]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/objfiles.c
move gdbarch object from objfile to per-BFD
[thirdparty/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include "gdb_assert.h"
37 #include <sys/types.h>
38 #include "gdb_stat.h"
39 #include <fcntl.h>
40 #include "gdb_obstack.h"
41 #include "gdb_string.h"
42 #include "hashtab.h"
43
44 #include "breakpoint.h"
45 #include "block.h"
46 #include "dictionary.h"
47 #include "source.h"
48 #include "addrmap.h"
49 #include "arch-utils.h"
50 #include "exec.h"
51 #include "observer.h"
52 #include "complaints.h"
53 #include "psymtab.h"
54 #include "solist.h"
55 #include "gdb_bfd.h"
56 #include "btrace.h"
57
58 /* Keep a registry of per-objfile data-pointers required by other GDB
59 modules. */
60
61 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile *rt_common_objfile; /* For runtime common symbols */
67
68 struct objfile_pspace_info
69 {
70 struct obj_section **sections;
71 int num_sections;
72
73 /* Nonzero if object files have been added since the section map
74 was last updated. */
75 int new_objfiles_available;
76
77 /* Nonzero if the section map MUST be updated before use. */
78 int section_map_dirty;
79
80 /* Nonzero if section map updates should be inhibited if possible. */
81 int inhibit_updates;
82 };
83
84 /* Per-program-space data key. */
85 static const struct program_space_data *objfiles_pspace_data;
86
87 static void
88 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
89 {
90 struct objfile_pspace_info *info;
91
92 info = program_space_data (pspace, objfiles_pspace_data);
93 if (info != NULL)
94 {
95 xfree (info->sections);
96 xfree (info);
97 }
98 }
99
100 /* Get the current svr4 data. If none is found yet, add it now. This
101 function always returns a valid object. */
102
103 static struct objfile_pspace_info *
104 get_objfile_pspace_data (struct program_space *pspace)
105 {
106 struct objfile_pspace_info *info;
107
108 info = program_space_data (pspace, objfiles_pspace_data);
109 if (info == NULL)
110 {
111 info = XZALLOC (struct objfile_pspace_info);
112 set_program_space_data (pspace, objfiles_pspace_data, info);
113 }
114
115 return info;
116 }
117
118 \f
119
120 /* Per-BFD data key. */
121
122 static const struct bfd_data *objfiles_bfd_data;
123
124 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
125 NULL, and it already has a per-BFD storage object, use that.
126 Otherwise, allocate a new per-BFD storage object. If ABFD is not
127 NULL, the object is allocated on the BFD; otherwise it is allocated
128 on OBJFILE's obstack. Note that it is not safe to call this
129 multiple times for a given OBJFILE -- it can only be called when
130 allocating or re-initializing OBJFILE. */
131
132 static struct objfile_per_bfd_storage *
133 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
134 {
135 struct objfile_per_bfd_storage *storage = NULL;
136
137 if (abfd != NULL)
138 storage = bfd_data (abfd, objfiles_bfd_data);
139
140 if (storage == NULL)
141 {
142 if (abfd != NULL)
143 {
144 storage = bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage));
145 set_bfd_data (abfd, objfiles_bfd_data, storage);
146
147 /* Look up the gdbarch associated with the BFD. */
148 storage->gdbarch = gdbarch_from_bfd (abfd);
149 }
150 else
151 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
152 struct objfile_per_bfd_storage);
153
154 obstack_init (&storage->storage_obstack);
155 storage->filename_cache = bcache_xmalloc (NULL, NULL);
156 storage->macro_cache = bcache_xmalloc (NULL, NULL);
157 }
158
159 return storage;
160 }
161
162 /* Free STORAGE. */
163
164 static void
165 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
166 {
167 bcache_xfree (storage->filename_cache);
168 bcache_xfree (storage->macro_cache);
169 obstack_free (&storage->storage_obstack, 0);
170 }
171
172 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
173 cleanup function to the BFD registry. */
174
175 static void
176 objfile_bfd_data_free (struct bfd *unused, void *d)
177 {
178 free_objfile_per_bfd_storage (d);
179 }
180
181 /* See objfiles.h. */
182
183 void
184 set_objfile_per_bfd (struct objfile *objfile)
185 {
186 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
187 }
188
189 \f
190
191 /* Called via bfd_map_over_sections to build up the section table that
192 the objfile references. The objfile contains pointers to the start
193 of the table (objfile->sections) and to the first location after
194 the end of the table (objfile->sections_end). */
195
196 static void
197 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
198 struct objfile *objfile, int force)
199 {
200 struct obj_section *section;
201
202 if (!force)
203 {
204 flagword aflag;
205
206 aflag = bfd_get_section_flags (abfd, asect);
207 if (!(aflag & SEC_ALLOC))
208 return;
209 }
210
211 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
212 section->objfile = objfile;
213 section->the_bfd_section = asect;
214 section->ovly_mapped = 0;
215 }
216
217 static void
218 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
219 void *objfilep)
220 {
221 add_to_objfile_sections_full (abfd, asect, objfilep, 0);
222 }
223
224 /* Builds a section table for OBJFILE.
225
226 Note that the OFFSET and OVLY_MAPPED in each table entry are
227 initialized to zero. */
228
229 void
230 build_objfile_section_table (struct objfile *objfile)
231 {
232 int count = gdb_bfd_count_sections (objfile->obfd);
233
234 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
235 count,
236 struct obj_section);
237 objfile->sections_end = (objfile->sections + count);
238 bfd_map_over_sections (objfile->obfd,
239 add_to_objfile_sections, (void *) objfile);
240
241 /* See gdb_bfd_section_index. */
242 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
243 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
244 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
245 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
246 }
247
248 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
249 allocate a new objfile struct, fill it in as best we can, link it
250 into the list of all known objfiles, and return a pointer to the
251 new objfile struct.
252
253 The FLAGS word contains various bits (OBJF_*) that can be taken as
254 requests for specific operations. Other bits like OBJF_SHARED are
255 simply copied through to the new objfile flags member. */
256
257 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
258 by jv-lang.c, to create an artificial objfile used to hold
259 information about dynamically-loaded Java classes. Unfortunately,
260 that branch of this function doesn't get tested very frequently, so
261 it's prone to breakage. (E.g. at one time the name was set to NULL
262 in that situation, which broke a loop over all names in the dynamic
263 library loader.) If you change this function, please try to leave
264 things in a consistent state even if abfd is NULL. */
265
266 struct objfile *
267 allocate_objfile (bfd *abfd, int flags)
268 {
269 struct objfile *objfile;
270
271 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
272 objfile->psymbol_cache = psymbol_bcache_init ();
273 /* We could use obstack_specify_allocation here instead, but
274 gdb_obstack.h specifies the alloc/dealloc functions. */
275 obstack_init (&objfile->objfile_obstack);
276 terminate_minimal_symbol_table (objfile);
277
278 objfile_alloc_data (objfile);
279
280 /* Update the per-objfile information that comes from the bfd, ensuring
281 that any data that is reference is saved in the per-objfile data
282 region. */
283
284 objfile->obfd = abfd;
285 gdb_bfd_ref (abfd);
286 if (abfd != NULL)
287 {
288 objfile->name = bfd_get_filename (abfd);
289 objfile->mtime = bfd_get_mtime (abfd);
290
291 /* Build section table. */
292 build_objfile_section_table (objfile);
293 }
294 else
295 {
296 objfile->name = "<<anonymous objfile>>";
297 }
298
299 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
300 objfile->pspace = current_program_space;
301
302 /* Initialize the section indexes for this objfile, so that we can
303 later detect if they are used w/o being properly assigned to. */
304
305 objfile->sect_index_text = -1;
306 objfile->sect_index_data = -1;
307 objfile->sect_index_bss = -1;
308 objfile->sect_index_rodata = -1;
309
310 /* Add this file onto the tail of the linked list of other such files. */
311
312 objfile->next = NULL;
313 if (object_files == NULL)
314 object_files = objfile;
315 else
316 {
317 struct objfile *last_one;
318
319 for (last_one = object_files;
320 last_one->next;
321 last_one = last_one->next);
322 last_one->next = objfile;
323 }
324
325 /* Save passed in flag bits. */
326 objfile->flags |= flags;
327
328 /* Rebuild section map next time we need it. */
329 get_objfile_pspace_data (objfile->pspace)->new_objfiles_available = 1;
330
331 return objfile;
332 }
333
334 /* Retrieve the gdbarch associated with OBJFILE. */
335 struct gdbarch *
336 get_objfile_arch (struct objfile *objfile)
337 {
338 return objfile->per_bfd->gdbarch;
339 }
340
341 /* If there is a valid and known entry point, function fills *ENTRY_P with it
342 and returns non-zero; otherwise it returns zero. */
343
344 int
345 entry_point_address_query (CORE_ADDR *entry_p)
346 {
347 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
348 return 0;
349
350 *entry_p = symfile_objfile->ei.entry_point;
351
352 return 1;
353 }
354
355 /* Get current entry point address. Call error if it is not known. */
356
357 CORE_ADDR
358 entry_point_address (void)
359 {
360 CORE_ADDR retval;
361
362 if (!entry_point_address_query (&retval))
363 error (_("Entry point address is not known."));
364
365 return retval;
366 }
367
368 /* Iterator on PARENT and every separate debug objfile of PARENT.
369 The usage pattern is:
370 for (objfile = parent;
371 objfile;
372 objfile = objfile_separate_debug_iterate (parent, objfile))
373 ...
374 */
375
376 struct objfile *
377 objfile_separate_debug_iterate (const struct objfile *parent,
378 const struct objfile *objfile)
379 {
380 struct objfile *res;
381
382 /* If any, return the first child. */
383 res = objfile->separate_debug_objfile;
384 if (res)
385 return res;
386
387 /* Common case where there is no separate debug objfile. */
388 if (objfile == parent)
389 return NULL;
390
391 /* Return the brother if any. Note that we don't iterate on brothers of
392 the parents. */
393 res = objfile->separate_debug_objfile_link;
394 if (res)
395 return res;
396
397 for (res = objfile->separate_debug_objfile_backlink;
398 res != parent;
399 res = res->separate_debug_objfile_backlink)
400 {
401 gdb_assert (res != NULL);
402 if (res->separate_debug_objfile_link)
403 return res->separate_debug_objfile_link;
404 }
405 return NULL;
406 }
407
408 /* Put one object file before a specified on in the global list.
409 This can be used to make sure an object file is destroyed before
410 another when using ALL_OBJFILES_SAFE to free all objfiles. */
411 void
412 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
413 {
414 struct objfile **objp;
415
416 unlink_objfile (objfile);
417
418 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
419 {
420 if (*objp == before_this)
421 {
422 objfile->next = *objp;
423 *objp = objfile;
424 return;
425 }
426 }
427
428 internal_error (__FILE__, __LINE__,
429 _("put_objfile_before: before objfile not in list"));
430 }
431
432 /* Put OBJFILE at the front of the list. */
433
434 void
435 objfile_to_front (struct objfile *objfile)
436 {
437 struct objfile **objp;
438 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
439 {
440 if (*objp == objfile)
441 {
442 /* Unhook it from where it is. */
443 *objp = objfile->next;
444 /* Put it in the front. */
445 objfile->next = object_files;
446 object_files = objfile;
447 break;
448 }
449 }
450 }
451
452 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
453 list.
454
455 It is not a bug, or error, to call this function if OBJFILE is not known
456 to be in the current list. This is done in the case of mapped objfiles,
457 for example, just to ensure that the mapped objfile doesn't appear twice
458 in the list. Since the list is threaded, linking in a mapped objfile
459 twice would create a circular list.
460
461 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
462 unlinking it, just to ensure that we have completely severed any linkages
463 between the OBJFILE and the list. */
464
465 void
466 unlink_objfile (struct objfile *objfile)
467 {
468 struct objfile **objpp;
469
470 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
471 {
472 if (*objpp == objfile)
473 {
474 *objpp = (*objpp)->next;
475 objfile->next = NULL;
476 return;
477 }
478 }
479
480 internal_error (__FILE__, __LINE__,
481 _("unlink_objfile: objfile already unlinked"));
482 }
483
484 /* Add OBJFILE as a separate debug objfile of PARENT. */
485
486 void
487 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
488 {
489 gdb_assert (objfile && parent);
490
491 /* Must not be already in a list. */
492 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
493 gdb_assert (objfile->separate_debug_objfile_link == NULL);
494 gdb_assert (objfile->separate_debug_objfile == NULL);
495 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
496 gdb_assert (parent->separate_debug_objfile_link == NULL);
497
498 objfile->separate_debug_objfile_backlink = parent;
499 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
500 parent->separate_debug_objfile = objfile;
501
502 /* Put the separate debug object before the normal one, this is so that
503 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
504 put_objfile_before (objfile, parent);
505 }
506
507 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
508 itself. */
509
510 void
511 free_objfile_separate_debug (struct objfile *objfile)
512 {
513 struct objfile *child;
514
515 for (child = objfile->separate_debug_objfile; child;)
516 {
517 struct objfile *next_child = child->separate_debug_objfile_link;
518 free_objfile (child);
519 child = next_child;
520 }
521 }
522
523 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
524 that as much as possible is allocated on the objfile_obstack
525 so that the memory can be efficiently freed.
526
527 Things which we do NOT free because they are not in malloc'd memory
528 or not in memory specific to the objfile include:
529
530 objfile -> sf
531
532 FIXME: If the objfile is using reusable symbol information (via mmalloc),
533 then we need to take into account the fact that more than one process
534 may be using the symbol information at the same time (when mmalloc is
535 extended to support cooperative locking). When more than one process
536 is using the mapped symbol info, we need to be more careful about when
537 we free objects in the reusable area. */
538
539 void
540 free_objfile (struct objfile *objfile)
541 {
542 /* Free all separate debug objfiles. */
543 free_objfile_separate_debug (objfile);
544
545 if (objfile->separate_debug_objfile_backlink)
546 {
547 /* We freed the separate debug file, make sure the base objfile
548 doesn't reference it. */
549 struct objfile *child;
550
551 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
552
553 if (child == objfile)
554 {
555 /* OBJFILE is the first child. */
556 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
557 objfile->separate_debug_objfile_link;
558 }
559 else
560 {
561 /* Find OBJFILE in the list. */
562 while (1)
563 {
564 if (child->separate_debug_objfile_link == objfile)
565 {
566 child->separate_debug_objfile_link =
567 objfile->separate_debug_objfile_link;
568 break;
569 }
570 child = child->separate_debug_objfile_link;
571 gdb_assert (child);
572 }
573 }
574 }
575
576 /* Remove any references to this objfile in the global value
577 lists. */
578 preserve_values (objfile);
579
580 /* It still may reference data modules have associated with the objfile and
581 the symbol file data. */
582 forget_cached_source_info_for_objfile (objfile);
583
584 breakpoint_free_objfile (objfile);
585 btrace_free_objfile (objfile);
586
587 /* First do any symbol file specific actions required when we are
588 finished with a particular symbol file. Note that if the objfile
589 is using reusable symbol information (via mmalloc) then each of
590 these routines is responsible for doing the correct thing, either
591 freeing things which are valid only during this particular gdb
592 execution, or leaving them to be reused during the next one. */
593
594 if (objfile->sf != NULL)
595 {
596 (*objfile->sf->sym_finish) (objfile);
597 }
598
599 /* Discard any data modules have associated with the objfile. The function
600 still may reference objfile->obfd. */
601 objfile_free_data (objfile);
602
603 if (objfile->obfd)
604 gdb_bfd_unref (objfile->obfd);
605 else
606 free_objfile_per_bfd_storage (objfile->per_bfd);
607
608 /* Remove it from the chain of all objfiles. */
609
610 unlink_objfile (objfile);
611
612 if (objfile == symfile_objfile)
613 symfile_objfile = NULL;
614
615 if (objfile == rt_common_objfile)
616 rt_common_objfile = NULL;
617
618 /* Before the symbol table code was redone to make it easier to
619 selectively load and remove information particular to a specific
620 linkage unit, gdb used to do these things whenever the monolithic
621 symbol table was blown away. How much still needs to be done
622 is unknown, but we play it safe for now and keep each action until
623 it is shown to be no longer needed. */
624
625 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
626 for example), so we need to call this here. */
627 clear_pc_function_cache ();
628
629 /* Clear globals which might have pointed into a removed objfile.
630 FIXME: It's not clear which of these are supposed to persist
631 between expressions and which ought to be reset each time. */
632 expression_context_block = NULL;
633 innermost_block = NULL;
634
635 /* Check to see if the current_source_symtab belongs to this objfile,
636 and if so, call clear_current_source_symtab_and_line. */
637
638 {
639 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
640
641 if (cursal.symtab && cursal.symtab->objfile == objfile)
642 clear_current_source_symtab_and_line ();
643 }
644
645 /* The last thing we do is free the objfile struct itself. */
646
647 if (objfile->global_psymbols.list)
648 xfree (objfile->global_psymbols.list);
649 if (objfile->static_psymbols.list)
650 xfree (objfile->static_psymbols.list);
651 /* Free the obstacks for non-reusable objfiles. */
652 psymbol_bcache_free (objfile->psymbol_cache);
653 if (objfile->demangled_names_hash)
654 htab_delete (objfile->demangled_names_hash);
655 obstack_free (&objfile->objfile_obstack, 0);
656
657 /* Rebuild section map next time we need it. */
658 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
659
660 xfree (objfile);
661 }
662
663 static void
664 do_free_objfile_cleanup (void *obj)
665 {
666 free_objfile (obj);
667 }
668
669 struct cleanup *
670 make_cleanup_free_objfile (struct objfile *obj)
671 {
672 return make_cleanup (do_free_objfile_cleanup, obj);
673 }
674
675 /* Free all the object files at once and clean up their users. */
676
677 void
678 free_all_objfiles (void)
679 {
680 struct objfile *objfile, *temp;
681 struct so_list *so;
682
683 /* Any objfile referencewould become stale. */
684 for (so = master_so_list (); so; so = so->next)
685 gdb_assert (so->objfile == NULL);
686
687 ALL_OBJFILES_SAFE (objfile, temp)
688 {
689 free_objfile (objfile);
690 }
691 clear_symtab_users (0);
692 }
693 \f
694 /* A helper function for objfile_relocate1 that relocates a single
695 symbol. */
696
697 static void
698 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
699 struct section_offsets *delta)
700 {
701 fixup_symbol_section (sym, objfile);
702
703 /* The RS6000 code from which this was taken skipped
704 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
705 But I'm leaving out that test, on the theory that
706 they can't possibly pass the tests below. */
707 if ((SYMBOL_CLASS (sym) == LOC_LABEL
708 || SYMBOL_CLASS (sym) == LOC_STATIC)
709 && SYMBOL_SECTION (sym) >= 0)
710 {
711 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
712 }
713 }
714
715 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
716 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
717 Return non-zero iff any change happened. */
718
719 static int
720 objfile_relocate1 (struct objfile *objfile,
721 const struct section_offsets *new_offsets)
722 {
723 struct obj_section *s;
724 struct section_offsets *delta =
725 ((struct section_offsets *)
726 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
727
728 int i;
729 int something_changed = 0;
730
731 for (i = 0; i < objfile->num_sections; ++i)
732 {
733 delta->offsets[i] =
734 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
735 if (ANOFFSET (delta, i) != 0)
736 something_changed = 1;
737 }
738 if (!something_changed)
739 return 0;
740
741 /* OK, get all the symtabs. */
742 {
743 struct symtab *s;
744
745 ALL_OBJFILE_SYMTABS (objfile, s)
746 {
747 struct linetable *l;
748 struct blockvector *bv;
749 int i;
750
751 /* First the line table. */
752 l = LINETABLE (s);
753 if (l)
754 {
755 for (i = 0; i < l->nitems; ++i)
756 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
757 }
758
759 /* Don't relocate a shared blockvector more than once. */
760 if (!s->primary)
761 continue;
762
763 bv = BLOCKVECTOR (s);
764 if (BLOCKVECTOR_MAP (bv))
765 addrmap_relocate (BLOCKVECTOR_MAP (bv),
766 ANOFFSET (delta, s->block_line_section));
767
768 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
769 {
770 struct block *b;
771 struct symbol *sym;
772 struct dict_iterator iter;
773
774 b = BLOCKVECTOR_BLOCK (bv, i);
775 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
776 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
777
778 /* We only want to iterate over the local symbols, not any
779 symbols in included symtabs. */
780 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
781 {
782 relocate_one_symbol (sym, objfile, delta);
783 }
784 }
785 }
786 }
787
788 /* Relocate isolated symbols. */
789 {
790 struct symbol *iter;
791
792 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
793 relocate_one_symbol (iter, objfile, delta);
794 }
795
796 if (objfile->psymtabs_addrmap)
797 addrmap_relocate (objfile->psymtabs_addrmap,
798 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
799
800 if (objfile->sf)
801 objfile->sf->qf->relocate (objfile, new_offsets, delta);
802
803 {
804 struct minimal_symbol *msym;
805
806 ALL_OBJFILE_MSYMBOLS (objfile, msym)
807 if (SYMBOL_SECTION (msym) >= 0)
808 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
809 }
810 /* Relocating different sections by different amounts may cause the symbols
811 to be out of order. */
812 msymbols_sort (objfile);
813
814 if (objfile->ei.entry_point_p)
815 {
816 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
817 only as a fallback. */
818 struct obj_section *s;
819 s = find_pc_section (objfile->ei.entry_point);
820 if (s)
821 {
822 int idx = gdb_bfd_section_index (objfile->obfd, s->the_bfd_section);
823
824 objfile->ei.entry_point += ANOFFSET (delta, idx);
825 }
826 else
827 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
828 }
829
830 {
831 int i;
832
833 for (i = 0; i < objfile->num_sections; ++i)
834 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
835 }
836
837 /* Rebuild section map next time we need it. */
838 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
839
840 /* Update the table in exec_ops, used to read memory. */
841 ALL_OBJFILE_OSECTIONS (objfile, s)
842 {
843 int idx = s - objfile->sections;
844
845 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
846 obj_section_addr (s));
847 }
848
849 /* Relocating probes. */
850 if (objfile->sf && objfile->sf->sym_probe_fns)
851 objfile->sf->sym_probe_fns->sym_relocate_probe (objfile,
852 new_offsets, delta);
853
854 /* Data changed. */
855 return 1;
856 }
857
858 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
859 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
860
861 The number and ordering of sections does differ between the two objfiles.
862 Only their names match. Also the file offsets will differ (objfile being
863 possibly prelinked but separate_debug_objfile is probably not prelinked) but
864 the in-memory absolute address as specified by NEW_OFFSETS must match both
865 files. */
866
867 void
868 objfile_relocate (struct objfile *objfile,
869 const struct section_offsets *new_offsets)
870 {
871 struct objfile *debug_objfile;
872 int changed = 0;
873
874 changed |= objfile_relocate1 (objfile, new_offsets);
875
876 for (debug_objfile = objfile->separate_debug_objfile;
877 debug_objfile;
878 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
879 {
880 struct section_addr_info *objfile_addrs;
881 struct section_offsets *new_debug_offsets;
882 struct cleanup *my_cleanups;
883
884 objfile_addrs = build_section_addr_info_from_objfile (objfile);
885 my_cleanups = make_cleanup (xfree, objfile_addrs);
886
887 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
888 relative ones must be already created according to debug_objfile. */
889
890 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
891
892 gdb_assert (debug_objfile->num_sections
893 == gdb_bfd_count_sections (debug_objfile->obfd));
894 new_debug_offsets =
895 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
896 make_cleanup (xfree, new_debug_offsets);
897 relative_addr_info_to_section_offsets (new_debug_offsets,
898 debug_objfile->num_sections,
899 objfile_addrs);
900
901 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
902
903 do_cleanups (my_cleanups);
904 }
905
906 /* Relocate breakpoints as necessary, after things are relocated. */
907 if (changed)
908 breakpoint_re_set ();
909 }
910
911 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
912 not touched here.
913 Return non-zero iff any change happened. */
914
915 static int
916 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
917 {
918 struct section_offsets *new_offsets =
919 ((struct section_offsets *)
920 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
921 int i;
922
923 for (i = 0; i < objfile->num_sections; ++i)
924 new_offsets->offsets[i] = slide;
925
926 return objfile_relocate1 (objfile, new_offsets);
927 }
928
929 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
930 SEPARATE_DEBUG_OBJFILEs. */
931
932 void
933 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
934 {
935 struct objfile *debug_objfile;
936 int changed = 0;
937
938 changed |= objfile_rebase1 (objfile, slide);
939
940 for (debug_objfile = objfile->separate_debug_objfile;
941 debug_objfile;
942 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
943 changed |= objfile_rebase1 (debug_objfile, slide);
944
945 /* Relocate breakpoints as necessary, after things are relocated. */
946 if (changed)
947 breakpoint_re_set ();
948 }
949 \f
950 /* Return non-zero if OBJFILE has partial symbols. */
951
952 int
953 objfile_has_partial_symbols (struct objfile *objfile)
954 {
955 if (!objfile->sf)
956 return 0;
957
958 /* If we have not read psymbols, but we have a function capable of reading
959 them, then that is an indication that they are in fact available. Without
960 this function the symbols may have been already read in but they also may
961 not be present in this objfile. */
962 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
963 && objfile->sf->sym_read_psymbols != NULL)
964 return 1;
965
966 return objfile->sf->qf->has_symbols (objfile);
967 }
968
969 /* Return non-zero if OBJFILE has full symbols. */
970
971 int
972 objfile_has_full_symbols (struct objfile *objfile)
973 {
974 return objfile->symtabs != NULL;
975 }
976
977 /* Return non-zero if OBJFILE has full or partial symbols, either directly
978 or through a separate debug file. */
979
980 int
981 objfile_has_symbols (struct objfile *objfile)
982 {
983 struct objfile *o;
984
985 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
986 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
987 return 1;
988 return 0;
989 }
990
991
992 /* Many places in gdb want to test just to see if we have any partial
993 symbols available. This function returns zero if none are currently
994 available, nonzero otherwise. */
995
996 int
997 have_partial_symbols (void)
998 {
999 struct objfile *ofp;
1000
1001 ALL_OBJFILES (ofp)
1002 {
1003 if (objfile_has_partial_symbols (ofp))
1004 return 1;
1005 }
1006 return 0;
1007 }
1008
1009 /* Many places in gdb want to test just to see if we have any full
1010 symbols available. This function returns zero if none are currently
1011 available, nonzero otherwise. */
1012
1013 int
1014 have_full_symbols (void)
1015 {
1016 struct objfile *ofp;
1017
1018 ALL_OBJFILES (ofp)
1019 {
1020 if (objfile_has_full_symbols (ofp))
1021 return 1;
1022 }
1023 return 0;
1024 }
1025
1026
1027 /* This operations deletes all objfile entries that represent solibs that
1028 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1029 command. */
1030
1031 void
1032 objfile_purge_solibs (void)
1033 {
1034 struct objfile *objf;
1035 struct objfile *temp;
1036
1037 ALL_OBJFILES_SAFE (objf, temp)
1038 {
1039 /* We assume that the solib package has been purged already, or will
1040 be soon. */
1041
1042 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1043 free_objfile (objf);
1044 }
1045 }
1046
1047
1048 /* Many places in gdb want to test just to see if we have any minimal
1049 symbols available. This function returns zero if none are currently
1050 available, nonzero otherwise. */
1051
1052 int
1053 have_minimal_symbols (void)
1054 {
1055 struct objfile *ofp;
1056
1057 ALL_OBJFILES (ofp)
1058 {
1059 if (ofp->minimal_symbol_count > 0)
1060 {
1061 return 1;
1062 }
1063 }
1064 return 0;
1065 }
1066
1067 /* Qsort comparison function. */
1068
1069 static int
1070 qsort_cmp (const void *a, const void *b)
1071 {
1072 const struct obj_section *sect1 = *(const struct obj_section **) a;
1073 const struct obj_section *sect2 = *(const struct obj_section **) b;
1074 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1075 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1076
1077 if (sect1_addr < sect2_addr)
1078 return -1;
1079 else if (sect1_addr > sect2_addr)
1080 return 1;
1081 else
1082 {
1083 /* Sections are at the same address. This could happen if
1084 A) we have an objfile and a separate debuginfo.
1085 B) we are confused, and have added sections without proper relocation,
1086 or something like that. */
1087
1088 const struct objfile *const objfile1 = sect1->objfile;
1089 const struct objfile *const objfile2 = sect2->objfile;
1090
1091 if (objfile1->separate_debug_objfile == objfile2
1092 || objfile2->separate_debug_objfile == objfile1)
1093 {
1094 /* Case A. The ordering doesn't matter: separate debuginfo files
1095 will be filtered out later. */
1096
1097 return 0;
1098 }
1099
1100 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1101 triage. This section could be slow (since we iterate over all
1102 objfiles in each call to qsort_cmp), but this shouldn't happen
1103 very often (GDB is already in a confused state; one hopes this
1104 doesn't happen at all). If you discover that significant time is
1105 spent in the loops below, do 'set complaints 100' and examine the
1106 resulting complaints. */
1107
1108 if (objfile1 == objfile2)
1109 {
1110 /* Both sections came from the same objfile. We are really confused.
1111 Sort on sequence order of sections within the objfile. */
1112
1113 const struct obj_section *osect;
1114
1115 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1116 if (osect == sect1)
1117 return -1;
1118 else if (osect == sect2)
1119 return 1;
1120
1121 /* We should have found one of the sections before getting here. */
1122 gdb_assert_not_reached ("section not found");
1123 }
1124 else
1125 {
1126 /* Sort on sequence number of the objfile in the chain. */
1127
1128 const struct objfile *objfile;
1129
1130 ALL_OBJFILES (objfile)
1131 if (objfile == objfile1)
1132 return -1;
1133 else if (objfile == objfile2)
1134 return 1;
1135
1136 /* We should have found one of the objfiles before getting here. */
1137 gdb_assert_not_reached ("objfile not found");
1138 }
1139 }
1140
1141 /* Unreachable. */
1142 gdb_assert_not_reached ("unexpected code path");
1143 return 0;
1144 }
1145
1146 /* Select "better" obj_section to keep. We prefer the one that came from
1147 the real object, rather than the one from separate debuginfo.
1148 Most of the time the two sections are exactly identical, but with
1149 prelinking the .rel.dyn section in the real object may have different
1150 size. */
1151
1152 static struct obj_section *
1153 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1154 {
1155 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1156 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1157 || (b->objfile->separate_debug_objfile == a->objfile));
1158 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1159 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1160
1161 if (a->objfile->separate_debug_objfile != NULL)
1162 return a;
1163 return b;
1164 }
1165
1166 /* Return 1 if SECTION should be inserted into the section map.
1167 We want to insert only non-overlay and non-TLS section. */
1168
1169 static int
1170 insert_section_p (const struct bfd *abfd,
1171 const struct bfd_section *section)
1172 {
1173 const bfd_vma lma = bfd_section_lma (abfd, section);
1174
1175 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1176 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1177 /* This is an overlay section. IN_MEMORY check is needed to avoid
1178 discarding sections from the "system supplied DSO" (aka vdso)
1179 on some Linux systems (e.g. Fedora 11). */
1180 return 0;
1181 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1182 /* This is a TLS section. */
1183 return 0;
1184
1185 return 1;
1186 }
1187
1188 /* Filter out overlapping sections where one section came from the real
1189 objfile, and the other from a separate debuginfo file.
1190 Return the size of table after redundant sections have been eliminated. */
1191
1192 static int
1193 filter_debuginfo_sections (struct obj_section **map, int map_size)
1194 {
1195 int i, j;
1196
1197 for (i = 0, j = 0; i < map_size - 1; i++)
1198 {
1199 struct obj_section *const sect1 = map[i];
1200 struct obj_section *const sect2 = map[i + 1];
1201 const struct objfile *const objfile1 = sect1->objfile;
1202 const struct objfile *const objfile2 = sect2->objfile;
1203 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1204 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1205
1206 if (sect1_addr == sect2_addr
1207 && (objfile1->separate_debug_objfile == objfile2
1208 || objfile2->separate_debug_objfile == objfile1))
1209 {
1210 map[j++] = preferred_obj_section (sect1, sect2);
1211 ++i;
1212 }
1213 else
1214 map[j++] = sect1;
1215 }
1216
1217 if (i < map_size)
1218 {
1219 gdb_assert (i == map_size - 1);
1220 map[j++] = map[i];
1221 }
1222
1223 /* The map should not have shrunk to less than half the original size. */
1224 gdb_assert (map_size / 2 <= j);
1225
1226 return j;
1227 }
1228
1229 /* Filter out overlapping sections, issuing a warning if any are found.
1230 Overlapping sections could really be overlay sections which we didn't
1231 classify as such in insert_section_p, or we could be dealing with a
1232 corrupt binary. */
1233
1234 static int
1235 filter_overlapping_sections (struct obj_section **map, int map_size)
1236 {
1237 int i, j;
1238
1239 for (i = 0, j = 0; i < map_size - 1; )
1240 {
1241 int k;
1242
1243 map[j++] = map[i];
1244 for (k = i + 1; k < map_size; k++)
1245 {
1246 struct obj_section *const sect1 = map[i];
1247 struct obj_section *const sect2 = map[k];
1248 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1249 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1250 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1251
1252 gdb_assert (sect1_addr <= sect2_addr);
1253
1254 if (sect1_endaddr <= sect2_addr)
1255 break;
1256 else
1257 {
1258 /* We have an overlap. Report it. */
1259
1260 struct objfile *const objf1 = sect1->objfile;
1261 struct objfile *const objf2 = sect2->objfile;
1262
1263 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1264 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1265
1266 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1267
1268 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1269
1270 complaint (&symfile_complaints,
1271 _("unexpected overlap between:\n"
1272 " (A) section `%s' from `%s' [%s, %s)\n"
1273 " (B) section `%s' from `%s' [%s, %s).\n"
1274 "Will ignore section B"),
1275 bfd_section_name (abfd1, bfds1), objf1->name,
1276 paddress (gdbarch, sect1_addr),
1277 paddress (gdbarch, sect1_endaddr),
1278 bfd_section_name (abfd2, bfds2), objf2->name,
1279 paddress (gdbarch, sect2_addr),
1280 paddress (gdbarch, sect2_endaddr));
1281 }
1282 }
1283 i = k;
1284 }
1285
1286 if (i < map_size)
1287 {
1288 gdb_assert (i == map_size - 1);
1289 map[j++] = map[i];
1290 }
1291
1292 return j;
1293 }
1294
1295
1296 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1297 TLS, overlay and overlapping sections. */
1298
1299 static void
1300 update_section_map (struct program_space *pspace,
1301 struct obj_section ***pmap, int *pmap_size)
1302 {
1303 struct objfile_pspace_info *pspace_info;
1304 int alloc_size, map_size, i;
1305 struct obj_section *s, **map;
1306 struct objfile *objfile;
1307
1308 pspace_info = get_objfile_pspace_data (pspace);
1309 gdb_assert (pspace_info->section_map_dirty != 0
1310 || pspace_info->new_objfiles_available != 0);
1311
1312 map = *pmap;
1313 xfree (map);
1314
1315 alloc_size = 0;
1316 ALL_PSPACE_OBJFILES (pspace, objfile)
1317 ALL_OBJFILE_OSECTIONS (objfile, s)
1318 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1319 alloc_size += 1;
1320
1321 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1322 if (alloc_size == 0)
1323 {
1324 *pmap = NULL;
1325 *pmap_size = 0;
1326 return;
1327 }
1328
1329 map = xmalloc (alloc_size * sizeof (*map));
1330
1331 i = 0;
1332 ALL_PSPACE_OBJFILES (pspace, objfile)
1333 ALL_OBJFILE_OSECTIONS (objfile, s)
1334 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1335 map[i++] = s;
1336
1337 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1338 map_size = filter_debuginfo_sections(map, alloc_size);
1339 map_size = filter_overlapping_sections(map, map_size);
1340
1341 if (map_size < alloc_size)
1342 /* Some sections were eliminated. Trim excess space. */
1343 map = xrealloc (map, map_size * sizeof (*map));
1344 else
1345 gdb_assert (alloc_size == map_size);
1346
1347 *pmap = map;
1348 *pmap_size = map_size;
1349 }
1350
1351 /* Bsearch comparison function. */
1352
1353 static int
1354 bsearch_cmp (const void *key, const void *elt)
1355 {
1356 const CORE_ADDR pc = *(CORE_ADDR *) key;
1357 const struct obj_section *section = *(const struct obj_section **) elt;
1358
1359 if (pc < obj_section_addr (section))
1360 return -1;
1361 if (pc < obj_section_endaddr (section))
1362 return 0;
1363 return 1;
1364 }
1365
1366 /* Returns a section whose range includes PC or NULL if none found. */
1367
1368 struct obj_section *
1369 find_pc_section (CORE_ADDR pc)
1370 {
1371 struct objfile_pspace_info *pspace_info;
1372 struct obj_section *s, **sp;
1373
1374 /* Check for mapped overlay section first. */
1375 s = find_pc_mapped_section (pc);
1376 if (s)
1377 return s;
1378
1379 pspace_info = get_objfile_pspace_data (current_program_space);
1380 if (pspace_info->section_map_dirty
1381 || (pspace_info->new_objfiles_available
1382 && !pspace_info->inhibit_updates))
1383 {
1384 update_section_map (current_program_space,
1385 &pspace_info->sections,
1386 &pspace_info->num_sections);
1387
1388 /* Don't need updates to section map until objfiles are added,
1389 removed or relocated. */
1390 pspace_info->new_objfiles_available = 0;
1391 pspace_info->section_map_dirty = 0;
1392 }
1393
1394 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1395 bsearch be non-NULL. */
1396 if (pspace_info->sections == NULL)
1397 {
1398 gdb_assert (pspace_info->num_sections == 0);
1399 return NULL;
1400 }
1401
1402 sp = (struct obj_section **) bsearch (&pc,
1403 pspace_info->sections,
1404 pspace_info->num_sections,
1405 sizeof (*pspace_info->sections),
1406 bsearch_cmp);
1407 if (sp != NULL)
1408 return *sp;
1409 return NULL;
1410 }
1411
1412
1413 /* Return non-zero if PC is in a section called NAME. */
1414
1415 int
1416 pc_in_section (CORE_ADDR pc, char *name)
1417 {
1418 struct obj_section *s;
1419 int retval = 0;
1420
1421 s = find_pc_section (pc);
1422
1423 retval = (s != NULL
1424 && s->the_bfd_section->name != NULL
1425 && strcmp (s->the_bfd_section->name, name) == 0);
1426 return (retval);
1427 }
1428 \f
1429
1430 /* Set section_map_dirty so section map will be rebuilt next time it
1431 is used. Called by reread_symbols. */
1432
1433 void
1434 objfiles_changed (void)
1435 {
1436 /* Rebuild section map next time we need it. */
1437 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1438 }
1439
1440 /* See comments in objfiles.h. */
1441
1442 void
1443 inhibit_section_map_updates (struct program_space *pspace)
1444 {
1445 get_objfile_pspace_data (pspace)->inhibit_updates = 1;
1446 }
1447
1448 /* See comments in objfiles.h. */
1449
1450 void
1451 resume_section_map_updates (struct program_space *pspace)
1452 {
1453 get_objfile_pspace_data (pspace)->inhibit_updates = 0;
1454 }
1455
1456 /* See comments in objfiles.h. */
1457
1458 void
1459 resume_section_map_updates_cleanup (void *arg)
1460 {
1461 resume_section_map_updates (arg);
1462 }
1463
1464 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1465 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1466 searching the objfiles in the order they are stored internally,
1467 ignoring CURRENT_OBJFILE.
1468
1469 On most platorms, it should be close enough to doing the best
1470 we can without some knowledge specific to the architecture. */
1471
1472 void
1473 default_iterate_over_objfiles_in_search_order
1474 (struct gdbarch *gdbarch,
1475 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1476 void *cb_data, struct objfile *current_objfile)
1477 {
1478 int stop = 0;
1479 struct objfile *objfile;
1480
1481 ALL_OBJFILES (objfile)
1482 {
1483 stop = cb (objfile, cb_data);
1484 if (stop)
1485 return;
1486 }
1487 }
1488
1489 /* Provide a prototype to silence -Wmissing-prototypes. */
1490 extern initialize_file_ftype _initialize_objfiles;
1491
1492 void
1493 _initialize_objfiles (void)
1494 {
1495 objfiles_pspace_data
1496 = register_program_space_data_with_cleanup (NULL,
1497 objfiles_pspace_data_cleanup);
1498
1499 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1500 objfile_bfd_data_free);
1501 }