]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/nios2-tdep.c
Nios II R2 support for GDB.
[thirdparty/binutils-gdb.git] / gdb / nios2-tdep.c
1 /* Target-machine dependent code for Nios II, for GDB.
2 Copyright (C) 2012-2015 Free Software Foundation, Inc.
3 Contributed by Peter Brookes (pbrookes@altera.com)
4 and Andrew Draper (adraper@altera.com).
5 Contributed by Mentor Graphics, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "osabi.h"
34 #include "target.h"
35 #include "dis-asm.h"
36 #include "regcache.h"
37 #include "value.h"
38 #include "symfile.h"
39 #include "arch-utils.h"
40 #include "floatformat.h"
41 #include "infcall.h"
42 #include "regset.h"
43 #include "target-descriptions.h"
44
45 /* To get entry_point_address. */
46 #include "objfiles.h"
47
48 /* Nios II specific header. */
49 #include "nios2-tdep.h"
50
51 #include "features/nios2.c"
52
53 /* Control debugging information emitted in this file. */
54
55 static int nios2_debug = 0;
56
57 /* The following structures are used in the cache for prologue
58 analysis; see the reg_value and reg_saved tables in
59 struct nios2_unwind_cache, respectively. */
60
61 /* struct reg_value is used to record that a register has the same value
62 as reg at the given offset from the start of a function. */
63
64 struct reg_value
65 {
66 int reg;
67 unsigned int offset;
68 };
69
70 /* struct reg_saved is used to record that a register value has been saved at
71 basereg + addr, for basereg >= 0. If basereg < 0, that indicates
72 that the register is not known to have been saved. Note that when
73 basereg == NIOS2_Z_REGNUM (that is, r0, which holds value 0),
74 addr is an absolute address. */
75
76 struct reg_saved
77 {
78 int basereg;
79 CORE_ADDR addr;
80 };
81
82 struct nios2_unwind_cache
83 {
84 /* The frame's base, optionally used by the high-level debug info. */
85 CORE_ADDR base;
86
87 /* The previous frame's inner most stack address. Used as this
88 frame ID's stack_addr. */
89 CORE_ADDR cfa;
90
91 /* The address of the first instruction in this function. */
92 CORE_ADDR pc;
93
94 /* Which register holds the return address for the frame. */
95 int return_regnum;
96
97 /* Table indicating what changes have been made to each register. */
98 struct reg_value reg_value[NIOS2_NUM_REGS];
99
100 /* Table indicating where each register has been saved. */
101 struct reg_saved reg_saved[NIOS2_NUM_REGS];
102 };
103
104
105 /* This array is a mapping from Dwarf-2 register numbering to GDB's. */
106
107 static int nios2_dwarf2gdb_regno_map[] =
108 {
109 0, 1, 2, 3,
110 4, 5, 6, 7,
111 8, 9, 10, 11,
112 12, 13, 14, 15,
113 16, 17, 18, 19,
114 20, 21, 22, 23,
115 24, 25,
116 NIOS2_GP_REGNUM, /* 26 */
117 NIOS2_SP_REGNUM, /* 27 */
118 NIOS2_FP_REGNUM, /* 28 */
119 NIOS2_EA_REGNUM, /* 29 */
120 NIOS2_BA_REGNUM, /* 30 */
121 NIOS2_RA_REGNUM, /* 31 */
122 NIOS2_PC_REGNUM, /* 32 */
123 NIOS2_STATUS_REGNUM, /* 33 */
124 NIOS2_ESTATUS_REGNUM, /* 34 */
125 NIOS2_BSTATUS_REGNUM, /* 35 */
126 NIOS2_IENABLE_REGNUM, /* 36 */
127 NIOS2_IPENDING_REGNUM, /* 37 */
128 NIOS2_CPUID_REGNUM, /* 38 */
129 39, /* CTL6 */ /* 39 */
130 NIOS2_EXCEPTION_REGNUM, /* 40 */
131 NIOS2_PTEADDR_REGNUM, /* 41 */
132 NIOS2_TLBACC_REGNUM, /* 42 */
133 NIOS2_TLBMISC_REGNUM, /* 43 */
134 NIOS2_ECCINJ_REGNUM, /* 44 */
135 NIOS2_BADADDR_REGNUM, /* 45 */
136 NIOS2_CONFIG_REGNUM, /* 46 */
137 NIOS2_MPUBASE_REGNUM, /* 47 */
138 NIOS2_MPUACC_REGNUM /* 48 */
139 };
140
141
142 /* Implement the dwarf2_reg_to_regnum gdbarch method. */
143
144 static int
145 nios2_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int dw_reg)
146 {
147 if (dw_reg < 0 || dw_reg > NIOS2_NUM_REGS)
148 {
149 warning (_("Dwarf-2 uses unmapped register #%d"), dw_reg);
150 return dw_reg;
151 }
152
153 return nios2_dwarf2gdb_regno_map[dw_reg];
154 }
155
156 /* Canonical names for the 49 registers. */
157
158 static const char *const nios2_reg_names[NIOS2_NUM_REGS] =
159 {
160 "zero", "at", "r2", "r3", "r4", "r5", "r6", "r7",
161 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
162 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
163 "et", "bt", "gp", "sp", "fp", "ea", "sstatus", "ra",
164 "pc",
165 "status", "estatus", "bstatus", "ienable",
166 "ipending", "cpuid", "ctl6", "exception",
167 "pteaddr", "tlbacc", "tlbmisc", "eccinj",
168 "badaddr", "config", "mpubase", "mpuacc"
169 };
170
171 /* Implement the register_name gdbarch method. */
172
173 static const char *
174 nios2_register_name (struct gdbarch *gdbarch, int regno)
175 {
176 /* Use mnemonic aliases for GPRs. */
177 if (regno >= 0 && regno < NIOS2_NUM_REGS)
178 return nios2_reg_names[regno];
179 else
180 return tdesc_register_name (gdbarch, regno);
181 }
182
183 /* Implement the register_type gdbarch method. */
184
185 static struct type *
186 nios2_register_type (struct gdbarch *gdbarch, int regno)
187 {
188 /* If the XML description has register information, use that to
189 determine the register type. */
190 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
191 return tdesc_register_type (gdbarch, regno);
192
193 if (regno == NIOS2_PC_REGNUM)
194 return builtin_type (gdbarch)->builtin_func_ptr;
195 else if (regno == NIOS2_SP_REGNUM)
196 return builtin_type (gdbarch)->builtin_data_ptr;
197 else
198 return builtin_type (gdbarch)->builtin_uint32;
199 }
200
201 /* Given a return value in REGCACHE with a type VALTYPE,
202 extract and copy its value into VALBUF. */
203
204 static void
205 nios2_extract_return_value (struct gdbarch *gdbarch, struct type *valtype,
206 struct regcache *regcache, gdb_byte *valbuf)
207 {
208 int len = TYPE_LENGTH (valtype);
209
210 /* Return values of up to 8 bytes are returned in $r2 $r3. */
211 if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
212 regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf);
213 else
214 {
215 gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
216 + register_size (gdbarch, NIOS2_R3_REGNUM)));
217 regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf);
218 regcache_cooked_read (regcache, NIOS2_R3_REGNUM, valbuf + 4);
219 }
220 }
221
222 /* Write into appropriate registers a function return value
223 of type TYPE, given in virtual format. */
224
225 static void
226 nios2_store_return_value (struct gdbarch *gdbarch, struct type *valtype,
227 struct regcache *regcache, const gdb_byte *valbuf)
228 {
229 int len = TYPE_LENGTH (valtype);
230
231 /* Return values of up to 8 bytes are returned in $r2 $r3. */
232 if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
233 regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf);
234 else
235 {
236 gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
237 + register_size (gdbarch, NIOS2_R3_REGNUM)));
238 regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf);
239 regcache_cooked_write (regcache, NIOS2_R3_REGNUM, valbuf + 4);
240 }
241 }
242
243
244 /* Set up the default values of the registers. */
245
246 static void
247 nios2_setup_default (struct nios2_unwind_cache *cache)
248 {
249 int i;
250
251 for (i = 0; i < NIOS2_NUM_REGS; i++)
252 {
253 /* All registers start off holding their previous values. */
254 cache->reg_value[i].reg = i;
255 cache->reg_value[i].offset = 0;
256
257 /* All registers start off not saved. */
258 cache->reg_saved[i].basereg = -1;
259 cache->reg_saved[i].addr = 0;
260 }
261 }
262
263 /* Initialize the unwind cache. */
264
265 static void
266 nios2_init_cache (struct nios2_unwind_cache *cache, CORE_ADDR pc)
267 {
268 cache->base = 0;
269 cache->cfa = 0;
270 cache->pc = pc;
271 cache->return_regnum = NIOS2_RA_REGNUM;
272 nios2_setup_default (cache);
273 }
274
275 /* Read and identify an instruction at PC. If INSNP is non-null,
276 store the instruction word into that location. Return the opcode
277 pointer or NULL if the memory couldn't be read or disassembled. */
278
279 static const struct nios2_opcode *
280 nios2_fetch_insn (struct gdbarch *gdbarch, CORE_ADDR pc,
281 unsigned int *insnp)
282 {
283 LONGEST memword;
284 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
285 unsigned int insn;
286
287 if (mach == bfd_mach_nios2r2)
288 {
289 if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE,
290 BFD_ENDIAN_LITTLE, &memword)
291 && !safe_read_memory_integer (pc, NIOS2_CDX_OPCODE_SIZE,
292 BFD_ENDIAN_LITTLE, &memword))
293 return NULL;
294 }
295 else if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE,
296 gdbarch_byte_order (gdbarch), &memword))
297 return NULL;
298
299 insn = (unsigned int) memword;
300 if (insnp)
301 *insnp = insn;
302 return nios2_find_opcode_hash (insn, mach);
303 }
304
305
306 /* Match and disassemble an ADD-type instruction, with 3 register operands.
307 Returns true on success, and fills in the operand pointers. */
308
309 static int
310 nios2_match_add (uint32_t insn, const struct nios2_opcode *op,
311 unsigned long mach, int *ra, int *rb, int *rc)
312 {
313 int is_r2 = (mach == bfd_mach_nios2r2);
314
315 if (!is_r2 && (op->match == MATCH_R1_ADD || op->match == MATCH_R1_MOV))
316 {
317 *ra = GET_IW_R_A (insn);
318 *rb = GET_IW_R_B (insn);
319 *rc = GET_IW_R_C (insn);
320 return 1;
321 }
322 else if (!is_r2)
323 return 0;
324 else if (op->match == MATCH_R2_ADD || op->match == MATCH_R2_MOV)
325 {
326 *ra = GET_IW_F3X6L5_A (insn);
327 *rb = GET_IW_F3X6L5_B (insn);
328 *rc = GET_IW_F3X6L5_C (insn);
329 return 1;
330 }
331 else if (op->match == MATCH_R2_ADD_N)
332 {
333 *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)];
334 *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)];
335 *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)];
336 return 1;
337 }
338 else if (op->match == MATCH_R2_MOV_N)
339 {
340 *ra = GET_IW_F2_A (insn);
341 *rb = 0;
342 *rc = GET_IW_F2_B (insn);
343 return 1;
344 }
345 return 0;
346 }
347
348 /* Match and disassemble a SUB-type instruction, with 3 register operands.
349 Returns true on success, and fills in the operand pointers. */
350
351 static int
352 nios2_match_sub (uint32_t insn, const struct nios2_opcode *op,
353 unsigned long mach, int *ra, int *rb, int *rc)
354 {
355 int is_r2 = (mach == bfd_mach_nios2r2);
356
357 if (!is_r2 && op->match == MATCH_R1_SUB)
358 {
359 *ra = GET_IW_R_A (insn);
360 *rb = GET_IW_R_B (insn);
361 *rc = GET_IW_R_C (insn);
362 return 1;
363 }
364 else if (!is_r2)
365 return 0;
366 else if (op->match == MATCH_R2_SUB)
367 {
368 *ra = GET_IW_F3X6L5_A (insn);
369 *rb = GET_IW_F3X6L5_B (insn);
370 *rc = GET_IW_F3X6L5_C (insn);
371 return 1;
372 }
373 else if (op->match == MATCH_R2_SUB_N)
374 {
375 *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)];
376 *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)];
377 *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)];
378 return 1;
379 }
380 return 0;
381 }
382
383 /* Match and disassemble an ADDI-type instruction, with 2 register operands
384 and one immediate operand.
385 Returns true on success, and fills in the operand pointers. */
386
387 static int
388 nios2_match_addi (uint32_t insn, const struct nios2_opcode *op,
389 unsigned long mach, int *ra, int *rb, int *imm)
390 {
391 int is_r2 = (mach == bfd_mach_nios2r2);
392
393 if (!is_r2 && op->match == MATCH_R1_ADDI)
394 {
395 *ra = GET_IW_I_A (insn);
396 *rb = GET_IW_I_B (insn);
397 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
398 return 1;
399 }
400 else if (!is_r2)
401 return 0;
402 else if (op->match == MATCH_R2_ADDI)
403 {
404 *ra = GET_IW_F2I16_A (insn);
405 *rb = GET_IW_F2I16_B (insn);
406 *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
407 return 1;
408 }
409 else if (op->match == MATCH_R2_ADDI_N || op->match == MATCH_R2_SUBI_N)
410 {
411 *ra = nios2_r2_reg3_mappings[GET_IW_T2X1I3_A3 (insn)];
412 *rb = nios2_r2_reg3_mappings[GET_IW_T2X1I3_B3 (insn)];
413 *imm = nios2_r2_asi_n_mappings[GET_IW_T2X1I3_IMM3 (insn)];
414 if (op->match == MATCH_R2_SUBI_N)
415 *imm = - (*imm);
416 return 1;
417 }
418 else if (op->match == MATCH_R2_SPADDI_N)
419 {
420 *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
421 *rb = NIOS2_SP_REGNUM;
422 *imm = GET_IW_T1I7_IMM7 (insn) << 2;
423 return 1;
424 }
425 else if (op->match == MATCH_R2_SPINCI_N || op->match == MATCH_R2_SPDECI_N)
426 {
427 *ra = NIOS2_SP_REGNUM;
428 *rb = NIOS2_SP_REGNUM;
429 *imm = GET_IW_X1I7_IMM7 (insn) << 2;
430 if (op->match == MATCH_R2_SPDECI_N)
431 *imm = - (*imm);
432 return 1;
433 }
434 return 0;
435 }
436
437 /* Match and disassemble an ORHI-type instruction, with 2 register operands
438 and one unsigned immediate operand.
439 Returns true on success, and fills in the operand pointers. */
440
441 static int
442 nios2_match_orhi (uint32_t insn, const struct nios2_opcode *op,
443 unsigned long mach, int *ra, int *rb, unsigned int *uimm)
444 {
445 int is_r2 = (mach == bfd_mach_nios2r2);
446
447 if (!is_r2 && op->match == MATCH_R1_ORHI)
448 {
449 *ra = GET_IW_I_A (insn);
450 *rb = GET_IW_I_B (insn);
451 *uimm = GET_IW_I_IMM16 (insn);
452 return 1;
453 }
454 else if (!is_r2)
455 return 0;
456 else if (op->match == MATCH_R2_ORHI)
457 {
458 *ra = GET_IW_F2I16_A (insn);
459 *rb = GET_IW_F2I16_B (insn);
460 *uimm = GET_IW_F2I16_IMM16 (insn);
461 return 1;
462 }
463 return 0;
464 }
465
466 /* Match and disassemble a STW-type instruction, with 2 register operands
467 and one immediate operand.
468 Returns true on success, and fills in the operand pointers. */
469
470 static int
471 nios2_match_stw (uint32_t insn, const struct nios2_opcode *op,
472 unsigned long mach, int *ra, int *rb, int *imm)
473 {
474 int is_r2 = (mach == bfd_mach_nios2r2);
475
476 if (!is_r2 && (op->match == MATCH_R1_STW || op->match == MATCH_R1_STWIO))
477 {
478 *ra = GET_IW_I_A (insn);
479 *rb = GET_IW_I_B (insn);
480 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
481 return 1;
482 }
483 else if (!is_r2)
484 return 0;
485 else if (op->match == MATCH_R2_STW)
486 {
487 *ra = GET_IW_F2I16_A (insn);
488 *rb = GET_IW_F2I16_B (insn);
489 *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
490 return 1;
491 }
492 else if (op->match == MATCH_R2_STWIO)
493 {
494 *ra = GET_IW_F2X4I12_A (insn);
495 *rb = GET_IW_F2X4I12_B (insn);
496 *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20;
497 return 1;
498 }
499 else if (op->match == MATCH_R2_STW_N)
500 {
501 *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)];
502 *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)];
503 *imm = GET_IW_T2I4_IMM4 (insn) << 2;
504 return 1;
505 }
506 else if (op->match == MATCH_R2_STWSP_N)
507 {
508 *ra = NIOS2_SP_REGNUM;
509 *rb = GET_IW_F1I5_B (insn);
510 *imm = GET_IW_F1I5_IMM5 (insn) << 2;
511 return 1;
512 }
513 else if (op->match == MATCH_R2_STWZ_N)
514 {
515 *ra = nios2_r2_reg3_mappings[GET_IW_T1X1I6_A3 (insn)];
516 *rb = 0;
517 *imm = GET_IW_T1X1I6_IMM6 (insn) << 2;
518 return 1;
519 }
520 return 0;
521 }
522
523 /* Match and disassemble a LDW-type instruction, with 2 register operands
524 and one immediate operand.
525 Returns true on success, and fills in the operand pointers. */
526
527 static int
528 nios2_match_ldw (uint32_t insn, const struct nios2_opcode *op,
529 unsigned long mach, int *ra, int *rb, int *imm)
530 {
531 int is_r2 = (mach == bfd_mach_nios2r2);
532
533 if (!is_r2 && (op->match == MATCH_R1_LDW || op->match == MATCH_R1_LDWIO))
534 {
535 *ra = GET_IW_I_A (insn);
536 *rb = GET_IW_I_B (insn);
537 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
538 return 1;
539 }
540 else if (!is_r2)
541 return 0;
542 else if (op->match == MATCH_R2_LDW)
543 {
544 *ra = GET_IW_F2I16_A (insn);
545 *rb = GET_IW_F2I16_B (insn);
546 *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
547 return 1;
548 }
549 else if (op->match == MATCH_R2_LDWIO)
550 {
551 *ra = GET_IW_F2X4I12_A (insn);
552 *rb = GET_IW_F2X4I12_B (insn);
553 *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20;
554 return 1;
555 }
556 else if (op->match == MATCH_R2_LDW_N)
557 {
558 *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)];
559 *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)];
560 *imm = GET_IW_T2I4_IMM4 (insn) << 2;
561 return 1;
562 }
563 else if (op->match == MATCH_R2_LDWSP_N)
564 {
565 *ra = NIOS2_SP_REGNUM;
566 *rb = GET_IW_F1I5_B (insn);
567 *imm = GET_IW_F1I5_IMM5 (insn) << 2;
568 return 1;
569 }
570 return 0;
571 }
572
573 /* Match and disassemble a RDCTL instruction, with 2 register operands.
574 Returns true on success, and fills in the operand pointers. */
575
576 static int
577 nios2_match_rdctl (uint32_t insn, const struct nios2_opcode *op,
578 unsigned long mach, int *ra, int *rc)
579 {
580 int is_r2 = (mach == bfd_mach_nios2r2);
581
582 if (!is_r2 && (op->match == MATCH_R1_RDCTL))
583 {
584 *ra = GET_IW_R_IMM5 (insn);
585 *rc = GET_IW_R_C (insn);
586 return 1;
587 }
588 else if (!is_r2)
589 return 0;
590 else if (op->match == MATCH_R2_RDCTL)
591 {
592 *ra = GET_IW_F3X6L5_IMM5 (insn);
593 *rc = GET_IW_F3X6L5_C (insn);
594 return 1;
595 }
596 return 0;
597 }
598
599 /* Match and disassemble a PUSH.N or STWM instruction.
600 Returns true on success, and fills in the operand pointers. */
601
602 static int
603 nios2_match_stwm (uint32_t insn, const struct nios2_opcode *op,
604 unsigned long mach, unsigned int *reglist,
605 int *ra, int *imm, int *wb, int *id)
606 {
607 int is_r2 = (mach == bfd_mach_nios2r2);
608
609 if (!is_r2)
610 return 0;
611 else if (op->match == MATCH_R2_PUSH_N)
612 {
613 *reglist = 1 << 31;
614 if (GET_IW_L5I4X1_FP (insn))
615 *reglist |= (1 << 28);
616 if (GET_IW_L5I4X1_CS (insn))
617 {
618 int val = GET_IW_L5I4X1_REGRANGE (insn);
619 *reglist |= nios2_r2_reg_range_mappings[val];
620 }
621 *ra = NIOS2_SP_REGNUM;
622 *imm = GET_IW_L5I4X1_IMM4 (insn) << 2;
623 *wb = 1;
624 *id = 0;
625 return 1;
626 }
627 else if (op->match == MATCH_R2_STWM)
628 {
629 unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn);
630 if (GET_IW_F1X4L17_RS (insn))
631 {
632 *reglist = ((rawmask << 14) & 0x00ffc000);
633 if (rawmask & (1 << 10))
634 *reglist |= (1 << 28);
635 if (rawmask & (1 << 11))
636 *reglist |= (1 << 31);
637 }
638 else
639 *reglist = rawmask << 2;
640 *ra = GET_IW_F1X4L17_A (insn);
641 *imm = 0;
642 *wb = GET_IW_F1X4L17_WB (insn);
643 *id = GET_IW_F1X4L17_ID (insn);
644 return 1;
645 }
646 return 0;
647 }
648
649 /* Match and disassemble a POP.N or LDWM instruction.
650 Returns true on success, and fills in the operand pointers. */
651
652 static int
653 nios2_match_ldwm (uint32_t insn, const struct nios2_opcode *op,
654 unsigned long mach, unsigned int *reglist,
655 int *ra, int *imm, int *wb, int *id, int *ret)
656 {
657 int is_r2 = (mach == bfd_mach_nios2r2);
658
659 if (!is_r2)
660 return 0;
661 else if (op->match == MATCH_R2_POP_N)
662 {
663 *reglist = 1 << 31;
664 if (GET_IW_L5I4X1_FP (insn))
665 *reglist |= (1 << 28);
666 if (GET_IW_L5I4X1_CS (insn))
667 {
668 int val = GET_IW_L5I4X1_REGRANGE (insn);
669 *reglist |= nios2_r2_reg_range_mappings[val];
670 }
671 *ra = NIOS2_SP_REGNUM;
672 *imm = GET_IW_L5I4X1_IMM4 (insn) << 2;
673 *wb = 1;
674 *id = 1;
675 *ret = 1;
676 return 1;
677 }
678 else if (op->match == MATCH_R2_LDWM)
679 {
680 unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn);
681 if (GET_IW_F1X4L17_RS (insn))
682 {
683 *reglist = ((rawmask << 14) & 0x00ffc000);
684 if (rawmask & (1 << 10))
685 *reglist |= (1 << 28);
686 if (rawmask & (1 << 11))
687 *reglist |= (1 << 31);
688 }
689 else
690 *reglist = rawmask << 2;
691 *ra = GET_IW_F1X4L17_A (insn);
692 *imm = 0;
693 *wb = GET_IW_F1X4L17_WB (insn);
694 *id = GET_IW_F1X4L17_ID (insn);
695 *ret = GET_IW_F1X4L17_PC (insn);
696 return 1;
697 }
698 return 0;
699 }
700
701 /* Match and disassemble a branch instruction, with (potentially)
702 2 register operands and one immediate operand.
703 Returns true on success, and fills in the operand pointers. */
704
705 enum branch_condition {
706 branch_none,
707 branch_eq,
708 branch_ne,
709 branch_ge,
710 branch_geu,
711 branch_lt,
712 branch_ltu
713 };
714
715 static int
716 nios2_match_branch (uint32_t insn, const struct nios2_opcode *op,
717 unsigned long mach, int *ra, int *rb, int *imm,
718 enum branch_condition *cond)
719 {
720 int is_r2 = (mach == bfd_mach_nios2r2);
721
722 if (!is_r2)
723 {
724 switch (op->match)
725 {
726 case MATCH_R1_BR:
727 *cond = branch_none;
728 break;
729 case MATCH_R1_BEQ:
730 *cond = branch_eq;
731 break;
732 case MATCH_R1_BNE:
733 *cond = branch_ne;
734 break;
735 case MATCH_R1_BGE:
736 *cond = branch_ge;
737 break;
738 case MATCH_R1_BGEU:
739 *cond = branch_geu;
740 break;
741 case MATCH_R1_BLT:
742 *cond = branch_lt;
743 break;
744 case MATCH_R1_BLTU:
745 *cond = branch_ltu;
746 break;
747 default:
748 return 0;
749 }
750 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
751 *ra = GET_IW_I_A (insn);
752 *rb = GET_IW_I_B (insn);
753 return 1;
754 }
755 else
756 {
757 switch (op->match)
758 {
759 case MATCH_R2_BR_N:
760 *cond = branch_none;
761 *ra = NIOS2_Z_REGNUM;
762 *rb = NIOS2_Z_REGNUM;
763 *imm = (signed) ((GET_IW_I10_IMM10 (insn) << 1) << 21) >> 21;
764 return 1;
765 case MATCH_R2_BEQZ_N:
766 *cond = branch_eq;
767 *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
768 *rb = NIOS2_Z_REGNUM;
769 *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24;
770 return 1;
771 case MATCH_R2_BNEZ_N:
772 *cond = branch_ne;
773 *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
774 *rb = NIOS2_Z_REGNUM;
775 *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24;
776 return 1;
777 case MATCH_R2_BR:
778 *cond = branch_none;
779 break;
780 case MATCH_R2_BEQ:
781 *cond = branch_eq;
782 break;
783 case MATCH_R2_BNE:
784 *cond = branch_ne;
785 break;
786 case MATCH_R2_BGE:
787 *cond = branch_ge;
788 break;
789 case MATCH_R2_BGEU:
790 *cond = branch_geu;
791 break;
792 case MATCH_R2_BLT:
793 *cond = branch_lt;
794 break;
795 case MATCH_R2_BLTU:
796 *cond = branch_ltu;
797 break;
798 default:
799 return 0;
800 }
801 *ra = GET_IW_F2I16_A (insn);
802 *rb = GET_IW_F2I16_B (insn);
803 *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
804 return 1;
805 }
806 return 0;
807 }
808
809 /* Match and disassemble a direct jump instruction, with an
810 unsigned operand. Returns true on success, and fills in the operand
811 pointer. */
812
813 static int
814 nios2_match_jmpi (uint32_t insn, const struct nios2_opcode *op,
815 unsigned long mach, unsigned int *uimm)
816 {
817 int is_r2 = (mach == bfd_mach_nios2r2);
818
819 if (!is_r2 && op->match == MATCH_R1_JMPI)
820 {
821 *uimm = GET_IW_J_IMM26 (insn) << 2;
822 return 1;
823 }
824 else if (!is_r2)
825 return 0;
826 else if (op->match == MATCH_R2_JMPI)
827 {
828 *uimm = GET_IW_L26_IMM26 (insn) << 2;
829 return 1;
830 }
831 return 0;
832 }
833
834 /* Match and disassemble a direct call instruction, with an
835 unsigned operand. Returns true on success, and fills in the operand
836 pointer. */
837
838 static int
839 nios2_match_calli (uint32_t insn, const struct nios2_opcode *op,
840 unsigned long mach, unsigned int *uimm)
841 {
842 int is_r2 = (mach == bfd_mach_nios2r2);
843
844 if (!is_r2 && op->match == MATCH_R1_CALL)
845 {
846 *uimm = GET_IW_J_IMM26 (insn) << 2;
847 return 1;
848 }
849 else if (!is_r2)
850 return 0;
851 else if (op->match == MATCH_R2_CALL)
852 {
853 *uimm = GET_IW_L26_IMM26 (insn) << 2;
854 return 1;
855 }
856 return 0;
857 }
858
859 /* Match and disassemble an indirect jump instruction, with a
860 (possibly implicit) register operand. Returns true on success, and fills
861 in the operand pointer. */
862
863 static int
864 nios2_match_jmpr (uint32_t insn, const struct nios2_opcode *op,
865 unsigned long mach, int *ra)
866 {
867 int is_r2 = (mach == bfd_mach_nios2r2);
868
869 if (!is_r2)
870 switch (op->match)
871 {
872 case MATCH_R1_JMP:
873 *ra = GET_IW_I_A (insn);
874 return 1;
875 case MATCH_R1_RET:
876 *ra = NIOS2_RA_REGNUM;
877 return 1;
878 case MATCH_R1_ERET:
879 *ra = NIOS2_EA_REGNUM;
880 return 1;
881 case MATCH_R1_BRET:
882 *ra = NIOS2_BA_REGNUM;
883 return 1;
884 default:
885 return 0;
886 }
887 else
888 switch (op->match)
889 {
890 case MATCH_R2_JMP:
891 *ra = GET_IW_F2I16_A (insn);
892 return 1;
893 case MATCH_R2_JMPR_N:
894 *ra = GET_IW_F1X1_A (insn);
895 return 1;
896 case MATCH_R2_RET:
897 case MATCH_R2_RET_N:
898 *ra = NIOS2_RA_REGNUM;
899 return 1;
900 case MATCH_R2_ERET:
901 *ra = NIOS2_EA_REGNUM;
902 return 1;
903 case MATCH_R2_BRET:
904 *ra = NIOS2_BA_REGNUM;
905 return 1;
906 default:
907 return 0;
908 }
909 return 0;
910 }
911
912 /* Match and disassemble an indirect call instruction, with a register
913 operand. Returns true on success, and fills in the operand pointer. */
914
915 static int
916 nios2_match_callr (uint32_t insn, const struct nios2_opcode *op,
917 unsigned long mach, int *ra)
918 {
919 int is_r2 = (mach == bfd_mach_nios2r2);
920
921 if (!is_r2 && op->match == MATCH_R1_CALLR)
922 {
923 *ra = GET_IW_I_A (insn);
924 return 1;
925 }
926 else if (!is_r2)
927 return 0;
928 else if (op->match == MATCH_R2_CALLR)
929 {
930 *ra = GET_IW_F2I16_A (insn);
931 return 1;
932 }
933 else if (op->match == MATCH_R2_CALLR_N)
934 {
935 *ra = GET_IW_F1X1_A (insn);
936 return 1;
937 }
938 return 0;
939 }
940
941 /* Match and disassemble a break instruction, with an unsigned operand.
942 Returns true on success, and fills in the operand pointer. */
943
944 static int
945 nios2_match_break (uint32_t insn, const struct nios2_opcode *op,
946 unsigned long mach, unsigned int *uimm)
947 {
948 int is_r2 = (mach == bfd_mach_nios2r2);
949
950 if (!is_r2 && op->match == MATCH_R1_BREAK)
951 {
952 *uimm = GET_IW_R_IMM5 (insn);
953 return 1;
954 }
955 else if (!is_r2)
956 return 0;
957 else if (op->match == MATCH_R2_BREAK)
958 {
959 *uimm = GET_IW_F3X6L5_IMM5 (insn);
960 return 1;
961 }
962 else if (op->match == MATCH_R2_BREAK_N)
963 {
964 *uimm = GET_IW_X2L5_IMM5 (insn);
965 return 1;
966 }
967 return 0;
968 }
969
970 /* Match and disassemble a trap instruction, with an unsigned operand.
971 Returns true on success, and fills in the operand pointer. */
972
973 static int
974 nios2_match_trap (uint32_t insn, const struct nios2_opcode *op,
975 unsigned long mach, unsigned int *uimm)
976 {
977 int is_r2 = (mach == bfd_mach_nios2r2);
978
979 if (!is_r2 && op->match == MATCH_R1_TRAP)
980 {
981 *uimm = GET_IW_R_IMM5 (insn);
982 return 1;
983 }
984 else if (!is_r2)
985 return 0;
986 else if (op->match == MATCH_R2_TRAP)
987 {
988 *uimm = GET_IW_F3X6L5_IMM5 (insn);
989 return 1;
990 }
991 else if (op->match == MATCH_R2_TRAP_N)
992 {
993 *uimm = GET_IW_X2L5_IMM5 (insn);
994 return 1;
995 }
996 return 0;
997 }
998
999 /* Helper function to identify when we're in a function epilogue;
1000 that is, the part of the function from the point at which the
1001 stack adjustments are made, to the return or sibcall.
1002 Note that we may have several stack adjustment instructions, and
1003 this function needs to test whether the stack teardown has already
1004 started before current_pc, not whether it has completed. */
1005
1006 static int
1007 nios2_in_epilogue_p (struct gdbarch *gdbarch,
1008 CORE_ADDR current_pc,
1009 CORE_ADDR start_pc)
1010 {
1011 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1012 int is_r2 = (mach == bfd_mach_nios2r2);
1013 /* Maximum number of possibly-epilogue instructions to check.
1014 Note that this number should not be too large, else we can
1015 potentially end up iterating through unmapped memory. */
1016 int ninsns, max_insns = 5;
1017 unsigned int insn;
1018 const struct nios2_opcode *op = NULL;
1019 unsigned int uimm;
1020 int imm;
1021 int wb, id, ret;
1022 int ra, rb, rc;
1023 enum branch_condition cond;
1024 CORE_ADDR pc;
1025
1026 /* There has to be a previous instruction in the function. */
1027 if (current_pc <= start_pc)
1028 return 0;
1029
1030 /* Find the previous instruction before current_pc. For R2, it might
1031 be either a 16-bit or 32-bit instruction; the only way to know for
1032 sure is to scan through from the beginning of the function,
1033 disassembling as we go. */
1034 if (is_r2)
1035 for (pc = start_pc; ; )
1036 {
1037 op = nios2_fetch_insn (gdbarch, pc, &insn);
1038 if (op == NULL)
1039 return 0;
1040 if (pc + op->size < current_pc)
1041 pc += op->size;
1042 else
1043 break;
1044 /* We can skip over insns to a forward branch target. Since
1045 the branch offset is relative to the next instruction,
1046 it's correct to do this after incrementing the pc above. */
1047 if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)
1048 && imm > 0
1049 && pc + imm < current_pc)
1050 pc += imm;
1051 }
1052 /* Otherwise just go back to the previous 32-bit insn. */
1053 else
1054 pc = current_pc - NIOS2_OPCODE_SIZE;
1055
1056 /* Beginning with the previous instruction we just located, check whether
1057 we are in a sequence of at least one stack adjustment instruction.
1058 Possible instructions here include:
1059 ADDI sp, sp, n
1060 ADD sp, sp, rn
1061 LDW sp, n(sp)
1062 SPINCI.N n
1063 LDWSP.N sp, n(sp)
1064 LDWM {reglist}, (sp)++, wb */
1065 for (ninsns = 0; ninsns < max_insns; ninsns++)
1066 {
1067 int ok = 0;
1068
1069 /* Fetch the insn at pc. */
1070 op = nios2_fetch_insn (gdbarch, pc, &insn);
1071 if (op == NULL)
1072 return 0;
1073 pc += op->size;
1074
1075 /* Was it a stack adjustment? */
1076 if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm))
1077 ok = (rb == NIOS2_SP_REGNUM);
1078 else if (nios2_match_add (insn, op, mach, &ra, &rb, &rc))
1079 ok = (rc == NIOS2_SP_REGNUM);
1080 else if (nios2_match_ldw (insn, op, mach, &ra, &rb, &imm))
1081 ok = (rb == NIOS2_SP_REGNUM);
1082 else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra,
1083 &imm, &wb, &ret, &id))
1084 ok = (ra == NIOS2_SP_REGNUM && wb && id);
1085 if (!ok)
1086 break;
1087 }
1088
1089 /* No stack adjustments found. */
1090 if (ninsns == 0)
1091 return 0;
1092
1093 /* We found more stack adjustments than we expect GCC to be generating.
1094 Since it looks like a stack unwind might be in progress tell GDB to
1095 treat it as such. */
1096 if (ninsns == max_insns)
1097 return 1;
1098
1099 /* The next instruction following the stack adjustments must be a
1100 return, jump, or unconditional branch, or a CDX pop.n or ldwm
1101 that does an implicit return. */
1102 if (nios2_match_jmpr (insn, op, mach, &ra)
1103 || nios2_match_jmpi (insn, op, mach, &uimm)
1104 || (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret)
1105 && ret)
1106 || (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)
1107 && cond == branch_none))
1108 return 1;
1109
1110 return 0;
1111 }
1112
1113 /* Implement the stack_frame_destroyed_p gdbarch method. */
1114
1115 static int
1116 nios2_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1117 {
1118 CORE_ADDR func_addr;
1119
1120 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1121 return nios2_in_epilogue_p (gdbarch, pc, func_addr);
1122
1123 return 0;
1124 }
1125
1126 /* Do prologue analysis, returning the PC of the first instruction
1127 after the function prologue. Assumes CACHE has already been
1128 initialized. THIS_FRAME can be null, in which case we are only
1129 interested in skipping the prologue. Otherwise CACHE is filled in
1130 from the frame information.
1131
1132 The prologue may consist of the following parts:
1133 1) Profiling instrumentation. For non-PIC code it looks like:
1134 mov r8, ra
1135 call mcount
1136 mov ra, r8
1137
1138 2) A stack adjustment and save of R4-R7 for varargs functions.
1139 For R2 CDX this is typically handled with a STWM, otherwise
1140 this is typically merged with item 3.
1141
1142 3) A stack adjustment and save of the callee-saved registers.
1143 For R2 CDX these are typically handled with a PUSH.N or STWM,
1144 otherwise as an explicit SP decrement and individual register
1145 saves.
1146
1147 There may also be a stack switch here in an exception handler
1148 in place of a stack adjustment. It looks like:
1149 movhi rx, %hiadj(newstack)
1150 addhi rx, rx, %lo(newstack)
1151 stw sp, constant(rx)
1152 mov sp, rx
1153
1154 4) A frame pointer save, which can be either a MOV or ADDI.
1155
1156 5) A further stack pointer adjustment. This is normally included
1157 adjustment in step 3 unless the total adjustment is too large
1158 to be done in one step.
1159
1160 7) A stack overflow check, which can take either of these forms:
1161 bgeu sp, rx, +8
1162 trap 3
1163 or
1164 bltu sp, rx, .Lstack_overflow
1165 ...
1166 .Lstack_overflow:
1167 trap 3
1168
1169 Older versions of GCC emitted "break 3" instead of "trap 3" here,
1170 so we check for both cases.
1171
1172 Older GCC versions emitted stack overflow checks after the SP
1173 adjustments in both steps 3 and 4. Starting with GCC 6, there is
1174 at most one overflow check, which is placed before the first
1175 stack adjustment for R2 CDX and after the first stack adjustment
1176 otherwise.
1177
1178 The prologue instructions may be combined or interleaved with other
1179 instructions.
1180
1181 To cope with all this variability we decode all the instructions
1182 from the start of the prologue until we hit an instruction that
1183 cannot possibly be a prologue instruction, such as a branch, call,
1184 return, or epilogue instruction. The prologue is considered to end
1185 at the last instruction that can definitely be considered a
1186 prologue instruction. */
1187
1188 static CORE_ADDR
1189 nios2_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
1190 const CORE_ADDR current_pc,
1191 struct nios2_unwind_cache *cache,
1192 struct frame_info *this_frame)
1193 {
1194 /* Maximum number of possibly-prologue instructions to check.
1195 Note that this number should not be too large, else we can
1196 potentially end up iterating through unmapped memory. */
1197 int ninsns, max_insns = 50;
1198 int regno;
1199 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1200 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1201 int is_r2 = (mach == bfd_mach_nios2r2);
1202
1203 /* Does the frame set up the FP register? */
1204 int base_reg = 0;
1205
1206 struct reg_value *value = cache->reg_value;
1207 struct reg_value temp_value[NIOS2_NUM_REGS];
1208
1209 int i;
1210
1211 /* Save the starting PC so we can correct the pc after running
1212 through the prolog, using symbol info. */
1213 CORE_ADDR pc = start_pc;
1214
1215 /* Is this an exception handler? */
1216 int exception_handler = 0;
1217
1218 /* What was the original value of SP (or fake original value for
1219 functions which switch stacks? */
1220 CORE_ADDR frame_high;
1221
1222 /* The last definitely-prologue instruction seen. */
1223 CORE_ADDR prologue_end;
1224
1225 /* Is this the innermost function? */
1226 int innermost = (this_frame ? (frame_relative_level (this_frame) == 0) : 1);
1227
1228 if (nios2_debug)
1229 fprintf_unfiltered (gdb_stdlog,
1230 "{ nios2_analyze_prologue start=%s, current=%s ",
1231 paddress (gdbarch, start_pc),
1232 paddress (gdbarch, current_pc));
1233
1234 /* Set up the default values of the registers. */
1235 nios2_setup_default (cache);
1236
1237 /* Find the prologue instructions. */
1238 prologue_end = start_pc;
1239 for (ninsns = 0; ninsns < max_insns; ninsns++)
1240 {
1241 /* Present instruction. */
1242 uint32_t insn;
1243 const struct nios2_opcode *op;
1244 int ra, rb, rc, imm;
1245 unsigned int uimm;
1246 unsigned int reglist;
1247 int wb, id, ret;
1248 enum branch_condition cond;
1249
1250 if (pc == current_pc)
1251 {
1252 /* When we reach the current PC we must save the current
1253 register state (for the backtrace) but keep analysing
1254 because there might be more to find out (eg. is this an
1255 exception handler). */
1256 memcpy (temp_value, value, sizeof (temp_value));
1257 value = temp_value;
1258 if (nios2_debug)
1259 fprintf_unfiltered (gdb_stdlog, "*");
1260 }
1261
1262 op = nios2_fetch_insn (gdbarch, pc, &insn);
1263
1264 /* Unknown opcode? Stop scanning. */
1265 if (op == NULL)
1266 break;
1267 pc += op->size;
1268
1269 if (nios2_debug)
1270 {
1271 if (op->size == 2)
1272 fprintf_unfiltered (gdb_stdlog, "[%04X]", insn & 0xffff);
1273 else
1274 fprintf_unfiltered (gdb_stdlog, "[%08X]", insn);
1275 }
1276
1277 /* The following instructions can appear in the prologue. */
1278
1279 if (nios2_match_add (insn, op, mach, &ra, &rb, &rc))
1280 {
1281 /* ADD rc, ra, rb (also used for MOV) */
1282 if (rc == NIOS2_SP_REGNUM
1283 && rb == 0
1284 && value[ra].reg == cache->reg_saved[NIOS2_SP_REGNUM].basereg)
1285 {
1286 /* If the previous value of SP is available somewhere
1287 near the new stack pointer value then this is a
1288 stack switch. */
1289
1290 /* If any registers were saved on the stack before then
1291 we can't backtrace into them now. */
1292 for (i = 0 ; i < NIOS2_NUM_REGS ; i++)
1293 {
1294 if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
1295 cache->reg_saved[i].basereg = -1;
1296 if (value[i].reg == NIOS2_SP_REGNUM)
1297 value[i].reg = -1;
1298 }
1299
1300 /* Create a fake "high water mark" 4 bytes above where SP
1301 was stored and fake up the registers to be consistent
1302 with that. */
1303 value[NIOS2_SP_REGNUM].reg = NIOS2_SP_REGNUM;
1304 value[NIOS2_SP_REGNUM].offset
1305 = (value[ra].offset
1306 - cache->reg_saved[NIOS2_SP_REGNUM].addr
1307 - 4);
1308 cache->reg_saved[NIOS2_SP_REGNUM].basereg = NIOS2_SP_REGNUM;
1309 cache->reg_saved[NIOS2_SP_REGNUM].addr = -4;
1310 }
1311
1312 else if (rc == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM)
1313 /* This is setting SP from FP. This only happens in the
1314 function epilogue. */
1315 break;
1316
1317 else if (rc != 0)
1318 {
1319 if (value[rb].reg == 0)
1320 value[rc].reg = value[ra].reg;
1321 else if (value[ra].reg == 0)
1322 value[rc].reg = value[rb].reg;
1323 else
1324 value[rc].reg = -1;
1325 value[rc].offset = value[ra].offset + value[rb].offset;
1326 }
1327
1328 /* The add/move is only considered a prologue instruction
1329 if the destination is SP or FP. */
1330 if (rc == NIOS2_SP_REGNUM || rc == NIOS2_FP_REGNUM)
1331 prologue_end = pc;
1332 }
1333
1334 else if (nios2_match_sub (insn, op, mach, &ra, &rb, &rc))
1335 {
1336 /* SUB rc, ra, rb */
1337 if (rc == NIOS2_SP_REGNUM && rb == NIOS2_SP_REGNUM
1338 && value[rc].reg != 0)
1339 /* If we are decrementing the SP by a non-constant amount,
1340 this is alloca, not part of the prologue. */
1341 break;
1342 else if (rc != 0)
1343 {
1344 if (value[rb].reg == 0)
1345 value[rc].reg = value[ra].reg;
1346 else
1347 value[rc].reg = -1;
1348 value[rc].offset = value[ra].offset - value[rb].offset;
1349 }
1350 }
1351
1352 else if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm))
1353 {
1354 /* ADDI rb, ra, imm */
1355
1356 /* A positive stack adjustment has to be part of the epilogue. */
1357 if (rb == NIOS2_SP_REGNUM
1358 && (imm > 0 || value[ra].reg != NIOS2_SP_REGNUM))
1359 break;
1360
1361 /* Likewise restoring SP from FP. */
1362 else if (rb == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM)
1363 break;
1364
1365 if (rb != 0)
1366 {
1367 value[rb].reg = value[ra].reg;
1368 value[rb].offset = value[ra].offset + imm;
1369 }
1370
1371 /* The add is only considered a prologue instruction
1372 if the destination is SP or FP. */
1373 if (rb == NIOS2_SP_REGNUM || rb == NIOS2_FP_REGNUM)
1374 prologue_end = pc;
1375 }
1376
1377 else if (nios2_match_orhi (insn, op, mach, &ra, &rb, &uimm))
1378 {
1379 /* ORHI rb, ra, uimm (also used for MOVHI) */
1380 if (rb != 0)
1381 {
1382 value[rb].reg = (value[ra].reg == 0) ? 0 : -1;
1383 value[rb].offset = value[ra].offset | (uimm << 16);
1384 }
1385 }
1386
1387 else if (nios2_match_stw (insn, op, mach, &ra, &rb, &imm))
1388 {
1389 /* STW rb, imm(ra) */
1390
1391 /* Are we storing the original value of a register to the stack?
1392 For exception handlers the value of EA-4 (return
1393 address from interrupts etc) is sometimes stored. */
1394 int orig = value[rb].reg;
1395 if (orig > 0
1396 && (value[rb].offset == 0
1397 || (orig == NIOS2_EA_REGNUM && value[rb].offset == -4))
1398 && value[ra].reg == NIOS2_SP_REGNUM)
1399 {
1400 if (pc < current_pc)
1401 {
1402 /* Save off callee saved registers. */
1403 cache->reg_saved[orig].basereg = value[ra].reg;
1404 cache->reg_saved[orig].addr = value[ra].offset + imm;
1405 }
1406
1407 prologue_end = pc;
1408
1409 if (orig == NIOS2_EA_REGNUM || orig == NIOS2_ESTATUS_REGNUM)
1410 exception_handler = 1;
1411 }
1412 else
1413 /* Non-stack memory writes cannot appear in the prologue. */
1414 break;
1415 }
1416
1417 else if (nios2_match_stwm (insn, op, mach,
1418 &reglist, &ra, &imm, &wb, &id))
1419 {
1420 /* PUSH.N {reglist}, adjust
1421 or
1422 STWM {reglist}, --(SP)[, writeback] */
1423 int i;
1424 int off = 0;
1425
1426 if (ra != NIOS2_SP_REGNUM || id != 0)
1427 /* This is a non-stack-push memory write and cannot be
1428 part of the prologue. */
1429 break;
1430
1431 for (i = 31; i >= 0; i--)
1432 if (reglist & (1 << i))
1433 {
1434 int orig = value[i].reg;
1435
1436 off += 4;
1437 if (orig > 0 && value[i].offset == 0 && pc < current_pc)
1438 {
1439 cache->reg_saved[orig].basereg
1440 = value[NIOS2_SP_REGNUM].reg;
1441 cache->reg_saved[orig].addr
1442 = value[NIOS2_SP_REGNUM].offset - off;
1443 }
1444 }
1445
1446 if (wb)
1447 value[NIOS2_SP_REGNUM].offset -= off;
1448 value[NIOS2_SP_REGNUM].offset -= imm;
1449
1450 prologue_end = pc;
1451 }
1452
1453 else if (nios2_match_rdctl (insn, op, mach, &ra, &rc))
1454 {
1455 /* RDCTL rC, ctlN
1456 This can appear in exception handlers in combination with
1457 a subsequent save to the stack frame. */
1458 if (rc != 0)
1459 {
1460 value[rc].reg = NIOS2_STATUS_REGNUM + ra;
1461 value[rc].offset = 0;
1462 }
1463 }
1464
1465 else if (nios2_match_calli (insn, op, mach, &uimm))
1466 {
1467 if (value[8].reg == NIOS2_RA_REGNUM
1468 && value[8].offset == 0
1469 && value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM
1470 && value[NIOS2_SP_REGNUM].offset == 0)
1471 {
1472 /* A CALL instruction. This is treated as a call to mcount
1473 if ra has been stored into r8 beforehand and if it's
1474 before the stack adjust.
1475 Note mcount corrupts r2-r3, r9-r15 & ra. */
1476 for (i = 2 ; i <= 3 ; i++)
1477 value[i].reg = -1;
1478 for (i = 9 ; i <= 15 ; i++)
1479 value[i].reg = -1;
1480 value[NIOS2_RA_REGNUM].reg = -1;
1481
1482 prologue_end = pc;
1483 }
1484
1485 /* Other calls are not part of the prologue. */
1486 else
1487 break;
1488 }
1489
1490 else if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond))
1491 {
1492 /* Branches not involving a stack overflow check aren't part of
1493 the prologue. */
1494 if (ra != NIOS2_SP_REGNUM)
1495 break;
1496 else if (cond == branch_geu)
1497 {
1498 /* BGEU sp, rx, +8
1499 TRAP 3 (or BREAK 3)
1500 This instruction sequence is used in stack checking;
1501 we can ignore it. */
1502 unsigned int next_insn;
1503 const struct nios2_opcode *next_op
1504 = nios2_fetch_insn (gdbarch, pc, &next_insn);
1505 if (next_op != NULL
1506 && (nios2_match_trap (next_insn, op, mach, &uimm)
1507 || nios2_match_break (next_insn, op, mach, &uimm)))
1508 pc += next_op->size;
1509 else
1510 break;
1511 }
1512 else if (cond == branch_ltu)
1513 {
1514 /* BLTU sp, rx, .Lstackoverflow
1515 If the location branched to holds a TRAP or BREAK
1516 instruction then this is also stack overflow detection. */
1517 unsigned int next_insn;
1518 const struct nios2_opcode *next_op
1519 = nios2_fetch_insn (gdbarch, pc + imm, &next_insn);
1520 if (next_op != NULL
1521 && (nios2_match_trap (next_insn, op, mach, &uimm)
1522 || nios2_match_break (next_insn, op, mach, &uimm)))
1523 ;
1524 else
1525 break;
1526 }
1527 else
1528 break;
1529 }
1530
1531 /* All other calls, jumps, returns, TRAPs, or BREAKs terminate
1532 the prologue. */
1533 else if (nios2_match_callr (insn, op, mach, &ra)
1534 || nios2_match_jmpr (insn, op, mach, &ra)
1535 || nios2_match_jmpi (insn, op, mach, &uimm)
1536 || (nios2_match_ldwm (insn, op, mach, &reglist, &ra,
1537 &imm, &wb, &id, &ret)
1538 && ret)
1539 || nios2_match_trap (insn, op, mach, &uimm)
1540 || nios2_match_break (insn, op, mach, &uimm))
1541 break;
1542 }
1543
1544 /* If THIS_FRAME is NULL, we are being called from skip_prologue
1545 and are only interested in the PROLOGUE_END value, so just
1546 return that now and skip over the cache updates, which depend
1547 on having frame information. */
1548 if (this_frame == NULL)
1549 return prologue_end;
1550
1551 /* If we are in the function epilogue and have already popped
1552 registers off the stack in preparation for returning, then we
1553 want to go back to the original register values. */
1554 if (innermost && nios2_in_epilogue_p (gdbarch, current_pc, start_pc))
1555 nios2_setup_default (cache);
1556
1557 /* Exception handlers use a different return address register. */
1558 if (exception_handler)
1559 cache->return_regnum = NIOS2_EA_REGNUM;
1560
1561 if (nios2_debug)
1562 fprintf_unfiltered (gdb_stdlog, "\n-> retreg=%d, ", cache->return_regnum);
1563
1564 if (cache->reg_value[NIOS2_FP_REGNUM].reg == NIOS2_SP_REGNUM)
1565 /* If the FP now holds an offset from the CFA then this is a
1566 normal frame which uses the frame pointer. */
1567 base_reg = NIOS2_FP_REGNUM;
1568 else if (cache->reg_value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM)
1569 /* FP doesn't hold an offset from the CFA. If SP still holds an
1570 offset from the CFA then we might be in a function which omits
1571 the frame pointer, or we might be partway through the prologue.
1572 In both cases we can find the CFA using SP. */
1573 base_reg = NIOS2_SP_REGNUM;
1574 else
1575 {
1576 /* Somehow the stack pointer has been corrupted.
1577 We can't return. */
1578 if (nios2_debug)
1579 fprintf_unfiltered (gdb_stdlog, "<can't reach cfa> }\n");
1580 return 0;
1581 }
1582
1583 if (cache->reg_value[base_reg].offset == 0
1584 || cache->reg_saved[NIOS2_RA_REGNUM].basereg != NIOS2_SP_REGNUM
1585 || cache->reg_saved[cache->return_regnum].basereg != NIOS2_SP_REGNUM)
1586 {
1587 /* If the frame didn't adjust the stack, didn't save RA or
1588 didn't save EA in an exception handler then it must either
1589 be a leaf function (doesn't call any other functions) or it
1590 can't return. If it has called another function then it
1591 can't be a leaf, so set base == 0 to indicate that we can't
1592 backtrace past it. */
1593
1594 if (!innermost)
1595 {
1596 /* If it isn't the innermost function then it can't be a
1597 leaf, unless it was interrupted. Check whether RA for
1598 this frame is the same as PC. If so then it probably
1599 wasn't interrupted. */
1600 CORE_ADDR ra
1601 = get_frame_register_unsigned (this_frame, NIOS2_RA_REGNUM);
1602
1603 if (ra == current_pc)
1604 {
1605 if (nios2_debug)
1606 fprintf_unfiltered
1607 (gdb_stdlog,
1608 "<noreturn ADJUST %s, r31@r%d+?>, r%d@r%d+?> }\n",
1609 paddress (gdbarch, cache->reg_value[base_reg].offset),
1610 cache->reg_saved[NIOS2_RA_REGNUM].basereg,
1611 cache->return_regnum,
1612 cache->reg_saved[cache->return_regnum].basereg);
1613 return 0;
1614 }
1615 }
1616 }
1617
1618 /* Get the value of whichever register we are using for the
1619 base. */
1620 cache->base = get_frame_register_unsigned (this_frame, base_reg);
1621
1622 /* What was the value of SP at the start of this function (or just
1623 after the stack switch). */
1624 frame_high = cache->base - cache->reg_value[base_reg].offset;
1625
1626 /* Adjust all the saved registers such that they contain addresses
1627 instead of offsets. */
1628 for (i = 0; i < NIOS2_NUM_REGS; i++)
1629 if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
1630 {
1631 cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
1632 cache->reg_saved[i].addr += frame_high;
1633 }
1634
1635 for (i = 0; i < NIOS2_NUM_REGS; i++)
1636 if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
1637 {
1638 CORE_ADDR gp = get_frame_register_unsigned (this_frame,
1639 NIOS2_GP_REGNUM);
1640
1641 for ( ; i < NIOS2_NUM_REGS; i++)
1642 if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
1643 {
1644 cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
1645 cache->reg_saved[i].addr += gp;
1646 }
1647 }
1648
1649 /* Work out what the value of SP was on the first instruction of
1650 this function. If we didn't switch stacks then this can be
1651 trivially computed from the base address. */
1652 if (cache->reg_saved[NIOS2_SP_REGNUM].basereg == NIOS2_Z_REGNUM)
1653 cache->cfa
1654 = read_memory_unsigned_integer (cache->reg_saved[NIOS2_SP_REGNUM].addr,
1655 4, byte_order);
1656 else
1657 cache->cfa = frame_high;
1658
1659 /* Exception handlers restore ESTATUS into STATUS. */
1660 if (exception_handler)
1661 {
1662 cache->reg_saved[NIOS2_STATUS_REGNUM]
1663 = cache->reg_saved[NIOS2_ESTATUS_REGNUM];
1664 cache->reg_saved[NIOS2_ESTATUS_REGNUM].basereg = -1;
1665 }
1666
1667 if (nios2_debug)
1668 fprintf_unfiltered (gdb_stdlog, "cfa=%s }\n",
1669 paddress (gdbarch, cache->cfa));
1670
1671 return prologue_end;
1672 }
1673
1674 /* Implement the skip_prologue gdbarch hook. */
1675
1676 static CORE_ADDR
1677 nios2_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1678 {
1679 CORE_ADDR func_addr;
1680
1681 struct nios2_unwind_cache cache;
1682
1683 /* See if we can determine the end of the prologue via the symbol
1684 table. If so, then return either PC, or the PC after the
1685 prologue, whichever is greater. */
1686 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1687 {
1688 CORE_ADDR post_prologue_pc
1689 = skip_prologue_using_sal (gdbarch, func_addr);
1690
1691 if (post_prologue_pc != 0)
1692 return max (start_pc, post_prologue_pc);
1693 }
1694
1695 /* Prologue analysis does the rest.... */
1696 nios2_init_cache (&cache, start_pc);
1697 return nios2_analyze_prologue (gdbarch, start_pc, start_pc, &cache, NULL);
1698 }
1699
1700 /* Implement the breakpoint_from_pc gdbarch hook.
1701
1702 The Nios II ABI for Linux says: "Userspace programs should not use
1703 the break instruction and userspace debuggers should not insert
1704 one." and "Userspace breakpoints are accomplished using the trap
1705 instruction with immediate operand 31 (all ones)."
1706
1707 So, we use "trap 31" consistently as the breakpoint on bare-metal
1708 as well as Linux targets. */
1709
1710 static const gdb_byte*
1711 nios2_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
1712 int *bp_size)
1713 {
1714 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1715 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1716
1717 if (mach == bfd_mach_nios2r2)
1718 {
1719 /* R2 trap encoding:
1720 ((0x2d << 26) | (0x1f << 21) | (0x1d << 16) | (0x20 << 0))
1721 0xb7fd0020
1722 CDX trap.n encoding:
1723 ((0xd << 12) | (0x1f << 6) | (0x9 << 0))
1724 0xd7c9
1725 Note that code is always little-endian on R2. */
1726 static const gdb_byte r2_breakpoint_le[] = {0x20, 0x00, 0xfd, 0xb7};
1727 static const gdb_byte cdx_breakpoint_le[] = {0xc9, 0xd7};
1728 unsigned int insn;
1729 const struct nios2_opcode *op
1730 = nios2_fetch_insn (gdbarch, *bp_addr, &insn);
1731
1732 if (op && op->size == NIOS2_CDX_OPCODE_SIZE)
1733 {
1734 *bp_size = NIOS2_CDX_OPCODE_SIZE;
1735 return cdx_breakpoint_le;
1736 }
1737 else
1738 {
1739 *bp_size = NIOS2_OPCODE_SIZE;
1740 return r2_breakpoint_le;
1741 }
1742 }
1743 else
1744 {
1745 /* R1 trap encoding:
1746 ((0x1d << 17) | (0x2d << 11) | (0x1f << 6) | (0x3a << 0))
1747 0x003b6ffa */
1748 static const gdb_byte r1_breakpoint_le[] = {0xfa, 0x6f, 0x3b, 0x0};
1749 static const gdb_byte r1_breakpoint_be[] = {0x0, 0x3b, 0x6f, 0xfa};
1750 *bp_size = NIOS2_OPCODE_SIZE;
1751 if (byte_order_for_code == BFD_ENDIAN_BIG)
1752 return r1_breakpoint_be;
1753 else
1754 return r1_breakpoint_le;
1755 }
1756 }
1757
1758 /* Implement the print_insn gdbarch method. */
1759
1760 static int
1761 nios2_print_insn (bfd_vma memaddr, disassemble_info *info)
1762 {
1763 if (info->endian == BFD_ENDIAN_BIG)
1764 return print_insn_big_nios2 (memaddr, info);
1765 else
1766 return print_insn_little_nios2 (memaddr, info);
1767 }
1768
1769
1770 /* Implement the frame_align gdbarch method. */
1771
1772 static CORE_ADDR
1773 nios2_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1774 {
1775 return align_down (addr, 4);
1776 }
1777
1778
1779 /* Implement the return_value gdbarch method. */
1780
1781 static enum return_value_convention
1782 nios2_return_value (struct gdbarch *gdbarch, struct value *function,
1783 struct type *type, struct regcache *regcache,
1784 gdb_byte *readbuf, const gdb_byte *writebuf)
1785 {
1786 if (TYPE_LENGTH (type) > 8)
1787 return RETURN_VALUE_STRUCT_CONVENTION;
1788
1789 if (readbuf)
1790 nios2_extract_return_value (gdbarch, type, regcache, readbuf);
1791 if (writebuf)
1792 nios2_store_return_value (gdbarch, type, regcache, writebuf);
1793
1794 return RETURN_VALUE_REGISTER_CONVENTION;
1795 }
1796
1797 /* Implement the dummy_id gdbarch method. */
1798
1799 static struct frame_id
1800 nios2_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1801 {
1802 return frame_id_build
1803 (get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM),
1804 get_frame_pc (this_frame));
1805 }
1806
1807 /* Implement the push_dummy_call gdbarch method. */
1808
1809 static CORE_ADDR
1810 nios2_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1811 struct regcache *regcache, CORE_ADDR bp_addr,
1812 int nargs, struct value **args, CORE_ADDR sp,
1813 int struct_return, CORE_ADDR struct_addr)
1814 {
1815 int argreg;
1816 int float_argreg;
1817 int argnum;
1818 int len = 0;
1819 int stack_offset = 0;
1820 CORE_ADDR func_addr = find_function_addr (function, NULL);
1821 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1822
1823 /* Set the return address register to point to the entry point of
1824 the program, where a breakpoint lies in wait. */
1825 regcache_cooked_write_signed (regcache, NIOS2_RA_REGNUM, bp_addr);
1826
1827 /* Now make space on the stack for the args. */
1828 for (argnum = 0; argnum < nargs; argnum++)
1829 len += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1830 sp -= len;
1831
1832 /* Initialize the register pointer. */
1833 argreg = NIOS2_FIRST_ARGREG;
1834
1835 /* The struct_return pointer occupies the first parameter-passing
1836 register. */
1837 if (struct_return)
1838 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1839
1840 /* Now load as many as possible of the first arguments into
1841 registers, and push the rest onto the stack. Loop through args
1842 from first to last. */
1843 for (argnum = 0; argnum < nargs; argnum++)
1844 {
1845 const gdb_byte *val;
1846 gdb_byte valbuf[MAX_REGISTER_SIZE];
1847 struct value *arg = args[argnum];
1848 struct type *arg_type = check_typedef (value_type (arg));
1849 int len = TYPE_LENGTH (arg_type);
1850 enum type_code typecode = TYPE_CODE (arg_type);
1851
1852 val = value_contents (arg);
1853
1854 /* Copy the argument to general registers or the stack in
1855 register-sized pieces. Large arguments are split between
1856 registers and stack. */
1857 while (len > 0)
1858 {
1859 int partial_len = (len < 4 ? len : 4);
1860
1861 if (argreg <= NIOS2_LAST_ARGREG)
1862 {
1863 /* The argument is being passed in a register. */
1864 CORE_ADDR regval = extract_unsigned_integer (val, partial_len,
1865 byte_order);
1866
1867 regcache_cooked_write_unsigned (regcache, argreg, regval);
1868 argreg++;
1869 }
1870 else
1871 {
1872 /* The argument is being passed on the stack. */
1873 CORE_ADDR addr = sp + stack_offset;
1874
1875 write_memory (addr, val, partial_len);
1876 stack_offset += align_up (partial_len, 4);
1877 }
1878
1879 len -= partial_len;
1880 val += partial_len;
1881 }
1882 }
1883
1884 regcache_cooked_write_signed (regcache, NIOS2_SP_REGNUM, sp);
1885
1886 /* Return adjusted stack pointer. */
1887 return sp;
1888 }
1889
1890 /* Implement the unwind_pc gdbarch method. */
1891
1892 static CORE_ADDR
1893 nios2_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1894 {
1895 gdb_byte buf[4];
1896
1897 frame_unwind_register (next_frame, NIOS2_PC_REGNUM, buf);
1898 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1899 }
1900
1901 /* Implement the unwind_sp gdbarch method. */
1902
1903 static CORE_ADDR
1904 nios2_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1905 {
1906 return frame_unwind_register_unsigned (this_frame, NIOS2_SP_REGNUM);
1907 }
1908
1909 /* Use prologue analysis to fill in the register cache
1910 *THIS_PROLOGUE_CACHE for THIS_FRAME. This function initializes
1911 *THIS_PROLOGUE_CACHE first. */
1912
1913 static struct nios2_unwind_cache *
1914 nios2_frame_unwind_cache (struct frame_info *this_frame,
1915 void **this_prologue_cache)
1916 {
1917 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1918 CORE_ADDR current_pc;
1919 struct nios2_unwind_cache *cache;
1920 int i;
1921
1922 if (*this_prologue_cache)
1923 return *this_prologue_cache;
1924
1925 cache = FRAME_OBSTACK_ZALLOC (struct nios2_unwind_cache);
1926 *this_prologue_cache = cache;
1927
1928 /* Zero all fields. */
1929 nios2_init_cache (cache, get_frame_func (this_frame));
1930
1931 /* Prologue analysis does the rest... */
1932 current_pc = get_frame_pc (this_frame);
1933 if (cache->pc != 0)
1934 nios2_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
1935
1936 return cache;
1937 }
1938
1939 /* Implement the this_id function for the normal unwinder. */
1940
1941 static void
1942 nios2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1943 struct frame_id *this_id)
1944 {
1945 struct nios2_unwind_cache *cache =
1946 nios2_frame_unwind_cache (this_frame, this_cache);
1947
1948 /* This marks the outermost frame. */
1949 if (cache->base == 0)
1950 return;
1951
1952 *this_id = frame_id_build (cache->cfa, cache->pc);
1953 }
1954
1955 /* Implement the prev_register function for the normal unwinder. */
1956
1957 static struct value *
1958 nios2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1959 int regnum)
1960 {
1961 struct nios2_unwind_cache *cache =
1962 nios2_frame_unwind_cache (this_frame, this_cache);
1963
1964 gdb_assert (regnum >= 0 && regnum < NIOS2_NUM_REGS);
1965
1966 /* The PC of the previous frame is stored in the RA register of
1967 the current frame. Frob regnum so that we pull the value from
1968 the correct place. */
1969 if (regnum == NIOS2_PC_REGNUM)
1970 regnum = cache->return_regnum;
1971
1972 if (regnum == NIOS2_SP_REGNUM && cache->cfa)
1973 return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
1974
1975 /* If we've worked out where a register is stored then load it from
1976 there. */
1977 if (cache->reg_saved[regnum].basereg == NIOS2_Z_REGNUM)
1978 return frame_unwind_got_memory (this_frame, regnum,
1979 cache->reg_saved[regnum].addr);
1980
1981 return frame_unwind_got_register (this_frame, regnum, regnum);
1982 }
1983
1984 /* Implement the this_base, this_locals, and this_args hooks
1985 for the normal unwinder. */
1986
1987 static CORE_ADDR
1988 nios2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1989 {
1990 struct nios2_unwind_cache *info
1991 = nios2_frame_unwind_cache (this_frame, this_cache);
1992
1993 return info->base;
1994 }
1995
1996 /* Data structures for the normal prologue-analysis-based
1997 unwinder. */
1998
1999 static const struct frame_unwind nios2_frame_unwind =
2000 {
2001 NORMAL_FRAME,
2002 default_frame_unwind_stop_reason,
2003 nios2_frame_this_id,
2004 nios2_frame_prev_register,
2005 NULL,
2006 default_frame_sniffer
2007 };
2008
2009 static const struct frame_base nios2_frame_base =
2010 {
2011 &nios2_frame_unwind,
2012 nios2_frame_base_address,
2013 nios2_frame_base_address,
2014 nios2_frame_base_address
2015 };
2016
2017 /* Fill in the register cache *THIS_CACHE for THIS_FRAME for use
2018 in the stub unwinder. */
2019
2020 static struct trad_frame_cache *
2021 nios2_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
2022 {
2023 CORE_ADDR pc;
2024 CORE_ADDR start_addr;
2025 CORE_ADDR stack_addr;
2026 struct trad_frame_cache *this_trad_cache;
2027 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2028 int num_regs = gdbarch_num_regs (gdbarch);
2029
2030 if (*this_cache != NULL)
2031 return *this_cache;
2032 this_trad_cache = trad_frame_cache_zalloc (this_frame);
2033 *this_cache = this_trad_cache;
2034
2035 /* The return address is in the link register. */
2036 trad_frame_set_reg_realreg (this_trad_cache,
2037 gdbarch_pc_regnum (gdbarch),
2038 NIOS2_RA_REGNUM);
2039
2040 /* Frame ID, since it's a frameless / stackless function, no stack
2041 space is allocated and SP on entry is the current SP. */
2042 pc = get_frame_pc (this_frame);
2043 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2044 stack_addr = get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM);
2045 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2046 /* Assume that the frame's base is the same as the stack pointer. */
2047 trad_frame_set_this_base (this_trad_cache, stack_addr);
2048
2049 return this_trad_cache;
2050 }
2051
2052 /* Implement the this_id function for the stub unwinder. */
2053
2054 static void
2055 nios2_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
2056 struct frame_id *this_id)
2057 {
2058 struct trad_frame_cache *this_trad_cache
2059 = nios2_stub_frame_cache (this_frame, this_cache);
2060
2061 trad_frame_get_id (this_trad_cache, this_id);
2062 }
2063
2064 /* Implement the prev_register function for the stub unwinder. */
2065
2066 static struct value *
2067 nios2_stub_frame_prev_register (struct frame_info *this_frame,
2068 void **this_cache, int regnum)
2069 {
2070 struct trad_frame_cache *this_trad_cache
2071 = nios2_stub_frame_cache (this_frame, this_cache);
2072
2073 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
2074 }
2075
2076 /* Implement the sniffer function for the stub unwinder.
2077 This unwinder is used for cases where the normal
2078 prologue-analysis-based unwinder can't work,
2079 such as PLT stubs. */
2080
2081 static int
2082 nios2_stub_frame_sniffer (const struct frame_unwind *self,
2083 struct frame_info *this_frame, void **cache)
2084 {
2085 gdb_byte dummy[4];
2086 struct obj_section *s;
2087 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2088
2089 /* Use the stub unwinder for unreadable code. */
2090 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
2091 return 1;
2092
2093 if (in_plt_section (pc))
2094 return 1;
2095
2096 return 0;
2097 }
2098
2099 /* Define the data structures for the stub unwinder. */
2100
2101 static const struct frame_unwind nios2_stub_frame_unwind =
2102 {
2103 NORMAL_FRAME,
2104 default_frame_unwind_stop_reason,
2105 nios2_stub_frame_this_id,
2106 nios2_stub_frame_prev_register,
2107 NULL,
2108 nios2_stub_frame_sniffer
2109 };
2110
2111
2112
2113 /* Determine where to set a single step breakpoint while considering
2114 branch prediction. */
2115
2116 static CORE_ADDR
2117 nios2_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
2118 {
2119 struct gdbarch *gdbarch = get_frame_arch (frame);
2120 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2121 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2122 unsigned int insn;
2123 const struct nios2_opcode *op = nios2_fetch_insn (gdbarch, pc, &insn);
2124 int ra;
2125 int rb;
2126 int imm;
2127 unsigned int uimm;
2128 int wb, id, ret;
2129 enum branch_condition cond;
2130
2131 /* Do something stupid if we can't disassemble the insn at pc. */
2132 if (op == NULL)
2133 return pc + NIOS2_OPCODE_SIZE;
2134
2135 if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond))
2136 {
2137 int ras = get_frame_register_signed (frame, ra);
2138 int rbs = get_frame_register_signed (frame, rb);
2139 unsigned int rau = get_frame_register_unsigned (frame, ra);
2140 unsigned int rbu = get_frame_register_unsigned (frame, rb);
2141
2142 pc += op->size;
2143 switch (cond)
2144 {
2145 case branch_none:
2146 pc += imm;
2147 break;
2148 case branch_eq:
2149 if (ras == rbs)
2150 pc += imm;
2151 break;
2152 case branch_ne:
2153 if (ras != rbs)
2154 pc += imm;
2155 break;
2156 case branch_ge:
2157 if (ras >= rbs)
2158 pc += imm;
2159 break;
2160 case branch_geu:
2161 if (rau >= rbu)
2162 pc += imm;
2163 break;
2164 case branch_lt:
2165 if (ras < rbs)
2166 pc += imm;
2167 break;
2168 case branch_ltu:
2169 if (rau < rbu)
2170 pc += imm;
2171 break;
2172 default:
2173 break;
2174 }
2175 }
2176
2177 else if (nios2_match_jmpi (insn, op, mach, &uimm)
2178 || nios2_match_calli (insn, op, mach, &uimm))
2179 pc = (pc & 0xf0000000) | uimm;
2180
2181 else if (nios2_match_jmpr (insn, op, mach, &ra)
2182 || nios2_match_callr (insn, op, mach, &ra))
2183 pc = get_frame_register_unsigned (frame, ra);
2184
2185 else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret)
2186 && ret)
2187 {
2188 /* If ra is in the reglist, we have to use the value saved in the
2189 stack frame rather than the current value. */
2190 if (uimm & (1 << NIOS2_RA_REGNUM))
2191 pc = nios2_unwind_pc (gdbarch, frame);
2192 else
2193 pc = get_frame_register_unsigned (frame, NIOS2_RA_REGNUM);
2194 }
2195
2196 else if (nios2_match_trap (insn, op, mach, &uimm) && uimm == 0)
2197 {
2198 if (tdep->syscall_next_pc != NULL)
2199 return tdep->syscall_next_pc (frame, op);
2200 }
2201
2202 else
2203 pc += op->size;
2204
2205 return pc;
2206 }
2207
2208 /* Implement the software_single_step gdbarch method. */
2209
2210 static int
2211 nios2_software_single_step (struct frame_info *frame)
2212 {
2213 struct gdbarch *gdbarch = get_frame_arch (frame);
2214 struct address_space *aspace = get_frame_address_space (frame);
2215 CORE_ADDR next_pc = nios2_get_next_pc (frame, get_frame_pc (frame));
2216
2217 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
2218
2219 return 1;
2220 }
2221
2222 /* Implement the get_longjump_target gdbarch method. */
2223
2224 static int
2225 nios2_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2226 {
2227 struct gdbarch *gdbarch = get_frame_arch (frame);
2228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2229 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2230 CORE_ADDR jb_addr = get_frame_register_unsigned (frame, NIOS2_R4_REGNUM);
2231 gdb_byte buf[4];
2232
2233 if (target_read_memory (jb_addr + (tdep->jb_pc * 4), buf, 4))
2234 return 0;
2235
2236 *pc = extract_unsigned_integer (buf, 4, byte_order);
2237 return 1;
2238 }
2239
2240 /* Initialize the Nios II gdbarch. */
2241
2242 static struct gdbarch *
2243 nios2_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2244 {
2245 struct gdbarch *gdbarch;
2246 struct gdbarch_tdep *tdep;
2247 int register_bytes, i;
2248 struct tdesc_arch_data *tdesc_data = NULL;
2249 const struct target_desc *tdesc = info.target_desc;
2250
2251 if (!tdesc_has_registers (tdesc))
2252 /* Pick a default target description. */
2253 tdesc = tdesc_nios2;
2254
2255 /* Check any target description for validity. */
2256 if (tdesc_has_registers (tdesc))
2257 {
2258 const struct tdesc_feature *feature;
2259 int valid_p;
2260
2261 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nios2.cpu");
2262 if (feature == NULL)
2263 return NULL;
2264
2265 tdesc_data = tdesc_data_alloc ();
2266
2267 valid_p = 1;
2268
2269 for (i = 0; i < NIOS2_NUM_REGS; i++)
2270 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2271 nios2_reg_names[i]);
2272
2273 if (!valid_p)
2274 {
2275 tdesc_data_cleanup (tdesc_data);
2276 return NULL;
2277 }
2278 }
2279
2280 /* Find a candidate among the list of pre-declared architectures. */
2281 arches = gdbarch_list_lookup_by_info (arches, &info);
2282 if (arches != NULL)
2283 return arches->gdbarch;
2284
2285 /* None found, create a new architecture from the information
2286 provided. */
2287 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
2288 gdbarch = gdbarch_alloc (&info, tdep);
2289
2290 /* longjmp support not enabled by default. */
2291 tdep->jb_pc = -1;
2292
2293 /* Data type sizes. */
2294 set_gdbarch_ptr_bit (gdbarch, 32);
2295 set_gdbarch_addr_bit (gdbarch, 32);
2296 set_gdbarch_short_bit (gdbarch, 16);
2297 set_gdbarch_int_bit (gdbarch, 32);
2298 set_gdbarch_long_bit (gdbarch, 32);
2299 set_gdbarch_long_long_bit (gdbarch, 64);
2300 set_gdbarch_float_bit (gdbarch, 32);
2301 set_gdbarch_double_bit (gdbarch, 64);
2302
2303 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2304 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2305
2306 /* The register set. */
2307 set_gdbarch_num_regs (gdbarch, NIOS2_NUM_REGS);
2308 set_gdbarch_sp_regnum (gdbarch, NIOS2_SP_REGNUM);
2309 set_gdbarch_pc_regnum (gdbarch, NIOS2_PC_REGNUM); /* Pseudo register PC */
2310
2311 set_gdbarch_register_name (gdbarch, nios2_register_name);
2312 set_gdbarch_register_type (gdbarch, nios2_register_type);
2313
2314 /* Provide register mappings for stabs and dwarf2. */
2315 set_gdbarch_stab_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
2316 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
2317
2318 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2319
2320 /* Call dummy code. */
2321 set_gdbarch_frame_align (gdbarch, nios2_frame_align);
2322
2323 set_gdbarch_return_value (gdbarch, nios2_return_value);
2324
2325 set_gdbarch_skip_prologue (gdbarch, nios2_skip_prologue);
2326 set_gdbarch_stack_frame_destroyed_p (gdbarch, nios2_stack_frame_destroyed_p);
2327 set_gdbarch_breakpoint_from_pc (gdbarch, nios2_breakpoint_from_pc);
2328
2329 set_gdbarch_dummy_id (gdbarch, nios2_dummy_id);
2330 set_gdbarch_unwind_pc (gdbarch, nios2_unwind_pc);
2331 set_gdbarch_unwind_sp (gdbarch, nios2_unwind_sp);
2332
2333 /* The dwarf2 unwinder will normally produce the best results if
2334 the debug information is available, so register it first. */
2335 dwarf2_append_unwinders (gdbarch);
2336 frame_unwind_append_unwinder (gdbarch, &nios2_stub_frame_unwind);
2337 frame_unwind_append_unwinder (gdbarch, &nios2_frame_unwind);
2338
2339 /* Single stepping. */
2340 set_gdbarch_software_single_step (gdbarch, nios2_software_single_step);
2341
2342 /* Hook in ABI-specific overrides, if they have been registered. */
2343 gdbarch_init_osabi (info, gdbarch);
2344
2345 if (tdep->jb_pc >= 0)
2346 set_gdbarch_get_longjmp_target (gdbarch, nios2_get_longjmp_target);
2347
2348 frame_base_set_default (gdbarch, &nios2_frame_base);
2349
2350 set_gdbarch_print_insn (gdbarch, nios2_print_insn);
2351
2352 /* Enable inferior call support. */
2353 set_gdbarch_push_dummy_call (gdbarch, nios2_push_dummy_call);
2354
2355 if (tdesc_data)
2356 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2357
2358 return gdbarch;
2359 }
2360
2361 extern initialize_file_ftype _initialize_nios2_tdep; /* -Wmissing-prototypes */
2362
2363 void
2364 _initialize_nios2_tdep (void)
2365 {
2366 gdbarch_register (bfd_arch_nios2, nios2_gdbarch_init, NULL);
2367 initialize_tdesc_nios2 ();
2368
2369 /* Allow debugging this file's internals. */
2370 add_setshow_boolean_cmd ("nios2", class_maintenance, &nios2_debug,
2371 _("Set Nios II debugging."),
2372 _("Show Nios II debugging."),
2373 _("When on, Nios II specific debugging is enabled."),
2374 NULL,
2375 NULL,
2376 &setdebuglist, &showdebuglist);
2377 }