]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/objc-exp.y
2003-06-08 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / objc-exp.y
1 /* YACC parser for C expressions, for GDB.
2
3 Copyright 1986, 1989, 1990, 1991, 1993, 1994, 2002 Free Software
4 Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /* Parse a C expression from text in a string, and return the result
22 as a struct expression pointer. That structure contains arithmetic
23 operations in reverse polish, with constants represented by
24 operations that are followed by special data. See expression.h for
25 the details of the format. What is important here is that it can
26 be built up sequentially during the process of parsing; the lower
27 levels of the tree always come first in the result.
28
29 Note that malloc's and realloc's in this file are transformed to
30 xmalloc and xrealloc respectively by the same sed command in the
31 makefile that remaps any other malloc/realloc inserted by the
32 parser generator. Doing this with #defines and trying to control
33 the interaction with include files (<malloc.h> and <stdlib.h> for
34 example) just became too messy, particularly when such includes can
35 be inserted at random times by the parser generator. */
36
37 %{
38
39 #include "defs.h"
40 #include "gdb_string.h"
41 #include <ctype.h>
42 #include "expression.h"
43
44 #include "objc-lang.h" /* For objc language constructs. */
45
46 #include "value.h"
47 #include "parser-defs.h"
48 #include "language.h"
49 #include "c-lang.h"
50 #include "bfd.h" /* Required by objfiles.h. */
51 #include "symfile.h" /* Required by objfiles.h. */
52 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols. */
53 #include "top.h"
54 #include "completer.h" /* For skip_quoted(). */
55 #include "block.h"
56
57 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
58 etc), as well as gratuitiously global symbol names, so we can have
59 multiple yacc generated parsers in gdb. Note that these are only
60 the variables produced by yacc. If other parser generators (bison,
61 byacc, etc) produce additional global names that conflict at link
62 time, then those parser generators need to be fixed instead of
63 adding those names to this list. */
64
65 #define yymaxdepth objc_maxdepth
66 #define yyparse objc_parse
67 #define yylex objc_lex
68 #define yyerror objc_error
69 #define yylval objc_lval
70 #define yychar objc_char
71 #define yydebug objc_debug
72 #define yypact objc_pact
73 #define yyr1 objc_r1
74 #define yyr2 objc_r2
75 #define yydef objc_def
76 #define yychk objc_chk
77 #define yypgo objc_pgo
78 #define yyact objc_act
79 #define yyexca objc_exca
80 #define yyerrflag objc_errflag
81 #define yynerrs objc_nerrs
82 #define yyps objc_ps
83 #define yypv objc_pv
84 #define yys objc_s
85 #define yy_yys objc_yys
86 #define yystate objc_state
87 #define yytmp objc_tmp
88 #define yyv objc_v
89 #define yy_yyv objc_yyv
90 #define yyval objc_val
91 #define yylloc objc_lloc
92 #define yyreds objc_reds /* With YYDEBUG defined */
93 #define yytoks objc_toks /* With YYDEBUG defined */
94 #define yyname objc_name /* With YYDEBUG defined */
95 #define yyrule objc_rule /* With YYDEBUG defined */
96 #define yylhs objc_yylhs
97 #define yylen objc_yylen
98 #define yydefred objc_yydefred
99 #define yydgoto objc_yydgoto
100 #define yysindex objc_yysindex
101 #define yyrindex objc_yyrindex
102 #define yygindex objc_yygindex
103 #define yytable objc_yytable
104 #define yycheck objc_yycheck
105
106 #ifndef YYDEBUG
107 #define YYDEBUG 0 /* Default to no yydebug support. */
108 #endif
109
110 int
111 yyparse PARAMS ((void));
112
113 static int
114 yylex PARAMS ((void));
115
116 void
117 yyerror PARAMS ((char *));
118
119 %}
120
121 /* Although the yacc "value" of an expression is not used,
122 since the result is stored in the structure being created,
123 other node types do have values. */
124
125 %union
126 {
127 LONGEST lval;
128 struct {
129 LONGEST val;
130 struct type *type;
131 } typed_val_int;
132 struct {
133 DOUBLEST dval;
134 struct type *type;
135 } typed_val_float;
136 struct symbol *sym;
137 struct type *tval;
138 struct stoken sval;
139 struct ttype tsym;
140 struct symtoken ssym;
141 int voidval;
142 struct block *bval;
143 enum exp_opcode opcode;
144 struct internalvar *ivar;
145 struct objc_class_str class;
146
147 struct type **tvec;
148 int *ivec;
149 }
150
151 %{
152 /* YYSTYPE gets defined by %union. */
153 static int
154 parse_number PARAMS ((char *, int, int, YYSTYPE *));
155 %}
156
157 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
158 %type <lval> rcurly
159 %type <tval> type typebase
160 %type <tvec> nonempty_typelist
161 /* %type <bval> block */
162
163 /* Fancy type parsing. */
164 %type <voidval> func_mod direct_abs_decl abs_decl
165 %type <tval> ptype
166 %type <lval> array_mod
167
168 %token <typed_val_int> INT
169 %token <typed_val_float> FLOAT
170
171 /* Both NAME and TYPENAME tokens represent symbols in the input, and
172 both convey their data as strings. But a TYPENAME is a string that
173 happens to be defined as a typedef or builtin type name (such as
174 int or char) and a NAME is any other symbol. Contexts where this
175 distinction is not important can use the nonterminal "name", which
176 matches either NAME or TYPENAME. */
177
178 %token <sval> STRING
179 %token <sval> NSSTRING /* ObjC Foundation "NSString" literal */
180 %token <sval> SELECTOR /* ObjC "@selector" pseudo-operator */
181 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
182 %token <tsym> TYPENAME
183 %token <class> CLASSNAME /* ObjC Class name */
184 %type <sval> name
185 %type <ssym> name_not_typename
186 %type <tsym> typename
187
188 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
189 but which would parse as a valid number in the current input radix.
190 E.g. "c" when input_radix==16. Depending on the parse, it will be
191 turned into a name or into a number. */
192
193 %token <ssym> NAME_OR_INT
194
195 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
196 %token TEMPLATE
197 %token ERROR
198
199 /* Special type cases, put in to allow the parser to distinguish
200 different legal basetypes. */
201 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
202
203 %token <voidval> VARIABLE
204
205 %token <opcode> ASSIGN_MODIFY
206
207 %left ','
208 %left ABOVE_COMMA
209 %right '=' ASSIGN_MODIFY
210 %right '?'
211 %left OROR
212 %left ANDAND
213 %left '|'
214 %left '^'
215 %left '&'
216 %left EQUAL NOTEQUAL
217 %left '<' '>' LEQ GEQ
218 %left LSH RSH
219 %left '@'
220 %left '+' '-'
221 %left '*' '/' '%'
222 %right UNARY INCREMENT DECREMENT
223 %right ARROW '.' '[' '('
224 %token <ssym> BLOCKNAME
225 %type <bval> block
226 %left COLONCOLON
227
228 \f
229 %%
230
231 start : exp1
232 | type_exp
233 ;
234
235 type_exp: type
236 { write_exp_elt_opcode(OP_TYPE);
237 write_exp_elt_type($1);
238 write_exp_elt_opcode(OP_TYPE);}
239 ;
240
241 /* Expressions, including the comma operator. */
242 exp1 : exp
243 | exp1 ',' exp
244 { write_exp_elt_opcode (BINOP_COMMA); }
245 ;
246
247 /* Expressions, not including the comma operator. */
248 exp : '*' exp %prec UNARY
249 { write_exp_elt_opcode (UNOP_IND); }
250 ;
251
252 exp : '&' exp %prec UNARY
253 { write_exp_elt_opcode (UNOP_ADDR); }
254 ;
255
256 exp : '-' exp %prec UNARY
257 { write_exp_elt_opcode (UNOP_NEG); }
258 ;
259
260 exp : '!' exp %prec UNARY
261 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
262 ;
263
264 exp : '~' exp %prec UNARY
265 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
266 ;
267
268 exp : INCREMENT exp %prec UNARY
269 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
270 ;
271
272 exp : DECREMENT exp %prec UNARY
273 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
274 ;
275
276 exp : exp INCREMENT %prec UNARY
277 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
278 ;
279
280 exp : exp DECREMENT %prec UNARY
281 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
282 ;
283
284 exp : SIZEOF exp %prec UNARY
285 { write_exp_elt_opcode (UNOP_SIZEOF); }
286 ;
287
288 exp : exp ARROW name
289 { write_exp_elt_opcode (STRUCTOP_PTR);
290 write_exp_string ($3);
291 write_exp_elt_opcode (STRUCTOP_PTR); }
292 ;
293
294 exp : exp ARROW qualified_name
295 { /* exp->type::name becomes exp->*(&type::name) */
296 /* Note: this doesn't work if name is a
297 static member! FIXME */
298 write_exp_elt_opcode (UNOP_ADDR);
299 write_exp_elt_opcode (STRUCTOP_MPTR); }
300 ;
301 exp : exp ARROW '*' exp
302 { write_exp_elt_opcode (STRUCTOP_MPTR); }
303 ;
304
305 exp : exp '.' name
306 { write_exp_elt_opcode (STRUCTOP_STRUCT);
307 write_exp_string ($3);
308 write_exp_elt_opcode (STRUCTOP_STRUCT); }
309 ;
310
311
312 exp : exp '.' qualified_name
313 { /* exp.type::name becomes exp.*(&type::name) */
314 /* Note: this doesn't work if name is a
315 static member! FIXME */
316 write_exp_elt_opcode (UNOP_ADDR);
317 write_exp_elt_opcode (STRUCTOP_MEMBER); }
318 ;
319
320 exp : exp '.' '*' exp
321 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
322 ;
323
324 exp : exp '[' exp1 ']'
325 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
326 ;
327 /*
328 * The rules below parse ObjC message calls of the form:
329 * '[' target selector {':' argument}* ']'
330 */
331
332 exp : '[' TYPENAME
333 {
334 CORE_ADDR class;
335
336 class = lookup_objc_class (copy_name ($2.stoken));
337 if (class == 0)
338 error ("%s is not an ObjC Class",
339 copy_name ($2.stoken));
340 write_exp_elt_opcode (OP_LONG);
341 write_exp_elt_type (builtin_type_int);
342 write_exp_elt_longcst ((LONGEST) class);
343 write_exp_elt_opcode (OP_LONG);
344 start_msglist();
345 }
346 msglist ']'
347 { write_exp_elt_opcode (OP_OBJC_MSGCALL);
348 end_msglist();
349 write_exp_elt_opcode (OP_OBJC_MSGCALL);
350 }
351 ;
352
353 exp : '[' CLASSNAME
354 {
355 write_exp_elt_opcode (OP_LONG);
356 write_exp_elt_type (builtin_type_int);
357 write_exp_elt_longcst ((LONGEST) $2.class);
358 write_exp_elt_opcode (OP_LONG);
359 start_msglist();
360 }
361 msglist ']'
362 { write_exp_elt_opcode (OP_OBJC_MSGCALL);
363 end_msglist();
364 write_exp_elt_opcode (OP_OBJC_MSGCALL);
365 }
366 ;
367
368 exp : '[' exp
369 { start_msglist(); }
370 msglist ']'
371 { write_exp_elt_opcode (OP_OBJC_MSGCALL);
372 end_msglist();
373 write_exp_elt_opcode (OP_OBJC_MSGCALL);
374 }
375 ;
376
377 msglist : name
378 { add_msglist(&$1, 0); }
379 | msgarglist
380 ;
381
382 msgarglist : msgarg
383 | msgarglist msgarg
384 ;
385
386 msgarg : name ':' exp
387 { add_msglist(&$1, 1); }
388 | ':' exp /* Unnamed arg. */
389 { add_msglist(0, 1); }
390 | ',' exp /* Variable number of args. */
391 { add_msglist(0, 0); }
392 ;
393
394 exp : exp '('
395 /* This is to save the value of arglist_len
396 being accumulated by an outer function call. */
397 { start_arglist (); }
398 arglist ')' %prec ARROW
399 { write_exp_elt_opcode (OP_FUNCALL);
400 write_exp_elt_longcst ((LONGEST) end_arglist ());
401 write_exp_elt_opcode (OP_FUNCALL); }
402 ;
403
404 lcurly : '{'
405 { start_arglist (); }
406 ;
407
408 arglist :
409 ;
410
411 arglist : exp
412 { arglist_len = 1; }
413 ;
414
415 arglist : arglist ',' exp %prec ABOVE_COMMA
416 { arglist_len++; }
417 ;
418
419 rcurly : '}'
420 { $$ = end_arglist () - 1; }
421 ;
422 exp : lcurly arglist rcurly %prec ARROW
423 { write_exp_elt_opcode (OP_ARRAY);
424 write_exp_elt_longcst ((LONGEST) 0);
425 write_exp_elt_longcst ((LONGEST) $3);
426 write_exp_elt_opcode (OP_ARRAY); }
427 ;
428
429 exp : lcurly type rcurly exp %prec UNARY
430 { write_exp_elt_opcode (UNOP_MEMVAL);
431 write_exp_elt_type ($2);
432 write_exp_elt_opcode (UNOP_MEMVAL); }
433 ;
434
435 exp : '(' type ')' exp %prec UNARY
436 { write_exp_elt_opcode (UNOP_CAST);
437 write_exp_elt_type ($2);
438 write_exp_elt_opcode (UNOP_CAST); }
439 ;
440
441 exp : '(' exp1 ')'
442 { }
443 ;
444
445 /* Binary operators in order of decreasing precedence. */
446
447 exp : exp '@' exp
448 { write_exp_elt_opcode (BINOP_REPEAT); }
449 ;
450
451 exp : exp '*' exp
452 { write_exp_elt_opcode (BINOP_MUL); }
453 ;
454
455 exp : exp '/' exp
456 { write_exp_elt_opcode (BINOP_DIV); }
457 ;
458
459 exp : exp '%' exp
460 { write_exp_elt_opcode (BINOP_REM); }
461 ;
462
463 exp : exp '+' exp
464 { write_exp_elt_opcode (BINOP_ADD); }
465 ;
466
467 exp : exp '-' exp
468 { write_exp_elt_opcode (BINOP_SUB); }
469 ;
470
471 exp : exp LSH exp
472 { write_exp_elt_opcode (BINOP_LSH); }
473 ;
474
475 exp : exp RSH exp
476 { write_exp_elt_opcode (BINOP_RSH); }
477 ;
478
479 exp : exp EQUAL exp
480 { write_exp_elt_opcode (BINOP_EQUAL); }
481 ;
482
483 exp : exp NOTEQUAL exp
484 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
485 ;
486
487 exp : exp LEQ exp
488 { write_exp_elt_opcode (BINOP_LEQ); }
489 ;
490
491 exp : exp GEQ exp
492 { write_exp_elt_opcode (BINOP_GEQ); }
493 ;
494
495 exp : exp '<' exp
496 { write_exp_elt_opcode (BINOP_LESS); }
497 ;
498
499 exp : exp '>' exp
500 { write_exp_elt_opcode (BINOP_GTR); }
501 ;
502
503 exp : exp '&' exp
504 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
505 ;
506
507 exp : exp '^' exp
508 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
509 ;
510
511 exp : exp '|' exp
512 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
513 ;
514
515 exp : exp ANDAND exp
516 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
517 ;
518
519 exp : exp OROR exp
520 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
521 ;
522
523 exp : exp '?' exp ':' exp %prec '?'
524 { write_exp_elt_opcode (TERNOP_COND); }
525 ;
526
527 exp : exp '=' exp
528 { write_exp_elt_opcode (BINOP_ASSIGN); }
529 ;
530
531 exp : exp ASSIGN_MODIFY exp
532 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
533 write_exp_elt_opcode ($2);
534 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
535 ;
536
537 exp : INT
538 { write_exp_elt_opcode (OP_LONG);
539 write_exp_elt_type ($1.type);
540 write_exp_elt_longcst ((LONGEST)($1.val));
541 write_exp_elt_opcode (OP_LONG); }
542 ;
543
544 exp : NAME_OR_INT
545 { YYSTYPE val;
546 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
547 write_exp_elt_opcode (OP_LONG);
548 write_exp_elt_type (val.typed_val_int.type);
549 write_exp_elt_longcst ((LONGEST)val.typed_val_int.val);
550 write_exp_elt_opcode (OP_LONG);
551 }
552 ;
553
554
555 exp : FLOAT
556 { write_exp_elt_opcode (OP_DOUBLE);
557 write_exp_elt_type ($1.type);
558 write_exp_elt_dblcst ($1.dval);
559 write_exp_elt_opcode (OP_DOUBLE); }
560 ;
561
562 exp : variable
563 ;
564
565 exp : VARIABLE
566 /* Already written by write_dollar_variable. */
567 ;
568
569 exp : SELECTOR
570 {
571 write_exp_elt_opcode (OP_OBJC_SELECTOR);
572 write_exp_string ($1);
573 write_exp_elt_opcode (OP_OBJC_SELECTOR); }
574 ;
575
576 exp : SIZEOF '(' type ')' %prec UNARY
577 { write_exp_elt_opcode (OP_LONG);
578 write_exp_elt_type (builtin_type_int);
579 CHECK_TYPEDEF ($3);
580 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
581 write_exp_elt_opcode (OP_LONG); }
582 ;
583
584 exp : STRING
585 { /* C strings are converted into array
586 constants with an explicit null byte
587 added at the end. Thus the array upper
588 bound is the string length. There is no
589 such thing in C as a completely empty
590 string. */
591 char *sp = $1.ptr; int count = $1.length;
592 while (count-- > 0)
593 {
594 write_exp_elt_opcode (OP_LONG);
595 write_exp_elt_type (builtin_type_char);
596 write_exp_elt_longcst ((LONGEST)(*sp++));
597 write_exp_elt_opcode (OP_LONG);
598 }
599 write_exp_elt_opcode (OP_LONG);
600 write_exp_elt_type (builtin_type_char);
601 write_exp_elt_longcst ((LONGEST)'\0');
602 write_exp_elt_opcode (OP_LONG);
603 write_exp_elt_opcode (OP_ARRAY);
604 write_exp_elt_longcst ((LONGEST) 0);
605 write_exp_elt_longcst ((LONGEST) ($1.length));
606 write_exp_elt_opcode (OP_ARRAY); }
607 ;
608
609 exp : NSSTRING /* ObjC NextStep NSString constant
610 * of the form '@' '"' string '"'.
611 */
612 { write_exp_elt_opcode (OP_OBJC_NSSTRING);
613 write_exp_string ($1);
614 write_exp_elt_opcode (OP_OBJC_NSSTRING); }
615 ;
616
617 block : BLOCKNAME
618 {
619 if ($1.sym != 0)
620 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
621 else
622 {
623 struct symtab *tem =
624 lookup_symtab (copy_name ($1.stoken));
625 if (tem)
626 $$ = BLOCKVECTOR_BLOCK (BLOCKVECTOR (tem), STATIC_BLOCK);
627 else
628 error ("No file or function \"%s\".",
629 copy_name ($1.stoken));
630 }
631 }
632 ;
633
634 block : block COLONCOLON name
635 { struct symbol *tem
636 = lookup_symbol (copy_name ($3), $1,
637 VAR_DOMAIN, (int *) NULL,
638 (struct symtab **) NULL);
639 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
640 error ("No function \"%s\" in specified context.",
641 copy_name ($3));
642 $$ = SYMBOL_BLOCK_VALUE (tem); }
643 ;
644
645 variable: block COLONCOLON name
646 { struct symbol *sym;
647 sym = lookup_symbol (copy_name ($3), $1,
648 VAR_DOMAIN, (int *) NULL,
649 (struct symtab **) NULL);
650 if (sym == 0)
651 error ("No symbol \"%s\" in specified context.",
652 copy_name ($3));
653
654 write_exp_elt_opcode (OP_VAR_VALUE);
655 /* block_found is set by lookup_symbol. */
656 write_exp_elt_block (block_found);
657 write_exp_elt_sym (sym);
658 write_exp_elt_opcode (OP_VAR_VALUE); }
659 ;
660
661 qualified_name: typebase COLONCOLON name
662 {
663 struct type *type = $1;
664 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
665 && TYPE_CODE (type) != TYPE_CODE_UNION)
666 error ("`%s' is not defined as an aggregate type.",
667 TYPE_NAME (type));
668
669 write_exp_elt_opcode (OP_SCOPE);
670 write_exp_elt_type (type);
671 write_exp_string ($3);
672 write_exp_elt_opcode (OP_SCOPE);
673 }
674 | typebase COLONCOLON '~' name
675 {
676 struct type *type = $1;
677 struct stoken tmp_token;
678 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
679 && TYPE_CODE (type) != TYPE_CODE_UNION)
680 error ("`%s' is not defined as an aggregate type.",
681 TYPE_NAME (type));
682
683 if (!STREQ (type_name_no_tag (type), $4.ptr))
684 error ("invalid destructor `%s::~%s'",
685 type_name_no_tag (type), $4.ptr);
686
687 tmp_token.ptr = (char*) alloca ($4.length + 2);
688 tmp_token.length = $4.length + 1;
689 tmp_token.ptr[0] = '~';
690 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
691 tmp_token.ptr[tmp_token.length] = 0;
692 write_exp_elt_opcode (OP_SCOPE);
693 write_exp_elt_type (type);
694 write_exp_string (tmp_token);
695 write_exp_elt_opcode (OP_SCOPE);
696 }
697 ;
698
699 variable: qualified_name
700 | COLONCOLON name
701 {
702 char *name = copy_name ($2);
703 struct symbol *sym;
704 struct minimal_symbol *msymbol;
705
706 sym =
707 lookup_symbol (name, (const struct block *) NULL,
708 VAR_DOMAIN, (int *) NULL,
709 (struct symtab **) NULL);
710 if (sym)
711 {
712 write_exp_elt_opcode (OP_VAR_VALUE);
713 write_exp_elt_block (NULL);
714 write_exp_elt_sym (sym);
715 write_exp_elt_opcode (OP_VAR_VALUE);
716 break;
717 }
718
719 msymbol = lookup_minimal_symbol (name, NULL, NULL);
720 if (msymbol != NULL)
721 {
722 write_exp_msymbol (msymbol,
723 lookup_function_type (builtin_type_int),
724 builtin_type_int);
725 }
726 else
727 if (!have_full_symbols () && !have_partial_symbols ())
728 error ("No symbol table is loaded. Use the \"file\" command.");
729 else
730 error ("No symbol \"%s\" in current context.", name);
731 }
732 ;
733
734 variable: name_not_typename
735 { struct symbol *sym = $1.sym;
736
737 if (sym)
738 {
739 if (symbol_read_needs_frame (sym))
740 {
741 if (innermost_block == 0 ||
742 contained_in (block_found,
743 innermost_block))
744 innermost_block = block_found;
745 }
746
747 write_exp_elt_opcode (OP_VAR_VALUE);
748 /* We want to use the selected frame, not
749 another more inner frame which happens to
750 be in the same block. */
751 write_exp_elt_block (NULL);
752 write_exp_elt_sym (sym);
753 write_exp_elt_opcode (OP_VAR_VALUE);
754 }
755 else if ($1.is_a_field_of_this)
756 {
757 /* C++/ObjC: it hangs off of `this'/'self'.
758 Must not inadvertently convert from a
759 method call to data ref. */
760 if (innermost_block == 0 ||
761 contained_in (block_found, innermost_block))
762 innermost_block = block_found;
763 write_exp_elt_opcode (OP_OBJC_SELF);
764 write_exp_elt_opcode (OP_OBJC_SELF);
765 write_exp_elt_opcode (STRUCTOP_PTR);
766 write_exp_string ($1.stoken);
767 write_exp_elt_opcode (STRUCTOP_PTR);
768 }
769 else
770 {
771 struct minimal_symbol *msymbol;
772 register char *arg = copy_name ($1.stoken);
773
774 msymbol =
775 lookup_minimal_symbol (arg, NULL, NULL);
776 if (msymbol != NULL)
777 {
778 write_exp_msymbol (msymbol,
779 lookup_function_type (builtin_type_int),
780 builtin_type_int);
781 }
782 else if (!have_full_symbols () &&
783 !have_partial_symbols ())
784 error ("No symbol table is loaded. Use the \"file\" command.");
785 else
786 error ("No symbol \"%s\" in current context.",
787 copy_name ($1.stoken));
788 }
789 }
790 ;
791
792
793 ptype : typebase
794 /* "const" and "volatile" are curently ignored. A type
795 qualifier before the type is currently handled in the
796 typebase rule. The reason for recognizing these here
797 (shift/reduce conflicts) might be obsolete now that some
798 pointer to member rules have been deleted. */
799 | typebase CONST_KEYWORD
800 | typebase VOLATILE_KEYWORD
801 | typebase abs_decl
802 { $$ = follow_types ($1); }
803 | typebase CONST_KEYWORD abs_decl
804 { $$ = follow_types ($1); }
805 | typebase VOLATILE_KEYWORD abs_decl
806 { $$ = follow_types ($1); }
807 ;
808
809 abs_decl: '*'
810 { push_type (tp_pointer); $$ = 0; }
811 | '*' abs_decl
812 { push_type (tp_pointer); $$ = $2; }
813 | '&'
814 { push_type (tp_reference); $$ = 0; }
815 | '&' abs_decl
816 { push_type (tp_reference); $$ = $2; }
817 | direct_abs_decl
818 ;
819
820 direct_abs_decl: '(' abs_decl ')'
821 { $$ = $2; }
822 | direct_abs_decl array_mod
823 {
824 push_type_int ($2);
825 push_type (tp_array);
826 }
827 | array_mod
828 {
829 push_type_int ($1);
830 push_type (tp_array);
831 $$ = 0;
832 }
833
834 | direct_abs_decl func_mod
835 { push_type (tp_function); }
836 | func_mod
837 { push_type (tp_function); }
838 ;
839
840 array_mod: '[' ']'
841 { $$ = -1; }
842 | '[' INT ']'
843 { $$ = $2.val; }
844 ;
845
846 func_mod: '(' ')'
847 { $$ = 0; }
848 | '(' nonempty_typelist ')'
849 { free ($2); $$ = 0; }
850 ;
851
852 /* We used to try to recognize more pointer to member types here, but
853 that didn't work (shift/reduce conflicts meant that these rules
854 never got executed). The problem is that
855 int (foo::bar::baz::bizzle)
856 is a function type but
857 int (foo::bar::baz::bizzle::*)
858 is a pointer to member type. Stroustrup loses again! */
859
860 type : ptype
861 | typebase COLONCOLON '*'
862 { $$ = lookup_member_type (builtin_type_int, $1); }
863 ;
864
865 typebase /* Implements (approximately): (type-qualifier)* type-specifier. */
866 : TYPENAME
867 { $$ = $1.type; }
868 | CLASSNAME
869 {
870 if ($1.type == NULL)
871 error ("No symbol \"%s\" in current context.",
872 copy_name($1.stoken));
873 else
874 $$ = $1.type;
875 }
876 | INT_KEYWORD
877 { $$ = builtin_type_int; }
878 | LONG
879 { $$ = builtin_type_long; }
880 | SHORT
881 { $$ = builtin_type_short; }
882 | LONG INT_KEYWORD
883 { $$ = builtin_type_long; }
884 | UNSIGNED LONG INT_KEYWORD
885 { $$ = builtin_type_unsigned_long; }
886 | LONG LONG
887 { $$ = builtin_type_long_long; }
888 | LONG LONG INT_KEYWORD
889 { $$ = builtin_type_long_long; }
890 | UNSIGNED LONG LONG
891 { $$ = builtin_type_unsigned_long_long; }
892 | UNSIGNED LONG LONG INT_KEYWORD
893 { $$ = builtin_type_unsigned_long_long; }
894 | SHORT INT_KEYWORD
895 { $$ = builtin_type_short; }
896 | UNSIGNED SHORT INT_KEYWORD
897 { $$ = builtin_type_unsigned_short; }
898 | DOUBLE_KEYWORD
899 { $$ = builtin_type_double; }
900 | LONG DOUBLE_KEYWORD
901 { $$ = builtin_type_long_double; }
902 | STRUCT name
903 { $$ = lookup_struct (copy_name ($2),
904 expression_context_block); }
905 | CLASS name
906 { $$ = lookup_struct (copy_name ($2),
907 expression_context_block); }
908 | UNION name
909 { $$ = lookup_union (copy_name ($2),
910 expression_context_block); }
911 | ENUM name
912 { $$ = lookup_enum (copy_name ($2),
913 expression_context_block); }
914 | UNSIGNED typename
915 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
916 | UNSIGNED
917 { $$ = builtin_type_unsigned_int; }
918 | SIGNED_KEYWORD typename
919 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
920 | SIGNED_KEYWORD
921 { $$ = builtin_type_int; }
922 | TEMPLATE name '<' type '>'
923 { $$ = lookup_template_type(copy_name($2), $4,
924 expression_context_block);
925 }
926 /* "const" and "volatile" are curently ignored. A type
927 qualifier after the type is handled in the ptype rule. I
928 think these could be too. */
929 | CONST_KEYWORD typebase { $$ = $2; }
930 | VOLATILE_KEYWORD typebase { $$ = $2; }
931 ;
932
933 typename: TYPENAME
934 | INT_KEYWORD
935 {
936 $$.stoken.ptr = "int";
937 $$.stoken.length = 3;
938 $$.type = builtin_type_int;
939 }
940 | LONG
941 {
942 $$.stoken.ptr = "long";
943 $$.stoken.length = 4;
944 $$.type = builtin_type_long;
945 }
946 | SHORT
947 {
948 $$.stoken.ptr = "short";
949 $$.stoken.length = 5;
950 $$.type = builtin_type_short;
951 }
952 ;
953
954 nonempty_typelist
955 : type
956 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
957 $<ivec>$[0] = 1; /* Number of types in vector. */
958 $$[1] = $1;
959 }
960 | nonempty_typelist ',' type
961 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
962 $$ = (struct type **) realloc ((char *) $1, len);
963 $$[$<ivec>$[0]] = $3;
964 }
965 ;
966
967 name : NAME { $$ = $1.stoken; }
968 | BLOCKNAME { $$ = $1.stoken; }
969 | TYPENAME { $$ = $1.stoken; }
970 | CLASSNAME { $$ = $1.stoken; }
971 | NAME_OR_INT { $$ = $1.stoken; }
972 ;
973
974 name_not_typename : NAME
975 | BLOCKNAME
976 /* These would be useful if name_not_typename was useful, but it is
977 just a fake for "variable", so these cause reduce/reduce conflicts
978 because the parser can't tell whether NAME_OR_INT is a
979 name_not_typename (=variable, =exp) or just an exp. If
980 name_not_typename was ever used in an lvalue context where only a
981 name could occur, this might be useful. */
982 /* | NAME_OR_INT */
983 ;
984
985 %%
986
987 /* Take care of parsing a number (anything that starts with a digit).
988 Set yylval and return the token type; update lexptr. LEN is the
989 number of characters in it. */
990
991 /*** Needs some error checking for the float case. ***/
992
993 static int
994 parse_number (p, len, parsed_float, putithere)
995 register char *p;
996 register int len;
997 int parsed_float;
998 YYSTYPE *putithere;
999 {
1000 /* FIXME: Shouldn't these be unsigned? We don't deal with negative
1001 values here, and we do kind of silly things like cast to
1002 unsigned. */
1003 register LONGEST n = 0;
1004 register LONGEST prevn = 0;
1005 unsigned LONGEST un;
1006
1007 register int i = 0;
1008 register int c;
1009 register int base = input_radix;
1010 int unsigned_p = 0;
1011
1012 /* Number of "L" suffixes encountered. */
1013 int long_p = 0;
1014
1015 /* We have found a "L" or "U" suffix. */
1016 int found_suffix = 0;
1017
1018 unsigned LONGEST high_bit;
1019 struct type *signed_type;
1020 struct type *unsigned_type;
1021
1022 if (parsed_float)
1023 {
1024 char c;
1025
1026 /* It's a float since it contains a point or an exponent. */
1027
1028 if (sizeof (putithere->typed_val_float.dval) <= sizeof (float))
1029 sscanf (p, "%g", (float *)&putithere->typed_val_float.dval);
1030 else if (sizeof (putithere->typed_val_float.dval) <= sizeof (double))
1031 sscanf (p, "%lg", (double *)&putithere->typed_val_float.dval);
1032 else
1033 {
1034 #ifdef PRINTF_HAS_LONG_DOUBLE
1035 sscanf (p, "%Lg", &putithere->typed_val_float.dval);
1036 #else
1037 /* Scan it into a double, then assign it to the long double.
1038 This at least wins with values representable in the range
1039 of doubles. */
1040 double temp;
1041 sscanf (p, "%lg", &temp);
1042 putithere->typed_val_float.dval = temp;
1043 #endif
1044 }
1045
1046 /* See if it has `f' or `l' suffix (float or long double). */
1047
1048 c = tolower (p[len - 1]);
1049
1050 if (c == 'f')
1051 putithere->typed_val_float.type = builtin_type_float;
1052 else if (c == 'l')
1053 putithere->typed_val_float.type = builtin_type_long_double;
1054 else if (isdigit (c) || c == '.')
1055 putithere->typed_val_float.type = builtin_type_double;
1056 else
1057 return ERROR;
1058
1059 return FLOAT;
1060 }
1061
1062 /* Handle base-switching prefixes 0x, 0t, 0d, and 0. */
1063 if (p[0] == '0')
1064 switch (p[1])
1065 {
1066 case 'x':
1067 case 'X':
1068 if (len >= 3)
1069 {
1070 p += 2;
1071 base = 16;
1072 len -= 2;
1073 }
1074 break;
1075
1076 case 't':
1077 case 'T':
1078 case 'd':
1079 case 'D':
1080 if (len >= 3)
1081 {
1082 p += 2;
1083 base = 10;
1084 len -= 2;
1085 }
1086 break;
1087
1088 default:
1089 base = 8;
1090 break;
1091 }
1092
1093 while (len-- > 0)
1094 {
1095 c = *p++;
1096 if (c >= 'A' && c <= 'Z')
1097 c += 'a' - 'A';
1098 if (c != 'l' && c != 'u')
1099 n *= base;
1100 if (c >= '0' && c <= '9')
1101 {
1102 if (found_suffix)
1103 return ERROR;
1104 n += i = c - '0';
1105 }
1106 else
1107 {
1108 if (base > 10 && c >= 'a' && c <= 'f')
1109 {
1110 if (found_suffix)
1111 return ERROR;
1112 n += i = c - 'a' + 10;
1113 }
1114 else if (c == 'l')
1115 {
1116 ++long_p;
1117 found_suffix = 1;
1118 }
1119 else if (c == 'u')
1120 {
1121 unsigned_p = 1;
1122 found_suffix = 1;
1123 }
1124 else
1125 return ERROR; /* Char not a digit. */
1126 }
1127 if (i >= base)
1128 return ERROR; /* Invalid digit in this base. */
1129
1130 /* Portably test for overflow (only works for nonzero values, so
1131 make a second check for zero). FIXME: Can't we just make n
1132 and prevn unsigned and avoid this? */
1133 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1134 unsigned_p = 1; /* Try something unsigned. */
1135
1136 /* Portably test for unsigned overflow.
1137 FIXME: This check is wrong; for example it doesn't find
1138 overflow on 0x123456789 when LONGEST is 32 bits. */
1139 if (c != 'l' && c != 'u' && n != 0)
1140 {
1141 if ((unsigned_p && (unsigned LONGEST) prevn >= (unsigned LONGEST) n))
1142 error ("Numeric constant too large.");
1143 }
1144 prevn = n;
1145 }
1146
1147 /* An integer constant is an int, a long, or a long long. An L
1148 suffix forces it to be long; an LL suffix forces it to be long
1149 long. If not forced to a larger size, it gets the first type of
1150 the above that it fits in. To figure out whether it fits, we
1151 shift it right and see whether anything remains. Note that we
1152 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1153 operation, because many compilers will warn about such a shift
1154 (which always produces a zero result). Sometimes TARGET_INT_BIT
1155 or TARGET_LONG_BIT will be that big, sometimes not. To deal with
1156 the case where it is we just always shift the value more than
1157 once, with fewer bits each time. */
1158
1159 un = (unsigned LONGEST)n >> 2;
1160 if (long_p == 0
1161 && (un >> (TARGET_INT_BIT - 2)) == 0)
1162 {
1163 high_bit = ((unsigned LONGEST)1) << (TARGET_INT_BIT-1);
1164
1165 /* A large decimal (not hex or octal) constant (between INT_MAX
1166 and UINT_MAX) is a long or unsigned long, according to ANSI,
1167 never an unsigned int, but this code treats it as unsigned
1168 int. This probably should be fixed. GCC gives a warning on
1169 such constants. */
1170
1171 unsigned_type = builtin_type_unsigned_int;
1172 signed_type = builtin_type_int;
1173 }
1174 else if (long_p <= 1
1175 && (un >> (TARGET_LONG_BIT - 2)) == 0)
1176 {
1177 high_bit = ((unsigned LONGEST)1) << (TARGET_LONG_BIT-1);
1178 unsigned_type = builtin_type_unsigned_long;
1179 signed_type = builtin_type_long;
1180 }
1181 else
1182 {
1183 high_bit = (((unsigned LONGEST)1)
1184 << (TARGET_LONG_LONG_BIT - 32 - 1)
1185 << 16
1186 << 16);
1187 if (high_bit == 0)
1188 /* A long long does not fit in a LONGEST. */
1189 high_bit =
1190 (unsigned LONGEST)1 << (sizeof (LONGEST) * HOST_CHAR_BIT - 1);
1191 unsigned_type = builtin_type_unsigned_long_long;
1192 signed_type = builtin_type_long_long;
1193 }
1194
1195 putithere->typed_val_int.val = n;
1196
1197 /* If the high bit of the worked out type is set then this number
1198 has to be unsigned. */
1199
1200 if (unsigned_p || (n & high_bit))
1201 {
1202 putithere->typed_val_int.type = unsigned_type;
1203 }
1204 else
1205 {
1206 putithere->typed_val_int.type = signed_type;
1207 }
1208
1209 return INT;
1210 }
1211
1212 struct token
1213 {
1214 char *operator;
1215 int token;
1216 enum exp_opcode opcode;
1217 };
1218
1219 static const struct token tokentab3[] =
1220 {
1221 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1222 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1223 };
1224
1225 static const struct token tokentab2[] =
1226 {
1227 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1228 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1229 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1230 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1231 {"%=", ASSIGN_MODIFY, BINOP_REM},
1232 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1233 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1234 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1235 {"++", INCREMENT, BINOP_END},
1236 {"--", DECREMENT, BINOP_END},
1237 {"->", ARROW, BINOP_END},
1238 {"&&", ANDAND, BINOP_END},
1239 {"||", OROR, BINOP_END},
1240 {"::", COLONCOLON, BINOP_END},
1241 {"<<", LSH, BINOP_END},
1242 {">>", RSH, BINOP_END},
1243 {"==", EQUAL, BINOP_END},
1244 {"!=", NOTEQUAL, BINOP_END},
1245 {"<=", LEQ, BINOP_END},
1246 {">=", GEQ, BINOP_END}
1247 };
1248
1249 /* Read one token, getting characters through lexptr. */
1250
1251 static int
1252 yylex ()
1253 {
1254 int c, tokchr;
1255 int namelen;
1256 unsigned int i;
1257 char *tokstart;
1258 char *tokptr;
1259 int tempbufindex;
1260 static char *tempbuf;
1261 static int tempbufsize;
1262
1263 retry:
1264
1265 tokstart = lexptr;
1266 /* See if it is a special token of length 3. */
1267 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1268 if (STREQN (tokstart, tokentab3[i].operator, 3))
1269 {
1270 lexptr += 3;
1271 yylval.opcode = tokentab3[i].opcode;
1272 return tokentab3[i].token;
1273 }
1274
1275 /* See if it is a special token of length 2. */
1276 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1277 if (STREQN (tokstart, tokentab2[i].operator, 2))
1278 {
1279 lexptr += 2;
1280 yylval.opcode = tokentab2[i].opcode;
1281 return tokentab2[i].token;
1282 }
1283
1284 c = 0;
1285 switch (tokchr = *tokstart)
1286 {
1287 case 0:
1288 return 0;
1289
1290 case ' ':
1291 case '\t':
1292 case '\n':
1293 lexptr++;
1294 goto retry;
1295
1296 case '\'':
1297 /* We either have a character constant ('0' or '\177' for
1298 example) or we have a quoted symbol reference ('foo(int,int)'
1299 in C++ for example). */
1300 lexptr++;
1301 c = *lexptr++;
1302 if (c == '\\')
1303 c = parse_escape (&lexptr);
1304 else if (c == '\'')
1305 error ("Empty character constant.");
1306
1307 yylval.typed_val_int.val = c;
1308 yylval.typed_val_int.type = builtin_type_char;
1309
1310 c = *lexptr++;
1311 if (c != '\'')
1312 {
1313 namelen = skip_quoted (tokstart) - tokstart;
1314 if (namelen > 2)
1315 {
1316 lexptr = tokstart + namelen;
1317 if (lexptr[-1] != '\'')
1318 error ("Unmatched single quote.");
1319 namelen -= 2;
1320 tokstart++;
1321 goto tryname;
1322 }
1323 error ("Invalid character constant.");
1324 }
1325 return INT;
1326
1327 case '(':
1328 paren_depth++;
1329 lexptr++;
1330 return '(';
1331
1332 case ')':
1333 if (paren_depth == 0)
1334 return 0;
1335 paren_depth--;
1336 lexptr++;
1337 return ')';
1338
1339 case ',':
1340 if (comma_terminates && paren_depth == 0)
1341 return 0;
1342 lexptr++;
1343 return ',';
1344
1345 case '.':
1346 /* Might be a floating point number. */
1347 if (lexptr[1] < '0' || lexptr[1] > '9')
1348 goto symbol; /* Nope, must be a symbol. */
1349 /* FALL THRU into number case. */
1350
1351 case '0':
1352 case '1':
1353 case '2':
1354 case '3':
1355 case '4':
1356 case '5':
1357 case '6':
1358 case '7':
1359 case '8':
1360 case '9':
1361 {
1362 /* It's a number. */
1363 int got_dot = 0, got_e = 0, toktype = FLOAT;
1364 /* Initialize toktype to anything other than ERROR. */
1365 register char *p = tokstart;
1366 int hex = input_radix > 10;
1367 int local_radix = input_radix;
1368 if (tokchr == '0' && (p[1] == 'x' || p[1] == 'X'))
1369 {
1370 p += 2;
1371 hex = 1;
1372 local_radix = 16;
1373 }
1374 else if (tokchr == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1375 {
1376 p += 2;
1377 hex = 0;
1378 local_radix = 10;
1379 }
1380
1381 for (;; ++p)
1382 {
1383 /* This test includes !hex because 'e' is a valid hex digit
1384 and thus does not indicate a floating point number when
1385 the radix is hex. */
1386
1387 if (!hex && (*p == 'e' || *p == 'E'))
1388 if (got_e)
1389 toktype = ERROR; /* Only one 'e' in a float. */
1390 else
1391 got_e = 1;
1392 /* This test does not include !hex, because a '.' always
1393 indicates a decimal floating point number regardless of
1394 the radix. */
1395 else if (*p == '.')
1396 if (got_dot)
1397 toktype = ERROR; /* Only one '.' in a float. */
1398 else
1399 got_dot = 1;
1400 else if (got_e && (p[-1] == 'e' || p[-1] == 'E') &&
1401 (*p == '-' || *p == '+'))
1402 /* This is the sign of the exponent, not the end of the
1403 number. */
1404 continue;
1405 /* Always take decimal digits; parse_number handles radix
1406 error. */
1407 else if (*p >= '0' && *p <= '9')
1408 continue;
1409 /* We will take letters only if hex is true, and only up
1410 to what the input radix would permit. FSF was content
1411 to rely on parse_number to validate; but it leaks. */
1412 else if (*p >= 'a' && *p <= 'z')
1413 {
1414 if (!hex || *p >= ('a' + local_radix - 10))
1415 toktype = ERROR;
1416 }
1417 else if (*p >= 'A' && *p <= 'Z')
1418 {
1419 if (!hex || *p >= ('A' + local_radix - 10))
1420 toktype = ERROR;
1421 }
1422 else break;
1423 }
1424 if (toktype != ERROR)
1425 toktype = parse_number (tokstart, p - tokstart,
1426 got_dot | got_e, &yylval);
1427 if (toktype == ERROR)
1428 {
1429 char *err_copy = (char *) alloca (p - tokstart + 1);
1430
1431 memcpy (err_copy, tokstart, p - tokstart);
1432 err_copy[p - tokstart] = 0;
1433 error ("Invalid number \"%s\".", err_copy);
1434 }
1435 lexptr = p;
1436 return toktype;
1437 }
1438
1439 case '+':
1440 case '-':
1441 case '*':
1442 case '/':
1443 case '%':
1444 case '|':
1445 case '&':
1446 case '^':
1447 case '~':
1448 case '!':
1449 #if 0
1450 case '@': /* Moved out below. */
1451 #endif
1452 case '<':
1453 case '>':
1454 case '[':
1455 case ']':
1456 case '?':
1457 case ':':
1458 case '=':
1459 case '{':
1460 case '}':
1461 symbol:
1462 lexptr++;
1463 return tokchr;
1464
1465 case '@':
1466 if (strncmp(tokstart, "@selector", 9) == 0)
1467 {
1468 tokptr = strchr(tokstart, '(');
1469 if (tokptr == NULL)
1470 {
1471 error ("Missing '(' in @selector(...)");
1472 }
1473 tempbufindex = 0;
1474 tokptr++; /* Skip the '('. */
1475 do {
1476 /* Grow the static temp buffer if necessary, including
1477 allocating the first one on demand. */
1478 if (tempbufindex + 1 >= tempbufsize)
1479 {
1480 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1481 }
1482 tempbuf[tempbufindex++] = *tokptr++;
1483 } while ((*tokptr != ')') && (*tokptr != '\0'));
1484 if (*tokptr++ != ')')
1485 {
1486 error ("Missing ')' in @selector(...)");
1487 }
1488 tempbuf[tempbufindex] = '\0';
1489 yylval.sval.ptr = tempbuf;
1490 yylval.sval.length = tempbufindex;
1491 lexptr = tokptr;
1492 return SELECTOR;
1493 }
1494 if (tokstart[1] != '"')
1495 {
1496 lexptr++;
1497 return tokchr;
1498 }
1499 /* ObjC NextStep NSString constant: fall thru and parse like
1500 STRING. */
1501 tokstart++;
1502
1503 case '"':
1504
1505 /* Build the gdb internal form of the input string in tempbuf,
1506 translating any standard C escape forms seen. Note that the
1507 buffer is null byte terminated *only* for the convenience of
1508 debugging gdb itself and printing the buffer contents when
1509 the buffer contains no embedded nulls. Gdb does not depend
1510 upon the buffer being null byte terminated, it uses the
1511 length string instead. This allows gdb to handle C strings
1512 (as well as strings in other languages) with embedded null
1513 bytes. */
1514
1515 tokptr = ++tokstart;
1516 tempbufindex = 0;
1517
1518 do {
1519 /* Grow the static temp buffer if necessary, including
1520 allocating the first one on demand. */
1521 if (tempbufindex + 1 >= tempbufsize)
1522 {
1523 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1524 }
1525 switch (*tokptr)
1526 {
1527 case '\0':
1528 case '"':
1529 /* Do nothing, loop will terminate. */
1530 break;
1531 case '\\':
1532 tokptr++;
1533 c = parse_escape (&tokptr);
1534 if (c == -1)
1535 {
1536 continue;
1537 }
1538 tempbuf[tempbufindex++] = c;
1539 break;
1540 default:
1541 tempbuf[tempbufindex++] = *tokptr++;
1542 break;
1543 }
1544 } while ((*tokptr != '"') && (*tokptr != '\0'));
1545 if (*tokptr++ != '"')
1546 {
1547 error ("Unterminated string in expression.");
1548 }
1549 tempbuf[tempbufindex] = '\0'; /* See note above. */
1550 yylval.sval.ptr = tempbuf;
1551 yylval.sval.length = tempbufindex;
1552 lexptr = tokptr;
1553 return (tokchr == '@' ? NSSTRING : STRING);
1554 }
1555
1556 if (!(tokchr == '_' || tokchr == '$' ||
1557 (tokchr >= 'a' && tokchr <= 'z') || (tokchr >= 'A' && tokchr <= 'Z')))
1558 /* We must have come across a bad character (e.g. ';'). */
1559 error ("Invalid character '%c' in expression.", c);
1560
1561 /* It's a name. See how long it is. */
1562 namelen = 0;
1563 for (c = tokstart[namelen];
1564 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1565 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
1566 {
1567 if (c == '<')
1568 {
1569 int i = namelen;
1570 while (tokstart[++i] && tokstart[i] != '>');
1571 if (tokstart[i] == '>')
1572 namelen = i;
1573 }
1574 c = tokstart[++namelen];
1575 }
1576
1577 /* The token "if" terminates the expression and is NOT
1578 removed from the input stream. */
1579 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1580 {
1581 return 0;
1582 }
1583
1584 lexptr += namelen;
1585
1586 tryname:
1587
1588 /* Catch specific keywords. Should be done with a data structure. */
1589 switch (namelen)
1590 {
1591 case 8:
1592 if (STREQN (tokstart, "unsigned", 8))
1593 return UNSIGNED;
1594 if (current_language->la_language == language_cplus
1595 && STREQN (tokstart, "template", 8))
1596 return TEMPLATE;
1597 if (STREQN (tokstart, "volatile", 8))
1598 return VOLATILE_KEYWORD;
1599 break;
1600 case 6:
1601 if (STREQN (tokstart, "struct", 6))
1602 return STRUCT;
1603 if (STREQN (tokstart, "signed", 6))
1604 return SIGNED_KEYWORD;
1605 if (STREQN (tokstart, "sizeof", 6))
1606 return SIZEOF;
1607 if (STREQN (tokstart, "double", 6))
1608 return DOUBLE_KEYWORD;
1609 break;
1610 case 5:
1611 if ((current_language->la_language == language_cplus)
1612 && STREQN (tokstart, "class", 5))
1613 return CLASS;
1614 if (STREQN (tokstart, "union", 5))
1615 return UNION;
1616 if (STREQN (tokstart, "short", 5))
1617 return SHORT;
1618 if (STREQN (tokstart, "const", 5))
1619 return CONST_KEYWORD;
1620 break;
1621 case 4:
1622 if (STREQN (tokstart, "enum", 4))
1623 return ENUM;
1624 if (STREQN (tokstart, "long", 4))
1625 return LONG;
1626 break;
1627 case 3:
1628 if (STREQN (tokstart, "int", 3))
1629 return INT_KEYWORD;
1630 break;
1631 default:
1632 break;
1633 }
1634
1635 yylval.sval.ptr = tokstart;
1636 yylval.sval.length = namelen;
1637
1638 if (*tokstart == '$')
1639 {
1640 write_dollar_variable (yylval.sval);
1641 return VARIABLE;
1642 }
1643
1644 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1645 functions or symtabs. If this is not so, then ...
1646 Use token-type TYPENAME for symbols that happen to be defined
1647 currently as names of types; NAME for other symbols.
1648 The caller is not constrained to care about the distinction. */
1649 {
1650 char *tmp = copy_name (yylval.sval);
1651 struct symbol *sym;
1652 int is_a_field_of_this = 0, *need_this;
1653 int hextype;
1654
1655 if (current_language->la_language == language_cplus ||
1656 current_language->la_language == language_objc)
1657 need_this = &is_a_field_of_this;
1658 else
1659 need_this = (int *) NULL;
1660
1661 sym = lookup_symbol (tmp, expression_context_block,
1662 VAR_DOMAIN,
1663 need_this,
1664 (struct symtab **) NULL);
1665 /* Call lookup_symtab, not lookup_partial_symtab, in case there
1666 are no psymtabs (coff, xcoff, or some future change to blow
1667 away the psymtabs once symbols are read). */
1668 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1669 lookup_symtab (tmp))
1670 {
1671 yylval.ssym.sym = sym;
1672 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1673 return BLOCKNAME;
1674 }
1675 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1676 {
1677 #if 1
1678 /* Despite the following flaw, we need to keep this code
1679 enabled. Because we can get called from
1680 check_stub_method, if we don't handle nested types then
1681 it screws many operations in any program which uses
1682 nested types. */
1683 /* In "A::x", if x is a member function of A and there
1684 happens to be a type (nested or not, since the stabs
1685 don't make that distinction) named x, then this code
1686 incorrectly thinks we are dealing with nested types
1687 rather than a member function. */
1688
1689 char *p;
1690 char *namestart;
1691 struct symbol *best_sym;
1692
1693 /* Look ahead to detect nested types. This probably should
1694 be done in the grammar, but trying seemed to introduce a
1695 lot of shift/reduce and reduce/reduce conflicts. It's
1696 possible that it could be done, though. Or perhaps a
1697 non-grammar, but less ad hoc, approach would work well. */
1698
1699 /* Since we do not currently have any way of distinguishing
1700 a nested type from a non-nested one (the stabs don't tell
1701 us whether a type is nested), we just ignore the
1702 containing type. */
1703
1704 p = lexptr;
1705 best_sym = sym;
1706 while (1)
1707 {
1708 /* Skip whitespace. */
1709 while (*p == ' ' || *p == '\t' || *p == '\n')
1710 ++p;
1711 if (*p == ':' && p[1] == ':')
1712 {
1713 /* Skip the `::'. */
1714 p += 2;
1715 /* Skip whitespace. */
1716 while (*p == ' ' || *p == '\t' || *p == '\n')
1717 ++p;
1718 namestart = p;
1719 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1720 || (*p >= 'a' && *p <= 'z')
1721 || (*p >= 'A' && *p <= 'Z'))
1722 ++p;
1723 if (p != namestart)
1724 {
1725 struct symbol *cur_sym;
1726 /* As big as the whole rest of the expression,
1727 which is at least big enough. */
1728 char *ncopy = alloca (strlen (tmp) +
1729 strlen (namestart) + 3);
1730 char *tmp1;
1731
1732 tmp1 = ncopy;
1733 memcpy (tmp1, tmp, strlen (tmp));
1734 tmp1 += strlen (tmp);
1735 memcpy (tmp1, "::", 2);
1736 tmp1 += 2;
1737 memcpy (tmp1, namestart, p - namestart);
1738 tmp1[p - namestart] = '\0';
1739 cur_sym = lookup_symbol (ncopy,
1740 expression_context_block,
1741 VAR_DOMAIN, (int *) NULL,
1742 (struct symtab **) NULL);
1743 if (cur_sym)
1744 {
1745 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1746 {
1747 best_sym = cur_sym;
1748 lexptr = p;
1749 }
1750 else
1751 break;
1752 }
1753 else
1754 break;
1755 }
1756 else
1757 break;
1758 }
1759 else
1760 break;
1761 }
1762
1763 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1764 #else /* not 0 */
1765 yylval.tsym.type = SYMBOL_TYPE (sym);
1766 #endif /* not 0 */
1767 return TYPENAME;
1768 }
1769 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1770 return TYPENAME;
1771
1772 /* See if it's an ObjC classname. */
1773 if (!sym)
1774 {
1775 CORE_ADDR Class = lookup_objc_class(tmp);
1776 if (Class)
1777 {
1778 yylval.class.class = Class;
1779 if ((sym = lookup_struct_typedef (tmp,
1780 expression_context_block,
1781 1)))
1782 yylval.class.type = SYMBOL_TYPE (sym);
1783 return CLASSNAME;
1784 }
1785 }
1786
1787 /* Input names that aren't symbols but ARE valid hex numbers,
1788 when the input radix permits them, can be names or numbers
1789 depending on the parse. Note we support radixes > 16 here. */
1790 if (!sym &&
1791 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1792 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1793 {
1794 YYSTYPE newlval; /* Its value is ignored. */
1795 hextype = parse_number (tokstart, namelen, 0, &newlval);
1796 if (hextype == INT)
1797 {
1798 yylval.ssym.sym = sym;
1799 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1800 return NAME_OR_INT;
1801 }
1802 }
1803
1804 /* Any other kind of symbol. */
1805 yylval.ssym.sym = sym;
1806 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1807 return NAME;
1808 }
1809 }
1810
1811 void
1812 yyerror (msg)
1813 char *msg;
1814 {
1815 if (*lexptr == '\0')
1816 error("A %s near end of expression.", (msg ? msg : "error"));
1817 else
1818 error ("A %s in expression, near `%s'.", (msg ? msg : "error"),
1819 lexptr);
1820 }