]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mt-tdep.c
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / mt-tdep.c
1 /* Target-dependent code for Morpho mt processor, for GDB.
2
3 Copyright (C) 2005, 2007 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 /* Contributed by Michael Snyder, msnyder@redhat.com. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "symtab.h"
29 #include "dis-asm.h"
30 #include "arch-utils.h"
31 #include "gdbtypes.h"
32 #include "gdb_string.h"
33 #include "regcache.h"
34 #include "reggroups.h"
35 #include "gdbcore.h"
36 #include "trad-frame.h"
37 #include "inferior.h"
38 #include "dwarf2-frame.h"
39 #include "infcall.h"
40 #include "gdb_assert.h"
41
42 enum mt_arch_constants
43 {
44 MT_MAX_STRUCT_SIZE = 16
45 };
46
47 enum mt_gdb_regnums
48 {
49 MT_R0_REGNUM, /* 32 bit regs. */
50 MT_R1_REGNUM,
51 MT_1ST_ARGREG = MT_R1_REGNUM,
52 MT_R2_REGNUM,
53 MT_R3_REGNUM,
54 MT_R4_REGNUM,
55 MT_LAST_ARGREG = MT_R4_REGNUM,
56 MT_R5_REGNUM,
57 MT_R6_REGNUM,
58 MT_R7_REGNUM,
59 MT_R8_REGNUM,
60 MT_R9_REGNUM,
61 MT_R10_REGNUM,
62 MT_R11_REGNUM,
63 MT_R12_REGNUM,
64 MT_FP_REGNUM = MT_R12_REGNUM,
65 MT_R13_REGNUM,
66 MT_SP_REGNUM = MT_R13_REGNUM,
67 MT_R14_REGNUM,
68 MT_RA_REGNUM = MT_R14_REGNUM,
69 MT_R15_REGNUM,
70 MT_IRA_REGNUM = MT_R15_REGNUM,
71 MT_PC_REGNUM,
72
73 /* Interrupt Enable pseudo-register, exported by SID. */
74 MT_INT_ENABLE_REGNUM,
75 /* End of CPU regs. */
76
77 MT_NUM_CPU_REGS,
78
79 /* Co-processor registers. */
80 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
81 MT_CPR0_REGNUM,
82 MT_CPR1_REGNUM,
83 MT_CPR2_REGNUM,
84 MT_CPR3_REGNUM,
85 MT_CPR4_REGNUM,
86 MT_CPR5_REGNUM,
87 MT_CPR6_REGNUM,
88 MT_CPR7_REGNUM,
89 MT_CPR8_REGNUM,
90 MT_CPR9_REGNUM,
91 MT_CPR10_REGNUM,
92 MT_CPR11_REGNUM,
93 MT_CPR12_REGNUM,
94 MT_CPR13_REGNUM,
95 MT_CPR14_REGNUM,
96 MT_CPR15_REGNUM,
97 MT_BYPA_REGNUM, /* 32 bit regs. */
98 MT_BYPB_REGNUM,
99 MT_BYPC_REGNUM,
100 MT_FLAG_REGNUM,
101 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
102 six bytes). */
103 MT_MAC_REGNUM, /* 32 bits. */
104 MT_Z1_REGNUM, /* 16 bits. */
105 MT_Z2_REGNUM, /* 16 bits. */
106 MT_ICHANNEL_REGNUM, /* 32 bits. */
107 MT_ISCRAMB_REGNUM, /* 32 bits. */
108 MT_QSCRAMB_REGNUM, /* 32 bits. */
109 MT_OUT_REGNUM, /* 16 bits. */
110 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
111 MT_QCHANNEL_REGNUM, /* 32 bits. */
112 MT_ZI2_REGNUM, /* 16 bits. */
113 MT_ZQ2_REGNUM, /* 16 bits. */
114 MT_CHANNEL2_REGNUM, /* 32 bits. */
115 MT_ISCRAMB2_REGNUM, /* 32 bits. */
116 MT_QSCRAMB2_REGNUM, /* 32 bits. */
117 MT_QCHANNEL2_REGNUM, /* 32 bits. */
118
119 /* Number of real registers. */
120 MT_NUM_REGS,
121
122 /* Pseudo-registers. */
123 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
124 MT_MAC_PSEUDOREG_REGNUM,
125 MT_COPRO_PSEUDOREG_ARRAY,
126
127 MT_COPRO_PSEUDOREG_DIM_1 = 2,
128 MT_COPRO_PSEUDOREG_DIM_2 = 8,
129 /* The number of pseudo-registers for each coprocessor. These
130 include the real coprocessor registers, the pseudo-registe for
131 the coprocessor number, and the pseudo-register for the MAC. */
132 MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
133 /* The register number of the MAC, relative to a given coprocessor. */
134 MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
135
136 /* Two pseudo-regs ('coprocessor' and 'mac'). */
137 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
138 * MT_COPRO_PSEUDOREG_DIM_1
139 * MT_COPRO_PSEUDOREG_DIM_2)
140 };
141
142 /* Return name of register number specified by REGNUM. */
143
144 static const char *
145 mt_register_name (int regnum)
146 {
147 static const char *const register_names[] = {
148 /* CPU regs. */
149 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
150 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
151 "pc", "IE",
152 /* Co-processor regs. */
153 "", /* copro register. */
154 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
155 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
156 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
157 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
158 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
159 /* Pseudo-registers. */
160 "coprocessor", "MAC"
161 };
162 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
163 * MT_COPRO_PSEUDOREG_DIM_1
164 * MT_COPRO_PSEUDOREG_DIM_2];
165
166 if (regnum < 0)
167 return "";
168 if (regnum < ARRAY_SIZE (register_names))
169 return register_names[regnum];
170 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
171 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
172
173 {
174 char *name;
175 const char *stub;
176 unsigned dim_1;
177 unsigned dim_2;
178 unsigned index;
179
180 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
181 index = regnum % MT_COPRO_PSEUDOREG_REGS;
182 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
183 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
184 % MT_COPRO_PSEUDOREG_DIM_1);
185
186 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
187 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
188 else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
189 stub = "";
190 else
191 stub = register_names[index + MT_CPR0_REGNUM];
192 if (!*stub)
193 {
194 array_names[regnum] = stub;
195 return stub;
196 }
197 name = xmalloc (30);
198 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
199 array_names[regnum] = name;
200 return name;
201 }
202 }
203
204 /* Return the type of a coprocessor register. */
205
206 static struct type *
207 mt_copro_register_type (struct gdbarch *arch, int regnum)
208 {
209 switch (regnum)
210 {
211 case MT_INT_ENABLE_REGNUM:
212 case MT_ICHANNEL_REGNUM:
213 case MT_QCHANNEL_REGNUM:
214 case MT_ISCRAMB_REGNUM:
215 case MT_QSCRAMB_REGNUM:
216 return builtin_type_int32;
217 case MT_BYPA_REGNUM:
218 case MT_BYPB_REGNUM:
219 case MT_BYPC_REGNUM:
220 case MT_Z1_REGNUM:
221 case MT_Z2_REGNUM:
222 case MT_OUT_REGNUM:
223 case MT_ZI2_REGNUM:
224 case MT_ZQ2_REGNUM:
225 return builtin_type_int16;
226 case MT_EXMAC_REGNUM:
227 case MT_MAC_REGNUM:
228 return builtin_type_uint32;
229 case MT_CONTEXT_REGNUM:
230 return builtin_type_long_long;
231 case MT_FLAG_REGNUM:
232 return builtin_type_unsigned_char;
233 default:
234 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
235 return builtin_type_int16;
236 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
237 {
238 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
239 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
240 return builtin_type_uint64;
241 else
242 return builtin_type_uint32;
243 }
244 else
245 return builtin_type_uint32;
246 }
247 }
248
249 /* Given ARCH and a register number specified by REGNUM, return the
250 type of that register. */
251
252 static struct type *
253 mt_register_type (struct gdbarch *arch, int regnum)
254 {
255 static struct type *void_func_ptr = NULL;
256 static struct type *void_ptr = NULL;
257 static struct type *copro_type;
258
259 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
260 {
261 if (void_func_ptr == NULL)
262 {
263 struct type *temp;
264
265 void_ptr = lookup_pointer_type (builtin_type_void);
266 void_func_ptr =
267 lookup_pointer_type (lookup_function_type (builtin_type_void));
268 temp = create_range_type (NULL, builtin_type_unsigned_int, 0, 1);
269 copro_type = create_array_type (NULL, builtin_type_int16, temp);
270 }
271 switch (regnum)
272 {
273 case MT_PC_REGNUM:
274 case MT_RA_REGNUM:
275 case MT_IRA_REGNUM:
276 return void_func_ptr;
277 case MT_SP_REGNUM:
278 case MT_FP_REGNUM:
279 return void_ptr;
280 case MT_COPRO_REGNUM:
281 case MT_COPRO_PSEUDOREG_REGNUM:
282 return copro_type;
283 case MT_MAC_PSEUDOREG_REGNUM:
284 return mt_copro_register_type (arch,
285 MT_CPR0_REGNUM
286 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
287 default:
288 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
289 return builtin_type_int32;
290 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
291 return mt_copro_register_type (arch, regnum);
292 else
293 {
294 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
295 regnum %= MT_COPRO_PSEUDOREG_REGS;
296 regnum += MT_CPR0_REGNUM;
297 return mt_copro_register_type (arch, regnum);
298 }
299 }
300 }
301 internal_error (__FILE__, __LINE__,
302 _("mt_register_type: illegal register number %d"), regnum);
303 }
304
305 /* Return true if register REGNUM is a member of the register group
306 specified by GROUP. */
307
308 static int
309 mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
310 struct reggroup *group)
311 {
312 /* Groups of registers that can be displayed via "info reg". */
313 if (group == all_reggroup)
314 return (regnum >= 0
315 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
316 && mt_register_name (regnum)[0] != '\0');
317
318 if (group == general_reggroup)
319 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
320
321 if (group == float_reggroup)
322 return 0; /* No float regs. */
323
324 if (group == vector_reggroup)
325 return 0; /* No vector regs. */
326
327 /* For any that are not handled above. */
328 return default_register_reggroup_p (gdbarch, regnum, group);
329 }
330
331 /* Return the return value convention used for a given type TYPE.
332 Optionally, fetch or set the return value via READBUF or
333 WRITEBUF respectively using REGCACHE for the register
334 values. */
335
336 static enum return_value_convention
337 mt_return_value (struct gdbarch *gdbarch, struct type *type,
338 struct regcache *regcache, gdb_byte *readbuf,
339 const gdb_byte *writebuf)
340 {
341 if (TYPE_LENGTH (type) > 4)
342 {
343 /* Return values > 4 bytes are returned in memory,
344 pointed to by R11. */
345 if (readbuf)
346 {
347 ULONGEST addr;
348
349 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
350 read_memory (addr, readbuf, TYPE_LENGTH (type));
351 }
352
353 if (writebuf)
354 {
355 ULONGEST addr;
356
357 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
358 write_memory (addr, writebuf, TYPE_LENGTH (type));
359 }
360
361 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
362 }
363 else
364 {
365 if (readbuf)
366 {
367 ULONGEST temp;
368
369 /* Return values of <= 4 bytes are returned in R11. */
370 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
371 store_unsigned_integer (readbuf, TYPE_LENGTH (type), temp);
372 }
373
374 if (writebuf)
375 {
376 if (TYPE_LENGTH (type) < 4)
377 {
378 gdb_byte buf[4];
379 /* Add leading zeros to the value. */
380 memset (buf, 0, sizeof (buf));
381 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
382 writebuf, TYPE_LENGTH (type));
383 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
384 }
385 else /* (TYPE_LENGTH (type) == 4 */
386 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
387 }
388
389 return RETURN_VALUE_REGISTER_CONVENTION;
390 }
391 }
392
393 /* If the input address, PC, is in a function prologue, return the
394 address of the end of the prologue, otherwise return the input
395 address.
396
397 Note: PC is likely to be the function start, since this function
398 is mainly used for advancing a breakpoint to the first line, or
399 stepping to the first line when we have stepped into a function
400 call. */
401
402 static CORE_ADDR
403 mt_skip_prologue (CORE_ADDR pc)
404 {
405 CORE_ADDR func_addr = 0, func_end = 0;
406 char *func_name;
407 unsigned long instr;
408
409 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
410 {
411 struct symtab_and_line sal;
412 struct symbol *sym;
413
414 /* Found a function. */
415 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
416 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
417 {
418 /* Don't use this trick for assembly source files. */
419 sal = find_pc_line (func_addr, 0);
420
421 if (sal.end && sal.end < func_end)
422 {
423 /* Found a line number, use it as end of prologue. */
424 return sal.end;
425 }
426 }
427 }
428
429 /* No function symbol, or no line symbol. Use prologue scanning method. */
430 for (;; pc += 4)
431 {
432 instr = read_memory_unsigned_integer (pc, 4);
433 if (instr == 0x12000000) /* nop */
434 continue;
435 if (instr == 0x12ddc000) /* copy sp into fp */
436 continue;
437 instr >>= 16;
438 if (instr == 0x05dd) /* subi sp, sp, imm */
439 continue;
440 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
441 continue;
442 /* Not an obvious prologue instruction. */
443 break;
444 }
445
446 return pc;
447 }
448
449 /* The breakpoint instruction must be the same size as the smallest
450 instruction in the instruction set.
451
452 The BP for ms1 is defined as 0x68000000 (BREAK).
453 The BP for ms2 is defined as 0x69000000 (illegal) */
454
455 static const gdb_byte *
456 mt_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
457 {
458 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
459 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
460
461 *bp_size = 4;
462 if (gdbarch_bfd_arch_info (current_gdbarch)->mach == bfd_mach_ms2)
463 return ms2_breakpoint;
464
465 return ms1_breakpoint;
466 }
467
468 /* Select the correct coprocessor register bank. Return the pseudo
469 regnum we really want to read. */
470
471 static int
472 mt_select_coprocessor (struct gdbarch *gdbarch,
473 struct regcache *regcache, int regno)
474 {
475 unsigned index, base;
476 gdb_byte copro[4];
477
478 /* Get the copro pseudo regnum. */
479 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
480 base = (extract_signed_integer (&copro[0], 2) * MT_COPRO_PSEUDOREG_DIM_2
481 + extract_signed_integer (&copro[2], 2));
482
483 regno -= MT_COPRO_PSEUDOREG_ARRAY;
484 index = regno % MT_COPRO_PSEUDOREG_REGS;
485 regno /= MT_COPRO_PSEUDOREG_REGS;
486 if (base != regno)
487 {
488 /* Select the correct coprocessor register bank. Invalidate the
489 coprocessor register cache. */
490 unsigned ix;
491
492 store_signed_integer (&copro[0], 2, regno / MT_COPRO_PSEUDOREG_DIM_2);
493 store_signed_integer (&copro[2], 2, regno % MT_COPRO_PSEUDOREG_DIM_2);
494 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
495
496 /* We must flush the cache, as it is now invalid. */
497 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
498 set_register_cached (ix, 0);
499 }
500
501 return index;
502 }
503
504 /* Fetch the pseudo registers:
505
506 There are two regular pseudo-registers:
507 1) The 'coprocessor' pseudo-register (which mirrors the
508 "real" coprocessor register sent by the target), and
509 2) The 'MAC' pseudo-register (which represents the union
510 of the original 32 bit target MAC register and the new
511 8-bit extended-MAC register).
512
513 Additionally there is an array of coprocessor registers which track
514 the coprocessor registers for each coprocessor. */
515
516 static void
517 mt_pseudo_register_read (struct gdbarch *gdbarch,
518 struct regcache *regcache, int regno, gdb_byte *buf)
519 {
520 switch (regno)
521 {
522 case MT_COPRO_REGNUM:
523 case MT_COPRO_PSEUDOREG_REGNUM:
524 regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
525 break;
526 case MT_MAC_REGNUM:
527 case MT_MAC_PSEUDOREG_REGNUM:
528 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
529 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
530 {
531 ULONGEST oldmac = 0, ext_mac = 0;
532 ULONGEST newmac;
533
534 regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
535 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
536 newmac =
537 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
538 store_signed_integer (buf, 8, newmac);
539 }
540 else
541 regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
542 break;
543 default:
544 {
545 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
546
547 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
548 mt_pseudo_register_read (gdbarch, regcache,
549 MT_MAC_PSEUDOREG_REGNUM, buf);
550 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
551 regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
552 }
553 break;
554 }
555 }
556
557 /* Write the pseudo registers:
558
559 Mt pseudo-registers are stored directly to the target. The
560 'coprocessor' register is special, because when it is modified, all
561 the other coprocessor regs must be flushed from the reg cache. */
562
563 static void
564 mt_pseudo_register_write (struct gdbarch *gdbarch,
565 struct regcache *regcache,
566 int regno, const gdb_byte *buf)
567 {
568 int i;
569
570 switch (regno)
571 {
572 case MT_COPRO_REGNUM:
573 case MT_COPRO_PSEUDOREG_REGNUM:
574 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
575 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
576 set_register_cached (i, 0);
577 break;
578 case MT_MAC_REGNUM:
579 case MT_MAC_PSEUDOREG_REGNUM:
580 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
581 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
582 {
583 /* The 8-byte MAC pseudo-register must be broken down into two
584 32-byte registers. */
585 unsigned int oldmac, ext_mac;
586 ULONGEST newmac;
587
588 newmac = extract_unsigned_integer (buf, 8);
589 oldmac = newmac & 0xffffffff;
590 ext_mac = (newmac >> 32) & 0xff;
591 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
592 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
593 }
594 else
595 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
596 break;
597 default:
598 {
599 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
600
601 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
602 mt_pseudo_register_write (gdbarch, regcache,
603 MT_MAC_PSEUDOREG_REGNUM, buf);
604 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
605 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
606 }
607 break;
608 }
609 }
610
611 static CORE_ADDR
612 mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
613 {
614 /* Register size is 4 bytes. */
615 return align_down (sp, 4);
616 }
617
618 /* Implements the "info registers" command. When ``all'' is non-zero,
619 the coprocessor registers will be printed in addition to the rest
620 of the registers. */
621
622 static void
623 mt_registers_info (struct gdbarch *gdbarch,
624 struct ui_file *file,
625 struct frame_info *frame, int regnum, int all)
626 {
627 if (regnum == -1)
628 {
629 int lim;
630
631 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
632
633 for (regnum = 0; regnum < lim; regnum++)
634 {
635 /* Don't display the Qchannel register since it will be displayed
636 along with Ichannel. (See below.) */
637 if (regnum == MT_QCHANNEL_REGNUM)
638 continue;
639
640 mt_registers_info (gdbarch, file, frame, regnum, all);
641
642 /* Display the Qchannel register immediately after Ichannel. */
643 if (regnum == MT_ICHANNEL_REGNUM)
644 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
645 }
646 }
647 else
648 {
649 if (regnum == MT_EXMAC_REGNUM)
650 return;
651 else if (regnum == MT_CONTEXT_REGNUM)
652 {
653 /* Special output handling for 38-bit context register. */
654 unsigned char *buff;
655 unsigned int *bytes, i, regsize;
656
657 regsize = register_size (gdbarch, regnum);
658
659 buff = alloca (regsize);
660 bytes = alloca (regsize * sizeof (*bytes));
661
662 frame_register_read (frame, regnum, buff);
663
664 fputs_filtered (REGISTER_NAME (regnum), file);
665 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
666 fputs_filtered ("0x", file);
667
668 for (i = 0; i < regsize; i++)
669 fprintf_filtered (file, "%02x", (unsigned int)
670 extract_unsigned_integer (buff + i, 1));
671 fputs_filtered ("\t", file);
672 print_longest (file, 'd', 0,
673 extract_unsigned_integer (buff, regsize));
674 fputs_filtered ("\n", file);
675 }
676 else if (regnum == MT_COPRO_REGNUM
677 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
678 {
679 /* Special output handling for the 'coprocessor' register. */
680 gdb_byte *buf;
681
682 buf = alloca (register_size (gdbarch, MT_COPRO_REGNUM));
683 frame_register_read (frame, MT_COPRO_REGNUM, buf);
684 /* And print. */
685 regnum = MT_COPRO_PSEUDOREG_REGNUM;
686 fputs_filtered (REGISTER_NAME (regnum), file);
687 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
688 val_print (register_type (gdbarch, regnum), buf,
689 0, 0, file, 0, 1, 0, Val_no_prettyprint);
690 fputs_filtered ("\n", file);
691 }
692 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
693 {
694 ULONGEST oldmac, ext_mac, newmac;
695 gdb_byte buf[3 * sizeof (LONGEST)];
696
697 /* Get the two "real" mac registers. */
698 frame_register_read (frame, MT_MAC_REGNUM, buf);
699 oldmac = extract_unsigned_integer
700 (buf, register_size (gdbarch, MT_MAC_REGNUM));
701 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
702 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
703 {
704 frame_register_read (frame, MT_EXMAC_REGNUM, buf);
705 ext_mac = extract_unsigned_integer
706 (buf, register_size (gdbarch, MT_EXMAC_REGNUM));
707 }
708 else
709 ext_mac = 0;
710
711 /* Add them together. */
712 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
713
714 /* And print. */
715 regnum = MT_MAC_PSEUDOREG_REGNUM;
716 fputs_filtered (REGISTER_NAME (regnum), file);
717 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
718 fputs_filtered ("0x", file);
719 print_longest (file, 'x', 0, newmac);
720 fputs_filtered ("\t", file);
721 print_longest (file, 'u', 0, newmac);
722 fputs_filtered ("\n", file);
723 }
724 else
725 default_print_registers_info (gdbarch, file, frame, regnum, all);
726 }
727 }
728
729 /* Set up the callee's arguments for an inferior function call. The
730 arguments are pushed on the stack or are placed in registers as
731 appropriate. It also sets up the return address (which points to
732 the call dummy breakpoint).
733
734 Returns the updated (and aligned) stack pointer. */
735
736 static CORE_ADDR
737 mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
738 struct regcache *regcache, CORE_ADDR bp_addr,
739 int nargs, struct value **args, CORE_ADDR sp,
740 int struct_return, CORE_ADDR struct_addr)
741 {
742 #define wordsize 4
743 gdb_byte buf[MT_MAX_STRUCT_SIZE];
744 int argreg = MT_1ST_ARGREG;
745 int split_param_len = 0;
746 int stack_dest = sp;
747 int slacklen;
748 int typelen;
749 int i, j;
750
751 /* First handle however many args we can fit into MT_1ST_ARGREG thru
752 MT_LAST_ARGREG. */
753 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
754 {
755 const gdb_byte *val;
756 typelen = TYPE_LENGTH (value_type (args[i]));
757 switch (typelen)
758 {
759 case 1:
760 case 2:
761 case 3:
762 case 4:
763 regcache_cooked_write_unsigned (regcache, argreg++,
764 extract_unsigned_integer
765 (value_contents (args[i]),
766 wordsize));
767 break;
768 case 8:
769 case 12:
770 case 16:
771 val = value_contents (args[i]);
772 while (typelen > 0)
773 {
774 if (argreg <= MT_LAST_ARGREG)
775 {
776 /* This word of the argument is passed in a register. */
777 regcache_cooked_write_unsigned (regcache, argreg++,
778 extract_unsigned_integer
779 (val, wordsize));
780 typelen -= wordsize;
781 val += wordsize;
782 }
783 else
784 {
785 /* Remainder of this arg must be passed on the stack
786 (deferred to do later). */
787 split_param_len = typelen;
788 memcpy (buf, val, typelen);
789 break; /* No more args can be handled in regs. */
790 }
791 }
792 break;
793 default:
794 /* By reverse engineering of gcc output, args bigger than
795 16 bytes go on the stack, and their address is passed
796 in the argreg. */
797 stack_dest -= typelen;
798 write_memory (stack_dest, value_contents (args[i]), typelen);
799 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
800 break;
801 }
802 }
803
804 /* Next, the rest of the arguments go onto the stack, in reverse order. */
805 for (j = nargs - 1; j >= i; j--)
806 {
807 gdb_byte *val;
808
809 /* Right-justify the value in an aligned-length buffer. */
810 typelen = TYPE_LENGTH (value_type (args[j]));
811 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
812 val = alloca (typelen + slacklen);
813 memcpy (val, value_contents (args[j]), typelen);
814 memset (val + typelen, 0, slacklen);
815 /* Now write this data to the stack. */
816 stack_dest -= typelen + slacklen;
817 write_memory (stack_dest, val, typelen + slacklen);
818 }
819
820 /* Finally, if a param needs to be split between registers and stack,
821 write the second half to the stack now. */
822 if (split_param_len != 0)
823 {
824 stack_dest -= split_param_len;
825 write_memory (stack_dest, buf, split_param_len);
826 }
827
828 /* Set up return address (provided to us as bp_addr). */
829 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
830
831 /* Store struct return address, if given. */
832 if (struct_return && struct_addr != 0)
833 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
834
835 /* Set aside 16 bytes for the callee to save regs 1-4. */
836 stack_dest -= 16;
837
838 /* Update the stack pointer. */
839 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
840
841 /* And that should do it. Return the new stack pointer. */
842 return stack_dest;
843 }
844
845
846 /* The 'unwind_cache' data structure. */
847
848 struct mt_unwind_cache
849 {
850 /* The previous frame's inner most stack address.
851 Used as this frame ID's stack_addr. */
852 CORE_ADDR prev_sp;
853 CORE_ADDR frame_base;
854 int framesize;
855 int frameless_p;
856
857 /* Table indicating the location of each and every register. */
858 struct trad_frame_saved_reg *saved_regs;
859 };
860
861 /* Initialize an unwind_cache. Build up the saved_regs table etc. for
862 the frame. */
863
864 static struct mt_unwind_cache *
865 mt_frame_unwind_cache (struct frame_info *next_frame,
866 void **this_prologue_cache)
867 {
868 struct gdbarch *gdbarch;
869 struct mt_unwind_cache *info;
870 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
871 unsigned long instr, upper_half, delayed_store = 0;
872 int regnum, offset;
873 ULONGEST sp, fp;
874
875 if ((*this_prologue_cache))
876 return (*this_prologue_cache);
877
878 gdbarch = get_frame_arch (next_frame);
879 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
880 (*this_prologue_cache) = info;
881
882 info->prev_sp = 0;
883 info->framesize = 0;
884 info->frame_base = 0;
885 info->frameless_p = 1;
886 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
887
888 /* Grab the frame-relative values of SP and FP, needed below.
889 The frame_saved_register function will find them on the
890 stack or in the registers as appropriate. */
891 frame_unwind_unsigned_register (next_frame, MT_SP_REGNUM, &sp);
892 frame_unwind_unsigned_register (next_frame, MT_FP_REGNUM, &fp);
893
894 start_addr = frame_func_unwind (next_frame);
895
896 /* Return early if GDB couldn't find the function. */
897 if (start_addr == 0)
898 return info;
899
900 end_addr = frame_pc_unwind (next_frame);
901 prologue_end_addr = skip_prologue_using_sal (start_addr);
902 if (end_addr == 0)
903 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
904 {
905 instr = get_frame_memory_unsigned (next_frame, next_addr, 4);
906 if (delayed_store) /* previous instr was a push */
907 {
908 upper_half = delayed_store >> 16;
909 regnum = upper_half & 0xf;
910 offset = delayed_store & 0xffff;
911 switch (upper_half & 0xfff0)
912 {
913 case 0x43c0: /* push using frame pointer */
914 info->saved_regs[regnum].addr = offset;
915 break;
916 case 0x43d0: /* push using stack pointer */
917 info->saved_regs[regnum].addr = offset;
918 break;
919 default: /* lint */
920 break;
921 }
922 delayed_store = 0;
923 }
924
925 switch (instr)
926 {
927 case 0x12000000: /* NO-OP */
928 continue;
929 case 0x12ddc000: /* copy sp into fp */
930 info->frameless_p = 0; /* Record that the frame pointer is in use. */
931 continue;
932 default:
933 upper_half = instr >> 16;
934 if (upper_half == 0x05dd || /* subi sp, sp, imm */
935 upper_half == 0x07dd) /* subui sp, sp, imm */
936 {
937 /* Record the frame size. */
938 info->framesize = instr & 0xffff;
939 continue;
940 }
941 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
942 (upper_half & 0xfff0) == 0x43d0) /* stack push */
943 {
944 /* Save this instruction, but don't record the
945 pushed register as 'saved' until we see the
946 next instruction. That's because of deferred stores
947 on this target -- GDB won't be able to read the register
948 from the stack until one instruction later. */
949 delayed_store = instr;
950 continue;
951 }
952 /* Not a prologue instruction. Is this the end of the prologue?
953 This is the most difficult decision; when to stop scanning.
954
955 If we have no line symbol, then the best thing we can do
956 is to stop scanning when we encounter an instruction that
957 is not likely to be a part of the prologue.
958
959 But if we do have a line symbol, then we should
960 keep scanning until we reach it (or we reach end_addr). */
961
962 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
963 continue; /* Keep scanning, recording saved_regs etc. */
964 else
965 break; /* Quit scanning: breakpoint can be set here. */
966 }
967 }
968
969 /* Special handling for the "saved" address of the SP:
970 The SP is of course never saved on the stack at all, so
971 by convention what we put here is simply the previous
972 _value_ of the SP (as opposed to an address where the
973 previous value would have been pushed). This will also
974 give us the frame base address. */
975
976 if (info->frameless_p)
977 {
978 info->frame_base = sp + info->framesize;
979 info->prev_sp = sp + info->framesize;
980 }
981 else
982 {
983 info->frame_base = fp + info->framesize;
984 info->prev_sp = fp + info->framesize;
985 }
986 /* Save prev_sp in saved_regs as a value, not as an address. */
987 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
988
989 /* Now convert frame offsets to actual addresses (not offsets). */
990 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
991 if (trad_frame_addr_p (info->saved_regs, regnum))
992 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
993
994 /* The call instruction moves the caller's PC in the callee's RA reg.
995 Since this is an unwind, do the reverse. Copy the location of RA
996 into PC (the address / regnum) so that a request for PC will be
997 converted into a request for the RA. */
998 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
999
1000 return info;
1001 }
1002
1003 static CORE_ADDR
1004 mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1005 {
1006 ULONGEST pc;
1007
1008 frame_unwind_unsigned_register (next_frame, MT_PC_REGNUM, &pc);
1009 return pc;
1010 }
1011
1012 static CORE_ADDR
1013 mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1014 {
1015 ULONGEST sp;
1016
1017 frame_unwind_unsigned_register (next_frame, MT_SP_REGNUM, &sp);
1018 return sp;
1019 }
1020
1021 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1022 dummy frame. The frame ID's base needs to match the TOS value
1023 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1024 breakpoint. */
1025
1026 static struct frame_id
1027 mt_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1028 {
1029 return frame_id_build (mt_unwind_sp (gdbarch, next_frame),
1030 frame_pc_unwind (next_frame));
1031 }
1032
1033 /* Given a GDB frame, determine the address of the calling function's
1034 frame. This will be used to create a new GDB frame struct. */
1035
1036 static void
1037 mt_frame_this_id (struct frame_info *next_frame,
1038 void **this_prologue_cache, struct frame_id *this_id)
1039 {
1040 struct mt_unwind_cache *info =
1041 mt_frame_unwind_cache (next_frame, this_prologue_cache);
1042
1043 if (!(info == NULL || info->prev_sp == 0))
1044 {
1045 (*this_id) = frame_id_build (info->prev_sp,
1046 frame_func_unwind (next_frame));
1047 }
1048 return;
1049 }
1050
1051 static void
1052 mt_frame_prev_register (struct frame_info *next_frame,
1053 void **this_prologue_cache,
1054 int regnum, int *optimizedp,
1055 enum lval_type *lvalp, CORE_ADDR *addrp,
1056 int *realnump, gdb_byte *bufferp)
1057 {
1058 struct mt_unwind_cache *info =
1059 mt_frame_unwind_cache (next_frame, this_prologue_cache);
1060
1061 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1062 optimizedp, lvalp, addrp, realnump, bufferp);
1063 }
1064
1065 static CORE_ADDR
1066 mt_frame_base_address (struct frame_info *next_frame,
1067 void **this_prologue_cache)
1068 {
1069 struct mt_unwind_cache *info =
1070 mt_frame_unwind_cache (next_frame, this_prologue_cache);
1071
1072 return info->frame_base;
1073 }
1074
1075 /* This is a shared interface: the 'frame_unwind' object is what's
1076 returned by the 'sniffer' function, and in turn specifies how to
1077 get a frame's ID and prev_regs.
1078
1079 This exports the 'prev_register' and 'this_id' methods. */
1080
1081 static const struct frame_unwind mt_frame_unwind = {
1082 NORMAL_FRAME,
1083 mt_frame_this_id,
1084 mt_frame_prev_register
1085 };
1086
1087 /* The sniffer is a registered function that identifies our family of
1088 frame unwind functions (this_id and prev_register). */
1089
1090 static const struct frame_unwind *
1091 mt_frame_sniffer (struct frame_info *next_frame)
1092 {
1093 return &mt_frame_unwind;
1094 }
1095
1096 /* Another shared interface: the 'frame_base' object specifies how to
1097 unwind a frame and secure the base addresses for frame objects
1098 (locals, args). */
1099
1100 static struct frame_base mt_frame_base = {
1101 &mt_frame_unwind,
1102 mt_frame_base_address,
1103 mt_frame_base_address,
1104 mt_frame_base_address
1105 };
1106
1107 static struct gdbarch *
1108 mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1109 {
1110 struct gdbarch *gdbarch;
1111
1112 /* Find a candidate among the list of pre-declared architectures. */
1113 arches = gdbarch_list_lookup_by_info (arches, &info);
1114 if (arches != NULL)
1115 return arches->gdbarch;
1116
1117 /* None found, create a new architecture from the information
1118 provided. */
1119 gdbarch = gdbarch_alloc (&info, NULL);
1120
1121 switch (info.byte_order)
1122 {
1123 case BFD_ENDIAN_BIG:
1124 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
1125 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
1126 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
1127 break;
1128 case BFD_ENDIAN_LITTLE:
1129 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1130 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
1131 set_gdbarch_long_double_format (gdbarch,
1132 &floatformat_ieee_double_little);
1133 break;
1134 default:
1135 internal_error (__FILE__, __LINE__,
1136 _("mt_gdbarch_init: bad byte order for float format"));
1137 }
1138
1139 set_gdbarch_register_name (gdbarch, mt_register_name);
1140 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1141 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1142 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1143 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1144 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1145 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1146 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
1147 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1148 set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
1149 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1150 set_gdbarch_frame_args_skip (gdbarch, 0);
1151 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1152 set_gdbarch_register_type (gdbarch, mt_register_type);
1153 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
1154
1155 set_gdbarch_return_value (gdbarch, mt_return_value);
1156 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1157
1158 set_gdbarch_frame_align (gdbarch, mt_frame_align);
1159
1160 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
1161
1162 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
1163
1164 /* Target builtin data types. */
1165 set_gdbarch_short_bit (gdbarch, 16);
1166 set_gdbarch_int_bit (gdbarch, 32);
1167 set_gdbarch_long_bit (gdbarch, 32);
1168 set_gdbarch_long_long_bit (gdbarch, 64);
1169 set_gdbarch_float_bit (gdbarch, 32);
1170 set_gdbarch_double_bit (gdbarch, 64);
1171 set_gdbarch_long_double_bit (gdbarch, 64);
1172 set_gdbarch_ptr_bit (gdbarch, 32);
1173
1174 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1175 based sniffer. */
1176 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1177 frame_unwind_append_sniffer (gdbarch, mt_frame_sniffer);
1178 frame_base_set_default (gdbarch, &mt_frame_base);
1179
1180 /* Register the 'unwind_pc' method. */
1181 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1182 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
1183
1184 /* Methods for saving / extracting a dummy frame's ID.
1185 The ID's stack address must match the SP value returned by
1186 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1187 set_gdbarch_unwind_dummy_id (gdbarch, mt_unwind_dummy_id);
1188
1189 return gdbarch;
1190 }
1191
1192 void
1193 _initialize_mt_tdep (void)
1194 {
1195 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);
1196 }