]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/monitor.c
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / monitor.c
1 /* Remote debugging interface for boot monitors, for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2006, 2007 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support. Written by Rob Savoye for Cygnus.
7 Resurrected from the ashes by Stu Grossman.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 /* This file was derived from various remote-* modules. It is a collection
27 of generic support functions so GDB can talk directly to a ROM based
28 monitor. This saves use from having to hack an exception based handler
29 into existence, and makes for quick porting.
30
31 This module talks to a debug monitor called 'MONITOR', which
32 We communicate with MONITOR via either a direct serial line, or a TCP
33 (or possibly TELNET) stream to a terminal multiplexor,
34 which in turn talks to the target board. */
35
36 /* FIXME 32x64: This code assumes that registers and addresses are at
37 most 32 bits long. If they can be larger, you will need to declare
38 values as LONGEST and use %llx or some such to print values when
39 building commands to send to the monitor. Since we don't know of
40 any actual 64-bit targets with ROM monitors that use this code,
41 it's not an issue right now. -sts 4/18/96 */
42
43 #include "defs.h"
44 #include "gdbcore.h"
45 #include "target.h"
46 #include "exceptions.h"
47 #include <signal.h>
48 #include <ctype.h>
49 #include "gdb_string.h"
50 #include <sys/types.h>
51 #include "command.h"
52 #include "serial.h"
53 #include "monitor.h"
54 #include "gdbcmd.h"
55 #include "inferior.h"
56 #include "gdb_regex.h"
57 #include "srec.h"
58 #include "regcache.h"
59
60 static char *dev_name;
61 static struct target_ops *targ_ops;
62
63 static void monitor_interrupt_query (void);
64 static void monitor_interrupt_twice (int);
65 static void monitor_stop (void);
66 static void monitor_dump_regs (void);
67
68 #if 0
69 static int from_hex (int a);
70 #endif
71
72 static struct monitor_ops *current_monitor;
73
74 static int hashmark; /* flag set by "set hash" */
75
76 static int timeout = 30;
77
78 static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait() */
79
80 static void (*ofunc) (); /* Old SIGINT signal handler */
81
82 static CORE_ADDR *breakaddr;
83
84 /* Descriptor for I/O to remote machine. Initialize it to NULL so
85 that monitor_open knows that we don't have a file open when the
86 program starts. */
87
88 static struct serial *monitor_desc = NULL;
89
90 /* Pointer to regexp pattern matching data */
91
92 static struct re_pattern_buffer register_pattern;
93 static char register_fastmap[256];
94
95 static struct re_pattern_buffer getmem_resp_delim_pattern;
96 static char getmem_resp_delim_fastmap[256];
97
98 static struct re_pattern_buffer setmem_resp_delim_pattern;
99 static char setmem_resp_delim_fastmap[256];
100
101 static struct re_pattern_buffer setreg_resp_delim_pattern;
102 static char setreg_resp_delim_fastmap[256];
103
104 static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when
105 monitor_wait wakes up. */
106
107 static int first_time = 0; /* is this the first time we're executing after
108 gaving created the child proccess? */
109
110 #define TARGET_BUF_SIZE 2048
111
112 /* Monitor specific debugging information. Typically only useful to
113 the developer of a new monitor interface. */
114
115 static void monitor_debug (const char *fmt, ...) ATTR_FORMAT(printf, 1, 2);
116
117 static int monitor_debug_p = 0;
118
119 /* NOTE: This file alternates between monitor_debug_p and remote_debug
120 when determining if debug information is printed. Perhaps this
121 could be simplified. */
122
123 static void
124 monitor_debug (const char *fmt, ...)
125 {
126 if (monitor_debug_p)
127 {
128 va_list args;
129 va_start (args, fmt);
130 vfprintf_filtered (gdb_stdlog, fmt, args);
131 va_end (args);
132 }
133 }
134
135
136 /* Convert a string into a printable representation, Return # byte in
137 the new string. When LEN is >0 it specifies the size of the
138 string. Otherwize strlen(oldstr) is used. */
139
140 static void
141 monitor_printable_string (char *newstr, char *oldstr, int len)
142 {
143 int ch;
144 int i;
145
146 if (len <= 0)
147 len = strlen (oldstr);
148
149 for (i = 0; i < len; i++)
150 {
151 ch = oldstr[i];
152 switch (ch)
153 {
154 default:
155 if (isprint (ch))
156 *newstr++ = ch;
157
158 else
159 {
160 sprintf (newstr, "\\x%02x", ch & 0xff);
161 newstr += 4;
162 }
163 break;
164
165 case '\\':
166 *newstr++ = '\\';
167 *newstr++ = '\\';
168 break;
169 case '\b':
170 *newstr++ = '\\';
171 *newstr++ = 'b';
172 break;
173 case '\f':
174 *newstr++ = '\\';
175 *newstr++ = 't';
176 break;
177 case '\n':
178 *newstr++ = '\\';
179 *newstr++ = 'n';
180 break;
181 case '\r':
182 *newstr++ = '\\';
183 *newstr++ = 'r';
184 break;
185 case '\t':
186 *newstr++ = '\\';
187 *newstr++ = 't';
188 break;
189 case '\v':
190 *newstr++ = '\\';
191 *newstr++ = 'v';
192 break;
193 }
194 }
195
196 *newstr++ = '\0';
197 }
198
199 /* Print monitor errors with a string, converting the string to printable
200 representation. */
201
202 static void
203 monitor_error (char *function, char *message,
204 CORE_ADDR memaddr, int len, char *string, int final_char)
205 {
206 int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
207 char *safe_string = alloca ((real_len * 4) + 1);
208 monitor_printable_string (safe_string, string, real_len);
209
210 if (final_char)
211 error (_("%s (0x%s): %s: %s%c"), function, paddr_nz (memaddr), message, safe_string, final_char);
212 else
213 error (_("%s (0x%s): %s: %s"), function, paddr_nz (memaddr), message, safe_string);
214 }
215
216 /* Convert hex digit A to a number. */
217
218 static int
219 fromhex (int a)
220 {
221 if (a >= '0' && a <= '9')
222 return a - '0';
223 else if (a >= 'a' && a <= 'f')
224 return a - 'a' + 10;
225 else if (a >= 'A' && a <= 'F')
226 return a - 'A' + 10;
227 else
228 error (_("Invalid hex digit %d"), a);
229 }
230
231 /* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
232
233 This function exists to get around the problem that many host platforms
234 don't have a printf that can print 64-bit addresses. The %A format
235 specification is recognized as a special case, and causes the argument
236 to be printed as a 64-bit hexadecimal address.
237
238 Only format specifiers of the form "[0-9]*[a-z]" are recognized.
239 If it is a '%s' format, the argument is a string; otherwise the
240 argument is assumed to be a long integer.
241
242 %% is also turned into a single %.
243 */
244
245 static void
246 monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
247 {
248 char format[10];
249 char fmt;
250 char *p;
251 int i;
252 long arg_int;
253 CORE_ADDR arg_addr;
254 char *arg_string;
255
256 for (p = pattern; *p; p++)
257 {
258 if (*p == '%')
259 {
260 /* Copy the format specifier to a separate buffer. */
261 format[0] = *p++;
262 for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
263 i++, p++)
264 format[i] = *p;
265 format[i] = fmt = *p;
266 format[i + 1] = '\0';
267
268 /* Fetch the next argument and print it. */
269 switch (fmt)
270 {
271 case '%':
272 strcpy (sndbuf, "%");
273 break;
274 case 'A':
275 arg_addr = va_arg (args, CORE_ADDR);
276 strcpy (sndbuf, paddr_nz (arg_addr));
277 break;
278 case 's':
279 arg_string = va_arg (args, char *);
280 sprintf (sndbuf, format, arg_string);
281 break;
282 default:
283 arg_int = va_arg (args, long);
284 sprintf (sndbuf, format, arg_int);
285 break;
286 }
287 sndbuf += strlen (sndbuf);
288 }
289 else
290 *sndbuf++ = *p;
291 }
292 *sndbuf = '\0';
293 }
294
295
296 /* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
297 Works just like printf. */
298
299 void
300 monitor_printf_noecho (char *pattern,...)
301 {
302 va_list args;
303 char sndbuf[2000];
304 int len;
305
306 va_start (args, pattern);
307
308 monitor_vsprintf (sndbuf, pattern, args);
309
310 len = strlen (sndbuf);
311 if (len + 1 > sizeof sndbuf)
312 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
313
314 if (monitor_debug_p)
315 {
316 char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
317 monitor_printable_string (safe_string, sndbuf, 0);
318 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
319 }
320
321 monitor_write (sndbuf, len);
322 }
323
324 /* monitor_printf -- Send data to monitor and check the echo. Works just like
325 printf. */
326
327 void
328 monitor_printf (char *pattern,...)
329 {
330 va_list args;
331 char sndbuf[2000];
332 int len;
333
334 va_start (args, pattern);
335
336 monitor_vsprintf (sndbuf, pattern, args);
337
338 len = strlen (sndbuf);
339 if (len + 1 > sizeof sndbuf)
340 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
341
342 if (monitor_debug_p)
343 {
344 char *safe_string = (char *) alloca ((len * 4) + 1);
345 monitor_printable_string (safe_string, sndbuf, 0);
346 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
347 }
348
349 monitor_write (sndbuf, len);
350
351 /* We used to expect that the next immediate output was the characters we
352 just output, but sometimes some extra junk appeared before the characters
353 we expected, like an extra prompt, or a portmaster sending telnet negotiations.
354 So, just start searching for what we sent, and skip anything unknown. */
355 monitor_debug ("ExpectEcho\n");
356 monitor_expect (sndbuf, (char *) 0, 0);
357 }
358
359
360 /* Write characters to the remote system. */
361
362 void
363 monitor_write (char *buf, int buflen)
364 {
365 if (serial_write (monitor_desc, buf, buflen))
366 fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
367 safe_strerror (errno));
368 }
369
370
371 /* Read a binary character from the remote system, doing all the fancy
372 timeout stuff, but without interpreting the character in any way,
373 and without printing remote debug information. */
374
375 int
376 monitor_readchar (void)
377 {
378 int c;
379 int looping;
380
381 do
382 {
383 looping = 0;
384 c = serial_readchar (monitor_desc, timeout);
385
386 if (c >= 0)
387 c &= 0xff; /* don't lose bit 7 */
388 }
389 while (looping);
390
391 if (c >= 0)
392 return c;
393
394 if (c == SERIAL_TIMEOUT)
395 error (_("Timeout reading from remote system."));
396
397 perror_with_name (_("remote-monitor"));
398 }
399
400
401 /* Read a character from the remote system, doing all the fancy
402 timeout stuff. */
403
404 static int
405 readchar (int timeout)
406 {
407 int c;
408 static enum
409 {
410 last_random, last_nl, last_cr, last_crnl
411 }
412 state = last_random;
413 int looping;
414
415 do
416 {
417 looping = 0;
418 c = serial_readchar (monitor_desc, timeout);
419
420 if (c >= 0)
421 {
422 c &= 0x7f;
423 /* This seems to interfere with proper function of the
424 input stream */
425 if (monitor_debug_p || remote_debug)
426 {
427 char buf[2];
428 buf[0] = c;
429 buf[1] = '\0';
430 puts_debug ("read -->", buf, "<--");
431 }
432
433 }
434
435 /* Canonicialize \n\r combinations into one \r */
436 if ((current_monitor->flags & MO_HANDLE_NL) != 0)
437 {
438 if ((c == '\r' && state == last_nl)
439 || (c == '\n' && state == last_cr))
440 {
441 state = last_crnl;
442 looping = 1;
443 }
444 else if (c == '\r')
445 state = last_cr;
446 else if (c != '\n')
447 state = last_random;
448 else
449 {
450 state = last_nl;
451 c = '\r';
452 }
453 }
454 }
455 while (looping);
456
457 if (c >= 0)
458 return c;
459
460 if (c == SERIAL_TIMEOUT)
461 #if 0
462 /* I fail to see how detaching here can be useful */
463 if (in_monitor_wait) /* Watchdog went off */
464 {
465 target_mourn_inferior ();
466 error (_("GDB serial timeout has expired. Target detached."));
467 }
468 else
469 #endif
470 error (_("Timeout reading from remote system."));
471
472 perror_with_name (_("remote-monitor"));
473 }
474
475 /* Scan input from the remote system, until STRING is found. If BUF is non-
476 zero, then collect input until we have collected either STRING or BUFLEN-1
477 chars. In either case we terminate BUF with a 0. If input overflows BUF
478 because STRING can't be found, return -1, else return number of chars in BUF
479 (minus the terminating NUL). Note that in the non-overflow case, STRING
480 will be at the end of BUF. */
481
482 int
483 monitor_expect (char *string, char *buf, int buflen)
484 {
485 char *p = string;
486 int obuflen = buflen;
487 int c;
488
489 if (monitor_debug_p)
490 {
491 char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
492 monitor_printable_string (safe_string, string, 0);
493 fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
494 }
495
496 immediate_quit++;
497 while (1)
498 {
499 if (buf)
500 {
501 if (buflen < 2)
502 {
503 *buf = '\000';
504 immediate_quit--;
505 return -1;
506 }
507
508 c = readchar (timeout);
509 if (c == '\000')
510 continue;
511 *buf++ = c;
512 buflen--;
513 }
514 else
515 c = readchar (timeout);
516
517 /* Don't expect any ^C sent to be echoed */
518
519 if (*p == '\003' || c == *p)
520 {
521 p++;
522 if (*p == '\0')
523 {
524 immediate_quit--;
525
526 if (buf)
527 {
528 *buf++ = '\000';
529 return obuflen - buflen;
530 }
531 else
532 return 0;
533 }
534 }
535 else
536 {
537 /* We got a character that doesn't match the string. We need to
538 back up p, but how far? If we're looking for "..howdy" and the
539 monitor sends "...howdy"? There's certainly a match in there,
540 but when we receive the third ".", we won't find it if we just
541 restart the matching at the beginning of the string.
542
543 This is a Boyer-Moore kind of situation. We want to reset P to
544 the end of the longest prefix of STRING that is a suffix of
545 what we've read so far. In the example above, that would be
546 ".." --- the longest prefix of "..howdy" that is a suffix of
547 "...". This longest prefix could be the empty string, if C
548 is nowhere to be found in STRING.
549
550 If this longest prefix is not the empty string, it must contain
551 C, so let's search from the end of STRING for instances of C,
552 and see if the portion of STRING before that is a suffix of
553 what we read before C. Actually, we can search backwards from
554 p, since we know no prefix can be longer than that.
555
556 Note that we can use STRING itself, along with C, as a record
557 of what we've received so far. :) */
558 int i;
559
560 for (i = (p - string) - 1; i >= 0; i--)
561 if (string[i] == c)
562 {
563 /* Is this prefix a suffix of what we've read so far?
564 In other words, does
565 string[0 .. i-1] == string[p - i, p - 1]? */
566 if (! memcmp (string, p - i, i))
567 {
568 p = string + i + 1;
569 break;
570 }
571 }
572 if (i < 0)
573 p = string;
574 }
575 }
576 }
577
578 /* Search for a regexp. */
579
580 static int
581 monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
582 {
583 char *mybuf;
584 char *p;
585 monitor_debug ("MON Expecting regexp\n");
586 if (buf)
587 mybuf = buf;
588 else
589 {
590 mybuf = alloca (TARGET_BUF_SIZE);
591 buflen = TARGET_BUF_SIZE;
592 }
593
594 p = mybuf;
595 while (1)
596 {
597 int retval;
598
599 if (p - mybuf >= buflen)
600 { /* Buffer about to overflow */
601
602 /* On overflow, we copy the upper half of the buffer to the lower half. Not
603 great, but it usually works... */
604
605 memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
606 p = mybuf + buflen / 2;
607 }
608
609 *p++ = readchar (timeout);
610
611 retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
612 if (retval >= 0)
613 return 1;
614 }
615 }
616
617 /* Keep discarding input until we see the MONITOR prompt.
618
619 The convention for dealing with the prompt is that you
620 o give your command
621 o *then* wait for the prompt.
622
623 Thus the last thing that a procedure does with the serial line will
624 be an monitor_expect_prompt(). Exception: monitor_resume does not
625 wait for the prompt, because the terminal is being handed over to
626 the inferior. However, the next thing which happens after that is
627 a monitor_wait which does wait for the prompt. Note that this
628 includes abnormal exit, e.g. error(). This is necessary to prevent
629 getting into states from which we can't recover. */
630
631 int
632 monitor_expect_prompt (char *buf, int buflen)
633 {
634 monitor_debug ("MON Expecting prompt\n");
635 return monitor_expect (current_monitor->prompt, buf, buflen);
636 }
637
638 /* Get N 32-bit words from remote, each preceded by a space, and put
639 them in registers starting at REGNO. */
640
641 #if 0
642 static unsigned long
643 get_hex_word (void)
644 {
645 unsigned long val;
646 int i;
647 int ch;
648
649 do
650 ch = readchar (timeout);
651 while (isspace (ch));
652
653 val = from_hex (ch);
654
655 for (i = 7; i >= 1; i--)
656 {
657 ch = readchar (timeout);
658 if (!isxdigit (ch))
659 break;
660 val = (val << 4) | from_hex (ch);
661 }
662
663 return val;
664 }
665 #endif
666
667 static void
668 compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
669 char *fastmap)
670 {
671 int tmp;
672 const char *val;
673
674 compiled_pattern->fastmap = fastmap;
675
676 tmp = re_set_syntax (RE_SYNTAX_EMACS);
677 val = re_compile_pattern (pattern,
678 strlen (pattern),
679 compiled_pattern);
680 re_set_syntax (tmp);
681
682 if (val)
683 error (_("compile_pattern: Can't compile pattern string `%s': %s!"), pattern, val);
684
685 if (fastmap)
686 re_compile_fastmap (compiled_pattern);
687 }
688
689 /* Open a connection to a remote debugger. NAME is the filename used
690 for communication. */
691
692 void
693 monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty)
694 {
695 char *name;
696 char **p;
697
698 if (mon_ops->magic != MONITOR_OPS_MAGIC)
699 error (_("Magic number of monitor_ops struct wrong."));
700
701 targ_ops = mon_ops->target;
702 name = targ_ops->to_shortname;
703
704 if (!args)
705 error (_("Use `target %s DEVICE-NAME' to use a serial port, or \n\
706 `target %s HOST-NAME:PORT-NUMBER' to use a network connection."), name, name);
707
708 target_preopen (from_tty);
709
710 /* Setup pattern for register dump */
711
712 if (mon_ops->register_pattern)
713 compile_pattern (mon_ops->register_pattern, &register_pattern,
714 register_fastmap);
715
716 if (mon_ops->getmem.resp_delim)
717 compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
718 getmem_resp_delim_fastmap);
719
720 if (mon_ops->setmem.resp_delim)
721 compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
722 setmem_resp_delim_fastmap);
723
724 if (mon_ops->setreg.resp_delim)
725 compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
726 setreg_resp_delim_fastmap);
727
728 unpush_target (targ_ops);
729
730 if (dev_name)
731 xfree (dev_name);
732 dev_name = xstrdup (args);
733
734 monitor_desc = serial_open (dev_name);
735
736 if (!monitor_desc)
737 perror_with_name (dev_name);
738
739 if (baud_rate != -1)
740 {
741 if (serial_setbaudrate (monitor_desc, baud_rate))
742 {
743 serial_close (monitor_desc);
744 perror_with_name (dev_name);
745 }
746 }
747
748 serial_raw (monitor_desc);
749
750 serial_flush_input (monitor_desc);
751
752 /* some systems only work with 2 stop bits */
753
754 serial_setstopbits (monitor_desc, mon_ops->stopbits);
755
756 current_monitor = mon_ops;
757
758 /* See if we can wake up the monitor. First, try sending a stop sequence,
759 then send the init strings. Last, remove all breakpoints. */
760
761 if (current_monitor->stop)
762 {
763 monitor_stop ();
764 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
765 {
766 monitor_debug ("EXP Open echo\n");
767 monitor_expect_prompt (NULL, 0);
768 }
769 }
770
771 /* wake up the monitor and see if it's alive */
772 for (p = mon_ops->init; *p != NULL; p++)
773 {
774 /* Some of the characters we send may not be echoed,
775 but we hope to get a prompt at the end of it all. */
776
777 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
778 monitor_printf (*p);
779 else
780 monitor_printf_noecho (*p);
781 monitor_expect_prompt (NULL, 0);
782 }
783
784 serial_flush_input (monitor_desc);
785
786 /* Alloc breakpoints */
787 if (mon_ops->set_break != NULL)
788 {
789 if (mon_ops->num_breakpoints == 0)
790 mon_ops->num_breakpoints = 8;
791
792 breakaddr = (CORE_ADDR *) xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
793 memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
794 }
795
796 /* Remove all breakpoints */
797
798 if (mon_ops->clr_all_break)
799 {
800 monitor_printf (mon_ops->clr_all_break);
801 monitor_expect_prompt (NULL, 0);
802 }
803
804 if (from_tty)
805 printf_unfiltered (_("Remote target %s connected to %s\n"), name, dev_name);
806
807 push_target (targ_ops);
808
809 inferior_ptid = pid_to_ptid (42000); /* Make run command think we are busy... */
810
811 /* Give monitor_wait something to read */
812
813 monitor_printf (current_monitor->line_term);
814
815 start_remote (from_tty);
816 }
817
818 /* Close out all files and local state before this target loses
819 control. */
820
821 void
822 monitor_close (int quitting)
823 {
824 if (monitor_desc)
825 serial_close (monitor_desc);
826
827 /* Free breakpoint memory */
828 if (breakaddr != NULL)
829 {
830 xfree (breakaddr);
831 breakaddr = NULL;
832 }
833
834 monitor_desc = NULL;
835 }
836
837 /* Terminate the open connection to the remote debugger. Use this
838 when you want to detach and do something else with your gdb. */
839
840 static void
841 monitor_detach (char *args, int from_tty)
842 {
843 pop_target (); /* calls monitor_close to do the real work */
844 if (from_tty)
845 printf_unfiltered (_("Ending remote %s debugging\n"), target_shortname);
846 }
847
848 /* Convert VALSTR into the target byte-ordered value of REGNO and store it. */
849
850 char *
851 monitor_supply_register (int regno, char *valstr)
852 {
853 ULONGEST val;
854 unsigned char regbuf[MAX_REGISTER_SIZE];
855 char *p;
856
857 val = 0;
858 p = valstr;
859 while (p && *p != '\0')
860 {
861 if (*p == '\r' || *p == '\n')
862 {
863 while (*p != '\0')
864 p++;
865 break;
866 }
867 if (isspace (*p))
868 {
869 p++;
870 continue;
871 }
872 if (!isxdigit (*p) && *p != 'x')
873 {
874 break;
875 }
876
877 val <<= 4;
878 val += fromhex (*p++);
879 }
880 monitor_debug ("Supplying Register %d %s\n", regno, valstr);
881
882 if (val == 0 && valstr == p)
883 error (_("monitor_supply_register (%d): bad value from monitor: %s."),
884 regno, valstr);
885
886 /* supply register stores in target byte order, so swap here */
887
888 store_unsigned_integer (regbuf, register_size (current_gdbarch, regno), val);
889
890 regcache_raw_supply (current_regcache, regno, regbuf);
891
892 return p;
893 }
894
895 /* Tell the remote machine to resume. */
896
897 static void
898 monitor_resume (ptid_t ptid, int step, enum target_signal sig)
899 {
900 /* Some monitors require a different command when starting a program */
901 monitor_debug ("MON resume\n");
902 if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
903 {
904 first_time = 0;
905 monitor_printf ("run\r");
906 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
907 dump_reg_flag = 1;
908 return;
909 }
910 if (step)
911 monitor_printf (current_monitor->step);
912 else
913 {
914 if (current_monitor->continue_hook)
915 (*current_monitor->continue_hook) ();
916 else
917 monitor_printf (current_monitor->cont);
918 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
919 dump_reg_flag = 1;
920 }
921 }
922
923 /* Parse the output of a register dump command. A monitor specific
924 regexp is used to extract individual register descriptions of the
925 form REG=VAL. Each description is split up into a name and a value
926 string which are passed down to monitor specific code. */
927
928 static void
929 parse_register_dump (char *buf, int len)
930 {
931 monitor_debug ("MON Parsing register dump\n");
932 while (1)
933 {
934 int regnamelen, vallen;
935 char *regname, *val;
936 /* Element 0 points to start of register name, and element 1
937 points to the start of the register value. */
938 struct re_registers register_strings;
939
940 memset (&register_strings, 0, sizeof (struct re_registers));
941
942 if (re_search (&register_pattern, buf, len, 0, len,
943 &register_strings) == -1)
944 break;
945
946 regnamelen = register_strings.end[1] - register_strings.start[1];
947 regname = buf + register_strings.start[1];
948 vallen = register_strings.end[2] - register_strings.start[2];
949 val = buf + register_strings.start[2];
950
951 current_monitor->supply_register (regname, regnamelen, val, vallen);
952
953 buf += register_strings.end[0];
954 len -= register_strings.end[0];
955 }
956 }
957
958 /* Send ^C to target to halt it. Target will respond, and send us a
959 packet. */
960
961 static void
962 monitor_interrupt (int signo)
963 {
964 /* If this doesn't work, try more severe steps. */
965 signal (signo, monitor_interrupt_twice);
966
967 if (monitor_debug_p || remote_debug)
968 fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
969
970 target_stop ();
971 }
972
973 /* The user typed ^C twice. */
974
975 static void
976 monitor_interrupt_twice (int signo)
977 {
978 signal (signo, ofunc);
979
980 monitor_interrupt_query ();
981
982 signal (signo, monitor_interrupt);
983 }
984
985 /* Ask the user what to do when an interrupt is received. */
986
987 static void
988 monitor_interrupt_query (void)
989 {
990 target_terminal_ours ();
991
992 if (query ("Interrupted while waiting for the program.\n\
993 Give up (and stop debugging it)? "))
994 {
995 target_mourn_inferior ();
996 deprecated_throw_reason (RETURN_QUIT);
997 }
998
999 target_terminal_inferior ();
1000 }
1001
1002 static void
1003 monitor_wait_cleanup (void *old_timeout)
1004 {
1005 timeout = *(int *) old_timeout;
1006 signal (SIGINT, ofunc);
1007 in_monitor_wait = 0;
1008 }
1009
1010
1011
1012 static void
1013 monitor_wait_filter (char *buf,
1014 int bufmax,
1015 int *ext_resp_len,
1016 struct target_waitstatus *status)
1017 {
1018 int resp_len;
1019 do
1020 {
1021 resp_len = monitor_expect_prompt (buf, bufmax);
1022 *ext_resp_len = resp_len;
1023
1024 if (resp_len <= 0)
1025 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1026 }
1027 while (resp_len < 0);
1028
1029 /* Print any output characters that were preceded by ^O. */
1030 /* FIXME - This would be great as a user settabgle flag */
1031 if (monitor_debug_p || remote_debug
1032 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1033 {
1034 int i;
1035
1036 for (i = 0; i < resp_len - 1; i++)
1037 if (buf[i] == 0x0f)
1038 putchar_unfiltered (buf[++i]);
1039 }
1040 }
1041
1042
1043
1044 /* Wait until the remote machine stops, then return, storing status in
1045 status just as `wait' would. */
1046
1047 static ptid_t
1048 monitor_wait (ptid_t ptid, struct target_waitstatus *status)
1049 {
1050 int old_timeout = timeout;
1051 char buf[TARGET_BUF_SIZE];
1052 int resp_len;
1053 struct cleanup *old_chain;
1054
1055 status->kind = TARGET_WAITKIND_EXITED;
1056 status->value.integer = 0;
1057
1058 old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
1059 monitor_debug ("MON wait\n");
1060
1061 #if 0
1062 /* This is somthing other than a maintenance command */
1063 in_monitor_wait = 1;
1064 timeout = watchdog > 0 ? watchdog : -1;
1065 #else
1066 timeout = -1; /* Don't time out -- user program is running. */
1067 #endif
1068
1069 ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
1070
1071 if (current_monitor->wait_filter)
1072 (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
1073 else
1074 monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
1075
1076 #if 0 /* Transferred to monitor wait filter */
1077 do
1078 {
1079 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1080
1081 if (resp_len <= 0)
1082 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1083 }
1084 while (resp_len < 0);
1085
1086 /* Print any output characters that were preceded by ^O. */
1087 /* FIXME - This would be great as a user settabgle flag */
1088 if (monitor_debug_p || remote_debug
1089 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1090 {
1091 int i;
1092
1093 for (i = 0; i < resp_len - 1; i++)
1094 if (buf[i] == 0x0f)
1095 putchar_unfiltered (buf[++i]);
1096 }
1097 #endif
1098
1099 signal (SIGINT, ofunc);
1100
1101 timeout = old_timeout;
1102 #if 0
1103 if (dump_reg_flag && current_monitor->dump_registers)
1104 {
1105 dump_reg_flag = 0;
1106 monitor_printf (current_monitor->dump_registers);
1107 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1108 }
1109
1110 if (current_monitor->register_pattern)
1111 parse_register_dump (buf, resp_len);
1112 #else
1113 monitor_debug ("Wait fetching registers after stop\n");
1114 monitor_dump_regs ();
1115 #endif
1116
1117 status->kind = TARGET_WAITKIND_STOPPED;
1118 status->value.sig = TARGET_SIGNAL_TRAP;
1119
1120 discard_cleanups (old_chain);
1121
1122 in_monitor_wait = 0;
1123
1124 return inferior_ptid;
1125 }
1126
1127 /* Fetch register REGNO, or all registers if REGNO is -1. Returns
1128 errno value. */
1129
1130 static void
1131 monitor_fetch_register (int regno)
1132 {
1133 const char *name;
1134 char *zerobuf;
1135 char *regbuf;
1136 int i;
1137
1138 regbuf = alloca (MAX_REGISTER_SIZE * 2 + 1);
1139 zerobuf = alloca (MAX_REGISTER_SIZE);
1140 memset (zerobuf, 0, MAX_REGISTER_SIZE);
1141
1142 if (current_monitor->regname != NULL)
1143 name = current_monitor->regname (regno);
1144 else
1145 name = current_monitor->regnames[regno];
1146 monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
1147
1148 if (!name || (*name == '\0'))
1149 {
1150 monitor_debug ("No register known for %d\n", regno);
1151 regcache_raw_supply (current_regcache, regno, zerobuf);
1152 return;
1153 }
1154
1155 /* send the register examine command */
1156
1157 monitor_printf (current_monitor->getreg.cmd, name);
1158
1159 /* If RESP_DELIM is specified, we search for that as a leading
1160 delimiter for the register value. Otherwise, we just start
1161 searching from the start of the buf. */
1162
1163 if (current_monitor->getreg.resp_delim)
1164 {
1165 monitor_debug ("EXP getreg.resp_delim\n");
1166 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1167 /* Handle case of first 32 registers listed in pairs. */
1168 if (current_monitor->flags & MO_32_REGS_PAIRED
1169 && (regno & 1) != 0 && regno < 32)
1170 {
1171 monitor_debug ("EXP getreg.resp_delim\n");
1172 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1173 }
1174 }
1175
1176 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set */
1177 if (current_monitor->flags & MO_HEX_PREFIX)
1178 {
1179 int c;
1180 c = readchar (timeout);
1181 while (c == ' ')
1182 c = readchar (timeout);
1183 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1184 ;
1185 else
1186 error (_("Bad value returned from monitor while fetching register %x."),
1187 regno);
1188 }
1189
1190 /* Read upto the maximum number of hex digits for this register, skipping
1191 spaces, but stop reading if something else is seen. Some monitors
1192 like to drop leading zeros. */
1193
1194 for (i = 0; i < register_size (current_gdbarch, regno) * 2; i++)
1195 {
1196 int c;
1197 c = readchar (timeout);
1198 while (c == ' ')
1199 c = readchar (timeout);
1200
1201 if (!isxdigit (c))
1202 break;
1203
1204 regbuf[i] = c;
1205 }
1206
1207 regbuf[i] = '\000'; /* terminate the number */
1208 monitor_debug ("REGVAL '%s'\n", regbuf);
1209
1210 /* If TERM is present, we wait for that to show up. Also, (if TERM
1211 is present), we will send TERM_CMD if that is present. In any
1212 case, we collect all of the output into buf, and then wait for
1213 the normal prompt. */
1214
1215 if (current_monitor->getreg.term)
1216 {
1217 monitor_debug ("EXP getreg.term\n");
1218 monitor_expect (current_monitor->getreg.term, NULL, 0); /* get response */
1219 }
1220
1221 if (current_monitor->getreg.term_cmd)
1222 {
1223 monitor_debug ("EMIT getreg.term.cmd\n");
1224 monitor_printf (current_monitor->getreg.term_cmd);
1225 }
1226 if (!current_monitor->getreg.term || /* Already expected or */
1227 current_monitor->getreg.term_cmd) /* ack expected */
1228 monitor_expect_prompt (NULL, 0); /* get response */
1229
1230 monitor_supply_register (regno, regbuf);
1231 }
1232
1233 /* Sometimes, it takes several commands to dump the registers */
1234 /* This is a primitive for use by variations of monitor interfaces in
1235 case they need to compose the operation.
1236 */
1237 int
1238 monitor_dump_reg_block (char *block_cmd)
1239 {
1240 char buf[TARGET_BUF_SIZE];
1241 int resp_len;
1242 monitor_printf (block_cmd);
1243 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1244 parse_register_dump (buf, resp_len);
1245 return 1;
1246 }
1247
1248
1249 /* Read the remote registers into the block regs. */
1250 /* Call the specific function if it has been provided */
1251
1252 static void
1253 monitor_dump_regs (void)
1254 {
1255 char buf[TARGET_BUF_SIZE];
1256 int resp_len;
1257 if (current_monitor->dumpregs)
1258 (*(current_monitor->dumpregs)) (); /* call supplied function */
1259 else if (current_monitor->dump_registers) /* default version */
1260 {
1261 monitor_printf (current_monitor->dump_registers);
1262 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1263 parse_register_dump (buf, resp_len);
1264 }
1265 else
1266 internal_error (__FILE__, __LINE__, _("failed internal consistency check")); /* Need some way to read registers */
1267 }
1268
1269 static void
1270 monitor_fetch_registers (int regno)
1271 {
1272 monitor_debug ("MON fetchregs\n");
1273 if (current_monitor->getreg.cmd)
1274 {
1275 if (regno >= 0)
1276 {
1277 monitor_fetch_register (regno);
1278 return;
1279 }
1280
1281 for (regno = 0; regno < NUM_REGS; regno++)
1282 monitor_fetch_register (regno);
1283 }
1284 else
1285 {
1286 monitor_dump_regs ();
1287 }
1288 }
1289
1290 /* Store register REGNO, or all if REGNO == 0. Return errno value. */
1291
1292 static void
1293 monitor_store_register (int regno)
1294 {
1295 const char *name;
1296 ULONGEST val;
1297
1298 if (current_monitor->regname != NULL)
1299 name = current_monitor->regname (regno);
1300 else
1301 name = current_monitor->regnames[regno];
1302
1303 if (!name || (*name == '\0'))
1304 {
1305 monitor_debug ("MON Cannot store unknown register\n");
1306 return;
1307 }
1308
1309 val = read_register (regno);
1310 monitor_debug ("MON storeg %d %s\n", regno,
1311 phex (val, register_size (current_gdbarch, regno)));
1312
1313 /* send the register deposit command */
1314
1315 if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
1316 monitor_printf (current_monitor->setreg.cmd, val, name);
1317 else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1318 monitor_printf (current_monitor->setreg.cmd, name);
1319 else
1320 monitor_printf (current_monitor->setreg.cmd, name, val);
1321
1322 if (current_monitor->setreg.resp_delim)
1323 {
1324 monitor_debug ("EXP setreg.resp_delim\n");
1325 monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
1326 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1327 monitor_printf ("%s\r", paddr_nz (val));
1328 }
1329 if (current_monitor->setreg.term)
1330 {
1331 monitor_debug ("EXP setreg.term\n");
1332 monitor_expect (current_monitor->setreg.term, NULL, 0);
1333 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1334 monitor_printf ("%s\r", paddr_nz (val));
1335 monitor_expect_prompt (NULL, 0);
1336 }
1337 else
1338 monitor_expect_prompt (NULL, 0);
1339 if (current_monitor->setreg.term_cmd) /* Mode exit required */
1340 {
1341 monitor_debug ("EXP setreg_termcmd\n");
1342 monitor_printf ("%s", current_monitor->setreg.term_cmd);
1343 monitor_expect_prompt (NULL, 0);
1344 }
1345 } /* monitor_store_register */
1346
1347 /* Store the remote registers. */
1348
1349 static void
1350 monitor_store_registers (int regno)
1351 {
1352 if (regno >= 0)
1353 {
1354 monitor_store_register (regno);
1355 return;
1356 }
1357
1358 for (regno = 0; regno < NUM_REGS; regno++)
1359 monitor_store_register (regno);
1360 }
1361
1362 /* Get ready to modify the registers array. On machines which store
1363 individual registers, this doesn't need to do anything. On machines
1364 which store all the registers in one fell swoop, this makes sure
1365 that registers contains all the registers from the program being
1366 debugged. */
1367
1368 static void
1369 monitor_prepare_to_store (void)
1370 {
1371 /* Do nothing, since we can store individual regs */
1372 }
1373
1374 static void
1375 monitor_files_info (struct target_ops *ops)
1376 {
1377 printf_unfiltered (_("\tAttached to %s at %d baud.\n"), dev_name, baud_rate);
1378 }
1379
1380 static int
1381 monitor_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
1382 {
1383 unsigned int val, hostval;
1384 char *cmd;
1385 int i;
1386
1387 monitor_debug ("MON write %d %s\n", len, paddr (memaddr));
1388
1389 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1390 memaddr = ADDR_BITS_REMOVE (memaddr);
1391
1392 /* Use memory fill command for leading 0 bytes. */
1393
1394 if (current_monitor->fill)
1395 {
1396 for (i = 0; i < len; i++)
1397 if (myaddr[i] != 0)
1398 break;
1399
1400 if (i > 4) /* More than 4 zeros is worth doing */
1401 {
1402 monitor_debug ("MON FILL %d\n", i);
1403 if (current_monitor->flags & MO_FILL_USES_ADDR)
1404 monitor_printf (current_monitor->fill, memaddr, (memaddr + i) - 1, 0);
1405 else
1406 monitor_printf (current_monitor->fill, memaddr, i, 0);
1407
1408 monitor_expect_prompt (NULL, 0);
1409
1410 return i;
1411 }
1412 }
1413
1414 #if 0
1415 /* Can't actually use long longs if VAL is an int (nice idea, though). */
1416 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
1417 {
1418 len = 8;
1419 cmd = current_monitor->setmem.cmdll;
1420 }
1421 else
1422 #endif
1423 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
1424 {
1425 len = 4;
1426 cmd = current_monitor->setmem.cmdl;
1427 }
1428 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
1429 {
1430 len = 2;
1431 cmd = current_monitor->setmem.cmdw;
1432 }
1433 else
1434 {
1435 len = 1;
1436 cmd = current_monitor->setmem.cmdb;
1437 }
1438
1439 val = extract_unsigned_integer (myaddr, len);
1440
1441 if (len == 4)
1442 {
1443 hostval = *(unsigned int *) myaddr;
1444 monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
1445 }
1446
1447
1448 if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
1449 monitor_printf_noecho (cmd, memaddr, val);
1450 else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
1451 {
1452
1453 monitor_printf_noecho (cmd, memaddr);
1454
1455 if (current_monitor->setmem.resp_delim)
1456 {
1457 monitor_debug ("EXP setmem.resp_delim");
1458 monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
1459 monitor_printf ("%x\r", val);
1460 }
1461 if (current_monitor->setmem.term)
1462 {
1463 monitor_debug ("EXP setmem.term");
1464 monitor_expect (current_monitor->setmem.term, NULL, 0);
1465 monitor_printf ("%x\r", val);
1466 }
1467 if (current_monitor->setmem.term_cmd)
1468 { /* Emit this to get out of the memory editing state */
1469 monitor_printf ("%s", current_monitor->setmem.term_cmd);
1470 /* Drop through to expecting a prompt */
1471 }
1472 }
1473 else
1474 monitor_printf (cmd, memaddr, val);
1475
1476 monitor_expect_prompt (NULL, 0);
1477
1478 return len;
1479 }
1480
1481
1482 static int
1483 monitor_write_memory_bytes (CORE_ADDR memaddr, char *myaddr, int len)
1484 {
1485 unsigned char val;
1486 int written = 0;
1487 if (len == 0)
1488 return 0;
1489 /* Enter the sub mode */
1490 monitor_printf (current_monitor->setmem.cmdb, memaddr);
1491 monitor_expect_prompt (NULL, 0);
1492 while (len)
1493 {
1494 val = *myaddr;
1495 monitor_printf ("%x\r", val);
1496 myaddr++;
1497 memaddr++;
1498 written++;
1499 /* If we wanted to, here we could validate the address */
1500 monitor_expect_prompt (NULL, 0);
1501 len--;
1502 }
1503 /* Now exit the sub mode */
1504 monitor_printf (current_monitor->getreg.term_cmd);
1505 monitor_expect_prompt (NULL, 0);
1506 return written;
1507 }
1508
1509
1510 static void
1511 longlongendswap (unsigned char *a)
1512 {
1513 int i, j;
1514 unsigned char x;
1515 i = 0;
1516 j = 7;
1517 while (i < 4)
1518 {
1519 x = *(a + i);
1520 *(a + i) = *(a + j);
1521 *(a + j) = x;
1522 i++, j--;
1523 }
1524 }
1525 /* Format 32 chars of long long value, advance the pointer */
1526 static char *hexlate = "0123456789abcdef";
1527 static char *
1528 longlong_hexchars (unsigned long long value,
1529 char *outbuff)
1530 {
1531 if (value == 0)
1532 {
1533 *outbuff++ = '0';
1534 return outbuff;
1535 }
1536 else
1537 {
1538 static unsigned char disbuf[8]; /* disassembly buffer */
1539 unsigned char *scan, *limit; /* loop controls */
1540 unsigned char c, nib;
1541 int leadzero = 1;
1542 scan = disbuf;
1543 limit = scan + 8;
1544 {
1545 unsigned long long *dp;
1546 dp = (unsigned long long *) scan;
1547 *dp = value;
1548 }
1549 longlongendswap (disbuf); /* FIXME: ONly on big endian hosts */
1550 while (scan < limit)
1551 {
1552 c = *scan++; /* a byte of our long long value */
1553 if (leadzero)
1554 {
1555 if (c == 0)
1556 continue;
1557 else
1558 leadzero = 0; /* henceforth we print even zeroes */
1559 }
1560 nib = c >> 4; /* high nibble bits */
1561 *outbuff++ = hexlate[nib];
1562 nib = c & 0x0f; /* low nibble bits */
1563 *outbuff++ = hexlate[nib];
1564 }
1565 return outbuff;
1566 }
1567 } /* longlong_hexchars */
1568
1569
1570
1571 /* I am only going to call this when writing virtual byte streams.
1572 Which possably entails endian conversions
1573 */
1574 static int
1575 monitor_write_memory_longlongs (CORE_ADDR memaddr, char *myaddr, int len)
1576 {
1577 static char hexstage[20]; /* At least 16 digits required, plus null */
1578 char *endstring;
1579 long long *llptr;
1580 long long value;
1581 int written = 0;
1582 llptr = (unsigned long long *) myaddr;
1583 if (len == 0)
1584 return 0;
1585 monitor_printf (current_monitor->setmem.cmdll, memaddr);
1586 monitor_expect_prompt (NULL, 0);
1587 while (len >= 8)
1588 {
1589 value = *llptr;
1590 endstring = longlong_hexchars (*llptr, hexstage);
1591 *endstring = '\0'; /* NUll terminate for printf */
1592 monitor_printf ("%s\r", hexstage);
1593 llptr++;
1594 memaddr += 8;
1595 written += 8;
1596 /* If we wanted to, here we could validate the address */
1597 monitor_expect_prompt (NULL, 0);
1598 len -= 8;
1599 }
1600 /* Now exit the sub mode */
1601 monitor_printf (current_monitor->getreg.term_cmd);
1602 monitor_expect_prompt (NULL, 0);
1603 return written;
1604 } /* */
1605
1606
1607
1608 /* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
1609 /* This is for the large blocks of memory which may occur in downloading.
1610 And for monitors which use interactive entry,
1611 And for monitors which do not have other downloading methods.
1612 Without this, we will end up calling monitor_write_memory many times
1613 and do the entry and exit of the sub mode many times
1614 This currently assumes...
1615 MO_SETMEM_INTERACTIVE
1616 ! MO_NO_ECHO_ON_SETMEM
1617 To use this, the you have to patch the monitor_cmds block with
1618 this function. Otherwise, its not tuned up for use by all
1619 monitor variations.
1620 */
1621
1622 static int
1623 monitor_write_memory_block (CORE_ADDR memaddr, char *myaddr, int len)
1624 {
1625 int written;
1626 written = 0;
1627 /* FIXME: This would be a good place to put the zero test */
1628 #if 1
1629 if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
1630 {
1631 return monitor_write_memory_longlongs (memaddr, myaddr, len);
1632 }
1633 #endif
1634 written = monitor_write_memory_bytes (memaddr, myaddr, len);
1635 return written;
1636 }
1637
1638 /* This is an alternate form of monitor_read_memory which is used for monitors
1639 which can only read a single byte/word/etc. at a time. */
1640
1641 static int
1642 monitor_read_memory_single (CORE_ADDR memaddr, char *myaddr, int len)
1643 {
1644 unsigned int val;
1645 char membuf[sizeof (int) * 2 + 1];
1646 char *p;
1647 char *cmd;
1648
1649 monitor_debug ("MON read single\n");
1650 #if 0
1651 /* Can't actually use long longs (nice idea, though). In fact, the
1652 call to strtoul below will fail if it tries to convert a value
1653 that's too big to fit in a long. */
1654 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
1655 {
1656 len = 8;
1657 cmd = current_monitor->getmem.cmdll;
1658 }
1659 else
1660 #endif
1661 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
1662 {
1663 len = 4;
1664 cmd = current_monitor->getmem.cmdl;
1665 }
1666 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
1667 {
1668 len = 2;
1669 cmd = current_monitor->getmem.cmdw;
1670 }
1671 else
1672 {
1673 len = 1;
1674 cmd = current_monitor->getmem.cmdb;
1675 }
1676
1677 /* Send the examine command. */
1678
1679 monitor_printf (cmd, memaddr);
1680
1681 /* If RESP_DELIM is specified, we search for that as a leading
1682 delimiter for the memory value. Otherwise, we just start
1683 searching from the start of the buf. */
1684
1685 if (current_monitor->getmem.resp_delim)
1686 {
1687 monitor_debug ("EXP getmem.resp_delim\n");
1688 monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
1689 }
1690
1691 /* Now, read the appropriate number of hex digits for this loc,
1692 skipping spaces. */
1693
1694 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1695 if (current_monitor->flags & MO_HEX_PREFIX)
1696 {
1697 int c;
1698
1699 c = readchar (timeout);
1700 while (c == ' ')
1701 c = readchar (timeout);
1702 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1703 ;
1704 else
1705 monitor_error ("monitor_read_memory_single",
1706 "bad response from monitor",
1707 memaddr, 0, NULL, 0);
1708 }
1709
1710 {
1711 int i;
1712 for (i = 0; i < len * 2; i++)
1713 {
1714 int c;
1715
1716 while (1)
1717 {
1718 c = readchar (timeout);
1719 if (isxdigit (c))
1720 break;
1721 if (c == ' ')
1722 continue;
1723
1724 monitor_error ("monitor_read_memory_single",
1725 "bad response from monitor",
1726 memaddr, i, membuf, 0);
1727 }
1728 membuf[i] = c;
1729 }
1730 membuf[i] = '\000'; /* terminate the number */
1731 }
1732
1733 /* If TERM is present, we wait for that to show up. Also, (if TERM is
1734 present), we will send TERM_CMD if that is present. In any case, we collect
1735 all of the output into buf, and then wait for the normal prompt. */
1736
1737 if (current_monitor->getmem.term)
1738 {
1739 monitor_expect (current_monitor->getmem.term, NULL, 0); /* get response */
1740
1741 if (current_monitor->getmem.term_cmd)
1742 {
1743 monitor_printf (current_monitor->getmem.term_cmd);
1744 monitor_expect_prompt (NULL, 0);
1745 }
1746 }
1747 else
1748 monitor_expect_prompt (NULL, 0); /* get response */
1749
1750 p = membuf;
1751 val = strtoul (membuf, &p, 16);
1752
1753 if (val == 0 && membuf == p)
1754 monitor_error ("monitor_read_memory_single",
1755 "bad value from monitor",
1756 memaddr, 0, membuf, 0);
1757
1758 /* supply register stores in target byte order, so swap here */
1759
1760 store_unsigned_integer (myaddr, len, val);
1761
1762 return len;
1763 }
1764
1765 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
1766 memory at MEMADDR. Returns length moved. Currently, we do no more
1767 than 16 bytes at a time. */
1768
1769 static int
1770 monitor_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
1771 {
1772 unsigned int val;
1773 char buf[512];
1774 char *p, *p1;
1775 int resp_len;
1776 int i;
1777 CORE_ADDR dumpaddr;
1778
1779 if (len <= 0)
1780 {
1781 monitor_debug ("Zero length call to monitor_read_memory\n");
1782 return 0;
1783 }
1784
1785 monitor_debug ("MON read block ta(%s) ha(%lx) %d\n",
1786 paddr_nz (memaddr), (long) myaddr, len);
1787
1788 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1789 memaddr = ADDR_BITS_REMOVE (memaddr);
1790
1791 if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
1792 return monitor_read_memory_single (memaddr, myaddr, len);
1793
1794 len = min (len, 16);
1795
1796 /* Some dumpers align the first data with the preceeding 16
1797 byte boundary. Some print blanks and start at the
1798 requested boundary. EXACT_DUMPADDR
1799 */
1800
1801 dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
1802 ? memaddr : memaddr & ~0x0f;
1803
1804 /* See if xfer would cross a 16 byte boundary. If so, clip it. */
1805 if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
1806 len = ((memaddr + len) & ~0xf) - memaddr;
1807
1808 /* send the memory examine command */
1809
1810 if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
1811 monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
1812 else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1813 monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
1814 else
1815 monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
1816
1817 /* If TERM is present, we wait for that to show up. Also, (if TERM
1818 is present), we will send TERM_CMD if that is present. In any
1819 case, we collect all of the output into buf, and then wait for
1820 the normal prompt. */
1821
1822 if (current_monitor->getmem.term)
1823 {
1824 resp_len = monitor_expect (current_monitor->getmem.term, buf, sizeof buf); /* get response */
1825
1826 if (resp_len <= 0)
1827 monitor_error ("monitor_read_memory",
1828 "excessive response from monitor",
1829 memaddr, resp_len, buf, 0);
1830
1831 if (current_monitor->getmem.term_cmd)
1832 {
1833 serial_write (monitor_desc, current_monitor->getmem.term_cmd,
1834 strlen (current_monitor->getmem.term_cmd));
1835 monitor_expect_prompt (NULL, 0);
1836 }
1837 }
1838 else
1839 resp_len = monitor_expect_prompt (buf, sizeof buf); /* get response */
1840
1841 p = buf;
1842
1843 /* If RESP_DELIM is specified, we search for that as a leading
1844 delimiter for the values. Otherwise, we just start searching
1845 from the start of the buf. */
1846
1847 if (current_monitor->getmem.resp_delim)
1848 {
1849 int retval, tmp;
1850 struct re_registers resp_strings;
1851 monitor_debug ("MON getmem.resp_delim %s\n", current_monitor->getmem.resp_delim);
1852
1853 memset (&resp_strings, 0, sizeof (struct re_registers));
1854 tmp = strlen (p);
1855 retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
1856 &resp_strings);
1857
1858 if (retval < 0)
1859 monitor_error ("monitor_read_memory",
1860 "bad response from monitor",
1861 memaddr, resp_len, buf, 0);
1862
1863 p += resp_strings.end[0];
1864 #if 0
1865 p = strstr (p, current_monitor->getmem.resp_delim);
1866 if (!p)
1867 monitor_error ("monitor_read_memory",
1868 "bad response from monitor",
1869 memaddr, resp_len, buf, 0);
1870 p += strlen (current_monitor->getmem.resp_delim);
1871 #endif
1872 }
1873 monitor_debug ("MON scanning %d ,%lx '%s'\n", len, (long) p, p);
1874 if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1875 {
1876 char c;
1877 int fetched = 0;
1878 i = len;
1879 c = *p;
1880
1881
1882 while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
1883 {
1884 if (isxdigit (c))
1885 {
1886 if ((dumpaddr >= memaddr) && (i > 0))
1887 {
1888 val = fromhex (c) * 16 + fromhex (*(p + 1));
1889 *myaddr++ = val;
1890 if (monitor_debug_p || remote_debug)
1891 fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
1892 --i;
1893 fetched++;
1894 }
1895 ++dumpaddr;
1896 ++p;
1897 }
1898 ++p; /* skip a blank or other non hex char */
1899 c = *p;
1900 }
1901 if (fetched == 0)
1902 error (_("Failed to read via monitor"));
1903 if (monitor_debug_p || remote_debug)
1904 fprintf_unfiltered (gdb_stdlog, "\n");
1905 return fetched; /* Return the number of bytes actually read */
1906 }
1907 monitor_debug ("MON scanning bytes\n");
1908
1909 for (i = len; i > 0; i--)
1910 {
1911 /* Skip non-hex chars, but bomb on end of string and newlines */
1912
1913 while (1)
1914 {
1915 if (isxdigit (*p))
1916 break;
1917
1918 if (*p == '\000' || *p == '\n' || *p == '\r')
1919 monitor_error ("monitor_read_memory",
1920 "badly terminated response from monitor",
1921 memaddr, resp_len, buf, 0);
1922 p++;
1923 }
1924
1925 val = strtoul (p, &p1, 16);
1926
1927 if (val == 0 && p == p1)
1928 monitor_error ("monitor_read_memory",
1929 "bad value from monitor",
1930 memaddr, resp_len, buf, 0);
1931
1932 *myaddr++ = val;
1933
1934 if (i == 1)
1935 break;
1936
1937 p = p1;
1938 }
1939
1940 return len;
1941 }
1942
1943 /* Transfer LEN bytes between target address MEMADDR and GDB address
1944 MYADDR. Returns 0 for success, errno code for failure. TARGET is
1945 unused. */
1946
1947 static int
1948 monitor_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
1949 struct mem_attrib *attrib, struct target_ops *target)
1950 {
1951 int res;
1952
1953 if (write)
1954 {
1955 if (current_monitor->flags & MO_HAS_BLOCKWRITES)
1956 res = monitor_write_memory_block(memaddr, myaddr, len);
1957 else
1958 res = monitor_write_memory(memaddr, myaddr, len);
1959 }
1960 else
1961 {
1962 res = monitor_read_memory(memaddr, myaddr, len);
1963 }
1964
1965 return res;
1966 }
1967
1968 static void
1969 monitor_kill (void)
1970 {
1971 return; /* ignore attempts to kill target system */
1972 }
1973
1974 /* All we actually do is set the PC to the start address of exec_bfd. */
1975
1976 static void
1977 monitor_create_inferior (char *exec_file, char *args, char **env,
1978 int from_tty)
1979 {
1980 if (args && (*args != '\000'))
1981 error (_("Args are not supported by the monitor."));
1982
1983 first_time = 1;
1984 clear_proceed_status ();
1985 write_pc (bfd_get_start_address (exec_bfd));
1986 }
1987
1988 /* Clean up when a program exits.
1989 The program actually lives on in the remote processor's RAM, and may be
1990 run again without a download. Don't leave it full of breakpoint
1991 instructions. */
1992
1993 static void
1994 monitor_mourn_inferior (void)
1995 {
1996 unpush_target (targ_ops);
1997 generic_mourn_inferior (); /* Do all the proper things now */
1998 }
1999
2000 /* Tell the monitor to add a breakpoint. */
2001
2002 static int
2003 monitor_insert_breakpoint (struct bp_target_info *bp_tgt)
2004 {
2005 CORE_ADDR addr = bp_tgt->placed_address;
2006 int i;
2007 const unsigned char *bp;
2008 int bplen;
2009
2010 monitor_debug ("MON inst bkpt %s\n", paddr (addr));
2011 if (current_monitor->set_break == NULL)
2012 error (_("No set_break defined for this monitor"));
2013
2014 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2015 addr = ADDR_BITS_REMOVE (addr);
2016
2017 /* Determine appropriate breakpoint size for this address. */
2018 bp = gdbarch_breakpoint_from_pc (current_gdbarch, &addr, &bplen);
2019 bp_tgt->placed_address = addr;
2020 bp_tgt->placed_size = bplen;
2021
2022 for (i = 0; i < current_monitor->num_breakpoints; i++)
2023 {
2024 if (breakaddr[i] == 0)
2025 {
2026 breakaddr[i] = addr;
2027 monitor_printf (current_monitor->set_break, addr);
2028 monitor_expect_prompt (NULL, 0);
2029 return 0;
2030 }
2031 }
2032
2033 error (_("Too many breakpoints (> %d) for monitor."), current_monitor->num_breakpoints);
2034 }
2035
2036 /* Tell the monitor to remove a breakpoint. */
2037
2038 static int
2039 monitor_remove_breakpoint (struct bp_target_info *bp_tgt)
2040 {
2041 CORE_ADDR addr = bp_tgt->placed_address;
2042 int i;
2043
2044 monitor_debug ("MON rmbkpt %s\n", paddr (addr));
2045 if (current_monitor->clr_break == NULL)
2046 error (_("No clr_break defined for this monitor"));
2047
2048 for (i = 0; i < current_monitor->num_breakpoints; i++)
2049 {
2050 if (breakaddr[i] == addr)
2051 {
2052 breakaddr[i] = 0;
2053 /* some monitors remove breakpoints based on the address */
2054 if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
2055 monitor_printf (current_monitor->clr_break, addr);
2056 else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
2057 monitor_printf (current_monitor->clr_break, i + 1);
2058 else
2059 monitor_printf (current_monitor->clr_break, i);
2060 monitor_expect_prompt (NULL, 0);
2061 return 0;
2062 }
2063 }
2064 fprintf_unfiltered (gdb_stderr,
2065 "Can't find breakpoint associated with 0x%s\n",
2066 paddr_nz (addr));
2067 return 1;
2068 }
2069
2070 /* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
2071 an S-record. Return non-zero if the ACK is received properly. */
2072
2073 static int
2074 monitor_wait_srec_ack (void)
2075 {
2076 int ch;
2077
2078 if (current_monitor->flags & MO_SREC_ACK_PLUS)
2079 {
2080 return (readchar (timeout) == '+');
2081 }
2082 else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
2083 {
2084 /* Eat two backspaces, a "rotating" char (|/-\), and a space. */
2085 if ((ch = readchar (1)) < 0)
2086 return 0;
2087 if ((ch = readchar (1)) < 0)
2088 return 0;
2089 if ((ch = readchar (1)) < 0)
2090 return 0;
2091 if ((ch = readchar (1)) < 0)
2092 return 0;
2093 }
2094 return 1;
2095 }
2096
2097 /* monitor_load -- download a file. */
2098
2099 static void
2100 monitor_load (char *file, int from_tty)
2101 {
2102 monitor_debug ("MON load\n");
2103
2104 if (current_monitor->load_routine)
2105 current_monitor->load_routine (monitor_desc, file, hashmark);
2106 else
2107 { /* The default is ascii S-records */
2108 int n;
2109 unsigned long load_offset;
2110 char buf[128];
2111
2112 /* enable user to specify address for downloading as 2nd arg to load */
2113 n = sscanf (file, "%s 0x%lx", buf, &load_offset);
2114 if (n > 1)
2115 file = buf;
2116 else
2117 load_offset = 0;
2118
2119 monitor_printf (current_monitor->load);
2120 if (current_monitor->loadresp)
2121 monitor_expect (current_monitor->loadresp, NULL, 0);
2122
2123 load_srec (monitor_desc, file, (bfd_vma) load_offset,
2124 32, SREC_ALL, hashmark,
2125 current_monitor->flags & MO_SREC_ACK ?
2126 monitor_wait_srec_ack : NULL);
2127
2128 monitor_expect_prompt (NULL, 0);
2129 }
2130
2131 /* Finally, make the PC point at the start address */
2132 if (exec_bfd)
2133 write_pc (bfd_get_start_address (exec_bfd));
2134
2135 /* There used to be code here which would clear inferior_ptid and
2136 call clear_symtab_users. None of that should be necessary:
2137 monitor targets should behave like remote protocol targets, and
2138 since generic_load does none of those things, this function
2139 shouldn't either.
2140
2141 Furthermore, clearing inferior_ptid is *incorrect*. After doing
2142 a load, we still have a valid connection to the monitor, with a
2143 live processor state to fiddle with. The user can type
2144 `continue' or `jump *start' and make the program run. If they do
2145 these things, however, GDB will be talking to a running program
2146 while inferior_ptid is null_ptid; this makes things like
2147 reinit_frame_cache very confused. */
2148 }
2149
2150 static void
2151 monitor_stop (void)
2152 {
2153 monitor_debug ("MON stop\n");
2154 if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
2155 serial_send_break (monitor_desc);
2156 if (current_monitor->stop)
2157 monitor_printf_noecho (current_monitor->stop);
2158 }
2159
2160 /* Put a COMMAND string out to MONITOR. Output from MONITOR is placed
2161 in OUTPUT until the prompt is seen. FIXME: We read the characters
2162 ourseleves here cause of a nasty echo. */
2163
2164 static void
2165 monitor_rcmd (char *command,
2166 struct ui_file *outbuf)
2167 {
2168 char *p;
2169 int resp_len;
2170 char buf[1000];
2171
2172 if (monitor_desc == NULL)
2173 error (_("monitor target not open."));
2174
2175 p = current_monitor->prompt;
2176
2177 /* Send the command. Note that if no args were supplied, then we're
2178 just sending the monitor a newline, which is sometimes useful. */
2179
2180 monitor_printf ("%s\r", (command ? command : ""));
2181
2182 resp_len = monitor_expect_prompt (buf, sizeof buf);
2183
2184 fputs_unfiltered (buf, outbuf); /* Output the response */
2185 }
2186
2187 /* Convert hex digit A to a number. */
2188
2189 #if 0
2190 static int
2191 from_hex (int a)
2192 {
2193 if (a >= '0' && a <= '9')
2194 return a - '0';
2195 if (a >= 'a' && a <= 'f')
2196 return a - 'a' + 10;
2197 if (a >= 'A' && a <= 'F')
2198 return a - 'A' + 10;
2199
2200 error (_("Reply contains invalid hex digit 0x%x"), a);
2201 }
2202 #endif
2203
2204 char *
2205 monitor_get_dev_name (void)
2206 {
2207 return dev_name;
2208 }
2209
2210 static struct target_ops monitor_ops;
2211
2212 static void
2213 init_base_monitor_ops (void)
2214 {
2215 monitor_ops.to_close = monitor_close;
2216 monitor_ops.to_detach = monitor_detach;
2217 monitor_ops.to_resume = monitor_resume;
2218 monitor_ops.to_wait = monitor_wait;
2219 monitor_ops.to_fetch_registers = monitor_fetch_registers;
2220 monitor_ops.to_store_registers = monitor_store_registers;
2221 monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
2222 monitor_ops.deprecated_xfer_memory = monitor_xfer_memory;
2223 monitor_ops.to_files_info = monitor_files_info;
2224 monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
2225 monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
2226 monitor_ops.to_kill = monitor_kill;
2227 monitor_ops.to_load = monitor_load;
2228 monitor_ops.to_create_inferior = monitor_create_inferior;
2229 monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
2230 monitor_ops.to_stop = monitor_stop;
2231 monitor_ops.to_rcmd = monitor_rcmd;
2232 monitor_ops.to_stratum = process_stratum;
2233 monitor_ops.to_has_all_memory = 1;
2234 monitor_ops.to_has_memory = 1;
2235 monitor_ops.to_has_stack = 1;
2236 monitor_ops.to_has_registers = 1;
2237 monitor_ops.to_has_execution = 1;
2238 monitor_ops.to_magic = OPS_MAGIC;
2239 } /* init_base_monitor_ops */
2240
2241 /* Init the target_ops structure pointed at by OPS */
2242
2243 void
2244 init_monitor_ops (struct target_ops *ops)
2245 {
2246 if (monitor_ops.to_magic != OPS_MAGIC)
2247 init_base_monitor_ops ();
2248
2249 memcpy (ops, &monitor_ops, sizeof monitor_ops);
2250 }
2251
2252 /* Define additional commands that are usually only used by monitors. */
2253
2254 extern initialize_file_ftype _initialize_remote_monitors; /* -Wmissing-prototypes */
2255
2256 void
2257 _initialize_remote_monitors (void)
2258 {
2259 init_base_monitor_ops ();
2260 add_setshow_boolean_cmd ("hash", no_class, &hashmark, _("\
2261 Set display of activity while downloading a file."), _("\
2262 Show display of activity while downloading a file."), _("\
2263 When enabled, a hashmark \'#\' is displayed."),
2264 NULL,
2265 NULL, /* FIXME: i18n: */
2266 &setlist, &showlist);
2267
2268 add_setshow_zinteger_cmd ("monitor", no_class, &monitor_debug_p, _("\
2269 Set debugging of remote monitor communication."), _("\
2270 Show debugging of remote monitor communication."), _("\
2271 When enabled, communication between GDB and the remote monitor\n\
2272 is displayed."),
2273 NULL,
2274 NULL, /* FIXME: i18n: */
2275 &setdebuglist, &showdebuglist);
2276 }