]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/nios2-tdep.c
Update year range in copyright notice of all files owned by the GDB project.
[thirdparty/binutils-gdb.git] / gdb / nios2-tdep.c
1 /* Target-machine dependent code for Nios II, for GDB.
2 Copyright (C) 2012-2015 Free Software Foundation, Inc.
3 Contributed by Peter Brookes (pbrookes@altera.com)
4 and Andrew Draper (adraper@altera.com).
5 Contributed by Mentor Graphics, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "osabi.h"
34 #include "target.h"
35 #include "dis-asm.h"
36 #include "regcache.h"
37 #include "value.h"
38 #include "symfile.h"
39 #include "arch-utils.h"
40 #include "floatformat.h"
41 #include "infcall.h"
42 #include "regset.h"
43 #include "target-descriptions.h"
44
45 /* To get entry_point_address. */
46 #include "objfiles.h"
47
48 /* Nios II ISA specific encodings and macros. */
49 #include "opcode/nios2.h"
50
51 /* Nios II specific header. */
52 #include "nios2-tdep.h"
53
54 #include "features/nios2.c"
55
56 /* Control debugging information emitted in this file. */
57
58 static int nios2_debug = 0;
59
60 /* The following structures are used in the cache for prologue
61 analysis; see the reg_value and reg_saved tables in
62 struct nios2_unwind_cache, respectively. */
63
64 /* struct reg_value is used to record that a register has the same value
65 as reg at the given offset from the start of a function. */
66
67 struct reg_value
68 {
69 int reg;
70 unsigned int offset;
71 };
72
73 /* struct reg_saved is used to record that a register value has been saved at
74 basereg + addr, for basereg >= 0. If basereg < 0, that indicates
75 that the register is not known to have been saved. Note that when
76 basereg == NIOS2_Z_REGNUM (that is, r0, which holds value 0),
77 addr is an absolute address. */
78
79 struct reg_saved
80 {
81 int basereg;
82 CORE_ADDR addr;
83 };
84
85 struct nios2_unwind_cache
86 {
87 /* The frame's base, optionally used by the high-level debug info. */
88 CORE_ADDR base;
89
90 /* The previous frame's inner most stack address. Used as this
91 frame ID's stack_addr. */
92 CORE_ADDR cfa;
93
94 /* The address of the first instruction in this function. */
95 CORE_ADDR pc;
96
97 /* Which register holds the return address for the frame. */
98 int return_regnum;
99
100 /* Table indicating what changes have been made to each register. */
101 struct reg_value reg_value[NIOS2_NUM_REGS];
102
103 /* Table indicating where each register has been saved. */
104 struct reg_saved reg_saved[NIOS2_NUM_REGS];
105 };
106
107
108 /* This array is a mapping from Dwarf-2 register numbering to GDB's. */
109
110 static int nios2_dwarf2gdb_regno_map[] =
111 {
112 0, 1, 2, 3,
113 4, 5, 6, 7,
114 8, 9, 10, 11,
115 12, 13, 14, 15,
116 16, 17, 18, 19,
117 20, 21, 22, 23,
118 24, 25,
119 NIOS2_GP_REGNUM, /* 26 */
120 NIOS2_SP_REGNUM, /* 27 */
121 NIOS2_FP_REGNUM, /* 28 */
122 NIOS2_EA_REGNUM, /* 29 */
123 NIOS2_BA_REGNUM, /* 30 */
124 NIOS2_RA_REGNUM, /* 31 */
125 NIOS2_PC_REGNUM, /* 32 */
126 NIOS2_STATUS_REGNUM, /* 33 */
127 NIOS2_ESTATUS_REGNUM, /* 34 */
128 NIOS2_BSTATUS_REGNUM, /* 35 */
129 NIOS2_IENABLE_REGNUM, /* 36 */
130 NIOS2_IPENDING_REGNUM, /* 37 */
131 NIOS2_CPUID_REGNUM, /* 38 */
132 39, /* CTL6 */ /* 39 */
133 NIOS2_EXCEPTION_REGNUM, /* 40 */
134 NIOS2_PTEADDR_REGNUM, /* 41 */
135 NIOS2_TLBACC_REGNUM, /* 42 */
136 NIOS2_TLBMISC_REGNUM, /* 43 */
137 NIOS2_ECCINJ_REGNUM, /* 44 */
138 NIOS2_BADADDR_REGNUM, /* 45 */
139 NIOS2_CONFIG_REGNUM, /* 46 */
140 NIOS2_MPUBASE_REGNUM, /* 47 */
141 NIOS2_MPUACC_REGNUM /* 48 */
142 };
143
144
145 /* Implement the dwarf2_reg_to_regnum gdbarch method. */
146
147 static int
148 nios2_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int dw_reg)
149 {
150 if (dw_reg < 0 || dw_reg > NIOS2_NUM_REGS)
151 {
152 warning (_("Dwarf-2 uses unmapped register #%d"), dw_reg);
153 return dw_reg;
154 }
155
156 return nios2_dwarf2gdb_regno_map[dw_reg];
157 }
158
159 /* Canonical names for the 49 registers. */
160
161 static const char *const nios2_reg_names[NIOS2_NUM_REGS] =
162 {
163 "zero", "at", "r2", "r3", "r4", "r5", "r6", "r7",
164 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
165 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
166 "et", "bt", "gp", "sp", "fp", "ea", "sstatus", "ra",
167 "pc",
168 "status", "estatus", "bstatus", "ienable",
169 "ipending", "cpuid", "ctl6", "exception",
170 "pteaddr", "tlbacc", "tlbmisc", "eccinj",
171 "badaddr", "config", "mpubase", "mpuacc"
172 };
173
174 /* Implement the register_name gdbarch method. */
175
176 static const char *
177 nios2_register_name (struct gdbarch *gdbarch, int regno)
178 {
179 /* Use mnemonic aliases for GPRs. */
180 if (regno >= 0 && regno < NIOS2_NUM_REGS)
181 return nios2_reg_names[regno];
182 else
183 return tdesc_register_name (gdbarch, regno);
184 }
185
186 /* Implement the register_type gdbarch method. */
187
188 static struct type *
189 nios2_register_type (struct gdbarch *gdbarch, int regno)
190 {
191 /* If the XML description has register information, use that to
192 determine the register type. */
193 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
194 return tdesc_register_type (gdbarch, regno);
195
196 if (regno == NIOS2_PC_REGNUM)
197 return builtin_type (gdbarch)->builtin_func_ptr;
198 else if (regno == NIOS2_SP_REGNUM)
199 return builtin_type (gdbarch)->builtin_data_ptr;
200 else
201 return builtin_type (gdbarch)->builtin_uint32;
202 }
203
204 /* Given a return value in REGCACHE with a type VALTYPE,
205 extract and copy its value into VALBUF. */
206
207 static void
208 nios2_extract_return_value (struct gdbarch *gdbarch, struct type *valtype,
209 struct regcache *regcache, gdb_byte *valbuf)
210 {
211 int len = TYPE_LENGTH (valtype);
212
213 /* Return values of up to 8 bytes are returned in $r2 $r3. */
214 if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
215 regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf);
216 else
217 {
218 gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
219 + register_size (gdbarch, NIOS2_R3_REGNUM)));
220 regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf);
221 regcache_cooked_read (regcache, NIOS2_R3_REGNUM, valbuf + 4);
222 }
223 }
224
225 /* Write into appropriate registers a function return value
226 of type TYPE, given in virtual format. */
227
228 static void
229 nios2_store_return_value (struct gdbarch *gdbarch, struct type *valtype,
230 struct regcache *regcache, const gdb_byte *valbuf)
231 {
232 int len = TYPE_LENGTH (valtype);
233
234 /* Return values of up to 8 bytes are returned in $r2 $r3. */
235 if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
236 regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf);
237 else
238 {
239 gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
240 + register_size (gdbarch, NIOS2_R3_REGNUM)));
241 regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf);
242 regcache_cooked_write (regcache, NIOS2_R3_REGNUM, valbuf + 4);
243 }
244 }
245
246
247 /* Set up the default values of the registers. */
248
249 static void
250 nios2_setup_default (struct nios2_unwind_cache *cache)
251 {
252 int i;
253
254 for (i = 0; i < NIOS2_NUM_REGS; i++)
255 {
256 /* All registers start off holding their previous values. */
257 cache->reg_value[i].reg = i;
258 cache->reg_value[i].offset = 0;
259
260 /* All registers start off not saved. */
261 cache->reg_saved[i].basereg = -1;
262 cache->reg_saved[i].addr = 0;
263 }
264 }
265
266 /* Initialize the unwind cache. */
267
268 static void
269 nios2_init_cache (struct nios2_unwind_cache *cache, CORE_ADDR pc)
270 {
271 cache->base = 0;
272 cache->cfa = 0;
273 cache->pc = pc;
274 cache->return_regnum = NIOS2_RA_REGNUM;
275 nios2_setup_default (cache);
276 }
277
278 /* Read and identify an instruction at PC. If INSNP is non-null,
279 store the instruction word into that location. Return the opcode
280 pointer or NULL if the memory couldn't be read or disassembled. */
281
282 static const struct nios2_opcode *
283 nios2_fetch_insn (struct gdbarch *gdbarch, CORE_ADDR pc,
284 unsigned int *insnp)
285 {
286 LONGEST memword;
287 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
288 unsigned int insn;
289
290 if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE,
291 gdbarch_byte_order (gdbarch), &memword))
292 return NULL;
293
294 insn = (unsigned int) memword;
295 if (insnp)
296 *insnp = insn;
297 return nios2_find_opcode_hash (insn, mach);
298 }
299
300
301 /* Match and disassemble an ADD-type instruction, with 3 register operands.
302 Returns true on success, and fills in the operand pointers. */
303
304 static int
305 nios2_match_add (uint32_t insn, const struct nios2_opcode *op,
306 unsigned long mach, int *ra, int *rb, int *rc)
307 {
308 if (op->match == MATCH_R1_ADD || op->match == MATCH_R1_MOV)
309 {
310 *ra = GET_IW_R_A (insn);
311 *rb = GET_IW_R_B (insn);
312 *rc = GET_IW_R_C (insn);
313 return 1;
314 }
315 return 0;
316 }
317
318 /* Match and disassemble a SUB-type instruction, with 3 register operands.
319 Returns true on success, and fills in the operand pointers. */
320
321 static int
322 nios2_match_sub (uint32_t insn, const struct nios2_opcode *op,
323 unsigned long mach, int *ra, int *rb, int *rc)
324 {
325 if (op->match == MATCH_R1_SUB)
326 {
327 *ra = GET_IW_R_A (insn);
328 *rb = GET_IW_R_B (insn);
329 *rc = GET_IW_R_C (insn);
330 return 1;
331 }
332 return 0;
333 }
334
335 /* Match and disassemble an ADDI-type instruction, with 2 register operands
336 and one immediate operand.
337 Returns true on success, and fills in the operand pointers. */
338
339 static int
340 nios2_match_addi (uint32_t insn, const struct nios2_opcode *op,
341 unsigned long mach, int *ra, int *rb, int *imm)
342 {
343 if (op->match == MATCH_R1_ADDI)
344 {
345 *ra = GET_IW_I_A (insn);
346 *rb = GET_IW_I_B (insn);
347 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
348 return 1;
349 }
350 return 0;
351 }
352
353 /* Match and disassemble an ORHI-type instruction, with 2 register operands
354 and one unsigned immediate operand.
355 Returns true on success, and fills in the operand pointers. */
356
357 static int
358 nios2_match_orhi (uint32_t insn, const struct nios2_opcode *op,
359 unsigned long mach, int *ra, int *rb, unsigned int *uimm)
360 {
361 if (op->match == MATCH_R1_ORHI)
362 {
363 *ra = GET_IW_I_A (insn);
364 *rb = GET_IW_I_B (insn);
365 *uimm = GET_IW_I_IMM16 (insn);
366 return 1;
367 }
368 return 0;
369 }
370
371 /* Match and disassemble a STW-type instruction, with 2 register operands
372 and one immediate operand.
373 Returns true on success, and fills in the operand pointers. */
374
375 static int
376 nios2_match_stw (uint32_t insn, const struct nios2_opcode *op,
377 unsigned long mach, int *ra, int *rb, int *imm)
378 {
379 if (op->match == MATCH_R1_STW || op->match == MATCH_R1_STWIO)
380 {
381 *ra = GET_IW_I_A (insn);
382 *rb = GET_IW_I_B (insn);
383 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
384 return 1;
385 }
386 return 0;
387 }
388
389 /* Match and disassemble a LDW-type instruction, with 2 register operands
390 and one immediate operand.
391 Returns true on success, and fills in the operand pointers. */
392
393 static int
394 nios2_match_ldw (uint32_t insn, const struct nios2_opcode *op,
395 unsigned long mach, int *ra, int *rb, int *imm)
396 {
397 if (op->match == MATCH_R1_LDW || op->match == MATCH_R1_LDWIO)
398 {
399 *ra = GET_IW_I_A (insn);
400 *rb = GET_IW_I_B (insn);
401 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
402 return 1;
403 }
404 return 0;
405 }
406
407 /* Match and disassemble a RDCTL instruction, with 2 register operands.
408 Returns true on success, and fills in the operand pointers. */
409
410 static int
411 nios2_match_rdctl (uint32_t insn, const struct nios2_opcode *op,
412 unsigned long mach, int *ra, int *rc)
413 {
414 if (op->match == MATCH_R1_RDCTL)
415 {
416 *ra = GET_IW_R_IMM5 (insn);
417 *rc = GET_IW_R_C (insn);
418 return 1;
419 }
420 return 0;
421 }
422
423
424 /* Match and disassemble a branch instruction, with (potentially)
425 2 register operands and one immediate operand.
426 Returns true on success, and fills in the operand pointers. */
427
428 enum branch_condition {
429 branch_none,
430 branch_eq,
431 branch_ne,
432 branch_ge,
433 branch_geu,
434 branch_lt,
435 branch_ltu
436 };
437
438 static int
439 nios2_match_branch (uint32_t insn, const struct nios2_opcode *op,
440 unsigned long mach, int *ra, int *rb, int *imm,
441 enum branch_condition *cond)
442 {
443 switch (op->match)
444 {
445 case MATCH_R1_BR:
446 *cond = branch_none;
447 break;
448 case MATCH_R1_BEQ:
449 *cond = branch_eq;
450 break;
451 case MATCH_R1_BNE:
452 *cond = branch_ne;
453 break;
454 case MATCH_R1_BGE:
455 *cond = branch_ge;
456 break;
457 case MATCH_R1_BGEU:
458 *cond = branch_geu;
459 break;
460 case MATCH_R1_BLT:
461 *cond = branch_lt;
462 break;
463 case MATCH_R1_BLTU:
464 *cond = branch_ltu;
465 break;
466 default:
467 return 0;
468 }
469 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
470 *ra = GET_IW_I_A (insn);
471 *rb = GET_IW_I_B (insn);
472 return 1;
473 }
474
475 /* Match and disassemble a direct jump instruction, with an
476 unsigned operand. Returns true on success, and fills in the operand
477 pointer. */
478
479 static int
480 nios2_match_jmpi (uint32_t insn, const struct nios2_opcode *op,
481 unsigned long mach, unsigned int *uimm)
482 {
483 if (op->match == MATCH_R1_JMPI)
484 {
485 *uimm = GET_IW_J_IMM26 (insn) << 2;
486 return 1;
487 }
488 return 0;
489 }
490
491 /* Match and disassemble a direct call instruction, with an
492 unsigned operand. Returns true on success, and fills in the operand
493 pointer. */
494
495 static int
496 nios2_match_calli (uint32_t insn, const struct nios2_opcode *op,
497 unsigned long mach, unsigned int *uimm)
498 {
499 if (op->match == MATCH_R1_CALL)
500 {
501 *uimm = GET_IW_J_IMM26 (insn) << 2;
502 return 1;
503 }
504 return 0;
505 }
506
507 /* Match and disassemble an indirect jump instruction, with a
508 (possibly implicit) register operand. Returns true on success, and fills
509 in the operand pointer. */
510
511 static int
512 nios2_match_jmpr (uint32_t insn, const struct nios2_opcode *op,
513 unsigned long mach, int *ra)
514 {
515 switch (op->match)
516 {
517 case MATCH_R1_JMP:
518 *ra = GET_IW_I_A (insn);
519 return 1;
520 case MATCH_R1_RET:
521 *ra = NIOS2_RA_REGNUM;
522 return 1;
523 case MATCH_R1_ERET:
524 *ra = NIOS2_EA_REGNUM;
525 return 1;
526 case MATCH_R1_BRET:
527 *ra = NIOS2_BA_REGNUM;
528 return 1;
529 default:
530 return 0;
531 }
532 }
533
534 /* Match and disassemble an indirect call instruction, with a register
535 operand. Returns true on success, and fills in the operand pointer. */
536
537 static int
538 nios2_match_callr (uint32_t insn, const struct nios2_opcode *op,
539 unsigned long mach, int *ra)
540 {
541 if (op->match == MATCH_R1_CALLR)
542 {
543 *ra = GET_IW_I_A (insn);
544 return 1;
545 }
546 return 0;
547 }
548
549 /* Match and disassemble a break instruction, with an unsigned operand.
550 Returns true on success, and fills in the operand pointer. */
551
552 static int
553 nios2_match_break (uint32_t insn, const struct nios2_opcode *op,
554 unsigned long mach, unsigned int *uimm)
555 {
556 if (op->match == MATCH_R1_BREAK)
557 {
558 *uimm = GET_IW_R_IMM5 (insn);
559 return 1;
560 }
561 return 0;
562 }
563
564 /* Match and disassemble a trap instruction, with an unsigned operand.
565 Returns true on success, and fills in the operand pointer. */
566
567 static int
568 nios2_match_trap (uint32_t insn, const struct nios2_opcode *op,
569 unsigned long mach, unsigned int *uimm)
570 {
571 if (op->match == MATCH_R1_TRAP)
572 {
573 *uimm = GET_IW_R_IMM5 (insn);
574 return 1;
575 }
576 return 0;
577 }
578
579 /* Helper function to identify when we're in a function epilogue;
580 that is, the part of the function from the point at which the
581 stack adjustments are made, to the return or sibcall.
582 Note that we may have several stack adjustment instructions, and
583 this function needs to test whether the stack teardown has already
584 started before current_pc, not whether it has completed. */
585
586 static int
587 nios2_in_epilogue_p (struct gdbarch *gdbarch,
588 CORE_ADDR current_pc,
589 CORE_ADDR start_pc)
590 {
591 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
592 /* Maximum number of possibly-epilogue instructions to check.
593 Note that this number should not be too large, else we can
594 potentially end up iterating through unmapped memory. */
595 int ninsns, max_insns = 5;
596 unsigned int insn;
597 const struct nios2_opcode *op = NULL;
598 unsigned int uimm;
599 int imm;
600 int ra, rb, rc;
601 enum branch_condition cond;
602 CORE_ADDR pc;
603
604 /* There has to be a previous instruction in the function. */
605 if (current_pc <= start_pc)
606 return 0;
607
608 /* Find the previous instruction before current_pc.
609 For the moment we will assume that all instructions are the
610 same size here. */
611 pc = current_pc - NIOS2_OPCODE_SIZE;
612
613 /* Beginning with the previous instruction we just located, check whether
614 we are in a sequence of at least one stack adjustment instruction.
615 Possible instructions here include:
616 ADDI sp, sp, n
617 ADD sp, sp, rn
618 LDW sp, n(sp) */
619 for (ninsns = 0; ninsns < max_insns; ninsns++)
620 {
621 int ok = 0;
622
623 /* Fetch the insn at pc. */
624 op = nios2_fetch_insn (gdbarch, pc, &insn);
625 if (op == NULL)
626 return 0;
627 pc += op->size;
628
629 /* Was it a stack adjustment? */
630 if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm))
631 ok = (rb == NIOS2_SP_REGNUM);
632 else if (nios2_match_add (insn, op, mach, &ra, &rb, &rc))
633 ok = (rc == NIOS2_SP_REGNUM);
634 else if (nios2_match_ldw (insn, op, mach, &ra, &rb, &imm))
635 ok = (rb == NIOS2_SP_REGNUM);
636 if (!ok)
637 break;
638 }
639
640 /* No stack adjustments found. */
641 if (ninsns == 0)
642 return 0;
643
644 /* We found more stack adjustments than we expect GCC to be generating.
645 Since it looks like a stack unwind might be in progress tell GDB to
646 treat it as such. */
647 if (ninsns == max_insns)
648 return 1;
649
650 /* The next instruction following the stack adjustments must be a
651 return, jump, or unconditional branch. */
652 if (nios2_match_jmpr (insn, op, mach, &ra)
653 || nios2_match_jmpi (insn, op, mach, &uimm)
654 || (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)
655 && cond == branch_none))
656 return 1;
657
658 return 0;
659 }
660
661 /* Implement the in_function_epilogue_p gdbarch method. */
662
663 static int
664 nios2_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
665 {
666 CORE_ADDR func_addr;
667
668 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
669 return nios2_in_epilogue_p (gdbarch, pc, func_addr);
670
671 return 0;
672 }
673
674 /* Do prologue analysis, returning the PC of the first instruction
675 after the function prologue. Assumes CACHE has already been
676 initialized. THIS_FRAME can be null, in which case we are only
677 interested in skipping the prologue. Otherwise CACHE is filled in
678 from the frame information.
679
680 The prologue may consist of the following parts:
681 1) Profiling instrumentation. For non-PIC code it looks like:
682 mov r8, ra
683 call mcount
684 mov ra, r8
685
686 2) A stack adjustment and save of R4-R7 for varargs functions.
687 This is typically merged with item 3.
688
689 3) A stack adjustment and save of the callee-saved registers;
690 typically an explicit SP decrement and individual register
691 saves.
692
693 There may also be a stack switch here in an exception handler
694 in place of a stack adjustment. It looks like:
695 movhi rx, %hiadj(newstack)
696 addhi rx, rx, %lo(newstack)
697 stw sp, constant(rx)
698 mov sp, rx
699
700 5) A frame pointer save, which can be either a MOV or ADDI.
701
702 6) A further stack pointer adjustment. This is normally included
703 adjustment in step 4 unless the total adjustment is too large
704 to be done in one step.
705
706 7) A stack overflow check, which can take either of these forms:
707 bgeu sp, rx, +8
708 break 3
709 or
710 bltu sp, rx, .Lstack_overflow
711 ...
712 .Lstack_overflow:
713 break 3
714 If present, this is inserted after the stack pointer adjustments
715 for steps 3, 4, and 6.
716
717 The prologue instructions may be combined or interleaved with other
718 instructions.
719
720 To cope with all this variability we decode all the instructions
721 from the start of the prologue until we hit an instruction that
722 cannot possibly be a prologue instruction, such as a branch, call,
723 return, or epilogue instruction. The prologue is considered to end
724 at the last instruction that can definitely be considered a
725 prologue instruction. */
726
727 static CORE_ADDR
728 nios2_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
729 const CORE_ADDR current_pc,
730 struct nios2_unwind_cache *cache,
731 struct frame_info *this_frame)
732 {
733 /* Maximum number of possibly-prologue instructions to check.
734 Note that this number should not be too large, else we can
735 potentially end up iterating through unmapped memory. */
736 int ninsns, max_insns = 50;
737 int regno;
738 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
739 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
740
741 /* Does the frame set up the FP register? */
742 int base_reg = 0;
743
744 struct reg_value *value = cache->reg_value;
745 struct reg_value temp_value[NIOS2_NUM_REGS];
746
747 int i;
748
749 /* Save the starting PC so we can correct the pc after running
750 through the prolog, using symbol info. */
751 CORE_ADDR pc = start_pc;
752
753 /* Is this an exception handler? */
754 int exception_handler = 0;
755
756 /* What was the original value of SP (or fake original value for
757 functions which switch stacks? */
758 CORE_ADDR frame_high;
759
760 /* The last definitely-prologue instruction seen. */
761 CORE_ADDR prologue_end;
762
763 /* Is this the innermost function? */
764 int innermost = (this_frame ? (frame_relative_level (this_frame) == 0) : 1);
765
766 if (nios2_debug)
767 fprintf_unfiltered (gdb_stdlog,
768 "{ nios2_analyze_prologue start=%s, current=%s ",
769 paddress (gdbarch, start_pc),
770 paddress (gdbarch, current_pc));
771
772 /* Set up the default values of the registers. */
773 nios2_setup_default (cache);
774
775 /* Find the prologue instructions. */
776 prologue_end = start_pc;
777 for (ninsns = 0; ninsns < max_insns; ninsns++)
778 {
779 /* Present instruction. */
780 uint32_t insn;
781 const struct nios2_opcode *op;
782 int ra, rb, rc, imm;
783 unsigned int uimm;
784 unsigned int reglist;
785 int wb, ret;
786 enum branch_condition cond;
787
788 if (pc == current_pc)
789 {
790 /* When we reach the current PC we must save the current
791 register state (for the backtrace) but keep analysing
792 because there might be more to find out (eg. is this an
793 exception handler). */
794 memcpy (temp_value, value, sizeof (temp_value));
795 value = temp_value;
796 if (nios2_debug)
797 fprintf_unfiltered (gdb_stdlog, "*");
798 }
799
800 op = nios2_fetch_insn (gdbarch, pc, &insn);
801
802 /* Unknown opcode? Stop scanning. */
803 if (op == NULL)
804 break;
805 pc += op->size;
806
807 if (nios2_debug)
808 fprintf_unfiltered (gdb_stdlog, "[%08X]", insn);
809
810 /* The following instructions can appear in the prologue. */
811
812 if (nios2_match_add (insn, op, mach, &ra, &rb, &rc))
813 {
814 /* ADD rc, ra, rb (also used for MOV) */
815 if (rc == NIOS2_SP_REGNUM
816 && rb == 0
817 && value[ra].reg == cache->reg_saved[NIOS2_SP_REGNUM].basereg)
818 {
819 /* If the previous value of SP is available somewhere
820 near the new stack pointer value then this is a
821 stack switch. */
822
823 /* If any registers were saved on the stack before then
824 we can't backtrace into them now. */
825 for (i = 0 ; i < NIOS2_NUM_REGS ; i++)
826 {
827 if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
828 cache->reg_saved[i].basereg = -1;
829 if (value[i].reg == NIOS2_SP_REGNUM)
830 value[i].reg = -1;
831 }
832
833 /* Create a fake "high water mark" 4 bytes above where SP
834 was stored and fake up the registers to be consistent
835 with that. */
836 value[NIOS2_SP_REGNUM].reg = NIOS2_SP_REGNUM;
837 value[NIOS2_SP_REGNUM].offset
838 = (value[ra].offset
839 - cache->reg_saved[NIOS2_SP_REGNUM].addr
840 - 4);
841 cache->reg_saved[NIOS2_SP_REGNUM].basereg = NIOS2_SP_REGNUM;
842 cache->reg_saved[NIOS2_SP_REGNUM].addr = -4;
843 }
844
845 else if (rc == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM)
846 /* This is setting SP from FP. This only happens in the
847 function epilogue. */
848 break;
849
850 else if (rc != 0)
851 {
852 if (value[rb].reg == 0)
853 value[rc].reg = value[ra].reg;
854 else if (value[ra].reg == 0)
855 value[rc].reg = value[rb].reg;
856 else
857 value[rc].reg = -1;
858 value[rc].offset = value[ra].offset + value[rb].offset;
859 }
860
861 /* The add/move is only considered a prologue instruction
862 if the destination is SP or FP. */
863 if (rc == NIOS2_SP_REGNUM || rc == NIOS2_FP_REGNUM)
864 prologue_end = pc;
865 }
866
867 else if (nios2_match_sub (insn, op, mach, &ra, &rb, &rc))
868 {
869 /* SUB rc, ra, rb */
870 if (rc == NIOS2_SP_REGNUM && rb == NIOS2_SP_REGNUM
871 && value[rc].reg != 0)
872 /* If we are decrementing the SP by a non-constant amount,
873 this is alloca, not part of the prologue. */
874 break;
875 else if (rc != 0)
876 {
877 if (value[rb].reg == 0)
878 value[rc].reg = value[ra].reg;
879 else
880 value[rc].reg = -1;
881 value[rc].offset = value[ra].offset - value[rb].offset;
882 }
883 }
884
885 else if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm))
886 {
887 /* ADDI rb, ra, imm */
888
889 /* A positive stack adjustment has to be part of the epilogue. */
890 if (rb == NIOS2_SP_REGNUM
891 && (imm > 0 || value[ra].reg != NIOS2_SP_REGNUM))
892 break;
893
894 /* Likewise restoring SP from FP. */
895 else if (rb == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM)
896 break;
897
898 if (rb != 0)
899 {
900 value[rb].reg = value[ra].reg;
901 value[rb].offset = value[ra].offset + imm;
902 }
903
904 /* The add is only considered a prologue instruction
905 if the destination is SP or FP. */
906 if (rb == NIOS2_SP_REGNUM || rb == NIOS2_FP_REGNUM)
907 prologue_end = pc;
908 }
909
910 else if (nios2_match_orhi (insn, op, mach, &ra, &rb, &uimm))
911 {
912 /* ORHI rb, ra, uimm (also used for MOVHI) */
913 if (rb != 0)
914 {
915 value[rb].reg = (value[ra].reg == 0) ? 0 : -1;
916 value[rb].offset = value[ra].offset | (uimm << 16);
917 }
918 }
919
920 else if (nios2_match_stw (insn, op, mach, &ra, &rb, &imm))
921 {
922 /* STW rb, imm(ra) */
923
924 /* Are we storing the original value of a register to the stack?
925 For exception handlers the value of EA-4 (return
926 address from interrupts etc) is sometimes stored. */
927 int orig = value[rb].reg;
928 if (orig > 0
929 && (value[rb].offset == 0
930 || (orig == NIOS2_EA_REGNUM && value[rb].offset == -4))
931 && ((value[ra].reg == NIOS2_SP_REGNUM
932 && cache->reg_saved[orig].basereg != NIOS2_SP_REGNUM)
933 || cache->reg_saved[orig].basereg == -1))
934 {
935 if (pc < current_pc)
936 {
937 /* Save off callee saved registers. */
938 cache->reg_saved[orig].basereg = value[ra].reg;
939 cache->reg_saved[orig].addr = value[ra].offset + imm;
940 }
941
942 prologue_end = pc;
943
944 if (orig == NIOS2_EA_REGNUM || orig == NIOS2_ESTATUS_REGNUM)
945 exception_handler = 1;
946 }
947 else
948 /* Non-stack memory writes cannot appear in the prologue. */
949 break;
950 }
951
952 else if (nios2_match_rdctl (insn, op, mach, &ra, &rc))
953 {
954 /* RDCTL rC, ctlN
955 This can appear in exception handlers in combination with
956 a subsequent save to the stack frame. */
957 if (rc != 0)
958 {
959 value[rc].reg = NIOS2_STATUS_REGNUM + ra;
960 value[rc].offset = 0;
961 }
962 }
963
964 else if (nios2_match_calli (insn, op, mach, &uimm))
965 {
966 if (value[8].reg == NIOS2_RA_REGNUM
967 && value[8].offset == 0
968 && value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM
969 && value[NIOS2_SP_REGNUM].offset == 0)
970 {
971 /* A CALL instruction. This is treated as a call to mcount
972 if ra has been stored into r8 beforehand and if it's
973 before the stack adjust.
974 Note mcount corrupts r2-r3, r9-r15 & ra. */
975 for (i = 2 ; i <= 3 ; i++)
976 value[i].reg = -1;
977 for (i = 9 ; i <= 15 ; i++)
978 value[i].reg = -1;
979 value[NIOS2_RA_REGNUM].reg = -1;
980
981 prologue_end = pc;
982 }
983
984 /* Other calls are not part of the prologue. */
985 else
986 break;
987 }
988
989 else if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond))
990 {
991 /* Branches not involving a stack overflow check aren't part of
992 the prologue. */
993 if (ra != NIOS2_SP_REGNUM)
994 break;
995 else if (cond == branch_geu)
996 {
997 /* BGEU sp, rx, +8
998 BREAK 3
999 This instruction sequence is used in stack checking;
1000 we can ignore it. */
1001 unsigned int next_insn;
1002 const struct nios2_opcode *next_op
1003 = nios2_fetch_insn (gdbarch, pc, &next_insn);
1004 if (next_op != NULL
1005 && nios2_match_break (next_insn, op, mach, &uimm))
1006 pc += next_op->size;
1007 else
1008 break;
1009 }
1010 else if (cond == branch_ltu)
1011 {
1012 /* BLTU sp, rx, .Lstackoverflow
1013 If the location branched to holds a BREAK 3 instruction
1014 then this is also stack overflow detection. */
1015 unsigned int next_insn;
1016 const struct nios2_opcode *next_op
1017 = nios2_fetch_insn (gdbarch, pc + imm, &next_insn);
1018 if (next_op != NULL
1019 && nios2_match_break (next_insn, op, mach, &uimm))
1020 ;
1021 else
1022 break;
1023 }
1024 else
1025 break;
1026 }
1027
1028 /* All other calls or jumps (including returns) terminate
1029 the prologue. */
1030 else if (nios2_match_callr (insn, op, mach, &ra)
1031 || nios2_match_jmpr (insn, op, mach, &ra)
1032 || nios2_match_jmpi (insn, op, mach, &uimm))
1033 break;
1034 }
1035
1036 /* If THIS_FRAME is NULL, we are being called from skip_prologue
1037 and are only interested in the PROLOGUE_END value, so just
1038 return that now and skip over the cache updates, which depend
1039 on having frame information. */
1040 if (this_frame == NULL)
1041 return prologue_end;
1042
1043 /* If we are in the function epilogue and have already popped
1044 registers off the stack in preparation for returning, then we
1045 want to go back to the original register values. */
1046 if (innermost && nios2_in_epilogue_p (gdbarch, current_pc, start_pc))
1047 nios2_setup_default (cache);
1048
1049 /* Exception handlers use a different return address register. */
1050 if (exception_handler)
1051 cache->return_regnum = NIOS2_EA_REGNUM;
1052
1053 if (nios2_debug)
1054 fprintf_unfiltered (gdb_stdlog, "\n-> retreg=%d, ", cache->return_regnum);
1055
1056 if (cache->reg_value[NIOS2_FP_REGNUM].reg == NIOS2_SP_REGNUM)
1057 /* If the FP now holds an offset from the CFA then this is a
1058 normal frame which uses the frame pointer. */
1059 base_reg = NIOS2_FP_REGNUM;
1060 else if (cache->reg_value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM)
1061 /* FP doesn't hold an offset from the CFA. If SP still holds an
1062 offset from the CFA then we might be in a function which omits
1063 the frame pointer, or we might be partway through the prologue.
1064 In both cases we can find the CFA using SP. */
1065 base_reg = NIOS2_SP_REGNUM;
1066 else
1067 {
1068 /* Somehow the stack pointer has been corrupted.
1069 We can't return. */
1070 if (nios2_debug)
1071 fprintf_unfiltered (gdb_stdlog, "<can't reach cfa> }\n");
1072 return 0;
1073 }
1074
1075 if (cache->reg_value[base_reg].offset == 0
1076 || cache->reg_saved[NIOS2_RA_REGNUM].basereg != NIOS2_SP_REGNUM
1077 || cache->reg_saved[cache->return_regnum].basereg != NIOS2_SP_REGNUM)
1078 {
1079 /* If the frame didn't adjust the stack, didn't save RA or
1080 didn't save EA in an exception handler then it must either
1081 be a leaf function (doesn't call any other functions) or it
1082 can't return. If it has called another function then it
1083 can't be a leaf, so set base == 0 to indicate that we can't
1084 backtrace past it. */
1085
1086 if (!innermost)
1087 {
1088 /* If it isn't the innermost function then it can't be a
1089 leaf, unless it was interrupted. Check whether RA for
1090 this frame is the same as PC. If so then it probably
1091 wasn't interrupted. */
1092 CORE_ADDR ra
1093 = get_frame_register_unsigned (this_frame, NIOS2_RA_REGNUM);
1094
1095 if (ra == current_pc)
1096 {
1097 if (nios2_debug)
1098 fprintf_unfiltered
1099 (gdb_stdlog,
1100 "<noreturn ADJUST %s, r31@r%d+?>, r%d@r%d+?> }\n",
1101 paddress (gdbarch, cache->reg_value[base_reg].offset),
1102 cache->reg_saved[NIOS2_RA_REGNUM].basereg,
1103 cache->return_regnum,
1104 cache->reg_saved[cache->return_regnum].basereg);
1105 return 0;
1106 }
1107 }
1108 }
1109
1110 /* Get the value of whichever register we are using for the
1111 base. */
1112 cache->base = get_frame_register_unsigned (this_frame, base_reg);
1113
1114 /* What was the value of SP at the start of this function (or just
1115 after the stack switch). */
1116 frame_high = cache->base - cache->reg_value[base_reg].offset;
1117
1118 /* Adjust all the saved registers such that they contain addresses
1119 instead of offsets. */
1120 for (i = 0; i < NIOS2_NUM_REGS; i++)
1121 if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
1122 {
1123 cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
1124 cache->reg_saved[i].addr += frame_high;
1125 }
1126
1127 for (i = 0; i < NIOS2_NUM_REGS; i++)
1128 if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
1129 {
1130 CORE_ADDR gp = get_frame_register_unsigned (this_frame,
1131 NIOS2_GP_REGNUM);
1132
1133 for ( ; i < NIOS2_NUM_REGS; i++)
1134 if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
1135 {
1136 cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
1137 cache->reg_saved[i].addr += gp;
1138 }
1139 }
1140
1141 /* Work out what the value of SP was on the first instruction of
1142 this function. If we didn't switch stacks then this can be
1143 trivially computed from the base address. */
1144 if (cache->reg_saved[NIOS2_SP_REGNUM].basereg == NIOS2_Z_REGNUM)
1145 cache->cfa
1146 = read_memory_unsigned_integer (cache->reg_saved[NIOS2_SP_REGNUM].addr,
1147 4, byte_order);
1148 else
1149 cache->cfa = frame_high;
1150
1151 /* Exception handlers restore ESTATUS into STATUS. */
1152 if (exception_handler)
1153 {
1154 cache->reg_saved[NIOS2_STATUS_REGNUM]
1155 = cache->reg_saved[NIOS2_ESTATUS_REGNUM];
1156 cache->reg_saved[NIOS2_ESTATUS_REGNUM].basereg = -1;
1157 }
1158
1159 if (nios2_debug)
1160 fprintf_unfiltered (gdb_stdlog, "cfa=%s }\n",
1161 paddress (gdbarch, cache->cfa));
1162
1163 return prologue_end;
1164 }
1165
1166 /* Implement the skip_prologue gdbarch hook. */
1167
1168 static CORE_ADDR
1169 nios2_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1170 {
1171 CORE_ADDR func_addr;
1172
1173 struct nios2_unwind_cache cache;
1174
1175 /* See if we can determine the end of the prologue via the symbol
1176 table. If so, then return either PC, or the PC after the
1177 prologue, whichever is greater. */
1178 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1179 {
1180 CORE_ADDR post_prologue_pc
1181 = skip_prologue_using_sal (gdbarch, func_addr);
1182
1183 if (post_prologue_pc != 0)
1184 return max (start_pc, post_prologue_pc);
1185 }
1186
1187 /* Prologue analysis does the rest.... */
1188 nios2_init_cache (&cache, start_pc);
1189 return nios2_analyze_prologue (gdbarch, start_pc, start_pc, &cache, NULL);
1190 }
1191
1192 /* Implement the breakpoint_from_pc gdbarch hook. */
1193
1194 static const gdb_byte*
1195 nios2_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
1196 int *bp_size)
1197 {
1198 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1199 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1200
1201 /* R1 break encoding:
1202 ((0x1e << 17) | (0x34 << 11) | (0x1f << 6) | (0x3a << 0))
1203 0x003da7fa */
1204 static const gdb_byte r1_breakpoint_le[] = {0xfa, 0xa7, 0x3d, 0x0};
1205 static const gdb_byte r1_breakpoint_be[] = {0x0, 0x3d, 0xa7, 0xfa};
1206 *bp_size = NIOS2_OPCODE_SIZE;
1207 if (byte_order_for_code == BFD_ENDIAN_BIG)
1208 return r1_breakpoint_be;
1209 else
1210 return r1_breakpoint_le;
1211 }
1212
1213 /* Implement the print_insn gdbarch method. */
1214
1215 static int
1216 nios2_print_insn (bfd_vma memaddr, disassemble_info *info)
1217 {
1218 if (info->endian == BFD_ENDIAN_BIG)
1219 return print_insn_big_nios2 (memaddr, info);
1220 else
1221 return print_insn_little_nios2 (memaddr, info);
1222 }
1223
1224
1225 /* Implement the frame_align gdbarch method. */
1226
1227 static CORE_ADDR
1228 nios2_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1229 {
1230 return align_down (addr, 4);
1231 }
1232
1233
1234 /* Implement the return_value gdbarch method. */
1235
1236 static enum return_value_convention
1237 nios2_return_value (struct gdbarch *gdbarch, struct value *function,
1238 struct type *type, struct regcache *regcache,
1239 gdb_byte *readbuf, const gdb_byte *writebuf)
1240 {
1241 if (TYPE_LENGTH (type) > 8)
1242 return RETURN_VALUE_STRUCT_CONVENTION;
1243
1244 if (readbuf)
1245 nios2_extract_return_value (gdbarch, type, regcache, readbuf);
1246 if (writebuf)
1247 nios2_store_return_value (gdbarch, type, regcache, writebuf);
1248
1249 return RETURN_VALUE_REGISTER_CONVENTION;
1250 }
1251
1252 /* Implement the dummy_id gdbarch method. */
1253
1254 static struct frame_id
1255 nios2_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1256 {
1257 return frame_id_build
1258 (get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM),
1259 get_frame_pc (this_frame));
1260 }
1261
1262 /* Implement the push_dummy_call gdbarch method. */
1263
1264 static CORE_ADDR
1265 nios2_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1266 struct regcache *regcache, CORE_ADDR bp_addr,
1267 int nargs, struct value **args, CORE_ADDR sp,
1268 int struct_return, CORE_ADDR struct_addr)
1269 {
1270 int argreg;
1271 int float_argreg;
1272 int argnum;
1273 int len = 0;
1274 int stack_offset = 0;
1275 CORE_ADDR func_addr = find_function_addr (function, NULL);
1276 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1277
1278 /* Set the return address register to point to the entry point of
1279 the program, where a breakpoint lies in wait. */
1280 regcache_cooked_write_signed (regcache, NIOS2_RA_REGNUM, bp_addr);
1281
1282 /* Now make space on the stack for the args. */
1283 for (argnum = 0; argnum < nargs; argnum++)
1284 len += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1285 sp -= len;
1286
1287 /* Initialize the register pointer. */
1288 argreg = NIOS2_FIRST_ARGREG;
1289
1290 /* The struct_return pointer occupies the first parameter-passing
1291 register. */
1292 if (struct_return)
1293 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1294
1295 /* Now load as many as possible of the first arguments into
1296 registers, and push the rest onto the stack. Loop through args
1297 from first to last. */
1298 for (argnum = 0; argnum < nargs; argnum++)
1299 {
1300 const gdb_byte *val;
1301 gdb_byte valbuf[MAX_REGISTER_SIZE];
1302 struct value *arg = args[argnum];
1303 struct type *arg_type = check_typedef (value_type (arg));
1304 int len = TYPE_LENGTH (arg_type);
1305 enum type_code typecode = TYPE_CODE (arg_type);
1306
1307 val = value_contents (arg);
1308
1309 /* Copy the argument to general registers or the stack in
1310 register-sized pieces. Large arguments are split between
1311 registers and stack. */
1312 while (len > 0)
1313 {
1314 int partial_len = (len < 4 ? len : 4);
1315
1316 if (argreg <= NIOS2_LAST_ARGREG)
1317 {
1318 /* The argument is being passed in a register. */
1319 CORE_ADDR regval = extract_unsigned_integer (val, partial_len,
1320 byte_order);
1321
1322 regcache_cooked_write_unsigned (regcache, argreg, regval);
1323 argreg++;
1324 }
1325 else
1326 {
1327 /* The argument is being passed on the stack. */
1328 CORE_ADDR addr = sp + stack_offset;
1329
1330 write_memory (addr, val, partial_len);
1331 stack_offset += align_up (partial_len, 4);
1332 }
1333
1334 len -= partial_len;
1335 val += partial_len;
1336 }
1337 }
1338
1339 regcache_cooked_write_signed (regcache, NIOS2_SP_REGNUM, sp);
1340
1341 /* Return adjusted stack pointer. */
1342 return sp;
1343 }
1344
1345 /* Implement the unwind_pc gdbarch method. */
1346
1347 static CORE_ADDR
1348 nios2_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1349 {
1350 gdb_byte buf[4];
1351
1352 frame_unwind_register (next_frame, NIOS2_PC_REGNUM, buf);
1353 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1354 }
1355
1356 /* Implement the unwind_sp gdbarch method. */
1357
1358 static CORE_ADDR
1359 nios2_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1360 {
1361 return frame_unwind_register_unsigned (this_frame, NIOS2_SP_REGNUM);
1362 }
1363
1364 /* Use prologue analysis to fill in the register cache
1365 *THIS_PROLOGUE_CACHE for THIS_FRAME. This function initializes
1366 *THIS_PROLOGUE_CACHE first. */
1367
1368 static struct nios2_unwind_cache *
1369 nios2_frame_unwind_cache (struct frame_info *this_frame,
1370 void **this_prologue_cache)
1371 {
1372 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1373 CORE_ADDR current_pc;
1374 struct nios2_unwind_cache *cache;
1375 int i;
1376
1377 if (*this_prologue_cache)
1378 return *this_prologue_cache;
1379
1380 cache = FRAME_OBSTACK_ZALLOC (struct nios2_unwind_cache);
1381 *this_prologue_cache = cache;
1382
1383 /* Zero all fields. */
1384 nios2_init_cache (cache, get_frame_func (this_frame));
1385
1386 /* Prologue analysis does the rest... */
1387 current_pc = get_frame_pc (this_frame);
1388 if (cache->pc != 0)
1389 nios2_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
1390
1391 return cache;
1392 }
1393
1394 /* Implement the this_id function for the normal unwinder. */
1395
1396 static void
1397 nios2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1398 struct frame_id *this_id)
1399 {
1400 struct nios2_unwind_cache *cache =
1401 nios2_frame_unwind_cache (this_frame, this_cache);
1402
1403 /* This marks the outermost frame. */
1404 if (cache->base == 0)
1405 return;
1406
1407 *this_id = frame_id_build (cache->cfa, cache->pc);
1408 }
1409
1410 /* Implement the prev_register function for the normal unwinder. */
1411
1412 static struct value *
1413 nios2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1414 int regnum)
1415 {
1416 struct nios2_unwind_cache *cache =
1417 nios2_frame_unwind_cache (this_frame, this_cache);
1418
1419 gdb_assert (regnum >= 0 && regnum < NIOS2_NUM_REGS);
1420
1421 /* The PC of the previous frame is stored in the RA register of
1422 the current frame. Frob regnum so that we pull the value from
1423 the correct place. */
1424 if (regnum == NIOS2_PC_REGNUM)
1425 regnum = cache->return_regnum;
1426
1427 if (regnum == NIOS2_SP_REGNUM && cache->cfa)
1428 return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
1429
1430 /* If we've worked out where a register is stored then load it from
1431 there. */
1432 if (cache->reg_saved[regnum].basereg == NIOS2_Z_REGNUM)
1433 return frame_unwind_got_memory (this_frame, regnum,
1434 cache->reg_saved[regnum].addr);
1435
1436 return frame_unwind_got_register (this_frame, regnum, regnum);
1437 }
1438
1439 /* Implement the this_base, this_locals, and this_args hooks
1440 for the normal unwinder. */
1441
1442 static CORE_ADDR
1443 nios2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1444 {
1445 struct nios2_unwind_cache *info
1446 = nios2_frame_unwind_cache (this_frame, this_cache);
1447
1448 return info->base;
1449 }
1450
1451 /* Data structures for the normal prologue-analysis-based
1452 unwinder. */
1453
1454 static const struct frame_unwind nios2_frame_unwind =
1455 {
1456 NORMAL_FRAME,
1457 default_frame_unwind_stop_reason,
1458 nios2_frame_this_id,
1459 nios2_frame_prev_register,
1460 NULL,
1461 default_frame_sniffer
1462 };
1463
1464 static const struct frame_base nios2_frame_base =
1465 {
1466 &nios2_frame_unwind,
1467 nios2_frame_base_address,
1468 nios2_frame_base_address,
1469 nios2_frame_base_address
1470 };
1471
1472 /* Fill in the register cache *THIS_CACHE for THIS_FRAME for use
1473 in the stub unwinder. */
1474
1475 static struct trad_frame_cache *
1476 nios2_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
1477 {
1478 CORE_ADDR pc;
1479 CORE_ADDR start_addr;
1480 CORE_ADDR stack_addr;
1481 struct trad_frame_cache *this_trad_cache;
1482 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1483 int num_regs = gdbarch_num_regs (gdbarch);
1484
1485 if (*this_cache != NULL)
1486 return *this_cache;
1487 this_trad_cache = trad_frame_cache_zalloc (this_frame);
1488 *this_cache = this_trad_cache;
1489
1490 /* The return address is in the link register. */
1491 trad_frame_set_reg_realreg (this_trad_cache,
1492 gdbarch_pc_regnum (gdbarch),
1493 NIOS2_RA_REGNUM);
1494
1495 /* Frame ID, since it's a frameless / stackless function, no stack
1496 space is allocated and SP on entry is the current SP. */
1497 pc = get_frame_pc (this_frame);
1498 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1499 stack_addr = get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM);
1500 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
1501 /* Assume that the frame's base is the same as the stack pointer. */
1502 trad_frame_set_this_base (this_trad_cache, stack_addr);
1503
1504 return this_trad_cache;
1505 }
1506
1507 /* Implement the this_id function for the stub unwinder. */
1508
1509 static void
1510 nios2_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
1511 struct frame_id *this_id)
1512 {
1513 struct trad_frame_cache *this_trad_cache
1514 = nios2_stub_frame_cache (this_frame, this_cache);
1515
1516 trad_frame_get_id (this_trad_cache, this_id);
1517 }
1518
1519 /* Implement the prev_register function for the stub unwinder. */
1520
1521 static struct value *
1522 nios2_stub_frame_prev_register (struct frame_info *this_frame,
1523 void **this_cache, int regnum)
1524 {
1525 struct trad_frame_cache *this_trad_cache
1526 = nios2_stub_frame_cache (this_frame, this_cache);
1527
1528 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
1529 }
1530
1531 /* Implement the sniffer function for the stub unwinder.
1532 This unwinder is used for cases where the normal
1533 prologue-analysis-based unwinder can't work,
1534 such as PLT stubs. */
1535
1536 static int
1537 nios2_stub_frame_sniffer (const struct frame_unwind *self,
1538 struct frame_info *this_frame, void **cache)
1539 {
1540 gdb_byte dummy[4];
1541 struct obj_section *s;
1542 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1543
1544 /* Use the stub unwinder for unreadable code. */
1545 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
1546 return 1;
1547
1548 if (in_plt_section (pc))
1549 return 1;
1550
1551 return 0;
1552 }
1553
1554 /* Define the data structures for the stub unwinder. */
1555
1556 static const struct frame_unwind nios2_stub_frame_unwind =
1557 {
1558 NORMAL_FRAME,
1559 default_frame_unwind_stop_reason,
1560 nios2_stub_frame_this_id,
1561 nios2_stub_frame_prev_register,
1562 NULL,
1563 nios2_stub_frame_sniffer
1564 };
1565
1566
1567
1568 /* Determine where to set a single step breakpoint while considering
1569 branch prediction. */
1570
1571 static CORE_ADDR
1572 nios2_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
1573 {
1574 struct gdbarch *gdbarch = get_frame_arch (frame);
1575 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1576 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1577 unsigned int insn;
1578 const struct nios2_opcode *op = nios2_fetch_insn (gdbarch, pc, &insn);
1579 int ra;
1580 int rb;
1581 int imm;
1582 unsigned int uimm;
1583 int wb, ret;
1584 enum branch_condition cond;
1585
1586 /* Do something stupid if we can't disassemble the insn at pc. */
1587 if (op == NULL)
1588 return pc + NIOS2_OPCODE_SIZE;
1589
1590 if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond))
1591 {
1592 int ras = get_frame_register_signed (frame, ra);
1593 int rbs = get_frame_register_signed (frame, rb);
1594 unsigned int rau = get_frame_register_unsigned (frame, ra);
1595 unsigned int rbu = get_frame_register_unsigned (frame, rb);
1596
1597 pc += op->size;
1598 switch (cond)
1599 {
1600 case branch_none:
1601 pc += imm;
1602 break;
1603 case branch_eq:
1604 if (ras == rbs)
1605 pc += imm;
1606 break;
1607 case branch_ne:
1608 if (ras != rbs)
1609 pc += imm;
1610 break;
1611 case branch_ge:
1612 if (ras >= rbs)
1613 pc += imm;
1614 break;
1615 case branch_geu:
1616 if (rau >= rbu)
1617 pc += imm;
1618 break;
1619 case branch_lt:
1620 if (ras < rbs)
1621 pc += imm;
1622 break;
1623 case branch_ltu:
1624 if (rau < rbu)
1625 pc += imm;
1626 break;
1627 default:
1628 break;
1629 }
1630 }
1631
1632 else if (nios2_match_jmpi (insn, op, mach, &uimm)
1633 || nios2_match_calli (insn, op, mach, &uimm))
1634 pc = (pc & 0xf0000000) | uimm;
1635
1636 else if (nios2_match_jmpr (insn, op, mach, &ra)
1637 || nios2_match_callr (insn, op, mach, &ra))
1638 pc = get_frame_register_unsigned (frame, ra);
1639
1640 else if (nios2_match_trap (insn, op, mach, &uimm))
1641 {
1642 if (tdep->syscall_next_pc != NULL)
1643 return tdep->syscall_next_pc (frame);
1644 }
1645
1646 else
1647 pc += op->size;
1648
1649 return pc;
1650 }
1651
1652 /* Implement the software_single_step gdbarch method. */
1653
1654 static int
1655 nios2_software_single_step (struct frame_info *frame)
1656 {
1657 struct gdbarch *gdbarch = get_frame_arch (frame);
1658 struct address_space *aspace = get_frame_address_space (frame);
1659 CORE_ADDR next_pc = nios2_get_next_pc (frame, get_frame_pc (frame));
1660
1661 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
1662
1663 return 1;
1664 }
1665
1666 /* Implement the get_longjump_target gdbarch method. */
1667
1668 static int
1669 nios2_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1670 {
1671 struct gdbarch *gdbarch = get_frame_arch (frame);
1672 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1673 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1674 CORE_ADDR jb_addr = get_frame_register_unsigned (frame, NIOS2_R4_REGNUM);
1675 gdb_byte buf[4];
1676
1677 if (target_read_memory (jb_addr + (tdep->jb_pc * 4), buf, 4))
1678 return 0;
1679
1680 *pc = extract_unsigned_integer (buf, 4, byte_order);
1681 return 1;
1682 }
1683
1684 /* Initialize the Nios II gdbarch. */
1685
1686 static struct gdbarch *
1687 nios2_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1688 {
1689 struct gdbarch *gdbarch;
1690 struct gdbarch_tdep *tdep;
1691 int register_bytes, i;
1692 struct tdesc_arch_data *tdesc_data = NULL;
1693 const struct target_desc *tdesc = info.target_desc;
1694
1695 if (!tdesc_has_registers (tdesc))
1696 /* Pick a default target description. */
1697 tdesc = tdesc_nios2;
1698
1699 /* Check any target description for validity. */
1700 if (tdesc_has_registers (tdesc))
1701 {
1702 const struct tdesc_feature *feature;
1703 int valid_p;
1704
1705 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nios2.cpu");
1706 if (feature == NULL)
1707 return NULL;
1708
1709 tdesc_data = tdesc_data_alloc ();
1710
1711 valid_p = 1;
1712
1713 for (i = 0; i < NIOS2_NUM_REGS; i++)
1714 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1715 nios2_reg_names[i]);
1716
1717 if (!valid_p)
1718 {
1719 tdesc_data_cleanup (tdesc_data);
1720 return NULL;
1721 }
1722 }
1723
1724 /* Find a candidate among the list of pre-declared architectures. */
1725 arches = gdbarch_list_lookup_by_info (arches, &info);
1726 if (arches != NULL)
1727 return arches->gdbarch;
1728
1729 /* None found, create a new architecture from the information
1730 provided. */
1731 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
1732 gdbarch = gdbarch_alloc (&info, tdep);
1733
1734 /* longjmp support not enabled by default. */
1735 tdep->jb_pc = -1;
1736
1737 /* Data type sizes. */
1738 set_gdbarch_ptr_bit (gdbarch, 32);
1739 set_gdbarch_addr_bit (gdbarch, 32);
1740 set_gdbarch_short_bit (gdbarch, 16);
1741 set_gdbarch_int_bit (gdbarch, 32);
1742 set_gdbarch_long_bit (gdbarch, 32);
1743 set_gdbarch_long_long_bit (gdbarch, 64);
1744 set_gdbarch_float_bit (gdbarch, 32);
1745 set_gdbarch_double_bit (gdbarch, 64);
1746
1747 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1748 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1749
1750 /* The register set. */
1751 set_gdbarch_num_regs (gdbarch, NIOS2_NUM_REGS);
1752 set_gdbarch_sp_regnum (gdbarch, NIOS2_SP_REGNUM);
1753 set_gdbarch_pc_regnum (gdbarch, NIOS2_PC_REGNUM); /* Pseudo register PC */
1754
1755 set_gdbarch_register_name (gdbarch, nios2_register_name);
1756 set_gdbarch_register_type (gdbarch, nios2_register_type);
1757
1758 /* Provide register mappings for stabs and dwarf2. */
1759 set_gdbarch_stab_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
1760 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
1761
1762 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1763
1764 /* Call dummy code. */
1765 set_gdbarch_frame_align (gdbarch, nios2_frame_align);
1766
1767 set_gdbarch_return_value (gdbarch, nios2_return_value);
1768
1769 set_gdbarch_skip_prologue (gdbarch, nios2_skip_prologue);
1770 set_gdbarch_in_function_epilogue_p (gdbarch, nios2_in_function_epilogue_p);
1771 set_gdbarch_breakpoint_from_pc (gdbarch, nios2_breakpoint_from_pc);
1772
1773 set_gdbarch_dummy_id (gdbarch, nios2_dummy_id);
1774 set_gdbarch_unwind_pc (gdbarch, nios2_unwind_pc);
1775 set_gdbarch_unwind_sp (gdbarch, nios2_unwind_sp);
1776
1777 /* The dwarf2 unwinder will normally produce the best results if
1778 the debug information is available, so register it first. */
1779 dwarf2_append_unwinders (gdbarch);
1780 frame_unwind_append_unwinder (gdbarch, &nios2_stub_frame_unwind);
1781 frame_unwind_append_unwinder (gdbarch, &nios2_frame_unwind);
1782
1783 /* Single stepping. */
1784 set_gdbarch_software_single_step (gdbarch, nios2_software_single_step);
1785
1786 /* Hook in ABI-specific overrides, if they have been registered. */
1787 gdbarch_init_osabi (info, gdbarch);
1788
1789 if (tdep->jb_pc >= 0)
1790 set_gdbarch_get_longjmp_target (gdbarch, nios2_get_longjmp_target);
1791
1792 frame_base_set_default (gdbarch, &nios2_frame_base);
1793
1794 set_gdbarch_print_insn (gdbarch, nios2_print_insn);
1795
1796 /* Enable inferior call support. */
1797 set_gdbarch_push_dummy_call (gdbarch, nios2_push_dummy_call);
1798
1799 if (tdesc_data)
1800 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1801
1802 return gdbarch;
1803 }
1804
1805 extern initialize_file_ftype _initialize_nios2_tdep; /* -Wmissing-prototypes */
1806
1807 void
1808 _initialize_nios2_tdep (void)
1809 {
1810 gdbarch_register (bfd_arch_nios2, nios2_gdbarch_init, NULL);
1811 initialize_tdesc_nios2 ();
1812
1813 /* Allow debugging this file's internals. */
1814 add_setshow_boolean_cmd ("nios2", class_maintenance, &nios2_debug,
1815 _("Set Nios II debugging."),
1816 _("Show Nios II debugging."),
1817 _("When on, Nios II specific debugging is enabled."),
1818 NULL,
1819 NULL,
1820 &setdebuglist, &showdebuglist);
1821 }