]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-tdep.c
Remove regcache_cooked_write_part
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "value.h"
28 #include "gdbcmd.h"
29 #include "language.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbtypes.h"
34 #include "target.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "osabi.h"
38 #include "mips-tdep.h"
39 #include "block.h"
40 #include "reggroups.h"
41 #include "opcode/mips.h"
42 #include "elf/mips.h"
43 #include "elf-bfd.h"
44 #include "symcat.h"
45 #include "sim-regno.h"
46 #include "dis-asm.h"
47 #include "disasm.h"
48 #include "frame-unwind.h"
49 #include "frame-base.h"
50 #include "trad-frame.h"
51 #include "infcall.h"
52 #include "remote.h"
53 #include "target-descriptions.h"
54 #include "dwarf2-frame.h"
55 #include "user-regs.h"
56 #include "valprint.h"
57 #include "ax.h"
58 #include "target-float.h"
59 #include <algorithm>
60
61 static const struct objfile_data *mips_pdr_data;
62
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65 static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
66 ULONGEST inst);
67 static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
68 static int mips16_instruction_has_delay_slot (unsigned short inst,
69 int mustbe32);
70
71 static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
72 CORE_ADDR addr);
73 static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
74 CORE_ADDR addr, int mustbe32);
75 static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
76 CORE_ADDR addr, int mustbe32);
77
78 static void mips_print_float_info (struct gdbarch *, struct ui_file *,
79 struct frame_info *, const char *);
80
81 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
82 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
83 #define ST0_FR (1 << 26)
84
85 /* The sizes of floating point registers. */
86
87 enum
88 {
89 MIPS_FPU_SINGLE_REGSIZE = 4,
90 MIPS_FPU_DOUBLE_REGSIZE = 8
91 };
92
93 enum
94 {
95 MIPS32_REGSIZE = 4,
96 MIPS64_REGSIZE = 8
97 };
98
99 static const char *mips_abi_string;
100
101 static const char *const mips_abi_strings[] = {
102 "auto",
103 "n32",
104 "o32",
105 "n64",
106 "o64",
107 "eabi32",
108 "eabi64",
109 NULL
110 };
111
112 /* Enum describing the different kinds of breakpoints. */
113
114 enum mips_breakpoint_kind
115 {
116 /* 16-bit MIPS16 mode breakpoint. */
117 MIPS_BP_KIND_MIPS16 = 2,
118
119 /* 16-bit microMIPS mode breakpoint. */
120 MIPS_BP_KIND_MICROMIPS16 = 3,
121
122 /* 32-bit standard MIPS mode breakpoint. */
123 MIPS_BP_KIND_MIPS32 = 4,
124
125 /* 32-bit microMIPS mode breakpoint. */
126 MIPS_BP_KIND_MICROMIPS32 = 5,
127 };
128
129 /* For backwards compatibility we default to MIPS16. This flag is
130 overridden as soon as unambiguous ELF file flags tell us the
131 compressed ISA encoding used. */
132 static const char mips_compression_mips16[] = "mips16";
133 static const char mips_compression_micromips[] = "micromips";
134 static const char *const mips_compression_strings[] =
135 {
136 mips_compression_mips16,
137 mips_compression_micromips,
138 NULL
139 };
140
141 static const char *mips_compression_string = mips_compression_mips16;
142
143 /* The standard register names, and all the valid aliases for them. */
144 struct register_alias
145 {
146 const char *name;
147 int regnum;
148 };
149
150 /* Aliases for o32 and most other ABIs. */
151 const struct register_alias mips_o32_aliases[] = {
152 { "ta0", 12 },
153 { "ta1", 13 },
154 { "ta2", 14 },
155 { "ta3", 15 }
156 };
157
158 /* Aliases for n32 and n64. */
159 const struct register_alias mips_n32_n64_aliases[] = {
160 { "ta0", 8 },
161 { "ta1", 9 },
162 { "ta2", 10 },
163 { "ta3", 11 }
164 };
165
166 /* Aliases for ABI-independent registers. */
167 const struct register_alias mips_register_aliases[] = {
168 /* The architecture manuals specify these ABI-independent names for
169 the GPRs. */
170 #define R(n) { "r" #n, n }
171 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
172 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
173 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
174 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
175 #undef R
176
177 /* k0 and k1 are sometimes called these instead (for "kernel
178 temp"). */
179 { "kt0", 26 },
180 { "kt1", 27 },
181
182 /* This is the traditional GDB name for the CP0 status register. */
183 { "sr", MIPS_PS_REGNUM },
184
185 /* This is the traditional GDB name for the CP0 BadVAddr register. */
186 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
187
188 /* This is the traditional GDB name for the FCSR. */
189 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
190 };
191
192 const struct register_alias mips_numeric_register_aliases[] = {
193 #define R(n) { #n, n }
194 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
195 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
196 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
197 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
198 #undef R
199 };
200
201 #ifndef MIPS_DEFAULT_FPU_TYPE
202 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
203 #endif
204 static int mips_fpu_type_auto = 1;
205 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
206
207 static unsigned int mips_debug = 0;
208
209 /* Properties (for struct target_desc) describing the g/G packet
210 layout. */
211 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
212 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
213
214 struct target_desc *mips_tdesc_gp32;
215 struct target_desc *mips_tdesc_gp64;
216
217 const struct mips_regnum *
218 mips_regnum (struct gdbarch *gdbarch)
219 {
220 return gdbarch_tdep (gdbarch)->regnum;
221 }
222
223 static int
224 mips_fpa0_regnum (struct gdbarch *gdbarch)
225 {
226 return mips_regnum (gdbarch)->fp0 + 12;
227 }
228
229 /* Return 1 if REGNUM refers to a floating-point general register, raw
230 or cooked. Otherwise return 0. */
231
232 static int
233 mips_float_register_p (struct gdbarch *gdbarch, int regnum)
234 {
235 int rawnum = regnum % gdbarch_num_regs (gdbarch);
236
237 return (rawnum >= mips_regnum (gdbarch)->fp0
238 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
239 }
240
241 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
242 == MIPS_ABI_EABI32 \
243 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
244
245 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
246 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
247
248 #define MIPS_LAST_ARG_REGNUM(gdbarch) \
249 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
250
251 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
252
253 /* Return the MIPS ABI associated with GDBARCH. */
254 enum mips_abi
255 mips_abi (struct gdbarch *gdbarch)
256 {
257 return gdbarch_tdep (gdbarch)->mips_abi;
258 }
259
260 int
261 mips_isa_regsize (struct gdbarch *gdbarch)
262 {
263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
264
265 /* If we know how big the registers are, use that size. */
266 if (tdep->register_size_valid_p)
267 return tdep->register_size;
268
269 /* Fall back to the previous behavior. */
270 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
271 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
272 }
273
274 /* Max saved register size. */
275 #define MAX_MIPS_ABI_REGSIZE 8
276
277 /* Return the currently configured (or set) saved register size. */
278
279 unsigned int
280 mips_abi_regsize (struct gdbarch *gdbarch)
281 {
282 switch (mips_abi (gdbarch))
283 {
284 case MIPS_ABI_EABI32:
285 case MIPS_ABI_O32:
286 return 4;
287 case MIPS_ABI_N32:
288 case MIPS_ABI_N64:
289 case MIPS_ABI_O64:
290 case MIPS_ABI_EABI64:
291 return 8;
292 case MIPS_ABI_UNKNOWN:
293 case MIPS_ABI_LAST:
294 default:
295 internal_error (__FILE__, __LINE__, _("bad switch"));
296 }
297 }
298
299 /* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
300 are some functions to handle addresses associated with compressed
301 code including but not limited to testing, setting, or clearing
302 bit 0 of such addresses. */
303
304 /* Return one iff compressed code is the MIPS16 instruction set. */
305
306 static int
307 is_mips16_isa (struct gdbarch *gdbarch)
308 {
309 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
310 }
311
312 /* Return one iff compressed code is the microMIPS instruction set. */
313
314 static int
315 is_micromips_isa (struct gdbarch *gdbarch)
316 {
317 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
318 }
319
320 /* Return one iff ADDR denotes compressed code. */
321
322 static int
323 is_compact_addr (CORE_ADDR addr)
324 {
325 return ((addr) & 1);
326 }
327
328 /* Return one iff ADDR denotes standard ISA code. */
329
330 static int
331 is_mips_addr (CORE_ADDR addr)
332 {
333 return !is_compact_addr (addr);
334 }
335
336 /* Return one iff ADDR denotes MIPS16 code. */
337
338 static int
339 is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
340 {
341 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
342 }
343
344 /* Return one iff ADDR denotes microMIPS code. */
345
346 static int
347 is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
348 {
349 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
350 }
351
352 /* Strip the ISA (compression) bit off from ADDR. */
353
354 static CORE_ADDR
355 unmake_compact_addr (CORE_ADDR addr)
356 {
357 return ((addr) & ~(CORE_ADDR) 1);
358 }
359
360 /* Add the ISA (compression) bit to ADDR. */
361
362 static CORE_ADDR
363 make_compact_addr (CORE_ADDR addr)
364 {
365 return ((addr) | (CORE_ADDR) 1);
366 }
367
368 /* Extern version of unmake_compact_addr; we use a separate function
369 so that unmake_compact_addr can be inlined throughout this file. */
370
371 CORE_ADDR
372 mips_unmake_compact_addr (CORE_ADDR addr)
373 {
374 return unmake_compact_addr (addr);
375 }
376
377 /* Functions for setting and testing a bit in a minimal symbol that
378 marks it as MIPS16 or microMIPS function. The MSB of the minimal
379 symbol's "info" field is used for this purpose.
380
381 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
382 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
383 one of the "special" bits in a minimal symbol to mark it accordingly.
384 The test checks an ELF-private flag that is valid for true function
385 symbols only; for synthetic symbols such as for PLT stubs that have
386 no ELF-private part at all the MIPS BFD backend arranges for this
387 information to be carried in the asymbol's udata field instead.
388
389 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
390 in a minimal symbol. */
391
392 static void
393 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
394 {
395 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
396 unsigned char st_other;
397
398 if ((sym->flags & BSF_SYNTHETIC) == 0)
399 st_other = elfsym->internal_elf_sym.st_other;
400 else if ((sym->flags & BSF_FUNCTION) != 0)
401 st_other = sym->udata.i;
402 else
403 return;
404
405 if (ELF_ST_IS_MICROMIPS (st_other))
406 {
407 MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
408 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
409 }
410 else if (ELF_ST_IS_MIPS16 (st_other))
411 {
412 MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
413 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
414 }
415 }
416
417 /* Return one iff MSYM refers to standard ISA code. */
418
419 static int
420 msymbol_is_mips (struct minimal_symbol *msym)
421 {
422 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
423 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
424 }
425
426 /* Return one iff MSYM refers to MIPS16 code. */
427
428 static int
429 msymbol_is_mips16 (struct minimal_symbol *msym)
430 {
431 return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
432 }
433
434 /* Return one iff MSYM refers to microMIPS code. */
435
436 static int
437 msymbol_is_micromips (struct minimal_symbol *msym)
438 {
439 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
440 }
441
442 /* Set the ISA bit in the main symbol too, complementing the corresponding
443 minimal symbol setting and reflecting the run-time value of the symbol.
444 The need for comes from the ISA bit having been cleared as code in
445 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
446 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
447 of symbols referring to compressed code different in GDB to the values
448 used by actual code. That in turn makes them evaluate incorrectly in
449 expressions, producing results different to what the same expressions
450 yield when compiled into the program being debugged. */
451
452 static void
453 mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
454 {
455 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
456 {
457 /* We are in symbol reading so it is OK to cast away constness. */
458 struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
459 CORE_ADDR compact_block_start;
460 struct bound_minimal_symbol msym;
461
462 compact_block_start = BLOCK_START (block) | 1;
463 msym = lookup_minimal_symbol_by_pc (compact_block_start);
464 if (msym.minsym && !msymbol_is_mips (msym.minsym))
465 {
466 BLOCK_START (block) = compact_block_start;
467 }
468 }
469 }
470
471 /* XFER a value from the big/little/left end of the register.
472 Depending on the size of the value it might occupy the entire
473 register or just part of it. Make an allowance for this, aligning
474 things accordingly. */
475
476 static void
477 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
478 int reg_num, int length,
479 enum bfd_endian endian, gdb_byte *in,
480 const gdb_byte *out, int buf_offset)
481 {
482 int reg_offset = 0;
483
484 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
485 /* Need to transfer the left or right part of the register, based on
486 the targets byte order. */
487 switch (endian)
488 {
489 case BFD_ENDIAN_BIG:
490 reg_offset = register_size (gdbarch, reg_num) - length;
491 break;
492 case BFD_ENDIAN_LITTLE:
493 reg_offset = 0;
494 break;
495 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
496 reg_offset = 0;
497 break;
498 default:
499 internal_error (__FILE__, __LINE__, _("bad switch"));
500 }
501 if (mips_debug)
502 fprintf_unfiltered (gdb_stderr,
503 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
504 reg_num, reg_offset, buf_offset, length);
505 if (mips_debug && out != NULL)
506 {
507 int i;
508 fprintf_unfiltered (gdb_stdlog, "out ");
509 for (i = 0; i < length; i++)
510 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
511 }
512 if (in != NULL)
513 regcache->cooked_read_part (reg_num, reg_offset, length, in + buf_offset);
514 if (out != NULL)
515 regcache->cooked_write_part (reg_num, reg_offset, length, out + buf_offset);
516 if (mips_debug && in != NULL)
517 {
518 int i;
519 fprintf_unfiltered (gdb_stdlog, "in ");
520 for (i = 0; i < length; i++)
521 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
522 }
523 if (mips_debug)
524 fprintf_unfiltered (gdb_stdlog, "\n");
525 }
526
527 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
528 compatiblity mode. A return value of 1 means that we have
529 physical 64-bit registers, but should treat them as 32-bit registers. */
530
531 static int
532 mips2_fp_compat (struct frame_info *frame)
533 {
534 struct gdbarch *gdbarch = get_frame_arch (frame);
535 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
536 meaningful. */
537 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
538 return 0;
539
540 #if 0
541 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
542 in all the places we deal with FP registers. PR gdb/413. */
543 /* Otherwise check the FR bit in the status register - it controls
544 the FP compatiblity mode. If it is clear we are in compatibility
545 mode. */
546 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
547 return 1;
548 #endif
549
550 return 0;
551 }
552
553 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
554
555 static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
556
557 /* The list of available "set mips " and "show mips " commands. */
558
559 static struct cmd_list_element *setmipscmdlist = NULL;
560 static struct cmd_list_element *showmipscmdlist = NULL;
561
562 /* Integer registers 0 thru 31 are handled explicitly by
563 mips_register_name(). Processor specific registers 32 and above
564 are listed in the following tables. */
565
566 enum
567 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
568
569 /* Generic MIPS. */
570
571 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
572 "sr", "lo", "hi", "bad", "cause", "pc",
573 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
574 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
575 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
576 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
577 "fsr", "fir",
578 };
579
580 /* Names of tx39 registers. */
581
582 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
583 "sr", "lo", "hi", "bad", "cause", "pc",
584 "", "", "", "", "", "", "", "",
585 "", "", "", "", "", "", "", "",
586 "", "", "", "", "", "", "", "",
587 "", "", "", "", "", "", "", "",
588 "", "", "", "",
589 "", "", "", "", "", "", "", "",
590 "", "", "config", "cache", "debug", "depc", "epc",
591 };
592
593 /* Names of registers with Linux kernels. */
594 static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
595 "sr", "lo", "hi", "bad", "cause", "pc",
596 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
597 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
598 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
599 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
600 "fsr", "fir"
601 };
602
603
604 /* Return the name of the register corresponding to REGNO. */
605 static const char *
606 mips_register_name (struct gdbarch *gdbarch, int regno)
607 {
608 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
609 /* GPR names for all ABIs other than n32/n64. */
610 static const char *mips_gpr_names[] = {
611 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
612 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
613 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
614 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
615 };
616
617 /* GPR names for n32 and n64 ABIs. */
618 static const char *mips_n32_n64_gpr_names[] = {
619 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
620 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
621 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
622 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
623 };
624
625 enum mips_abi abi = mips_abi (gdbarch);
626
627 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
628 but then don't make the raw register names visible. This (upper)
629 range of user visible register numbers are the pseudo-registers.
630
631 This approach was adopted accommodate the following scenario:
632 It is possible to debug a 64-bit device using a 32-bit
633 programming model. In such instances, the raw registers are
634 configured to be 64-bits wide, while the pseudo registers are
635 configured to be 32-bits wide. The registers that the user
636 sees - the pseudo registers - match the users expectations
637 given the programming model being used. */
638 int rawnum = regno % gdbarch_num_regs (gdbarch);
639 if (regno < gdbarch_num_regs (gdbarch))
640 return "";
641
642 /* The MIPS integer registers are always mapped from 0 to 31. The
643 names of the registers (which reflects the conventions regarding
644 register use) vary depending on the ABI. */
645 if (0 <= rawnum && rawnum < 32)
646 {
647 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
648 return mips_n32_n64_gpr_names[rawnum];
649 else
650 return mips_gpr_names[rawnum];
651 }
652 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
653 return tdesc_register_name (gdbarch, rawnum);
654 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
655 {
656 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
657 if (tdep->mips_processor_reg_names[rawnum - 32])
658 return tdep->mips_processor_reg_names[rawnum - 32];
659 return "";
660 }
661 else
662 internal_error (__FILE__, __LINE__,
663 _("mips_register_name: bad register number %d"), rawnum);
664 }
665
666 /* Return the groups that a MIPS register can be categorised into. */
667
668 static int
669 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
670 struct reggroup *reggroup)
671 {
672 int vector_p;
673 int float_p;
674 int raw_p;
675 int rawnum = regnum % gdbarch_num_regs (gdbarch);
676 int pseudo = regnum / gdbarch_num_regs (gdbarch);
677 if (reggroup == all_reggroup)
678 return pseudo;
679 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
680 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
681 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
682 (gdbarch), as not all architectures are multi-arch. */
683 raw_p = rawnum < gdbarch_num_regs (gdbarch);
684 if (gdbarch_register_name (gdbarch, regnum) == NULL
685 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
686 return 0;
687 if (reggroup == float_reggroup)
688 return float_p && pseudo;
689 if (reggroup == vector_reggroup)
690 return vector_p && pseudo;
691 if (reggroup == general_reggroup)
692 return (!vector_p && !float_p) && pseudo;
693 /* Save the pseudo registers. Need to make certain that any code
694 extracting register values from a saved register cache also uses
695 pseudo registers. */
696 if (reggroup == save_reggroup)
697 return raw_p && pseudo;
698 /* Restore the same pseudo register. */
699 if (reggroup == restore_reggroup)
700 return raw_p && pseudo;
701 return 0;
702 }
703
704 /* Return the groups that a MIPS register can be categorised into.
705 This version is only used if we have a target description which
706 describes real registers (and their groups). */
707
708 static int
709 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
710 struct reggroup *reggroup)
711 {
712 int rawnum = regnum % gdbarch_num_regs (gdbarch);
713 int pseudo = regnum / gdbarch_num_regs (gdbarch);
714 int ret;
715
716 /* Only save, restore, and display the pseudo registers. Need to
717 make certain that any code extracting register values from a
718 saved register cache also uses pseudo registers.
719
720 Note: saving and restoring the pseudo registers is slightly
721 strange; if we have 64 bits, we should save and restore all
722 64 bits. But this is hard and has little benefit. */
723 if (!pseudo)
724 return 0;
725
726 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
727 if (ret != -1)
728 return ret;
729
730 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
731 }
732
733 /* Map the symbol table registers which live in the range [1 *
734 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
735 registers. Take care of alignment and size problems. */
736
737 static enum register_status
738 mips_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
739 int cookednum, gdb_byte *buf)
740 {
741 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
742 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
743 && cookednum < 2 * gdbarch_num_regs (gdbarch));
744 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
745 return regcache->raw_read (rawnum, buf);
746 else if (register_size (gdbarch, rawnum) >
747 register_size (gdbarch, cookednum))
748 {
749 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
750 return regcache->raw_read_part (rawnum, 0, 4, buf);
751 else
752 {
753 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
754 LONGEST regval;
755 enum register_status status;
756
757 status = regcache->raw_read (rawnum, &regval);
758 if (status == REG_VALID)
759 store_signed_integer (buf, 4, byte_order, regval);
760 return status;
761 }
762 }
763 else
764 internal_error (__FILE__, __LINE__, _("bad register size"));
765 }
766
767 static void
768 mips_pseudo_register_write (struct gdbarch *gdbarch,
769 struct regcache *regcache, int cookednum,
770 const gdb_byte *buf)
771 {
772 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
773 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
774 && cookednum < 2 * gdbarch_num_regs (gdbarch));
775 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
776 regcache->raw_write (rawnum, buf);
777 else if (register_size (gdbarch, rawnum) >
778 register_size (gdbarch, cookednum))
779 {
780 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
781 regcache->raw_write_part (rawnum, 0, 4, buf);
782 else
783 {
784 /* Sign extend the shortened version of the register prior
785 to placing it in the raw register. This is required for
786 some mips64 parts in order to avoid unpredictable behavior. */
787 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
788 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
789 regcache_raw_write_signed (regcache, rawnum, regval);
790 }
791 }
792 else
793 internal_error (__FILE__, __LINE__, _("bad register size"));
794 }
795
796 static int
797 mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
798 struct agent_expr *ax, int reg)
799 {
800 int rawnum = reg % gdbarch_num_regs (gdbarch);
801 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
802 && reg < 2 * gdbarch_num_regs (gdbarch));
803
804 ax_reg_mask (ax, rawnum);
805
806 return 0;
807 }
808
809 static int
810 mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
811 struct agent_expr *ax, int reg)
812 {
813 int rawnum = reg % gdbarch_num_regs (gdbarch);
814 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
815 && reg < 2 * gdbarch_num_regs (gdbarch));
816 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
817 {
818 ax_reg (ax, rawnum);
819
820 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
821 {
822 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
823 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
824 {
825 ax_const_l (ax, 32);
826 ax_simple (ax, aop_lsh);
827 }
828 ax_const_l (ax, 32);
829 ax_simple (ax, aop_rsh_signed);
830 }
831 }
832 else
833 internal_error (__FILE__, __LINE__, _("bad register size"));
834
835 return 0;
836 }
837
838 /* Table to translate 3-bit register field to actual register number. */
839 static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
840
841 /* Heuristic_proc_start may hunt through the text section for a long
842 time across a 2400 baud serial line. Allows the user to limit this
843 search. */
844
845 static int heuristic_fence_post = 0;
846
847 /* Number of bytes of storage in the actual machine representation for
848 register N. NOTE: This defines the pseudo register type so need to
849 rebuild the architecture vector. */
850
851 static int mips64_transfers_32bit_regs_p = 0;
852
853 static void
854 set_mips64_transfers_32bit_regs (const char *args, int from_tty,
855 struct cmd_list_element *c)
856 {
857 struct gdbarch_info info;
858 gdbarch_info_init (&info);
859 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
860 instead of relying on globals. Doing that would let generic code
861 handle the search for this specific architecture. */
862 if (!gdbarch_update_p (info))
863 {
864 mips64_transfers_32bit_regs_p = 0;
865 error (_("32-bit compatibility mode not supported"));
866 }
867 }
868
869 /* Convert to/from a register and the corresponding memory value. */
870
871 /* This predicate tests for the case of an 8 byte floating point
872 value that is being transferred to or from a pair of floating point
873 registers each of which are (or are considered to be) only 4 bytes
874 wide. */
875 static int
876 mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
877 struct type *type)
878 {
879 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
880 && register_size (gdbarch, regnum) == 4
881 && mips_float_register_p (gdbarch, regnum)
882 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
883 }
884
885 /* This predicate tests for the case of a value of less than 8
886 bytes in width that is being transfered to or from an 8 byte
887 general purpose register. */
888 static int
889 mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
890 struct type *type)
891 {
892 int num_regs = gdbarch_num_regs (gdbarch);
893
894 return (register_size (gdbarch, regnum) == 8
895 && regnum % num_regs > 0 && regnum % num_regs < 32
896 && TYPE_LENGTH (type) < 8);
897 }
898
899 static int
900 mips_convert_register_p (struct gdbarch *gdbarch,
901 int regnum, struct type *type)
902 {
903 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
904 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
905 }
906
907 static int
908 mips_register_to_value (struct frame_info *frame, int regnum,
909 struct type *type, gdb_byte *to,
910 int *optimizedp, int *unavailablep)
911 {
912 struct gdbarch *gdbarch = get_frame_arch (frame);
913
914 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
915 {
916 get_frame_register (frame, regnum + 0, to + 4);
917 get_frame_register (frame, regnum + 1, to + 0);
918
919 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
920 optimizedp, unavailablep))
921 return 0;
922
923 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
924 optimizedp, unavailablep))
925 return 0;
926 *optimizedp = *unavailablep = 0;
927 return 1;
928 }
929 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
930 {
931 int len = TYPE_LENGTH (type);
932 CORE_ADDR offset;
933
934 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
935 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
936 optimizedp, unavailablep))
937 return 0;
938
939 *optimizedp = *unavailablep = 0;
940 return 1;
941 }
942 else
943 {
944 internal_error (__FILE__, __LINE__,
945 _("mips_register_to_value: unrecognized case"));
946 }
947 }
948
949 static void
950 mips_value_to_register (struct frame_info *frame, int regnum,
951 struct type *type, const gdb_byte *from)
952 {
953 struct gdbarch *gdbarch = get_frame_arch (frame);
954
955 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
956 {
957 put_frame_register (frame, regnum + 0, from + 4);
958 put_frame_register (frame, regnum + 1, from + 0);
959 }
960 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
961 {
962 gdb_byte fill[8];
963 int len = TYPE_LENGTH (type);
964
965 /* Sign extend values, irrespective of type, that are stored to
966 a 64-bit general purpose register. (32-bit unsigned values
967 are stored as signed quantities within a 64-bit register.
968 When performing an operation, in compiled code, that combines
969 a 32-bit unsigned value with a signed 64-bit value, a type
970 conversion is first performed that zeroes out the high 32 bits.) */
971 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
972 {
973 if (from[0] & 0x80)
974 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
975 else
976 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
977 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
978 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
979 }
980 else
981 {
982 if (from[len-1] & 0x80)
983 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
984 else
985 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
986 put_frame_register_bytes (frame, regnum, 0, len, from);
987 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
988 }
989 }
990 else
991 {
992 internal_error (__FILE__, __LINE__,
993 _("mips_value_to_register: unrecognized case"));
994 }
995 }
996
997 /* Return the GDB type object for the "standard" data type of data in
998 register REG. */
999
1000 static struct type *
1001 mips_register_type (struct gdbarch *gdbarch, int regnum)
1002 {
1003 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
1004 if (mips_float_register_p (gdbarch, regnum))
1005 {
1006 /* The floating-point registers raw, or cooked, always match
1007 mips_isa_regsize(), and also map 1:1, byte for byte. */
1008 if (mips_isa_regsize (gdbarch) == 4)
1009 return builtin_type (gdbarch)->builtin_float;
1010 else
1011 return builtin_type (gdbarch)->builtin_double;
1012 }
1013 else if (regnum < gdbarch_num_regs (gdbarch))
1014 {
1015 /* The raw or ISA registers. These are all sized according to
1016 the ISA regsize. */
1017 if (mips_isa_regsize (gdbarch) == 4)
1018 return builtin_type (gdbarch)->builtin_int32;
1019 else
1020 return builtin_type (gdbarch)->builtin_int64;
1021 }
1022 else
1023 {
1024 int rawnum = regnum - gdbarch_num_regs (gdbarch);
1025
1026 /* The cooked or ABI registers. These are sized according to
1027 the ABI (with a few complications). */
1028 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1029 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1030 return builtin_type (gdbarch)->builtin_int32;
1031 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1032 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1033 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1034 /* The pseudo/cooked view of the embedded registers is always
1035 32-bit. The raw view is handled below. */
1036 return builtin_type (gdbarch)->builtin_int32;
1037 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
1038 /* The target, while possibly using a 64-bit register buffer,
1039 is only transfering 32-bits of each integer register.
1040 Reflect this in the cooked/pseudo (ABI) register value. */
1041 return builtin_type (gdbarch)->builtin_int32;
1042 else if (mips_abi_regsize (gdbarch) == 4)
1043 /* The ABI is restricted to 32-bit registers (the ISA could be
1044 32- or 64-bit). */
1045 return builtin_type (gdbarch)->builtin_int32;
1046 else
1047 /* 64-bit ABI. */
1048 return builtin_type (gdbarch)->builtin_int64;
1049 }
1050 }
1051
1052 /* Return the GDB type for the pseudo register REGNUM, which is the
1053 ABI-level view. This function is only called if there is a target
1054 description which includes registers, so we know precisely the
1055 types of hardware registers. */
1056
1057 static struct type *
1058 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1059 {
1060 const int num_regs = gdbarch_num_regs (gdbarch);
1061 int rawnum = regnum % num_regs;
1062 struct type *rawtype;
1063
1064 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1065
1066 /* Absent registers are still absent. */
1067 rawtype = gdbarch_register_type (gdbarch, rawnum);
1068 if (TYPE_LENGTH (rawtype) == 0)
1069 return rawtype;
1070
1071 /* Present the floating point registers however the hardware did;
1072 do not try to convert between FPU layouts. */
1073 if (mips_float_register_p (gdbarch, rawnum))
1074 return rawtype;
1075
1076 /* Floating-point control registers are always 32-bit even though for
1077 backwards compatibility reasons 64-bit targets will transfer them
1078 as 64-bit quantities even if using XML descriptions. */
1079 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1080 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1081 return builtin_type (gdbarch)->builtin_int32;
1082
1083 /* Use pointer types for registers if we can. For n32 we can not,
1084 since we do not have a 64-bit pointer type. */
1085 if (mips_abi_regsize (gdbarch)
1086 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
1087 {
1088 if (rawnum == MIPS_SP_REGNUM
1089 || rawnum == mips_regnum (gdbarch)->badvaddr)
1090 return builtin_type (gdbarch)->builtin_data_ptr;
1091 else if (rawnum == mips_regnum (gdbarch)->pc)
1092 return builtin_type (gdbarch)->builtin_func_ptr;
1093 }
1094
1095 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1096 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1097 || rawnum == mips_regnum (gdbarch)->lo
1098 || rawnum == mips_regnum (gdbarch)->hi
1099 || rawnum == mips_regnum (gdbarch)->badvaddr
1100 || rawnum == mips_regnum (gdbarch)->cause
1101 || rawnum == mips_regnum (gdbarch)->pc
1102 || (mips_regnum (gdbarch)->dspacc != -1
1103 && rawnum >= mips_regnum (gdbarch)->dspacc
1104 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
1105 return builtin_type (gdbarch)->builtin_int32;
1106
1107 /* The pseudo/cooked view of embedded registers is always
1108 32-bit, even if the target transfers 64-bit values for them.
1109 New targets relying on XML descriptions should only transfer
1110 the necessary 32 bits, but older versions of GDB expected 64,
1111 so allow the target to provide 64 bits without interfering
1112 with the displayed type. */
1113 if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1114 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1115 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1116 return builtin_type (gdbarch)->builtin_int32;
1117
1118 /* For all other registers, pass through the hardware type. */
1119 return rawtype;
1120 }
1121
1122 /* Should the upper word of 64-bit addresses be zeroed? */
1123 static enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
1124
1125 static int
1126 mips_mask_address_p (struct gdbarch_tdep *tdep)
1127 {
1128 switch (mask_address_var)
1129 {
1130 case AUTO_BOOLEAN_TRUE:
1131 return 1;
1132 case AUTO_BOOLEAN_FALSE:
1133 return 0;
1134 break;
1135 case AUTO_BOOLEAN_AUTO:
1136 return tdep->default_mask_address_p;
1137 default:
1138 internal_error (__FILE__, __LINE__,
1139 _("mips_mask_address_p: bad switch"));
1140 return -1;
1141 }
1142 }
1143
1144 static void
1145 show_mask_address (struct ui_file *file, int from_tty,
1146 struct cmd_list_element *c, const char *value)
1147 {
1148 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
1149
1150 deprecated_show_value_hack (file, from_tty, c, value);
1151 switch (mask_address_var)
1152 {
1153 case AUTO_BOOLEAN_TRUE:
1154 printf_filtered ("The 32 bit mips address mask is enabled\n");
1155 break;
1156 case AUTO_BOOLEAN_FALSE:
1157 printf_filtered ("The 32 bit mips address mask is disabled\n");
1158 break;
1159 case AUTO_BOOLEAN_AUTO:
1160 printf_filtered
1161 ("The 32 bit address mask is set automatically. Currently %s\n",
1162 mips_mask_address_p (tdep) ? "enabled" : "disabled");
1163 break;
1164 default:
1165 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
1166 break;
1167 }
1168 }
1169
1170 /* Tell if the program counter value in MEMADDR is in a standard ISA
1171 function. */
1172
1173 int
1174 mips_pc_is_mips (CORE_ADDR memaddr)
1175 {
1176 struct bound_minimal_symbol sym;
1177
1178 /* Flags indicating that this is a MIPS16 or microMIPS function is
1179 stored by elfread.c in the high bit of the info field. Use this
1180 to decide if the function is standard MIPS. Otherwise if bit 0
1181 of the address is clear, then this is a standard MIPS function. */
1182 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1183 if (sym.minsym)
1184 return msymbol_is_mips (sym.minsym);
1185 else
1186 return is_mips_addr (memaddr);
1187 }
1188
1189 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1190
1191 int
1192 mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1193 {
1194 struct bound_minimal_symbol sym;
1195
1196 /* A flag indicating that this is a MIPS16 function is stored by
1197 elfread.c in the high bit of the info field. Use this to decide
1198 if the function is MIPS16. Otherwise if bit 0 of the address is
1199 set, then ELF file flags will tell if this is a MIPS16 function. */
1200 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1201 if (sym.minsym)
1202 return msymbol_is_mips16 (sym.minsym);
1203 else
1204 return is_mips16_addr (gdbarch, memaddr);
1205 }
1206
1207 /* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1208
1209 int
1210 mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1211 {
1212 struct bound_minimal_symbol sym;
1213
1214 /* A flag indicating that this is a microMIPS function is stored by
1215 elfread.c in the high bit of the info field. Use this to decide
1216 if the function is microMIPS. Otherwise if bit 0 of the address
1217 is set, then ELF file flags will tell if this is a microMIPS
1218 function. */
1219 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1220 if (sym.minsym)
1221 return msymbol_is_micromips (sym.minsym);
1222 else
1223 return is_micromips_addr (gdbarch, memaddr);
1224 }
1225
1226 /* Tell the ISA type of the function the program counter value in MEMADDR
1227 is in. */
1228
1229 static enum mips_isa
1230 mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1231 {
1232 struct bound_minimal_symbol sym;
1233
1234 /* A flag indicating that this is a MIPS16 or a microMIPS function
1235 is stored by elfread.c in the high bit of the info field. Use
1236 this to decide if the function is MIPS16 or microMIPS or normal
1237 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1238 flags will tell if this is a MIPS16 or a microMIPS function. */
1239 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1240 if (sym.minsym)
1241 {
1242 if (msymbol_is_micromips (sym.minsym))
1243 return ISA_MICROMIPS;
1244 else if (msymbol_is_mips16 (sym.minsym))
1245 return ISA_MIPS16;
1246 else
1247 return ISA_MIPS;
1248 }
1249 else
1250 {
1251 if (is_mips_addr (memaddr))
1252 return ISA_MIPS;
1253 else if (is_micromips_addr (gdbarch, memaddr))
1254 return ISA_MICROMIPS;
1255 else
1256 return ISA_MIPS16;
1257 }
1258 }
1259
1260 /* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1261 The need for comes from the ISA bit having been cleared, making
1262 addresses in FDE, range records, etc. referring to compressed code
1263 different to those in line information, the symbol table and finally
1264 the PC register. That in turn confuses many operations. */
1265
1266 static CORE_ADDR
1267 mips_adjust_dwarf2_addr (CORE_ADDR pc)
1268 {
1269 pc = unmake_compact_addr (pc);
1270 return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
1271 }
1272
1273 /* Recalculate the line record requested so that the resulting PC has
1274 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1275 this adjustment comes from some records associated with compressed
1276 code having the ISA bit cleared, most notably at function prologue
1277 ends. The ISA bit is in this context retrieved from the minimal
1278 symbol covering the address requested, which in turn has been
1279 constructed from the binary's symbol table rather than DWARF-2
1280 information. The correct setting of the ISA bit is required for
1281 breakpoint addresses to correctly match against the stop PC.
1282
1283 As line entries can specify relative address adjustments we need to
1284 keep track of the absolute value of the last line address recorded
1285 in line information, so that we can calculate the actual address to
1286 apply the ISA bit adjustment to. We use PC for this tracking and
1287 keep the original address there.
1288
1289 As such relative address adjustments can be odd within compressed
1290 code we need to keep track of the last line address with the ISA
1291 bit adjustment applied too, as the original address may or may not
1292 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1293 the adjusted address there.
1294
1295 For relative address adjustments we then use these variables to
1296 calculate the address intended by line information, which will be
1297 PC-relative, and return an updated adjustment carrying ISA bit
1298 information, which will be ADJ_PC-relative. For absolute address
1299 adjustments we just return the same address that we store in ADJ_PC
1300 too.
1301
1302 As the first line entry can be relative to an implied address value
1303 of 0 we need to have the initial address set up that we store in PC
1304 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1305 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1306
1307 static CORE_ADDR
1308 mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
1309 {
1310 static CORE_ADDR adj_pc;
1311 static CORE_ADDR pc;
1312 CORE_ADDR isa_pc;
1313
1314 pc = rel ? pc + addr : addr;
1315 isa_pc = mips_adjust_dwarf2_addr (pc);
1316 addr = rel ? isa_pc - adj_pc : isa_pc;
1317 adj_pc = isa_pc;
1318 return addr;
1319 }
1320
1321 /* Various MIPS16 thunk (aka stub or trampoline) names. */
1322
1323 static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1324 static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1325 static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1326 static const char mips_str_call_stub[] = "__call_stub_";
1327 static const char mips_str_fn_stub[] = "__fn_stub_";
1328
1329 /* This is used as a PIC thunk prefix. */
1330
1331 static const char mips_str_pic[] = ".pic.";
1332
1333 /* Return non-zero if the PC is inside a call thunk (aka stub or
1334 trampoline) that should be treated as a temporary frame. */
1335
1336 static int
1337 mips_in_frame_stub (CORE_ADDR pc)
1338 {
1339 CORE_ADDR start_addr;
1340 const char *name;
1341
1342 /* Find the starting address of the function containing the PC. */
1343 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1344 return 0;
1345
1346 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
1347 if (startswith (name, mips_str_mips16_call_stub))
1348 return 1;
1349 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
1350 if (startswith (name, mips_str_call_stub))
1351 return 1;
1352 /* If the PC is in __fn_stub_*, this is a call stub. */
1353 if (startswith (name, mips_str_fn_stub))
1354 return 1;
1355
1356 return 0; /* Not a stub. */
1357 }
1358
1359 /* MIPS believes that the PC has a sign extended value. Perhaps the
1360 all registers should be sign extended for simplicity? */
1361
1362 static CORE_ADDR
1363 mips_read_pc (readable_regcache *regcache)
1364 {
1365 int regnum = gdbarch_pc_regnum (regcache->arch ());
1366 LONGEST pc;
1367
1368 regcache->cooked_read (regnum, &pc);
1369 return pc;
1370 }
1371
1372 static CORE_ADDR
1373 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1374 {
1375 CORE_ADDR pc;
1376
1377 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
1378 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1379 intermediate frames. In this case we can get the caller's address
1380 from $ra, or if $ra contains an address within a thunk as well, then
1381 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1382 and thus the caller's address is in $s2. */
1383 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1384 {
1385 pc = frame_unwind_register_signed
1386 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
1387 if (mips_in_frame_stub (pc))
1388 pc = frame_unwind_register_signed
1389 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
1390 }
1391 return pc;
1392 }
1393
1394 static CORE_ADDR
1395 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1396 {
1397 return frame_unwind_register_signed
1398 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
1399 }
1400
1401 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1402 dummy frame. The frame ID's base needs to match the TOS value
1403 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1404 breakpoint. */
1405
1406 static struct frame_id
1407 mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1408 {
1409 return frame_id_build
1410 (get_frame_register_signed (this_frame,
1411 gdbarch_num_regs (gdbarch)
1412 + MIPS_SP_REGNUM),
1413 get_frame_pc (this_frame));
1414 }
1415
1416 /* Implement the "write_pc" gdbarch method. */
1417
1418 void
1419 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
1420 {
1421 int regnum = gdbarch_pc_regnum (regcache->arch ());
1422
1423 regcache_cooked_write_unsigned (regcache, regnum, pc);
1424 }
1425
1426 /* Fetch and return instruction from the specified location. Handle
1427 MIPS16/microMIPS as appropriate. */
1428
1429 static ULONGEST
1430 mips_fetch_instruction (struct gdbarch *gdbarch,
1431 enum mips_isa isa, CORE_ADDR addr, int *errp)
1432 {
1433 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1434 gdb_byte buf[MIPS_INSN32_SIZE];
1435 int instlen;
1436 int err;
1437
1438 switch (isa)
1439 {
1440 case ISA_MICROMIPS:
1441 case ISA_MIPS16:
1442 instlen = MIPS_INSN16_SIZE;
1443 addr = unmake_compact_addr (addr);
1444 break;
1445 case ISA_MIPS:
1446 instlen = MIPS_INSN32_SIZE;
1447 break;
1448 default:
1449 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1450 break;
1451 }
1452 err = target_read_memory (addr, buf, instlen);
1453 if (errp != NULL)
1454 *errp = err;
1455 if (err != 0)
1456 {
1457 if (errp == NULL)
1458 memory_error (TARGET_XFER_E_IO, addr);
1459 return 0;
1460 }
1461 return extract_unsigned_integer (buf, instlen, byte_order);
1462 }
1463
1464 /* These are the fields of 32 bit mips instructions. */
1465 #define mips32_op(x) (x >> 26)
1466 #define itype_op(x) (x >> 26)
1467 #define itype_rs(x) ((x >> 21) & 0x1f)
1468 #define itype_rt(x) ((x >> 16) & 0x1f)
1469 #define itype_immediate(x) (x & 0xffff)
1470
1471 #define jtype_op(x) (x >> 26)
1472 #define jtype_target(x) (x & 0x03ffffff)
1473
1474 #define rtype_op(x) (x >> 26)
1475 #define rtype_rs(x) ((x >> 21) & 0x1f)
1476 #define rtype_rt(x) ((x >> 16) & 0x1f)
1477 #define rtype_rd(x) ((x >> 11) & 0x1f)
1478 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1479 #define rtype_funct(x) (x & 0x3f)
1480
1481 /* MicroMIPS instruction fields. */
1482 #define micromips_op(x) ((x) >> 10)
1483
1484 /* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1485 bit and the size respectively of the field extracted. */
1486 #define b0s4_imm(x) ((x) & 0xf)
1487 #define b0s5_imm(x) ((x) & 0x1f)
1488 #define b0s5_reg(x) ((x) & 0x1f)
1489 #define b0s7_imm(x) ((x) & 0x7f)
1490 #define b0s10_imm(x) ((x) & 0x3ff)
1491 #define b1s4_imm(x) (((x) >> 1) & 0xf)
1492 #define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1493 #define b2s3_cc(x) (((x) >> 2) & 0x7)
1494 #define b4s2_regl(x) (((x) >> 4) & 0x3)
1495 #define b5s5_op(x) (((x) >> 5) & 0x1f)
1496 #define b5s5_reg(x) (((x) >> 5) & 0x1f)
1497 #define b6s4_op(x) (((x) >> 6) & 0xf)
1498 #define b7s3_reg(x) (((x) >> 7) & 0x7)
1499
1500 /* 32-bit instruction formats, B and S refer to the lowest bit and the size
1501 respectively of the field extracted. */
1502 #define b0s6_op(x) ((x) & 0x3f)
1503 #define b0s11_op(x) ((x) & 0x7ff)
1504 #define b0s12_imm(x) ((x) & 0xfff)
1505 #define b0s16_imm(x) ((x) & 0xffff)
1506 #define b0s26_imm(x) ((x) & 0x3ffffff)
1507 #define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1508 #define b11s5_reg(x) (((x) >> 11) & 0x1f)
1509 #define b12s4_op(x) (((x) >> 12) & 0xf)
1510
1511 /* Return the size in bytes of the instruction INSN encoded in the ISA
1512 instruction set. */
1513
1514 static int
1515 mips_insn_size (enum mips_isa isa, ULONGEST insn)
1516 {
1517 switch (isa)
1518 {
1519 case ISA_MICROMIPS:
1520 if ((micromips_op (insn) & 0x4) == 0x4
1521 || (micromips_op (insn) & 0x7) == 0x0)
1522 return 2 * MIPS_INSN16_SIZE;
1523 else
1524 return MIPS_INSN16_SIZE;
1525 case ISA_MIPS16:
1526 if ((insn & 0xf800) == 0xf000)
1527 return 2 * MIPS_INSN16_SIZE;
1528 else
1529 return MIPS_INSN16_SIZE;
1530 case ISA_MIPS:
1531 return MIPS_INSN32_SIZE;
1532 }
1533 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1534 }
1535
1536 static LONGEST
1537 mips32_relative_offset (ULONGEST inst)
1538 {
1539 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
1540 }
1541
1542 /* Determine the address of the next instruction executed after the INST
1543 floating condition branch instruction at PC. COUNT specifies the
1544 number of the floating condition bits tested by the branch. */
1545
1546 static CORE_ADDR
1547 mips32_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
1548 ULONGEST inst, CORE_ADDR pc, int count)
1549 {
1550 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1551 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1552 int tf = itype_rt (inst) & 1;
1553 int mask = (1 << count) - 1;
1554 ULONGEST fcs;
1555 int cond;
1556
1557 if (fcsr == -1)
1558 /* No way to handle; it'll most likely trap anyway. */
1559 return pc;
1560
1561 fcs = regcache_raw_get_unsigned (regcache, fcsr);
1562 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1563
1564 if (((cond >> cnum) & mask) != mask * !tf)
1565 pc += mips32_relative_offset (inst);
1566 else
1567 pc += 4;
1568
1569 return pc;
1570 }
1571
1572 /* Return nonzero if the gdbarch is an Octeon series. */
1573
1574 static int
1575 is_octeon (struct gdbarch *gdbarch)
1576 {
1577 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1578
1579 return (info->mach == bfd_mach_mips_octeon
1580 || info->mach == bfd_mach_mips_octeonp
1581 || info->mach == bfd_mach_mips_octeon2);
1582 }
1583
1584 /* Return true if the OP represents the Octeon's BBIT instruction. */
1585
1586 static int
1587 is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1588 {
1589 if (!is_octeon (gdbarch))
1590 return 0;
1591 /* BBIT0 is encoded as LWC2: 110 010. */
1592 /* BBIT032 is encoded as LDC2: 110 110. */
1593 /* BBIT1 is encoded as SWC2: 111 010. */
1594 /* BBIT132 is encoded as SDC2: 111 110. */
1595 if (op == 50 || op == 54 || op == 58 || op == 62)
1596 return 1;
1597 return 0;
1598 }
1599
1600
1601 /* Determine where to set a single step breakpoint while considering
1602 branch prediction. */
1603
1604 static CORE_ADDR
1605 mips32_next_pc (struct regcache *regcache, CORE_ADDR pc)
1606 {
1607 struct gdbarch *gdbarch = regcache->arch ();
1608 unsigned long inst;
1609 int op;
1610 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
1611 op = itype_op (inst);
1612 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1613 instruction. */
1614 {
1615 if (op >> 2 == 5)
1616 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1617 {
1618 switch (op & 0x03)
1619 {
1620 case 0: /* BEQL */
1621 goto equal_branch;
1622 case 1: /* BNEL */
1623 goto neq_branch;
1624 case 2: /* BLEZL */
1625 goto less_branch;
1626 case 3: /* BGTZL */
1627 goto greater_branch;
1628 default:
1629 pc += 4;
1630 }
1631 }
1632 else if (op == 17 && itype_rs (inst) == 8)
1633 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1634 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 1);
1635 else if (op == 17 && itype_rs (inst) == 9
1636 && (itype_rt (inst) & 2) == 0)
1637 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1638 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 2);
1639 else if (op == 17 && itype_rs (inst) == 10
1640 && (itype_rt (inst) & 2) == 0)
1641 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1642 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 4);
1643 else if (op == 29)
1644 /* JALX: 011101 */
1645 /* The new PC will be alternate mode. */
1646 {
1647 unsigned long reg;
1648
1649 reg = jtype_target (inst) << 2;
1650 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1651 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1652 }
1653 else if (is_octeon_bbit_op (op, gdbarch))
1654 {
1655 int bit, branch_if;
1656
1657 branch_if = op == 58 || op == 62;
1658 bit = itype_rt (inst);
1659
1660 /* Take into account the *32 instructions. */
1661 if (op == 54 || op == 62)
1662 bit += 32;
1663
1664 if (((regcache_raw_get_signed (regcache,
1665 itype_rs (inst)) >> bit) & 1)
1666 == branch_if)
1667 pc += mips32_relative_offset (inst) + 4;
1668 else
1669 pc += 8; /* After the delay slot. */
1670 }
1671
1672 else
1673 pc += 4; /* Not a branch, next instruction is easy. */
1674 }
1675 else
1676 { /* This gets way messy. */
1677
1678 /* Further subdivide into SPECIAL, REGIMM and other. */
1679 switch (op & 0x07) /* Extract bits 28,27,26. */
1680 {
1681 case 0: /* SPECIAL */
1682 op = rtype_funct (inst);
1683 switch (op)
1684 {
1685 case 8: /* JR */
1686 case 9: /* JALR */
1687 /* Set PC to that address. */
1688 pc = regcache_raw_get_signed (regcache, rtype_rs (inst));
1689 break;
1690 case 12: /* SYSCALL */
1691 {
1692 struct gdbarch_tdep *tdep;
1693
1694 tdep = gdbarch_tdep (gdbarch);
1695 if (tdep->syscall_next_pc != NULL)
1696 pc = tdep->syscall_next_pc (get_current_frame ());
1697 else
1698 pc += 4;
1699 }
1700 break;
1701 default:
1702 pc += 4;
1703 }
1704
1705 break; /* end SPECIAL */
1706 case 1: /* REGIMM */
1707 {
1708 op = itype_rt (inst); /* branch condition */
1709 switch (op)
1710 {
1711 case 0: /* BLTZ */
1712 case 2: /* BLTZL */
1713 case 16: /* BLTZAL */
1714 case 18: /* BLTZALL */
1715 less_branch:
1716 if (regcache_raw_get_signed (regcache, itype_rs (inst)) < 0)
1717 pc += mips32_relative_offset (inst) + 4;
1718 else
1719 pc += 8; /* after the delay slot */
1720 break;
1721 case 1: /* BGEZ */
1722 case 3: /* BGEZL */
1723 case 17: /* BGEZAL */
1724 case 19: /* BGEZALL */
1725 if (regcache_raw_get_signed (regcache, itype_rs (inst)) >= 0)
1726 pc += mips32_relative_offset (inst) + 4;
1727 else
1728 pc += 8; /* after the delay slot */
1729 break;
1730 case 0x1c: /* BPOSGE32 */
1731 case 0x1e: /* BPOSGE64 */
1732 pc += 4;
1733 if (itype_rs (inst) == 0)
1734 {
1735 unsigned int pos = (op & 2) ? 64 : 32;
1736 int dspctl = mips_regnum (gdbarch)->dspctl;
1737
1738 if (dspctl == -1)
1739 /* No way to handle; it'll most likely trap anyway. */
1740 break;
1741
1742 if ((regcache_raw_get_unsigned (regcache,
1743 dspctl) & 0x7f) >= pos)
1744 pc += mips32_relative_offset (inst);
1745 else
1746 pc += 4;
1747 }
1748 break;
1749 /* All of the other instructions in the REGIMM category */
1750 default:
1751 pc += 4;
1752 }
1753 }
1754 break; /* end REGIMM */
1755 case 2: /* J */
1756 case 3: /* JAL */
1757 {
1758 unsigned long reg;
1759 reg = jtype_target (inst) << 2;
1760 /* Upper four bits get never changed... */
1761 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1762 }
1763 break;
1764 case 4: /* BEQ, BEQL */
1765 equal_branch:
1766 if (regcache_raw_get_signed (regcache, itype_rs (inst)) ==
1767 regcache_raw_get_signed (regcache, itype_rt (inst)))
1768 pc += mips32_relative_offset (inst) + 4;
1769 else
1770 pc += 8;
1771 break;
1772 case 5: /* BNE, BNEL */
1773 neq_branch:
1774 if (regcache_raw_get_signed (regcache, itype_rs (inst)) !=
1775 regcache_raw_get_signed (regcache, itype_rt (inst)))
1776 pc += mips32_relative_offset (inst) + 4;
1777 else
1778 pc += 8;
1779 break;
1780 case 6: /* BLEZ, BLEZL */
1781 if (regcache_raw_get_signed (regcache, itype_rs (inst)) <= 0)
1782 pc += mips32_relative_offset (inst) + 4;
1783 else
1784 pc += 8;
1785 break;
1786 case 7:
1787 default:
1788 greater_branch: /* BGTZ, BGTZL */
1789 if (regcache_raw_get_signed (regcache, itype_rs (inst)) > 0)
1790 pc += mips32_relative_offset (inst) + 4;
1791 else
1792 pc += 8;
1793 break;
1794 } /* switch */
1795 } /* else */
1796 return pc;
1797 } /* mips32_next_pc */
1798
1799 /* Extract the 7-bit signed immediate offset from the microMIPS instruction
1800 INSN. */
1801
1802 static LONGEST
1803 micromips_relative_offset7 (ULONGEST insn)
1804 {
1805 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1806 }
1807
1808 /* Extract the 10-bit signed immediate offset from the microMIPS instruction
1809 INSN. */
1810
1811 static LONGEST
1812 micromips_relative_offset10 (ULONGEST insn)
1813 {
1814 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1815 }
1816
1817 /* Extract the 16-bit signed immediate offset from the microMIPS instruction
1818 INSN. */
1819
1820 static LONGEST
1821 micromips_relative_offset16 (ULONGEST insn)
1822 {
1823 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1824 }
1825
1826 /* Return the size in bytes of the microMIPS instruction at the address PC. */
1827
1828 static int
1829 micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1830 {
1831 ULONGEST insn;
1832
1833 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1834 return mips_insn_size (ISA_MICROMIPS, insn);
1835 }
1836
1837 /* Calculate the address of the next microMIPS instruction to execute
1838 after the INSN coprocessor 1 conditional branch instruction at the
1839 address PC. COUNT denotes the number of coprocessor condition bits
1840 examined by the branch. */
1841
1842 static CORE_ADDR
1843 micromips_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
1844 ULONGEST insn, CORE_ADDR pc, int count)
1845 {
1846 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1847 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1848 int tf = b5s5_op (insn >> 16) & 1;
1849 int mask = (1 << count) - 1;
1850 ULONGEST fcs;
1851 int cond;
1852
1853 if (fcsr == -1)
1854 /* No way to handle; it'll most likely trap anyway. */
1855 return pc;
1856
1857 fcs = regcache_raw_get_unsigned (regcache, fcsr);
1858 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1859
1860 if (((cond >> cnum) & mask) != mask * !tf)
1861 pc += micromips_relative_offset16 (insn);
1862 else
1863 pc += micromips_pc_insn_size (gdbarch, pc);
1864
1865 return pc;
1866 }
1867
1868 /* Calculate the address of the next microMIPS instruction to execute
1869 after the instruction at the address PC. */
1870
1871 static CORE_ADDR
1872 micromips_next_pc (struct regcache *regcache, CORE_ADDR pc)
1873 {
1874 struct gdbarch *gdbarch = regcache->arch ();
1875 ULONGEST insn;
1876
1877 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1878 pc += MIPS_INSN16_SIZE;
1879 switch (mips_insn_size (ISA_MICROMIPS, insn))
1880 {
1881 /* 32-bit instructions. */
1882 case 2 * MIPS_INSN16_SIZE:
1883 insn <<= 16;
1884 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1885 pc += MIPS_INSN16_SIZE;
1886 switch (micromips_op (insn >> 16))
1887 {
1888 case 0x00: /* POOL32A: bits 000000 */
1889 if (b0s6_op (insn) == 0x3c
1890 /* POOL32Axf: bits 000000 ... 111100 */
1891 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1892 /* JALR, JALR.HB: 000000 000x111100 111100 */
1893 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
1894 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16));
1895 break;
1896
1897 case 0x10: /* POOL32I: bits 010000 */
1898 switch (b5s5_op (insn >> 16))
1899 {
1900 case 0x00: /* BLTZ: bits 010000 00000 */
1901 case 0x01: /* BLTZAL: bits 010000 00001 */
1902 case 0x11: /* BLTZALS: bits 010000 10001 */
1903 if (regcache_raw_get_signed (regcache,
1904 b0s5_reg (insn >> 16)) < 0)
1905 pc += micromips_relative_offset16 (insn);
1906 else
1907 pc += micromips_pc_insn_size (gdbarch, pc);
1908 break;
1909
1910 case 0x02: /* BGEZ: bits 010000 00010 */
1911 case 0x03: /* BGEZAL: bits 010000 00011 */
1912 case 0x13: /* BGEZALS: bits 010000 10011 */
1913 if (regcache_raw_get_signed (regcache,
1914 b0s5_reg (insn >> 16)) >= 0)
1915 pc += micromips_relative_offset16 (insn);
1916 else
1917 pc += micromips_pc_insn_size (gdbarch, pc);
1918 break;
1919
1920 case 0x04: /* BLEZ: bits 010000 00100 */
1921 if (regcache_raw_get_signed (regcache,
1922 b0s5_reg (insn >> 16)) <= 0)
1923 pc += micromips_relative_offset16 (insn);
1924 else
1925 pc += micromips_pc_insn_size (gdbarch, pc);
1926 break;
1927
1928 case 0x05: /* BNEZC: bits 010000 00101 */
1929 if (regcache_raw_get_signed (regcache,
1930 b0s5_reg (insn >> 16)) != 0)
1931 pc += micromips_relative_offset16 (insn);
1932 break;
1933
1934 case 0x06: /* BGTZ: bits 010000 00110 */
1935 if (regcache_raw_get_signed (regcache,
1936 b0s5_reg (insn >> 16)) > 0)
1937 pc += micromips_relative_offset16 (insn);
1938 else
1939 pc += micromips_pc_insn_size (gdbarch, pc);
1940 break;
1941
1942 case 0x07: /* BEQZC: bits 010000 00111 */
1943 if (regcache_raw_get_signed (regcache,
1944 b0s5_reg (insn >> 16)) == 0)
1945 pc += micromips_relative_offset16 (insn);
1946 break;
1947
1948 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1949 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1950 if (((insn >> 16) & 0x3) == 0x0)
1951 /* BC2F, BC2T: don't know how to handle these. */
1952 break;
1953 break;
1954
1955 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1956 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1957 {
1958 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1959 int dspctl = mips_regnum (gdbarch)->dspctl;
1960
1961 if (dspctl == -1)
1962 /* No way to handle; it'll most likely trap anyway. */
1963 break;
1964
1965 if ((regcache_raw_get_unsigned (regcache,
1966 dspctl) & 0x7f) >= pos)
1967 pc += micromips_relative_offset16 (insn);
1968 else
1969 pc += micromips_pc_insn_size (gdbarch, pc);
1970 }
1971 break;
1972
1973 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1974 /* BC1ANY2F: bits 010000 11100 xxx01 */
1975 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1976 /* BC1ANY2T: bits 010000 11101 xxx01 */
1977 if (((insn >> 16) & 0x2) == 0x0)
1978 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc,
1979 ((insn >> 16) & 0x1) + 1);
1980 break;
1981
1982 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1983 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1984 if (((insn >> 16) & 0x3) == 0x1)
1985 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc, 4);
1986 break;
1987 }
1988 break;
1989
1990 case 0x1d: /* JALS: bits 011101 */
1991 case 0x35: /* J: bits 110101 */
1992 case 0x3d: /* JAL: bits 111101 */
1993 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
1994 break;
1995
1996 case 0x25: /* BEQ: bits 100101 */
1997 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
1998 == regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
1999 pc += micromips_relative_offset16 (insn);
2000 else
2001 pc += micromips_pc_insn_size (gdbarch, pc);
2002 break;
2003
2004 case 0x2d: /* BNE: bits 101101 */
2005 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2006 != regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
2007 pc += micromips_relative_offset16 (insn);
2008 else
2009 pc += micromips_pc_insn_size (gdbarch, pc);
2010 break;
2011
2012 case 0x3c: /* JALX: bits 111100 */
2013 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
2014 break;
2015 }
2016 break;
2017
2018 /* 16-bit instructions. */
2019 case MIPS_INSN16_SIZE:
2020 switch (micromips_op (insn))
2021 {
2022 case 0x11: /* POOL16C: bits 010001 */
2023 if ((b5s5_op (insn) & 0x1c) == 0xc)
2024 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
2025 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn));
2026 else if (b5s5_op (insn) == 0x18)
2027 /* JRADDIUSP: bits 010001 11000 */
2028 pc = regcache_raw_get_signed (regcache, MIPS_RA_REGNUM);
2029 break;
2030
2031 case 0x23: /* BEQZ16: bits 100011 */
2032 {
2033 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2034
2035 if (regcache_raw_get_signed (regcache, rs) == 0)
2036 pc += micromips_relative_offset7 (insn);
2037 else
2038 pc += micromips_pc_insn_size (gdbarch, pc);
2039 }
2040 break;
2041
2042 case 0x2b: /* BNEZ16: bits 101011 */
2043 {
2044 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2045
2046 if (regcache_raw_get_signed (regcache, rs) != 0)
2047 pc += micromips_relative_offset7 (insn);
2048 else
2049 pc += micromips_pc_insn_size (gdbarch, pc);
2050 }
2051 break;
2052
2053 case 0x33: /* B16: bits 110011 */
2054 pc += micromips_relative_offset10 (insn);
2055 break;
2056 }
2057 break;
2058 }
2059
2060 return pc;
2061 }
2062
2063 /* Decoding the next place to set a breakpoint is irregular for the
2064 mips 16 variant, but fortunately, there fewer instructions. We have
2065 to cope ith extensions for 16 bit instructions and a pair of actual
2066 32 bit instructions. We dont want to set a single step instruction
2067 on the extend instruction either. */
2068
2069 /* Lots of mips16 instruction formats */
2070 /* Predicting jumps requires itype,ritype,i8type
2071 and their extensions extItype,extritype,extI8type. */
2072 enum mips16_inst_fmts
2073 {
2074 itype, /* 0 immediate 5,10 */
2075 ritype, /* 1 5,3,8 */
2076 rrtype, /* 2 5,3,3,5 */
2077 rritype, /* 3 5,3,3,5 */
2078 rrrtype, /* 4 5,3,3,3,2 */
2079 rriatype, /* 5 5,3,3,1,4 */
2080 shifttype, /* 6 5,3,3,3,2 */
2081 i8type, /* 7 5,3,8 */
2082 i8movtype, /* 8 5,3,3,5 */
2083 i8mov32rtype, /* 9 5,3,5,3 */
2084 i64type, /* 10 5,3,8 */
2085 ri64type, /* 11 5,3,3,5 */
2086 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
2087 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2088 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
2089 extRRItype, /* 15 5,5,5,5,3,3,5 */
2090 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2091 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2092 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2093 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2094 extRi64type, /* 20 5,6,5,5,3,3,5 */
2095 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2096 };
2097 /* I am heaping all the fields of the formats into one structure and
2098 then, only the fields which are involved in instruction extension. */
2099 struct upk_mips16
2100 {
2101 CORE_ADDR offset;
2102 unsigned int regx; /* Function in i8 type. */
2103 unsigned int regy;
2104 };
2105
2106
2107 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
2108 for the bits which make up the immediate extension. */
2109
2110 static CORE_ADDR
2111 extended_offset (unsigned int extension)
2112 {
2113 CORE_ADDR value;
2114
2115 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
2116 value = value << 6;
2117 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
2118 value = value << 5;
2119 value |= extension & 0x1f; /* Extract 4:0. */
2120
2121 return value;
2122 }
2123
2124 /* Only call this function if you know that this is an extendable
2125 instruction. It won't malfunction, but why make excess remote memory
2126 references? If the immediate operands get sign extended or something,
2127 do it after the extension is performed. */
2128 /* FIXME: Every one of these cases needs to worry about sign extension
2129 when the offset is to be used in relative addressing. */
2130
2131 static unsigned int
2132 fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
2133 {
2134 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2135 gdb_byte buf[8];
2136
2137 pc = unmake_compact_addr (pc); /* Clear the low order bit. */
2138 target_read_memory (pc, buf, 2);
2139 return extract_unsigned_integer (buf, 2, byte_order);
2140 }
2141
2142 static void
2143 unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
2144 unsigned int extension,
2145 unsigned int inst,
2146 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
2147 {
2148 CORE_ADDR offset;
2149 int regx;
2150 int regy;
2151 switch (insn_format)
2152 {
2153 case itype:
2154 {
2155 CORE_ADDR value;
2156 if (extension)
2157 {
2158 value = extended_offset ((extension << 16) | inst);
2159 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2160 }
2161 else
2162 {
2163 value = inst & 0x7ff;
2164 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
2165 }
2166 offset = value;
2167 regx = -1;
2168 regy = -1;
2169 }
2170 break;
2171 case ritype:
2172 case i8type:
2173 { /* A register identifier and an offset. */
2174 /* Most of the fields are the same as I type but the
2175 immediate value is of a different length. */
2176 CORE_ADDR value;
2177 if (extension)
2178 {
2179 value = extended_offset ((extension << 16) | inst);
2180 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2181 }
2182 else
2183 {
2184 value = inst & 0xff; /* 8 bits */
2185 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
2186 }
2187 offset = value;
2188 regx = (inst >> 8) & 0x07; /* i8 funct */
2189 regy = -1;
2190 break;
2191 }
2192 case jalxtype:
2193 {
2194 unsigned long value;
2195 unsigned int nexthalf;
2196 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
2197 value = value << 16;
2198 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2199 /* Low bit still set. */
2200 value |= nexthalf;
2201 offset = value;
2202 regx = -1;
2203 regy = -1;
2204 break;
2205 }
2206 default:
2207 internal_error (__FILE__, __LINE__, _("bad switch"));
2208 }
2209 upk->offset = offset;
2210 upk->regx = regx;
2211 upk->regy = regy;
2212 }
2213
2214
2215 /* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2216 and having a signed 16-bit OFFSET. */
2217
2218 static CORE_ADDR
2219 add_offset_16 (CORE_ADDR pc, int offset)
2220 {
2221 return pc + (offset << 1) + 2;
2222 }
2223
2224 static CORE_ADDR
2225 extended_mips16_next_pc (regcache *regcache, CORE_ADDR pc,
2226 unsigned int extension, unsigned int insn)
2227 {
2228 struct gdbarch *gdbarch = regcache->arch ();
2229 int op = (insn >> 11);
2230 switch (op)
2231 {
2232 case 2: /* Branch */
2233 {
2234 struct upk_mips16 upk;
2235 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
2236 pc = add_offset_16 (pc, upk.offset);
2237 break;
2238 }
2239 case 3: /* JAL , JALX - Watch out, these are 32 bit
2240 instructions. */
2241 {
2242 struct upk_mips16 upk;
2243 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
2244 pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
2245 if ((insn >> 10) & 0x01) /* Exchange mode */
2246 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
2247 else
2248 pc |= 0x01;
2249 break;
2250 }
2251 case 4: /* beqz */
2252 {
2253 struct upk_mips16 upk;
2254 int reg;
2255 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2256 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
2257 if (reg == 0)
2258 pc = add_offset_16 (pc, upk.offset);
2259 else
2260 pc += 2;
2261 break;
2262 }
2263 case 5: /* bnez */
2264 {
2265 struct upk_mips16 upk;
2266 int reg;
2267 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2268 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
2269 if (reg != 0)
2270 pc = add_offset_16 (pc, upk.offset);
2271 else
2272 pc += 2;
2273 break;
2274 }
2275 case 12: /* I8 Formats btez btnez */
2276 {
2277 struct upk_mips16 upk;
2278 int reg;
2279 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
2280 /* upk.regx contains the opcode */
2281 /* Test register is 24 */
2282 reg = regcache_raw_get_signed (regcache, 24);
2283 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2284 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
2285 pc = add_offset_16 (pc, upk.offset);
2286 else
2287 pc += 2;
2288 break;
2289 }
2290 case 29: /* RR Formats JR, JALR, JALR-RA */
2291 {
2292 struct upk_mips16 upk;
2293 /* upk.fmt = rrtype; */
2294 op = insn & 0x1f;
2295 if (op == 0)
2296 {
2297 int reg;
2298 upk.regx = (insn >> 8) & 0x07;
2299 upk.regy = (insn >> 5) & 0x07;
2300 if ((upk.regy & 1) == 0)
2301 reg = mips_reg3_to_reg[upk.regx];
2302 else
2303 reg = 31; /* Function return instruction. */
2304 pc = regcache_raw_get_signed (regcache, reg);
2305 }
2306 else
2307 pc += 2;
2308 break;
2309 }
2310 case 30:
2311 /* This is an instruction extension. Fetch the real instruction
2312 (which follows the extension) and decode things based on
2313 that. */
2314 {
2315 pc += 2;
2316 pc = extended_mips16_next_pc (regcache, pc, insn,
2317 fetch_mips_16 (gdbarch, pc));
2318 break;
2319 }
2320 default:
2321 {
2322 pc += 2;
2323 break;
2324 }
2325 }
2326 return pc;
2327 }
2328
2329 static CORE_ADDR
2330 mips16_next_pc (struct regcache *regcache, CORE_ADDR pc)
2331 {
2332 struct gdbarch *gdbarch = regcache->arch ();
2333 unsigned int insn = fetch_mips_16 (gdbarch, pc);
2334 return extended_mips16_next_pc (regcache, pc, 0, insn);
2335 }
2336
2337 /* The mips_next_pc function supports single_step when the remote
2338 target monitor or stub is not developed enough to do a single_step.
2339 It works by decoding the current instruction and predicting where a
2340 branch will go. This isn't hard because all the data is available.
2341 The MIPS32, MIPS16 and microMIPS variants are quite different. */
2342 static CORE_ADDR
2343 mips_next_pc (struct regcache *regcache, CORE_ADDR pc)
2344 {
2345 struct gdbarch *gdbarch = regcache->arch ();
2346
2347 if (mips_pc_is_mips16 (gdbarch, pc))
2348 return mips16_next_pc (regcache, pc);
2349 else if (mips_pc_is_micromips (gdbarch, pc))
2350 return micromips_next_pc (regcache, pc);
2351 else
2352 return mips32_next_pc (regcache, pc);
2353 }
2354
2355 /* Return non-zero if the MIPS16 instruction INSN is a compact branch
2356 or jump. */
2357
2358 static int
2359 mips16_instruction_is_compact_branch (unsigned short insn)
2360 {
2361 switch (insn & 0xf800)
2362 {
2363 case 0xe800:
2364 return (insn & 0x009f) == 0x80; /* JALRC/JRC */
2365 case 0x6000:
2366 return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
2367 case 0x2800: /* BNEZ */
2368 case 0x2000: /* BEQZ */
2369 case 0x1000: /* B */
2370 return 1;
2371 default:
2372 return 0;
2373 }
2374 }
2375
2376 /* Return non-zero if the microMIPS instruction INSN is a compact branch
2377 or jump. */
2378
2379 static int
2380 micromips_instruction_is_compact_branch (unsigned short insn)
2381 {
2382 switch (micromips_op (insn))
2383 {
2384 case 0x11: /* POOL16C: bits 010001 */
2385 return (b5s5_op (insn) == 0x18
2386 /* JRADDIUSP: bits 010001 11000 */
2387 || b5s5_op (insn) == 0xd);
2388 /* JRC: bits 010011 01101 */
2389 case 0x10: /* POOL32I: bits 010000 */
2390 return (b5s5_op (insn) & 0x1d) == 0x5;
2391 /* BEQZC/BNEZC: bits 010000 001x1 */
2392 default:
2393 return 0;
2394 }
2395 }
2396
2397 struct mips_frame_cache
2398 {
2399 CORE_ADDR base;
2400 struct trad_frame_saved_reg *saved_regs;
2401 };
2402
2403 /* Set a register's saved stack address in temp_saved_regs. If an
2404 address has already been set for this register, do nothing; this
2405 way we will only recognize the first save of a given register in a
2406 function prologue.
2407
2408 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2409 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2410 Strictly speaking, only the second range is used as it is only second
2411 range (the ABI instead of ISA registers) that comes into play when finding
2412 saved registers in a frame. */
2413
2414 static void
2415 set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2416 int regnum, CORE_ADDR offset)
2417 {
2418 if (this_cache != NULL
2419 && this_cache->saved_regs[regnum].addr == -1)
2420 {
2421 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2422 = offset;
2423 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2424 = offset;
2425 }
2426 }
2427
2428
2429 /* Fetch the immediate value from a MIPS16 instruction.
2430 If the previous instruction was an EXTEND, use it to extend
2431 the upper bits of the immediate value. This is a helper function
2432 for mips16_scan_prologue. */
2433
2434 static int
2435 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2436 unsigned short inst, /* current instruction */
2437 int nbits, /* number of bits in imm field */
2438 int scale, /* scale factor to be applied to imm */
2439 int is_signed) /* is the imm field signed? */
2440 {
2441 int offset;
2442
2443 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2444 {
2445 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2446 if (offset & 0x8000) /* check for negative extend */
2447 offset = 0 - (0x10000 - (offset & 0xffff));
2448 return offset | (inst & 0x1f);
2449 }
2450 else
2451 {
2452 int max_imm = 1 << nbits;
2453 int mask = max_imm - 1;
2454 int sign_bit = max_imm >> 1;
2455
2456 offset = inst & mask;
2457 if (is_signed && (offset & sign_bit))
2458 offset = 0 - (max_imm - offset);
2459 return offset * scale;
2460 }
2461 }
2462
2463
2464 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2465 the associated FRAME_CACHE if not null.
2466 Return the address of the first instruction past the prologue. */
2467
2468 static CORE_ADDR
2469 mips16_scan_prologue (struct gdbarch *gdbarch,
2470 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2471 struct frame_info *this_frame,
2472 struct mips_frame_cache *this_cache)
2473 {
2474 int prev_non_prologue_insn = 0;
2475 int this_non_prologue_insn;
2476 int non_prologue_insns = 0;
2477 CORE_ADDR prev_pc;
2478 CORE_ADDR cur_pc;
2479 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
2480 CORE_ADDR sp;
2481 long frame_offset = 0; /* Size of stack frame. */
2482 long frame_adjust = 0; /* Offset of FP from SP. */
2483 int frame_reg = MIPS_SP_REGNUM;
2484 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
2485 unsigned inst = 0; /* current instruction */
2486 unsigned entry_inst = 0; /* the entry instruction */
2487 unsigned save_inst = 0; /* the save instruction */
2488 int prev_delay_slot = 0;
2489 int in_delay_slot;
2490 int reg, offset;
2491
2492 int extend_bytes = 0;
2493 int prev_extend_bytes = 0;
2494 CORE_ADDR end_prologue_addr;
2495
2496 /* Can be called when there's no process, and hence when there's no
2497 THIS_FRAME. */
2498 if (this_frame != NULL)
2499 sp = get_frame_register_signed (this_frame,
2500 gdbarch_num_regs (gdbarch)
2501 + MIPS_SP_REGNUM);
2502 else
2503 sp = 0;
2504
2505 if (limit_pc > start_pc + 200)
2506 limit_pc = start_pc + 200;
2507 prev_pc = start_pc;
2508
2509 /* Permit at most one non-prologue non-control-transfer instruction
2510 in the middle which may have been reordered by the compiler for
2511 optimisation. */
2512 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
2513 {
2514 this_non_prologue_insn = 0;
2515 in_delay_slot = 0;
2516
2517 /* Save the previous instruction. If it's an EXTEND, we'll extract
2518 the immediate offset extension from it in mips16_get_imm. */
2519 prev_inst = inst;
2520
2521 /* Fetch and decode the instruction. */
2522 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2523 cur_pc, NULL);
2524
2525 /* Normally we ignore extend instructions. However, if it is
2526 not followed by a valid prologue instruction, then this
2527 instruction is not part of the prologue either. We must
2528 remember in this case to adjust the end_prologue_addr back
2529 over the extend. */
2530 if ((inst & 0xf800) == 0xf000) /* extend */
2531 {
2532 extend_bytes = MIPS_INSN16_SIZE;
2533 continue;
2534 }
2535
2536 prev_extend_bytes = extend_bytes;
2537 extend_bytes = 0;
2538
2539 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2540 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2541 {
2542 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2543 if (offset < 0) /* Negative stack adjustment? */
2544 frame_offset -= offset;
2545 else
2546 /* Exit loop if a positive stack adjustment is found, which
2547 usually means that the stack cleanup code in the function
2548 epilogue is reached. */
2549 break;
2550 }
2551 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2552 {
2553 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2554 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
2555 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2556 }
2557 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2558 {
2559 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2560 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2561 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2562 }
2563 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2564 {
2565 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2566 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2567 }
2568 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2569 {
2570 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2571 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2572 }
2573 else if (inst == 0x673d) /* move $s1, $sp */
2574 {
2575 frame_addr = sp;
2576 frame_reg = 17;
2577 }
2578 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2579 {
2580 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2581 frame_addr = sp + offset;
2582 frame_reg = 17;
2583 frame_adjust = offset;
2584 }
2585 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2586 {
2587 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2588 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2589 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2590 }
2591 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2592 {
2593 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2594 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2595 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2596 }
2597 else if ((inst & 0xf81f) == 0xe809
2598 && (inst & 0x700) != 0x700) /* entry */
2599 entry_inst = inst; /* Save for later processing. */
2600 else if ((inst & 0xff80) == 0x6480) /* save */
2601 {
2602 save_inst = inst; /* Save for later processing. */
2603 if (prev_extend_bytes) /* extend */
2604 save_inst |= prev_inst << 16;
2605 }
2606 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2607 {
2608 /* This instruction is part of the prologue, but we don't
2609 need to do anything special to handle it. */
2610 }
2611 else if (mips16_instruction_has_delay_slot (inst, 0))
2612 /* JAL/JALR/JALX/JR */
2613 {
2614 /* The instruction in the delay slot can be a part
2615 of the prologue, so move forward once more. */
2616 in_delay_slot = 1;
2617 if (mips16_instruction_has_delay_slot (inst, 1))
2618 /* JAL/JALX */
2619 {
2620 prev_extend_bytes = MIPS_INSN16_SIZE;
2621 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2622 }
2623 }
2624 else
2625 {
2626 this_non_prologue_insn = 1;
2627 }
2628
2629 non_prologue_insns += this_non_prologue_insn;
2630
2631 /* A jump or branch, or enough non-prologue insns seen? If so,
2632 then we must have reached the end of the prologue by now. */
2633 if (prev_delay_slot || non_prologue_insns > 1
2634 || mips16_instruction_is_compact_branch (inst))
2635 break;
2636
2637 prev_non_prologue_insn = this_non_prologue_insn;
2638 prev_delay_slot = in_delay_slot;
2639 prev_pc = cur_pc - prev_extend_bytes;
2640 }
2641
2642 /* The entry instruction is typically the first instruction in a function,
2643 and it stores registers at offsets relative to the value of the old SP
2644 (before the prologue). But the value of the sp parameter to this
2645 function is the new SP (after the prologue has been executed). So we
2646 can't calculate those offsets until we've seen the entire prologue,
2647 and can calculate what the old SP must have been. */
2648 if (entry_inst != 0)
2649 {
2650 int areg_count = (entry_inst >> 8) & 7;
2651 int sreg_count = (entry_inst >> 6) & 3;
2652
2653 /* The entry instruction always subtracts 32 from the SP. */
2654 frame_offset += 32;
2655
2656 /* Now we can calculate what the SP must have been at the
2657 start of the function prologue. */
2658 sp += frame_offset;
2659
2660 /* Check if a0-a3 were saved in the caller's argument save area. */
2661 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2662 {
2663 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2664 offset += mips_abi_regsize (gdbarch);
2665 }
2666
2667 /* Check if the ra register was pushed on the stack. */
2668 offset = -4;
2669 if (entry_inst & 0x20)
2670 {
2671 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2672 offset -= mips_abi_regsize (gdbarch);
2673 }
2674
2675 /* Check if the s0 and s1 registers were pushed on the stack. */
2676 for (reg = 16; reg < sreg_count + 16; reg++)
2677 {
2678 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2679 offset -= mips_abi_regsize (gdbarch);
2680 }
2681 }
2682
2683 /* The SAVE instruction is similar to ENTRY, except that defined by the
2684 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2685 size of the frame is specified as an immediate field of instruction
2686 and an extended variation exists which lets additional registers and
2687 frame space to be specified. The instruction always treats registers
2688 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2689 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2690 {
2691 static int args_table[16] = {
2692 0, 0, 0, 0, 1, 1, 1, 1,
2693 2, 2, 2, 0, 3, 3, 4, -1,
2694 };
2695 static int astatic_table[16] = {
2696 0, 1, 2, 3, 0, 1, 2, 3,
2697 0, 1, 2, 4, 0, 1, 0, -1,
2698 };
2699 int aregs = (save_inst >> 16) & 0xf;
2700 int xsregs = (save_inst >> 24) & 0x7;
2701 int args = args_table[aregs];
2702 int astatic = astatic_table[aregs];
2703 long frame_size;
2704
2705 if (args < 0)
2706 {
2707 warning (_("Invalid number of argument registers encoded in SAVE."));
2708 args = 0;
2709 }
2710 if (astatic < 0)
2711 {
2712 warning (_("Invalid number of static registers encoded in SAVE."));
2713 astatic = 0;
2714 }
2715
2716 /* For standard SAVE the frame size of 0 means 128. */
2717 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2718 if (frame_size == 0 && (save_inst >> 16) == 0)
2719 frame_size = 16;
2720 frame_size *= 8;
2721 frame_offset += frame_size;
2722
2723 /* Now we can calculate what the SP must have been at the
2724 start of the function prologue. */
2725 sp += frame_offset;
2726
2727 /* Check if A0-A3 were saved in the caller's argument save area. */
2728 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2729 {
2730 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2731 offset += mips_abi_regsize (gdbarch);
2732 }
2733
2734 offset = -4;
2735
2736 /* Check if the RA register was pushed on the stack. */
2737 if (save_inst & 0x40)
2738 {
2739 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2740 offset -= mips_abi_regsize (gdbarch);
2741 }
2742
2743 /* Check if the S8 register was pushed on the stack. */
2744 if (xsregs > 6)
2745 {
2746 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2747 offset -= mips_abi_regsize (gdbarch);
2748 xsregs--;
2749 }
2750 /* Check if S2-S7 were pushed on the stack. */
2751 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2752 {
2753 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2754 offset -= mips_abi_regsize (gdbarch);
2755 }
2756
2757 /* Check if the S1 register was pushed on the stack. */
2758 if (save_inst & 0x10)
2759 {
2760 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2761 offset -= mips_abi_regsize (gdbarch);
2762 }
2763 /* Check if the S0 register was pushed on the stack. */
2764 if (save_inst & 0x20)
2765 {
2766 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2767 offset -= mips_abi_regsize (gdbarch);
2768 }
2769
2770 /* Check if A0-A3 were pushed on the stack. */
2771 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2772 {
2773 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2774 offset -= mips_abi_regsize (gdbarch);
2775 }
2776 }
2777
2778 if (this_cache != NULL)
2779 {
2780 this_cache->base =
2781 (get_frame_register_signed (this_frame,
2782 gdbarch_num_regs (gdbarch) + frame_reg)
2783 + frame_offset - frame_adjust);
2784 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2785 be able to get rid of the assignment below, evetually. But it's
2786 still needed for now. */
2787 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2788 + mips_regnum (gdbarch)->pc]
2789 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2790 }
2791
2792 /* Set end_prologue_addr to the address of the instruction immediately
2793 after the last one we scanned. Unless the last one looked like a
2794 non-prologue instruction (and we looked ahead), in which case use
2795 its address instead. */
2796 end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
2797 ? prev_pc : cur_pc - prev_extend_bytes);
2798
2799 return end_prologue_addr;
2800 }
2801
2802 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2803 Procedures that use the 32-bit instruction set are handled by the
2804 mips_insn32 unwinder. */
2805
2806 static struct mips_frame_cache *
2807 mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2808 {
2809 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2810 struct mips_frame_cache *cache;
2811
2812 if ((*this_cache) != NULL)
2813 return (struct mips_frame_cache *) (*this_cache);
2814 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2815 (*this_cache) = cache;
2816 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2817
2818 /* Analyze the function prologue. */
2819 {
2820 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2821 CORE_ADDR start_addr;
2822
2823 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2824 if (start_addr == 0)
2825 start_addr = heuristic_proc_start (gdbarch, pc);
2826 /* We can't analyze the prologue if we couldn't find the begining
2827 of the function. */
2828 if (start_addr == 0)
2829 return cache;
2830
2831 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame,
2832 (struct mips_frame_cache *) *this_cache);
2833 }
2834
2835 /* gdbarch_sp_regnum contains the value and not the address. */
2836 trad_frame_set_value (cache->saved_regs,
2837 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2838 cache->base);
2839
2840 return (struct mips_frame_cache *) (*this_cache);
2841 }
2842
2843 static void
2844 mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2845 struct frame_id *this_id)
2846 {
2847 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2848 this_cache);
2849 /* This marks the outermost frame. */
2850 if (info->base == 0)
2851 return;
2852 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2853 }
2854
2855 static struct value *
2856 mips_insn16_frame_prev_register (struct frame_info *this_frame,
2857 void **this_cache, int regnum)
2858 {
2859 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2860 this_cache);
2861 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2862 }
2863
2864 static int
2865 mips_insn16_frame_sniffer (const struct frame_unwind *self,
2866 struct frame_info *this_frame, void **this_cache)
2867 {
2868 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2869 CORE_ADDR pc = get_frame_pc (this_frame);
2870 if (mips_pc_is_mips16 (gdbarch, pc))
2871 return 1;
2872 return 0;
2873 }
2874
2875 static const struct frame_unwind mips_insn16_frame_unwind =
2876 {
2877 NORMAL_FRAME,
2878 default_frame_unwind_stop_reason,
2879 mips_insn16_frame_this_id,
2880 mips_insn16_frame_prev_register,
2881 NULL,
2882 mips_insn16_frame_sniffer
2883 };
2884
2885 static CORE_ADDR
2886 mips_insn16_frame_base_address (struct frame_info *this_frame,
2887 void **this_cache)
2888 {
2889 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2890 this_cache);
2891 return info->base;
2892 }
2893
2894 static const struct frame_base mips_insn16_frame_base =
2895 {
2896 &mips_insn16_frame_unwind,
2897 mips_insn16_frame_base_address,
2898 mips_insn16_frame_base_address,
2899 mips_insn16_frame_base_address
2900 };
2901
2902 static const struct frame_base *
2903 mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2904 {
2905 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2906 CORE_ADDR pc = get_frame_pc (this_frame);
2907 if (mips_pc_is_mips16 (gdbarch, pc))
2908 return &mips_insn16_frame_base;
2909 else
2910 return NULL;
2911 }
2912
2913 /* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2914 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2915 interpreted directly, and then multiplied by 4. */
2916
2917 static int
2918 micromips_decode_imm9 (int imm)
2919 {
2920 imm = (imm ^ 0x100) - 0x100;
2921 if (imm > -3 && imm < 2)
2922 imm ^= 0x100;
2923 return imm << 2;
2924 }
2925
2926 /* Analyze the function prologue from START_PC to LIMIT_PC. Return
2927 the address of the first instruction past the prologue. */
2928
2929 static CORE_ADDR
2930 micromips_scan_prologue (struct gdbarch *gdbarch,
2931 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2932 struct frame_info *this_frame,
2933 struct mips_frame_cache *this_cache)
2934 {
2935 CORE_ADDR end_prologue_addr;
2936 int prev_non_prologue_insn = 0;
2937 int frame_reg = MIPS_SP_REGNUM;
2938 int this_non_prologue_insn;
2939 int non_prologue_insns = 0;
2940 long frame_offset = 0; /* Size of stack frame. */
2941 long frame_adjust = 0; /* Offset of FP from SP. */
2942 int prev_delay_slot = 0;
2943 int in_delay_slot;
2944 CORE_ADDR prev_pc;
2945 CORE_ADDR cur_pc;
2946 ULONGEST insn; /* current instruction */
2947 CORE_ADDR sp;
2948 long offset;
2949 long sp_adj;
2950 long v1_off = 0; /* The assumption is LUI will replace it. */
2951 int reglist;
2952 int breg;
2953 int dreg;
2954 int sreg;
2955 int treg;
2956 int loc;
2957 int op;
2958 int s;
2959 int i;
2960
2961 /* Can be called when there's no process, and hence when there's no
2962 THIS_FRAME. */
2963 if (this_frame != NULL)
2964 sp = get_frame_register_signed (this_frame,
2965 gdbarch_num_regs (gdbarch)
2966 + MIPS_SP_REGNUM);
2967 else
2968 sp = 0;
2969
2970 if (limit_pc > start_pc + 200)
2971 limit_pc = start_pc + 200;
2972 prev_pc = start_pc;
2973
2974 /* Permit at most one non-prologue non-control-transfer instruction
2975 in the middle which may have been reordered by the compiler for
2976 optimisation. */
2977 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2978 {
2979 this_non_prologue_insn = 0;
2980 in_delay_slot = 0;
2981 sp_adj = 0;
2982 loc = 0;
2983 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2984 loc += MIPS_INSN16_SIZE;
2985 switch (mips_insn_size (ISA_MICROMIPS, insn))
2986 {
2987 /* 32-bit instructions. */
2988 case 2 * MIPS_INSN16_SIZE:
2989 insn <<= 16;
2990 insn |= mips_fetch_instruction (gdbarch,
2991 ISA_MICROMIPS, cur_pc + loc, NULL);
2992 loc += MIPS_INSN16_SIZE;
2993 switch (micromips_op (insn >> 16))
2994 {
2995 /* Record $sp/$fp adjustment. */
2996 /* Discard (D)ADDU $gp,$jp used for PIC code. */
2997 case 0x0: /* POOL32A: bits 000000 */
2998 case 0x16: /* POOL32S: bits 010110 */
2999 op = b0s11_op (insn);
3000 sreg = b0s5_reg (insn >> 16);
3001 treg = b5s5_reg (insn >> 16);
3002 dreg = b11s5_reg (insn);
3003 if (op == 0x1d0
3004 /* SUBU: bits 000000 00111010000 */
3005 /* DSUBU: bits 010110 00111010000 */
3006 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
3007 && treg == 3)
3008 /* (D)SUBU $sp, $v1 */
3009 sp_adj = v1_off;
3010 else if (op != 0x150
3011 /* ADDU: bits 000000 00101010000 */
3012 /* DADDU: bits 010110 00101010000 */
3013 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
3014 this_non_prologue_insn = 1;
3015 break;
3016
3017 case 0x8: /* POOL32B: bits 001000 */
3018 op = b12s4_op (insn);
3019 breg = b0s5_reg (insn >> 16);
3020 reglist = sreg = b5s5_reg (insn >> 16);
3021 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
3022 if ((op == 0x9 || op == 0xc)
3023 /* SWP: bits 001000 1001 */
3024 /* SDP: bits 001000 1100 */
3025 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
3026 /* S[DW]P reg,offset($sp) */
3027 {
3028 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
3029 set_reg_offset (gdbarch, this_cache,
3030 sreg, sp + offset);
3031 set_reg_offset (gdbarch, this_cache,
3032 sreg + 1, sp + offset + s);
3033 }
3034 else if ((op == 0xd || op == 0xf)
3035 /* SWM: bits 001000 1101 */
3036 /* SDM: bits 001000 1111 */
3037 && breg == MIPS_SP_REGNUM
3038 /* SWM reglist,offset($sp) */
3039 && ((reglist >= 1 && reglist <= 9)
3040 || (reglist >= 16 && reglist <= 25)))
3041 {
3042 int sreglist = std::min(reglist & 0xf, 8);
3043
3044 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
3045 for (i = 0; i < sreglist; i++)
3046 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
3047 if ((reglist & 0xf) > 8)
3048 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
3049 if ((reglist & 0x10) == 0x10)
3050 set_reg_offset (gdbarch, this_cache,
3051 MIPS_RA_REGNUM, sp + s * i++);
3052 }
3053 else
3054 this_non_prologue_insn = 1;
3055 break;
3056
3057 /* Record $sp/$fp adjustment. */
3058 /* Discard (D)ADDIU $gp used for PIC code. */
3059 case 0xc: /* ADDIU: bits 001100 */
3060 case 0x17: /* DADDIU: bits 010111 */
3061 sreg = b0s5_reg (insn >> 16);
3062 dreg = b5s5_reg (insn >> 16);
3063 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3064 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
3065 /* (D)ADDIU $sp, imm */
3066 sp_adj = offset;
3067 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
3068 /* (D)ADDIU $fp, $sp, imm */
3069 {
3070 frame_adjust = offset;
3071 frame_reg = 30;
3072 }
3073 else if (sreg != 28 || dreg != 28)
3074 /* (D)ADDIU $gp, imm */
3075 this_non_prologue_insn = 1;
3076 break;
3077
3078 /* LUI $v1 is used for larger $sp adjustments. */
3079 /* Discard LUI $gp used for PIC code. */
3080 case 0x10: /* POOL32I: bits 010000 */
3081 if (b5s5_op (insn >> 16) == 0xd
3082 /* LUI: bits 010000 001101 */
3083 && b0s5_reg (insn >> 16) == 3)
3084 /* LUI $v1, imm */
3085 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
3086 else if (b5s5_op (insn >> 16) != 0xd
3087 /* LUI: bits 010000 001101 */
3088 || b0s5_reg (insn >> 16) != 28)
3089 /* LUI $gp, imm */
3090 this_non_prologue_insn = 1;
3091 break;
3092
3093 /* ORI $v1 is used for larger $sp adjustments. */
3094 case 0x14: /* ORI: bits 010100 */
3095 sreg = b0s5_reg (insn >> 16);
3096 dreg = b5s5_reg (insn >> 16);
3097 if (sreg == 3 && dreg == 3)
3098 /* ORI $v1, imm */
3099 v1_off |= b0s16_imm (insn);
3100 else
3101 this_non_prologue_insn = 1;
3102 break;
3103
3104 case 0x26: /* SWC1: bits 100110 */
3105 case 0x2e: /* SDC1: bits 101110 */
3106 breg = b0s5_reg (insn >> 16);
3107 if (breg != MIPS_SP_REGNUM)
3108 /* S[DW]C1 reg,offset($sp) */
3109 this_non_prologue_insn = 1;
3110 break;
3111
3112 case 0x36: /* SD: bits 110110 */
3113 case 0x3e: /* SW: bits 111110 */
3114 breg = b0s5_reg (insn >> 16);
3115 sreg = b5s5_reg (insn >> 16);
3116 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3117 if (breg == MIPS_SP_REGNUM)
3118 /* S[DW] reg,offset($sp) */
3119 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3120 else
3121 this_non_prologue_insn = 1;
3122 break;
3123
3124 default:
3125 /* The instruction in the delay slot can be a part
3126 of the prologue, so move forward once more. */
3127 if (micromips_instruction_has_delay_slot (insn, 0))
3128 in_delay_slot = 1;
3129 else
3130 this_non_prologue_insn = 1;
3131 break;
3132 }
3133 insn >>= 16;
3134 break;
3135
3136 /* 16-bit instructions. */
3137 case MIPS_INSN16_SIZE:
3138 switch (micromips_op (insn))
3139 {
3140 case 0x3: /* MOVE: bits 000011 */
3141 sreg = b0s5_reg (insn);
3142 dreg = b5s5_reg (insn);
3143 if (sreg == MIPS_SP_REGNUM && dreg == 30)
3144 /* MOVE $fp, $sp */
3145 frame_reg = 30;
3146 else if ((sreg & 0x1c) != 0x4)
3147 /* MOVE reg, $a0-$a3 */
3148 this_non_prologue_insn = 1;
3149 break;
3150
3151 case 0x11: /* POOL16C: bits 010001 */
3152 if (b6s4_op (insn) == 0x5)
3153 /* SWM: bits 010001 0101 */
3154 {
3155 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
3156 reglist = b4s2_regl (insn);
3157 for (i = 0; i <= reglist; i++)
3158 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
3159 set_reg_offset (gdbarch, this_cache,
3160 MIPS_RA_REGNUM, sp + 4 * i++);
3161 }
3162 else
3163 this_non_prologue_insn = 1;
3164 break;
3165
3166 case 0x13: /* POOL16D: bits 010011 */
3167 if ((insn & 0x1) == 0x1)
3168 /* ADDIUSP: bits 010011 1 */
3169 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3170 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3171 /* ADDIUS5: bits 010011 0 */
3172 /* ADDIUS5 $sp, imm */
3173 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3174 else
3175 this_non_prologue_insn = 1;
3176 break;
3177
3178 case 0x32: /* SWSP: bits 110010 */
3179 offset = b0s5_imm (insn) << 2;
3180 sreg = b5s5_reg (insn);
3181 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3182 break;
3183
3184 default:
3185 /* The instruction in the delay slot can be a part
3186 of the prologue, so move forward once more. */
3187 if (micromips_instruction_has_delay_slot (insn << 16, 0))
3188 in_delay_slot = 1;
3189 else
3190 this_non_prologue_insn = 1;
3191 break;
3192 }
3193 break;
3194 }
3195 if (sp_adj < 0)
3196 frame_offset -= sp_adj;
3197
3198 non_prologue_insns += this_non_prologue_insn;
3199
3200 /* A jump or branch, enough non-prologue insns seen or positive
3201 stack adjustment? If so, then we must have reached the end
3202 of the prologue by now. */
3203 if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
3204 || micromips_instruction_is_compact_branch (insn))
3205 break;
3206
3207 prev_non_prologue_insn = this_non_prologue_insn;
3208 prev_delay_slot = in_delay_slot;
3209 prev_pc = cur_pc;
3210 }
3211
3212 if (this_cache != NULL)
3213 {
3214 this_cache->base =
3215 (get_frame_register_signed (this_frame,
3216 gdbarch_num_regs (gdbarch) + frame_reg)
3217 + frame_offset - frame_adjust);
3218 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
3219 be able to get rid of the assignment below, evetually. But it's
3220 still needed for now. */
3221 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3222 + mips_regnum (gdbarch)->pc]
3223 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
3224 }
3225
3226 /* Set end_prologue_addr to the address of the instruction immediately
3227 after the last one we scanned. Unless the last one looked like a
3228 non-prologue instruction (and we looked ahead), in which case use
3229 its address instead. */
3230 end_prologue_addr
3231 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3232
3233 return end_prologue_addr;
3234 }
3235
3236 /* Heuristic unwinder for procedures using microMIPS instructions.
3237 Procedures that use the 32-bit instruction set are handled by the
3238 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
3239
3240 static struct mips_frame_cache *
3241 mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
3242 {
3243 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3244 struct mips_frame_cache *cache;
3245
3246 if ((*this_cache) != NULL)
3247 return (struct mips_frame_cache *) (*this_cache);
3248
3249 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3250 (*this_cache) = cache;
3251 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3252
3253 /* Analyze the function prologue. */
3254 {
3255 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3256 CORE_ADDR start_addr;
3257
3258 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3259 if (start_addr == 0)
3260 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
3261 /* We can't analyze the prologue if we couldn't find the begining
3262 of the function. */
3263 if (start_addr == 0)
3264 return cache;
3265
3266 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame,
3267 (struct mips_frame_cache *) *this_cache);
3268 }
3269
3270 /* gdbarch_sp_regnum contains the value and not the address. */
3271 trad_frame_set_value (cache->saved_regs,
3272 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3273 cache->base);
3274
3275 return (struct mips_frame_cache *) (*this_cache);
3276 }
3277
3278 static void
3279 mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3280 struct frame_id *this_id)
3281 {
3282 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3283 this_cache);
3284 /* This marks the outermost frame. */
3285 if (info->base == 0)
3286 return;
3287 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3288 }
3289
3290 static struct value *
3291 mips_micro_frame_prev_register (struct frame_info *this_frame,
3292 void **this_cache, int regnum)
3293 {
3294 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3295 this_cache);
3296 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3297 }
3298
3299 static int
3300 mips_micro_frame_sniffer (const struct frame_unwind *self,
3301 struct frame_info *this_frame, void **this_cache)
3302 {
3303 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3304 CORE_ADDR pc = get_frame_pc (this_frame);
3305
3306 if (mips_pc_is_micromips (gdbarch, pc))
3307 return 1;
3308 return 0;
3309 }
3310
3311 static const struct frame_unwind mips_micro_frame_unwind =
3312 {
3313 NORMAL_FRAME,
3314 default_frame_unwind_stop_reason,
3315 mips_micro_frame_this_id,
3316 mips_micro_frame_prev_register,
3317 NULL,
3318 mips_micro_frame_sniffer
3319 };
3320
3321 static CORE_ADDR
3322 mips_micro_frame_base_address (struct frame_info *this_frame,
3323 void **this_cache)
3324 {
3325 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3326 this_cache);
3327 return info->base;
3328 }
3329
3330 static const struct frame_base mips_micro_frame_base =
3331 {
3332 &mips_micro_frame_unwind,
3333 mips_micro_frame_base_address,
3334 mips_micro_frame_base_address,
3335 mips_micro_frame_base_address
3336 };
3337
3338 static const struct frame_base *
3339 mips_micro_frame_base_sniffer (struct frame_info *this_frame)
3340 {
3341 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3342 CORE_ADDR pc = get_frame_pc (this_frame);
3343
3344 if (mips_pc_is_micromips (gdbarch, pc))
3345 return &mips_micro_frame_base;
3346 else
3347 return NULL;
3348 }
3349
3350 /* Mark all the registers as unset in the saved_regs array
3351 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3352
3353 static void
3354 reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
3355 {
3356 if (this_cache == NULL || this_cache->saved_regs == NULL)
3357 return;
3358
3359 {
3360 const int num_regs = gdbarch_num_regs (gdbarch);
3361 int i;
3362
3363 for (i = 0; i < num_regs; i++)
3364 {
3365 this_cache->saved_regs[i].addr = -1;
3366 }
3367 }
3368 }
3369
3370 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
3371 the associated FRAME_CACHE if not null.
3372 Return the address of the first instruction past the prologue. */
3373
3374 static CORE_ADDR
3375 mips32_scan_prologue (struct gdbarch *gdbarch,
3376 CORE_ADDR start_pc, CORE_ADDR limit_pc,
3377 struct frame_info *this_frame,
3378 struct mips_frame_cache *this_cache)
3379 {
3380 int prev_non_prologue_insn;
3381 int this_non_prologue_insn;
3382 int non_prologue_insns;
3383 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3384 frame-pointer. */
3385 int prev_delay_slot;
3386 CORE_ADDR prev_pc;
3387 CORE_ADDR cur_pc;
3388 CORE_ADDR sp;
3389 long frame_offset;
3390 int frame_reg = MIPS_SP_REGNUM;
3391
3392 CORE_ADDR end_prologue_addr;
3393 int seen_sp_adjust = 0;
3394 int load_immediate_bytes = 0;
3395 int in_delay_slot;
3396 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
3397
3398 /* Can be called when there's no process, and hence when there's no
3399 THIS_FRAME. */
3400 if (this_frame != NULL)
3401 sp = get_frame_register_signed (this_frame,
3402 gdbarch_num_regs (gdbarch)
3403 + MIPS_SP_REGNUM);
3404 else
3405 sp = 0;
3406
3407 if (limit_pc > start_pc + 200)
3408 limit_pc = start_pc + 200;
3409
3410 restart:
3411 prev_non_prologue_insn = 0;
3412 non_prologue_insns = 0;
3413 prev_delay_slot = 0;
3414 prev_pc = start_pc;
3415
3416 /* Permit at most one non-prologue non-control-transfer instruction
3417 in the middle which may have been reordered by the compiler for
3418 optimisation. */
3419 frame_offset = 0;
3420 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
3421 {
3422 unsigned long inst, high_word;
3423 long offset;
3424 int reg;
3425
3426 this_non_prologue_insn = 0;
3427 in_delay_slot = 0;
3428
3429 /* Fetch the instruction. */
3430 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3431 cur_pc, NULL);
3432
3433 /* Save some code by pre-extracting some useful fields. */
3434 high_word = (inst >> 16) & 0xffff;
3435 offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
3436 reg = high_word & 0x1f;
3437
3438 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
3439 || high_word == 0x23bd /* addi $sp,$sp,-i */
3440 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3441 {
3442 if (offset < 0) /* Negative stack adjustment? */
3443 frame_offset -= offset;
3444 else
3445 /* Exit loop if a positive stack adjustment is found, which
3446 usually means that the stack cleanup code in the function
3447 epilogue is reached. */
3448 break;
3449 seen_sp_adjust = 1;
3450 }
3451 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3452 && !regsize_is_64_bits)
3453 {
3454 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3455 }
3456 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3457 && regsize_is_64_bits)
3458 {
3459 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
3460 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3461 }
3462 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3463 {
3464 /* Old gcc frame, r30 is virtual frame pointer. */
3465 if (offset != frame_offset)
3466 frame_addr = sp + offset;
3467 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
3468 {
3469 unsigned alloca_adjust;
3470
3471 frame_reg = 30;
3472 frame_addr = get_frame_register_signed
3473 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3474 frame_offset = 0;
3475
3476 alloca_adjust = (unsigned) (frame_addr - (sp + offset));
3477 if (alloca_adjust > 0)
3478 {
3479 /* FP > SP + frame_size. This may be because of
3480 an alloca or somethings similar. Fix sp to
3481 "pre-alloca" value, and try again. */
3482 sp += alloca_adjust;
3483 /* Need to reset the status of all registers. Otherwise,
3484 we will hit a guard that prevents the new address
3485 for each register to be recomputed during the second
3486 pass. */
3487 reset_saved_regs (gdbarch, this_cache);
3488 goto restart;
3489 }
3490 }
3491 }
3492 /* move $30,$sp. With different versions of gas this will be either
3493 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3494 Accept any one of these. */
3495 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3496 {
3497 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
3498 if (this_frame && frame_reg == MIPS_SP_REGNUM)
3499 {
3500 unsigned alloca_adjust;
3501
3502 frame_reg = 30;
3503 frame_addr = get_frame_register_signed
3504 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3505
3506 alloca_adjust = (unsigned) (frame_addr - sp);
3507 if (alloca_adjust > 0)
3508 {
3509 /* FP > SP + frame_size. This may be because of
3510 an alloca or somethings similar. Fix sp to
3511 "pre-alloca" value, and try again. */
3512 sp = frame_addr;
3513 /* Need to reset the status of all registers. Otherwise,
3514 we will hit a guard that prevents the new address
3515 for each register to be recomputed during the second
3516 pass. */
3517 reset_saved_regs (gdbarch, this_cache);
3518 goto restart;
3519 }
3520 }
3521 }
3522 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3523 && !regsize_is_64_bits)
3524 {
3525 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
3526 }
3527 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3528 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3529 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3530 || high_word == 0x3c1c /* lui $gp,n */
3531 || high_word == 0x279c /* addiu $gp,$gp,n */
3532 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3533 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3534 )
3535 {
3536 /* These instructions are part of the prologue, but we don't
3537 need to do anything special to handle them. */
3538 }
3539 /* The instructions below load $at or $t0 with an immediate
3540 value in preparation for a stack adjustment via
3541 subu $sp,$sp,[$at,$t0]. These instructions could also
3542 initialize a local variable, so we accept them only before
3543 a stack adjustment instruction was seen. */
3544 else if (!seen_sp_adjust
3545 && !prev_delay_slot
3546 && (high_word == 0x3c01 /* lui $at,n */
3547 || high_word == 0x3c08 /* lui $t0,n */
3548 || high_word == 0x3421 /* ori $at,$at,n */
3549 || high_word == 0x3508 /* ori $t0,$t0,n */
3550 || high_word == 0x3401 /* ori $at,$zero,n */
3551 || high_word == 0x3408 /* ori $t0,$zero,n */
3552 ))
3553 {
3554 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
3555 }
3556 /* Check for branches and jumps. The instruction in the delay
3557 slot can be a part of the prologue, so move forward once more. */
3558 else if (mips32_instruction_has_delay_slot (gdbarch, inst))
3559 {
3560 in_delay_slot = 1;
3561 }
3562 /* This instruction is not an instruction typically found
3563 in a prologue, so we must have reached the end of the
3564 prologue. */
3565 else
3566 {
3567 this_non_prologue_insn = 1;
3568 }
3569
3570 non_prologue_insns += this_non_prologue_insn;
3571
3572 /* A jump or branch, or enough non-prologue insns seen? If so,
3573 then we must have reached the end of the prologue by now. */
3574 if (prev_delay_slot || non_prologue_insns > 1)
3575 break;
3576
3577 prev_non_prologue_insn = this_non_prologue_insn;
3578 prev_delay_slot = in_delay_slot;
3579 prev_pc = cur_pc;
3580 }
3581
3582 if (this_cache != NULL)
3583 {
3584 this_cache->base =
3585 (get_frame_register_signed (this_frame,
3586 gdbarch_num_regs (gdbarch) + frame_reg)
3587 + frame_offset);
3588 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3589 this assignment below, eventually. But it's still needed
3590 for now. */
3591 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3592 + mips_regnum (gdbarch)->pc]
3593 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3594 + MIPS_RA_REGNUM];
3595 }
3596
3597 /* Set end_prologue_addr to the address of the instruction immediately
3598 after the last one we scanned. Unless the last one looked like a
3599 non-prologue instruction (and we looked ahead), in which case use
3600 its address instead. */
3601 end_prologue_addr
3602 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3603
3604 /* In a frameless function, we might have incorrectly
3605 skipped some load immediate instructions. Undo the skipping
3606 if the load immediate was not followed by a stack adjustment. */
3607 if (load_immediate_bytes && !seen_sp_adjust)
3608 end_prologue_addr -= load_immediate_bytes;
3609
3610 return end_prologue_addr;
3611 }
3612
3613 /* Heuristic unwinder for procedures using 32-bit instructions (covers
3614 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3615 instructions (a.k.a. MIPS16) are handled by the mips_insn16
3616 unwinder. Likewise microMIPS and the mips_micro unwinder. */
3617
3618 static struct mips_frame_cache *
3619 mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
3620 {
3621 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3622 struct mips_frame_cache *cache;
3623
3624 if ((*this_cache) != NULL)
3625 return (struct mips_frame_cache *) (*this_cache);
3626
3627 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3628 (*this_cache) = cache;
3629 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3630
3631 /* Analyze the function prologue. */
3632 {
3633 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3634 CORE_ADDR start_addr;
3635
3636 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3637 if (start_addr == 0)
3638 start_addr = heuristic_proc_start (gdbarch, pc);
3639 /* We can't analyze the prologue if we couldn't find the begining
3640 of the function. */
3641 if (start_addr == 0)
3642 return cache;
3643
3644 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame,
3645 (struct mips_frame_cache *) *this_cache);
3646 }
3647
3648 /* gdbarch_sp_regnum contains the value and not the address. */
3649 trad_frame_set_value (cache->saved_regs,
3650 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3651 cache->base);
3652
3653 return (struct mips_frame_cache *) (*this_cache);
3654 }
3655
3656 static void
3657 mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
3658 struct frame_id *this_id)
3659 {
3660 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3661 this_cache);
3662 /* This marks the outermost frame. */
3663 if (info->base == 0)
3664 return;
3665 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3666 }
3667
3668 static struct value *
3669 mips_insn32_frame_prev_register (struct frame_info *this_frame,
3670 void **this_cache, int regnum)
3671 {
3672 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3673 this_cache);
3674 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3675 }
3676
3677 static int
3678 mips_insn32_frame_sniffer (const struct frame_unwind *self,
3679 struct frame_info *this_frame, void **this_cache)
3680 {
3681 CORE_ADDR pc = get_frame_pc (this_frame);
3682 if (mips_pc_is_mips (pc))
3683 return 1;
3684 return 0;
3685 }
3686
3687 static const struct frame_unwind mips_insn32_frame_unwind =
3688 {
3689 NORMAL_FRAME,
3690 default_frame_unwind_stop_reason,
3691 mips_insn32_frame_this_id,
3692 mips_insn32_frame_prev_register,
3693 NULL,
3694 mips_insn32_frame_sniffer
3695 };
3696
3697 static CORE_ADDR
3698 mips_insn32_frame_base_address (struct frame_info *this_frame,
3699 void **this_cache)
3700 {
3701 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3702 this_cache);
3703 return info->base;
3704 }
3705
3706 static const struct frame_base mips_insn32_frame_base =
3707 {
3708 &mips_insn32_frame_unwind,
3709 mips_insn32_frame_base_address,
3710 mips_insn32_frame_base_address,
3711 mips_insn32_frame_base_address
3712 };
3713
3714 static const struct frame_base *
3715 mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
3716 {
3717 CORE_ADDR pc = get_frame_pc (this_frame);
3718 if (mips_pc_is_mips (pc))
3719 return &mips_insn32_frame_base;
3720 else
3721 return NULL;
3722 }
3723
3724 static struct trad_frame_cache *
3725 mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
3726 {
3727 CORE_ADDR pc;
3728 CORE_ADDR start_addr;
3729 CORE_ADDR stack_addr;
3730 struct trad_frame_cache *this_trad_cache;
3731 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3732 int num_regs = gdbarch_num_regs (gdbarch);
3733
3734 if ((*this_cache) != NULL)
3735 return (struct trad_frame_cache *) (*this_cache);
3736 this_trad_cache = trad_frame_cache_zalloc (this_frame);
3737 (*this_cache) = this_trad_cache;
3738
3739 /* The return address is in the link register. */
3740 trad_frame_set_reg_realreg (this_trad_cache,
3741 gdbarch_pc_regnum (gdbarch),
3742 num_regs + MIPS_RA_REGNUM);
3743
3744 /* Frame ID, since it's a frameless / stackless function, no stack
3745 space is allocated and SP on entry is the current SP. */
3746 pc = get_frame_pc (this_frame);
3747 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3748 stack_addr = get_frame_register_signed (this_frame,
3749 num_regs + MIPS_SP_REGNUM);
3750 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
3751
3752 /* Assume that the frame's base is the same as the
3753 stack-pointer. */
3754 trad_frame_set_this_base (this_trad_cache, stack_addr);
3755
3756 return this_trad_cache;
3757 }
3758
3759 static void
3760 mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
3761 struct frame_id *this_id)
3762 {
3763 struct trad_frame_cache *this_trad_cache
3764 = mips_stub_frame_cache (this_frame, this_cache);
3765 trad_frame_get_id (this_trad_cache, this_id);
3766 }
3767
3768 static struct value *
3769 mips_stub_frame_prev_register (struct frame_info *this_frame,
3770 void **this_cache, int regnum)
3771 {
3772 struct trad_frame_cache *this_trad_cache
3773 = mips_stub_frame_cache (this_frame, this_cache);
3774 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
3775 }
3776
3777 static int
3778 mips_stub_frame_sniffer (const struct frame_unwind *self,
3779 struct frame_info *this_frame, void **this_cache)
3780 {
3781 gdb_byte dummy[4];
3782 CORE_ADDR pc = get_frame_address_in_block (this_frame);
3783 struct bound_minimal_symbol msym;
3784
3785 /* Use the stub unwinder for unreadable code. */
3786 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3787 return 1;
3788
3789 if (in_plt_section (pc) || in_mips_stubs_section (pc))
3790 return 1;
3791
3792 /* Calling a PIC function from a non-PIC function passes through a
3793 stub. The stub for foo is named ".pic.foo". */
3794 msym = lookup_minimal_symbol_by_pc (pc);
3795 if (msym.minsym != NULL
3796 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
3797 && startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
3798 return 1;
3799
3800 return 0;
3801 }
3802
3803 static const struct frame_unwind mips_stub_frame_unwind =
3804 {
3805 NORMAL_FRAME,
3806 default_frame_unwind_stop_reason,
3807 mips_stub_frame_this_id,
3808 mips_stub_frame_prev_register,
3809 NULL,
3810 mips_stub_frame_sniffer
3811 };
3812
3813 static CORE_ADDR
3814 mips_stub_frame_base_address (struct frame_info *this_frame,
3815 void **this_cache)
3816 {
3817 struct trad_frame_cache *this_trad_cache
3818 = mips_stub_frame_cache (this_frame, this_cache);
3819 return trad_frame_get_this_base (this_trad_cache);
3820 }
3821
3822 static const struct frame_base mips_stub_frame_base =
3823 {
3824 &mips_stub_frame_unwind,
3825 mips_stub_frame_base_address,
3826 mips_stub_frame_base_address,
3827 mips_stub_frame_base_address
3828 };
3829
3830 static const struct frame_base *
3831 mips_stub_frame_base_sniffer (struct frame_info *this_frame)
3832 {
3833 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
3834 return &mips_stub_frame_base;
3835 else
3836 return NULL;
3837 }
3838
3839 /* mips_addr_bits_remove - remove useless address bits */
3840
3841 static CORE_ADDR
3842 mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
3843 {
3844 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3845
3846 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3847 /* This hack is a work-around for existing boards using PMON, the
3848 simulator, and any other 64-bit targets that doesn't have true
3849 64-bit addressing. On these targets, the upper 32 bits of
3850 addresses are ignored by the hardware. Thus, the PC or SP are
3851 likely to have been sign extended to all 1s by instruction
3852 sequences that load 32-bit addresses. For example, a typical
3853 piece of code that loads an address is this:
3854
3855 lui $r2, <upper 16 bits>
3856 ori $r2, <lower 16 bits>
3857
3858 But the lui sign-extends the value such that the upper 32 bits
3859 may be all 1s. The workaround is simply to mask off these
3860 bits. In the future, gcc may be changed to support true 64-bit
3861 addressing, and this masking will have to be disabled. */
3862 return addr &= 0xffffffffUL;
3863 else
3864 return addr;
3865 }
3866
3867
3868 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
3869 instruction and ending with a SC/SCD instruction. If such a sequence
3870 is found, attempt to step through it. A breakpoint is placed at the end of
3871 the sequence. */
3872
3873 /* Instructions used during single-stepping of atomic sequences, standard
3874 ISA version. */
3875 #define LL_OPCODE 0x30
3876 #define LLD_OPCODE 0x34
3877 #define SC_OPCODE 0x38
3878 #define SCD_OPCODE 0x3c
3879
3880 static std::vector<CORE_ADDR>
3881 mips_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
3882 {
3883 CORE_ADDR breaks[2] = {-1, -1};
3884 CORE_ADDR loc = pc;
3885 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
3886 ULONGEST insn;
3887 int insn_count;
3888 int index;
3889 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3890 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3891
3892 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3893 /* Assume all atomic sequences start with a ll/lld instruction. */
3894 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
3895 return {};
3896
3897 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3898 instructions. */
3899 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3900 {
3901 int is_branch = 0;
3902 loc += MIPS_INSN32_SIZE;
3903 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3904
3905 /* Assume that there is at most one branch in the atomic
3906 sequence. If a branch is found, put a breakpoint in its
3907 destination address. */
3908 switch (itype_op (insn))
3909 {
3910 case 0: /* SPECIAL */
3911 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
3912 return {}; /* fallback to the standard single-step code. */
3913 break;
3914 case 1: /* REGIMM */
3915 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3916 || ((itype_rt (insn) & 0x1e) == 0
3917 && itype_rs (insn) == 0)); /* BPOSGE* */
3918 break;
3919 case 2: /* J */
3920 case 3: /* JAL */
3921 return {}; /* fallback to the standard single-step code. */
3922 case 4: /* BEQ */
3923 case 5: /* BNE */
3924 case 6: /* BLEZ */
3925 case 7: /* BGTZ */
3926 case 20: /* BEQL */
3927 case 21: /* BNEL */
3928 case 22: /* BLEZL */
3929 case 23: /* BGTTL */
3930 is_branch = 1;
3931 break;
3932 case 17: /* COP1 */
3933 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3934 && (itype_rt (insn) & 0x2) == 0);
3935 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3936 break;
3937 /* Fall through. */
3938 case 18: /* COP2 */
3939 case 19: /* COP3 */
3940 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3941 break;
3942 }
3943 if (is_branch)
3944 {
3945 branch_bp = loc + mips32_relative_offset (insn) + 4;
3946 if (last_breakpoint >= 1)
3947 return {}; /* More than one branch found, fallback to the
3948 standard single-step code. */
3949 breaks[1] = branch_bp;
3950 last_breakpoint++;
3951 }
3952
3953 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3954 break;
3955 }
3956
3957 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3958 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
3959 return {};
3960
3961 loc += MIPS_INSN32_SIZE;
3962
3963 /* Insert a breakpoint right after the end of the atomic sequence. */
3964 breaks[0] = loc;
3965
3966 /* Check for duplicated breakpoints. Check also for a breakpoint
3967 placed (branch instruction's destination) in the atomic sequence. */
3968 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3969 last_breakpoint = 0;
3970
3971 std::vector<CORE_ADDR> next_pcs;
3972
3973 /* Effectively inserts the breakpoints. */
3974 for (index = 0; index <= last_breakpoint; index++)
3975 next_pcs.push_back (breaks[index]);
3976
3977 return next_pcs;
3978 }
3979
3980 static std::vector<CORE_ADDR>
3981 micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3982 CORE_ADDR pc)
3983 {
3984 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3985 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3986 CORE_ADDR breaks[2] = {-1, -1};
3987 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
3988 destination. */
3989 CORE_ADDR loc = pc;
3990 int sc_found = 0;
3991 ULONGEST insn;
3992 int insn_count;
3993 int index;
3994
3995 /* Assume all atomic sequences start with a ll/lld instruction. */
3996 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3997 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
3998 return {};
3999 loc += MIPS_INSN16_SIZE;
4000 insn <<= 16;
4001 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4002 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
4003 return {};
4004 loc += MIPS_INSN16_SIZE;
4005
4006 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4007 that no atomic sequence is longer than "atomic_sequence_length"
4008 instructions. */
4009 for (insn_count = 0;
4010 !sc_found && insn_count < atomic_sequence_length;
4011 ++insn_count)
4012 {
4013 int is_branch = 0;
4014
4015 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4016 loc += MIPS_INSN16_SIZE;
4017
4018 /* Assume that there is at most one conditional branch in the
4019 atomic sequence. If a branch is found, put a breakpoint in
4020 its destination address. */
4021 switch (mips_insn_size (ISA_MICROMIPS, insn))
4022 {
4023 /* 32-bit instructions. */
4024 case 2 * MIPS_INSN16_SIZE:
4025 switch (micromips_op (insn))
4026 {
4027 case 0x10: /* POOL32I: bits 010000 */
4028 if ((b5s5_op (insn) & 0x18) != 0x0
4029 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4030 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4031 && (b5s5_op (insn) & 0x1d) != 0x11
4032 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4033 && ((b5s5_op (insn) & 0x1e) != 0x14
4034 || (insn & 0x3) != 0x0)
4035 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4036 && (b5s5_op (insn) & 0x1e) != 0x1a
4037 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4038 && ((b5s5_op (insn) & 0x1e) != 0x1c
4039 || (insn & 0x3) != 0x0)
4040 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4041 && ((b5s5_op (insn) & 0x1c) != 0x1c
4042 || (insn & 0x3) != 0x1))
4043 /* BC1ANY*: bits 010000 111xx xxx01 */
4044 break;
4045 /* Fall through. */
4046
4047 case 0x25: /* BEQ: bits 100101 */
4048 case 0x2d: /* BNE: bits 101101 */
4049 insn <<= 16;
4050 insn |= mips_fetch_instruction (gdbarch,
4051 ISA_MICROMIPS, loc, NULL);
4052 branch_bp = (loc + MIPS_INSN16_SIZE
4053 + micromips_relative_offset16 (insn));
4054 is_branch = 1;
4055 break;
4056
4057 case 0x00: /* POOL32A: bits 000000 */
4058 insn <<= 16;
4059 insn |= mips_fetch_instruction (gdbarch,
4060 ISA_MICROMIPS, loc, NULL);
4061 if (b0s6_op (insn) != 0x3c
4062 /* POOL32Axf: bits 000000 ... 111100 */
4063 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
4064 /* JALR, JALR.HB: 000000 000x111100 111100 */
4065 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4066 break;
4067 /* Fall through. */
4068
4069 case 0x1d: /* JALS: bits 011101 */
4070 case 0x35: /* J: bits 110101 */
4071 case 0x3d: /* JAL: bits 111101 */
4072 case 0x3c: /* JALX: bits 111100 */
4073 return {}; /* Fall back to the standard single-step code. */
4074
4075 case 0x18: /* POOL32C: bits 011000 */
4076 if ((b12s4_op (insn) & 0xb) == 0xb)
4077 /* SC, SCD: bits 011000 1x11 */
4078 sc_found = 1;
4079 break;
4080 }
4081 loc += MIPS_INSN16_SIZE;
4082 break;
4083
4084 /* 16-bit instructions. */
4085 case MIPS_INSN16_SIZE:
4086 switch (micromips_op (insn))
4087 {
4088 case 0x23: /* BEQZ16: bits 100011 */
4089 case 0x2b: /* BNEZ16: bits 101011 */
4090 branch_bp = loc + micromips_relative_offset7 (insn);
4091 is_branch = 1;
4092 break;
4093
4094 case 0x11: /* POOL16C: bits 010001 */
4095 if ((b5s5_op (insn) & 0x1c) != 0xc
4096 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4097 && b5s5_op (insn) != 0x18)
4098 /* JRADDIUSP: bits 010001 11000 */
4099 break;
4100 return {}; /* Fall back to the standard single-step code. */
4101
4102 case 0x33: /* B16: bits 110011 */
4103 return {}; /* Fall back to the standard single-step code. */
4104 }
4105 break;
4106 }
4107 if (is_branch)
4108 {
4109 if (last_breakpoint >= 1)
4110 return {}; /* More than one branch found, fallback to the
4111 standard single-step code. */
4112 breaks[1] = branch_bp;
4113 last_breakpoint++;
4114 }
4115 }
4116 if (!sc_found)
4117 return {};
4118
4119 /* Insert a breakpoint right after the end of the atomic sequence. */
4120 breaks[0] = loc;
4121
4122 /* Check for duplicated breakpoints. Check also for a breakpoint
4123 placed (branch instruction's destination) in the atomic sequence */
4124 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
4125 last_breakpoint = 0;
4126
4127 std::vector<CORE_ADDR> next_pcs;
4128
4129 /* Effectively inserts the breakpoints. */
4130 for (index = 0; index <= last_breakpoint; index++)
4131 next_pcs.push_back (breaks[index]);
4132
4133 return next_pcs;
4134 }
4135
4136 static std::vector<CORE_ADDR>
4137 deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
4138 {
4139 if (mips_pc_is_mips (pc))
4140 return mips_deal_with_atomic_sequence (gdbarch, pc);
4141 else if (mips_pc_is_micromips (gdbarch, pc))
4142 return micromips_deal_with_atomic_sequence (gdbarch, pc);
4143 else
4144 return {};
4145 }
4146
4147 /* mips_software_single_step() is called just before we want to resume
4148 the inferior, if we want to single-step it but there is no hardware
4149 or kernel single-step support (MIPS on GNU/Linux for example). We find
4150 the target of the coming instruction and breakpoint it. */
4151
4152 std::vector<CORE_ADDR>
4153 mips_software_single_step (struct regcache *regcache)
4154 {
4155 struct gdbarch *gdbarch = regcache->arch ();
4156 CORE_ADDR pc, next_pc;
4157
4158 pc = regcache_read_pc (regcache);
4159 std::vector<CORE_ADDR> next_pcs = deal_with_atomic_sequence (gdbarch, pc);
4160
4161 if (!next_pcs.empty ())
4162 return next_pcs;
4163
4164 next_pc = mips_next_pc (regcache, pc);
4165
4166 return {next_pc};
4167 }
4168
4169 /* Test whether the PC points to the return instruction at the
4170 end of a function. */
4171
4172 static int
4173 mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
4174 {
4175 ULONGEST insn;
4176 ULONGEST hint;
4177
4178 /* This used to check for MIPS16, but this piece of code is never
4179 called for MIPS16 functions. And likewise microMIPS ones. */
4180 gdb_assert (mips_pc_is_mips (pc));
4181
4182 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4183 hint = 0x7c0;
4184 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
4185 }
4186
4187
4188 /* This fencepost looks highly suspicious to me. Removing it also
4189 seems suspicious as it could affect remote debugging across serial
4190 lines. */
4191
4192 static CORE_ADDR
4193 heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
4194 {
4195 CORE_ADDR start_pc;
4196 CORE_ADDR fence;
4197 int instlen;
4198 int seen_adjsp = 0;
4199 struct inferior *inf;
4200
4201 pc = gdbarch_addr_bits_remove (gdbarch, pc);
4202 start_pc = pc;
4203 fence = start_pc - heuristic_fence_post;
4204 if (start_pc == 0)
4205 return 0;
4206
4207 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
4208 fence = VM_MIN_ADDRESS;
4209
4210 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
4211
4212 inf = current_inferior ();
4213
4214 /* Search back for previous return. */
4215 for (start_pc -= instlen;; start_pc -= instlen)
4216 if (start_pc < fence)
4217 {
4218 /* It's not clear to me why we reach this point when
4219 stop_soon, but with this test, at least we
4220 don't print out warnings for every child forked (eg, on
4221 decstation). 22apr93 rich@cygnus.com. */
4222 if (inf->control.stop_soon == NO_STOP_QUIETLY)
4223 {
4224 static int blurb_printed = 0;
4225
4226 warning (_("GDB can't find the start of the function at %s."),
4227 paddress (gdbarch, pc));
4228
4229 if (!blurb_printed)
4230 {
4231 /* This actually happens frequently in embedded
4232 development, when you first connect to a board
4233 and your stack pointer and pc are nowhere in
4234 particular. This message needs to give people
4235 in that situation enough information to
4236 determine that it's no big deal. */
4237 printf_filtered ("\n\
4238 GDB is unable to find the start of the function at %s\n\
4239 and thus can't determine the size of that function's stack frame.\n\
4240 This means that GDB may be unable to access that stack frame, or\n\
4241 the frames below it.\n\
4242 This problem is most likely caused by an invalid program counter or\n\
4243 stack pointer.\n\
4244 However, if you think GDB should simply search farther back\n\
4245 from %s for code which looks like the beginning of a\n\
4246 function, you can increase the range of the search using the `set\n\
4247 heuristic-fence-post' command.\n",
4248 paddress (gdbarch, pc), paddress (gdbarch, pc));
4249 blurb_printed = 1;
4250 }
4251 }
4252
4253 return 0;
4254 }
4255 else if (mips_pc_is_mips16 (gdbarch, start_pc))
4256 {
4257 unsigned short inst;
4258
4259 /* On MIPS16, any one of the following is likely to be the
4260 start of a function:
4261 extend save
4262 save
4263 entry
4264 addiu sp,-n
4265 daddiu sp,-n
4266 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4267 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
4268 if ((inst & 0xff80) == 0x6480) /* save */
4269 {
4270 if (start_pc - instlen >= fence)
4271 {
4272 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4273 start_pc - instlen, NULL);
4274 if ((inst & 0xf800) == 0xf000) /* extend */
4275 start_pc -= instlen;
4276 }
4277 break;
4278 }
4279 else if (((inst & 0xf81f) == 0xe809
4280 && (inst & 0x700) != 0x700) /* entry */
4281 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4282 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4283 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
4284 break;
4285 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4286 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4287 seen_adjsp = 1;
4288 else
4289 seen_adjsp = 0;
4290 }
4291 else if (mips_pc_is_micromips (gdbarch, start_pc))
4292 {
4293 ULONGEST insn;
4294 int stop = 0;
4295 long offset;
4296 int dreg;
4297 int sreg;
4298
4299 /* On microMIPS, any one of the following is likely to be the
4300 start of a function:
4301 ADDIUSP -imm
4302 (D)ADDIU $sp, -imm
4303 LUI $gp, imm */
4304 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4305 switch (micromips_op (insn))
4306 {
4307 case 0xc: /* ADDIU: bits 001100 */
4308 case 0x17: /* DADDIU: bits 010111 */
4309 sreg = b0s5_reg (insn);
4310 dreg = b5s5_reg (insn);
4311 insn <<= 16;
4312 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4313 pc + MIPS_INSN16_SIZE, NULL);
4314 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4315 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4316 /* (D)ADDIU $sp, imm */
4317 && offset < 0)
4318 stop = 1;
4319 break;
4320
4321 case 0x10: /* POOL32I: bits 010000 */
4322 if (b5s5_op (insn) == 0xd
4323 /* LUI: bits 010000 001101 */
4324 && b0s5_reg (insn >> 16) == 28)
4325 /* LUI $gp, imm */
4326 stop = 1;
4327 break;
4328
4329 case 0x13: /* POOL16D: bits 010011 */
4330 if ((insn & 0x1) == 0x1)
4331 /* ADDIUSP: bits 010011 1 */
4332 {
4333 offset = micromips_decode_imm9 (b1s9_imm (insn));
4334 if (offset < 0)
4335 /* ADDIUSP -imm */
4336 stop = 1;
4337 }
4338 else
4339 /* ADDIUS5: bits 010011 0 */
4340 {
4341 dreg = b5s5_reg (insn);
4342 offset = (b1s4_imm (insn) ^ 8) - 8;
4343 if (dreg == MIPS_SP_REGNUM && offset < 0)
4344 /* ADDIUS5 $sp, -imm */
4345 stop = 1;
4346 }
4347 break;
4348 }
4349 if (stop)
4350 break;
4351 }
4352 else if (mips_about_to_return (gdbarch, start_pc))
4353 {
4354 /* Skip return and its delay slot. */
4355 start_pc += 2 * MIPS_INSN32_SIZE;
4356 break;
4357 }
4358
4359 return start_pc;
4360 }
4361
4362 struct mips_objfile_private
4363 {
4364 bfd_size_type size;
4365 char *contents;
4366 };
4367
4368 /* According to the current ABI, should the type be passed in a
4369 floating-point register (assuming that there is space)? When there
4370 is no FPU, FP are not even considered as possible candidates for
4371 FP registers and, consequently this returns false - forces FP
4372 arguments into integer registers. */
4373
4374 static int
4375 fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4376 struct type *arg_type)
4377 {
4378 return ((typecode == TYPE_CODE_FLT
4379 || (MIPS_EABI (gdbarch)
4380 && (typecode == TYPE_CODE_STRUCT
4381 || typecode == TYPE_CODE_UNION)
4382 && TYPE_NFIELDS (arg_type) == 1
4383 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4384 == TYPE_CODE_FLT))
4385 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
4386 }
4387
4388 /* On o32, argument passing in GPRs depends on the alignment of the type being
4389 passed. Return 1 if this type must be aligned to a doubleword boundary. */
4390
4391 static int
4392 mips_type_needs_double_align (struct type *type)
4393 {
4394 enum type_code typecode = TYPE_CODE (type);
4395
4396 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4397 return 1;
4398 else if (typecode == TYPE_CODE_STRUCT)
4399 {
4400 if (TYPE_NFIELDS (type) < 1)
4401 return 0;
4402 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4403 }
4404 else if (typecode == TYPE_CODE_UNION)
4405 {
4406 int i, n;
4407
4408 n = TYPE_NFIELDS (type);
4409 for (i = 0; i < n; i++)
4410 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4411 return 1;
4412 return 0;
4413 }
4414 return 0;
4415 }
4416
4417 /* Adjust the address downward (direction of stack growth) so that it
4418 is correctly aligned for a new stack frame. */
4419 static CORE_ADDR
4420 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4421 {
4422 return align_down (addr, 16);
4423 }
4424
4425 /* Implement the "push_dummy_code" gdbarch method. */
4426
4427 static CORE_ADDR
4428 mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4429 CORE_ADDR funaddr, struct value **args,
4430 int nargs, struct type *value_type,
4431 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4432 struct regcache *regcache)
4433 {
4434 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
4435 CORE_ADDR nop_addr;
4436 CORE_ADDR bp_slot;
4437
4438 /* Reserve enough room on the stack for our breakpoint instruction. */
4439 bp_slot = sp - sizeof (nop_insn);
4440
4441 /* Return to microMIPS mode if calling microMIPS code to avoid
4442 triggering an address error exception on processors that only
4443 support microMIPS execution. */
4444 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4445 ? make_compact_addr (bp_slot) : bp_slot);
4446
4447 /* The breakpoint layer automatically adjusts the address of
4448 breakpoints inserted in a branch delay slot. With enough
4449 bad luck, the 4 bytes located just before our breakpoint
4450 instruction could look like a branch instruction, and thus
4451 trigger the adjustement, and break the function call entirely.
4452 So, we reserve those 4 bytes and write a nop instruction
4453 to prevent that from happening. */
4454 nop_addr = bp_slot - sizeof (nop_insn);
4455 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4456 sp = mips_frame_align (gdbarch, nop_addr);
4457
4458 /* Inferior resumes at the function entry point. */
4459 *real_pc = funaddr;
4460
4461 return sp;
4462 }
4463
4464 static CORE_ADDR
4465 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4466 struct regcache *regcache, CORE_ADDR bp_addr,
4467 int nargs, struct value **args, CORE_ADDR sp,
4468 int struct_return, CORE_ADDR struct_addr)
4469 {
4470 int argreg;
4471 int float_argreg;
4472 int argnum;
4473 int len = 0;
4474 int stack_offset = 0;
4475 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4476 CORE_ADDR func_addr = find_function_addr (function, NULL);
4477 int abi_regsize = mips_abi_regsize (gdbarch);
4478
4479 /* For shared libraries, "t9" needs to point at the function
4480 address. */
4481 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4482
4483 /* Set the return address register to point to the entry point of
4484 the program, where a breakpoint lies in wait. */
4485 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4486
4487 /* First ensure that the stack and structure return address (if any)
4488 are properly aligned. The stack has to be at least 64-bit
4489 aligned even on 32-bit machines, because doubles must be 64-bit
4490 aligned. For n32 and n64, stack frames need to be 128-bit
4491 aligned, so we round to this widest known alignment. */
4492
4493 sp = align_down (sp, 16);
4494 struct_addr = align_down (struct_addr, 16);
4495
4496 /* Now make space on the stack for the args. We allocate more
4497 than necessary for EABI, because the first few arguments are
4498 passed in registers, but that's OK. */
4499 for (argnum = 0; argnum < nargs; argnum++)
4500 len += align_up (TYPE_LENGTH (value_type (args[argnum])), abi_regsize);
4501 sp -= align_up (len, 16);
4502
4503 if (mips_debug)
4504 fprintf_unfiltered (gdb_stdlog,
4505 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4506 paddress (gdbarch, sp), (long) align_up (len, 16));
4507
4508 /* Initialize the integer and float register pointers. */
4509 argreg = MIPS_A0_REGNUM;
4510 float_argreg = mips_fpa0_regnum (gdbarch);
4511
4512 /* The struct_return pointer occupies the first parameter-passing reg. */
4513 if (struct_return)
4514 {
4515 if (mips_debug)
4516 fprintf_unfiltered (gdb_stdlog,
4517 "mips_eabi_push_dummy_call: "
4518 "struct_return reg=%d %s\n",
4519 argreg, paddress (gdbarch, struct_addr));
4520 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4521 }
4522
4523 /* Now load as many as possible of the first arguments into
4524 registers, and push the rest onto the stack. Loop thru args
4525 from first to last. */
4526 for (argnum = 0; argnum < nargs; argnum++)
4527 {
4528 const gdb_byte *val;
4529 /* This holds the address of structures that are passed by
4530 reference. */
4531 gdb_byte ref_valbuf[MAX_MIPS_ABI_REGSIZE];
4532 struct value *arg = args[argnum];
4533 struct type *arg_type = check_typedef (value_type (arg));
4534 int len = TYPE_LENGTH (arg_type);
4535 enum type_code typecode = TYPE_CODE (arg_type);
4536
4537 if (mips_debug)
4538 fprintf_unfiltered (gdb_stdlog,
4539 "mips_eabi_push_dummy_call: %d len=%d type=%d",
4540 argnum + 1, len, (int) typecode);
4541
4542 /* The EABI passes structures that do not fit in a register by
4543 reference. */
4544 if (len > abi_regsize
4545 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
4546 {
4547 gdb_assert (abi_regsize <= ARRAY_SIZE (ref_valbuf));
4548 store_unsigned_integer (ref_valbuf, abi_regsize, byte_order,
4549 value_address (arg));
4550 typecode = TYPE_CODE_PTR;
4551 len = abi_regsize;
4552 val = ref_valbuf;
4553 if (mips_debug)
4554 fprintf_unfiltered (gdb_stdlog, " push");
4555 }
4556 else
4557 val = value_contents (arg);
4558
4559 /* 32-bit ABIs always start floating point arguments in an
4560 even-numbered floating point register. Round the FP register
4561 up before the check to see if there are any FP registers
4562 left. Non MIPS_EABI targets also pass the FP in the integer
4563 registers so also round up normal registers. */
4564 if (abi_regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
4565 {
4566 if ((float_argreg & 1))
4567 float_argreg++;
4568 }
4569
4570 /* Floating point arguments passed in registers have to be
4571 treated specially. On 32-bit architectures, doubles
4572 are passed in register pairs; the even register gets
4573 the low word, and the odd register gets the high word.
4574 On non-EABI processors, the first two floating point arguments are
4575 also copied to general registers, because MIPS16 functions
4576 don't use float registers for arguments. This duplication of
4577 arguments in general registers can't hurt non-MIPS16 functions
4578 because those registers are normally skipped. */
4579 /* MIPS_EABI squeezes a struct that contains a single floating
4580 point value into an FP register instead of pushing it onto the
4581 stack. */
4582 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4583 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4584 {
4585 /* EABI32 will pass doubles in consecutive registers, even on
4586 64-bit cores. At one time, we used to check the size of
4587 `float_argreg' to determine whether or not to pass doubles
4588 in consecutive registers, but this is not sufficient for
4589 making the ABI determination. */
4590 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
4591 {
4592 int low_offset = gdbarch_byte_order (gdbarch)
4593 == BFD_ENDIAN_BIG ? 4 : 0;
4594 long regval;
4595
4596 /* Write the low word of the double to the even register(s). */
4597 regval = extract_signed_integer (val + low_offset,
4598 4, byte_order);
4599 if (mips_debug)
4600 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4601 float_argreg, phex (regval, 4));
4602 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4603
4604 /* Write the high word of the double to the odd register(s). */
4605 regval = extract_signed_integer (val + 4 - low_offset,
4606 4, byte_order);
4607 if (mips_debug)
4608 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4609 float_argreg, phex (regval, 4));
4610 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4611 }
4612 else
4613 {
4614 /* This is a floating point value that fits entirely
4615 in a single register. */
4616 /* On 32 bit ABI's the float_argreg is further adjusted
4617 above to ensure that it is even register aligned. */
4618 LONGEST regval = extract_signed_integer (val, len, byte_order);
4619 if (mips_debug)
4620 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4621 float_argreg, phex (regval, len));
4622 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4623 }
4624 }
4625 else
4626 {
4627 /* Copy the argument to general registers or the stack in
4628 register-sized pieces. Large arguments are split between
4629 registers and stack. */
4630 /* Note: structs whose size is not a multiple of abi_regsize
4631 are treated specially: Irix cc passes
4632 them in registers where gcc sometimes puts them on the
4633 stack. For maximum compatibility, we will put them in
4634 both places. */
4635 int odd_sized_struct = (len > abi_regsize && len % abi_regsize != 0);
4636
4637 /* Note: Floating-point values that didn't fit into an FP
4638 register are only written to memory. */
4639 while (len > 0)
4640 {
4641 /* Remember if the argument was written to the stack. */
4642 int stack_used_p = 0;
4643 int partial_len = (len < abi_regsize ? len : abi_regsize);
4644
4645 if (mips_debug)
4646 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4647 partial_len);
4648
4649 /* Write this portion of the argument to the stack. */
4650 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4651 || odd_sized_struct
4652 || fp_register_arg_p (gdbarch, typecode, arg_type))
4653 {
4654 /* Should shorter than int integer values be
4655 promoted to int before being stored? */
4656 int longword_offset = 0;
4657 CORE_ADDR addr;
4658 stack_used_p = 1;
4659 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4660 {
4661 if (abi_regsize == 8
4662 && (typecode == TYPE_CODE_INT
4663 || typecode == TYPE_CODE_PTR
4664 || typecode == TYPE_CODE_FLT) && len <= 4)
4665 longword_offset = abi_regsize - len;
4666 else if ((typecode == TYPE_CODE_STRUCT
4667 || typecode == TYPE_CODE_UNION)
4668 && TYPE_LENGTH (arg_type) < abi_regsize)
4669 longword_offset = abi_regsize - len;
4670 }
4671
4672 if (mips_debug)
4673 {
4674 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4675 paddress (gdbarch, stack_offset));
4676 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4677 paddress (gdbarch, longword_offset));
4678 }
4679
4680 addr = sp + stack_offset + longword_offset;
4681
4682 if (mips_debug)
4683 {
4684 int i;
4685 fprintf_unfiltered (gdb_stdlog, " @%s ",
4686 paddress (gdbarch, addr));
4687 for (i = 0; i < partial_len; i++)
4688 {
4689 fprintf_unfiltered (gdb_stdlog, "%02x",
4690 val[i] & 0xff);
4691 }
4692 }
4693 write_memory (addr, val, partial_len);
4694 }
4695
4696 /* Note!!! This is NOT an else clause. Odd sized
4697 structs may go thru BOTH paths. Floating point
4698 arguments will not. */
4699 /* Write this portion of the argument to a general
4700 purpose register. */
4701 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4702 && !fp_register_arg_p (gdbarch, typecode, arg_type))
4703 {
4704 LONGEST regval =
4705 extract_signed_integer (val, partial_len, byte_order);
4706
4707 if (mips_debug)
4708 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4709 argreg,
4710 phex (regval, abi_regsize));
4711 regcache_cooked_write_signed (regcache, argreg, regval);
4712 argreg++;
4713 }
4714
4715 len -= partial_len;
4716 val += partial_len;
4717
4718 /* Compute the offset into the stack at which we will
4719 copy the next parameter.
4720
4721 In the new EABI (and the NABI32), the stack_offset
4722 only needs to be adjusted when it has been used. */
4723
4724 if (stack_used_p)
4725 stack_offset += align_up (partial_len, abi_regsize);
4726 }
4727 }
4728 if (mips_debug)
4729 fprintf_unfiltered (gdb_stdlog, "\n");
4730 }
4731
4732 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4733
4734 /* Return adjusted stack pointer. */
4735 return sp;
4736 }
4737
4738 /* Determine the return value convention being used. */
4739
4740 static enum return_value_convention
4741 mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
4742 struct type *type, struct regcache *regcache,
4743 gdb_byte *readbuf, const gdb_byte *writebuf)
4744 {
4745 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4746 int fp_return_type = 0;
4747 int offset, regnum, xfer;
4748
4749 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4750 return RETURN_VALUE_STRUCT_CONVENTION;
4751
4752 /* Floating point type? */
4753 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4754 {
4755 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4756 fp_return_type = 1;
4757 /* Structs with a single field of float type
4758 are returned in a floating point register. */
4759 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4760 || TYPE_CODE (type) == TYPE_CODE_UNION)
4761 && TYPE_NFIELDS (type) == 1)
4762 {
4763 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4764
4765 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4766 fp_return_type = 1;
4767 }
4768 }
4769
4770 if (fp_return_type)
4771 {
4772 /* A floating-point value belongs in the least significant part
4773 of FP0/FP1. */
4774 if (mips_debug)
4775 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4776 regnum = mips_regnum (gdbarch)->fp0;
4777 }
4778 else
4779 {
4780 /* An integer value goes in V0/V1. */
4781 if (mips_debug)
4782 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4783 regnum = MIPS_V0_REGNUM;
4784 }
4785 for (offset = 0;
4786 offset < TYPE_LENGTH (type);
4787 offset += mips_abi_regsize (gdbarch), regnum++)
4788 {
4789 xfer = mips_abi_regsize (gdbarch);
4790 if (offset + xfer > TYPE_LENGTH (type))
4791 xfer = TYPE_LENGTH (type) - offset;
4792 mips_xfer_register (gdbarch, regcache,
4793 gdbarch_num_regs (gdbarch) + regnum, xfer,
4794 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4795 offset);
4796 }
4797
4798 return RETURN_VALUE_REGISTER_CONVENTION;
4799 }
4800
4801
4802 /* N32/N64 ABI stuff. */
4803
4804 /* Search for a naturally aligned double at OFFSET inside a struct
4805 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4806 registers. */
4807
4808 static int
4809 mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4810 int offset)
4811 {
4812 int i;
4813
4814 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4815 return 0;
4816
4817 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
4818 return 0;
4819
4820 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4821 return 0;
4822
4823 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4824 {
4825 int pos;
4826 struct type *field_type;
4827
4828 /* We're only looking at normal fields. */
4829 if (field_is_static (&TYPE_FIELD (arg_type, i))
4830 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4831 continue;
4832
4833 /* If we have gone past the offset, there is no double to pass. */
4834 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4835 if (pos > offset)
4836 return 0;
4837
4838 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4839
4840 /* If this field is entirely before the requested offset, go
4841 on to the next one. */
4842 if (pos + TYPE_LENGTH (field_type) <= offset)
4843 continue;
4844
4845 /* If this is our special aligned double, we can stop. */
4846 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4847 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4848 return 1;
4849
4850 /* This field starts at or before the requested offset, and
4851 overlaps it. If it is a structure, recurse inwards. */
4852 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
4853 }
4854
4855 return 0;
4856 }
4857
4858 static CORE_ADDR
4859 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4860 struct regcache *regcache, CORE_ADDR bp_addr,
4861 int nargs, struct value **args, CORE_ADDR sp,
4862 int struct_return, CORE_ADDR struct_addr)
4863 {
4864 int argreg;
4865 int float_argreg;
4866 int argnum;
4867 int len = 0;
4868 int stack_offset = 0;
4869 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4870 CORE_ADDR func_addr = find_function_addr (function, NULL);
4871
4872 /* For shared libraries, "t9" needs to point at the function
4873 address. */
4874 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4875
4876 /* Set the return address register to point to the entry point of
4877 the program, where a breakpoint lies in wait. */
4878 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4879
4880 /* First ensure that the stack and structure return address (if any)
4881 are properly aligned. The stack has to be at least 64-bit
4882 aligned even on 32-bit machines, because doubles must be 64-bit
4883 aligned. For n32 and n64, stack frames need to be 128-bit
4884 aligned, so we round to this widest known alignment. */
4885
4886 sp = align_down (sp, 16);
4887 struct_addr = align_down (struct_addr, 16);
4888
4889 /* Now make space on the stack for the args. */
4890 for (argnum = 0; argnum < nargs; argnum++)
4891 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
4892 sp -= align_up (len, 16);
4893
4894 if (mips_debug)
4895 fprintf_unfiltered (gdb_stdlog,
4896 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4897 paddress (gdbarch, sp), (long) align_up (len, 16));
4898
4899 /* Initialize the integer and float register pointers. */
4900 argreg = MIPS_A0_REGNUM;
4901 float_argreg = mips_fpa0_regnum (gdbarch);
4902
4903 /* The struct_return pointer occupies the first parameter-passing reg. */
4904 if (struct_return)
4905 {
4906 if (mips_debug)
4907 fprintf_unfiltered (gdb_stdlog,
4908 "mips_n32n64_push_dummy_call: "
4909 "struct_return reg=%d %s\n",
4910 argreg, paddress (gdbarch, struct_addr));
4911 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4912 }
4913
4914 /* Now load as many as possible of the first arguments into
4915 registers, and push the rest onto the stack. Loop thru args
4916 from first to last. */
4917 for (argnum = 0; argnum < nargs; argnum++)
4918 {
4919 const gdb_byte *val;
4920 struct value *arg = args[argnum];
4921 struct type *arg_type = check_typedef (value_type (arg));
4922 int len = TYPE_LENGTH (arg_type);
4923 enum type_code typecode = TYPE_CODE (arg_type);
4924
4925 if (mips_debug)
4926 fprintf_unfiltered (gdb_stdlog,
4927 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
4928 argnum + 1, len, (int) typecode);
4929
4930 val = value_contents (arg);
4931
4932 /* A 128-bit long double value requires an even-odd pair of
4933 floating-point registers. */
4934 if (len == 16
4935 && fp_register_arg_p (gdbarch, typecode, arg_type)
4936 && (float_argreg & 1))
4937 {
4938 float_argreg++;
4939 argreg++;
4940 }
4941
4942 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4943 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4944 {
4945 /* This is a floating point value that fits entirely
4946 in a single register or a pair of registers. */
4947 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4948 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
4949 if (mips_debug)
4950 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4951 float_argreg, phex (regval, reglen));
4952 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4953
4954 if (mips_debug)
4955 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4956 argreg, phex (regval, reglen));
4957 regcache_cooked_write_unsigned (regcache, argreg, regval);
4958 float_argreg++;
4959 argreg++;
4960 if (len == 16)
4961 {
4962 regval = extract_unsigned_integer (val + reglen,
4963 reglen, byte_order);
4964 if (mips_debug)
4965 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4966 float_argreg, phex (regval, reglen));
4967 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4968
4969 if (mips_debug)
4970 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4971 argreg, phex (regval, reglen));
4972 regcache_cooked_write_unsigned (regcache, argreg, regval);
4973 float_argreg++;
4974 argreg++;
4975 }
4976 }
4977 else
4978 {
4979 /* Copy the argument to general registers or the stack in
4980 register-sized pieces. Large arguments are split between
4981 registers and stack. */
4982 /* For N32/N64, structs, unions, or other composite types are
4983 treated as a sequence of doublewords, and are passed in integer
4984 or floating point registers as though they were simple scalar
4985 parameters to the extent that they fit, with any excess on the
4986 stack packed according to the normal memory layout of the
4987 object.
4988 The caller does not reserve space for the register arguments;
4989 the callee is responsible for reserving it if required. */
4990 /* Note: Floating-point values that didn't fit into an FP
4991 register are only written to memory. */
4992 while (len > 0)
4993 {
4994 /* Remember if the argument was written to the stack. */
4995 int stack_used_p = 0;
4996 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4997
4998 if (mips_debug)
4999 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5000 partial_len);
5001
5002 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5003 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
5004
5005 /* Write this portion of the argument to the stack. */
5006 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
5007 {
5008 /* Should shorter than int integer values be
5009 promoted to int before being stored? */
5010 int longword_offset = 0;
5011 CORE_ADDR addr;
5012 stack_used_p = 1;
5013 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5014 {
5015 if ((typecode == TYPE_CODE_INT
5016 || typecode == TYPE_CODE_PTR)
5017 && len <= 4)
5018 longword_offset = MIPS64_REGSIZE - len;
5019 }
5020
5021 if (mips_debug)
5022 {
5023 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5024 paddress (gdbarch, stack_offset));
5025 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5026 paddress (gdbarch, longword_offset));
5027 }
5028
5029 addr = sp + stack_offset + longword_offset;
5030
5031 if (mips_debug)
5032 {
5033 int i;
5034 fprintf_unfiltered (gdb_stdlog, " @%s ",
5035 paddress (gdbarch, addr));
5036 for (i = 0; i < partial_len; i++)
5037 {
5038 fprintf_unfiltered (gdb_stdlog, "%02x",
5039 val[i] & 0xff);
5040 }
5041 }
5042 write_memory (addr, val, partial_len);
5043 }
5044
5045 /* Note!!! This is NOT an else clause. Odd sized
5046 structs may go thru BOTH paths. */
5047 /* Write this portion of the argument to a general
5048 purpose register. */
5049 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5050 {
5051 LONGEST regval;
5052
5053 /* Sign extend pointers, 32-bit integers and signed
5054 16-bit and 8-bit integers; everything else is taken
5055 as is. */
5056
5057 if ((partial_len == 4
5058 && (typecode == TYPE_CODE_PTR
5059 || typecode == TYPE_CODE_INT))
5060 || (partial_len < 4
5061 && typecode == TYPE_CODE_INT
5062 && !TYPE_UNSIGNED (arg_type)))
5063 regval = extract_signed_integer (val, partial_len,
5064 byte_order);
5065 else
5066 regval = extract_unsigned_integer (val, partial_len,
5067 byte_order);
5068
5069 /* A non-floating-point argument being passed in a
5070 general register. If a struct or union, and if
5071 the remaining length is smaller than the register
5072 size, we have to adjust the register value on
5073 big endian targets.
5074
5075 It does not seem to be necessary to do the
5076 same for integral types. */
5077
5078 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5079 && partial_len < MIPS64_REGSIZE
5080 && (typecode == TYPE_CODE_STRUCT
5081 || typecode == TYPE_CODE_UNION))
5082 regval <<= ((MIPS64_REGSIZE - partial_len)
5083 * TARGET_CHAR_BIT);
5084
5085 if (mips_debug)
5086 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5087 argreg,
5088 phex (regval, MIPS64_REGSIZE));
5089 regcache_cooked_write_unsigned (regcache, argreg, regval);
5090
5091 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
5092 TYPE_LENGTH (arg_type) - len))
5093 {
5094 if (mips_debug)
5095 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
5096 float_argreg,
5097 phex (regval, MIPS64_REGSIZE));
5098 regcache_cooked_write_unsigned (regcache, float_argreg,
5099 regval);
5100 }
5101
5102 float_argreg++;
5103 argreg++;
5104 }
5105
5106 len -= partial_len;
5107 val += partial_len;
5108
5109 /* Compute the offset into the stack at which we will
5110 copy the next parameter.
5111
5112 In N32 (N64?), the stack_offset only needs to be
5113 adjusted when it has been used. */
5114
5115 if (stack_used_p)
5116 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
5117 }
5118 }
5119 if (mips_debug)
5120 fprintf_unfiltered (gdb_stdlog, "\n");
5121 }
5122
5123 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5124
5125 /* Return adjusted stack pointer. */
5126 return sp;
5127 }
5128
5129 static enum return_value_convention
5130 mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
5131 struct type *type, struct regcache *regcache,
5132 gdb_byte *readbuf, const gdb_byte *writebuf)
5133 {
5134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5135
5136 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5137
5138 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5139 if needed), as appropriate for the type. Composite results (struct,
5140 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5141 following rules:
5142
5143 * A struct with only one or two floating point fields is returned in $f0
5144 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5145 case.
5146
5147 * Any other composite results of at most 128 bits are returned in
5148 $2 (first 64 bits) and $3 (remainder, if necessary).
5149
5150 * Larger composite results are handled by converting the function to a
5151 procedure with an implicit first parameter, which is a pointer to an area
5152 reserved by the caller to receive the result. [The o32-bit ABI requires
5153 that all composite results be handled by conversion to implicit first
5154 parameters. The MIPS/SGI Fortran implementation has always made a
5155 specific exception to return COMPLEX results in the floating point
5156 registers.] */
5157
5158 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
5159 return RETURN_VALUE_STRUCT_CONVENTION;
5160 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5161 && TYPE_LENGTH (type) == 16
5162 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5163 {
5164 /* A 128-bit floating-point value fills both $f0 and $f2. The
5165 two registers are used in the same as memory order, so the
5166 eight bytes with the lower memory address are in $f0. */
5167 if (mips_debug)
5168 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
5169 mips_xfer_register (gdbarch, regcache,
5170 (gdbarch_num_regs (gdbarch)
5171 + mips_regnum (gdbarch)->fp0),
5172 8, gdbarch_byte_order (gdbarch),
5173 readbuf, writebuf, 0);
5174 mips_xfer_register (gdbarch, regcache,
5175 (gdbarch_num_regs (gdbarch)
5176 + mips_regnum (gdbarch)->fp0 + 2),
5177 8, gdbarch_byte_order (gdbarch),
5178 readbuf ? readbuf + 8 : readbuf,
5179 writebuf ? writebuf + 8 : writebuf, 0);
5180 return RETURN_VALUE_REGISTER_CONVENTION;
5181 }
5182 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5183 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5184 {
5185 /* A single or double floating-point value that fits in FP0. */
5186 if (mips_debug)
5187 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5188 mips_xfer_register (gdbarch, regcache,
5189 (gdbarch_num_regs (gdbarch)
5190 + mips_regnum (gdbarch)->fp0),
5191 TYPE_LENGTH (type),
5192 gdbarch_byte_order (gdbarch),
5193 readbuf, writebuf, 0);
5194 return RETURN_VALUE_REGISTER_CONVENTION;
5195 }
5196 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5197 && TYPE_NFIELDS (type) <= 2
5198 && TYPE_NFIELDS (type) >= 1
5199 && ((TYPE_NFIELDS (type) == 1
5200 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5201 == TYPE_CODE_FLT))
5202 || (TYPE_NFIELDS (type) == 2
5203 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5204 == TYPE_CODE_FLT)
5205 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5206 == TYPE_CODE_FLT))))
5207 {
5208 /* A struct that contains one or two floats. Each value is part
5209 in the least significant part of their floating point
5210 register (or GPR, for soft float). */
5211 int regnum;
5212 int field;
5213 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5214 ? mips_regnum (gdbarch)->fp0
5215 : MIPS_V0_REGNUM);
5216 field < TYPE_NFIELDS (type); field++, regnum += 2)
5217 {
5218 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5219 / TARGET_CHAR_BIT);
5220 if (mips_debug)
5221 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5222 offset);
5223 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5224 {
5225 /* A 16-byte long double field goes in two consecutive
5226 registers. */
5227 mips_xfer_register (gdbarch, regcache,
5228 gdbarch_num_regs (gdbarch) + regnum,
5229 8,
5230 gdbarch_byte_order (gdbarch),
5231 readbuf, writebuf, offset);
5232 mips_xfer_register (gdbarch, regcache,
5233 gdbarch_num_regs (gdbarch) + regnum + 1,
5234 8,
5235 gdbarch_byte_order (gdbarch),
5236 readbuf, writebuf, offset + 8);
5237 }
5238 else
5239 mips_xfer_register (gdbarch, regcache,
5240 gdbarch_num_regs (gdbarch) + regnum,
5241 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5242 gdbarch_byte_order (gdbarch),
5243 readbuf, writebuf, offset);
5244 }
5245 return RETURN_VALUE_REGISTER_CONVENTION;
5246 }
5247 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5248 || TYPE_CODE (type) == TYPE_CODE_UNION
5249 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5250 {
5251 /* A composite type. Extract the left justified value,
5252 regardless of the byte order. I.e. DO NOT USE
5253 mips_xfer_lower. */
5254 int offset;
5255 int regnum;
5256 for (offset = 0, regnum = MIPS_V0_REGNUM;
5257 offset < TYPE_LENGTH (type);
5258 offset += register_size (gdbarch, regnum), regnum++)
5259 {
5260 int xfer = register_size (gdbarch, regnum);
5261 if (offset + xfer > TYPE_LENGTH (type))
5262 xfer = TYPE_LENGTH (type) - offset;
5263 if (mips_debug)
5264 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5265 offset, xfer, regnum);
5266 mips_xfer_register (gdbarch, regcache,
5267 gdbarch_num_regs (gdbarch) + regnum,
5268 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5269 offset);
5270 }
5271 return RETURN_VALUE_REGISTER_CONVENTION;
5272 }
5273 else
5274 {
5275 /* A scalar extract each part but least-significant-byte
5276 justified. */
5277 int offset;
5278 int regnum;
5279 for (offset = 0, regnum = MIPS_V0_REGNUM;
5280 offset < TYPE_LENGTH (type);
5281 offset += register_size (gdbarch, regnum), regnum++)
5282 {
5283 int xfer = register_size (gdbarch, regnum);
5284 if (offset + xfer > TYPE_LENGTH (type))
5285 xfer = TYPE_LENGTH (type) - offset;
5286 if (mips_debug)
5287 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5288 offset, xfer, regnum);
5289 mips_xfer_register (gdbarch, regcache,
5290 gdbarch_num_regs (gdbarch) + regnum,
5291 xfer, gdbarch_byte_order (gdbarch),
5292 readbuf, writebuf, offset);
5293 }
5294 return RETURN_VALUE_REGISTER_CONVENTION;
5295 }
5296 }
5297
5298 /* Which registers to use for passing floating-point values between
5299 function calls, one of floating-point, general and both kinds of
5300 registers. O32 and O64 use different register kinds for standard
5301 MIPS and MIPS16 code; to make the handling of cases where we may
5302 not know what kind of code is being used (e.g. no debug information)
5303 easier we sometimes use both kinds. */
5304
5305 enum mips_fval_reg
5306 {
5307 mips_fval_fpr,
5308 mips_fval_gpr,
5309 mips_fval_both
5310 };
5311
5312 /* O32 ABI stuff. */
5313
5314 static CORE_ADDR
5315 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5316 struct regcache *regcache, CORE_ADDR bp_addr,
5317 int nargs, struct value **args, CORE_ADDR sp,
5318 int struct_return, CORE_ADDR struct_addr)
5319 {
5320 int argreg;
5321 int float_argreg;
5322 int argnum;
5323 int len = 0;
5324 int stack_offset = 0;
5325 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5326 CORE_ADDR func_addr = find_function_addr (function, NULL);
5327
5328 /* For shared libraries, "t9" needs to point at the function
5329 address. */
5330 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5331
5332 /* Set the return address register to point to the entry point of
5333 the program, where a breakpoint lies in wait. */
5334 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5335
5336 /* First ensure that the stack and structure return address (if any)
5337 are properly aligned. The stack has to be at least 64-bit
5338 aligned even on 32-bit machines, because doubles must be 64-bit
5339 aligned. For n32 and n64, stack frames need to be 128-bit
5340 aligned, so we round to this widest known alignment. */
5341
5342 sp = align_down (sp, 16);
5343 struct_addr = align_down (struct_addr, 16);
5344
5345 /* Now make space on the stack for the args. */
5346 for (argnum = 0; argnum < nargs; argnum++)
5347 {
5348 struct type *arg_type = check_typedef (value_type (args[argnum]));
5349
5350 /* Align to double-word if necessary. */
5351 if (mips_type_needs_double_align (arg_type))
5352 len = align_up (len, MIPS32_REGSIZE * 2);
5353 /* Allocate space on the stack. */
5354 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
5355 }
5356 sp -= align_up (len, 16);
5357
5358 if (mips_debug)
5359 fprintf_unfiltered (gdb_stdlog,
5360 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5361 paddress (gdbarch, sp), (long) align_up (len, 16));
5362
5363 /* Initialize the integer and float register pointers. */
5364 argreg = MIPS_A0_REGNUM;
5365 float_argreg = mips_fpa0_regnum (gdbarch);
5366
5367 /* The struct_return pointer occupies the first parameter-passing reg. */
5368 if (struct_return)
5369 {
5370 if (mips_debug)
5371 fprintf_unfiltered (gdb_stdlog,
5372 "mips_o32_push_dummy_call: "
5373 "struct_return reg=%d %s\n",
5374 argreg, paddress (gdbarch, struct_addr));
5375 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5376 stack_offset += MIPS32_REGSIZE;
5377 }
5378
5379 /* Now load as many as possible of the first arguments into
5380 registers, and push the rest onto the stack. Loop thru args
5381 from first to last. */
5382 for (argnum = 0; argnum < nargs; argnum++)
5383 {
5384 const gdb_byte *val;
5385 struct value *arg = args[argnum];
5386 struct type *arg_type = check_typedef (value_type (arg));
5387 int len = TYPE_LENGTH (arg_type);
5388 enum type_code typecode = TYPE_CODE (arg_type);
5389
5390 if (mips_debug)
5391 fprintf_unfiltered (gdb_stdlog,
5392 "mips_o32_push_dummy_call: %d len=%d type=%d",
5393 argnum + 1, len, (int) typecode);
5394
5395 val = value_contents (arg);
5396
5397 /* 32-bit ABIs always start floating point arguments in an
5398 even-numbered floating point register. Round the FP register
5399 up before the check to see if there are any FP registers
5400 left. O32 targets also pass the FP in the integer registers
5401 so also round up normal registers. */
5402 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5403 {
5404 if ((float_argreg & 1))
5405 float_argreg++;
5406 }
5407
5408 /* Floating point arguments passed in registers have to be
5409 treated specially. On 32-bit architectures, doubles are
5410 passed in register pairs; the even FP register gets the
5411 low word, and the odd FP register gets the high word.
5412 On O32, the first two floating point arguments are also
5413 copied to general registers, following their memory order,
5414 because MIPS16 functions don't use float registers for
5415 arguments. This duplication of arguments in general
5416 registers can't hurt non-MIPS16 functions, because those
5417 registers are normally skipped. */
5418
5419 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5420 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5421 {
5422 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
5423 {
5424 int freg_offset = gdbarch_byte_order (gdbarch)
5425 == BFD_ENDIAN_BIG ? 1 : 0;
5426 unsigned long regval;
5427
5428 /* First word. */
5429 regval = extract_unsigned_integer (val, 4, byte_order);
5430 if (mips_debug)
5431 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5432 float_argreg + freg_offset,
5433 phex (regval, 4));
5434 regcache_cooked_write_unsigned (regcache,
5435 float_argreg++ + freg_offset,
5436 regval);
5437 if (mips_debug)
5438 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5439 argreg, phex (regval, 4));
5440 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5441
5442 /* Second word. */
5443 regval = extract_unsigned_integer (val + 4, 4, byte_order);
5444 if (mips_debug)
5445 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5446 float_argreg - freg_offset,
5447 phex (regval, 4));
5448 regcache_cooked_write_unsigned (regcache,
5449 float_argreg++ - freg_offset,
5450 regval);
5451 if (mips_debug)
5452 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5453 argreg, phex (regval, 4));
5454 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5455 }
5456 else
5457 {
5458 /* This is a floating point value that fits entirely
5459 in a single register. */
5460 /* On 32 bit ABI's the float_argreg is further adjusted
5461 above to ensure that it is even register aligned. */
5462 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5463 if (mips_debug)
5464 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5465 float_argreg, phex (regval, len));
5466 regcache_cooked_write_unsigned (regcache,
5467 float_argreg++, regval);
5468 /* Although two FP registers are reserved for each
5469 argument, only one corresponding integer register is
5470 reserved. */
5471 if (mips_debug)
5472 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5473 argreg, phex (regval, len));
5474 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5475 }
5476 /* Reserve space for the FP register. */
5477 stack_offset += align_up (len, MIPS32_REGSIZE);
5478 }
5479 else
5480 {
5481 /* Copy the argument to general registers or the stack in
5482 register-sized pieces. Large arguments are split between
5483 registers and stack. */
5484 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5485 are treated specially: Irix cc passes
5486 them in registers where gcc sometimes puts them on the
5487 stack. For maximum compatibility, we will put them in
5488 both places. */
5489 int odd_sized_struct = (len > MIPS32_REGSIZE
5490 && len % MIPS32_REGSIZE != 0);
5491 /* Structures should be aligned to eight bytes (even arg registers)
5492 on MIPS_ABI_O32, if their first member has double precision. */
5493 if (mips_type_needs_double_align (arg_type))
5494 {
5495 if ((argreg & 1))
5496 {
5497 argreg++;
5498 stack_offset += MIPS32_REGSIZE;
5499 }
5500 }
5501 while (len > 0)
5502 {
5503 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
5504
5505 if (mips_debug)
5506 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5507 partial_len);
5508
5509 /* Write this portion of the argument to the stack. */
5510 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5511 || odd_sized_struct)
5512 {
5513 /* Should shorter than int integer values be
5514 promoted to int before being stored? */
5515 int longword_offset = 0;
5516 CORE_ADDR addr;
5517
5518 if (mips_debug)
5519 {
5520 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5521 paddress (gdbarch, stack_offset));
5522 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5523 paddress (gdbarch, longword_offset));
5524 }
5525
5526 addr = sp + stack_offset + longword_offset;
5527
5528 if (mips_debug)
5529 {
5530 int i;
5531 fprintf_unfiltered (gdb_stdlog, " @%s ",
5532 paddress (gdbarch, addr));
5533 for (i = 0; i < partial_len; i++)
5534 {
5535 fprintf_unfiltered (gdb_stdlog, "%02x",
5536 val[i] & 0xff);
5537 }
5538 }
5539 write_memory (addr, val, partial_len);
5540 }
5541
5542 /* Note!!! This is NOT an else clause. Odd sized
5543 structs may go thru BOTH paths. */
5544 /* Write this portion of the argument to a general
5545 purpose register. */
5546 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5547 {
5548 LONGEST regval = extract_signed_integer (val, partial_len,
5549 byte_order);
5550 /* Value may need to be sign extended, because
5551 mips_isa_regsize() != mips_abi_regsize(). */
5552
5553 /* A non-floating-point argument being passed in a
5554 general register. If a struct or union, and if
5555 the remaining length is smaller than the register
5556 size, we have to adjust the register value on
5557 big endian targets.
5558
5559 It does not seem to be necessary to do the
5560 same for integral types.
5561
5562 Also don't do this adjustment on O64 binaries.
5563
5564 cagney/2001-07-23: gdb/179: Also, GCC, when
5565 outputting LE O32 with sizeof (struct) <
5566 mips_abi_regsize(), generates a left shift
5567 as part of storing the argument in a register
5568 (the left shift isn't generated when
5569 sizeof (struct) >= mips_abi_regsize()). Since
5570 it is quite possible that this is GCC
5571 contradicting the LE/O32 ABI, GDB has not been
5572 adjusted to accommodate this. Either someone
5573 needs to demonstrate that the LE/O32 ABI
5574 specifies such a left shift OR this new ABI gets
5575 identified as such and GDB gets tweaked
5576 accordingly. */
5577
5578 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5579 && partial_len < MIPS32_REGSIZE
5580 && (typecode == TYPE_CODE_STRUCT
5581 || typecode == TYPE_CODE_UNION))
5582 regval <<= ((MIPS32_REGSIZE - partial_len)
5583 * TARGET_CHAR_BIT);
5584
5585 if (mips_debug)
5586 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5587 argreg,
5588 phex (regval, MIPS32_REGSIZE));
5589 regcache_cooked_write_unsigned (regcache, argreg, regval);
5590 argreg++;
5591
5592 /* Prevent subsequent floating point arguments from
5593 being passed in floating point registers. */
5594 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
5595 }
5596
5597 len -= partial_len;
5598 val += partial_len;
5599
5600 /* Compute the offset into the stack at which we will
5601 copy the next parameter.
5602
5603 In older ABIs, the caller reserved space for
5604 registers that contained arguments. This was loosely
5605 refered to as their "home". Consequently, space is
5606 always allocated. */
5607
5608 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
5609 }
5610 }
5611 if (mips_debug)
5612 fprintf_unfiltered (gdb_stdlog, "\n");
5613 }
5614
5615 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5616
5617 /* Return adjusted stack pointer. */
5618 return sp;
5619 }
5620
5621 static enum return_value_convention
5622 mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
5623 struct type *type, struct regcache *regcache,
5624 gdb_byte *readbuf, const gdb_byte *writebuf)
5625 {
5626 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
5627 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
5628 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5629 enum mips_fval_reg fval_reg;
5630
5631 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
5632 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5633 || TYPE_CODE (type) == TYPE_CODE_UNION
5634 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5635 return RETURN_VALUE_STRUCT_CONVENTION;
5636 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5637 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5638 {
5639 /* A single-precision floating-point value. If reading in or copying,
5640 then we get it from/put it to FP0 for standard MIPS code or GPR2
5641 for MIPS16 code. If writing out only, then we put it to both FP0
5642 and GPR2. We do not support reading in with no function known, if
5643 this safety check ever triggers, then we'll have to try harder. */
5644 gdb_assert (function || !readbuf);
5645 if (mips_debug)
5646 switch (fval_reg)
5647 {
5648 case mips_fval_fpr:
5649 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5650 break;
5651 case mips_fval_gpr:
5652 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5653 break;
5654 case mips_fval_both:
5655 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5656 break;
5657 }
5658 if (fval_reg != mips_fval_gpr)
5659 mips_xfer_register (gdbarch, regcache,
5660 (gdbarch_num_regs (gdbarch)
5661 + mips_regnum (gdbarch)->fp0),
5662 TYPE_LENGTH (type),
5663 gdbarch_byte_order (gdbarch),
5664 readbuf, writebuf, 0);
5665 if (fval_reg != mips_fval_fpr)
5666 mips_xfer_register (gdbarch, regcache,
5667 gdbarch_num_regs (gdbarch) + 2,
5668 TYPE_LENGTH (type),
5669 gdbarch_byte_order (gdbarch),
5670 readbuf, writebuf, 0);
5671 return RETURN_VALUE_REGISTER_CONVENTION;
5672 }
5673 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5674 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5675 {
5676 /* A double-precision floating-point value. If reading in or copying,
5677 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5678 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5679 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5680 no function known, if this safety check ever triggers, then we'll
5681 have to try harder. */
5682 gdb_assert (function || !readbuf);
5683 if (mips_debug)
5684 switch (fval_reg)
5685 {
5686 case mips_fval_fpr:
5687 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5688 break;
5689 case mips_fval_gpr:
5690 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5691 break;
5692 case mips_fval_both:
5693 fprintf_unfiltered (gdb_stderr,
5694 "Return float in $fp1/$fp0 and $2/$3\n");
5695 break;
5696 }
5697 if (fval_reg != mips_fval_gpr)
5698 {
5699 /* The most significant part goes in FP1, and the least significant
5700 in FP0. */
5701 switch (gdbarch_byte_order (gdbarch))
5702 {
5703 case BFD_ENDIAN_LITTLE:
5704 mips_xfer_register (gdbarch, regcache,
5705 (gdbarch_num_regs (gdbarch)
5706 + mips_regnum (gdbarch)->fp0 + 0),
5707 4, gdbarch_byte_order (gdbarch),
5708 readbuf, writebuf, 0);
5709 mips_xfer_register (gdbarch, regcache,
5710 (gdbarch_num_regs (gdbarch)
5711 + mips_regnum (gdbarch)->fp0 + 1),
5712 4, gdbarch_byte_order (gdbarch),
5713 readbuf, writebuf, 4);
5714 break;
5715 case BFD_ENDIAN_BIG:
5716 mips_xfer_register (gdbarch, regcache,
5717 (gdbarch_num_regs (gdbarch)
5718 + mips_regnum (gdbarch)->fp0 + 1),
5719 4, gdbarch_byte_order (gdbarch),
5720 readbuf, writebuf, 0);
5721 mips_xfer_register (gdbarch, regcache,
5722 (gdbarch_num_regs (gdbarch)
5723 + mips_regnum (gdbarch)->fp0 + 0),
5724 4, gdbarch_byte_order (gdbarch),
5725 readbuf, writebuf, 4);
5726 break;
5727 default:
5728 internal_error (__FILE__, __LINE__, _("bad switch"));
5729 }
5730 }
5731 if (fval_reg != mips_fval_fpr)
5732 {
5733 /* The two 32-bit parts are always placed in GPR2 and GPR3
5734 following these registers' memory order. */
5735 mips_xfer_register (gdbarch, regcache,
5736 gdbarch_num_regs (gdbarch) + 2,
5737 4, gdbarch_byte_order (gdbarch),
5738 readbuf, writebuf, 0);
5739 mips_xfer_register (gdbarch, regcache,
5740 gdbarch_num_regs (gdbarch) + 3,
5741 4, gdbarch_byte_order (gdbarch),
5742 readbuf, writebuf, 4);
5743 }
5744 return RETURN_VALUE_REGISTER_CONVENTION;
5745 }
5746 #if 0
5747 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5748 && TYPE_NFIELDS (type) <= 2
5749 && TYPE_NFIELDS (type) >= 1
5750 && ((TYPE_NFIELDS (type) == 1
5751 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5752 == TYPE_CODE_FLT))
5753 || (TYPE_NFIELDS (type) == 2
5754 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5755 == TYPE_CODE_FLT)
5756 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5757 == TYPE_CODE_FLT)))
5758 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5759 {
5760 /* A struct that contains one or two floats. Each value is part
5761 in the least significant part of their floating point
5762 register.. */
5763 int regnum;
5764 int field;
5765 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
5766 field < TYPE_NFIELDS (type); field++, regnum += 2)
5767 {
5768 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5769 / TARGET_CHAR_BIT);
5770 if (mips_debug)
5771 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5772 offset);
5773 mips_xfer_register (gdbarch, regcache,
5774 gdbarch_num_regs (gdbarch) + regnum,
5775 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5776 gdbarch_byte_order (gdbarch),
5777 readbuf, writebuf, offset);
5778 }
5779 return RETURN_VALUE_REGISTER_CONVENTION;
5780 }
5781 #endif
5782 #if 0
5783 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5784 || TYPE_CODE (type) == TYPE_CODE_UNION)
5785 {
5786 /* A structure or union. Extract the left justified value,
5787 regardless of the byte order. I.e. DO NOT USE
5788 mips_xfer_lower. */
5789 int offset;
5790 int regnum;
5791 for (offset = 0, regnum = MIPS_V0_REGNUM;
5792 offset < TYPE_LENGTH (type);
5793 offset += register_size (gdbarch, regnum), regnum++)
5794 {
5795 int xfer = register_size (gdbarch, regnum);
5796 if (offset + xfer > TYPE_LENGTH (type))
5797 xfer = TYPE_LENGTH (type) - offset;
5798 if (mips_debug)
5799 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5800 offset, xfer, regnum);
5801 mips_xfer_register (gdbarch, regcache,
5802 gdbarch_num_regs (gdbarch) + regnum, xfer,
5803 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5804 }
5805 return RETURN_VALUE_REGISTER_CONVENTION;
5806 }
5807 #endif
5808 else
5809 {
5810 /* A scalar extract each part but least-significant-byte
5811 justified. o32 thinks registers are 4 byte, regardless of
5812 the ISA. */
5813 int offset;
5814 int regnum;
5815 for (offset = 0, regnum = MIPS_V0_REGNUM;
5816 offset < TYPE_LENGTH (type);
5817 offset += MIPS32_REGSIZE, regnum++)
5818 {
5819 int xfer = MIPS32_REGSIZE;
5820 if (offset + xfer > TYPE_LENGTH (type))
5821 xfer = TYPE_LENGTH (type) - offset;
5822 if (mips_debug)
5823 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5824 offset, xfer, regnum);
5825 mips_xfer_register (gdbarch, regcache,
5826 gdbarch_num_regs (gdbarch) + regnum, xfer,
5827 gdbarch_byte_order (gdbarch),
5828 readbuf, writebuf, offset);
5829 }
5830 return RETURN_VALUE_REGISTER_CONVENTION;
5831 }
5832 }
5833
5834 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5835 ABI. */
5836
5837 static CORE_ADDR
5838 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5839 struct regcache *regcache, CORE_ADDR bp_addr,
5840 int nargs,
5841 struct value **args, CORE_ADDR sp,
5842 int struct_return, CORE_ADDR struct_addr)
5843 {
5844 int argreg;
5845 int float_argreg;
5846 int argnum;
5847 int len = 0;
5848 int stack_offset = 0;
5849 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5850 CORE_ADDR func_addr = find_function_addr (function, NULL);
5851
5852 /* For shared libraries, "t9" needs to point at the function
5853 address. */
5854 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5855
5856 /* Set the return address register to point to the entry point of
5857 the program, where a breakpoint lies in wait. */
5858 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5859
5860 /* First ensure that the stack and structure return address (if any)
5861 are properly aligned. The stack has to be at least 64-bit
5862 aligned even on 32-bit machines, because doubles must be 64-bit
5863 aligned. For n32 and n64, stack frames need to be 128-bit
5864 aligned, so we round to this widest known alignment. */
5865
5866 sp = align_down (sp, 16);
5867 struct_addr = align_down (struct_addr, 16);
5868
5869 /* Now make space on the stack for the args. */
5870 for (argnum = 0; argnum < nargs; argnum++)
5871 {
5872 struct type *arg_type = check_typedef (value_type (args[argnum]));
5873
5874 /* Allocate space on the stack. */
5875 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
5876 }
5877 sp -= align_up (len, 16);
5878
5879 if (mips_debug)
5880 fprintf_unfiltered (gdb_stdlog,
5881 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5882 paddress (gdbarch, sp), (long) align_up (len, 16));
5883
5884 /* Initialize the integer and float register pointers. */
5885 argreg = MIPS_A0_REGNUM;
5886 float_argreg = mips_fpa0_regnum (gdbarch);
5887
5888 /* The struct_return pointer occupies the first parameter-passing reg. */
5889 if (struct_return)
5890 {
5891 if (mips_debug)
5892 fprintf_unfiltered (gdb_stdlog,
5893 "mips_o64_push_dummy_call: "
5894 "struct_return reg=%d %s\n",
5895 argreg, paddress (gdbarch, struct_addr));
5896 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5897 stack_offset += MIPS64_REGSIZE;
5898 }
5899
5900 /* Now load as many as possible of the first arguments into
5901 registers, and push the rest onto the stack. Loop thru args
5902 from first to last. */
5903 for (argnum = 0; argnum < nargs; argnum++)
5904 {
5905 const gdb_byte *val;
5906 struct value *arg = args[argnum];
5907 struct type *arg_type = check_typedef (value_type (arg));
5908 int len = TYPE_LENGTH (arg_type);
5909 enum type_code typecode = TYPE_CODE (arg_type);
5910
5911 if (mips_debug)
5912 fprintf_unfiltered (gdb_stdlog,
5913 "mips_o64_push_dummy_call: %d len=%d type=%d",
5914 argnum + 1, len, (int) typecode);
5915
5916 val = value_contents (arg);
5917
5918 /* Floating point arguments passed in registers have to be
5919 treated specially. On 32-bit architectures, doubles are
5920 passed in register pairs; the even FP register gets the
5921 low word, and the odd FP register gets the high word.
5922 On O64, the first two floating point arguments are also
5923 copied to general registers, because MIPS16 functions
5924 don't use float registers for arguments. This duplication
5925 of arguments in general registers can't hurt non-MIPS16
5926 functions because those registers are normally skipped. */
5927
5928 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5929 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5930 {
5931 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5932 if (mips_debug)
5933 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5934 float_argreg, phex (regval, len));
5935 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
5936 if (mips_debug)
5937 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5938 argreg, phex (regval, len));
5939 regcache_cooked_write_unsigned (regcache, argreg, regval);
5940 argreg++;
5941 /* Reserve space for the FP register. */
5942 stack_offset += align_up (len, MIPS64_REGSIZE);
5943 }
5944 else
5945 {
5946 /* Copy the argument to general registers or the stack in
5947 register-sized pieces. Large arguments are split between
5948 registers and stack. */
5949 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
5950 are treated specially: Irix cc passes them in registers
5951 where gcc sometimes puts them on the stack. For maximum
5952 compatibility, we will put them in both places. */
5953 int odd_sized_struct = (len > MIPS64_REGSIZE
5954 && len % MIPS64_REGSIZE != 0);
5955 while (len > 0)
5956 {
5957 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5958
5959 if (mips_debug)
5960 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5961 partial_len);
5962
5963 /* Write this portion of the argument to the stack. */
5964 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5965 || odd_sized_struct)
5966 {
5967 /* Should shorter than int integer values be
5968 promoted to int before being stored? */
5969 int longword_offset = 0;
5970 CORE_ADDR addr;
5971 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5972 {
5973 if ((typecode == TYPE_CODE_INT
5974 || typecode == TYPE_CODE_PTR
5975 || typecode == TYPE_CODE_FLT)
5976 && len <= 4)
5977 longword_offset = MIPS64_REGSIZE - len;
5978 }
5979
5980 if (mips_debug)
5981 {
5982 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5983 paddress (gdbarch, stack_offset));
5984 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5985 paddress (gdbarch, longword_offset));
5986 }
5987
5988 addr = sp + stack_offset + longword_offset;
5989
5990 if (mips_debug)
5991 {
5992 int i;
5993 fprintf_unfiltered (gdb_stdlog, " @%s ",
5994 paddress (gdbarch, addr));
5995 for (i = 0; i < partial_len; i++)
5996 {
5997 fprintf_unfiltered (gdb_stdlog, "%02x",
5998 val[i] & 0xff);
5999 }
6000 }
6001 write_memory (addr, val, partial_len);
6002 }
6003
6004 /* Note!!! This is NOT an else clause. Odd sized
6005 structs may go thru BOTH paths. */
6006 /* Write this portion of the argument to a general
6007 purpose register. */
6008 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
6009 {
6010 LONGEST regval = extract_signed_integer (val, partial_len,
6011 byte_order);
6012 /* Value may need to be sign extended, because
6013 mips_isa_regsize() != mips_abi_regsize(). */
6014
6015 /* A non-floating-point argument being passed in a
6016 general register. If a struct or union, and if
6017 the remaining length is smaller than the register
6018 size, we have to adjust the register value on
6019 big endian targets.
6020
6021 It does not seem to be necessary to do the
6022 same for integral types. */
6023
6024 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
6025 && partial_len < MIPS64_REGSIZE
6026 && (typecode == TYPE_CODE_STRUCT
6027 || typecode == TYPE_CODE_UNION))
6028 regval <<= ((MIPS64_REGSIZE - partial_len)
6029 * TARGET_CHAR_BIT);
6030
6031 if (mips_debug)
6032 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
6033 argreg,
6034 phex (regval, MIPS64_REGSIZE));
6035 regcache_cooked_write_unsigned (regcache, argreg, regval);
6036 argreg++;
6037
6038 /* Prevent subsequent floating point arguments from
6039 being passed in floating point registers. */
6040 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
6041 }
6042
6043 len -= partial_len;
6044 val += partial_len;
6045
6046 /* Compute the offset into the stack at which we will
6047 copy the next parameter.
6048
6049 In older ABIs, the caller reserved space for
6050 registers that contained arguments. This was loosely
6051 refered to as their "home". Consequently, space is
6052 always allocated. */
6053
6054 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
6055 }
6056 }
6057 if (mips_debug)
6058 fprintf_unfiltered (gdb_stdlog, "\n");
6059 }
6060
6061 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
6062
6063 /* Return adjusted stack pointer. */
6064 return sp;
6065 }
6066
6067 static enum return_value_convention
6068 mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
6069 struct type *type, struct regcache *regcache,
6070 gdb_byte *readbuf, const gdb_byte *writebuf)
6071 {
6072 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
6073 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
6074 enum mips_fval_reg fval_reg;
6075
6076 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6077 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
6078 || TYPE_CODE (type) == TYPE_CODE_UNION
6079 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6080 return RETURN_VALUE_STRUCT_CONVENTION;
6081 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
6082 {
6083 /* A floating-point value. If reading in or copying, then we get it
6084 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6085 If writing out only, then we put it to both FP0 and GPR2. We do
6086 not support reading in with no function known, if this safety
6087 check ever triggers, then we'll have to try harder. */
6088 gdb_assert (function || !readbuf);
6089 if (mips_debug)
6090 switch (fval_reg)
6091 {
6092 case mips_fval_fpr:
6093 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
6094 break;
6095 case mips_fval_gpr:
6096 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
6097 break;
6098 case mips_fval_both:
6099 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
6100 break;
6101 }
6102 if (fval_reg != mips_fval_gpr)
6103 mips_xfer_register (gdbarch, regcache,
6104 (gdbarch_num_regs (gdbarch)
6105 + mips_regnum (gdbarch)->fp0),
6106 TYPE_LENGTH (type),
6107 gdbarch_byte_order (gdbarch),
6108 readbuf, writebuf, 0);
6109 if (fval_reg != mips_fval_fpr)
6110 mips_xfer_register (gdbarch, regcache,
6111 gdbarch_num_regs (gdbarch) + 2,
6112 TYPE_LENGTH (type),
6113 gdbarch_byte_order (gdbarch),
6114 readbuf, writebuf, 0);
6115 return RETURN_VALUE_REGISTER_CONVENTION;
6116 }
6117 else
6118 {
6119 /* A scalar extract each part but least-significant-byte
6120 justified. */
6121 int offset;
6122 int regnum;
6123 for (offset = 0, regnum = MIPS_V0_REGNUM;
6124 offset < TYPE_LENGTH (type);
6125 offset += MIPS64_REGSIZE, regnum++)
6126 {
6127 int xfer = MIPS64_REGSIZE;
6128 if (offset + xfer > TYPE_LENGTH (type))
6129 xfer = TYPE_LENGTH (type) - offset;
6130 if (mips_debug)
6131 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
6132 offset, xfer, regnum);
6133 mips_xfer_register (gdbarch, regcache,
6134 gdbarch_num_regs (gdbarch) + regnum,
6135 xfer, gdbarch_byte_order (gdbarch),
6136 readbuf, writebuf, offset);
6137 }
6138 return RETURN_VALUE_REGISTER_CONVENTION;
6139 }
6140 }
6141
6142 /* Floating point register management.
6143
6144 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6145 64bit operations, these early MIPS cpus treat fp register pairs
6146 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6147 registers and offer a compatibility mode that emulates the MIPS2 fp
6148 model. When operating in MIPS2 fp compat mode, later cpu's split
6149 double precision floats into two 32-bit chunks and store them in
6150 consecutive fp regs. To display 64-bit floats stored in this
6151 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6152 Throw in user-configurable endianness and you have a real mess.
6153
6154 The way this works is:
6155 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6156 double-precision value will be split across two logical registers.
6157 The lower-numbered logical register will hold the low-order bits,
6158 regardless of the processor's endianness.
6159 - If we are on a 64-bit processor, and we are looking for a
6160 single-precision value, it will be in the low ordered bits
6161 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6162 save slot in memory.
6163 - If we are in 64-bit mode, everything is straightforward.
6164
6165 Note that this code only deals with "live" registers at the top of the
6166 stack. We will attempt to deal with saved registers later, when
6167 the raw/cooked register interface is in place. (We need a general
6168 interface that can deal with dynamic saved register sizes -- fp
6169 regs could be 32 bits wide in one frame and 64 on the frame above
6170 and below). */
6171
6172 /* Copy a 32-bit single-precision value from the current frame
6173 into rare_buffer. */
6174
6175 static void
6176 mips_read_fp_register_single (struct frame_info *frame, int regno,
6177 gdb_byte *rare_buffer)
6178 {
6179 struct gdbarch *gdbarch = get_frame_arch (frame);
6180 int raw_size = register_size (gdbarch, regno);
6181 gdb_byte *raw_buffer = (gdb_byte *) alloca (raw_size);
6182
6183 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
6184 error (_("can't read register %d (%s)"),
6185 regno, gdbarch_register_name (gdbarch, regno));
6186 if (raw_size == 8)
6187 {
6188 /* We have a 64-bit value for this register. Find the low-order
6189 32 bits. */
6190 int offset;
6191
6192 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6193 offset = 4;
6194 else
6195 offset = 0;
6196
6197 memcpy (rare_buffer, raw_buffer + offset, 4);
6198 }
6199 else
6200 {
6201 memcpy (rare_buffer, raw_buffer, 4);
6202 }
6203 }
6204
6205 /* Copy a 64-bit double-precision value from the current frame into
6206 rare_buffer. This may include getting half of it from the next
6207 register. */
6208
6209 static void
6210 mips_read_fp_register_double (struct frame_info *frame, int regno,
6211 gdb_byte *rare_buffer)
6212 {
6213 struct gdbarch *gdbarch = get_frame_arch (frame);
6214 int raw_size = register_size (gdbarch, regno);
6215
6216 if (raw_size == 8 && !mips2_fp_compat (frame))
6217 {
6218 /* We have a 64-bit value for this register, and we should use
6219 all 64 bits. */
6220 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
6221 error (_("can't read register %d (%s)"),
6222 regno, gdbarch_register_name (gdbarch, regno));
6223 }
6224 else
6225 {
6226 int rawnum = regno % gdbarch_num_regs (gdbarch);
6227
6228 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
6229 internal_error (__FILE__, __LINE__,
6230 _("mips_read_fp_register_double: bad access to "
6231 "odd-numbered FP register"));
6232
6233 /* mips_read_fp_register_single will find the correct 32 bits from
6234 each register. */
6235 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6236 {
6237 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6238 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
6239 }
6240 else
6241 {
6242 mips_read_fp_register_single (frame, regno, rare_buffer);
6243 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
6244 }
6245 }
6246 }
6247
6248 static void
6249 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6250 int regnum)
6251 { /* Do values for FP (float) regs. */
6252 struct gdbarch *gdbarch = get_frame_arch (frame);
6253 gdb_byte *raw_buffer;
6254 std::string flt_str, dbl_str;
6255
6256 const struct type *flt_type = builtin_type (gdbarch)->builtin_float;
6257 const struct type *dbl_type = builtin_type (gdbarch)->builtin_double;
6258
6259 raw_buffer
6260 = ((gdb_byte *)
6261 alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0)));
6262
6263 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
6264 fprintf_filtered (file, "%*s",
6265 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
6266 "");
6267
6268 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
6269 {
6270 struct value_print_options opts;
6271
6272 /* 4-byte registers: Print hex and floating. Also print even
6273 numbered registers as doubles. */
6274 mips_read_fp_register_single (frame, regnum, raw_buffer);
6275 flt_str = target_float_to_string (raw_buffer, flt_type, "%-17.9g");
6276
6277 get_formatted_print_options (&opts, 'x');
6278 print_scalar_formatted (raw_buffer,
6279 builtin_type (gdbarch)->builtin_uint32,
6280 &opts, 'w', file);
6281
6282 fprintf_filtered (file, " flt: %s", flt_str.c_str ());
6283
6284 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
6285 {
6286 mips_read_fp_register_double (frame, regnum, raw_buffer);
6287 dbl_str = target_float_to_string (raw_buffer, dbl_type, "%-24.17g");
6288
6289 fprintf_filtered (file, " dbl: %s", dbl_str.c_str ());
6290 }
6291 }
6292 else
6293 {
6294 struct value_print_options opts;
6295
6296 /* Eight byte registers: print each one as hex, float and double. */
6297 mips_read_fp_register_single (frame, regnum, raw_buffer);
6298 flt_str = target_float_to_string (raw_buffer, flt_type, "%-17.9g");
6299
6300 mips_read_fp_register_double (frame, regnum, raw_buffer);
6301 dbl_str = target_float_to_string (raw_buffer, dbl_type, "%-24.17g");
6302
6303 get_formatted_print_options (&opts, 'x');
6304 print_scalar_formatted (raw_buffer,
6305 builtin_type (gdbarch)->builtin_uint64,
6306 &opts, 'g', file);
6307
6308 fprintf_filtered (file, " flt: %s", flt_str.c_str ());
6309 fprintf_filtered (file, " dbl: %s", dbl_str.c_str ());
6310 }
6311 }
6312
6313 static void
6314 mips_print_register (struct ui_file *file, struct frame_info *frame,
6315 int regnum)
6316 {
6317 struct gdbarch *gdbarch = get_frame_arch (frame);
6318 struct value_print_options opts;
6319 struct value *val;
6320
6321 if (mips_float_register_p (gdbarch, regnum))
6322 {
6323 mips_print_fp_register (file, frame, regnum);
6324 return;
6325 }
6326
6327 val = get_frame_register_value (frame, regnum);
6328
6329 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
6330
6331 /* The problem with printing numeric register names (r26, etc.) is that
6332 the user can't use them on input. Probably the best solution is to
6333 fix it so that either the numeric or the funky (a2, etc.) names
6334 are accepted on input. */
6335 if (regnum < MIPS_NUMREGS)
6336 fprintf_filtered (file, "(r%d): ", regnum);
6337 else
6338 fprintf_filtered (file, ": ");
6339
6340 get_formatted_print_options (&opts, 'x');
6341 val_print_scalar_formatted (value_type (val),
6342 value_embedded_offset (val),
6343 val,
6344 &opts, 0, file);
6345 }
6346
6347 /* Print IEEE exception condition bits in FLAGS. */
6348
6349 static void
6350 print_fpu_flags (struct ui_file *file, int flags)
6351 {
6352 if (flags & (1 << 0))
6353 fputs_filtered (" inexact", file);
6354 if (flags & (1 << 1))
6355 fputs_filtered (" uflow", file);
6356 if (flags & (1 << 2))
6357 fputs_filtered (" oflow", file);
6358 if (flags & (1 << 3))
6359 fputs_filtered (" div0", file);
6360 if (flags & (1 << 4))
6361 fputs_filtered (" inval", file);
6362 if (flags & (1 << 5))
6363 fputs_filtered (" unimp", file);
6364 fputc_filtered ('\n', file);
6365 }
6366
6367 /* Print interesting information about the floating point processor
6368 (if present) or emulator. */
6369
6370 static void
6371 mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
6372 struct frame_info *frame, const char *args)
6373 {
6374 int fcsr = mips_regnum (gdbarch)->fp_control_status;
6375 enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
6376 ULONGEST fcs = 0;
6377 int i;
6378
6379 if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
6380 type = MIPS_FPU_NONE;
6381
6382 fprintf_filtered (file, "fpu type: %s\n",
6383 type == MIPS_FPU_DOUBLE ? "double-precision"
6384 : type == MIPS_FPU_SINGLE ? "single-precision"
6385 : "none / unused");
6386
6387 if (type == MIPS_FPU_NONE)
6388 return;
6389
6390 fprintf_filtered (file, "reg size: %d bits\n",
6391 register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
6392
6393 fputs_filtered ("cond :", file);
6394 if (fcs & (1 << 23))
6395 fputs_filtered (" 0", file);
6396 for (i = 1; i <= 7; i++)
6397 if (fcs & (1 << (24 + i)))
6398 fprintf_filtered (file, " %d", i);
6399 fputc_filtered ('\n', file);
6400
6401 fputs_filtered ("cause :", file);
6402 print_fpu_flags (file, (fcs >> 12) & 0x3f);
6403 fputs ("mask :", stdout);
6404 print_fpu_flags (file, (fcs >> 7) & 0x1f);
6405 fputs ("flags :", stdout);
6406 print_fpu_flags (file, (fcs >> 2) & 0x1f);
6407
6408 fputs_filtered ("rounding: ", file);
6409 switch (fcs & 3)
6410 {
6411 case 0: fputs_filtered ("nearest\n", file); break;
6412 case 1: fputs_filtered ("zero\n", file); break;
6413 case 2: fputs_filtered ("+inf\n", file); break;
6414 case 3: fputs_filtered ("-inf\n", file); break;
6415 }
6416
6417 fputs_filtered ("flush :", file);
6418 if (fcs & (1 << 21))
6419 fputs_filtered (" nearest", file);
6420 if (fcs & (1 << 22))
6421 fputs_filtered (" override", file);
6422 if (fcs & (1 << 24))
6423 fputs_filtered (" zero", file);
6424 if ((fcs & (0xb << 21)) == 0)
6425 fputs_filtered (" no", file);
6426 fputc_filtered ('\n', file);
6427
6428 fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
6429 fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
6430 fputc_filtered ('\n', file);
6431
6432 default_print_float_info (gdbarch, file, frame, args);
6433 }
6434
6435 /* Replacement for generic do_registers_info.
6436 Print regs in pretty columns. */
6437
6438 static int
6439 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6440 int regnum)
6441 {
6442 fprintf_filtered (file, " ");
6443 mips_print_fp_register (file, frame, regnum);
6444 fprintf_filtered (file, "\n");
6445 return regnum + 1;
6446 }
6447
6448
6449 /* Print a row's worth of GP (int) registers, with name labels above. */
6450
6451 static int
6452 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
6453 int start_regnum)
6454 {
6455 struct gdbarch *gdbarch = get_frame_arch (frame);
6456 /* Do values for GP (int) regs. */
6457 const gdb_byte *raw_buffer;
6458 struct value *value;
6459 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6460 per row. */
6461 int col, byte;
6462 int regnum;
6463
6464 /* For GP registers, we print a separate row of names above the vals. */
6465 for (col = 0, regnum = start_regnum;
6466 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6467 + gdbarch_num_pseudo_regs (gdbarch);
6468 regnum++)
6469 {
6470 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6471 continue; /* unused register */
6472 if (mips_float_register_p (gdbarch, regnum))
6473 break; /* End the row: reached FP register. */
6474 /* Large registers are handled separately. */
6475 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6476 {
6477 if (col > 0)
6478 break; /* End the row before this register. */
6479
6480 /* Print this register on a row by itself. */
6481 mips_print_register (file, frame, regnum);
6482 fprintf_filtered (file, "\n");
6483 return regnum + 1;
6484 }
6485 if (col == 0)
6486 fprintf_filtered (file, " ");
6487 fprintf_filtered (file,
6488 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6489 gdbarch_register_name (gdbarch, regnum));
6490 col++;
6491 }
6492
6493 if (col == 0)
6494 return regnum;
6495
6496 /* Print the R0 to R31 names. */
6497 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
6498 fprintf_filtered (file, "\n R%-4d",
6499 start_regnum % gdbarch_num_regs (gdbarch));
6500 else
6501 fprintf_filtered (file, "\n ");
6502
6503 /* Now print the values in hex, 4 or 8 to the row. */
6504 for (col = 0, regnum = start_regnum;
6505 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6506 + gdbarch_num_pseudo_regs (gdbarch);
6507 regnum++)
6508 {
6509 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6510 continue; /* unused register */
6511 if (mips_float_register_p (gdbarch, regnum))
6512 break; /* End row: reached FP register. */
6513 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6514 break; /* End row: large register. */
6515
6516 /* OK: get the data in raw format. */
6517 value = get_frame_register_value (frame, regnum);
6518 if (value_optimized_out (value)
6519 || !value_entirely_available (value))
6520 {
6521 fprintf_filtered (file, "%*s ",
6522 (int) mips_abi_regsize (gdbarch) * 2,
6523 (mips_abi_regsize (gdbarch) == 4 ? "<unavl>"
6524 : "<unavailable>"));
6525 col++;
6526 continue;
6527 }
6528 raw_buffer = value_contents_all (value);
6529 /* pad small registers */
6530 for (byte = 0;
6531 byte < (mips_abi_regsize (gdbarch)
6532 - register_size (gdbarch, regnum)); byte++)
6533 fprintf_filtered (file, " ");
6534 /* Now print the register value in hex, endian order. */
6535 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6536 for (byte =
6537 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6538 byte < register_size (gdbarch, regnum); byte++)
6539 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6540 else
6541 for (byte = register_size (gdbarch, regnum) - 1;
6542 byte >= 0; byte--)
6543 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6544 fprintf_filtered (file, " ");
6545 col++;
6546 }
6547 if (col > 0) /* ie. if we actually printed anything... */
6548 fprintf_filtered (file, "\n");
6549
6550 return regnum;
6551 }
6552
6553 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
6554
6555 static void
6556 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6557 struct frame_info *frame, int regnum, int all)
6558 {
6559 if (regnum != -1) /* Do one specified register. */
6560 {
6561 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6562 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
6563 error (_("Not a valid register for the current processor type"));
6564
6565 mips_print_register (file, frame, regnum);
6566 fprintf_filtered (file, "\n");
6567 }
6568 else
6569 /* Do all (or most) registers. */
6570 {
6571 regnum = gdbarch_num_regs (gdbarch);
6572 while (regnum < gdbarch_num_regs (gdbarch)
6573 + gdbarch_num_pseudo_regs (gdbarch))
6574 {
6575 if (mips_float_register_p (gdbarch, regnum))
6576 {
6577 if (all) /* True for "INFO ALL-REGISTERS" command. */
6578 regnum = print_fp_register_row (file, frame, regnum);
6579 else
6580 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
6581 }
6582 else
6583 regnum = print_gp_register_row (file, frame, regnum);
6584 }
6585 }
6586 }
6587
6588 static int
6589 mips_single_step_through_delay (struct gdbarch *gdbarch,
6590 struct frame_info *frame)
6591 {
6592 CORE_ADDR pc = get_frame_pc (frame);
6593 enum mips_isa isa;
6594 ULONGEST insn;
6595 int size;
6596
6597 if ((mips_pc_is_mips (pc)
6598 && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
6599 || (mips_pc_is_micromips (gdbarch, pc)
6600 && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
6601 || (mips_pc_is_mips16 (gdbarch, pc)
6602 && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
6603 return 0;
6604
6605 isa = mips_pc_isa (gdbarch, pc);
6606 /* _has_delay_slot above will have validated the read. */
6607 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6608 size = mips_insn_size (isa, insn);
6609
6610 const address_space *aspace = get_frame_address_space (frame);
6611
6612 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
6613 }
6614
6615 /* To skip prologues, I use this predicate. Returns either PC itself
6616 if the code at PC does not look like a function prologue; otherwise
6617 returns an address that (if we're lucky) follows the prologue. If
6618 LENIENT, then we must skip everything which is involved in setting
6619 up the frame (it's OK to skip more, just so long as we don't skip
6620 anything which might clobber the registers which are being saved.
6621 We must skip more in the case where part of the prologue is in the
6622 delay slot of a non-prologue instruction). */
6623
6624 static CORE_ADDR
6625 mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6626 {
6627 CORE_ADDR limit_pc;
6628 CORE_ADDR func_addr;
6629
6630 /* See if we can determine the end of the prologue via the symbol table.
6631 If so, then return either PC, or the PC after the prologue, whichever
6632 is greater. */
6633 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6634 {
6635 CORE_ADDR post_prologue_pc
6636 = skip_prologue_using_sal (gdbarch, func_addr);
6637 if (post_prologue_pc != 0)
6638 return std::max (pc, post_prologue_pc);
6639 }
6640
6641 /* Can't determine prologue from the symbol table, need to examine
6642 instructions. */
6643
6644 /* Find an upper limit on the function prologue using the debug
6645 information. If the debug information could not be used to provide
6646 that bound, then use an arbitrary large number as the upper bound. */
6647 limit_pc = skip_prologue_using_sal (gdbarch, pc);
6648 if (limit_pc == 0)
6649 limit_pc = pc + 100; /* Magic. */
6650
6651 if (mips_pc_is_mips16 (gdbarch, pc))
6652 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6653 else if (mips_pc_is_micromips (gdbarch, pc))
6654 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6655 else
6656 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6657 }
6658
6659 /* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
6660 This is a helper function for mips_stack_frame_destroyed_p. */
6661
6662 static int
6663 mips32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6664 {
6665 CORE_ADDR func_addr = 0, func_end = 0;
6666
6667 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6668 {
6669 /* The MIPS epilogue is max. 12 bytes long. */
6670 CORE_ADDR addr = func_end - 12;
6671
6672 if (addr < func_addr + 4)
6673 addr = func_addr + 4;
6674 if (pc < addr)
6675 return 0;
6676
6677 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6678 {
6679 unsigned long high_word;
6680 unsigned long inst;
6681
6682 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6683 high_word = (inst >> 16) & 0xffff;
6684
6685 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6686 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6687 && inst != 0x03e00008 /* jr $ra */
6688 && inst != 0x00000000) /* nop */
6689 return 0;
6690 }
6691
6692 return 1;
6693 }
6694
6695 return 0;
6696 }
6697
6698 /* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
6699 This is a helper function for mips_stack_frame_destroyed_p. */
6700
6701 static int
6702 micromips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6703 {
6704 CORE_ADDR func_addr = 0;
6705 CORE_ADDR func_end = 0;
6706 CORE_ADDR addr;
6707 ULONGEST insn;
6708 long offset;
6709 int dreg;
6710 int sreg;
6711 int loc;
6712
6713 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6714 return 0;
6715
6716 /* The microMIPS epilogue is max. 12 bytes long. */
6717 addr = func_end - 12;
6718
6719 if (addr < func_addr + 2)
6720 addr = func_addr + 2;
6721 if (pc < addr)
6722 return 0;
6723
6724 for (; pc < func_end; pc += loc)
6725 {
6726 loc = 0;
6727 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6728 loc += MIPS_INSN16_SIZE;
6729 switch (mips_insn_size (ISA_MICROMIPS, insn))
6730 {
6731 /* 32-bit instructions. */
6732 case 2 * MIPS_INSN16_SIZE:
6733 insn <<= 16;
6734 insn |= mips_fetch_instruction (gdbarch,
6735 ISA_MICROMIPS, pc + loc, NULL);
6736 loc += MIPS_INSN16_SIZE;
6737 switch (micromips_op (insn >> 16))
6738 {
6739 case 0xc: /* ADDIU: bits 001100 */
6740 case 0x17: /* DADDIU: bits 010111 */
6741 sreg = b0s5_reg (insn >> 16);
6742 dreg = b5s5_reg (insn >> 16);
6743 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6744 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6745 /* (D)ADDIU $sp, imm */
6746 && offset >= 0)
6747 break;
6748 return 0;
6749
6750 default:
6751 return 0;
6752 }
6753 break;
6754
6755 /* 16-bit instructions. */
6756 case MIPS_INSN16_SIZE:
6757 switch (micromips_op (insn))
6758 {
6759 case 0x3: /* MOVE: bits 000011 */
6760 sreg = b0s5_reg (insn);
6761 dreg = b5s5_reg (insn);
6762 if (sreg == 0 && dreg == 0)
6763 /* MOVE $zero, $zero aka NOP */
6764 break;
6765 return 0;
6766
6767 case 0x11: /* POOL16C: bits 010001 */
6768 if (b5s5_op (insn) == 0x18
6769 /* JRADDIUSP: bits 010011 11000 */
6770 || (b5s5_op (insn) == 0xd
6771 /* JRC: bits 010011 01101 */
6772 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6773 /* JRC $ra */
6774 break;
6775 return 0;
6776
6777 case 0x13: /* POOL16D: bits 010011 */
6778 offset = micromips_decode_imm9 (b1s9_imm (insn));
6779 if ((insn & 0x1) == 0x1
6780 /* ADDIUSP: bits 010011 1 */
6781 && offset > 0)
6782 break;
6783 return 0;
6784
6785 default:
6786 return 0;
6787 }
6788 }
6789 }
6790
6791 return 1;
6792 }
6793
6794 /* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
6795 This is a helper function for mips_stack_frame_destroyed_p. */
6796
6797 static int
6798 mips16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6799 {
6800 CORE_ADDR func_addr = 0, func_end = 0;
6801
6802 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6803 {
6804 /* The MIPS epilogue is max. 12 bytes long. */
6805 CORE_ADDR addr = func_end - 12;
6806
6807 if (addr < func_addr + 4)
6808 addr = func_addr + 4;
6809 if (pc < addr)
6810 return 0;
6811
6812 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6813 {
6814 unsigned short inst;
6815
6816 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
6817
6818 if ((inst & 0xf800) == 0xf000) /* extend */
6819 continue;
6820
6821 if (inst != 0x6300 /* addiu $sp,offset */
6822 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6823 && inst != 0xe820 /* jr $ra */
6824 && inst != 0xe8a0 /* jrc $ra */
6825 && inst != 0x6500) /* nop */
6826 return 0;
6827 }
6828
6829 return 1;
6830 }
6831
6832 return 0;
6833 }
6834
6835 /* Implement the stack_frame_destroyed_p gdbarch method.
6836
6837 The epilogue is defined here as the area at the end of a function,
6838 after an instruction which destroys the function's stack frame. */
6839
6840 static int
6841 mips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6842 {
6843 if (mips_pc_is_mips16 (gdbarch, pc))
6844 return mips16_stack_frame_destroyed_p (gdbarch, pc);
6845 else if (mips_pc_is_micromips (gdbarch, pc))
6846 return micromips_stack_frame_destroyed_p (gdbarch, pc);
6847 else
6848 return mips32_stack_frame_destroyed_p (gdbarch, pc);
6849 }
6850
6851 /* Root of all "set mips "/"show mips " commands. This will eventually be
6852 used for all MIPS-specific commands. */
6853
6854 static void
6855 show_mips_command (const char *args, int from_tty)
6856 {
6857 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6858 }
6859
6860 static void
6861 set_mips_command (const char *args, int from_tty)
6862 {
6863 printf_unfiltered
6864 ("\"set mips\" must be followed by an appropriate subcommand.\n");
6865 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6866 }
6867
6868 /* Commands to show/set the MIPS FPU type. */
6869
6870 static void
6871 show_mipsfpu_command (const char *args, int from_tty)
6872 {
6873 const char *fpu;
6874
6875 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6876 {
6877 printf_unfiltered
6878 ("The MIPS floating-point coprocessor is unknown "
6879 "because the current architecture is not MIPS.\n");
6880 return;
6881 }
6882
6883 switch (MIPS_FPU_TYPE (target_gdbarch ()))
6884 {
6885 case MIPS_FPU_SINGLE:
6886 fpu = "single-precision";
6887 break;
6888 case MIPS_FPU_DOUBLE:
6889 fpu = "double-precision";
6890 break;
6891 case MIPS_FPU_NONE:
6892 fpu = "absent (none)";
6893 break;
6894 default:
6895 internal_error (__FILE__, __LINE__, _("bad switch"));
6896 }
6897 if (mips_fpu_type_auto)
6898 printf_unfiltered ("The MIPS floating-point coprocessor "
6899 "is set automatically (currently %s)\n",
6900 fpu);
6901 else
6902 printf_unfiltered
6903 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
6904 }
6905
6906
6907 static void
6908 set_mipsfpu_command (const char *args, int from_tty)
6909 {
6910 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6911 "\"single\",\"none\" or \"auto\".\n");
6912 show_mipsfpu_command (args, from_tty);
6913 }
6914
6915 static void
6916 set_mipsfpu_single_command (const char *args, int from_tty)
6917 {
6918 struct gdbarch_info info;
6919 gdbarch_info_init (&info);
6920 mips_fpu_type = MIPS_FPU_SINGLE;
6921 mips_fpu_type_auto = 0;
6922 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6923 instead of relying on globals. Doing that would let generic code
6924 handle the search for this specific architecture. */
6925 if (!gdbarch_update_p (info))
6926 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6927 }
6928
6929 static void
6930 set_mipsfpu_double_command (const char *args, int from_tty)
6931 {
6932 struct gdbarch_info info;
6933 gdbarch_info_init (&info);
6934 mips_fpu_type = MIPS_FPU_DOUBLE;
6935 mips_fpu_type_auto = 0;
6936 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6937 instead of relying on globals. Doing that would let generic code
6938 handle the search for this specific architecture. */
6939 if (!gdbarch_update_p (info))
6940 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6941 }
6942
6943 static void
6944 set_mipsfpu_none_command (const char *args, int from_tty)
6945 {
6946 struct gdbarch_info info;
6947 gdbarch_info_init (&info);
6948 mips_fpu_type = MIPS_FPU_NONE;
6949 mips_fpu_type_auto = 0;
6950 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6951 instead of relying on globals. Doing that would let generic code
6952 handle the search for this specific architecture. */
6953 if (!gdbarch_update_p (info))
6954 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6955 }
6956
6957 static void
6958 set_mipsfpu_auto_command (const char *args, int from_tty)
6959 {
6960 mips_fpu_type_auto = 1;
6961 }
6962
6963 /* Just like reinit_frame_cache, but with the right arguments to be
6964 callable as an sfunc. */
6965
6966 static void
6967 reinit_frame_cache_sfunc (const char *args, int from_tty,
6968 struct cmd_list_element *c)
6969 {
6970 reinit_frame_cache ();
6971 }
6972
6973 static int
6974 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
6975 {
6976 gdb_disassembler *di
6977 = static_cast<gdb_disassembler *>(info->application_data);
6978 struct gdbarch *gdbarch = di->arch ();
6979
6980 /* FIXME: cagney/2003-06-26: Is this even necessary? The
6981 disassembler needs to be able to locally determine the ISA, and
6982 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
6983 work. */
6984 if (mips_pc_is_mips16 (gdbarch, memaddr))
6985 info->mach = bfd_mach_mips16;
6986 else if (mips_pc_is_micromips (gdbarch, memaddr))
6987 info->mach = bfd_mach_mips_micromips;
6988
6989 /* Round down the instruction address to the appropriate boundary. */
6990 memaddr &= (info->mach == bfd_mach_mips16
6991 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
6992
6993 /* Set the disassembler options. */
6994 if (!info->disassembler_options)
6995 /* This string is not recognized explicitly by the disassembler,
6996 but it tells the disassembler to not try to guess the ABI from
6997 the bfd elf headers, such that, if the user overrides the ABI
6998 of a program linked as NewABI, the disassembly will follow the
6999 register naming conventions specified by the user. */
7000 info->disassembler_options = "gpr-names=32";
7001
7002 return default_print_insn (memaddr, info);
7003 }
7004
7005 static int
7006 gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
7007 {
7008 /* Set up the disassembler info, so that we get the right
7009 register names from libopcodes. */
7010 info->disassembler_options = "gpr-names=n32";
7011 info->flavour = bfd_target_elf_flavour;
7012
7013 return gdb_print_insn_mips (memaddr, info);
7014 }
7015
7016 static int
7017 gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
7018 {
7019 /* Set up the disassembler info, so that we get the right
7020 register names from libopcodes. */
7021 info->disassembler_options = "gpr-names=64";
7022 info->flavour = bfd_target_elf_flavour;
7023
7024 return gdb_print_insn_mips (memaddr, info);
7025 }
7026
7027 /* Implement the breakpoint_kind_from_pc gdbarch method. */
7028
7029 static int
7030 mips_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
7031 {
7032 CORE_ADDR pc = *pcptr;
7033
7034 if (mips_pc_is_mips16 (gdbarch, pc))
7035 {
7036 *pcptr = unmake_compact_addr (pc);
7037 return MIPS_BP_KIND_MIPS16;
7038 }
7039 else if (mips_pc_is_micromips (gdbarch, pc))
7040 {
7041 ULONGEST insn;
7042 int status;
7043
7044 *pcptr = unmake_compact_addr (pc);
7045 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7046 if (status || (mips_insn_size (ISA_MICROMIPS, insn) == 2))
7047 return MIPS_BP_KIND_MICROMIPS16;
7048 else
7049 return MIPS_BP_KIND_MICROMIPS32;
7050 }
7051 else
7052 return MIPS_BP_KIND_MIPS32;
7053 }
7054
7055 /* Implement the sw_breakpoint_from_kind gdbarch method. */
7056
7057 static const gdb_byte *
7058 mips_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7059 {
7060 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7061
7062 switch (kind)
7063 {
7064 case MIPS_BP_KIND_MIPS16:
7065 {
7066 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
7067 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
7068
7069 *size = 2;
7070 if (byte_order_for_code == BFD_ENDIAN_BIG)
7071 return mips16_big_breakpoint;
7072 else
7073 return mips16_little_breakpoint;
7074 }
7075 case MIPS_BP_KIND_MICROMIPS16:
7076 {
7077 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
7078 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
7079
7080 *size = 2;
7081
7082 if (byte_order_for_code == BFD_ENDIAN_BIG)
7083 return micromips16_big_breakpoint;
7084 else
7085 return micromips16_little_breakpoint;
7086 }
7087 case MIPS_BP_KIND_MICROMIPS32:
7088 {
7089 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
7090 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
7091
7092 *size = 4;
7093 if (byte_order_for_code == BFD_ENDIAN_BIG)
7094 return micromips32_big_breakpoint;
7095 else
7096 return micromips32_little_breakpoint;
7097 }
7098 case MIPS_BP_KIND_MIPS32:
7099 {
7100 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
7101 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
7102
7103 *size = 4;
7104 if (byte_order_for_code == BFD_ENDIAN_BIG)
7105 return big_breakpoint;
7106 else
7107 return little_breakpoint;
7108 }
7109 default:
7110 gdb_assert_not_reached ("unexpected mips breakpoint kind");
7111 };
7112 }
7113
7114 /* Return non-zero if the standard MIPS instruction INST has a branch
7115 delay slot (i.e. it is a jump or branch instruction). This function
7116 is based on mips32_next_pc. */
7117
7118 static int
7119 mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
7120 {
7121 int op;
7122 int rs;
7123 int rt;
7124
7125 op = itype_op (inst);
7126 if ((inst & 0xe0000000) != 0)
7127 {
7128 rs = itype_rs (inst);
7129 rt = itype_rt (inst);
7130 return (is_octeon_bbit_op (op, gdbarch)
7131 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
7132 || op == 29 /* JALX: bits 011101 */
7133 || (op == 17
7134 && (rs == 8
7135 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7136 || (rs == 9 && (rt & 0x2) == 0)
7137 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7138 || (rs == 10 && (rt & 0x2) == 0))));
7139 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7140 }
7141 else
7142 switch (op & 0x07) /* extract bits 28,27,26 */
7143 {
7144 case 0: /* SPECIAL */
7145 op = rtype_funct (inst);
7146 return (op == 8 /* JR */
7147 || op == 9); /* JALR */
7148 break; /* end SPECIAL */
7149 case 1: /* REGIMM */
7150 rs = itype_rs (inst);
7151 rt = itype_rt (inst); /* branch condition */
7152 return ((rt & 0xc) == 0
7153 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7154 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
7155 || ((rt & 0x1e) == 0x1c && rs == 0));
7156 /* BPOSGE32, BPOSGE64: bits 1110x */
7157 break; /* end REGIMM */
7158 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7159 return 1;
7160 break;
7161 }
7162 }
7163
7164 /* Return non-zero if a standard MIPS instruction at ADDR has a branch
7165 delay slot (i.e. it is a jump or branch instruction). */
7166
7167 static int
7168 mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
7169 {
7170 ULONGEST insn;
7171 int status;
7172
7173 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
7174 if (status)
7175 return 0;
7176
7177 return mips32_instruction_has_delay_slot (gdbarch, insn);
7178 }
7179
7180 /* Return non-zero if the microMIPS instruction INSN, comprising the
7181 16-bit major opcode word in the high 16 bits and any second word
7182 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7183 jump or branch instruction). The instruction must be 32-bit if
7184 MUSTBE32 is set or can be any instruction otherwise. */
7185
7186 static int
7187 micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
7188 {
7189 ULONGEST major = insn >> 16;
7190
7191 switch (micromips_op (major))
7192 {
7193 /* 16-bit instructions. */
7194 case 0x33: /* B16: bits 110011 */
7195 case 0x2b: /* BNEZ16: bits 101011 */
7196 case 0x23: /* BEQZ16: bits 100011 */
7197 return !mustbe32;
7198 case 0x11: /* POOL16C: bits 010001 */
7199 return (!mustbe32
7200 && ((b5s5_op (major) == 0xc
7201 /* JR16: bits 010001 01100 */
7202 || (b5s5_op (major) & 0x1e) == 0xe)));
7203 /* JALR16, JALRS16: bits 010001 0111x */
7204 /* 32-bit instructions. */
7205 case 0x3d: /* JAL: bits 111101 */
7206 case 0x3c: /* JALX: bits 111100 */
7207 case 0x35: /* J: bits 110101 */
7208 case 0x2d: /* BNE: bits 101101 */
7209 case 0x25: /* BEQ: bits 100101 */
7210 case 0x1d: /* JALS: bits 011101 */
7211 return 1;
7212 case 0x10: /* POOL32I: bits 010000 */
7213 return ((b5s5_op (major) & 0x1c) == 0x0
7214 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
7215 || (b5s5_op (major) & 0x1d) == 0x4
7216 /* BLEZ, BGTZ: bits 010000 001x0 */
7217 || (b5s5_op (major) & 0x1d) == 0x11
7218 /* BLTZALS, BGEZALS: bits 010000 100x1 */
7219 || ((b5s5_op (major) & 0x1e) == 0x14
7220 && (major & 0x3) == 0x0)
7221 /* BC2F, BC2T: bits 010000 1010x xxx00 */
7222 || (b5s5_op (major) & 0x1e) == 0x1a
7223 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
7224 || ((b5s5_op (major) & 0x1e) == 0x1c
7225 && (major & 0x3) == 0x0)
7226 /* BC1F, BC1T: bits 010000 1110x xxx00 */
7227 || ((b5s5_op (major) & 0x1c) == 0x1c
7228 && (major & 0x3) == 0x1));
7229 /* BC1ANY*: bits 010000 111xx xxx01 */
7230 case 0x0: /* POOL32A: bits 000000 */
7231 return (b0s6_op (insn) == 0x3c
7232 /* POOL32Axf: bits 000000 ... 111100 */
7233 && (b6s10_ext (insn) & 0x2bf) == 0x3c);
7234 /* JALR, JALR.HB: 000000 000x111100 111100 */
7235 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7236 default:
7237 return 0;
7238 }
7239 }
7240
7241 /* Return non-zero if a microMIPS instruction at ADDR has a branch delay
7242 slot (i.e. it is a non-compact jump instruction). The instruction
7243 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7244
7245 static int
7246 micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7247 CORE_ADDR addr, int mustbe32)
7248 {
7249 ULONGEST insn;
7250 int status;
7251 int size;
7252
7253 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7254 if (status)
7255 return 0;
7256 size = mips_insn_size (ISA_MICROMIPS, insn);
7257 insn <<= 16;
7258 if (size == 2 * MIPS_INSN16_SIZE)
7259 {
7260 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7261 if (status)
7262 return 0;
7263 }
7264
7265 return micromips_instruction_has_delay_slot (insn, mustbe32);
7266 }
7267
7268 /* Return non-zero if the MIPS16 instruction INST, which must be
7269 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7270 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7271 instruction). This function is based on mips16_next_pc. */
7272
7273 static int
7274 mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
7275 {
7276 if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7277 return !mustbe32;
7278 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7279 }
7280
7281 /* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7282 slot (i.e. it is a non-compact jump instruction). The instruction
7283 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7284
7285 static int
7286 mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7287 CORE_ADDR addr, int mustbe32)
7288 {
7289 unsigned short insn;
7290 int status;
7291
7292 insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7293 if (status)
7294 return 0;
7295
7296 return mips16_instruction_has_delay_slot (insn, mustbe32);
7297 }
7298
7299 /* Calculate the starting address of the MIPS memory segment BPADDR is in.
7300 This assumes KSSEG exists. */
7301
7302 static CORE_ADDR
7303 mips_segment_boundary (CORE_ADDR bpaddr)
7304 {
7305 CORE_ADDR mask = CORE_ADDR_MAX;
7306 int segsize;
7307
7308 if (sizeof (CORE_ADDR) == 8)
7309 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7310 a compiler warning produced where CORE_ADDR is a 32-bit type even
7311 though in that case this is dead code). */
7312 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7313 {
7314 case 3:
7315 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7316 segsize = 29; /* 32-bit compatibility segment */
7317 else
7318 segsize = 62; /* xkseg */
7319 break;
7320 case 2: /* xkphys */
7321 segsize = 59;
7322 break;
7323 default: /* xksseg (1), xkuseg/kuseg (0) */
7324 segsize = 62;
7325 break;
7326 }
7327 else if (bpaddr & 0x80000000) /* kernel segment */
7328 segsize = 29;
7329 else
7330 segsize = 31; /* user segment */
7331 mask <<= segsize;
7332 return bpaddr & mask;
7333 }
7334
7335 /* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7336 it backwards if necessary. Return the address of the new location. */
7337
7338 static CORE_ADDR
7339 mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7340 {
7341 CORE_ADDR prev_addr;
7342 CORE_ADDR boundary;
7343 CORE_ADDR func_addr;
7344
7345 /* If a breakpoint is set on the instruction in a branch delay slot,
7346 GDB gets confused. When the breakpoint is hit, the PC isn't on
7347 the instruction in the branch delay slot, the PC will point to
7348 the branch instruction. Since the PC doesn't match any known
7349 breakpoints, GDB reports a trap exception.
7350
7351 There are two possible fixes for this problem.
7352
7353 1) When the breakpoint gets hit, see if the BD bit is set in the
7354 Cause register (which indicates the last exception occurred in a
7355 branch delay slot). If the BD bit is set, fix the PC to point to
7356 the instruction in the branch delay slot.
7357
7358 2) When the user sets the breakpoint, don't allow him to set the
7359 breakpoint on the instruction in the branch delay slot. Instead
7360 move the breakpoint to the branch instruction (which will have
7361 the same result).
7362
7363 The problem with the first solution is that if the user then
7364 single-steps the processor, the branch instruction will get
7365 skipped (since GDB thinks the PC is on the instruction in the
7366 branch delay slot).
7367
7368 So, we'll use the second solution. To do this we need to know if
7369 the instruction we're trying to set the breakpoint on is in the
7370 branch delay slot. */
7371
7372 boundary = mips_segment_boundary (bpaddr);
7373
7374 /* Make sure we don't scan back before the beginning of the current
7375 function, since we may fetch constant data or insns that look like
7376 a jump. Of course we might do that anyway if the compiler has
7377 moved constants inline. :-( */
7378 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7379 && func_addr > boundary && func_addr <= bpaddr)
7380 boundary = func_addr;
7381
7382 if (mips_pc_is_mips (bpaddr))
7383 {
7384 if (bpaddr == boundary)
7385 return bpaddr;
7386
7387 /* If the previous instruction has a branch delay slot, we have
7388 to move the breakpoint to the branch instruction. */
7389 prev_addr = bpaddr - 4;
7390 if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
7391 bpaddr = prev_addr;
7392 }
7393 else
7394 {
7395 int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
7396 CORE_ADDR addr, jmpaddr;
7397 int i;
7398
7399 boundary = unmake_compact_addr (boundary);
7400
7401 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7402 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7403 so try for that first, then try the 2 byte JALR/JR.
7404 The microMIPS ASE has a whole range of jumps and branches
7405 with delay slots, some of which take 4 bytes and some take
7406 2 bytes, so the idea is the same.
7407 FIXME: We have to assume that bpaddr is not the second half
7408 of an extended instruction. */
7409 insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7410 ? micromips_insn_at_pc_has_delay_slot
7411 : mips16_insn_at_pc_has_delay_slot);
7412
7413 jmpaddr = 0;
7414 addr = bpaddr;
7415 for (i = 1; i < 4; i++)
7416 {
7417 if (unmake_compact_addr (addr) == boundary)
7418 break;
7419 addr -= MIPS_INSN16_SIZE;
7420 if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
7421 /* Looks like a JR/JALR at [target-1], but it could be
7422 the second word of a previous JAL/JALX, so record it
7423 and check back one more. */
7424 jmpaddr = addr;
7425 else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
7426 {
7427 if (i == 2)
7428 /* Looks like a JAL/JALX at [target-2], but it could also
7429 be the second word of a previous JAL/JALX, record it,
7430 and check back one more. */
7431 jmpaddr = addr;
7432 else
7433 /* Looks like a JAL/JALX at [target-3], so any previously
7434 recorded JAL/JALX or JR/JALR must be wrong, because:
7435
7436 >-3: JAL
7437 -2: JAL-ext (can't be JAL/JALX)
7438 -1: bdslot (can't be JR/JALR)
7439 0: target insn
7440
7441 Of course it could be another JAL-ext which looks
7442 like a JAL, but in that case we'd have broken out
7443 of this loop at [target-2]:
7444
7445 -4: JAL
7446 >-3: JAL-ext
7447 -2: bdslot (can't be jmp)
7448 -1: JR/JALR
7449 0: target insn */
7450 jmpaddr = 0;
7451 }
7452 else
7453 {
7454 /* Not a jump instruction: if we're at [target-1] this
7455 could be the second word of a JAL/JALX, so continue;
7456 otherwise we're done. */
7457 if (i > 1)
7458 break;
7459 }
7460 }
7461
7462 if (jmpaddr)
7463 bpaddr = jmpaddr;
7464 }
7465
7466 return bpaddr;
7467 }
7468
7469 /* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7470 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7471
7472 static int
7473 mips_is_stub_suffix (const char *suffix, int zero)
7474 {
7475 switch (suffix[0])
7476 {
7477 case '0':
7478 return zero && suffix[1] == '\0';
7479 case '1':
7480 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7481 case '2':
7482 case '5':
7483 case '6':
7484 case '9':
7485 return suffix[1] == '\0';
7486 default:
7487 return 0;
7488 }
7489 }
7490
7491 /* Return non-zero if MODE is one of the mode infixes used for MIPS16
7492 call stubs, one of sf, df, sc, or dc. */
7493
7494 static int
7495 mips_is_stub_mode (const char *mode)
7496 {
7497 return ((mode[0] == 's' || mode[0] == 'd')
7498 && (mode[1] == 'f' || mode[1] == 'c'));
7499 }
7500
7501 /* Code at PC is a compiler-generated stub. Such a stub for a function
7502 bar might have a name like __fn_stub_bar, and might look like this:
7503
7504 mfc1 $4, $f13
7505 mfc1 $5, $f12
7506 mfc1 $6, $f15
7507 mfc1 $7, $f14
7508
7509 followed by (or interspersed with):
7510
7511 j bar
7512
7513 or:
7514
7515 lui $25, %hi(bar)
7516 addiu $25, $25, %lo(bar)
7517 jr $25
7518
7519 ($1 may be used in old code; for robustness we accept any register)
7520 or, in PIC code:
7521
7522 lui $28, %hi(_gp_disp)
7523 addiu $28, $28, %lo(_gp_disp)
7524 addu $28, $28, $25
7525 lw $25, %got(bar)
7526 addiu $25, $25, %lo(bar)
7527 jr $25
7528
7529 In the case of a __call_stub_bar stub, the sequence to set up
7530 arguments might look like this:
7531
7532 mtc1 $4, $f13
7533 mtc1 $5, $f12
7534 mtc1 $6, $f15
7535 mtc1 $7, $f14
7536
7537 followed by (or interspersed with) one of the jump sequences above.
7538
7539 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7540 of J or JR, respectively, followed by:
7541
7542 mfc1 $2, $f0
7543 mfc1 $3, $f1
7544 jr $18
7545
7546 We are at the beginning of the stub here, and scan down and extract
7547 the target address from the jump immediate instruction or, if a jump
7548 register instruction is used, from the register referred. Return
7549 the value of PC calculated or 0 if inconclusive.
7550
7551 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7552
7553 static CORE_ADDR
7554 mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7555 {
7556 struct gdbarch *gdbarch = get_frame_arch (frame);
7557 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7558 int addrreg = MIPS_ZERO_REGNUM;
7559 CORE_ADDR start_pc = pc;
7560 CORE_ADDR target_pc = 0;
7561 CORE_ADDR addr = 0;
7562 CORE_ADDR gp = 0;
7563 int status = 0;
7564 int i;
7565
7566 for (i = 0;
7567 status == 0 && target_pc == 0 && i < 20;
7568 i++, pc += MIPS_INSN32_SIZE)
7569 {
7570 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
7571 CORE_ADDR imm;
7572 int rt;
7573 int rs;
7574 int rd;
7575
7576 switch (itype_op (inst))
7577 {
7578 case 0: /* SPECIAL */
7579 switch (rtype_funct (inst))
7580 {
7581 case 8: /* JR */
7582 case 9: /* JALR */
7583 rs = rtype_rs (inst);
7584 if (rs == MIPS_GP_REGNUM)
7585 target_pc = gp; /* Hmm... */
7586 else if (rs == addrreg)
7587 target_pc = addr;
7588 break;
7589
7590 case 0x21: /* ADDU */
7591 rt = rtype_rt (inst);
7592 rs = rtype_rs (inst);
7593 rd = rtype_rd (inst);
7594 if (rd == MIPS_GP_REGNUM
7595 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7596 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7597 gp += start_pc;
7598 break;
7599 }
7600 break;
7601
7602 case 2: /* J */
7603 case 3: /* JAL */
7604 target_pc = jtype_target (inst) << 2;
7605 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7606 break;
7607
7608 case 9: /* ADDIU */
7609 rt = itype_rt (inst);
7610 rs = itype_rs (inst);
7611 if (rt == rs)
7612 {
7613 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7614 if (rt == MIPS_GP_REGNUM)
7615 gp += imm;
7616 else if (rt == addrreg)
7617 addr += imm;
7618 }
7619 break;
7620
7621 case 0xf: /* LUI */
7622 rt = itype_rt (inst);
7623 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7624 if (rt == MIPS_GP_REGNUM)
7625 gp = imm;
7626 else if (rt != MIPS_ZERO_REGNUM)
7627 {
7628 addrreg = rt;
7629 addr = imm;
7630 }
7631 break;
7632
7633 case 0x23: /* LW */
7634 rt = itype_rt (inst);
7635 rs = itype_rs (inst);
7636 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7637 if (gp != 0 && rs == MIPS_GP_REGNUM)
7638 {
7639 gdb_byte buf[4];
7640
7641 memset (buf, 0, sizeof (buf));
7642 status = target_read_memory (gp + imm, buf, sizeof (buf));
7643 addrreg = rt;
7644 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7645 }
7646 break;
7647 }
7648 }
7649
7650 return target_pc;
7651 }
7652
7653 /* If PC is in a MIPS16 call or return stub, return the address of the
7654 target PC, which is either the callee or the caller. There are several
7655 cases which must be handled:
7656
7657 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7658 and the target PC is in $31 ($ra).
7659 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7660 and the target PC is in $2.
7661 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7662 i.e. before the JALR instruction, this is effectively a call stub
7663 and the target PC is in $2. Otherwise this is effectively
7664 a return stub and the target PC is in $18.
7665 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7666 JAL or JALR instruction, this is effectively a call stub and the
7667 target PC is buried in the instruction stream. Otherwise this
7668 is effectively a return stub and the target PC is in $18.
7669 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7670 stub and the target PC is buried in the instruction stream.
7671
7672 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7673 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
7674 gory details. */
7675
7676 static CORE_ADDR
7677 mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7678 {
7679 struct gdbarch *gdbarch = get_frame_arch (frame);
7680 CORE_ADDR start_addr;
7681 const char *name;
7682 size_t prefixlen;
7683
7684 /* Find the starting address and name of the function containing the PC. */
7685 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7686 return 0;
7687
7688 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7689 and the target PC is in $31 ($ra). */
7690 prefixlen = strlen (mips_str_mips16_ret_stub);
7691 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7692 && mips_is_stub_mode (name + prefixlen)
7693 && name[prefixlen + 2] == '\0')
7694 return get_frame_register_signed
7695 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7696
7697 /* If the PC is in __mips16_call_stub_*, this is one of the call
7698 call/return stubs. */
7699 prefixlen = strlen (mips_str_mips16_call_stub);
7700 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
7701 {
7702 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7703 and the target PC is in $2. */
7704 if (mips_is_stub_suffix (name + prefixlen, 0))
7705 return get_frame_register_signed
7706 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7707
7708 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7709 i.e. before the JALR instruction, this is effectively a call stub
7710 and the target PC is in $2. Otherwise this is effectively
7711 a return stub and the target PC is in $18. */
7712 else if (mips_is_stub_mode (name + prefixlen)
7713 && name[prefixlen + 2] == '_'
7714 && mips_is_stub_suffix (name + prefixlen + 3, 0))
7715 {
7716 if (pc == start_addr)
7717 /* This is the 'call' part of a call stub. The return
7718 address is in $2. */
7719 return get_frame_register_signed
7720 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7721 else
7722 /* This is the 'return' part of a call stub. The return
7723 address is in $18. */
7724 return get_frame_register_signed
7725 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7726 }
7727 else
7728 return 0; /* Not a stub. */
7729 }
7730
7731 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7732 compiler-generated call or call/return stubs. */
7733 if (startswith (name, mips_str_fn_stub)
7734 || startswith (name, mips_str_call_stub))
7735 {
7736 if (pc == start_addr)
7737 /* This is the 'call' part of a call stub. Call this helper
7738 to scan through this code for interesting instructions
7739 and determine the final PC. */
7740 return mips_get_mips16_fn_stub_pc (frame, pc);
7741 else
7742 /* This is the 'return' part of a call stub. The return address
7743 is in $18. */
7744 return get_frame_register_signed
7745 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7746 }
7747
7748 return 0; /* Not a stub. */
7749 }
7750
7751 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7752 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7753
7754 static int
7755 mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7756 {
7757 CORE_ADDR start_addr;
7758 size_t prefixlen;
7759
7760 /* Find the starting address of the function containing the PC. */
7761 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7762 return 0;
7763
7764 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7765 the start, i.e. after the JALR instruction, this is effectively
7766 a return stub. */
7767 prefixlen = strlen (mips_str_mips16_call_stub);
7768 if (pc != start_addr
7769 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7770 && mips_is_stub_mode (name + prefixlen)
7771 && name[prefixlen + 2] == '_'
7772 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7773 return 1;
7774
7775 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7776 the JAL or JALR instruction, this is effectively a return stub. */
7777 prefixlen = strlen (mips_str_call_fp_stub);
7778 if (pc != start_addr
7779 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7780 return 1;
7781
7782 /* Consume the .pic. prefix of any PIC stub, this function must return
7783 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7784 or the call stub path will trigger in handle_inferior_event causing
7785 it to go astray. */
7786 prefixlen = strlen (mips_str_pic);
7787 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7788 name += prefixlen;
7789
7790 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7791 prefixlen = strlen (mips_str_mips16_ret_stub);
7792 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7793 && mips_is_stub_mode (name + prefixlen)
7794 && name[prefixlen + 2] == '\0')
7795 return 1;
7796
7797 return 0; /* Not a stub. */
7798 }
7799
7800 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
7801 PC of the stub target. The stub just loads $t9 and jumps to it,
7802 so that $t9 has the correct value at function entry. */
7803
7804 static CORE_ADDR
7805 mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7806 {
7807 struct gdbarch *gdbarch = get_frame_arch (frame);
7808 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7809 struct bound_minimal_symbol msym;
7810 int i;
7811 gdb_byte stub_code[16];
7812 int32_t stub_words[4];
7813
7814 /* The stub for foo is named ".pic.foo", and is either two
7815 instructions inserted before foo or a three instruction sequence
7816 which jumps to foo. */
7817 msym = lookup_minimal_symbol_by_pc (pc);
7818 if (msym.minsym == NULL
7819 || BMSYMBOL_VALUE_ADDRESS (msym) != pc
7820 || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
7821 || !startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
7822 return 0;
7823
7824 /* A two-instruction header. */
7825 if (MSYMBOL_SIZE (msym.minsym) == 8)
7826 return pc + 8;
7827
7828 /* A three-instruction (plus delay slot) trampoline. */
7829 if (MSYMBOL_SIZE (msym.minsym) == 16)
7830 {
7831 if (target_read_memory (pc, stub_code, 16) != 0)
7832 return 0;
7833 for (i = 0; i < 4; i++)
7834 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7835 4, byte_order);
7836
7837 /* A stub contains these instructions:
7838 lui t9, %hi(target)
7839 j target
7840 addiu t9, t9, %lo(target)
7841 nop
7842
7843 This works even for N64, since stubs are only generated with
7844 -msym32. */
7845 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7846 && (stub_words[1] & 0xfc000000U) == 0x08000000
7847 && (stub_words[2] & 0xffff0000U) == 0x27390000
7848 && stub_words[3] == 0x00000000)
7849 return ((((stub_words[0] & 0x0000ffff) << 16)
7850 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
7851 }
7852
7853 /* Not a recognized stub. */
7854 return 0;
7855 }
7856
7857 static CORE_ADDR
7858 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7859 {
7860 CORE_ADDR requested_pc = pc;
7861 CORE_ADDR target_pc;
7862 CORE_ADDR new_pc;
7863
7864 do
7865 {
7866 target_pc = pc;
7867
7868 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7869 if (new_pc)
7870 pc = new_pc;
7871
7872 new_pc = find_solib_trampoline_target (frame, pc);
7873 if (new_pc)
7874 pc = new_pc;
7875
7876 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7877 if (new_pc)
7878 pc = new_pc;
7879 }
7880 while (pc != target_pc);
7881
7882 return pc != requested_pc ? pc : 0;
7883 }
7884
7885 /* Convert a dbx stab register number (from `r' declaration) to a GDB
7886 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7887
7888 static int
7889 mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
7890 {
7891 int regnum;
7892 if (num >= 0 && num < 32)
7893 regnum = num;
7894 else if (num >= 38 && num < 70)
7895 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
7896 else if (num == 70)
7897 regnum = mips_regnum (gdbarch)->hi;
7898 else if (num == 71)
7899 regnum = mips_regnum (gdbarch)->lo;
7900 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7901 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
7902 else
7903 return -1;
7904 return gdbarch_num_regs (gdbarch) + regnum;
7905 }
7906
7907
7908 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
7909 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7910
7911 static int
7912 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
7913 {
7914 int regnum;
7915 if (num >= 0 && num < 32)
7916 regnum = num;
7917 else if (num >= 32 && num < 64)
7918 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
7919 else if (num == 64)
7920 regnum = mips_regnum (gdbarch)->hi;
7921 else if (num == 65)
7922 regnum = mips_regnum (gdbarch)->lo;
7923 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7924 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
7925 else
7926 return -1;
7927 return gdbarch_num_regs (gdbarch) + regnum;
7928 }
7929
7930 static int
7931 mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
7932 {
7933 /* Only makes sense to supply raw registers. */
7934 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
7935 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7936 decide if it is valid. Should instead define a standard sim/gdb
7937 register numbering scheme. */
7938 if (gdbarch_register_name (gdbarch,
7939 gdbarch_num_regs (gdbarch) + regnum) != NULL
7940 && gdbarch_register_name (gdbarch,
7941 gdbarch_num_regs (gdbarch)
7942 + regnum)[0] != '\0')
7943 return regnum;
7944 else
7945 return LEGACY_SIM_REGNO_IGNORE;
7946 }
7947
7948
7949 /* Convert an integer into an address. Extracting the value signed
7950 guarantees a correctly sign extended address. */
7951
7952 static CORE_ADDR
7953 mips_integer_to_address (struct gdbarch *gdbarch,
7954 struct type *type, const gdb_byte *buf)
7955 {
7956 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7957 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
7958 }
7959
7960 /* Dummy virtual frame pointer method. This is no more or less accurate
7961 than most other architectures; we just need to be explicit about it,
7962 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7963 an assertion failure. */
7964
7965 static void
7966 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
7967 CORE_ADDR pc, int *reg, LONGEST *offset)
7968 {
7969 *reg = MIPS_SP_REGNUM;
7970 *offset = 0;
7971 }
7972
7973 static void
7974 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
7975 {
7976 enum mips_abi *abip = (enum mips_abi *) obj;
7977 const char *name = bfd_get_section_name (abfd, sect);
7978
7979 if (*abip != MIPS_ABI_UNKNOWN)
7980 return;
7981
7982 if (!startswith (name, ".mdebug."))
7983 return;
7984
7985 if (strcmp (name, ".mdebug.abi32") == 0)
7986 *abip = MIPS_ABI_O32;
7987 else if (strcmp (name, ".mdebug.abiN32") == 0)
7988 *abip = MIPS_ABI_N32;
7989 else if (strcmp (name, ".mdebug.abi64") == 0)
7990 *abip = MIPS_ABI_N64;
7991 else if (strcmp (name, ".mdebug.abiO64") == 0)
7992 *abip = MIPS_ABI_O64;
7993 else if (strcmp (name, ".mdebug.eabi32") == 0)
7994 *abip = MIPS_ABI_EABI32;
7995 else if (strcmp (name, ".mdebug.eabi64") == 0)
7996 *abip = MIPS_ABI_EABI64;
7997 else
7998 warning (_("unsupported ABI %s."), name + 8);
7999 }
8000
8001 static void
8002 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
8003 {
8004 int *lbp = (int *) obj;
8005 const char *name = bfd_get_section_name (abfd, sect);
8006
8007 if (startswith (name, ".gcc_compiled_long32"))
8008 *lbp = 32;
8009 else if (startswith (name, ".gcc_compiled_long64"))
8010 *lbp = 64;
8011 else if (startswith (name, ".gcc_compiled_long"))
8012 warning (_("unrecognized .gcc_compiled_longXX"));
8013 }
8014
8015 static enum mips_abi
8016 global_mips_abi (void)
8017 {
8018 int i;
8019
8020 for (i = 0; mips_abi_strings[i] != NULL; i++)
8021 if (mips_abi_strings[i] == mips_abi_string)
8022 return (enum mips_abi) i;
8023
8024 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
8025 }
8026
8027 /* Return the default compressed instruction set, either of MIPS16
8028 or microMIPS, selected when none could have been determined from
8029 the ELF header of the binary being executed (or no binary has been
8030 selected. */
8031
8032 static enum mips_isa
8033 global_mips_compression (void)
8034 {
8035 int i;
8036
8037 for (i = 0; mips_compression_strings[i] != NULL; i++)
8038 if (mips_compression_strings[i] == mips_compression_string)
8039 return (enum mips_isa) i;
8040
8041 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
8042 }
8043
8044 static void
8045 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
8046 {
8047 /* If the size matches the set of 32-bit or 64-bit integer registers,
8048 assume that's what we've got. */
8049 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
8050 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
8051
8052 /* If the size matches the full set of registers GDB traditionally
8053 knows about, including floating point, for either 32-bit or
8054 64-bit, assume that's what we've got. */
8055 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
8056 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
8057
8058 /* Otherwise we don't have a useful guess. */
8059 }
8060
8061 static struct value *
8062 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
8063 {
8064 const int *reg_p = (const int *) baton;
8065 return value_of_register (*reg_p, frame);
8066 }
8067
8068 static struct gdbarch *
8069 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8070 {
8071 struct gdbarch *gdbarch;
8072 struct gdbarch_tdep *tdep;
8073 int elf_flags;
8074 enum mips_abi mips_abi, found_abi, wanted_abi;
8075 int i, num_regs;
8076 enum mips_fpu_type fpu_type;
8077 struct tdesc_arch_data *tdesc_data = NULL;
8078 int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
8079 const char **reg_names;
8080 struct mips_regnum mips_regnum, *regnum;
8081 enum mips_isa mips_isa;
8082 int dspacc;
8083 int dspctl;
8084
8085 /* First of all, extract the elf_flags, if available. */
8086 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8087 elf_flags = elf_elfheader (info.abfd)->e_flags;
8088 else if (arches != NULL)
8089 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
8090 else
8091 elf_flags = 0;
8092 if (gdbarch_debug)
8093 fprintf_unfiltered (gdb_stdlog,
8094 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
8095
8096 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
8097 switch ((elf_flags & EF_MIPS_ABI))
8098 {
8099 case E_MIPS_ABI_O32:
8100 found_abi = MIPS_ABI_O32;
8101 break;
8102 case E_MIPS_ABI_O64:
8103 found_abi = MIPS_ABI_O64;
8104 break;
8105 case E_MIPS_ABI_EABI32:
8106 found_abi = MIPS_ABI_EABI32;
8107 break;
8108 case E_MIPS_ABI_EABI64:
8109 found_abi = MIPS_ABI_EABI64;
8110 break;
8111 default:
8112 if ((elf_flags & EF_MIPS_ABI2))
8113 found_abi = MIPS_ABI_N32;
8114 else
8115 found_abi = MIPS_ABI_UNKNOWN;
8116 break;
8117 }
8118
8119 /* GCC creates a pseudo-section whose name describes the ABI. */
8120 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8121 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
8122
8123 /* If we have no useful BFD information, use the ABI from the last
8124 MIPS architecture (if there is one). */
8125 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8126 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
8127
8128 /* Try the architecture for any hint of the correct ABI. */
8129 if (found_abi == MIPS_ABI_UNKNOWN
8130 && info.bfd_arch_info != NULL
8131 && info.bfd_arch_info->arch == bfd_arch_mips)
8132 {
8133 switch (info.bfd_arch_info->mach)
8134 {
8135 case bfd_mach_mips3900:
8136 found_abi = MIPS_ABI_EABI32;
8137 break;
8138 case bfd_mach_mips4100:
8139 case bfd_mach_mips5000:
8140 found_abi = MIPS_ABI_EABI64;
8141 break;
8142 case bfd_mach_mips8000:
8143 case bfd_mach_mips10000:
8144 /* On Irix, ELF64 executables use the N64 ABI. The
8145 pseudo-sections which describe the ABI aren't present
8146 on IRIX. (Even for executables created by gcc.) */
8147 if (info.abfd != NULL
8148 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8149 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8150 found_abi = MIPS_ABI_N64;
8151 else
8152 found_abi = MIPS_ABI_N32;
8153 break;
8154 }
8155 }
8156
8157 /* Default 64-bit objects to N64 instead of O32. */
8158 if (found_abi == MIPS_ABI_UNKNOWN
8159 && info.abfd != NULL
8160 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8161 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8162 found_abi = MIPS_ABI_N64;
8163
8164 if (gdbarch_debug)
8165 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8166 found_abi);
8167
8168 /* What has the user specified from the command line? */
8169 wanted_abi = global_mips_abi ();
8170 if (gdbarch_debug)
8171 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8172 wanted_abi);
8173
8174 /* Now that we have found what the ABI for this binary would be,
8175 check whether the user is overriding it. */
8176 if (wanted_abi != MIPS_ABI_UNKNOWN)
8177 mips_abi = wanted_abi;
8178 else if (found_abi != MIPS_ABI_UNKNOWN)
8179 mips_abi = found_abi;
8180 else
8181 mips_abi = MIPS_ABI_O32;
8182 if (gdbarch_debug)
8183 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8184 mips_abi);
8185
8186 /* Make sure we don't use a 32-bit architecture with a 64-bit ABI. */
8187 if (mips_abi != MIPS_ABI_EABI32
8188 && mips_abi != MIPS_ABI_O32
8189 && info.bfd_arch_info != NULL
8190 && info.bfd_arch_info->arch == bfd_arch_mips
8191 && info.bfd_arch_info->bits_per_word < 64)
8192 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_mips, bfd_mach_mips4000);
8193
8194 /* Determine the default compressed ISA. */
8195 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8196 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8197 mips_isa = ISA_MICROMIPS;
8198 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8199 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8200 mips_isa = ISA_MIPS16;
8201 else
8202 mips_isa = global_mips_compression ();
8203 mips_compression_string = mips_compression_strings[mips_isa];
8204
8205 /* Also used when doing an architecture lookup. */
8206 if (gdbarch_debug)
8207 fprintf_unfiltered (gdb_stdlog,
8208 "mips_gdbarch_init: "
8209 "mips64_transfers_32bit_regs_p = %d\n",
8210 mips64_transfers_32bit_regs_p);
8211
8212 /* Determine the MIPS FPU type. */
8213 #ifdef HAVE_ELF
8214 if (info.abfd
8215 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8216 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8217 Tag_GNU_MIPS_ABI_FP);
8218 #endif /* HAVE_ELF */
8219
8220 if (!mips_fpu_type_auto)
8221 fpu_type = mips_fpu_type;
8222 else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
8223 {
8224 switch (elf_fpu_type)
8225 {
8226 case Val_GNU_MIPS_ABI_FP_DOUBLE:
8227 fpu_type = MIPS_FPU_DOUBLE;
8228 break;
8229 case Val_GNU_MIPS_ABI_FP_SINGLE:
8230 fpu_type = MIPS_FPU_SINGLE;
8231 break;
8232 case Val_GNU_MIPS_ABI_FP_SOFT:
8233 default:
8234 /* Soft float or unknown. */
8235 fpu_type = MIPS_FPU_NONE;
8236 break;
8237 }
8238 }
8239 else if (info.bfd_arch_info != NULL
8240 && info.bfd_arch_info->arch == bfd_arch_mips)
8241 switch (info.bfd_arch_info->mach)
8242 {
8243 case bfd_mach_mips3900:
8244 case bfd_mach_mips4100:
8245 case bfd_mach_mips4111:
8246 case bfd_mach_mips4120:
8247 fpu_type = MIPS_FPU_NONE;
8248 break;
8249 case bfd_mach_mips4650:
8250 fpu_type = MIPS_FPU_SINGLE;
8251 break;
8252 default:
8253 fpu_type = MIPS_FPU_DOUBLE;
8254 break;
8255 }
8256 else if (arches != NULL)
8257 fpu_type = MIPS_FPU_TYPE (arches->gdbarch);
8258 else
8259 fpu_type = MIPS_FPU_DOUBLE;
8260 if (gdbarch_debug)
8261 fprintf_unfiltered (gdb_stdlog,
8262 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8263
8264 /* Check for blatant incompatibilities. */
8265
8266 /* If we have only 32-bit registers, then we can't debug a 64-bit
8267 ABI. */
8268 if (info.target_desc
8269 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8270 && mips_abi != MIPS_ABI_EABI32
8271 && mips_abi != MIPS_ABI_O32)
8272 return NULL;
8273
8274 /* Fill in the OS dependent register numbers and names. */
8275 if (info.osabi == GDB_OSABI_LINUX)
8276 {
8277 mips_regnum.fp0 = 38;
8278 mips_regnum.pc = 37;
8279 mips_regnum.cause = 36;
8280 mips_regnum.badvaddr = 35;
8281 mips_regnum.hi = 34;
8282 mips_regnum.lo = 33;
8283 mips_regnum.fp_control_status = 70;
8284 mips_regnum.fp_implementation_revision = 71;
8285 mips_regnum.dspacc = -1;
8286 mips_regnum.dspctl = -1;
8287 dspacc = 72;
8288 dspctl = 78;
8289 num_regs = 90;
8290 reg_names = mips_linux_reg_names;
8291 }
8292 else
8293 {
8294 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
8295 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
8296 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
8297 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
8298 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
8299 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
8300 mips_regnum.fp_control_status = 70;
8301 mips_regnum.fp_implementation_revision = 71;
8302 mips_regnum.dspacc = dspacc = -1;
8303 mips_regnum.dspctl = dspctl = -1;
8304 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
8305 if (info.bfd_arch_info != NULL
8306 && info.bfd_arch_info->mach == bfd_mach_mips3900)
8307 reg_names = mips_tx39_reg_names;
8308 else
8309 reg_names = mips_generic_reg_names;
8310 }
8311
8312 /* Check any target description for validity. */
8313 if (tdesc_has_registers (info.target_desc))
8314 {
8315 static const char *const mips_gprs[] = {
8316 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8317 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8318 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8319 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8320 };
8321 static const char *const mips_fprs[] = {
8322 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8323 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8324 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8325 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8326 };
8327
8328 const struct tdesc_feature *feature;
8329 int valid_p;
8330
8331 feature = tdesc_find_feature (info.target_desc,
8332 "org.gnu.gdb.mips.cpu");
8333 if (feature == NULL)
8334 return NULL;
8335
8336 tdesc_data = tdesc_data_alloc ();
8337
8338 valid_p = 1;
8339 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8340 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8341 mips_gprs[i]);
8342
8343
8344 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8345 mips_regnum.lo, "lo");
8346 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8347 mips_regnum.hi, "hi");
8348 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8349 mips_regnum.pc, "pc");
8350
8351 if (!valid_p)
8352 {
8353 tdesc_data_cleanup (tdesc_data);
8354 return NULL;
8355 }
8356
8357 feature = tdesc_find_feature (info.target_desc,
8358 "org.gnu.gdb.mips.cp0");
8359 if (feature == NULL)
8360 {
8361 tdesc_data_cleanup (tdesc_data);
8362 return NULL;
8363 }
8364
8365 valid_p = 1;
8366 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8367 mips_regnum.badvaddr, "badvaddr");
8368 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8369 MIPS_PS_REGNUM, "status");
8370 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8371 mips_regnum.cause, "cause");
8372
8373 if (!valid_p)
8374 {
8375 tdesc_data_cleanup (tdesc_data);
8376 return NULL;
8377 }
8378
8379 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8380 backend is not prepared for that, though. */
8381 feature = tdesc_find_feature (info.target_desc,
8382 "org.gnu.gdb.mips.fpu");
8383 if (feature == NULL)
8384 {
8385 tdesc_data_cleanup (tdesc_data);
8386 return NULL;
8387 }
8388
8389 valid_p = 1;
8390 for (i = 0; i < 32; i++)
8391 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8392 i + mips_regnum.fp0, mips_fprs[i]);
8393
8394 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8395 mips_regnum.fp_control_status,
8396 "fcsr");
8397 valid_p
8398 &= tdesc_numbered_register (feature, tdesc_data,
8399 mips_regnum.fp_implementation_revision,
8400 "fir");
8401
8402 if (!valid_p)
8403 {
8404 tdesc_data_cleanup (tdesc_data);
8405 return NULL;
8406 }
8407
8408 num_regs = mips_regnum.fp_implementation_revision + 1;
8409
8410 if (dspacc >= 0)
8411 {
8412 feature = tdesc_find_feature (info.target_desc,
8413 "org.gnu.gdb.mips.dsp");
8414 /* The DSP registers are optional; it's OK if they are absent. */
8415 if (feature != NULL)
8416 {
8417 i = 0;
8418 valid_p = 1;
8419 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8420 dspacc + i++, "hi1");
8421 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8422 dspacc + i++, "lo1");
8423 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8424 dspacc + i++, "hi2");
8425 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8426 dspacc + i++, "lo2");
8427 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8428 dspacc + i++, "hi3");
8429 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8430 dspacc + i++, "lo3");
8431
8432 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8433 dspctl, "dspctl");
8434
8435 if (!valid_p)
8436 {
8437 tdesc_data_cleanup (tdesc_data);
8438 return NULL;
8439 }
8440
8441 mips_regnum.dspacc = dspacc;
8442 mips_regnum.dspctl = dspctl;
8443
8444 num_regs = mips_regnum.dspctl + 1;
8445 }
8446 }
8447
8448 /* It would be nice to detect an attempt to use a 64-bit ABI
8449 when only 32-bit registers are provided. */
8450 reg_names = NULL;
8451 }
8452
8453 /* Try to find a pre-existing architecture. */
8454 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8455 arches != NULL;
8456 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8457 {
8458 /* MIPS needs to be pedantic about which ABI and the compressed
8459 ISA variation the object is using. */
8460 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
8461 continue;
8462 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
8463 continue;
8464 if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
8465 continue;
8466 /* Need to be pedantic about which register virtual size is
8467 used. */
8468 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8469 != mips64_transfers_32bit_regs_p)
8470 continue;
8471 /* Be pedantic about which FPU is selected. */
8472 if (MIPS_FPU_TYPE (arches->gdbarch) != fpu_type)
8473 continue;
8474
8475 if (tdesc_data != NULL)
8476 tdesc_data_cleanup (tdesc_data);
8477 return arches->gdbarch;
8478 }
8479
8480 /* Need a new architecture. Fill in a target specific vector. */
8481 tdep = XCNEW (struct gdbarch_tdep);
8482 gdbarch = gdbarch_alloc (&info, tdep);
8483 tdep->elf_flags = elf_flags;
8484 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
8485 tdep->found_abi = found_abi;
8486 tdep->mips_abi = mips_abi;
8487 tdep->mips_isa = mips_isa;
8488 tdep->mips_fpu_type = fpu_type;
8489 tdep->register_size_valid_p = 0;
8490 tdep->register_size = 0;
8491
8492 if (info.target_desc)
8493 {
8494 /* Some useful properties can be inferred from the target. */
8495 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8496 {
8497 tdep->register_size_valid_p = 1;
8498 tdep->register_size = 4;
8499 }
8500 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8501 {
8502 tdep->register_size_valid_p = 1;
8503 tdep->register_size = 8;
8504 }
8505 }
8506
8507 /* Initially set everything according to the default ABI/ISA. */
8508 set_gdbarch_short_bit (gdbarch, 16);
8509 set_gdbarch_int_bit (gdbarch, 32);
8510 set_gdbarch_float_bit (gdbarch, 32);
8511 set_gdbarch_double_bit (gdbarch, 64);
8512 set_gdbarch_long_double_bit (gdbarch, 64);
8513 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8514 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8515 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
8516
8517 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8518 mips_ax_pseudo_register_collect);
8519 set_gdbarch_ax_pseudo_register_push_stack
8520 (gdbarch, mips_ax_pseudo_register_push_stack);
8521
8522 set_gdbarch_elf_make_msymbol_special (gdbarch,
8523 mips_elf_make_msymbol_special);
8524 set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
8525 set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
8526 set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
8527
8528 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8529 *regnum = mips_regnum;
8530 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8531 set_gdbarch_num_regs (gdbarch, num_regs);
8532 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8533 set_gdbarch_register_name (gdbarch, mips_register_name);
8534 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8535 tdep->mips_processor_reg_names = reg_names;
8536 tdep->regnum = regnum;
8537
8538 switch (mips_abi)
8539 {
8540 case MIPS_ABI_O32:
8541 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
8542 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
8543 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8544 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8545 tdep->default_mask_address_p = 0;
8546 set_gdbarch_long_bit (gdbarch, 32);
8547 set_gdbarch_ptr_bit (gdbarch, 32);
8548 set_gdbarch_long_long_bit (gdbarch, 64);
8549 break;
8550 case MIPS_ABI_O64:
8551 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
8552 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
8553 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8554 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8555 tdep->default_mask_address_p = 0;
8556 set_gdbarch_long_bit (gdbarch, 32);
8557 set_gdbarch_ptr_bit (gdbarch, 32);
8558 set_gdbarch_long_long_bit (gdbarch, 64);
8559 break;
8560 case MIPS_ABI_EABI32:
8561 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8562 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8563 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8564 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8565 tdep->default_mask_address_p = 0;
8566 set_gdbarch_long_bit (gdbarch, 32);
8567 set_gdbarch_ptr_bit (gdbarch, 32);
8568 set_gdbarch_long_long_bit (gdbarch, 64);
8569 break;
8570 case MIPS_ABI_EABI64:
8571 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8572 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8573 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8574 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8575 tdep->default_mask_address_p = 0;
8576 set_gdbarch_long_bit (gdbarch, 64);
8577 set_gdbarch_ptr_bit (gdbarch, 64);
8578 set_gdbarch_long_long_bit (gdbarch, 64);
8579 break;
8580 case MIPS_ABI_N32:
8581 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8582 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8583 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8584 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8585 tdep->default_mask_address_p = 0;
8586 set_gdbarch_long_bit (gdbarch, 32);
8587 set_gdbarch_ptr_bit (gdbarch, 32);
8588 set_gdbarch_long_long_bit (gdbarch, 64);
8589 set_gdbarch_long_double_bit (gdbarch, 128);
8590 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8591 break;
8592 case MIPS_ABI_N64:
8593 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8594 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8595 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8596 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8597 tdep->default_mask_address_p = 0;
8598 set_gdbarch_long_bit (gdbarch, 64);
8599 set_gdbarch_ptr_bit (gdbarch, 64);
8600 set_gdbarch_long_long_bit (gdbarch, 64);
8601 set_gdbarch_long_double_bit (gdbarch, 128);
8602 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8603 break;
8604 default:
8605 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8606 }
8607
8608 /* GCC creates a pseudo-section whose name specifies the size of
8609 longs, since -mlong32 or -mlong64 may be used independent of
8610 other options. How those options affect pointer sizes is ABI and
8611 architecture dependent, so use them to override the default sizes
8612 set by the ABI. This table shows the relationship between ABI,
8613 -mlongXX, and size of pointers:
8614
8615 ABI -mlongXX ptr bits
8616 --- -------- --------
8617 o32 32 32
8618 o32 64 32
8619 n32 32 32
8620 n32 64 64
8621 o64 32 32
8622 o64 64 64
8623 n64 32 32
8624 n64 64 64
8625 eabi32 32 32
8626 eabi32 64 32
8627 eabi64 32 32
8628 eabi64 64 64
8629
8630 Note that for o32 and eabi32, pointers are always 32 bits
8631 regardless of any -mlongXX option. For all others, pointers and
8632 longs are the same, as set by -mlongXX or set by defaults. */
8633
8634 if (info.abfd != NULL)
8635 {
8636 int long_bit = 0;
8637
8638 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8639 if (long_bit)
8640 {
8641 set_gdbarch_long_bit (gdbarch, long_bit);
8642 switch (mips_abi)
8643 {
8644 case MIPS_ABI_O32:
8645 case MIPS_ABI_EABI32:
8646 break;
8647 case MIPS_ABI_N32:
8648 case MIPS_ABI_O64:
8649 case MIPS_ABI_N64:
8650 case MIPS_ABI_EABI64:
8651 set_gdbarch_ptr_bit (gdbarch, long_bit);
8652 break;
8653 default:
8654 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8655 }
8656 }
8657 }
8658
8659 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8660 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8661 comment:
8662
8663 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8664 flag in object files because to do so would make it impossible to
8665 link with libraries compiled without "-gp32". This is
8666 unnecessarily restrictive.
8667
8668 We could solve this problem by adding "-gp32" multilibs to gcc,
8669 but to set this flag before gcc is built with such multilibs will
8670 break too many systems.''
8671
8672 But even more unhelpfully, the default linker output target for
8673 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8674 for 64-bit programs - you need to change the ABI to change this,
8675 and not all gcc targets support that currently. Therefore using
8676 this flag to detect 32-bit mode would do the wrong thing given
8677 the current gcc - it would make GDB treat these 64-bit programs
8678 as 32-bit programs by default. */
8679
8680 set_gdbarch_read_pc (gdbarch, mips_read_pc);
8681 set_gdbarch_write_pc (gdbarch, mips_write_pc);
8682
8683 /* Add/remove bits from an address. The MIPS needs be careful to
8684 ensure that all 32 bit addresses are sign extended to 64 bits. */
8685 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8686
8687 /* Unwind the frame. */
8688 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
8689 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
8690 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
8691
8692 /* Map debug register numbers onto internal register numbers. */
8693 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
8694 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8695 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8696 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8697 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8698 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
8699
8700 /* MIPS version of CALL_DUMMY. */
8701
8702 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8703 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
8704 set_gdbarch_frame_align (gdbarch, mips_frame_align);
8705
8706 set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
8707
8708 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8709 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8710 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8711
8712 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8713 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mips_breakpoint_kind_from_pc);
8714 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mips_sw_breakpoint_from_kind);
8715 set_gdbarch_adjust_breakpoint_address (gdbarch,
8716 mips_adjust_breakpoint_address);
8717
8718 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
8719
8720 set_gdbarch_stack_frame_destroyed_p (gdbarch, mips_stack_frame_destroyed_p);
8721
8722 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8723 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8724 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
8725
8726 set_gdbarch_register_type (gdbarch, mips_register_type);
8727
8728 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
8729
8730 if (mips_abi == MIPS_ABI_N32)
8731 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8732 else if (mips_abi == MIPS_ABI_N64)
8733 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8734 else
8735 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
8736
8737 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8738 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
8739 need to all be folded into the target vector. Since they are
8740 being used as guards for target_stopped_by_watchpoint, why not have
8741 target_stopped_by_watchpoint return the type of watchpoint that the code
8742 is sitting on? */
8743 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8744
8745 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
8746
8747 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8748 to support MIPS16. This is a bad thing. Make sure not to do it
8749 if we have an OS ABI that actually supports shared libraries, since
8750 shared library support is more important. If we have an OS someday
8751 that supports both shared libraries and MIPS16, we'll have to find
8752 a better place for these.
8753 macro/2012-04-25: But that applies to return trampolines only and
8754 currently no MIPS OS ABI uses shared libraries that have them. */
8755 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8756
8757 set_gdbarch_single_step_through_delay (gdbarch,
8758 mips_single_step_through_delay);
8759
8760 /* Virtual tables. */
8761 set_gdbarch_vbit_in_delta (gdbarch, 1);
8762
8763 mips_register_g_packet_guesses (gdbarch);
8764
8765 /* Hook in OS ABI-specific overrides, if they have been registered. */
8766 info.tdesc_data = tdesc_data;
8767 gdbarch_init_osabi (info, gdbarch);
8768
8769 /* The hook may have adjusted num_regs, fetch the final value and
8770 set pc_regnum and sp_regnum now that it has been fixed. */
8771 num_regs = gdbarch_num_regs (gdbarch);
8772 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8773 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8774
8775 /* Unwind the frame. */
8776 dwarf2_append_unwinders (gdbarch);
8777 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8778 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
8779 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
8780 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
8781 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
8782 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
8783 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
8784 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
8785 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
8786
8787 if (tdesc_data)
8788 {
8789 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
8790 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8791
8792 /* Override the normal target description methods to handle our
8793 dual real and pseudo registers. */
8794 set_gdbarch_register_name (gdbarch, mips_register_name);
8795 set_gdbarch_register_reggroup_p (gdbarch,
8796 mips_tdesc_register_reggroup_p);
8797
8798 num_regs = gdbarch_num_regs (gdbarch);
8799 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8800 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8801 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8802 }
8803
8804 /* Add ABI-specific aliases for the registers. */
8805 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8806 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8807 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8808 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8809 else
8810 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8811 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8812 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8813
8814 /* Add some other standard aliases. */
8815 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8816 user_reg_add (gdbarch, mips_register_aliases[i].name,
8817 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8818
8819 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8820 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8821 value_of_mips_user_reg,
8822 &mips_numeric_register_aliases[i].regnum);
8823
8824 return gdbarch;
8825 }
8826
8827 static void
8828 mips_abi_update (const char *ignore_args,
8829 int from_tty, struct cmd_list_element *c)
8830 {
8831 struct gdbarch_info info;
8832
8833 /* Force the architecture to update, and (if it's a MIPS architecture)
8834 mips_gdbarch_init will take care of the rest. */
8835 gdbarch_info_init (&info);
8836 gdbarch_update_p (info);
8837 }
8838
8839 /* Print out which MIPS ABI is in use. */
8840
8841 static void
8842 show_mips_abi (struct ui_file *file,
8843 int from_tty,
8844 struct cmd_list_element *ignored_cmd,
8845 const char *ignored_value)
8846 {
8847 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
8848 fprintf_filtered
8849 (file,
8850 "The MIPS ABI is unknown because the current architecture "
8851 "is not MIPS.\n");
8852 else
8853 {
8854 enum mips_abi global_abi = global_mips_abi ();
8855 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
8856 const char *actual_abi_str = mips_abi_strings[actual_abi];
8857
8858 if (global_abi == MIPS_ABI_UNKNOWN)
8859 fprintf_filtered
8860 (file,
8861 "The MIPS ABI is set automatically (currently \"%s\").\n",
8862 actual_abi_str);
8863 else if (global_abi == actual_abi)
8864 fprintf_filtered
8865 (file,
8866 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
8867 actual_abi_str);
8868 else
8869 {
8870 /* Probably shouldn't happen... */
8871 fprintf_filtered (file,
8872 "The (auto detected) MIPS ABI \"%s\" is in use "
8873 "even though the user setting was \"%s\".\n",
8874 actual_abi_str, mips_abi_strings[global_abi]);
8875 }
8876 }
8877 }
8878
8879 /* Print out which MIPS compressed ISA encoding is used. */
8880
8881 static void
8882 show_mips_compression (struct ui_file *file, int from_tty,
8883 struct cmd_list_element *c, const char *value)
8884 {
8885 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8886 value);
8887 }
8888
8889 /* Return a textual name for MIPS FPU type FPU_TYPE. */
8890
8891 static const char *
8892 mips_fpu_type_str (enum mips_fpu_type fpu_type)
8893 {
8894 switch (fpu_type)
8895 {
8896 case MIPS_FPU_NONE:
8897 return "none";
8898 case MIPS_FPU_SINGLE:
8899 return "single";
8900 case MIPS_FPU_DOUBLE:
8901 return "double";
8902 default:
8903 return "???";
8904 }
8905 }
8906
8907 static void
8908 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
8909 {
8910 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8911 if (tdep != NULL)
8912 {
8913 int ef_mips_arch;
8914 int ef_mips_32bitmode;
8915 /* Determine the ISA. */
8916 switch (tdep->elf_flags & EF_MIPS_ARCH)
8917 {
8918 case E_MIPS_ARCH_1:
8919 ef_mips_arch = 1;
8920 break;
8921 case E_MIPS_ARCH_2:
8922 ef_mips_arch = 2;
8923 break;
8924 case E_MIPS_ARCH_3:
8925 ef_mips_arch = 3;
8926 break;
8927 case E_MIPS_ARCH_4:
8928 ef_mips_arch = 4;
8929 break;
8930 default:
8931 ef_mips_arch = 0;
8932 break;
8933 }
8934 /* Determine the size of a pointer. */
8935 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
8936 fprintf_unfiltered (file,
8937 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
8938 tdep->elf_flags);
8939 fprintf_unfiltered (file,
8940 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8941 ef_mips_32bitmode);
8942 fprintf_unfiltered (file,
8943 "mips_dump_tdep: ef_mips_arch = %d\n",
8944 ef_mips_arch);
8945 fprintf_unfiltered (file,
8946 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
8947 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
8948 fprintf_unfiltered (file,
8949 "mips_dump_tdep: "
8950 "mips_mask_address_p() %d (default %d)\n",
8951 mips_mask_address_p (tdep),
8952 tdep->default_mask_address_p);
8953 }
8954 fprintf_unfiltered (file,
8955 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8956 MIPS_DEFAULT_FPU_TYPE,
8957 mips_fpu_type_str (MIPS_DEFAULT_FPU_TYPE));
8958 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
8959 MIPS_EABI (gdbarch));
8960 fprintf_unfiltered (file,
8961 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
8962 MIPS_FPU_TYPE (gdbarch),
8963 mips_fpu_type_str (MIPS_FPU_TYPE (gdbarch)));
8964 }
8965
8966 void
8967 _initialize_mips_tdep (void)
8968 {
8969 static struct cmd_list_element *mipsfpulist = NULL;
8970
8971 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
8972 if (MIPS_ABI_LAST + 1
8973 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
8974 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
8975
8976 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
8977
8978 mips_pdr_data = register_objfile_data ();
8979
8980 /* Create feature sets with the appropriate properties. The values
8981 are not important. */
8982 mips_tdesc_gp32 = allocate_target_description ();
8983 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
8984
8985 mips_tdesc_gp64 = allocate_target_description ();
8986 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
8987
8988 /* Add root prefix command for all "set mips"/"show mips" commands. */
8989 add_prefix_cmd ("mips", no_class, set_mips_command,
8990 _("Various MIPS specific commands."),
8991 &setmipscmdlist, "set mips ", 0, &setlist);
8992
8993 add_prefix_cmd ("mips", no_class, show_mips_command,
8994 _("Various MIPS specific commands."),
8995 &showmipscmdlist, "show mips ", 0, &showlist);
8996
8997 /* Allow the user to override the ABI. */
8998 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
8999 &mips_abi_string, _("\
9000 Set the MIPS ABI used by this program."), _("\
9001 Show the MIPS ABI used by this program."), _("\
9002 This option can be set to one of:\n\
9003 auto - the default ABI associated with the current binary\n\
9004 o32\n\
9005 o64\n\
9006 n32\n\
9007 n64\n\
9008 eabi32\n\
9009 eabi64"),
9010 mips_abi_update,
9011 show_mips_abi,
9012 &setmipscmdlist, &showmipscmdlist);
9013
9014 /* Allow the user to set the ISA to assume for compressed code if ELF
9015 file flags don't tell or there is no program file selected. This
9016 setting is updated whenever unambiguous ELF file flags are interpreted,
9017 and carried over to subsequent sessions. */
9018 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
9019 &mips_compression_string, _("\
9020 Set the compressed ISA encoding used by MIPS code."), _("\
9021 Show the compressed ISA encoding used by MIPS code."), _("\
9022 Select the compressed ISA encoding used in functions that have no symbol\n\
9023 information available. The encoding can be set to either of:\n\
9024 mips16\n\
9025 micromips\n\
9026 and is updated automatically from ELF file flags if available."),
9027 mips_abi_update,
9028 show_mips_compression,
9029 &setmipscmdlist, &showmipscmdlist);
9030
9031 /* Let the user turn off floating point and set the fence post for
9032 heuristic_proc_start. */
9033
9034 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
9035 _("Set use of MIPS floating-point coprocessor."),
9036 &mipsfpulist, "set mipsfpu ", 0, &setlist);
9037 add_cmd ("single", class_support, set_mipsfpu_single_command,
9038 _("Select single-precision MIPS floating-point coprocessor."),
9039 &mipsfpulist);
9040 add_cmd ("double", class_support, set_mipsfpu_double_command,
9041 _("Select double-precision MIPS floating-point coprocessor."),
9042 &mipsfpulist);
9043 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
9044 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
9045 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
9046 add_cmd ("none", class_support, set_mipsfpu_none_command,
9047 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
9048 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
9049 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
9050 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
9051 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
9052 _("Select MIPS floating-point coprocessor automatically."),
9053 &mipsfpulist);
9054 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
9055 _("Show current use of MIPS floating-point coprocessor target."),
9056 &showlist);
9057
9058 /* We really would like to have both "0" and "unlimited" work, but
9059 command.c doesn't deal with that. So make it a var_zinteger
9060 because the user can always use "999999" or some such for unlimited. */
9061 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
9062 &heuristic_fence_post, _("\
9063 Set the distance searched for the start of a function."), _("\
9064 Show the distance searched for the start of a function."), _("\
9065 If you are debugging a stripped executable, GDB needs to search through the\n\
9066 program for the start of a function. This command sets the distance of the\n\
9067 search. The only need to set it is when debugging a stripped executable."),
9068 reinit_frame_cache_sfunc,
9069 NULL, /* FIXME: i18n: The distance searched for
9070 the start of a function is %s. */
9071 &setlist, &showlist);
9072
9073 /* Allow the user to control whether the upper bits of 64-bit
9074 addresses should be zeroed. */
9075 add_setshow_auto_boolean_cmd ("mask-address", no_class,
9076 &mask_address_var, _("\
9077 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9078 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
9079 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
9080 allow GDB to determine the correct value."),
9081 NULL, show_mask_address,
9082 &setmipscmdlist, &showmipscmdlist);
9083
9084 /* Allow the user to control the size of 32 bit registers within the
9085 raw remote packet. */
9086 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
9087 &mips64_transfers_32bit_regs_p, _("\
9088 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9089 _("\
9090 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9091 _("\
9092 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9093 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
9094 64 bits for others. Use \"off\" to disable compatibility mode"),
9095 set_mips64_transfers_32bit_regs,
9096 NULL, /* FIXME: i18n: Compatibility with 64-bit
9097 MIPS target that transfers 32-bit
9098 quantities is %s. */
9099 &setlist, &showlist);
9100
9101 /* Debug this files internals. */
9102 add_setshow_zuinteger_cmd ("mips", class_maintenance,
9103 &mips_debug, _("\
9104 Set mips debugging."), _("\
9105 Show mips debugging."), _("\
9106 When non-zero, mips specific debugging is enabled."),
9107 NULL,
9108 NULL, /* FIXME: i18n: Mips debugging is
9109 currently %s. */
9110 &setdebuglist, &showdebuglist);
9111 }