]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/nds32-tdep.c
9e5ad6a033b0a0a8e9f16db21f1ecc3d57f7e388
[thirdparty/binutils-gdb.git] / gdb / nds32-tdep.c
1 /* Target-dependent code for the NDS32 architecture, for GDB.
2
3 Copyright (C) 2013-2018 Free Software Foundation, Inc.
4 Contributed by Andes Technology Corporation.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "frame-unwind.h"
24 #include "frame-base.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "reggroups.h"
30 #include "inferior.h"
31 #include "osabi.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "dis-asm.h"
35 #include "user-regs.h"
36 #include "elf-bfd.h"
37 #include "dwarf2-frame.h"
38 #include "remote.h"
39 #include "target-descriptions.h"
40
41 #include "nds32-tdep.h"
42 #include "elf/nds32.h"
43 #include "opcode/nds32.h"
44 #include <algorithm>
45
46 #include "features/nds32.c"
47
48 /* Simple macros for instruction analysis. */
49 #define CHOP_BITS(insn, n) (insn & ~__MASK (n))
50 #define N32_LSMW_ENABLE4(insn) (((insn) >> 6) & 0xf)
51 #define N32_SMW_ADM \
52 N32_TYPE4 (LSMW, 0, 0, 0, 1, (N32_LSMW_ADM << 2) | N32_LSMW_LSMW)
53 #define N32_LMW_BIM \
54 N32_TYPE4 (LSMW, 0, 0, 0, 0, (N32_LSMW_BIM << 2) | N32_LSMW_LSMW)
55 #define N32_FLDI_SP \
56 N32_TYPE2 (LDC, 0, REG_SP, 0)
57
58 /* Use an invalid address value as 'not available' marker. */
59 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
60
61 /* Use an impossible value as invalid offset. */
62 enum { INVALID_OFFSET = (CORE_ADDR) -1 };
63
64 /* Instruction groups for NDS32 epilogue analysis. */
65 enum
66 {
67 /* Instructions used everywhere, not only in epilogue. */
68 INSN_NORMAL,
69 /* Instructions used to reset sp for local vars, arguments, etc. */
70 INSN_RESET_SP,
71 /* Instructions used to recover saved regs and to recover padding. */
72 INSN_RECOVER,
73 /* Instructions used to return to the caller. */
74 INSN_RETURN,
75 /* Instructions used to recover saved regs and to return to the caller. */
76 INSN_RECOVER_RETURN,
77 };
78
79 static const char *const nds32_register_names[] =
80 {
81 /* 32 GPRs. */
82 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
83 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
84 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
85 "r24", "r25", "r26", "r27", "fp", "gp", "lp", "sp",
86 /* PC. */
87 "pc",
88 };
89
90 static const char *const nds32_fdr_register_names[] =
91 {
92 "fd0", "fd1", "fd2", "fd3", "fd4", "fd5", "fd6", "fd7",
93 "fd8", "fd9", "fd10", "fd11", "fd12", "fd13", "fd14", "fd15",
94 "fd16", "fd17", "fd18", "fd19", "fd20", "fd21", "fd22", "fd23",
95 "fd24", "fd25", "fd26", "fd27", "fd28", "fd29", "fd30", "fd31"
96 };
97
98 static const char *const nds32_fsr_register_names[] =
99 {
100 "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7",
101 "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15",
102 "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23",
103 "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31"
104 };
105
106 /* The number of registers for four FPU configuration options. */
107 const int num_fdr_map[] = { 4, 8, 16, 32 };
108 const int num_fsr_map[] = { 8, 16, 32, 32 };
109
110 /* Aliases for registers. */
111 static const struct
112 {
113 const char *name;
114 const char *alias;
115 } nds32_register_aliases[] =
116 {
117 {"r15", "ta"},
118 {"r26", "p0"},
119 {"r27", "p1"},
120 {"fp", "r28"},
121 {"gp", "r29"},
122 {"lp", "r30"},
123 {"sp", "r31"},
124
125 {"cr0", "cpu_ver"},
126 {"cr1", "icm_cfg"},
127 {"cr2", "dcm_cfg"},
128 {"cr3", "mmu_cfg"},
129 {"cr4", "msc_cfg"},
130 {"cr5", "core_id"},
131 {"cr6", "fucop_exist"},
132 {"cr7", "msc_cfg2"},
133
134 {"ir0", "psw"},
135 {"ir1", "ipsw"},
136 {"ir2", "p_psw"},
137 {"ir3", "ivb"},
138 {"ir4", "eva"},
139 {"ir5", "p_eva"},
140 {"ir6", "itype"},
141 {"ir7", "p_itype"},
142 {"ir8", "merr"},
143 {"ir9", "ipc"},
144 {"ir10", "p_ipc"},
145 {"ir11", "oipc"},
146 {"ir12", "p_p0"},
147 {"ir13", "p_p1"},
148 {"ir14", "int_mask"},
149 {"ir15", "int_pend"},
150 {"ir16", "sp_usr"},
151 {"ir17", "sp_priv"},
152 {"ir18", "int_pri"},
153 {"ir19", "int_ctrl"},
154 {"ir20", "sp_usr1"},
155 {"ir21", "sp_priv1"},
156 {"ir22", "sp_usr2"},
157 {"ir23", "sp_priv2"},
158 {"ir24", "sp_usr3"},
159 {"ir25", "sp_priv3"},
160 {"ir26", "int_mask2"},
161 {"ir27", "int_pend2"},
162 {"ir28", "int_pri2"},
163 {"ir29", "int_trigger"},
164
165 {"mr0", "mmu_ctl"},
166 {"mr1", "l1_pptb"},
167 {"mr2", "tlb_vpn"},
168 {"mr3", "tlb_data"},
169 {"mr4", "tlb_misc"},
170 {"mr5", "vlpt_idx"},
171 {"mr6", "ilmb"},
172 {"mr7", "dlmb"},
173 {"mr8", "cache_ctl"},
174 {"mr9", "hsmp_saddr"},
175 {"mr10", "hsmp_eaddr"},
176 {"mr11", "bg_region"},
177
178 {"dr0", "bpc0"},
179 {"dr1", "bpc1"},
180 {"dr2", "bpc2"},
181 {"dr3", "bpc3"},
182 {"dr4", "bpc4"},
183 {"dr5", "bpc5"},
184 {"dr6", "bpc6"},
185 {"dr7", "bpc7"},
186 {"dr8", "bpa0"},
187 {"dr9", "bpa1"},
188 {"dr10", "bpa2"},
189 {"dr11", "bpa3"},
190 {"dr12", "bpa4"},
191 {"dr13", "bpa5"},
192 {"dr14", "bpa6"},
193 {"dr15", "bpa7"},
194 {"dr16", "bpam0"},
195 {"dr17", "bpam1"},
196 {"dr18", "bpam2"},
197 {"dr19", "bpam3"},
198 {"dr20", "bpam4"},
199 {"dr21", "bpam5"},
200 {"dr22", "bpam6"},
201 {"dr23", "bpam7"},
202 {"dr24", "bpv0"},
203 {"dr25", "bpv1"},
204 {"dr26", "bpv2"},
205 {"dr27", "bpv3"},
206 {"dr28", "bpv4"},
207 {"dr29", "bpv5"},
208 {"dr30", "bpv6"},
209 {"dr31", "bpv7"},
210 {"dr32", "bpcid0"},
211 {"dr33", "bpcid1"},
212 {"dr34", "bpcid2"},
213 {"dr35", "bpcid3"},
214 {"dr36", "bpcid4"},
215 {"dr37", "bpcid5"},
216 {"dr38", "bpcid6"},
217 {"dr39", "bpcid7"},
218 {"dr40", "edm_cfg"},
219 {"dr41", "edmsw"},
220 {"dr42", "edm_ctl"},
221 {"dr43", "edm_dtr"},
222 {"dr44", "bpmtc"},
223 {"dr45", "dimbr"},
224 {"dr46", "tecr0"},
225 {"dr47", "tecr1"},
226
227 {"hspr0", "hsp_ctl"},
228 {"hspr1", "sp_bound"},
229 {"hspr2", "sp_bound_priv"},
230
231 {"pfr0", "pfmc0"},
232 {"pfr1", "pfmc1"},
233 {"pfr2", "pfmc2"},
234 {"pfr3", "pfm_ctl"},
235 {"pfr4", "pft_ctl"},
236
237 {"dmar0", "dma_cfg"},
238 {"dmar1", "dma_gcsw"},
239 {"dmar2", "dma_chnsel"},
240 {"dmar3", "dma_act"},
241 {"dmar4", "dma_setup"},
242 {"dmar5", "dma_isaddr"},
243 {"dmar6", "dma_esaddr"},
244 {"dmar7", "dma_tcnt"},
245 {"dmar8", "dma_status"},
246 {"dmar9", "dma_2dset"},
247 {"dmar10", "dma_2dsctl"},
248 {"dmar11", "dma_rcnt"},
249 {"dmar12", "dma_hstatus"},
250
251 {"racr0", "prusr_acc_ctl"},
252 {"fucpr", "fucop_ctl"},
253
254 {"idr0", "sdz_ctl"},
255 {"idr1", "misc_ctl"},
256 {"idr2", "ecc_misc"},
257
258 {"secur0", "sfcr"},
259 {"secur1", "sign"},
260 {"secur2", "isign"},
261 {"secur3", "p_isign"},
262 };
263
264 /* Value of a register alias. BATON is the regnum of the corresponding
265 register. */
266
267 static struct value *
268 value_of_nds32_reg (struct frame_info *frame, const void *baton)
269 {
270 return value_of_register ((int) (intptr_t) baton, frame);
271 }
272 \f
273 /* Implement the "frame_align" gdbarch method. */
274
275 static CORE_ADDR
276 nds32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
277 {
278 /* 8-byte aligned. */
279 return align_down (sp, 8);
280 }
281
282 /* The same insn machine code is used for little-endian and big-endian. */
283 constexpr gdb_byte nds32_break_insn[] = { 0xEA, 0x00 };
284
285 typedef BP_MANIPULATION (nds32_break_insn) nds32_breakpoint;
286
287 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
288
289 static int
290 nds32_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
291 {
292 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
293 const int FSR = 38;
294 const int FDR = FSR + 32;
295
296 if (num >= 0 && num < 32)
297 {
298 /* General-purpose registers (R0 - R31). */
299 return num;
300 }
301 else if (num >= FSR && num < FSR + 32)
302 {
303 /* Single precision floating-point registers (FS0 - FS31). */
304 return num - FSR + tdep->fs0_regnum;
305 }
306 else if (num >= FDR && num < FDR + 32)
307 {
308 /* Double precision floating-point registers (FD0 - FD31). */
309 return num - FDR + NDS32_FD0_REGNUM;
310 }
311
312 /* No match, return a inaccessible register number. */
313 return -1;
314 }
315 \f
316 /* NDS32 register groups. */
317 static struct reggroup *nds32_cr_reggroup;
318 static struct reggroup *nds32_ir_reggroup;
319 static struct reggroup *nds32_mr_reggroup;
320 static struct reggroup *nds32_dr_reggroup;
321 static struct reggroup *nds32_pfr_reggroup;
322 static struct reggroup *nds32_hspr_reggroup;
323 static struct reggroup *nds32_dmar_reggroup;
324 static struct reggroup *nds32_racr_reggroup;
325 static struct reggroup *nds32_idr_reggroup;
326 static struct reggroup *nds32_secur_reggroup;
327
328 static void
329 nds32_init_reggroups (void)
330 {
331 nds32_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
332 nds32_ir_reggroup = reggroup_new ("ir", USER_REGGROUP);
333 nds32_mr_reggroup = reggroup_new ("mr", USER_REGGROUP);
334 nds32_dr_reggroup = reggroup_new ("dr", USER_REGGROUP);
335 nds32_pfr_reggroup = reggroup_new ("pfr", USER_REGGROUP);
336 nds32_hspr_reggroup = reggroup_new ("hspr", USER_REGGROUP);
337 nds32_dmar_reggroup = reggroup_new ("dmar", USER_REGGROUP);
338 nds32_racr_reggroup = reggroup_new ("racr", USER_REGGROUP);
339 nds32_idr_reggroup = reggroup_new ("idr", USER_REGGROUP);
340 nds32_secur_reggroup = reggroup_new ("secur", USER_REGGROUP);
341 }
342
343 static void
344 nds32_add_reggroups (struct gdbarch *gdbarch)
345 {
346 /* Add pre-defined register groups. */
347 reggroup_add (gdbarch, general_reggroup);
348 reggroup_add (gdbarch, float_reggroup);
349 reggroup_add (gdbarch, system_reggroup);
350 reggroup_add (gdbarch, all_reggroup);
351 reggroup_add (gdbarch, save_reggroup);
352 reggroup_add (gdbarch, restore_reggroup);
353
354 /* Add NDS32 register groups. */
355 reggroup_add (gdbarch, nds32_cr_reggroup);
356 reggroup_add (gdbarch, nds32_ir_reggroup);
357 reggroup_add (gdbarch, nds32_mr_reggroup);
358 reggroup_add (gdbarch, nds32_dr_reggroup);
359 reggroup_add (gdbarch, nds32_pfr_reggroup);
360 reggroup_add (gdbarch, nds32_hspr_reggroup);
361 reggroup_add (gdbarch, nds32_dmar_reggroup);
362 reggroup_add (gdbarch, nds32_racr_reggroup);
363 reggroup_add (gdbarch, nds32_idr_reggroup);
364 reggroup_add (gdbarch, nds32_secur_reggroup);
365 }
366
367 /* Implement the "register_reggroup_p" gdbarch method. */
368
369 static int
370 nds32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
371 struct reggroup *reggroup)
372 {
373 const char *reg_name;
374 const char *group_name;
375 int ret;
376
377 if (reggroup == all_reggroup)
378 return 1;
379
380 /* General reggroup contains only GPRs and PC. */
381 if (reggroup == general_reggroup)
382 return regnum <= NDS32_PC_REGNUM;
383
384 if (reggroup == float_reggroup || reggroup == save_reggroup
385 || reggroup == restore_reggroup)
386 {
387 ret = tdesc_register_in_reggroup_p (gdbarch, regnum, reggroup);
388 if (ret != -1)
389 return ret;
390
391 return default_register_reggroup_p (gdbarch, regnum, reggroup);
392 }
393
394 if (reggroup == system_reggroup)
395 return (regnum > NDS32_PC_REGNUM)
396 && !nds32_register_reggroup_p (gdbarch, regnum, float_reggroup);
397
398 /* The NDS32 reggroup contains registers whose name is prefixed
399 by reggroup name. */
400 reg_name = gdbarch_register_name (gdbarch, regnum);
401 group_name = reggroup_name (reggroup);
402 return !strncmp (reg_name, group_name, strlen (group_name));
403 }
404 \f
405 /* Implement the "pseudo_register_type" tdesc_arch_data method. */
406
407 static struct type *
408 nds32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
409 {
410 regnum -= gdbarch_num_regs (gdbarch);
411
412 /* Currently, only FSRs could be defined as pseudo registers. */
413 if (regnum < gdbarch_num_pseudo_regs (gdbarch))
414 return arch_float_type (gdbarch, -1, "builtin_type_ieee_single",
415 floatformats_ieee_single);
416
417 warning (_("Unknown nds32 pseudo register %d."), regnum);
418 return NULL;
419 }
420
421 /* Implement the "pseudo_register_name" tdesc_arch_data method. */
422
423 static const char *
424 nds32_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
425 {
426 regnum -= gdbarch_num_regs (gdbarch);
427
428 /* Currently, only FSRs could be defined as pseudo registers. */
429 if (regnum < gdbarch_num_pseudo_regs (gdbarch))
430 return nds32_fsr_register_names[regnum];
431
432 warning (_("Unknown nds32 pseudo register %d."), regnum);
433 return NULL;
434 }
435
436 /* Implement the "pseudo_register_read" gdbarch method. */
437
438 static enum register_status
439 nds32_pseudo_register_read (struct gdbarch *gdbarch,
440 readable_regcache *regcache, int regnum,
441 gdb_byte *buf)
442 {
443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
444 gdb_byte reg_buf[8];
445 int offset, fdr_regnum;
446 enum register_status status;
447
448 /* This function is registered in nds32_gdbarch_init only after these are
449 set. */
450 gdb_assert (tdep->fpu_freg != -1);
451 gdb_assert (tdep->use_pseudo_fsrs != 0);
452
453 regnum -= gdbarch_num_regs (gdbarch);
454
455 /* Currently, only FSRs could be defined as pseudo registers. */
456 if (regnum < gdbarch_num_pseudo_regs (gdbarch))
457 {
458 /* fs0 is always the most significant half of fd0. */
459 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
460 offset = (regnum & 1) ? 4 : 0;
461 else
462 offset = (regnum & 1) ? 0 : 4;
463
464 fdr_regnum = NDS32_FD0_REGNUM + (regnum >> 1);
465 status = regcache->raw_read (fdr_regnum, reg_buf);
466 if (status == REG_VALID)
467 memcpy (buf, reg_buf + offset, 4);
468
469 return status;
470 }
471
472 gdb_assert_not_reached ("invalid pseudo register number");
473 }
474
475 /* Implement the "pseudo_register_write" gdbarch method. */
476
477 static void
478 nds32_pseudo_register_write (struct gdbarch *gdbarch,
479 struct regcache *regcache, int regnum,
480 const gdb_byte *buf)
481 {
482 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
483 gdb_byte reg_buf[8];
484 int offset, fdr_regnum;
485
486 /* This function is registered in nds32_gdbarch_init only after these are
487 set. */
488 gdb_assert (tdep->fpu_freg != -1);
489 gdb_assert (tdep->use_pseudo_fsrs != 0);
490
491 regnum -= gdbarch_num_regs (gdbarch);
492
493 /* Currently, only FSRs could be defined as pseudo registers. */
494 if (regnum < gdbarch_num_pseudo_regs (gdbarch))
495 {
496 /* fs0 is always the most significant half of fd0. */
497 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
498 offset = (regnum & 1) ? 4 : 0;
499 else
500 offset = (regnum & 1) ? 0 : 4;
501
502 fdr_regnum = NDS32_FD0_REGNUM + (regnum >> 1);
503 regcache->raw_read (fdr_regnum, reg_buf);
504 memcpy (reg_buf + offset, buf, 4);
505 regcache->raw_write (fdr_regnum, reg_buf);
506 return;
507 }
508
509 gdb_assert_not_reached ("invalid pseudo register number");
510 }
511 \f
512 /* Helper function for NDS32 ABI. Return true if FPRs can be used
513 to pass function arguments and return value. */
514
515 static int
516 nds32_abi_use_fpr (int elf_abi)
517 {
518 return elf_abi == E_NDS_ABI_V2FP_PLUS;
519 }
520
521 /* Helper function for NDS32 ABI. Return true if GPRs and stack
522 can be used together to pass an argument. */
523
524 static int
525 nds32_abi_split (int elf_abi)
526 {
527 return elf_abi == E_NDS_ABI_AABI;
528 }
529
530 #define NDS32_NUM_SAVED_REGS (NDS32_LP_REGNUM + 1)
531
532 struct nds32_frame_cache
533 {
534 /* The previous frame's inner most stack address. Used as this
535 frame ID's stack_addr. */
536 CORE_ADDR prev_sp;
537
538 /* The frame's base, optionally used by the high-level debug info. */
539 CORE_ADDR base;
540
541 /* During prologue analysis, keep how far the SP and FP have been offset
542 from the start of the stack frame (as defined by the previous frame's
543 stack pointer).
544 During epilogue analysis, keep how far the SP has been offset from the
545 current stack pointer. */
546 CORE_ADDR sp_offset;
547 CORE_ADDR fp_offset;
548
549 /* The address of the first instruction in this function. */
550 CORE_ADDR pc;
551
552 /* Saved registers. */
553 CORE_ADDR saved_regs[NDS32_NUM_SAVED_REGS];
554 };
555
556 /* Allocate and initialize a frame cache. */
557
558 static struct nds32_frame_cache *
559 nds32_alloc_frame_cache (void)
560 {
561 struct nds32_frame_cache *cache;
562 int i;
563
564 cache = FRAME_OBSTACK_ZALLOC (struct nds32_frame_cache);
565
566 /* Initialize fp_offset to check if FP is set in prologue. */
567 cache->fp_offset = INVALID_OFFSET;
568
569 /* Saved registers. We initialize these to -1 since zero is a valid
570 offset. */
571 for (i = 0; i < NDS32_NUM_SAVED_REGS; i++)
572 cache->saved_regs[i] = REG_UNAVAIL;
573
574 return cache;
575 }
576
577 /* Helper function for instructions used to push multiple words. */
578
579 static void
580 nds32_push_multiple_words (struct nds32_frame_cache *cache, int rb, int re,
581 int enable4)
582 {
583 CORE_ADDR sp_offset = cache->sp_offset;
584 int i;
585
586 /* Check LP, GP, FP in enable4. */
587 for (i = 1; i <= 3; i++)
588 {
589 if ((enable4 >> i) & 0x1)
590 {
591 sp_offset += 4;
592 cache->saved_regs[NDS32_SP_REGNUM - i] = sp_offset;
593 }
594 }
595
596 /* Skip case where re == rb == sp. */
597 if ((rb < REG_FP) && (re < REG_FP))
598 {
599 for (i = re; i >= rb; i--)
600 {
601 sp_offset += 4;
602 cache->saved_regs[i] = sp_offset;
603 }
604 }
605
606 /* For sp, update the offset. */
607 cache->sp_offset = sp_offset;
608 }
609
610 /* Analyze the instructions within the given address range. If CACHE
611 is non-NULL, fill it in. Return the first address beyond the given
612 address range. If CACHE is NULL, return the first address not
613 recognized as a prologue instruction. */
614
615 static CORE_ADDR
616 nds32_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
617 CORE_ADDR limit_pc, struct nds32_frame_cache *cache)
618 {
619 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
620 int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi);
621 /* Current scanning status. */
622 int in_prologue_bb = 0;
623 int val_ta = 0;
624 uint32_t insn, insn_len;
625
626 for (; pc < limit_pc; pc += insn_len)
627 {
628 insn = read_memory_unsigned_integer (pc, 4, BFD_ENDIAN_BIG);
629
630 if ((insn & 0x80000000) == 0)
631 {
632 /* 32-bit instruction */
633 insn_len = 4;
634
635 if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_SP, REG_SP, 0))
636 {
637 /* addi $sp, $sp, imm15s */
638 int imm15s = N32_IMM15S (insn);
639
640 if (imm15s < 0)
641 {
642 if (cache != NULL)
643 cache->sp_offset += -imm15s;
644
645 in_prologue_bb = 1;
646 continue;
647 }
648 }
649 else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_FP, REG_SP, 0))
650 {
651 /* addi $fp, $sp, imm15s */
652 int imm15s = N32_IMM15S (insn);
653
654 if (imm15s > 0)
655 {
656 if (cache != NULL)
657 cache->fp_offset = cache->sp_offset - imm15s;
658
659 in_prologue_bb = 1;
660 continue;
661 }
662 }
663 else if ((insn & ~(__MASK (19) << 6)) == N32_SMW_ADM
664 && N32_RA5 (insn) == REG_SP)
665 {
666 /* smw.adm Rb, [$sp], Re, enable4 */
667 if (cache != NULL)
668 nds32_push_multiple_words (cache, N32_RT5 (insn),
669 N32_RB5 (insn),
670 N32_LSMW_ENABLE4 (insn));
671 in_prologue_bb = 1;
672 continue;
673 }
674 else if (insn == N32_ALU1 (ADD, REG_SP, REG_SP, REG_TA)
675 || insn == N32_ALU1 (ADD, REG_SP, REG_TA, REG_SP))
676 {
677 /* add $sp, $sp, $ta */
678 /* add $sp, $ta, $sp */
679 if (val_ta < 0)
680 {
681 if (cache != NULL)
682 cache->sp_offset += -val_ta;
683
684 in_prologue_bb = 1;
685 continue;
686 }
687 }
688 else if (CHOP_BITS (insn, 20) == N32_TYPE1 (MOVI, REG_TA, 0))
689 {
690 /* movi $ta, imm20s */
691 if (cache != NULL)
692 val_ta = N32_IMM20S (insn);
693
694 continue;
695 }
696 else if (CHOP_BITS (insn, 20) == N32_TYPE1 (SETHI, REG_TA, 0))
697 {
698 /* sethi $ta, imm20u */
699 if (cache != NULL)
700 val_ta = N32_IMM20U (insn) << 12;
701
702 continue;
703 }
704 else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ORI, REG_TA, REG_TA, 0))
705 {
706 /* ori $ta, $ta, imm15u */
707 if (cache != NULL)
708 val_ta |= N32_IMM15U (insn);
709
710 continue;
711 }
712 else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_TA, REG_TA, 0))
713 {
714 /* addi $ta, $ta, imm15s */
715 if (cache != NULL)
716 val_ta += N32_IMM15S (insn);
717
718 continue;
719 }
720 if (insn == N32_ALU1 (ADD, REG_GP, REG_TA, REG_GP)
721 || insn == N32_ALU1 (ADD, REG_GP, REG_GP, REG_TA))
722 {
723 /* add $gp, $ta, $gp */
724 /* add $gp, $gp, $ta */
725 in_prologue_bb = 1;
726 continue;
727 }
728 else if (CHOP_BITS (insn, 20) == N32_TYPE1 (MOVI, REG_GP, 0))
729 {
730 /* movi $gp, imm20s */
731 in_prologue_bb = 1;
732 continue;
733 }
734 else if (CHOP_BITS (insn, 20) == N32_TYPE1 (SETHI, REG_GP, 0))
735 {
736 /* sethi $gp, imm20u */
737 in_prologue_bb = 1;
738 continue;
739 }
740 else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ORI, REG_GP, REG_GP, 0))
741 {
742 /* ori $gp, $gp, imm15u */
743 in_prologue_bb = 1;
744 continue;
745 }
746 else
747 {
748 /* Jump/Branch insns never appear in prologue basic block.
749 The loop can be escaped early when these insns are met. */
750 if (in_prologue_bb == 1)
751 {
752 int op = N32_OP6 (insn);
753
754 if (op == N32_OP6_JI
755 || op == N32_OP6_JREG
756 || op == N32_OP6_BR1
757 || op == N32_OP6_BR2
758 || op == N32_OP6_BR3)
759 break;
760 }
761 }
762
763 if (abi_use_fpr && N32_OP6 (insn) == N32_OP6_SDC
764 && __GF (insn, 12, 3) == 0)
765 {
766 /* For FPU insns, CP (bit [13:14]) should be CP0, and only
767 normal form (bit [12] == 0) is used. */
768
769 /* fsdi FDt, [$sp + (imm12s << 2)] */
770 if (N32_RA5 (insn) == REG_SP)
771 continue;
772 }
773
774 /* The optimizer might shove anything into the prologue, if
775 we build up cache (cache != NULL) from analyzing prologue,
776 we just skip what we don't recognize and analyze further to
777 make cache as complete as possible. However, if we skip
778 prologue, we'll stop immediately on unrecognized
779 instruction. */
780 if (cache == NULL)
781 break;
782 }
783 else
784 {
785 /* 16-bit instruction */
786 insn_len = 2;
787
788 insn >>= 16;
789
790 if (CHOP_BITS (insn, 10) == N16_TYPE10 (ADDI10S, 0))
791 {
792 /* addi10s.sp */
793 int imm10s = N16_IMM10S (insn);
794
795 if (imm10s < 0)
796 {
797 if (cache != NULL)
798 cache->sp_offset += -imm10s;
799
800 in_prologue_bb = 1;
801 continue;
802 }
803 }
804 else if (__GF (insn, 7, 8) == N16_T25_PUSH25)
805 {
806 /* push25 */
807 if (cache != NULL)
808 {
809 int imm8u = (insn & 0x1f) << 3;
810 int re = (insn >> 5) & 0x3;
811 const int reg_map[] = { 6, 8, 10, 14 };
812
813 /* Operation 1 -- smw.adm R6, [$sp], Re, #0xe */
814 nds32_push_multiple_words (cache, 6, reg_map[re], 0xe);
815
816 /* Operation 2 -- sp = sp - (imm5u << 3) */
817 cache->sp_offset += imm8u;
818 }
819
820 in_prologue_bb = 1;
821 continue;
822 }
823 else if (insn == N16_TYPE5 (ADD5PC, REG_GP))
824 {
825 /* add5.pc $gp */
826 in_prologue_bb = 1;
827 continue;
828 }
829 else if (CHOP_BITS (insn, 5) == N16_TYPE55 (MOVI55, REG_GP, 0))
830 {
831 /* movi55 $gp, imm5s */
832 in_prologue_bb = 1;
833 continue;
834 }
835 else
836 {
837 /* Jump/Branch insns never appear in prologue basic block.
838 The loop can be escaped early when these insns are met. */
839 if (in_prologue_bb == 1)
840 {
841 uint32_t insn5 = CHOP_BITS (insn, 5);
842 uint32_t insn8 = CHOP_BITS (insn, 8);
843 uint32_t insn38 = CHOP_BITS (insn, 11);
844
845 if (insn5 == N16_TYPE5 (JR5, 0)
846 || insn5 == N16_TYPE5 (JRAL5, 0)
847 || insn5 == N16_TYPE5 (RET5, 0)
848 || insn8 == N16_TYPE8 (J8, 0)
849 || insn8 == N16_TYPE8 (BEQZS8, 0)
850 || insn8 == N16_TYPE8 (BNEZS8, 0)
851 || insn38 == N16_TYPE38 (BEQZ38, 0, 0)
852 || insn38 == N16_TYPE38 (BNEZ38, 0, 0)
853 || insn38 == N16_TYPE38 (BEQS38, 0, 0)
854 || insn38 == N16_TYPE38 (BNES38, 0, 0))
855 break;
856 }
857 }
858
859 /* The optimizer might shove anything into the prologue, if
860 we build up cache (cache != NULL) from analyzing prologue,
861 we just skip what we don't recognize and analyze further to
862 make cache as complete as possible. However, if we skip
863 prologue, we'll stop immediately on unrecognized
864 instruction. */
865 if (cache == NULL)
866 break;
867 }
868 }
869
870 return pc;
871 }
872
873 /* Implement the "skip_prologue" gdbarch method.
874
875 Find the end of function prologue. */
876
877 static CORE_ADDR
878 nds32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
879 {
880 CORE_ADDR func_addr, limit_pc;
881
882 /* See if we can determine the end of the prologue via the symbol table.
883 If so, then return either PC, or the PC after the prologue, whichever
884 is greater. */
885 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
886 {
887 CORE_ADDR post_prologue_pc
888 = skip_prologue_using_sal (gdbarch, func_addr);
889 if (post_prologue_pc != 0)
890 return std::max (pc, post_prologue_pc);
891 }
892
893 /* Can't determine prologue from the symbol table, need to examine
894 instructions. */
895
896 /* Find an upper limit on the function prologue using the debug
897 information. If the debug information could not be used to provide
898 that bound, then use an arbitrary large number as the upper bound. */
899 limit_pc = skip_prologue_using_sal (gdbarch, pc);
900 if (limit_pc == 0)
901 limit_pc = pc + 128; /* Magic. */
902
903 /* Find the end of prologue. */
904 return nds32_analyze_prologue (gdbarch, pc, limit_pc, NULL);
905 }
906
907 /* Allocate and fill in *THIS_CACHE with information about the prologue of
908 *THIS_FRAME. Do not do this if *THIS_CACHE was already allocated. Return
909 a pointer to the current nds32_frame_cache in *THIS_CACHE. */
910
911 static struct nds32_frame_cache *
912 nds32_frame_cache (struct frame_info *this_frame, void **this_cache)
913 {
914 struct gdbarch *gdbarch = get_frame_arch (this_frame);
915 struct nds32_frame_cache *cache;
916 CORE_ADDR current_pc;
917 ULONGEST prev_sp;
918 ULONGEST this_base;
919 int i;
920
921 if (*this_cache)
922 return (struct nds32_frame_cache *) *this_cache;
923
924 cache = nds32_alloc_frame_cache ();
925 *this_cache = cache;
926
927 cache->pc = get_frame_func (this_frame);
928 current_pc = get_frame_pc (this_frame);
929 nds32_analyze_prologue (gdbarch, cache->pc, current_pc, cache);
930
931 /* Compute the previous frame's stack pointer (which is also the
932 frame's ID's stack address), and this frame's base pointer. */
933 if (cache->fp_offset != INVALID_OFFSET)
934 {
935 /* FP is set in prologue, so it can be used to calculate other info. */
936 this_base = get_frame_register_unsigned (this_frame, NDS32_FP_REGNUM);
937 prev_sp = this_base + cache->fp_offset;
938 }
939 else
940 {
941 this_base = get_frame_register_unsigned (this_frame, NDS32_SP_REGNUM);
942 prev_sp = this_base + cache->sp_offset;
943 }
944
945 cache->prev_sp = prev_sp;
946 cache->base = this_base;
947
948 /* Adjust all the saved registers such that they contain addresses
949 instead of offsets. */
950 for (i = 0; i < NDS32_NUM_SAVED_REGS; i++)
951 if (cache->saved_regs[i] != REG_UNAVAIL)
952 cache->saved_regs[i] = cache->prev_sp - cache->saved_regs[i];
953
954 return cache;
955 }
956
957 /* Implement the "this_id" frame_unwind method.
958
959 Our frame ID for a normal frame is the current function's starting
960 PC and the caller's SP when we were called. */
961
962 static void
963 nds32_frame_this_id (struct frame_info *this_frame,
964 void **this_cache, struct frame_id *this_id)
965 {
966 struct nds32_frame_cache *cache = nds32_frame_cache (this_frame, this_cache);
967
968 /* This marks the outermost frame. */
969 if (cache->prev_sp == 0)
970 return;
971
972 *this_id = frame_id_build (cache->prev_sp, cache->pc);
973 }
974
975 /* Implement the "prev_register" frame_unwind method. */
976
977 static struct value *
978 nds32_frame_prev_register (struct frame_info *this_frame, void **this_cache,
979 int regnum)
980 {
981 struct nds32_frame_cache *cache = nds32_frame_cache (this_frame, this_cache);
982
983 if (regnum == NDS32_SP_REGNUM)
984 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
985
986 /* The PC of the previous frame is stored in the LP register of
987 the current frame. */
988 if (regnum == NDS32_PC_REGNUM)
989 regnum = NDS32_LP_REGNUM;
990
991 if (regnum < NDS32_NUM_SAVED_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
992 return frame_unwind_got_memory (this_frame, regnum,
993 cache->saved_regs[regnum]);
994
995 return frame_unwind_got_register (this_frame, regnum, regnum);
996 }
997
998 static const struct frame_unwind nds32_frame_unwind =
999 {
1000 NORMAL_FRAME,
1001 default_frame_unwind_stop_reason,
1002 nds32_frame_this_id,
1003 nds32_frame_prev_register,
1004 NULL,
1005 default_frame_sniffer,
1006 };
1007
1008 /* Return the frame base address of *THIS_FRAME. */
1009
1010 static CORE_ADDR
1011 nds32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1012 {
1013 struct nds32_frame_cache *cache = nds32_frame_cache (this_frame, this_cache);
1014
1015 return cache->base;
1016 }
1017
1018 static const struct frame_base nds32_frame_base =
1019 {
1020 &nds32_frame_unwind,
1021 nds32_frame_base_address,
1022 nds32_frame_base_address,
1023 nds32_frame_base_address
1024 };
1025 \f
1026 /* Helper function for instructions used to pop multiple words. */
1027
1028 static void
1029 nds32_pop_multiple_words (struct nds32_frame_cache *cache, int rb, int re,
1030 int enable4)
1031 {
1032 CORE_ADDR sp_offset = cache->sp_offset;
1033 int i;
1034
1035 /* Skip case where re == rb == sp. */
1036 if ((rb < REG_FP) && (re < REG_FP))
1037 {
1038 for (i = rb; i <= re; i++)
1039 {
1040 cache->saved_regs[i] = sp_offset;
1041 sp_offset += 4;
1042 }
1043 }
1044
1045 /* Check FP, GP, LP in enable4. */
1046 for (i = 3; i >= 1; i--)
1047 {
1048 if ((enable4 >> i) & 0x1)
1049 {
1050 cache->saved_regs[NDS32_SP_REGNUM - i] = sp_offset;
1051 sp_offset += 4;
1052 }
1053 }
1054
1055 /* For sp, update the offset. */
1056 cache->sp_offset = sp_offset;
1057 }
1058
1059 /* The instruction sequences in NDS32 epilogue are
1060
1061 INSN_RESET_SP (optional)
1062 (If exists, this must be the first instruction in epilogue
1063 and the stack has not been destroyed.).
1064 INSN_RECOVER (optional).
1065 INSN_RETURN/INSN_RECOVER_RETURN (required). */
1066
1067 /* Helper function for analyzing the given 32-bit INSN. If CACHE is non-NULL,
1068 the necessary information will be recorded. */
1069
1070 static inline int
1071 nds32_analyze_epilogue_insn32 (int abi_use_fpr, uint32_t insn,
1072 struct nds32_frame_cache *cache)
1073 {
1074 if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_SP, REG_SP, 0)
1075 && N32_IMM15S (insn) > 0)
1076 /* addi $sp, $sp, imm15s */
1077 return INSN_RESET_SP;
1078 else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_SP, REG_FP, 0)
1079 && N32_IMM15S (insn) < 0)
1080 /* addi $sp, $fp, imm15s */
1081 return INSN_RESET_SP;
1082 else if ((insn & ~(__MASK (19) << 6)) == N32_LMW_BIM
1083 && N32_RA5 (insn) == REG_SP)
1084 {
1085 /* lmw.bim Rb, [$sp], Re, enable4 */
1086 if (cache != NULL)
1087 nds32_pop_multiple_words (cache, N32_RT5 (insn),
1088 N32_RB5 (insn), N32_LSMW_ENABLE4 (insn));
1089
1090 return INSN_RECOVER;
1091 }
1092 else if (insn == N32_JREG (JR, 0, REG_LP, 0, 1))
1093 /* ret $lp */
1094 return INSN_RETURN;
1095 else if (insn == N32_ALU1 (ADD, REG_SP, REG_SP, REG_TA)
1096 || insn == N32_ALU1 (ADD, REG_SP, REG_TA, REG_SP))
1097 /* add $sp, $sp, $ta */
1098 /* add $sp, $ta, $sp */
1099 return INSN_RESET_SP;
1100 else if (abi_use_fpr
1101 && (insn & ~(__MASK (5) << 20 | __MASK (13))) == N32_FLDI_SP)
1102 {
1103 if (__GF (insn, 12, 1) == 0)
1104 /* fldi FDt, [$sp + (imm12s << 2)] */
1105 return INSN_RECOVER;
1106 else
1107 {
1108 /* fldi.bi FDt, [$sp], (imm12s << 2) */
1109 int offset = N32_IMM12S (insn) << 2;
1110
1111 if (offset == 8 || offset == 12)
1112 {
1113 if (cache != NULL)
1114 cache->sp_offset += offset;
1115
1116 return INSN_RECOVER;
1117 }
1118 }
1119 }
1120
1121 return INSN_NORMAL;
1122 }
1123
1124 /* Helper function for analyzing the given 16-bit INSN. If CACHE is non-NULL,
1125 the necessary information will be recorded. */
1126
1127 static inline int
1128 nds32_analyze_epilogue_insn16 (uint32_t insn, struct nds32_frame_cache *cache)
1129 {
1130 if (insn == N16_TYPE5 (RET5, REG_LP))
1131 /* ret5 $lp */
1132 return INSN_RETURN;
1133 else if (CHOP_BITS (insn, 10) == N16_TYPE10 (ADDI10S, 0))
1134 {
1135 /* addi10s.sp */
1136 int imm10s = N16_IMM10S (insn);
1137
1138 if (imm10s > 0)
1139 {
1140 if (cache != NULL)
1141 cache->sp_offset += imm10s;
1142
1143 return INSN_RECOVER;
1144 }
1145 }
1146 else if (__GF (insn, 7, 8) == N16_T25_POP25)
1147 {
1148 /* pop25 */
1149 if (cache != NULL)
1150 {
1151 int imm8u = (insn & 0x1f) << 3;
1152 int re = (insn >> 5) & 0x3;
1153 const int reg_map[] = { 6, 8, 10, 14 };
1154
1155 /* Operation 1 -- sp = sp + (imm5u << 3) */
1156 cache->sp_offset += imm8u;
1157
1158 /* Operation 2 -- lmw.bim R6, [$sp], Re, #0xe */
1159 nds32_pop_multiple_words (cache, 6, reg_map[re], 0xe);
1160 }
1161
1162 /* Operation 3 -- ret $lp */
1163 return INSN_RECOVER_RETURN;
1164 }
1165
1166 return INSN_NORMAL;
1167 }
1168
1169 /* Analyze a reasonable amount of instructions from the given PC to find
1170 the instruction used to return to the caller. Return 1 if the 'return'
1171 instruction could be found, 0 otherwise.
1172
1173 If CACHE is non-NULL, fill it in. */
1174
1175 static int
1176 nds32_analyze_epilogue (struct gdbarch *gdbarch, CORE_ADDR pc,
1177 struct nds32_frame_cache *cache)
1178 {
1179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1180 int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi);
1181 CORE_ADDR limit_pc;
1182 uint32_t insn, insn_len;
1183 int insn_type = INSN_NORMAL;
1184
1185 if (abi_use_fpr)
1186 limit_pc = pc + 48;
1187 else
1188 limit_pc = pc + 16;
1189
1190 for (; pc < limit_pc; pc += insn_len)
1191 {
1192 insn = read_memory_unsigned_integer (pc, 4, BFD_ENDIAN_BIG);
1193
1194 if ((insn & 0x80000000) == 0)
1195 {
1196 /* 32-bit instruction */
1197 insn_len = 4;
1198
1199 insn_type = nds32_analyze_epilogue_insn32 (abi_use_fpr, insn, cache);
1200 if (insn_type == INSN_RETURN)
1201 return 1;
1202 else if (insn_type == INSN_RECOVER)
1203 continue;
1204 }
1205 else
1206 {
1207 /* 16-bit instruction */
1208 insn_len = 2;
1209
1210 insn >>= 16;
1211 insn_type = nds32_analyze_epilogue_insn16 (insn, cache);
1212 if (insn_type == INSN_RETURN || insn_type == INSN_RECOVER_RETURN)
1213 return 1;
1214 else if (insn_type == INSN_RECOVER)
1215 continue;
1216 }
1217
1218 /* Stop the scan if this is an unexpected instruction. */
1219 break;
1220 }
1221
1222 return 0;
1223 }
1224
1225 /* Implement the "stack_frame_destroyed_p" gdbarch method. */
1226
1227 static int
1228 nds32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR addr)
1229 {
1230 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1231 int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi);
1232 int insn_type = INSN_NORMAL;
1233 int ret_found = 0;
1234 uint32_t insn;
1235
1236 insn = read_memory_unsigned_integer (addr, 4, BFD_ENDIAN_BIG);
1237
1238 if ((insn & 0x80000000) == 0)
1239 {
1240 /* 32-bit instruction */
1241
1242 insn_type = nds32_analyze_epilogue_insn32 (abi_use_fpr, insn, NULL);
1243 }
1244 else
1245 {
1246 /* 16-bit instruction */
1247
1248 insn >>= 16;
1249 insn_type = nds32_analyze_epilogue_insn16 (insn, NULL);
1250 }
1251
1252 if (insn_type == INSN_NORMAL || insn_type == INSN_RESET_SP)
1253 return 0;
1254
1255 /* Search the required 'return' instruction within the following reasonable
1256 instructions. */
1257 ret_found = nds32_analyze_epilogue (gdbarch, addr, NULL);
1258 if (ret_found == 0)
1259 return 0;
1260
1261 /* Scan backwards to make sure that the last instruction has adjusted
1262 stack. Both a 16-bit and a 32-bit instruction will be tried. This is
1263 just a heuristic, so the false positives will be acceptable. */
1264 insn = read_memory_unsigned_integer (addr - 2, 4, BFD_ENDIAN_BIG);
1265
1266 /* Only 16-bit instructions are possible at addr - 2. */
1267 if ((insn & 0x80000000) != 0)
1268 {
1269 /* This may be a 16-bit instruction or part of a 32-bit instruction. */
1270
1271 insn_type = nds32_analyze_epilogue_insn16 (insn >> 16, NULL);
1272 if (insn_type == INSN_RECOVER)
1273 return 1;
1274 }
1275
1276 insn = read_memory_unsigned_integer (addr - 4, 4, BFD_ENDIAN_BIG);
1277
1278 /* If this is a 16-bit instruction at addr - 4, then there must be another
1279 16-bit instruction at addr - 2, so only 32-bit instructions need to
1280 be analyzed here. */
1281 if ((insn & 0x80000000) == 0)
1282 {
1283 /* This may be a 32-bit instruction or part of a 32-bit instruction. */
1284
1285 insn_type = nds32_analyze_epilogue_insn32 (abi_use_fpr, insn, NULL);
1286 if (insn_type == INSN_RECOVER || insn_type == INSN_RESET_SP)
1287 return 1;
1288 }
1289
1290 return 0;
1291 }
1292
1293 /* Implement the "sniffer" frame_unwind method. */
1294
1295 static int
1296 nds32_epilogue_frame_sniffer (const struct frame_unwind *self,
1297 struct frame_info *this_frame, void **this_cache)
1298 {
1299 if (frame_relative_level (this_frame) == 0)
1300 return nds32_stack_frame_destroyed_p (get_frame_arch (this_frame),
1301 get_frame_pc (this_frame));
1302 else
1303 return 0;
1304 }
1305
1306 /* Allocate and fill in *THIS_CACHE with information needed to unwind
1307 *THIS_FRAME within epilogue. Do not do this if *THIS_CACHE was already
1308 allocated. Return a pointer to the current nds32_frame_cache in
1309 *THIS_CACHE. */
1310
1311 static struct nds32_frame_cache *
1312 nds32_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1313 {
1314 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1315 struct nds32_frame_cache *cache;
1316 CORE_ADDR current_pc, current_sp;
1317 int i;
1318
1319 if (*this_cache)
1320 return (struct nds32_frame_cache *) *this_cache;
1321
1322 cache = nds32_alloc_frame_cache ();
1323 *this_cache = cache;
1324
1325 cache->pc = get_frame_func (this_frame);
1326 current_pc = get_frame_pc (this_frame);
1327 nds32_analyze_epilogue (gdbarch, current_pc, cache);
1328
1329 current_sp = get_frame_register_unsigned (this_frame, NDS32_SP_REGNUM);
1330 cache->prev_sp = current_sp + cache->sp_offset;
1331
1332 /* Adjust all the saved registers such that they contain addresses
1333 instead of offsets. */
1334 for (i = 0; i < NDS32_NUM_SAVED_REGS; i++)
1335 if (cache->saved_regs[i] != REG_UNAVAIL)
1336 cache->saved_regs[i] = current_sp + cache->saved_regs[i];
1337
1338 return cache;
1339 }
1340
1341 /* Implement the "this_id" frame_unwind method. */
1342
1343 static void
1344 nds32_epilogue_frame_this_id (struct frame_info *this_frame,
1345 void **this_cache, struct frame_id *this_id)
1346 {
1347 struct nds32_frame_cache *cache
1348 = nds32_epilogue_frame_cache (this_frame, this_cache);
1349
1350 /* This marks the outermost frame. */
1351 if (cache->prev_sp == 0)
1352 return;
1353
1354 *this_id = frame_id_build (cache->prev_sp, cache->pc);
1355 }
1356
1357 /* Implement the "prev_register" frame_unwind method. */
1358
1359 static struct value *
1360 nds32_epilogue_frame_prev_register (struct frame_info *this_frame,
1361 void **this_cache, int regnum)
1362 {
1363 struct nds32_frame_cache *cache
1364 = nds32_epilogue_frame_cache (this_frame, this_cache);
1365
1366 if (regnum == NDS32_SP_REGNUM)
1367 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
1368
1369 /* The PC of the previous frame is stored in the LP register of
1370 the current frame. */
1371 if (regnum == NDS32_PC_REGNUM)
1372 regnum = NDS32_LP_REGNUM;
1373
1374 if (regnum < NDS32_NUM_SAVED_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
1375 return frame_unwind_got_memory (this_frame, regnum,
1376 cache->saved_regs[regnum]);
1377
1378 return frame_unwind_got_register (this_frame, regnum, regnum);
1379 }
1380
1381 static const struct frame_unwind nds32_epilogue_frame_unwind =
1382 {
1383 NORMAL_FRAME,
1384 default_frame_unwind_stop_reason,
1385 nds32_epilogue_frame_this_id,
1386 nds32_epilogue_frame_prev_register,
1387 NULL,
1388 nds32_epilogue_frame_sniffer
1389 };
1390 \f
1391 /* Implement the "dummy_id" gdbarch method. */
1392
1393 static struct frame_id
1394 nds32_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1395 {
1396 CORE_ADDR sp = get_frame_register_unsigned (this_frame, NDS32_SP_REGNUM);
1397
1398 return frame_id_build (sp, get_frame_pc (this_frame));
1399 }
1400
1401 /* Implement the "unwind_pc" gdbarch method. */
1402
1403 static CORE_ADDR
1404 nds32_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1405 {
1406 return frame_unwind_register_unsigned (next_frame, NDS32_PC_REGNUM);
1407 }
1408
1409 /* Implement the "unwind_sp" gdbarch method. */
1410
1411 static CORE_ADDR
1412 nds32_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1413 {
1414 return frame_unwind_register_unsigned (next_frame, NDS32_SP_REGNUM);
1415 }
1416 \f
1417 /* Floating type and struct type that has only one floating type member
1418 can pass value using FPU registers (when FPU ABI is used). */
1419
1420 static int
1421 nds32_check_calling_use_fpr (struct type *type)
1422 {
1423 struct type *t;
1424 enum type_code typecode;
1425
1426 t = type;
1427 while (1)
1428 {
1429 t = check_typedef (t);
1430 typecode = TYPE_CODE (t);
1431 if (typecode != TYPE_CODE_STRUCT)
1432 break;
1433 else if (TYPE_NFIELDS (t) != 1)
1434 return 0;
1435 else
1436 t = TYPE_FIELD_TYPE (t, 0);
1437 }
1438
1439 return typecode == TYPE_CODE_FLT;
1440 }
1441
1442 /* Return the alignment (in bytes) of the given type. */
1443
1444 static int
1445 nds32_type_align (struct type *type)
1446 {
1447 int n;
1448 int align;
1449 int falign;
1450
1451 type = check_typedef (type);
1452 switch (TYPE_CODE (type))
1453 {
1454 default:
1455 /* Should never happen. */
1456 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1457 return 4;
1458
1459 case TYPE_CODE_PTR:
1460 case TYPE_CODE_ENUM:
1461 case TYPE_CODE_INT:
1462 case TYPE_CODE_FLT:
1463 case TYPE_CODE_SET:
1464 case TYPE_CODE_RANGE:
1465 case TYPE_CODE_REF:
1466 case TYPE_CODE_CHAR:
1467 case TYPE_CODE_BOOL:
1468 return TYPE_LENGTH (type);
1469
1470 case TYPE_CODE_ARRAY:
1471 case TYPE_CODE_COMPLEX:
1472 return nds32_type_align (TYPE_TARGET_TYPE (type));
1473
1474 case TYPE_CODE_STRUCT:
1475 case TYPE_CODE_UNION:
1476 align = 1;
1477 for (n = 0; n < TYPE_NFIELDS (type); n++)
1478 {
1479 falign = nds32_type_align (TYPE_FIELD_TYPE (type, n));
1480 if (falign > align)
1481 align = falign;
1482 }
1483 return align;
1484 }
1485 }
1486
1487 /* Implement the "push_dummy_call" gdbarch method. */
1488
1489 static CORE_ADDR
1490 nds32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1491 struct regcache *regcache, CORE_ADDR bp_addr,
1492 int nargs, struct value **args, CORE_ADDR sp,
1493 function_call_return_method return_method,
1494 CORE_ADDR struct_addr)
1495 {
1496 const int REND = 6; /* End for register offset. */
1497 int goff = 0; /* Current gpr offset for argument. */
1498 int foff = 0; /* Current fpr offset for argument. */
1499 int soff = 0; /* Current stack offset for argument. */
1500 int i;
1501 ULONGEST regval;
1502 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1503 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1504 struct type *func_type = value_type (function);
1505 int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi);
1506 int abi_split = nds32_abi_split (tdep->elf_abi);
1507
1508 /* Set the return address. For the NDS32, the return breakpoint is
1509 always at BP_ADDR. */
1510 regcache_cooked_write_unsigned (regcache, NDS32_LP_REGNUM, bp_addr);
1511
1512 /* If STRUCT_RETURN is true, then the struct return address (in
1513 STRUCT_ADDR) will consume the first argument-passing register.
1514 Both adjust the register count and store that value. */
1515 if (return_method == return_method_struct)
1516 {
1517 regcache_cooked_write_unsigned (regcache, NDS32_R0_REGNUM, struct_addr);
1518 goff++;
1519 }
1520
1521 /* Now make sure there's space on the stack */
1522 for (i = 0; i < nargs; i++)
1523 {
1524 struct type *type = value_type (args[i]);
1525 int align = nds32_type_align (type);
1526
1527 /* If align is zero, it may be an empty struct.
1528 Just ignore the argument of empty struct. */
1529 if (align == 0)
1530 continue;
1531
1532 sp -= TYPE_LENGTH (type);
1533 sp = align_down (sp, align);
1534 }
1535
1536 /* Stack must be 8-byte aligned. */
1537 sp = align_down (sp, 8);
1538
1539 soff = 0;
1540 for (i = 0; i < nargs; i++)
1541 {
1542 const gdb_byte *val;
1543 int align, len;
1544 struct type *type;
1545 int calling_use_fpr;
1546 int use_fpr = 0;
1547
1548 type = value_type (args[i]);
1549 calling_use_fpr = nds32_check_calling_use_fpr (type);
1550 len = TYPE_LENGTH (type);
1551 align = nds32_type_align (type);
1552 val = value_contents (args[i]);
1553
1554 /* The size of a composite type larger than 4 bytes will be rounded
1555 up to the nearest multiple of 4. */
1556 if (len > 4)
1557 len = align_up (len, 4);
1558
1559 /* Variadic functions are handled differently between AABI and ABI2FP+.
1560
1561 For AABI, the caller pushes arguments in registers, callee stores
1562 unnamed arguments in stack, and then va_arg fetch arguments in stack.
1563 Therefore, we don't have to handle variadic functions specially.
1564
1565 For ABI2FP+, the caller pushes only named arguments in registers
1566 and pushes all unnamed arguments in stack. */
1567
1568 if (abi_use_fpr && TYPE_VARARGS (func_type)
1569 && i >= TYPE_NFIELDS (func_type))
1570 goto use_stack;
1571
1572 /* Try to use FPRs to pass arguments only when
1573 1. The program is built using toolchain with FPU support.
1574 2. The type of this argument can use FPR to pass value. */
1575 use_fpr = abi_use_fpr && calling_use_fpr;
1576
1577 if (use_fpr)
1578 {
1579 if (tdep->fpu_freg == -1)
1580 goto error_no_fpr;
1581
1582 /* Adjust alignment. */
1583 if ((align >> 2) > 0)
1584 foff = align_up (foff, align >> 2);
1585
1586 if (foff < REND)
1587 {
1588 switch (len)
1589 {
1590 case 4:
1591 regcache->cooked_write (tdep->fs0_regnum + foff, val);
1592 foff++;
1593 break;
1594 case 8:
1595 regcache->cooked_write (NDS32_FD0_REGNUM + (foff >> 1), val);
1596 foff += 2;
1597 break;
1598 default:
1599 /* Long double? */
1600 internal_error (__FILE__, __LINE__,
1601 "Do not know how to handle %d-byte double.\n",
1602 len);
1603 break;
1604 }
1605 continue;
1606 }
1607 }
1608 else
1609 {
1610 /*
1611 When passing arguments using GPRs,
1612
1613 * A composite type not larger than 4 bytes is passed in $rN.
1614 The format is as if the value is loaded with load instruction
1615 of corresponding size (e.g., LB, LH, LW).
1616
1617 For example,
1618
1619 r0
1620 31 0
1621 LITTLE: [x x b a]
1622 BIG: [x x a b]
1623
1624 * Otherwise, a composite type is passed in consecutive registers.
1625 The size is rounded up to the nearest multiple of 4.
1626 The successive registers hold the parts of the argument as if
1627 were loaded using lmw instructions.
1628
1629 For example,
1630
1631 r0 r1
1632 31 0 31 0
1633 LITTLE: [d c b a] [x x x e]
1634 BIG: [a b c d] [e x x x]
1635 */
1636
1637 /* Adjust alignment. */
1638 if ((align >> 2) > 0)
1639 goff = align_up (goff, align >> 2);
1640
1641 if (len <= (REND - goff) * 4)
1642 {
1643 /* This argument can be passed wholly via GPRs. */
1644 while (len > 0)
1645 {
1646 regval = extract_unsigned_integer (val, (len > 4) ? 4 : len,
1647 byte_order);
1648 regcache_cooked_write_unsigned (regcache,
1649 NDS32_R0_REGNUM + goff,
1650 regval);
1651 len -= 4;
1652 val += 4;
1653 goff++;
1654 }
1655 continue;
1656 }
1657 else if (abi_split)
1658 {
1659 /* Some parts of this argument can be passed via GPRs. */
1660 while (goff < REND)
1661 {
1662 regval = extract_unsigned_integer (val, (len > 4) ? 4 : len,
1663 byte_order);
1664 regcache_cooked_write_unsigned (regcache,
1665 NDS32_R0_REGNUM + goff,
1666 regval);
1667 len -= 4;
1668 val += 4;
1669 goff++;
1670 }
1671 }
1672 }
1673
1674 use_stack:
1675 /*
1676 When pushing (split parts of) an argument into stack,
1677
1678 * A composite type not larger than 4 bytes is copied to different
1679 base address.
1680 In little-endian, the first byte of this argument is aligned
1681 at the low address of the next free word.
1682 In big-endian, the last byte of this argument is aligned
1683 at the high address of the next free word.
1684
1685 For example,
1686
1687 sp [ - ] [ c ] hi
1688 [ c ] [ b ]
1689 [ b ] [ a ]
1690 [ a ] [ - ] lo
1691 LITTLE BIG
1692 */
1693
1694 /* Adjust alignment. */
1695 soff = align_up (soff, align);
1696
1697 while (len > 0)
1698 {
1699 int rlen = (len > 4) ? 4 : len;
1700
1701 if (byte_order == BFD_ENDIAN_BIG)
1702 write_memory (sp + soff + 4 - rlen, val, rlen);
1703 else
1704 write_memory (sp + soff, val, rlen);
1705
1706 len -= 4;
1707 val += 4;
1708 soff += 4;
1709 }
1710 }
1711
1712 /* Finally, update the SP register. */
1713 regcache_cooked_write_unsigned (regcache, NDS32_SP_REGNUM, sp);
1714
1715 return sp;
1716
1717 error_no_fpr:
1718 /* If use_fpr, but no floating-point register exists,
1719 then it is an error. */
1720 error (_("Fail to call. FPU registers are required."));
1721 }
1722 \f
1723 /* Read, for architecture GDBARCH, a function return value of TYPE
1724 from REGCACHE, and copy that into VALBUF. */
1725
1726 static void
1727 nds32_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1728 struct regcache *regcache, gdb_byte *valbuf)
1729 {
1730 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1731 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1732 int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi);
1733 int calling_use_fpr;
1734 int len;
1735
1736 calling_use_fpr = nds32_check_calling_use_fpr (type);
1737 len = TYPE_LENGTH (type);
1738
1739 if (abi_use_fpr && calling_use_fpr)
1740 {
1741 if (len == 4)
1742 regcache->cooked_read (tdep->fs0_regnum, valbuf);
1743 else if (len == 8)
1744 regcache->cooked_read (NDS32_FD0_REGNUM, valbuf);
1745 else
1746 internal_error (__FILE__, __LINE__,
1747 _("Cannot extract return value of %d bytes "
1748 "long floating-point."), len);
1749 }
1750 else
1751 {
1752 /*
1753 When returning result,
1754
1755 * A composite type not larger than 4 bytes is returned in $r0.
1756 The format is as if the result is loaded with load instruction
1757 of corresponding size (e.g., LB, LH, LW).
1758
1759 For example,
1760
1761 r0
1762 31 0
1763 LITTLE: [x x b a]
1764 BIG: [x x a b]
1765
1766 * Otherwise, a composite type not larger than 8 bytes is returned
1767 in $r0 and $r1.
1768 In little-endian, the first word is loaded in $r0.
1769 In big-endian, the last word is loaded in $r1.
1770
1771 For example,
1772
1773 r0 r1
1774 31 0 31 0
1775 LITTLE: [d c b a] [x x x e]
1776 BIG: [x x x a] [b c d e]
1777 */
1778
1779 ULONGEST tmp;
1780
1781 if (len < 4)
1782 {
1783 /* By using store_unsigned_integer we avoid having to do
1784 anything special for small big-endian values. */
1785 regcache_cooked_read_unsigned (regcache, NDS32_R0_REGNUM, &tmp);
1786 store_unsigned_integer (valbuf, len, byte_order, tmp);
1787 }
1788 else if (len == 4)
1789 {
1790 regcache->cooked_read (NDS32_R0_REGNUM, valbuf);
1791 }
1792 else if (len < 8)
1793 {
1794 int len1, len2;
1795
1796 len1 = byte_order == BFD_ENDIAN_BIG ? len - 4 : 4;
1797 len2 = len - len1;
1798
1799 regcache_cooked_read_unsigned (regcache, NDS32_R0_REGNUM, &tmp);
1800 store_unsigned_integer (valbuf, len1, byte_order, tmp);
1801
1802 regcache_cooked_read_unsigned (regcache, NDS32_R0_REGNUM + 1, &tmp);
1803 store_unsigned_integer (valbuf + len1, len2, byte_order, tmp);
1804 }
1805 else
1806 {
1807 regcache->cooked_read (NDS32_R0_REGNUM, valbuf);
1808 regcache->cooked_read (NDS32_R0_REGNUM + 1, valbuf + 4);
1809 }
1810 }
1811 }
1812
1813 /* Write, for architecture GDBARCH, a function return value of TYPE
1814 from VALBUF into REGCACHE. */
1815
1816 static void
1817 nds32_store_return_value (struct gdbarch *gdbarch, struct type *type,
1818 struct regcache *regcache, const gdb_byte *valbuf)
1819 {
1820 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1821 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1822 int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi);
1823 int calling_use_fpr;
1824 int len;
1825
1826 calling_use_fpr = nds32_check_calling_use_fpr (type);
1827 len = TYPE_LENGTH (type);
1828
1829 if (abi_use_fpr && calling_use_fpr)
1830 {
1831 if (len == 4)
1832 regcache->cooked_write (tdep->fs0_regnum, valbuf);
1833 else if (len == 8)
1834 regcache->cooked_write (NDS32_FD0_REGNUM, valbuf);
1835 else
1836 internal_error (__FILE__, __LINE__,
1837 _("Cannot store return value of %d bytes "
1838 "long floating-point."), len);
1839 }
1840 else
1841 {
1842 ULONGEST regval;
1843
1844 if (len < 4)
1845 {
1846 regval = extract_unsigned_integer (valbuf, len, byte_order);
1847 regcache_cooked_write_unsigned (regcache, NDS32_R0_REGNUM, regval);
1848 }
1849 else if (len == 4)
1850 {
1851 regcache->cooked_write (NDS32_R0_REGNUM, valbuf);
1852 }
1853 else if (len < 8)
1854 {
1855 int len1, len2;
1856
1857 len1 = byte_order == BFD_ENDIAN_BIG ? len - 4 : 4;
1858 len2 = len - len1;
1859
1860 regval = extract_unsigned_integer (valbuf, len1, byte_order);
1861 regcache_cooked_write_unsigned (regcache, NDS32_R0_REGNUM, regval);
1862
1863 regval = extract_unsigned_integer (valbuf + len1, len2, byte_order);
1864 regcache_cooked_write_unsigned (regcache, NDS32_R0_REGNUM + 1,
1865 regval);
1866 }
1867 else
1868 {
1869 regcache->cooked_write (NDS32_R0_REGNUM, valbuf);
1870 regcache->cooked_write (NDS32_R0_REGNUM + 1, valbuf + 4);
1871 }
1872 }
1873 }
1874
1875 /* Implement the "return_value" gdbarch method.
1876
1877 Determine, for architecture GDBARCH, how a return value of TYPE
1878 should be returned. If it is supposed to be returned in registers,
1879 and READBUF is non-zero, read the appropriate value from REGCACHE,
1880 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1881 from WRITEBUF into REGCACHE. */
1882
1883 static enum return_value_convention
1884 nds32_return_value (struct gdbarch *gdbarch, struct value *func_type,
1885 struct type *type, struct regcache *regcache,
1886 gdb_byte *readbuf, const gdb_byte *writebuf)
1887 {
1888 if (TYPE_LENGTH (type) > 8)
1889 {
1890 return RETURN_VALUE_STRUCT_CONVENTION;
1891 }
1892 else
1893 {
1894 if (readbuf != NULL)
1895 nds32_extract_return_value (gdbarch, type, regcache, readbuf);
1896 if (writebuf != NULL)
1897 nds32_store_return_value (gdbarch, type, regcache, writebuf);
1898
1899 return RETURN_VALUE_REGISTER_CONVENTION;
1900 }
1901 }
1902 \f
1903 /* Implement the "get_longjmp_target" gdbarch method. */
1904
1905 static int
1906 nds32_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1907 {
1908 gdb_byte buf[4];
1909 CORE_ADDR jb_addr;
1910 struct gdbarch *gdbarch = get_frame_arch (frame);
1911 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1912
1913 jb_addr = get_frame_register_unsigned (frame, NDS32_R0_REGNUM);
1914
1915 if (target_read_memory (jb_addr + 11 * 4, buf, 4))
1916 return 0;
1917
1918 *pc = extract_unsigned_integer (buf, 4, byte_order);
1919 return 1;
1920 }
1921 \f
1922 /* Validate the given TDESC, and fixed-number some registers in it.
1923 Return 0 if the given TDESC does not contain the required feature
1924 or not contain required registers. */
1925
1926 static int
1927 nds32_validate_tdesc_p (const struct target_desc *tdesc,
1928 struct tdesc_arch_data *tdesc_data,
1929 int *fpu_freg, int *use_pseudo_fsrs)
1930 {
1931 const struct tdesc_feature *feature;
1932 int i, valid_p;
1933
1934 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nds32.core");
1935 if (feature == NULL)
1936 return 0;
1937
1938 valid_p = 1;
1939 /* Validate and fixed-number R0-R10. */
1940 for (i = NDS32_R0_REGNUM; i <= NDS32_R0_REGNUM + 10; i++)
1941 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1942 nds32_register_names[i]);
1943
1944 /* Validate R15. */
1945 valid_p &= tdesc_unnumbered_register (feature,
1946 nds32_register_names[NDS32_TA_REGNUM]);
1947
1948 /* Validate and fixed-number FP, GP, LP, SP, PC. */
1949 for (i = NDS32_FP_REGNUM; i <= NDS32_PC_REGNUM; i++)
1950 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1951 nds32_register_names[i]);
1952
1953 if (!valid_p)
1954 return 0;
1955
1956 /* Fixed-number R11-R27. */
1957 for (i = NDS32_R0_REGNUM + 11; i <= NDS32_R0_REGNUM + 27; i++)
1958 tdesc_numbered_register (feature, tdesc_data, i, nds32_register_names[i]);
1959
1960 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nds32.fpu");
1961 if (feature != NULL)
1962 {
1963 int num_fdr_regs, num_fsr_regs, fs0_regnum, num_listed_fsr;
1964 int freg = -1;
1965
1966 /* Guess FPU configuration via listed registers. */
1967 if (tdesc_unnumbered_register (feature, "fd31"))
1968 freg = 3;
1969 else if (tdesc_unnumbered_register (feature, "fd15"))
1970 freg = 2;
1971 else if (tdesc_unnumbered_register (feature, "fd7"))
1972 freg = 1;
1973 else if (tdesc_unnumbered_register (feature, "fd3"))
1974 freg = 0;
1975
1976 if (freg == -1)
1977 /* Required FDR is not found. */
1978 return 0;
1979 else
1980 *fpu_freg = freg;
1981
1982 /* Validate and fixed-number required FDRs. */
1983 num_fdr_regs = num_fdr_map[freg];
1984 for (i = 0; i < num_fdr_regs; i++)
1985 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1986 NDS32_FD0_REGNUM + i,
1987 nds32_fdr_register_names[i]);
1988 if (!valid_p)
1989 return 0;
1990
1991 /* Count the number of listed FSRs, and fixed-number them if present. */
1992 num_fsr_regs = num_fsr_map[freg];
1993 fs0_regnum = NDS32_FD0_REGNUM + num_fdr_regs;
1994 num_listed_fsr = 0;
1995 for (i = 0; i < num_fsr_regs; i++)
1996 num_listed_fsr += tdesc_numbered_register (feature, tdesc_data,
1997 fs0_regnum + i,
1998 nds32_fsr_register_names[i]);
1999
2000 if (num_listed_fsr == 0)
2001 /* No required FSRs are listed explicitly, make them pseudo registers
2002 of FDRs. */
2003 *use_pseudo_fsrs = 1;
2004 else if (num_listed_fsr == num_fsr_regs)
2005 /* All required FSRs are listed explicitly. */
2006 *use_pseudo_fsrs = 0;
2007 else
2008 /* Some required FSRs are missing. */
2009 return 0;
2010 }
2011
2012 return 1;
2013 }
2014
2015 /* Initialize the current architecture based on INFO. If possible,
2016 re-use an architecture from ARCHES, which is a list of
2017 architectures already created during this debugging session.
2018
2019 Called e.g. at program startup, when reading a core file, and when
2020 reading a binary file. */
2021
2022 static struct gdbarch *
2023 nds32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2024 {
2025 struct gdbarch *gdbarch;
2026 struct gdbarch_tdep *tdep;
2027 struct gdbarch_list *best_arch;
2028 struct tdesc_arch_data *tdesc_data = NULL;
2029 const struct target_desc *tdesc = info.target_desc;
2030 int elf_abi = E_NDS_ABI_AABI;
2031 int fpu_freg = -1;
2032 int use_pseudo_fsrs = 0;
2033 int i, num_regs, maxregs;
2034
2035 /* Extract the elf_flags if available. */
2036 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2037 elf_abi = elf_elfheader (info.abfd)->e_flags & EF_NDS_ABI;
2038
2039 /* If there is already a candidate, use it. */
2040 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2041 best_arch != NULL;
2042 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2043 {
2044 struct gdbarch_tdep *idep = gdbarch_tdep (best_arch->gdbarch);
2045
2046 if (idep->elf_abi != elf_abi)
2047 continue;
2048
2049 /* Found a match. */
2050 break;
2051 }
2052
2053 if (best_arch != NULL)
2054 return best_arch->gdbarch;
2055
2056 if (!tdesc_has_registers (tdesc))
2057 tdesc = tdesc_nds32;
2058
2059 tdesc_data = tdesc_data_alloc ();
2060
2061 if (!nds32_validate_tdesc_p (tdesc, tdesc_data, &fpu_freg, &use_pseudo_fsrs))
2062 {
2063 tdesc_data_cleanup (tdesc_data);
2064 return NULL;
2065 }
2066
2067 /* Allocate space for the new architecture. */
2068 tdep = XCNEW (struct gdbarch_tdep);
2069 tdep->fpu_freg = fpu_freg;
2070 tdep->use_pseudo_fsrs = use_pseudo_fsrs;
2071 tdep->fs0_regnum = -1;
2072 tdep->elf_abi = elf_abi;
2073
2074 gdbarch = gdbarch_alloc (&info, tdep);
2075
2076 set_gdbarch_wchar_bit (gdbarch, 16);
2077 set_gdbarch_wchar_signed (gdbarch, 0);
2078
2079 if (fpu_freg == -1)
2080 num_regs = NDS32_NUM_REGS;
2081 else if (use_pseudo_fsrs == 1)
2082 {
2083 set_gdbarch_pseudo_register_read (gdbarch, nds32_pseudo_register_read);
2084 set_gdbarch_pseudo_register_write (gdbarch, nds32_pseudo_register_write);
2085 set_tdesc_pseudo_register_name (gdbarch, nds32_pseudo_register_name);
2086 set_tdesc_pseudo_register_type (gdbarch, nds32_pseudo_register_type);
2087 set_gdbarch_num_pseudo_regs (gdbarch, num_fsr_map[fpu_freg]);
2088
2089 num_regs = NDS32_NUM_REGS + num_fdr_map[fpu_freg];
2090 }
2091 else
2092 num_regs = NDS32_NUM_REGS + num_fdr_map[fpu_freg] + num_fsr_map[fpu_freg];
2093
2094 set_gdbarch_num_regs (gdbarch, num_regs);
2095 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2096
2097 /* Cache the register number of fs0. */
2098 if (fpu_freg != -1)
2099 tdep->fs0_regnum = user_reg_map_name_to_regnum (gdbarch, "fs0", -1);
2100
2101 /* Add NDS32 register aliases. To avoid search in user register name space,
2102 user_reg_map_name_to_regnum is not used. */
2103 maxregs = gdbarch_num_cooked_regs (gdbarch);
2104 for (i = 0; i < ARRAY_SIZE (nds32_register_aliases); i++)
2105 {
2106 int regnum, j;
2107
2108 regnum = -1;
2109 /* Search register name space. */
2110 for (j = 0; j < maxregs; j++)
2111 {
2112 const char *regname = gdbarch_register_name (gdbarch, j);
2113
2114 if (regname != NULL
2115 && strcmp (regname, nds32_register_aliases[i].name) == 0)
2116 {
2117 regnum = j;
2118 break;
2119 }
2120 }
2121
2122 /* Try next alias entry if the given name can not be found in register
2123 name space. */
2124 if (regnum == -1)
2125 continue;
2126
2127 user_reg_add (gdbarch, nds32_register_aliases[i].alias,
2128 value_of_nds32_reg, (const void *) (intptr_t) regnum);
2129 }
2130
2131 nds32_add_reggroups (gdbarch);
2132
2133 /* Hook in ABI-specific overrides, if they have been registered. */
2134 info.tdesc_data = tdesc_data;
2135 gdbarch_init_osabi (info, gdbarch);
2136
2137 /* Override tdesc_register callbacks for system registers. */
2138 set_gdbarch_register_reggroup_p (gdbarch, nds32_register_reggroup_p);
2139
2140 set_gdbarch_sp_regnum (gdbarch, NDS32_SP_REGNUM);
2141 set_gdbarch_pc_regnum (gdbarch, NDS32_PC_REGNUM);
2142 set_gdbarch_unwind_sp (gdbarch, nds32_unwind_sp);
2143 set_gdbarch_unwind_pc (gdbarch, nds32_unwind_pc);
2144 set_gdbarch_stack_frame_destroyed_p (gdbarch, nds32_stack_frame_destroyed_p);
2145 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nds32_dwarf2_reg_to_regnum);
2146
2147 set_gdbarch_push_dummy_call (gdbarch, nds32_push_dummy_call);
2148 set_gdbarch_return_value (gdbarch, nds32_return_value);
2149 set_gdbarch_dummy_id (gdbarch, nds32_dummy_id);
2150
2151 set_gdbarch_skip_prologue (gdbarch, nds32_skip_prologue);
2152 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2153 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
2154 nds32_breakpoint::kind_from_pc);
2155 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
2156 nds32_breakpoint::bp_from_kind);
2157
2158 set_gdbarch_frame_align (gdbarch, nds32_frame_align);
2159 frame_base_set_default (gdbarch, &nds32_frame_base);
2160
2161 /* Handle longjmp. */
2162 set_gdbarch_get_longjmp_target (gdbarch, nds32_get_longjmp_target);
2163
2164 /* The order of appending is the order it check frame. */
2165 dwarf2_append_unwinders (gdbarch);
2166 frame_unwind_append_unwinder (gdbarch, &nds32_epilogue_frame_unwind);
2167 frame_unwind_append_unwinder (gdbarch, &nds32_frame_unwind);
2168
2169 return gdbarch;
2170 }
2171
2172 void
2173 _initialize_nds32_tdep (void)
2174 {
2175 /* Initialize gdbarch. */
2176 register_gdbarch_init (bfd_arch_nds32, nds32_gdbarch_init);
2177
2178 initialize_tdesc_nds32 ();
2179 nds32_init_reggroups ();
2180 }