]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mipsnbsd-tdep.c
2007-05-31 Markus Deuling <deuling@de.ibm.com>
[thirdparty/binutils-gdb.git] / gdb / mipsnbsd-tdep.c
1 /* Target-dependent code for NetBSD/mips.
2
3 Copyright (C) 2002, 2003, 2004, 2006, 2007 Free Software Foundation, Inc.
4
5 Contributed by Wasabi Systems, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27 #include "regset.h"
28 #include "target.h"
29 #include "value.h"
30 #include "osabi.h"
31
32 #include "gdb_assert.h"
33 #include "gdb_string.h"
34
35 #include "nbsd-tdep.h"
36 #include "mipsnbsd-tdep.h"
37 #include "mips-tdep.h"
38
39 #include "solib-svr4.h"
40
41 /* Shorthand for some register numbers used below. */
42 #define MIPS_PC_REGNUM MIPS_EMBED_PC_REGNUM
43 #define MIPS_FP0_REGNUM MIPS_EMBED_FP0_REGNUM
44 #define MIPS_FSR_REGNUM MIPS_EMBED_FP0_REGNUM + 32
45
46 /* Core file support. */
47
48 /* Number of registers in `struct reg' from <machine/reg.h>. */
49 #define MIPSNBSD_NUM_GREGS 38
50
51 /* Number of registers in `struct fpreg' from <machine/reg.h>. */
52 #define MIPSNBSD_NUM_FPREGS 33
53
54 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
55 in the floating-point register set REGSET to register cache
56 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
57
58 static void
59 mipsnbsd_supply_fpregset (const struct regset *regset,
60 struct regcache *regcache,
61 int regnum, const void *fpregs, size_t len)
62 {
63 size_t regsize = mips_isa_regsize (get_regcache_arch (regcache));
64 const char *regs = fpregs;
65 int i;
66
67 gdb_assert (len >= MIPSNBSD_NUM_FPREGS * regsize);
68
69 for (i = MIPS_FP0_REGNUM; i <= MIPS_FSR_REGNUM; i++)
70 {
71 if (regnum == i || regnum == -1)
72 regcache_raw_supply (regcache, i,
73 regs + (i - MIPS_FP0_REGNUM) * regsize);
74 }
75 }
76
77 /* Supply register REGNUM from the buffer specified by GREGS and LEN
78 in the general-purpose register set REGSET to register cache
79 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
80
81 static void
82 mipsnbsd_supply_gregset (const struct regset *regset,
83 struct regcache *regcache, int regnum,
84 const void *gregs, size_t len)
85 {
86 size_t regsize = mips_isa_regsize (get_regcache_arch (regcache));
87 const char *regs = gregs;
88 int i;
89
90 gdb_assert (len >= MIPSNBSD_NUM_GREGS * regsize);
91
92 for (i = 0; i <= MIPS_PC_REGNUM; i++)
93 {
94 if (regnum == i || regnum == -1)
95 regcache_raw_supply (regcache, i, regs + i * regsize);
96 }
97
98 if (len >= (MIPSNBSD_NUM_GREGS + MIPSNBSD_NUM_FPREGS) * regsize)
99 {
100 regs += MIPSNBSD_NUM_GREGS * regsize;
101 len -= MIPSNBSD_NUM_GREGS * regsize;
102 mipsnbsd_supply_fpregset (regset, regcache, regnum, regs, len);
103 }
104 }
105
106 /* NetBSD/mips register sets. */
107
108 static struct regset mipsnbsd_gregset =
109 {
110 NULL,
111 mipsnbsd_supply_gregset
112 };
113
114 static struct regset mipsnbsd_fpregset =
115 {
116 NULL,
117 mipsnbsd_supply_fpregset
118 };
119
120 /* Return the appropriate register set for the core section identified
121 by SECT_NAME and SECT_SIZE. */
122
123 static const struct regset *
124 mipsnbsd_regset_from_core_section (struct gdbarch *gdbarch,
125 const char *sect_name, size_t sect_size)
126 {
127 size_t regsize = mips_isa_regsize (gdbarch);
128
129 if (strcmp (sect_name, ".reg") == 0
130 && sect_size >= MIPSNBSD_NUM_GREGS * regsize)
131 return &mipsnbsd_gregset;
132
133 if (strcmp (sect_name, ".reg2") == 0
134 && sect_size >= MIPSNBSD_NUM_FPREGS * regsize)
135 return &mipsnbsd_fpregset;
136
137 return NULL;
138 }
139 \f
140
141 /* Conveniently, GDB uses the same register numbering as the
142 ptrace register structure used by NetBSD/mips. */
143
144 void
145 mipsnbsd_supply_reg (struct regcache *regcache, const char *regs, int regno)
146 {
147 int i;
148
149 for (i = 0; i <= PC_REGNUM; i++)
150 {
151 if (regno == i || regno == -1)
152 {
153 if (gdbarch_cannot_fetch_register (current_gdbarch, i))
154 regcache_raw_supply (regcache, i, NULL);
155 else
156 regcache_raw_supply (regcache, i,
157 regs + (i * mips_isa_regsize (current_gdbarch)));
158 }
159 }
160 }
161
162 void
163 mipsnbsd_fill_reg (const struct regcache *regcache, char *regs, int regno)
164 {
165 int i;
166
167 for (i = 0; i <= PC_REGNUM; i++)
168 if ((regno == i || regno == -1)
169 && ! gdbarch_cannot_store_register (current_gdbarch, i))
170 regcache_raw_collect (regcache, i,
171 regs + (i * mips_isa_regsize (current_gdbarch)));
172 }
173
174 void
175 mipsnbsd_supply_fpreg (struct regcache *regcache, const char *fpregs, int regno)
176 {
177 int i;
178
179 for (i = FP0_REGNUM;
180 i <= mips_regnum (current_gdbarch)->fp_implementation_revision;
181 i++)
182 {
183 if (regno == i || regno == -1)
184 {
185 if (gdbarch_cannot_fetch_register (current_gdbarch, i))
186 regcache_raw_supply (regcache, i, NULL);
187 else
188 regcache_raw_supply (regcache, i,
189 fpregs + ((i - FP0_REGNUM) * mips_isa_regsize (current_gdbarch)));
190 }
191 }
192 }
193
194 void
195 mipsnbsd_fill_fpreg (const struct regcache *regcache, char *fpregs, int regno)
196 {
197 int i;
198
199 for (i = FP0_REGNUM; i <= mips_regnum (current_gdbarch)->fp_control_status;
200 i++)
201 if ((regno == i || regno == -1)
202 && ! gdbarch_cannot_store_register (current_gdbarch, i))
203 regcache_raw_collect (regcache, i,
204 fpregs + ((i - FP0_REGNUM) * mips_isa_regsize (current_gdbarch)));
205 }
206
207 /* Under NetBSD/mips, signal handler invocations can be identified by the
208 designated code sequence that is used to return from a signal handler.
209 In particular, the return address of a signal handler points to the
210 following code sequence:
211
212 addu a0, sp, 16
213 li v0, 295 # __sigreturn14
214 syscall
215
216 Each instruction has a unique encoding, so we simply attempt to match
217 the instruction the PC is pointing to with any of the above instructions.
218 If there is a hit, we know the offset to the start of the designated
219 sequence and can then check whether we really are executing in the
220 signal trampoline. If not, -1 is returned, otherwise the offset from the
221 start of the return sequence is returned. */
222
223 #define RETCODE_NWORDS 3
224 #define RETCODE_SIZE (RETCODE_NWORDS * 4)
225
226 static const unsigned char sigtramp_retcode_mipsel[RETCODE_SIZE] =
227 {
228 0x10, 0x00, 0xa4, 0x27, /* addu a0, sp, 16 */
229 0x27, 0x01, 0x02, 0x24, /* li v0, 295 */
230 0x0c, 0x00, 0x00, 0x00, /* syscall */
231 };
232
233 static const unsigned char sigtramp_retcode_mipseb[RETCODE_SIZE] =
234 {
235 0x27, 0xa4, 0x00, 0x10, /* addu a0, sp, 16 */
236 0x24, 0x02, 0x01, 0x27, /* li v0, 295 */
237 0x00, 0x00, 0x00, 0x0c, /* syscall */
238 };
239
240 static LONGEST
241 mipsnbsd_sigtramp_offset (struct frame_info *next_frame)
242 {
243 CORE_ADDR pc = frame_pc_unwind (next_frame);
244 const char *retcode = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
245 ? sigtramp_retcode_mipseb : sigtramp_retcode_mipsel;
246 unsigned char ret[RETCODE_SIZE], w[4];
247 LONGEST off;
248 int i;
249
250 if (!safe_frame_unwind_memory (next_frame, pc, w, sizeof (w)))
251 return -1;
252
253 for (i = 0; i < RETCODE_NWORDS; i++)
254 {
255 if (memcmp (w, retcode + (i * 4), 4) == 0)
256 break;
257 }
258 if (i == RETCODE_NWORDS)
259 return -1;
260
261 off = i * 4;
262 pc -= off;
263
264 if (!safe_frame_unwind_memory (next_frame, pc, ret, sizeof (ret)))
265 return -1;
266
267 if (memcmp (ret, retcode, RETCODE_SIZE) == 0)
268 return off;
269
270 return -1;
271 }
272
273 /* Figure out where the longjmp will land. We expect that we have
274 just entered longjmp and haven't yet setup the stack frame, so the
275 args are still in the argument regs. MIPS_A0_REGNUM points at the
276 jmp_buf structure from which we extract the PC that we will land
277 at. The PC is copied into *pc. This routine returns true on
278 success. */
279
280 #define NBSD_MIPS_JB_PC (2 * 4)
281 #define NBSD_MIPS_JB_ELEMENT_SIZE mips_isa_regsize (current_gdbarch)
282 #define NBSD_MIPS_JB_OFFSET (NBSD_MIPS_JB_PC * \
283 NBSD_MIPS_JB_ELEMENT_SIZE)
284
285 static int
286 mipsnbsd_get_longjmp_target (CORE_ADDR *pc)
287 {
288 CORE_ADDR jb_addr;
289 char *buf;
290
291 buf = alloca (NBSD_MIPS_JB_ELEMENT_SIZE);
292
293 jb_addr = read_register (MIPS_A0_REGNUM);
294
295 if (target_read_memory (jb_addr + NBSD_MIPS_JB_OFFSET, buf,
296 NBSD_MIPS_JB_ELEMENT_SIZE))
297 return 0;
298
299 *pc = extract_unsigned_integer (buf, NBSD_MIPS_JB_ELEMENT_SIZE);
300
301 return 1;
302 }
303
304 static int
305 mipsnbsd_cannot_fetch_register (int regno)
306 {
307 return (regno == MIPS_ZERO_REGNUM
308 || regno == mips_regnum (current_gdbarch)->fp_implementation_revision);
309 }
310
311 static int
312 mipsnbsd_cannot_store_register (int regno)
313 {
314 return (regno == MIPS_ZERO_REGNUM
315 || regno == mips_regnum (current_gdbarch)->fp_implementation_revision);
316 }
317
318 /* Shared library support. */
319
320 /* NetBSD/mips uses a slightly different `struct link_map' than the
321 other NetBSD platforms. */
322
323 static struct link_map_offsets *
324 mipsnbsd_ilp32_fetch_link_map_offsets (void)
325 {
326 static struct link_map_offsets lmo;
327 static struct link_map_offsets *lmp = NULL;
328
329 if (lmp == NULL)
330 {
331 lmp = &lmo;
332
333 lmo.r_version_offset = 0;
334 lmo.r_version_size = 4;
335 lmo.r_map_offset = 4;
336 lmo.r_ldsomap_offset = -1;
337
338 /* Everything we need is in the first 24 bytes. */
339 lmo.link_map_size = 24;
340 lmo.l_addr_offset = 4;
341 lmo.l_name_offset = 8;
342 lmo.l_ld_offset = 12;
343 lmo.l_next_offset = 16;
344 lmo.l_prev_offset = 20;
345 }
346
347 return lmp;
348 }
349
350 static struct link_map_offsets *
351 mipsnbsd_lp64_fetch_link_map_offsets (void)
352 {
353 static struct link_map_offsets lmo;
354 static struct link_map_offsets *lmp = NULL;
355
356 if (lmp == NULL)
357 {
358 lmp = &lmo;
359
360 lmo.r_version_offset = 0;
361 lmo.r_version_size = 4;
362 lmo.r_map_offset = 8;
363 lmo.r_ldsomap_offset = -1;
364
365 /* Everything we need is in the first 40 bytes. */
366 lmo.link_map_size = 48;
367 lmo.l_addr_offset = 0;
368 lmo.l_name_offset = 16;
369 lmo.l_ld_offset = 24;
370 lmo.l_next_offset = 32;
371 lmo.l_prev_offset = 40;
372 }
373
374 return lmp;
375 }
376 \f
377
378 static void
379 mipsnbsd_init_abi (struct gdbarch_info info,
380 struct gdbarch *gdbarch)
381 {
382 set_gdbarch_regset_from_core_section
383 (gdbarch, mipsnbsd_regset_from_core_section);
384
385 set_gdbarch_get_longjmp_target (gdbarch, mipsnbsd_get_longjmp_target);
386
387 set_gdbarch_cannot_fetch_register (gdbarch, mipsnbsd_cannot_fetch_register);
388 set_gdbarch_cannot_store_register (gdbarch, mipsnbsd_cannot_store_register);
389
390 set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
391
392 /* NetBSD/mips has SVR4-style shared libraries. */
393 set_solib_svr4_fetch_link_map_offsets
394 (gdbarch, (gdbarch_ptr_bit (gdbarch) == 32 ?
395 mipsnbsd_ilp32_fetch_link_map_offsets :
396 mipsnbsd_lp64_fetch_link_map_offsets));
397 }
398 \f
399
400 static enum gdb_osabi
401 mipsnbsd_core_osabi_sniffer (bfd *abfd)
402 {
403 if (strcmp (bfd_get_target (abfd), "netbsd-core") == 0)
404 return GDB_OSABI_NETBSD_ELF;
405
406 return GDB_OSABI_UNKNOWN;
407 }
408
409 void
410 _initialize_mipsnbsd_tdep (void)
411 {
412 gdbarch_register_osabi (bfd_arch_mips, 0, GDB_OSABI_NETBSD_ELF,
413 mipsnbsd_init_abi);
414 }