++)
2830 {
2831 fprintf_unfiltered (gdb_stdlog, "%02x",
2832 val[i] & 0xff);
2833 }
2834 }
2835 write_memory (addr, val, partial_len);
2836 }
2837
2838 /* Note!!! This is NOT an else clause. Odd sized
2839 structs may go thru BOTH paths. Floating point
2840 arguments will not. */
2841 /* Write this portion of the argument to a general
2842 purpose register. */
2843 if (argreg <= MIPS_LAST_ARG_REGNUM
2844 && !fp_register_arg_p (typecode, arg_type))
2845 {
2846 LONGEST regval =
2847 extract_unsigned_integer (val, partial_len);
2848
2849 /* A non-floating-point argument being passed in a
2850 general register. If a struct or union, and if
2851 the remaining length is smaller than the register
2852 size, we have to adjust the register value on
2853 big endian targets.
2854
2855 It does not seem to be necessary to do the
2856 same for integral types.
2857
2858 cagney/2001-07-23: gdb/179: Also, GCC, when
2859 outputting LE O32 with sizeof (struct) <
2860 mips_abi_regsize(), generates a left shift
2861 as part of storing the argument in a register
2862 (the left shift isn't generated when
2863 sizeof (struct) >= mips_abi_regsize()). Since
2864 it is quite possible that this is GCC
2865 contradicting the LE/O32 ABI, GDB has not been
2866 adjusted to accommodate this. Either someone
2867 needs to demonstrate that the LE/O32 ABI
2868 specifies such a left shift OR this new ABI gets
2869 identified as such and GDB gets tweaked
2870 accordingly. */
2871
2872 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
2873 && partial_len < mips_abi_regsize (gdbarch)
2874 && (typecode == TYPE_CODE_STRUCT ||
2875 typecode == TYPE_CODE_UNION))
2876 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
2877 TARGET_CHAR_BIT);
2878
2879 if (mips_debug)
2880 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2881 argreg,
2882 phex (regval,
2883 mips_abi_regsize (gdbarch)));
2884 write_register (argreg, regval);
2885 argreg++;
2886 }
2887
2888 len -= partial_len;
2889 val += partial_len;
2890
2891 /* Compute the the offset into the stack at which we
2892 will copy the next parameter.
2893
2894 In N32 (N64?), the stack_offset only needs to be
2895 adjusted when it has been used. */
2896
2897 if (stack_used_p)
2898 stack_offset += align_up (partial_len,
2899 mips_stack_argsize (gdbarch));
2900 }
2901 }
2902 if (mips_debug)
2903 fprintf_unfiltered (gdb_stdlog, "\n");
2904 }
2905
2906 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2907
2908 /* Return adjusted stack pointer. */
2909 return sp;
2910 }
2911
2912 static enum return_value_convention
2913 mips_n32n64_return_value (struct gdbarch *gdbarch,
2914 struct type *type, struct regcache *regcache,
2915 gdb_byte *readbuf, const gdb_byte *writebuf)
2916 {
2917 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2918 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2919 || TYPE_CODE (type) == TYPE_CODE_UNION
2920 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2921 || TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2922 return RETURN_VALUE_STRUCT_CONVENTION;
2923 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2924 && TYPE_LENGTH (type) == 16
2925 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2926 {
2927 /* A 128-bit floating-point value fills both $f0 and $f2. The
2928 two registers are used in the same as memory order, so the
2929 eight bytes with the lower memory address are in $f0. */
2930 if (mips_debug)
2931 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
2932 mips_xfer_register (regcache,
2933 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2934 8, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2935 mips_xfer_register (regcache,
2936 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 2,
2937 8, TARGET_BYTE_ORDER, readbuf ? readbuf + 8 : readbuf,
2938 writebuf ? writebuf + 8 : writebuf, 0);
2939 return RETURN_VALUE_REGISTER_CONVENTION;
2940 }
2941 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2942 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2943 {
2944 /* A floating-point value belongs in the least significant part
2945 of FP0. */
2946 if (mips_debug)
2947 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
2948 mips_xfer_register (regcache,
2949 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2950 TYPE_LENGTH (type),
2951 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2952 return RETURN_VALUE_REGISTER_CONVENTION;
2953 }
2954 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2955 && TYPE_NFIELDS (type) <= 2
2956 && TYPE_NFIELDS (type) >= 1
2957 && ((TYPE_NFIELDS (type) == 1
2958 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2959 == TYPE_CODE_FLT))
2960 || (TYPE_NFIELDS (type) == 2
2961 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2962 == TYPE_CODE_FLT)
2963 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
2964 == TYPE_CODE_FLT)))
2965 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2966 {
2967 /* A struct that contains one or two floats. Each value is part
2968 in the least significant part of their floating point
2969 register.. */
2970 int regnum;
2971 int field;
2972 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
2973 field < TYPE_NFIELDS (type); field++, regnum += 2)
2974 {
2975 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
2976 / TARGET_CHAR_BIT);
2977 if (mips_debug)
2978 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
2979 offset);
2980 mips_xfer_register (regcache, NUM_REGS + regnum,
2981 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
2982 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2983 }
2984 return RETURN_VALUE_REGISTER_CONVENTION;
2985 }
2986 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2987 || TYPE_CODE (type) == TYPE_CODE_UNION)
2988 {
2989 /* A structure or union. Extract the left justified value,
2990 regardless of the byte order. I.e. DO NOT USE
2991 mips_xfer_lower. */
2992 int offset;
2993 int regnum;
2994 for (offset = 0, regnum = MIPS_V0_REGNUM;
2995 offset < TYPE_LENGTH (type);
2996 offset += register_size (current_gdbarch, regnum), regnum++)
2997 {
2998 int xfer = register_size (current_gdbarch, regnum);
2999 if (offset + xfer > TYPE_LENGTH (type))
3000 xfer = TYPE_LENGTH (type) - offset;
3001 if (mips_debug)
3002 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3003 offset, xfer, regnum);
3004 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3005 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3006 }
3007 return RETURN_VALUE_REGISTER_CONVENTION;
3008 }
3009 else
3010 {
3011 /* A scalar extract each part but least-significant-byte
3012 justified. */
3013 int offset;
3014 int regnum;
3015 for (offset = 0, regnum = MIPS_V0_REGNUM;
3016 offset < TYPE_LENGTH (type);
3017 offset += register_size (current_gdbarch, regnum), regnum++)
3018 {
3019 int xfer = register_size (current_gdbarch, regnum);
3020 if (offset + xfer > TYPE_LENGTH (type))
3021 xfer = TYPE_LENGTH (type) - offset;
3022 if (mips_debug)
3023 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3024 offset, xfer, regnum);
3025 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3026 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3027 }
3028 return RETURN_VALUE_REGISTER_CONVENTION;
3029 }
3030 }
3031
3032 /* O32 ABI stuff. */
3033
3034 static CORE_ADDR
3035 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3036 struct regcache *regcache, CORE_ADDR bp_addr,
3037 int nargs, struct value **args, CORE_ADDR sp,
3038 int struct_return, CORE_ADDR struct_addr)
3039 {
3040 int argreg;
3041 int float_argreg;
3042 int argnum;
3043 int len = 0;
3044 int stack_offset = 0;
3045 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3046 CORE_ADDR func_addr = find_function_addr (function, NULL);
3047
3048 /* For shared libraries, "t9" needs to point at the function
3049 address. */
3050 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3051
3052 /* Set the return address register to point to the entry point of
3053 the program, where a breakpoint lies in wait. */
3054 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3055
3056 /* First ensure that the stack and structure return address (if any)
3057 are properly aligned. The stack has to be at least 64-bit
3058 aligned even on 32-bit machines, because doubles must be 64-bit
3059 aligned. For n32 and n64, stack frames need to be 128-bit
3060 aligned, so we round to this widest known alignment. */
3061
3062 sp = align_down (sp, 16);
3063 struct_addr = align_down (struct_addr, 16);
3064
3065 /* Now make space on the stack for the args. */
3066 for (argnum = 0; argnum < nargs; argnum++)
3067 {
3068 struct type *arg_type = check_typedef (value_type (args[argnum]));
3069 int arglen = TYPE_LENGTH (arg_type);
3070
3071 /* Align to double-word if necessary. */
3072 if (mips_abi_regsize (gdbarch) < 8
3073 && mips_type_needs_double_align (arg_type))
3074 len = align_up (len, mips_stack_argsize (gdbarch) * 2);
3075 /* Allocate space on the stack. */
3076 len += align_up (arglen, mips_stack_argsize (gdbarch));
3077 }
3078 sp -= align_up (len, 16);
3079
3080 if (mips_debug)
3081 fprintf_unfiltered (gdb_stdlog,
3082 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3083 paddr_nz (sp), (long) align_up (len, 16));
3084
3085 /* Initialize the integer and float register pointers. */
3086 argreg = MIPS_A0_REGNUM;
3087 float_argreg = mips_fpa0_regnum (current_gdbarch);
3088
3089 /* The struct_return pointer occupies the first parameter-passing reg. */
3090 if (struct_return)
3091 {
3092 if (mips_debug)
3093 fprintf_unfiltered (gdb_stdlog,
3094 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3095 argreg, paddr_nz (struct_addr));
3096 write_register (argreg++, struct_addr);
3097 stack_offset += mips_stack_argsize (gdbarch);
3098 }
3099
3100 /* Now load as many as possible of the first arguments into
3101 registers, and push the rest onto the stack. Loop thru args
3102 from first to last. */
3103 for (argnum = 0; argnum < nargs; argnum++)
3104 {
3105 const gdb_byte *val;
3106 struct value *arg = args[argnum];
3107 struct type *arg_type = check_typedef (value_type (arg));
3108 int len = TYPE_LENGTH (arg_type);
3109 enum type_code typecode = TYPE_CODE (arg_type);
3110
3111 if (mips_debug)
3112 fprintf_unfiltered (gdb_stdlog,
3113 "mips_o32_push_dummy_call: %d len=%d type=%d",
3114 argnum + 1, len, (int) typecode);
3115
3116 val = value_contents (arg);
3117
3118 /* 32-bit ABIs always start floating point arguments in an
3119 even-numbered floating point register. Round the FP register
3120 up before the check to see if there are any FP registers
3121 left. O32/O64 targets also pass the FP in the integer
3122 registers so also round up normal registers. */
3123 if (mips_abi_regsize (gdbarch) < 8
3124 && fp_register_arg_p (typecode, arg_type))
3125 {
3126 if ((float_argreg & 1))
3127 float_argreg++;
3128 }
3129
3130 /* Floating point arguments passed in registers have to be
3131 treated specially. On 32-bit architectures, doubles
3132 are passed in register pairs; the even register gets
3133 the low word, and the odd register gets the high word.
3134 On O32/O64, the first two floating point arguments are
3135 also copied to general registers, because MIPS16 functions
3136 don't use float registers for arguments. This duplication of
3137 arguments in general registers can't hurt non-MIPS16 functions
3138 because those registers are normally skipped. */
3139
3140 if (fp_register_arg_p (typecode, arg_type)
3141 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3142 {
3143 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
3144 {
3145 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3146 unsigned long regval;
3147
3148 /* Write the low word of the double to the even register(s). */
3149 regval = extract_unsigned_integer (val + low_offset, 4);
3150 if (mips_debug)
3151 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3152 float_argreg, phex (regval, 4));
3153 write_register (float_argreg++, regval);
3154 if (mips_debug)
3155 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3156 argreg, phex (regval, 4));
3157 write_register (argreg++, regval);
3158
3159 /* Write the high word of the double to the odd register(s). */
3160 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3161 if (mips_debug)
3162 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3163 float_argreg, phex (regval, 4));
3164 write_register (float_argreg++, regval);
3165
3166 if (mips_debug)
3167 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3168 argreg, phex (regval, 4));
3169 write_register (argreg++, regval);
3170 }
3171 else
3172 {
3173 /* This is a floating point value that fits entirely
3174 in a single register. */
3175 /* On 32 bit ABI's the float_argreg is further adjusted
3176 above to ensure that it is even register aligned. */
3177 LONGEST regval = extract_unsigned_integer (val, len);
3178 if (mips_debug)
3179 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3180 float_argreg, phex (regval, len));
3181 write_register (float_argreg++, regval);
3182 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3183 registers for each argument. The below is (my
3184 guess) to ensure that the corresponding integer
3185 register has reserved the same space. */
3186 if (mips_debug)
3187 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3188 argreg, phex (regval, len));
3189 write_register (argreg, regval);
3190 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3191 }
3192 /* Reserve space for the FP register. */
3193 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3194 }
3195 else
3196 {
3197 /* Copy the argument to general registers or the stack in
3198 register-sized pieces. Large arguments are split between
3199 registers and stack. */
3200 /* Note: structs whose size is not a multiple of
3201 mips_abi_regsize() are treated specially: Irix cc passes
3202 them in registers where gcc sometimes puts them on the
3203 stack. For maximum compatibility, we will put them in
3204 both places. */
3205 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3206 && (len % mips_abi_regsize (gdbarch) != 0));
3207 /* Structures should be aligned to eight bytes (even arg registers)
3208 on MIPS_ABI_O32, if their first member has double precision. */
3209 if (mips_abi_regsize (gdbarch) < 8
3210 && mips_type_needs_double_align (arg_type))
3211 {
3212 if ((argreg & 1))
3213 {
3214 argreg++;
3215 stack_offset += mips_abi_regsize (gdbarch);
3216 }
3217 }
3218 while (len > 0)
3219 {
3220 /* Remember if the argument was written to the stack. */
3221 int stack_used_p = 0;
3222 int partial_len = (len < mips_abi_regsize (gdbarch)
3223 ? len : mips_abi_regsize (gdbarch));
3224
3225 if (mips_debug)
3226 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3227 partial_len);
3228
3229 /* Write this portion of the argument to the stack. */
3230 if (argreg > MIPS_LAST_ARG_REGNUM
3231 || odd_sized_struct)
3232 {
3233 /* Should shorter than int integer values be
3234 promoted to int before being stored? */
3235 int longword_offset = 0;
3236 CORE_ADDR addr;
3237 stack_used_p = 1;
3238 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3239 {
3240 if (mips_stack_argsize (gdbarch) == 8
3241 && (typecode == TYPE_CODE_INT
3242 || typecode == TYPE_CODE_PTR
3243 || typecode == TYPE_CODE_FLT) && len <= 4)
3244 longword_offset = mips_stack_argsize (gdbarch) - len;
3245 }
3246
3247 if (mips_debug)
3248 {
3249 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3250 paddr_nz (stack_offset));
3251 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3252 paddr_nz (longword_offset));
3253 }
3254
3255 addr = sp + stack_offset + longword_offset;
3256
3257 if (mips_debug)
3258 {
3259 int i;
3260 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3261 paddr_nz (addr));
3262 for (i = 0; i < partial_len; i++)
3263 {
3264 fprintf_unfiltered (gdb_stdlog, "%02x",
3265 val[i] & 0xff);
3266 }
3267 }
3268 write_memory (addr, val, partial_len);
3269 }
3270
3271 /* Note!!! This is NOT an else clause. Odd sized
3272 structs may go thru BOTH paths. */
3273 /* Write this portion of the argument to a general
3274 purpose register. */
3275 if (argreg <= MIPS_LAST_ARG_REGNUM)
3276 {
3277 LONGEST regval = extract_signed_integer (val, partial_len);
3278 /* Value may need to be sign extended, because
3279 mips_isa_regsize() != mips_abi_regsize(). */
3280
3281 /* A non-floating-point argument being passed in a
3282 general register. If a struct or union, and if
3283 the remaining length is smaller than the register
3284 size, we have to adjust the register value on
3285 big endian targets.
3286
3287 It does not seem to be necessary to do the
3288 same for integral types.
3289
3290 Also don't do this adjustment on O64 binaries.
3291
3292 cagney/2001-07-23: gdb/179: Also, GCC, when
3293 outputting LE O32 with sizeof (struct) <
3294 mips_abi_regsize(), generates a left shift
3295 as part of storing the argument in a register
3296 (the left shift isn't generated when
3297 sizeof (struct) >= mips_abi_regsize()). Since
3298 it is quite possible that this is GCC
3299 contradicting the LE/O32 ABI, GDB has not been
3300 adjusted to accommodate this. Either someone
3301 needs to demonstrate that the LE/O32 ABI
3302 specifies such a left shift OR this new ABI gets
3303 identified as such and GDB gets tweaked
3304 accordingly. */
3305
3306 if (mips_abi_regsize (gdbarch) < 8
3307 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3308 && partial_len < mips_abi_regsize (gdbarch)
3309 && (typecode == TYPE_CODE_STRUCT ||
3310 typecode == TYPE_CODE_UNION))
3311 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3312 TARGET_CHAR_BIT);
3313
3314 if (mips_debug)
3315 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3316 argreg,
3317 phex (regval,
3318 mips_abi_regsize (gdbarch)));
3319 write_register (argreg, regval);
3320 argreg++;
3321
3322 /* Prevent subsequent floating point arguments from
3323 being passed in floating point registers. */
3324 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3325 }
3326
3327 len -= partial_len;
3328 val += partial_len;
3329
3330 /* Compute the the offset into the stack at which we
3331 will copy the next parameter.
3332
3333 In older ABIs, the caller reserved space for
3334 registers that contained arguments. This was loosely
3335 refered to as their "home". Consequently, space is
3336 always allocated. */
3337
3338 stack_offset += align_up (partial_len,
3339 mips_stack_argsize (gdbarch));
3340 }
3341 }
3342 if (mips_debug)
3343 fprintf_unfiltered (gdb_stdlog, "\n");
3344 }
3345
3346 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3347
3348 /* Return adjusted stack pointer. */
3349 return sp;
3350 }
3351
3352 static enum return_value_convention
3353 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3354 struct regcache *regcache,
3355 gdb_byte *readbuf, const gdb_byte *writebuf)
3356 {
3357 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3358
3359 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3360 || TYPE_CODE (type) == TYPE_CODE_UNION
3361 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3362 return RETURN_VALUE_STRUCT_CONVENTION;
3363 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3364 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3365 {
3366 /* A single-precision floating-point value. It fits in the
3367 least significant part of FP0. */
3368 if (mips_debug)
3369 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3370 mips_xfer_register (regcache,
3371 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3372 TYPE_LENGTH (type),
3373 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3374 return RETURN_VALUE_REGISTER_CONVENTION;
3375 }
3376 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3377 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3378 {
3379 /* A double-precision floating-point value. The most
3380 significant part goes in FP1, and the least significant in
3381 FP0. */
3382 if (mips_debug)
3383 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3384 switch (TARGET_BYTE_ORDER)
3385 {
3386 case BFD_ENDIAN_LITTLE:
3387 mips_xfer_register (regcache,
3388 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3389 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3390 mips_xfer_register (regcache,
3391 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3392 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3393 break;
3394 case BFD_ENDIAN_BIG:
3395 mips_xfer_register (regcache,
3396 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3397 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3398 mips_xfer_register (regcache,
3399 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3400 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3401 break;
3402 default:
3403 internal_error (__FILE__, __LINE__, _("bad switch"));
3404 }
3405 return RETURN_VALUE_REGISTER_CONVENTION;
3406 }
3407 #if 0
3408 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3409 && TYPE_NFIELDS (type) <= 2
3410 && TYPE_NFIELDS (type) >= 1
3411 && ((TYPE_NFIELDS (type) == 1
3412 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3413 == TYPE_CODE_FLT))
3414 || (TYPE_NFIELDS (type) == 2
3415 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3416 == TYPE_CODE_FLT)
3417 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3418 == TYPE_CODE_FLT)))
3419 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3420 {
3421 /* A struct that contains one or two floats. Each value is part
3422 in the least significant part of their floating point
3423 register.. */
3424 gdb_byte reg[MAX_REGISTER_SIZE];
3425 int regnum;
3426 int field;
3427 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3428 field < TYPE_NFIELDS (type); field++, regnum += 2)
3429 {
3430 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3431 / TARGET_CHAR_BIT);
3432 if (mips_debug)
3433 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3434 offset);
3435 mips_xfer_register (regcache, NUM_REGS + regnum,
3436 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3437 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3438 }
3439 return RETURN_VALUE_REGISTER_CONVENTION;
3440 }
3441 #endif
3442 #if 0
3443 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3444 || TYPE_CODE (type) == TYPE_CODE_UNION)
3445 {
3446 /* A structure or union. Extract the left justified value,
3447 regardless of the byte order. I.e. DO NOT USE
3448 mips_xfer_lower. */
3449 int offset;
3450 int regnum;
3451 for (offset = 0, regnum = MIPS_V0_REGNUM;
3452 offset < TYPE_LENGTH (type);
3453 offset += register_size (current_gdbarch, regnum), regnum++)
3454 {
3455 int xfer = register_size (current_gdbarch, regnum);
3456 if (offset + xfer > TYPE_LENGTH (type))
3457 xfer = TYPE_LENGTH (type) - offset;
3458 if (mips_debug)
3459 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3460 offset, xfer, regnum);
3461 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3462 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3463 }
3464 return RETURN_VALUE_REGISTER_CONVENTION;
3465 }
3466 #endif
3467 else
3468 {
3469 /* A scalar extract each part but least-significant-byte
3470 justified. o32 thinks registers are 4 byte, regardless of
3471 the ISA. mips_stack_argsize controls this. */
3472 int offset;
3473 int regnum;
3474 for (offset = 0, regnum = MIPS_V0_REGNUM;
3475 offset < TYPE_LENGTH (type);
3476 offset += mips_stack_argsize (gdbarch), regnum++)
3477 {
3478 int xfer = mips_stack_argsize (gdbarch);
3479 if (offset + xfer > TYPE_LENGTH (type))
3480 xfer = TYPE_LENGTH (type) - offset;
3481 if (mips_debug)
3482 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3483 offset, xfer, regnum);
3484 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3485 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3486 }
3487 return RETURN_VALUE_REGISTER_CONVENTION;
3488 }
3489 }
3490
3491 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3492 ABI. */
3493
3494 static CORE_ADDR
3495 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3496 struct regcache *regcache, CORE_ADDR bp_addr,
3497 int nargs,
3498 struct value **args, CORE_ADDR sp,
3499 int struct_return, CORE_ADDR struct_addr)
3500 {
3501 int argreg;
3502 int float_argreg;
3503 int argnum;
3504 int len = 0;
3505 int stack_offset = 0;
3506 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3507 CORE_ADDR func_addr = find_function_addr (function, NULL);
3508
3509 /* For shared libraries, "t9" needs to point at the function
3510 address. */
3511 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3512
3513 /* Set the return address register to point to the entry point of
3514 the program, where a breakpoint lies in wait. */
3515 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3516
3517 /* First ensure that the stack and structure return address (if any)
3518 are properly aligned. The stack has to be at least 64-bit
3519 aligned even on 32-bit machines, because doubles must be 64-bit
3520 aligned. For n32 and n64, stack frames need to be 128-bit
3521 aligned, so we round to this widest known alignment. */
3522
3523 sp = align_down (sp, 16);
3524 struct_addr = align_down (struct_addr, 16);
3525
3526 /* Now make space on the stack for the args. */
3527 for (argnum = 0; argnum < nargs; argnum++)
3528 {
3529 struct type *arg_type = check_typedef (value_type (args[argnum]));
3530 int arglen = TYPE_LENGTH (arg_type);
3531
3532 /* Align to double-word if necessary. */
3533 if (mips_abi_regsize (gdbarch) < 8
3534 && mips_type_needs_double_align (arg_type))
3535 len = align_up (len, mips_stack_argsize (gdbarch) * 2);
3536 /* Allocate space on the stack. */
3537 len += align_up (arglen, mips_stack_argsize (gdbarch));
3538 }
3539 sp -= align_up (len, 16);
3540
3541 if (mips_debug)
3542 fprintf_unfiltered (gdb_stdlog,
3543 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3544 paddr_nz (sp), (long) align_up (len, 16));
3545
3546 /* Initialize the integer and float register pointers. */
3547 argreg = MIPS_A0_REGNUM;
3548 float_argreg = mips_fpa0_regnum (current_gdbarch);
3549
3550 /* The struct_return pointer occupies the first parameter-passing reg. */
3551 if (struct_return)
3552 {
3553 if (mips_debug)
3554 fprintf_unfiltered (gdb_stdlog,
3555 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3556 argreg, paddr_nz (struct_addr));
3557 write_register (argreg++, struct_addr);
3558 stack_offset += mips_stack_argsize (gdbarch);
3559 }
3560
3561 /* Now load as many as possible of the first arguments into
3562 registers, and push the rest onto the stack. Loop thru args
3563 from first to last. */
3564 for (argnum = 0; argnum < nargs; argnum++)
3565 {
3566 const gdb_byte *val;
3567 struct value *arg = args[argnum];
3568 struct type *arg_type = check_typedef (value_type (arg));
3569 int len = TYPE_LENGTH (arg_type);
3570 enum type_code typecode = TYPE_CODE (arg_type);
3571
3572 if (mips_debug)
3573 fprintf_unfiltered (gdb_stdlog,
3574 "mips_o64_push_dummy_call: %d len=%d type=%d",
3575 argnum + 1, len, (int) typecode);
3576
3577 val = value_contents (arg);
3578
3579 /* 32-bit ABIs always start floating point arguments in an
3580 even-numbered floating point register. Round the FP register
3581 up before the check to see if there are any FP registers
3582 left. O32/O64 targets also pass the FP in the integer
3583 registers so also round up normal registers. */
3584 if (mips_abi_regsize (gdbarch) < 8
3585 && fp_register_arg_p (typecode, arg_type))
3586 {
3587 if ((float_argreg & 1))
3588 float_argreg++;
3589 }
3590
3591 /* Floating point arguments passed in registers have to be
3592 treated specially. On 32-bit architectures, doubles
3593 are passed in register pairs; the even register gets
3594 the low word, and the odd register gets the high word.
3595 On O32/O64, the first two floating point arguments are
3596 also copied to general registers, because MIPS16 functions
3597 don't use float registers for arguments. This duplication of
3598 arguments in general registers can't hurt non-MIPS16 functions
3599 because those registers are normally skipped. */
3600
3601 if (fp_register_arg_p (typecode, arg_type)
3602 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3603 {
3604 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
3605 {
3606 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3607 unsigned long regval;
3608
3609 /* Write the low word of the double to the even register(s). */
3610 regval = extract_unsigned_integer (val + low_offset, 4);
3611 if (mips_debug)
3612 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3613 float_argreg, phex (regval, 4));
3614 write_register (float_argreg++, regval);
3615 if (mips_debug)
3616 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3617 argreg, phex (regval, 4));
3618 write_register (argreg++, regval);
3619
3620 /* Write the high word of the double to the odd register(s). */
3621 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3622 if (mips_debug)
3623 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3624 float_argreg, phex (regval, 4));
3625 write_register (float_argreg++, regval);
3626
3627 if (mips_debug)
3628 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3629 argreg, phex (regval, 4));
3630 write_register (argreg++, regval);
3631 }
3632 else
3633 {
3634 /* This is a floating point value that fits entirely
3635 in a single register. */
3636 /* On 32 bit ABI's the float_argreg is further adjusted
3637 above to ensure that it is even register aligned. */
3638 LONGEST regval = extract_unsigned_integer (val, len);
3639 if (mips_debug)
3640 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3641 float_argreg, phex (regval, len));
3642 write_register (float_argreg++, regval);
3643 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3644 registers for each argument. The below is (my
3645 guess) to ensure that the corresponding integer
3646 register has reserved the same space. */
3647 if (mips_debug)
3648 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3649 argreg, phex (regval, len));
3650 write_register (argreg, regval);
3651 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3652 }
3653 /* Reserve space for the FP register. */
3654 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3655 }
3656 else
3657 {
3658 /* Copy the argument to general registers or the stack in
3659 register-sized pieces. Large arguments are split between
3660 registers and stack. */
3661 /* Note: structs whose size is not a multiple of
3662 mips_abi_regsize() are treated specially: Irix cc passes
3663 them in registers where gcc sometimes puts them on the
3664 stack. For maximum compatibility, we will put them in
3665 both places. */
3666 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3667 && (len % mips_abi_regsize (gdbarch) != 0));
3668 /* Structures should be aligned to eight bytes (even arg registers)
3669 on MIPS_ABI_O32, if their first member has double precision. */
3670 if (mips_abi_regsize (gdbarch) < 8
3671 && mips_type_needs_double_align (arg_type))
3672 {
3673 if ((argreg & 1))
3674 {
3675 argreg++;
3676 stack_offset += mips_abi_regsize (gdbarch);
3677 }
3678 }
3679 while (len > 0)
3680 {
3681 /* Remember if the argument was written to the stack. */
3682 int stack_used_p = 0;
3683 int partial_len = (len < mips_abi_regsize (gdbarch)
3684 ? len : mips_abi_regsize (gdbarch));
3685
3686 if (mips_debug)
3687 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3688 partial_len);
3689
3690 /* Write this portion of the argument to the stack. */
3691 if (argreg > MIPS_LAST_ARG_REGNUM
3692 || odd_sized_struct)
3693 {
3694 /* Should shorter than int integer values be
3695 promoted to int before being stored? */
3696 int longword_offset = 0;
3697 CORE_ADDR addr;
3698 stack_used_p = 1;
3699 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3700 {
3701 if (mips_stack_argsize (gdbarch) == 8
3702 && (typecode == TYPE_CODE_INT
3703 || typecode == TYPE_CODE_PTR
3704 || typecode == TYPE_CODE_FLT) && len <= 4)
3705 longword_offset = mips_stack_argsize (gdbarch) - len;
3706 }
3707
3708 if (mips_debug)
3709 {
3710 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3711 paddr_nz (stack_offset));
3712 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3713 paddr_nz (longword_offset));
3714 }
3715
3716 addr = sp + stack_offset + longword_offset;
3717
3718 if (mips_debug)
3719 {
3720 int i;
3721 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3722 paddr_nz (addr));
3723 for (i = 0; i < partial_len; i++)
3724 {
3725 fprintf_unfiltered (gdb_stdlog, "%02x",
3726 val[i] & 0xff);
3727 }
3728 }
3729 write_memory (addr, val, partial_len);
3730 }
3731
3732 /* Note!!! This is NOT an else clause. Odd sized
3733 structs may go thru BOTH paths. */
3734 /* Write this portion of the argument to a general
3735 purpose register. */
3736 if (argreg <= MIPS_LAST_ARG_REGNUM)
3737 {
3738 LONGEST regval = extract_signed_integer (val, partial_len);
3739 /* Value may need to be sign extended, because
3740 mips_isa_regsize() != mips_abi_regsize(). */
3741
3742 /* A non-floating-point argument being passed in a
3743 general register. If a struct or union, and if
3744 the remaining length is smaller than the register
3745 size, we have to adjust the register value on
3746 big endian targets.
3747
3748 It does not seem to be necessary to do the
3749 same for integral types. */
3750
3751 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3752 && partial_len < mips_abi_regsize (gdbarch)
3753 && (typecode == TYPE_CODE_STRUCT ||
3754 typecode == TYPE_CODE_UNION))
3755 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3756 TARGET_CHAR_BIT);
3757
3758 if (mips_debug)
3759 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3760 argreg,
3761 phex (regval,
3762 mips_abi_regsize (gdbarch)));
3763 write_register (argreg, regval);
3764 argreg++;
3765
3766 /* Prevent subsequent floating point arguments from
3767 being passed in floating point registers. */
3768 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3769 }
3770
3771 len -= partial_len;
3772 val += partial_len;
3773
3774 /* Compute the the offset into the stack at which we
3775 will copy the next parameter.
3776
3777 In older ABIs, the caller reserved space for
3778 registers that contained arguments. This was loosely
3779 refered to as their "home". Consequently, space is
3780 always allocated. */
3781
3782 stack_offset += align_up (partial_len,
3783 mips_stack_argsize (gdbarch));
3784 }
3785 }
3786 if (mips_debug)
3787 fprintf_unfiltered (gdb_stdlog, "\n");
3788 }
3789
3790 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3791
3792 /* Return adjusted stack pointer. */
3793 return sp;
3794 }
3795
3796 static enum return_value_convention
3797 mips_o64_return_value (struct gdbarch *gdbarch,
3798 struct type *type, struct regcache *regcache,
3799 gdb_byte *readbuf, const gdb_byte *writebuf)
3800 {
3801 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3802
3803 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3804 || TYPE_CODE (type) == TYPE_CODE_UNION
3805 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3806 return RETURN_VALUE_STRUCT_CONVENTION;
3807 else if (fp_register_arg_p (TYPE_CODE (type), type))
3808 {
3809 /* A floating-point value. It fits in the least significant
3810 part of FP0. */
3811 if (mips_debug)
3812 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3813 mips_xfer_register (regcache,
3814 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3815 TYPE_LENGTH (type),
3816 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3817 return RETURN_VALUE_REGISTER_CONVENTION;
3818 }
3819 else
3820 {
3821 /* A scalar extract each part but least-significant-byte
3822 justified. */
3823 int offset;
3824 int regnum;
3825 for (offset = 0, regnum = MIPS_V0_REGNUM;
3826 offset < TYPE_LENGTH (type);
3827 offset += mips_stack_argsize (gdbarch), regnum++)
3828 {
3829 int xfer = mips_stack_argsize (gdbarch);
3830 if (offset + xfer > TYPE_LENGTH (type))
3831 xfer = TYPE_LENGTH (type) - offset;
3832 if (mips_debug)
3833 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3834 offset, xfer, regnum);
3835 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3836 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3837 }
3838 return RETURN_VALUE_REGISTER_CONVENTION;
3839 }
3840 }
3841
3842 /* Floating point register management.
3843
3844 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3845 64bit operations, these early MIPS cpus treat fp register pairs
3846 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3847 registers and offer a compatibility mode that emulates the MIPS2 fp
3848 model. When operating in MIPS2 fp compat mode, later cpu's split
3849 double precision floats into two 32-bit chunks and store them in
3850 consecutive fp regs. To display 64-bit floats stored in this
3851 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3852 Throw in user-configurable endianness and you have a real mess.
3853
3854 The way this works is:
3855 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3856 double-precision value will be split across two logical registers.
3857 The lower-numbered logical register will hold the low-order bits,
3858 regardless of the processor's endianness.
3859 - If we are on a 64-bit processor, and we are looking for a
3860 single-precision value, it will be in the low ordered bits
3861 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3862 save slot in memory.
3863 - If we are in 64-bit mode, everything is straightforward.
3864
3865 Note that this code only deals with "live" registers at the top of the
3866 stack. We will attempt to deal with saved registers later, when
3867 the raw/cooked register interface is in place. (We need a general
3868 interface that can deal with dynamic saved register sizes -- fp
3869 regs could be 32 bits wide in one frame and 64 on the frame above
3870 and below). */
3871
3872 static struct type *
3873 mips_float_register_type (void)
3874 {
3875 return builtin_type_ieee_single;
3876 }
3877
3878 static struct type *
3879 mips_double_register_type (void)
3880 {
3881 return builtin_type_ieee_double;
3882 }
3883
3884 /* Copy a 32-bit single-precision value from the current frame
3885 into rare_buffer. */
3886
3887 static void
3888 mips_read_fp_register_single (struct frame_info *frame, int regno,
3889 gdb_byte *rare_buffer)
3890 {
3891 int raw_size = register_size (current_gdbarch, regno);
3892 gdb_byte *raw_buffer = alloca (raw_size);
3893
3894 if (!frame_register_read (frame, regno, raw_buffer))
3895 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
3896 if (raw_size == 8)
3897 {
3898 /* We have a 64-bit value for this register. Find the low-order
3899 32 bits. */
3900 int offset;
3901
3902 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3903 offset = 4;
3904 else
3905 offset = 0;
3906
3907 memcpy (rare_buffer, raw_buffer + offset, 4);
3908 }
3909 else
3910 {
3911 memcpy (rare_buffer, raw_buffer, 4);
3912 }
3913 }
3914
3915 /* Copy a 64-bit double-precision value from the current frame into
3916 rare_buffer. This may include getting half of it from the next
3917 register. */
3918
3919 static void
3920 mips_read_fp_register_double (struct frame_info *frame, int regno,
3921 gdb_byte *rare_buffer)
3922 {
3923 int raw_size = register_size (current_gdbarch, regno);
3924
3925 if (raw_size == 8 && !mips2_fp_compat ())
3926 {
3927 /* We have a 64-bit value for this register, and we should use
3928 all 64 bits. */
3929 if (!frame_register_read (frame, regno, rare_buffer))
3930 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
3931 }
3932 else
3933 {
3934 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
3935 internal_error (__FILE__, __LINE__,
3936 _("mips_read_fp_register_double: bad access to "
3937 "odd-numbered FP register"));
3938
3939 /* mips_read_fp_register_single will find the correct 32 bits from
3940 each register. */
3941 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3942 {
3943 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3944 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
3945 }
3946 else
3947 {
3948 mips_read_fp_register_single (frame, regno, rare_buffer);
3949 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
3950 }
3951 }
3952 }
3953
3954 static void
3955 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
3956 int regnum)
3957 { /* do values for FP (float) regs */
3958 gdb_byte *raw_buffer;
3959 double doub, flt1; /* doubles extracted from raw hex data */
3960 int inv1, inv2;
3961
3962 raw_buffer = alloca (2 * register_size (current_gdbarch,
3963 mips_regnum (current_gdbarch)->fp0));
3964
3965 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
3966 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
3967 "");
3968
3969 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
3970 {
3971 /* 4-byte registers: Print hex and floating. Also print even
3972 numbered registers as doubles. */
3973 mips_read_fp_register_single (frame, regnum, raw_buffer);
3974 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3975
3976 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
3977 file);
3978
3979 fprintf_filtered (file, " flt: ");
3980 if (inv1)
3981 fprintf_filtered (file, " <invalid float> ");
3982 else
3983 fprintf_filtered (file, "%-17.9g", flt1);
3984
3985 if (regnum % 2 == 0)
3986 {
3987 mips_read_fp_register_double (frame, regnum, raw_buffer);
3988 doub = unpack_double (mips_double_register_type (), raw_buffer,
3989 &inv2);
3990
3991 fprintf_filtered (file, " dbl: ");
3992 if (inv2)
3993 fprintf_filtered (file, "<invalid double>");
3994 else
3995 fprintf_filtered (file, "%-24.17g", doub);
3996 }
3997 }
3998 else
3999 {
4000 /* Eight byte registers: print each one as hex, float and double. */
4001 mips_read_fp_register_single (frame, regnum, raw_buffer);
4002 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4003
4004 mips_read_fp_register_double (frame, regnum, raw_buffer);
4005 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4006
4007
4008 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4009 file);
4010
4011 fprintf_filtered (file, " flt: ");
4012 if (inv1)
4013 fprintf_filtered (file, "<invalid float>");
4014 else
4015 fprintf_filtered (file, "%-17.9g", flt1);
4016
4017 fprintf_filtered (file, " dbl: ");
4018 if (inv2)
4019 fprintf_filtered (file, "<invalid double>");
4020 else
4021 fprintf_filtered (file, "%-24.17g", doub);
4022 }
4023 }
4024
4025 static void
4026 mips_print_register (struct ui_file *file, struct frame_info *frame,
4027 int regnum, int all)
4028 {
4029 struct gdbarch *gdbarch = get_frame_arch (frame);
4030 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4031 int offset;
4032
4033 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4034 {
4035 mips_print_fp_register (file, frame, regnum);
4036 return;
4037 }
4038
4039 /* Get the data in raw format. */
4040 if (!frame_register_read (frame, regnum, raw_buffer))
4041 {
4042 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
4043 return;
4044 }
4045
4046 fputs_filtered (REGISTER_NAME (regnum), file);
4047
4048 /* The problem with printing numeric register names (r26, etc.) is that
4049 the user can't use them on input. Probably the best solution is to
4050 fix it so that either the numeric or the funky (a2, etc.) names
4051 are accepted on input. */
4052 if (regnum < MIPS_NUMREGS)
4053 fprintf_filtered (file, "(r%d): ", regnum);
4054 else
4055 fprintf_filtered (file, ": ");
4056
4057 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4058 offset =
4059 register_size (current_gdbarch,
4060 regnum) - register_size (current_gdbarch, regnum);
4061 else
4062 offset = 0;
4063
4064 print_scalar_formatted (raw_buffer + offset,
4065 register_type (gdbarch, regnum), 'x', 0,
4066 file);
4067 }
4068
4069 /* Replacement for generic do_registers_info.
4070 Print regs in pretty columns. */
4071
4072 static int
4073 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4074 int regnum)
4075 {
4076 fprintf_filtered (file, " ");
4077 mips_print_fp_register (file, frame, regnum);
4078 fprintf_filtered (file, "\n");
4079 return regnum + 1;
4080 }
4081
4082
4083 /* Print a row's worth of GP (int) registers, with name labels above */
4084
4085 static int
4086 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4087 int start_regnum)
4088 {
4089 struct gdbarch *gdbarch = get_frame_arch (frame);
4090 /* do values for GP (int) regs */
4091 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4092 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4093 int col, byte;
4094 int regnum;
4095
4096 /* For GP registers, we print a separate row of names above the vals */
4097 for (col = 0, regnum = start_regnum;
4098 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4099 {
4100 if (*REGISTER_NAME (regnum) == '\0')
4101 continue; /* unused register */
4102 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4103 TYPE_CODE_FLT)
4104 break; /* end the row: reached FP register */
4105 if (col == 0)
4106 fprintf_filtered (file, " ");
4107 fprintf_filtered (file,
4108 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4109 REGISTER_NAME (regnum));
4110 col++;
4111 }
4112
4113 if (col == 0)
4114 return regnum;
4115
4116 /* print the R0 to R31 names */
4117 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4118 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4119 else
4120 fprintf_filtered (file, "\n ");
4121
4122 /* now print the values in hex, 4 or 8 to the row */
4123 for (col = 0, regnum = start_regnum;
4124 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4125 {
4126 if (*REGISTER_NAME (regnum) == '\0')
4127 continue; /* unused register */
4128 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4129 TYPE_CODE_FLT)
4130 break; /* end row: reached FP register */
4131 /* OK: get the data in raw format. */
4132 if (!frame_register_read (frame, regnum, raw_buffer))
4133 error (_("can't read register %d (%s)"), regnum, REGISTER_NAME (regnum));
4134 /* pad small registers */
4135 for (byte = 0;
4136 byte < (mips_abi_regsize (current_gdbarch)
4137 - register_size (current_gdbarch, regnum)); byte++)
4138 printf_filtered (" ");
4139 /* Now print the register value in hex, endian order. */
4140 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4141 for (byte =
4142 register_size (current_gdbarch,
4143 regnum) - register_size (current_gdbarch, regnum);
4144 byte < register_size (current_gdbarch, regnum); byte++)
4145 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4146 else
4147 for (byte = register_size (current_gdbarch, regnum) - 1;
4148 byte >= 0; byte--)
4149 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4150 fprintf_filtered (file, " ");
4151 col++;
4152 }
4153 if (col > 0) /* ie. if we actually printed anything... */
4154 fprintf_filtered (file, "\n");
4155
4156 return regnum;
4157 }
4158
4159 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4160
4161 static void
4162 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4163 struct frame_info *frame, int regnum, int all)
4164 {
4165 if (regnum != -1) /* do one specified register */
4166 {
4167 gdb_assert (regnum >= NUM_REGS);
4168 if (*(REGISTER_NAME (regnum)) == '\0')
4169 error (_("Not a valid register for the current processor type"));
4170
4171 mips_print_register (file, frame, regnum, 0);
4172 fprintf_filtered (file, "\n");
4173 }
4174 else
4175 /* do all (or most) registers */
4176 {
4177 regnum = NUM_REGS;
4178 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
4179 {
4180 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4181 TYPE_CODE_FLT)
4182 {
4183 if (all) /* true for "INFO ALL-REGISTERS" command */
4184 regnum = print_fp_register_row (file, frame, regnum);
4185 else
4186 regnum += MIPS_NUMREGS; /* skip floating point regs */
4187 }
4188 else
4189 regnum = print_gp_register_row (file, frame, regnum);
4190 }
4191 }
4192 }
4193
4194 /* Is this a branch with a delay slot? */
4195
4196 static int
4197 is_delayed (unsigned long insn)
4198 {
4199 int i;
4200 for (i = 0; i < NUMOPCODES; ++i)
4201 if (mips_opcodes[i].pinfo != INSN_MACRO
4202 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4203 break;
4204 return (i < NUMOPCODES
4205 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4206 | INSN_COND_BRANCH_DELAY
4207 | INSN_COND_BRANCH_LIKELY)));
4208 }
4209
4210 int
4211 mips_single_step_through_delay (struct gdbarch *gdbarch,
4212 struct frame_info *frame)
4213 {
4214 CORE_ADDR pc = get_frame_pc (frame);
4215 gdb_byte buf[MIPS_INSN32_SIZE];
4216
4217 /* There is no branch delay slot on MIPS16. */
4218 if (mips_pc_is_mips16 (pc))
4219 return 0;
4220
4221 if (!breakpoint_here_p (pc + 4))
4222 return 0;
4223
4224 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4225 /* If error reading memory, guess that it is not a delayed
4226 branch. */
4227 return 0;
4228 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
4229 }
4230
4231 /* To skip prologues, I use this predicate. Returns either PC itself
4232 if the code at PC does not look like a function prologue; otherwise
4233 returns an address that (if we're lucky) follows the prologue. If
4234 LENIENT, then we must skip everything which is involved in setting
4235 up the frame (it's OK to skip more, just so long as we don't skip
4236 anything which might clobber the registers which are being saved.
4237 We must skip more in the case where part of the prologue is in the
4238 delay slot of a non-prologue instruction). */
4239
4240 static CORE_ADDR
4241 mips_skip_prologue (CORE_ADDR pc)
4242 {
4243 CORE_ADDR limit_pc;
4244 CORE_ADDR func_addr;
4245
4246 /* See if we can determine the end of the prologue via the symbol table.
4247 If so, then return either PC, or the PC after the prologue, whichever
4248 is greater. */
4249 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4250 {
4251 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4252 if (post_prologue_pc != 0)
4253 return max (pc, post_prologue_pc);
4254 }
4255
4256 /* Can't determine prologue from the symbol table, need to examine
4257 instructions. */
4258
4259 /* Find an upper limit on the function prologue using the debug
4260 information. If the debug information could not be used to provide
4261 that bound, then use an arbitrary large number as the upper bound. */
4262 limit_pc = skip_prologue_using_sal (pc);
4263 if (limit_pc == 0)
4264 limit_pc = pc + 100; /* Magic. */
4265
4266 if (mips_pc_is_mips16 (pc))
4267 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
4268 else
4269 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
4270 }
4271
4272 /* Root of all "set mips "/"show mips " commands. This will eventually be
4273 used for all MIPS-specific commands. */
4274
4275 static void
4276 show_mips_command (char *args, int from_tty)
4277 {
4278 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4279 }
4280
4281 static void
4282 set_mips_command (char *args, int from_tty)
4283 {
4284 printf_unfiltered
4285 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4286 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4287 }
4288
4289 /* Commands to show/set the MIPS FPU type. */
4290
4291 static void
4292 show_mipsfpu_command (char *args, int from_tty)
4293 {
4294 char *fpu;
4295 switch (MIPS_FPU_TYPE)
4296 {
4297 case MIPS_FPU_SINGLE:
4298 fpu = "single-precision";
4299 break;
4300 case MIPS_FPU_DOUBLE:
4301 fpu = "double-precision";
4302 break;
4303 case MIPS_FPU_NONE:
4304 fpu = "absent (none)";
4305 break;
4306 default:
4307 internal_error (__FILE__, __LINE__, _("bad switch"));
4308 }
4309 if (mips_fpu_type_auto)
4310 printf_unfiltered
4311 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4312 fpu);
4313 else
4314 printf_unfiltered
4315 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4316 }
4317
4318
4319 static void
4320 set_mipsfpu_command (char *args, int from_tty)
4321 {
4322 printf_unfiltered
4323 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4324 show_mipsfpu_command (args, from_tty);
4325 }
4326
4327 static void
4328 set_mipsfpu_single_command (char *args, int from_tty)
4329 {
4330 struct gdbarch_info info;
4331 gdbarch_info_init (&info);
4332 mips_fpu_type = MIPS_FPU_SINGLE;
4333 mips_fpu_type_auto = 0;
4334 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4335 instead of relying on globals. Doing that would let generic code
4336 handle the search for this specific architecture. */
4337 if (!gdbarch_update_p (info))
4338 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4339 }
4340
4341 static void
4342 set_mipsfpu_double_command (char *args, int from_tty)
4343 {
4344 struct gdbarch_info info;
4345 gdbarch_info_init (&info);
4346 mips_fpu_type = MIPS_FPU_DOUBLE;
4347 mips_fpu_type_auto = 0;
4348 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4349 instead of relying on globals. Doing that would let generic code
4350 handle the search for this specific architecture. */
4351 if (!gdbarch_update_p (info))
4352 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4353 }
4354
4355 static void
4356 set_mipsfpu_none_command (char *args, int from_tty)
4357 {
4358 struct gdbarch_info info;
4359 gdbarch_info_init (&info);
4360 mips_fpu_type = MIPS_FPU_NONE;
4361 mips_fpu_type_auto = 0;
4362 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4363 instead of relying on globals. Doing that would let generic code
4364 handle the search for this specific architecture. */
4365 if (!gdbarch_update_p (info))
4366 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4367 }
4368
4369 static void
4370 set_mipsfpu_auto_command (char *args, int from_tty)
4371 {
4372 mips_fpu_type_auto = 1;
4373 }
4374
4375 /* Attempt to identify the particular processor model by reading the
4376 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4377 the relevant processor still exists (it dates back to '94) and
4378 secondly this is not the way to do this. The processor type should
4379 be set by forcing an architecture change. */
4380
4381 void
4382 deprecated_mips_set_processor_regs_hack (void)
4383 {
4384 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4385 CORE_ADDR prid;
4386
4387 prid = read_register (MIPS_PRID_REGNUM);
4388
4389 if ((prid & ~0xf) == 0x700)
4390 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4391 }
4392
4393 /* Just like reinit_frame_cache, but with the right arguments to be
4394 callable as an sfunc. */
4395
4396 static void
4397 reinit_frame_cache_sfunc (char *args, int from_tty,
4398 struct cmd_list_element *c)
4399 {
4400 reinit_frame_cache ();
4401 }
4402
4403 static int
4404 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4405 {
4406 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4407
4408 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4409 disassembler needs to be able to locally determine the ISA, and
4410 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4411 work. */
4412 if (mips_pc_is_mips16 (memaddr))
4413 info->mach = bfd_mach_mips16;
4414
4415 /* Round down the instruction address to the appropriate boundary. */
4416 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4417
4418 /* Set the disassembler options. */
4419 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
4420 {
4421 /* Set up the disassembler info, so that we get the right
4422 register names from libopcodes. */
4423 if (tdep->mips_abi == MIPS_ABI_N32)
4424 info->disassembler_options = "gpr-names=n32";
4425 else
4426 info->disassembler_options = "gpr-names=64";
4427 info->flavour = bfd_target_elf_flavour;
4428 }
4429 else
4430 /* This string is not recognized explicitly by the disassembler,
4431 but it tells the disassembler to not try to guess the ABI from
4432 the bfd elf headers, such that, if the user overrides the ABI
4433 of a program linked as NewABI, the disassembly will follow the
4434 register naming conventions specified by the user. */
4435 info->disassembler_options = "gpr-names=32";
4436
4437 /* Call the appropriate disassembler based on the target endian-ness. */
4438 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4439 return print_insn_big_mips (memaddr, info);
4440 else
4441 return print_insn_little_mips (memaddr, info);
4442 }
4443
4444 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
4445 counter value to determine whether a 16- or 32-bit breakpoint should be
4446 used. It returns a pointer to a string of bytes that encode a breakpoint
4447 instruction, stores the length of the string to *lenptr, and adjusts pc
4448 (if necessary) to point to the actual memory location where the
4449 breakpoint should be inserted. */
4450
4451 static const gdb_byte *
4452 mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
4453 {
4454 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4455 {
4456 if (mips_pc_is_mips16 (*pcptr))
4457 {
4458 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4459 *pcptr = unmake_mips16_addr (*pcptr);
4460 *lenptr = sizeof (mips16_big_breakpoint);
4461 return mips16_big_breakpoint;
4462 }
4463 else
4464 {
4465 /* The IDT board uses an unusual breakpoint value, and
4466 sometimes gets confused when it sees the usual MIPS
4467 breakpoint instruction. */
4468 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4469 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4470 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
4471
4472 *lenptr = sizeof (big_breakpoint);
4473
4474 if (strcmp (target_shortname, "mips") == 0)
4475 return idt_big_breakpoint;
4476 else if (strcmp (target_shortname, "ddb") == 0
4477 || strcmp (target_shortname, "pmon") == 0
4478 || strcmp (target_shortname, "lsi") == 0)
4479 return pmon_big_breakpoint;
4480 else
4481 return big_breakpoint;
4482 }
4483 }
4484 else
4485 {
4486 if (mips_pc_is_mips16 (*pcptr))
4487 {
4488 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4489 *pcptr = unmake_mips16_addr (*pcptr);
4490 *lenptr = sizeof (mips16_little_breakpoint);
4491 return mips16_little_breakpoint;
4492 }
4493 else
4494 {
4495 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4496 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4497 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
4498
4499 *lenptr = sizeof (little_breakpoint);
4500
4501 if (strcmp (target_shortname, "mips") == 0)
4502 return idt_little_breakpoint;
4503 else if (strcmp (target_shortname, "ddb") == 0
4504 || strcmp (target_shortname, "pmon") == 0
4505 || strcmp (target_shortname, "lsi") == 0)
4506 return pmon_little_breakpoint;
4507 else
4508 return little_breakpoint;
4509 }
4510 }
4511 }
4512
4513 /* If PC is in a mips16 call or return stub, return the address of the target
4514 PC, which is either the callee or the caller. There are several
4515 cases which must be handled:
4516
4517 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4518 target PC is in $31 ($ra).
4519 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4520 and the target PC is in $2.
4521 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4522 before the jal instruction, this is effectively a call stub
4523 and the the target PC is in $2. Otherwise this is effectively
4524 a return stub and the target PC is in $18.
4525
4526 See the source code for the stubs in gcc/config/mips/mips16.S for
4527 gory details. */
4528
4529 static CORE_ADDR
4530 mips_skip_trampoline_code (CORE_ADDR pc)
4531 {
4532 char *name;
4533 CORE_ADDR start_addr;
4534
4535 /* Find the starting address and name of the function containing the PC. */
4536 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4537 return 0;
4538
4539 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4540 target PC is in $31 ($ra). */
4541 if (strcmp (name, "__mips16_ret_sf") == 0
4542 || strcmp (name, "__mips16_ret_df") == 0)
4543 return read_signed_register (MIPS_RA_REGNUM);
4544
4545 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4546 {
4547 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4548 and the target PC is in $2. */
4549 if (name[19] >= '0' && name[19] <= '9')
4550 return read_signed_register (2);
4551
4552 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4553 before the jal instruction, this is effectively a call stub
4554 and the the target PC is in $2. Otherwise this is effectively
4555 a return stub and the target PC is in $18. */
4556 else if (name[19] == 's' || name[19] == 'd')
4557 {
4558 if (pc == start_addr)
4559 {
4560 /* Check if the target of the stub is a compiler-generated
4561 stub. Such a stub for a function bar might have a name
4562 like __fn_stub_bar, and might look like this:
4563 mfc1 $4,$f13
4564 mfc1 $5,$f12
4565 mfc1 $6,$f15
4566 mfc1 $7,$f14
4567 la $1,bar (becomes a lui/addiu pair)
4568 jr $1
4569 So scan down to the lui/addi and extract the target
4570 address from those two instructions. */
4571
4572 CORE_ADDR target_pc = read_signed_register (2);
4573 ULONGEST inst;
4574 int i;
4575
4576 /* See if the name of the target function is __fn_stub_*. */
4577 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4578 0)
4579 return target_pc;
4580 if (strncmp (name, "__fn_stub_", 10) != 0
4581 && strcmp (name, "etext") != 0
4582 && strcmp (name, "_etext") != 0)
4583 return target_pc;
4584
4585 /* Scan through this _fn_stub_ code for the lui/addiu pair.
4586 The limit on the search is arbitrarily set to 20
4587 instructions. FIXME. */
4588 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
4589 {
4590 inst = mips_fetch_instruction (target_pc);
4591 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4592 pc = (inst << 16) & 0xffff0000; /* high word */
4593 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4594 return pc | (inst & 0xffff); /* low word */
4595 }
4596
4597 /* Couldn't find the lui/addui pair, so return stub address. */
4598 return target_pc;
4599 }
4600 else
4601 /* This is the 'return' part of a call stub. The return
4602 address is in $r18. */
4603 return read_signed_register (18);
4604 }
4605 }
4606 return 0; /* not a stub */
4607 }
4608
4609 /* Convert a dbx stab register number (from `r' declaration) to a GDB
4610 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4611
4612 static int
4613 mips_stab_reg_to_regnum (int num)
4614 {
4615 int regnum;
4616 if (num >= 0 && num < 32)
4617 regnum = num;
4618 else if (num >= 38 && num < 70)
4619 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
4620 else if (num == 70)
4621 regnum = mips_regnum (current_gdbarch)->hi;
4622 else if (num == 71)
4623 regnum = mips_regnum (current_gdbarch)->lo;
4624 else
4625 /* This will hopefully (eventually) provoke a warning. Should
4626 we be calling complaint() here? */
4627 return NUM_REGS + NUM_PSEUDO_REGS;
4628 return NUM_REGS + regnum;
4629 }
4630
4631
4632 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4633 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4634
4635 static int
4636 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
4637 {
4638 int regnum;
4639 if (num >= 0 && num < 32)
4640 regnum = num;
4641 else if (num >= 32 && num < 64)
4642 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
4643 else if (num == 64)
4644 regnum = mips_regnum (current_gdbarch)->hi;
4645 else if (num == 65)
4646 regnum = mips_regnum (current_gdbarch)->lo;
4647 else
4648 /* This will hopefully (eventually) provoke a warning. Should we
4649 be calling complaint() here? */
4650 return NUM_REGS + NUM_PSEUDO_REGS;
4651 return NUM_REGS + regnum;
4652 }
4653
4654 static int
4655 mips_register_sim_regno (int regnum)
4656 {
4657 /* Only makes sense to supply raw registers. */
4658 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
4659 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4660 decide if it is valid. Should instead define a standard sim/gdb
4661 register numbering scheme. */
4662 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
4663 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
4664 return regnum;
4665 else
4666 return LEGACY_SIM_REGNO_IGNORE;
4667 }
4668
4669
4670 /* Convert an integer into an address. Extracting the value signed
4671 guarantees a correctly sign extended address. */
4672
4673 static CORE_ADDR
4674 mips_integer_to_address (struct gdbarch *gdbarch,
4675 struct type *type, const gdb_byte *buf)
4676 {
4677 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
4678 }
4679
4680 static void
4681 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4682 {
4683 enum mips_abi *abip = (enum mips_abi *) obj;
4684 const char *name = bfd_get_section_name (abfd, sect);
4685
4686 if (*abip != MIPS_ABI_UNKNOWN)
4687 return;
4688
4689 if (strncmp (name, ".mdebug.", 8) != 0)
4690 return;
4691
4692 if (strcmp (name, ".mdebug.abi32") == 0)
4693 *abip = MIPS_ABI_O32;
4694 else if (strcmp (name, ".mdebug.abiN32") == 0)
4695 *abip = MIPS_ABI_N32;
4696 else if (strcmp (name, ".mdebug.abi64") == 0)
4697 *abip = MIPS_ABI_N64;
4698 else if (strcmp (name, ".mdebug.abiO64") == 0)
4699 *abip = MIPS_ABI_O64;
4700 else if (strcmp (name, ".mdebug.eabi32") == 0)
4701 *abip = MIPS_ABI_EABI32;
4702 else if (strcmp (name, ".mdebug.eabi64") == 0)
4703 *abip = MIPS_ABI_EABI64;
4704 else
4705 warning (_("unsupported ABI %s."), name + 8);
4706 }
4707
4708 static void
4709 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
4710 {
4711 int *lbp = (int *) obj;
4712 const char *name = bfd_get_section_name (abfd, sect);
4713
4714 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
4715 *lbp = 32;
4716 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
4717 *lbp = 64;
4718 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
4719 warning (_("unrecognized .gcc_compiled_longXX"));
4720 }
4721
4722 static enum mips_abi
4723 global_mips_abi (void)
4724 {
4725 int i;
4726
4727 for (i = 0; mips_abi_strings[i] != NULL; i++)
4728 if (mips_abi_strings[i] == mips_abi_string)
4729 return (enum mips_abi) i;
4730
4731 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
4732 }
4733
4734 static void
4735 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
4736 {
4737 static struct target_desc *tdesc_gp32, *tdesc_gp64;
4738
4739 if (tdesc_gp32 == NULL)
4740 {
4741 /* Create feature sets with the appropriate properties. The values
4742 are not important. */
4743
4744 tdesc_gp32 = allocate_target_description ();
4745 set_tdesc_property (tdesc_gp32, PROPERTY_GP32, "");
4746
4747 tdesc_gp64 = allocate_target_description ();
4748 set_tdesc_property (tdesc_gp64, PROPERTY_GP64, "");
4749 }
4750
4751 /* If the size matches the set of 32-bit or 64-bit integer registers,
4752 assume that's what we've got. */
4753 register_remote_g_packet_guess (gdbarch, 38 * 4, tdesc_gp32);
4754 register_remote_g_packet_guess (gdbarch, 38 * 8, tdesc_gp64);
4755
4756 /* If the size matches the full set of registers GDB traditionally
4757 knows about, including floating point, for either 32-bit or
4758 64-bit, assume that's what we've got. */
4759 register_remote_g_packet_guess (gdbarch, 90 * 4, tdesc_gp32);
4760 register_remote_g_packet_guess (gdbarch, 90 * 8, tdesc_gp64);
4761
4762 /* Otherwise we don't have a useful guess. */
4763 }
4764
4765 static struct gdbarch *
4766 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4767 {
4768 struct gdbarch *gdbarch;
4769 struct gdbarch_tdep *tdep;
4770 int elf_flags;
4771 enum mips_abi mips_abi, found_abi, wanted_abi;
4772 int num_regs;
4773 enum mips_fpu_type fpu_type;
4774
4775 /* First of all, extract the elf_flags, if available. */
4776 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4777 elf_flags = elf_elfheader (info.abfd)->e_flags;
4778 else if (arches != NULL)
4779 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
4780 else
4781 elf_flags = 0;
4782 if (gdbarch_debug)
4783 fprintf_unfiltered (gdb_stdlog,
4784 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
4785
4786 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
4787 switch ((elf_flags & EF_MIPS_ABI))
4788 {
4789 case E_MIPS_ABI_O32:
4790 found_abi = MIPS_ABI_O32;
4791 break;
4792 case E_MIPS_ABI_O64:
4793 found_abi = MIPS_ABI_O64;
4794 break;
4795 case E_MIPS_ABI_EABI32:
4796 found_abi = MIPS_ABI_EABI32;
4797 break;
4798 case E_MIPS_ABI_EABI64:
4799 found_abi = MIPS_ABI_EABI64;
4800 break;
4801 default:
4802 if ((elf_flags & EF_MIPS_ABI2))
4803 found_abi = MIPS_ABI_N32;
4804 else
4805 found_abi = MIPS_ABI_UNKNOWN;
4806 break;
4807 }
4808
4809 /* GCC creates a pseudo-section whose name describes the ABI. */
4810 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
4811 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
4812
4813 /* If we have no useful BFD information, use the ABI from the last
4814 MIPS architecture (if there is one). */
4815 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
4816 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
4817
4818 /* Try the architecture for any hint of the correct ABI. */
4819 if (found_abi == MIPS_ABI_UNKNOWN
4820 && info.bfd_arch_info != NULL
4821 && info.bfd_arch_info->arch == bfd_arch_mips)
4822 {
4823 switch (info.bfd_arch_info->mach)
4824 {
4825 case bfd_mach_mips3900:
4826 found_abi = MIPS_ABI_EABI32;
4827 break;
4828 case bfd_mach_mips4100:
4829 case bfd_mach_mips5000:
4830 found_abi = MIPS_ABI_EABI64;
4831 break;
4832 case bfd_mach_mips8000:
4833 case bfd_mach_mips10000:
4834 /* On Irix, ELF64 executables use the N64 ABI. The
4835 pseudo-sections which describe the ABI aren't present
4836 on IRIX. (Even for executables created by gcc.) */
4837 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4838 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4839 found_abi = MIPS_ABI_N64;
4840 else
4841 found_abi = MIPS_ABI_N32;
4842 break;
4843 }
4844 }
4845
4846 /* Default 64-bit objects to N64 instead of O32. */
4847 if (found_abi == MIPS_ABI_UNKNOWN
4848 && info.abfd != NULL
4849 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4850 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4851 found_abi = MIPS_ABI_N64;
4852
4853 if (gdbarch_debug)
4854 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
4855 found_abi);
4856
4857 /* What has the user specified from the command line? */
4858 wanted_abi = global_mips_abi ();
4859 if (gdbarch_debug)
4860 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
4861 wanted_abi);
4862
4863 /* Now that we have found what the ABI for this binary would be,
4864 check whether the user is overriding it. */
4865 if (wanted_abi != MIPS_ABI_UNKNOWN)
4866 mips_abi = wanted_abi;
4867 else if (found_abi != MIPS_ABI_UNKNOWN)
4868 mips_abi = found_abi;
4869 else
4870 mips_abi = MIPS_ABI_O32;
4871 if (gdbarch_debug)
4872 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
4873 mips_abi);
4874
4875 /* Also used when doing an architecture lookup. */
4876 if (gdbarch_debug)
4877 fprintf_unfiltered (gdb_stdlog,
4878 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
4879 mips64_transfers_32bit_regs_p);
4880
4881 /* Determine the MIPS FPU type. */
4882 if (!mips_fpu_type_auto)
4883 fpu_type = mips_fpu_type;
4884 else if (info.bfd_arch_info != NULL
4885 && info.bfd_arch_info->arch == bfd_arch_mips)
4886 switch (info.bfd_arch_info->mach)
4887 {
4888 case bfd_mach_mips3900:
4889 case bfd_mach_mips4100:
4890 case bfd_mach_mips4111:
4891 case bfd_mach_mips4120:
4892 fpu_type = MIPS_FPU_NONE;
4893 break;
4894 case bfd_mach_mips4650:
4895 fpu_type = MIPS_FPU_SINGLE;
4896 break;
4897 default:
4898 fpu_type = MIPS_FPU_DOUBLE;
4899 break;
4900 }
4901 else if (arches != NULL)
4902 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
4903 else
4904 fpu_type = MIPS_FPU_DOUBLE;
4905 if (gdbarch_debug)
4906 fprintf_unfiltered (gdb_stdlog,
4907 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
4908
4909 /* Check for blatant incompatibilities. */
4910
4911 /* If we have only 32-bit registers, then we can't debug a 64-bit
4912 ABI. */
4913 if (info.target_desc
4914 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
4915 && mips_abi != MIPS_ABI_EABI32
4916 && mips_abi != MIPS_ABI_O32)
4917 return NULL;
4918
4919 /* try to find a pre-existing architecture */
4920 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4921 arches != NULL;
4922 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4923 {
4924 /* MIPS needs to be pedantic about which ABI the object is
4925 using. */
4926 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
4927 continue;
4928 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
4929 continue;
4930 /* Need to be pedantic about which register virtual size is
4931 used. */
4932 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
4933 != mips64_transfers_32bit_regs_p)
4934 continue;
4935 /* Be pedantic about which FPU is selected. */
4936 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
4937 continue;
4938 return arches->gdbarch;
4939 }
4940
4941 /* Need a new architecture. Fill in a target specific vector. */
4942 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4943 gdbarch = gdbarch_alloc (&info, tdep);
4944 tdep->elf_flags = elf_flags;
4945 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
4946 tdep->found_abi = found_abi;
4947 tdep->mips_abi = mips_abi;
4948 tdep->mips_fpu_type = fpu_type;
4949 tdep->register_size_valid_p = 0;
4950 tdep->register_size = 0;
4951
4952 if (info.target_desc)
4953 {
4954 /* Some useful properties can be inferred from the target. */
4955 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
4956 {
4957 tdep->register_size_valid_p = 1;
4958 tdep->register_size = 4;
4959 }
4960 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
4961 {
4962 tdep->register_size_valid_p = 1;
4963 tdep->register_size = 8;
4964 }
4965 }
4966
4967 /* Initially set everything according to the default ABI/ISA. */
4968 set_gdbarch_short_bit (gdbarch, 16);
4969 set_gdbarch_int_bit (gdbarch, 32);
4970 set_gdbarch_float_bit (gdbarch, 32);
4971 set_gdbarch_double_bit (gdbarch, 64);
4972 set_gdbarch_long_double_bit (gdbarch, 64);
4973 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
4974 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
4975 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
4976
4977 set_gdbarch_elf_make_msymbol_special (gdbarch,
4978 mips_elf_make_msymbol_special);
4979
4980 /* Fill in the OS dependant register numbers and names. */
4981 {
4982 const char **reg_names;
4983 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
4984 struct mips_regnum);
4985 if (info.osabi == GDB_OSABI_IRIX)
4986 {
4987 regnum->fp0 = 32;
4988 regnum->pc = 64;
4989 regnum->cause = 65;
4990 regnum->badvaddr = 66;
4991 regnum->hi = 67;
4992 regnum->lo = 68;
4993 regnum->fp_control_status = 69;
4994 regnum->fp_implementation_revision = 70;
4995 num_regs = 71;
4996 reg_names = mips_irix_reg_names;
4997 }
4998 else
4999 {
5000 regnum->lo = MIPS_EMBED_LO_REGNUM;
5001 regnum->hi = MIPS_EMBED_HI_REGNUM;
5002 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5003 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5004 regnum->pc = MIPS_EMBED_PC_REGNUM;
5005 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5006 regnum->fp_control_status = 70;
5007 regnum->fp_implementation_revision = 71;
5008 num_regs = 90;
5009 if (info.bfd_arch_info != NULL
5010 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5011 reg_names = mips_tx39_reg_names;
5012 else
5013 reg_names = mips_generic_reg_names;
5014 }
5015 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
5016 replaced by read_pc? */
5017 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5018 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5019 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5020 set_gdbarch_num_regs (gdbarch, num_regs);
5021 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5022 set_gdbarch_register_name (gdbarch, mips_register_name);
5023 tdep->mips_processor_reg_names = reg_names;
5024 tdep->regnum = regnum;
5025 }
5026
5027 switch (mips_abi)
5028 {
5029 case MIPS_ABI_O32:
5030 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5031 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
5032 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5033 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5034 tdep->default_mask_address_p = 0;
5035 set_gdbarch_long_bit (gdbarch, 32);
5036 set_gdbarch_ptr_bit (gdbarch, 32);
5037 set_gdbarch_long_long_bit (gdbarch, 64);
5038 break;
5039 case MIPS_ABI_O64:
5040 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5041 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
5042 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5043 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5044 tdep->default_mask_address_p = 0;
5045 set_gdbarch_long_bit (gdbarch, 32);
5046 set_gdbarch_ptr_bit (gdbarch, 32);
5047 set_gdbarch_long_long_bit (gdbarch, 64);
5048 break;
5049 case MIPS_ABI_EABI32:
5050 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5051 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5052 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5053 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5054 tdep->default_mask_address_p = 0;
5055 set_gdbarch_long_bit (gdbarch, 32);
5056 set_gdbarch_ptr_bit (gdbarch, 32);
5057 set_gdbarch_long_long_bit (gdbarch, 64);
5058 break;
5059 case MIPS_ABI_EABI64:
5060 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5061 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5062 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5063 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5064 tdep->default_mask_address_p = 0;
5065 set_gdbarch_long_bit (gdbarch, 64);
5066 set_gdbarch_ptr_bit (gdbarch, 64);
5067 set_gdbarch_long_long_bit (gdbarch, 64);
5068 break;
5069 case MIPS_ABI_N32:
5070 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5071 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5072 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5073 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5074 tdep->default_mask_address_p = 0;
5075 set_gdbarch_long_bit (gdbarch, 32);
5076 set_gdbarch_ptr_bit (gdbarch, 32);
5077 set_gdbarch_long_long_bit (gdbarch, 64);
5078 set_gdbarch_long_double_bit (gdbarch, 128);
5079 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
5080 break;
5081 case MIPS_ABI_N64:
5082 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5083 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5084 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5085 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5086 tdep->default_mask_address_p = 0;
5087 set_gdbarch_long_bit (gdbarch, 64);
5088 set_gdbarch_ptr_bit (gdbarch, 64);
5089 set_gdbarch_long_long_bit (gdbarch, 64);
5090 set_gdbarch_long_double_bit (gdbarch, 128);
5091 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
5092 break;
5093 default:
5094 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5095 }
5096
5097 /* GCC creates a pseudo-section whose name specifies the size of
5098 longs, since -mlong32 or -mlong64 may be used independent of
5099 other options. How those options affect pointer sizes is ABI and
5100 architecture dependent, so use them to override the default sizes
5101 set by the ABI. This table shows the relationship between ABI,
5102 -mlongXX, and size of pointers:
5103
5104 ABI -mlongXX ptr bits
5105 --- -------- --------
5106 o32 32 32
5107 o32 64 32
5108 n32 32 32
5109 n32 64 64
5110 o64 32 32
5111 o64 64 64
5112 n64 32 32
5113 n64 64 64
5114 eabi32 32 32
5115 eabi32 64 32
5116 eabi64 32 32
5117 eabi64 64 64
5118
5119 Note that for o32 and eabi32, pointers are always 32 bits
5120 regardless of any -mlongXX option. For all others, pointers and
5121 longs are the same, as set by -mlongXX or set by defaults.
5122 */
5123
5124 if (info.abfd != NULL)
5125 {
5126 int long_bit = 0;
5127
5128 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5129 if (long_bit)
5130 {
5131 set_gdbarch_long_bit (gdbarch, long_bit);
5132 switch (mips_abi)
5133 {
5134 case MIPS_ABI_O32:
5135 case MIPS_ABI_EABI32:
5136 break;
5137 case MIPS_ABI_N32:
5138 case MIPS_ABI_O64:
5139 case MIPS_ABI_N64:
5140 case MIPS_ABI_EABI64:
5141 set_gdbarch_ptr_bit (gdbarch, long_bit);
5142 break;
5143 default:
5144 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5145 }
5146 }
5147 }
5148
5149 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5150 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5151 comment:
5152
5153 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5154 flag in object files because to do so would make it impossible to
5155 link with libraries compiled without "-gp32". This is
5156 unnecessarily restrictive.
5157
5158 We could solve this problem by adding "-gp32" multilibs to gcc,
5159 but to set this flag before gcc is built with such multilibs will
5160 break too many systems.''
5161
5162 But even more unhelpfully, the default linker output target for
5163 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5164 for 64-bit programs - you need to change the ABI to change this,
5165 and not all gcc targets support that currently. Therefore using
5166 this flag to detect 32-bit mode would do the wrong thing given
5167 the current gcc - it would make GDB treat these 64-bit programs
5168 as 32-bit programs by default. */
5169
5170 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5171 set_gdbarch_write_pc (gdbarch, mips_write_pc);
5172 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5173
5174 /* Add/remove bits from an address. The MIPS needs be careful to
5175 ensure that all 32 bit addresses are sign extended to 64 bits. */
5176 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5177
5178 /* Unwind the frame. */
5179 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
5180 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
5181
5182 /* Map debug register numbers onto internal register numbers. */
5183 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5184 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5185 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5186 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5187 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5188 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5189 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5190 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5191
5192 /* MIPS version of CALL_DUMMY */
5193
5194 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5195 replaced by a command, and all targets will default to on stack
5196 (regardless of the stack's execute status). */
5197 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5198 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5199
5200 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5201 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5202 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5203
5204 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5205 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5206
5207 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5208
5209 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5210 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5211 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5212
5213 set_gdbarch_register_type (gdbarch, mips_register_type);
5214
5215 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5216
5217 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5218
5219 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5220 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5221 need to all be folded into the target vector. Since they are
5222 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5223 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5224 is sitting on? */
5225 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5226
5227 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
5228
5229 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5230
5231 /* Virtual tables. */
5232 set_gdbarch_vbit_in_delta (gdbarch, 1);
5233
5234 mips_register_g_packet_guesses (gdbarch);
5235
5236 /* Hook in OS ABI-specific overrides, if they have been registered. */
5237 gdbarch_init_osabi (info, gdbarch);
5238
5239 /* Unwind the frame. */
5240 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
5241 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5242 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
5243 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
5244 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5245 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5246
5247 return gdbarch;
5248 }
5249
5250 static void
5251 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5252 {
5253 struct gdbarch_info info;
5254
5255 /* Force the architecture to update, and (if it's a MIPS architecture)
5256 mips_gdbarch_init will take care of the rest. */
5257 gdbarch_info_init (&info);
5258 gdbarch_update_p (info);
5259 }
5260
5261 /* Print out which MIPS ABI is in use. */
5262
5263 static void
5264 show_mips_abi (struct ui_file *file,
5265 int from_tty,
5266 struct cmd_list_element *ignored_cmd,
5267 const char *ignored_value)
5268 {
5269 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
5270 fprintf_filtered
5271 (file,
5272 "The MIPS ABI is unknown because the current architecture "
5273 "is not MIPS.\n");
5274 else
5275 {
5276 enum mips_abi global_abi = global_mips_abi ();
5277 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5278 const char *actual_abi_str = mips_abi_strings[actual_abi];
5279
5280 if (global_abi == MIPS_ABI_UNKNOWN)
5281 fprintf_filtered
5282 (file,
5283 "The MIPS ABI is set automatically (currently \"%s\").\n",
5284 actual_abi_str);
5285 else if (global_abi == actual_abi)
5286 fprintf_filtered
5287 (file,
5288 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5289 actual_abi_str);
5290 else
5291 {
5292 /* Probably shouldn't happen... */
5293 fprintf_filtered
5294 (file,
5295 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5296 actual_abi_str, mips_abi_strings[global_abi]);
5297 }
5298 }
5299 }
5300
5301 static void
5302 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5303 {
5304 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5305 if (tdep != NULL)
5306 {
5307 int ef_mips_arch;
5308 int ef_mips_32bitmode;
5309 /* Determine the ISA. */
5310 switch (tdep->elf_flags & EF_MIPS_ARCH)
5311 {
5312 case E_MIPS_ARCH_1:
5313 ef_mips_arch = 1;
5314 break;
5315 case E_MIPS_ARCH_2:
5316 ef_mips_arch = 2;
5317 break;
5318 case E_MIPS_ARCH_3:
5319 ef_mips_arch = 3;
5320 break;
5321 case E_MIPS_ARCH_4:
5322 ef_mips_arch = 4;
5323 break;
5324 default:
5325 ef_mips_arch = 0;
5326 break;
5327 }
5328 /* Determine the size of a pointer. */
5329 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
5330 fprintf_unfiltered (file,
5331 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5332 tdep->elf_flags);
5333 fprintf_unfiltered (file,
5334 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5335 ef_mips_32bitmode);
5336 fprintf_unfiltered (file,
5337 "mips_dump_tdep: ef_mips_arch = %d\n",
5338 ef_mips_arch);
5339 fprintf_unfiltered (file,
5340 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5341 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
5342 fprintf_unfiltered (file,
5343 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5344 mips_mask_address_p (tdep),
5345 tdep->default_mask_address_p);
5346 }
5347 fprintf_unfiltered (file,
5348 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5349 MIPS_DEFAULT_FPU_TYPE,
5350 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5351 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5352 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5353 : "???"));
5354 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
5355 fprintf_unfiltered (file,
5356 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5357 MIPS_FPU_TYPE,
5358 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5359 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5360 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5361 : "???"));
5362 fprintf_unfiltered (file,
5363 "mips_dump_tdep: mips_stack_argsize() = %d\n",
5364 mips_stack_argsize (current_gdbarch));
5365 }
5366
5367 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
5368
5369 void
5370 _initialize_mips_tdep (void)
5371 {
5372 static struct cmd_list_element *mipsfpulist = NULL;
5373 struct cmd_list_element *c;
5374
5375 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
5376 if (MIPS_ABI_LAST + 1
5377 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5378 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
5379
5380 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
5381
5382 mips_pdr_data = register_objfile_data ();
5383
5384 /* Add root prefix command for all "set mips"/"show mips" commands */
5385 add_prefix_cmd ("mips", no_class, set_mips_command,
5386 _("Various MIPS specific commands."),
5387 &setmipscmdlist, "set mips ", 0, &setlist);
5388
5389 add_prefix_cmd ("mips", no_class, show_mips_command,
5390 _("Various MIPS specific commands."),
5391 &showmipscmdlist, "show mips ", 0, &showlist);
5392
5393 /* Allow the user to override the saved register size. */
5394 add_setshow_enum_cmd ("saved-gpreg-size", class_obscure,
5395 size_enums, &mips_abi_regsize_string, _("\
5396 Set size of general purpose registers saved on the stack."), _("\
5397 Show size of general purpose registers saved on the stack."), _("\
5398 This option can be set to one of:\n\
5399 32 - Force GDB to treat saved GP registers as 32-bit\n\
5400 64 - Force GDB to treat saved GP registers as 64-bit\n\
5401 auto - Allow GDB to use the target's default setting or autodetect the\n\
5402 saved GP register size from information contained in the\n\
5403 executable (default)."),
5404 NULL,
5405 NULL, /* FIXME: i18n: Size of general purpose registers saved on the stack is %s. */
5406 &setmipscmdlist, &showmipscmdlist);
5407
5408 /* Allow the user to override the argument stack size. */
5409 add_setshow_enum_cmd ("stack-arg-size", class_obscure,
5410 size_enums, &mips_stack_argsize_string, _("\
5411 Set the amount of stack space reserved for each argument."), _("\
5412 Show the amount of stack space reserved for each argument."), _("\
5413 This option can be set to one of:\n\
5414 32 - Force GDB to allocate 32-bit chunks per argument\n\
5415 64 - Force GDB to allocate 64-bit chunks per argument\n\
5416 auto - Allow GDB to determine the correct setting from the current\n\
5417 target and executable (default)"),
5418 NULL,
5419 NULL, /* FIXME: i18n: The amount of stack space reserved for each argument is %s. */
5420 &setmipscmdlist, &showmipscmdlist);
5421
5422 /* Allow the user to override the ABI. */
5423 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5424 &mips_abi_string, _("\
5425 Set the MIPS ABI used by this program."), _("\
5426 Show the MIPS ABI used by this program."), _("\
5427 This option can be set to one of:\n\
5428 auto - the default ABI associated with the current binary\n\
5429 o32\n\
5430 o64\n\
5431 n32\n\
5432 n64\n\
5433 eabi32\n\
5434 eabi64"),
5435 mips_abi_update,
5436 show_mips_abi,
5437 &setmipscmdlist, &showmipscmdlist);
5438
5439 /* Let the user turn off floating point and set the fence post for
5440 heuristic_proc_start. */
5441
5442 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5443 _("Set use of MIPS floating-point coprocessor."),
5444 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5445 add_cmd ("single", class_support, set_mipsfpu_single_command,
5446 _("Select single-precision MIPS floating-point coprocessor."),
5447 &mipsfpulist);
5448 add_cmd ("double", class_support, set_mipsfpu_double_command,
5449 _("Select double-precision MIPS floating-point coprocessor."),
5450 &mipsfpulist);
5451 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5452 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5453 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5454 add_cmd ("none", class_support, set_mipsfpu_none_command,
5455 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
5456 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5457 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5458 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5459 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5460 _("Select MIPS floating-point coprocessor automatically."),
5461 &mipsfpulist);
5462 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5463 _("Show current use of MIPS floating-point coprocessor target."),
5464 &showlist);
5465
5466 /* We really would like to have both "0" and "unlimited" work, but
5467 command.c doesn't deal with that. So make it a var_zinteger
5468 because the user can always use "999999" or some such for unlimited. */
5469 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
5470 &heuristic_fence_post, _("\
5471 Set the distance searched for the start of a function."), _("\
5472 Show the distance searched for the start of a function."), _("\
5473 If you are debugging a stripped executable, GDB needs to search through the\n\
5474 program for the start of a function. This command sets the distance of the\n\
5475 search. The only need to set it is when debugging a stripped executable."),
5476 reinit_frame_cache_sfunc,
5477 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
5478 &setlist, &showlist);
5479
5480 /* Allow the user to control whether the upper bits of 64-bit
5481 addresses should be zeroed. */
5482 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5483 &mask_address_var, _("\
5484 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5485 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
5486 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5487 allow GDB to determine the correct value."),
5488 NULL, show_mask_address,
5489 &setmipscmdlist, &showmipscmdlist);
5490
5491 /* Allow the user to control the size of 32 bit registers within the
5492 raw remote packet. */
5493 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
5494 &mips64_transfers_32bit_regs_p, _("\
5495 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5496 _("\
5497 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5498 _("\
5499 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5500 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5501 64 bits for others. Use \"off\" to disable compatibility mode"),
5502 set_mips64_transfers_32bit_regs,
5503 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
5504 &setlist, &showlist);
5505
5506 /* Debug this files internals. */
5507 add_setshow_zinteger_cmd ("mips", class_maintenance,
5508 &mips_debug, _("\
5509 Set mips debugging."), _("\
5510 Show mips debugging."), _("\
5511 When non-zero, mips specific debugging is enabled."),
5512 NULL,
5513 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
5514 &setdebuglist, &showdebuglist);
5515 }